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Preface 

As the twentieth century dawned, physicists had pretty much sewed up the subject. 
Everything was in place, or so it was thought. But of course there were a few “dark 
clouds” on the horizon as they were described. And then, as one might say, all hell 
broke loose. The special theory of relativity broke out on the horizon, and to a great 
extent it was inexplicable to many people. An even more inexplicable way of thinking, 
in the form of “bizarre” quantum mechanics made its appearance. Practically all 
the notions of the previous century were toppled. The only justification for this 
paradigmic shift was that all these ideas explained observations, and that is at the 
heart of physics. 

So also, as the twentieth century was ebbing, there were so many ideas up in the 
air though inconclusively. These included the standard model of particle physics, the 
standard model of cosmology, string theory, quantum gravity approaches and loop 
quantum gravity and so on. While all these theories were ingenious in themselves, 
they again left gaping holes, and worst of all, they could not stand up to the scrutiny 
of experiment. For instance, the standard big bang cosmology predicted a universe 
dominated by dark matter, and therefore whose expansion was slowing down. The 
standard model of particle physics on the other hand fared better, except for a few 
lingering problems like a large number of unknown parameters which needed to be 
inserted ad hoc. 

The neutrino has been an enigmatic particle for decades and even to this day many 
question marks remain. For example, neutrino oscillations which endow this ghostly 
particle with mass. In this book, the author explores alternative angles to make the 
neutrino less enigmatic. The fact that the neutrino is massless could not be explained 
by the standard model of particle physics. Quantum gravity approaches have proved 
to be even more futile. 

On the other hand, string theory, although based on sound mathematics with its 
multiple unexplained dimensions failed to come up to expectations. Loop quantum 
gravity fared even worse. 

Another paradigm was that of dark matter, first introduced by Fred Zwicke, some 
80 years ago. Though there have been some creative ideas to explain dark matter, for
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example, super symmetry or brown dwarf stars, these have not gained much traction 
due to latest observational evidence. 

At this stage, as the last century was coming to an end, the author proposed 
his concept of dark energy and an accelerating Universe. This was immediately 
observationally confirmed, thanks to the work of Perlmutter, Schmidt, and Riess. 
The advent of dark energy has thrown up several new paradigms. 

Around the same time, low-dimensional structures like nanotubes and graphene 
also came to light, having been proposed by the author as early as 1995. 

Clearly, the twenty-first century led us to new avenues, and some of these are 
coming to light in a continuing process. The latest of these is the credible evidence 
of a fifth hitherto unknown force, which again was pointed out by the author as 
early as 1999–2000. In fact the author also gives yet another test for figuring out this 
fifth force using charmonium quark–antiquark pair and a shift in its energy levels. 
The results are compared with observations from Fermilab and the Large Hadron 
Collider. 

Scientists working on Fermilab’s Muon g − 2 experiment released the world’s 
most precise measurement yet, of the magnetic moment of the muon, bringing particle 
physics closer to the ultimate showdown between theory and experiment that may 
uncover new particles or forces.1 

Udine, Italy B. G. Sidharth

1 https://news.fnal.gov/2023/08/muon-g-2-doubles-down-with-latest-measurement. 

https://news.fnal.gov/2023/08/muon-g-2-doubles-down-with-latest-measurement
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Chapter 1 
Dark Energy Universe 

1.1 Introduction 

By 1990 it appeared that major problems of cosmology had been sorted out. Scien-
tists were convinced that the universe began with a huge explosion, the well-known 
“big bang”. This initial explosion was considered to be more powerful than a trillion 
trillion trillion trillion Hydrogen bombs exploding in unison which would fling the 
matter out in all directions. However physicists had hypothesized, starting in the 
1930s the existence of what was called “dark matter”, which would slow down the 
initial explosion and bring the expanding universe to a halt. This in turn would trigger 
a huge implosion and so on the script went. It must be mentioned that to date the 
exact identity of this magical dark matter is debatable. On the other hand, the dark 
matter hypothesis seemed to explain features like velocity curves of stars in galax-
ies. The point is that there was a distinct flattening of the galactic rotation curves, 
as if some unseen matter was pulling the stars inwards was observed. There have 
been many speculations about the identity of this dark matter without a definitive 
conclusion. For example, would they be made of supersymmetric particles, or could 
they be the so-called brown dwarf or Weakly Interacting Massive Particles (WIMPS) 
and so on. In fact, Prof. Abdus Salam speculated some two decades ago [ 2]  “And  
now we come upon the question of dark matter which is one of the open problems 
of cosmology”.....“This is a problem which was speculated upon by Zwicky in the 
30s. He demonstrated that visible matter in the Coma cluster of galaxies was not 
sufficient to bind the galactic cluster. Oort pointed out that at least three times the 
mass of existing stars would be required to keep our galaxy stable”. This became a 
central problem and focus of old cosmology.· · · One would be compelled to pose the 
question: what exactly is dark matter? The Wilkinson Microwave Anisotropy Probe 
(WMAP) space mission based on 9 years of observation of the cosmic microwave 

Zero point energy is the same as the commonly used vacuum fluctuations. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
B. G. Sidharth, The Dark Energy Paradigm, 
https://doi.org/10.1007/978-981-96-3745-4_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3745-4_1&domain=pdf
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1
https://doi.org/10.1007/978-981-96-3745-4_1


2 1 Dark Energy Universe

Fig. 1.1 This image is the detailed, all-sky picture of the infant universe created from 7 years of 
WMAP data. The image reveals 13.7-billion-year-old temperature fluctuations (shown as colour 
differences) that correspond to the seeds that grew to become the galaxies. (Picture credit: NASA) 

background concluded the following: WMAP’s measurements found that the uni-
verse is 13.7 billion years old and consists of 
5% matter, 
23% dark matter, 
72% dark energy (see Fig. 1.1). 

The universe in this picture showed the existence of enough of the mysterious dark 
matter to bring to a halt the expansion and eventually bring about the next collapse. 
That is, the universe would continue expansion up to a certain point and after that 
would collapse. 

However, very recently, based on the observations of the Hubble Space Telescope 
and James Webb Space Telescope, it is being suspected that different parts of the 
universe could be accelerating at different rates depending on where the observation 
is taken [ 3]. 

Of course many other problems of subtler nature still needed to be answered. The 
well-known horizon problem [ 4] being one of them. In other words, the universe 
is born out of an uncontrolled and uncoordinated explosion making the big bang 
a random event. Because of this, different portions of the universe were flung in 
different directions, without any connection. So much so, light would not have had 
enough time to travel from one part of the universe to another. This contradicts the 
observed fact that the universe is on the whole consistent and homogeneous. This 
would give rise to a speculation of some form of faster than light intercommunication. 
This of course would violate the special theory of relativity. 

Another conundrum arose, space should be curved due to the huge amounts of 
matter in it, surprisingly the universe seemed to be flat! There were other problems 
as well. For example, the fact that monopoles have not been found after decades of 
search, as they should have been.
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Inflationary Cosmology 

Some of these problems were sought to be explained by what has been called infla-
tionary cosmology whereby, early on, just after the big bang the explosion was 
superfast [ 5]. 

What would happen in this case is that different parts of the universe, which could 
not be accessible by light, would now get connected. At the same time, the superfast 
expansion in the initial stages would smoothen out any distortion or curvature effects 
in space, leading to a flat universe and in the process also eliminate the monopoles. 

Nevertheless, inflation theory has its problems. It does not seem to explain the 
cosmological constant observed since. Further, this theory seems to imply that the 
fluctuations it produces should continue to indefinite distances. Observation seems 
to imply the contrary. 

A Lumpy Universe 

One other feature that has been studied in detail over the past few decades is that 
of structure formation in the universe. To put it simply, why is the universe not 
a uniform spread of matter and radiation? On the contrary, it is very lumpy with 
planets, stars, galaxies, and so on, with a lot of space separating these objects. This 
has been explained in terms of fluctuations in density, that is, accidentally more matter 
being present in a given region. Gravitation would then draw in even more matter 
and so on. These fluctuations would also cause the cosmic background radiation to 
be non-uniform or anisotropic. Such anisotropies are in fact being observed. But this 
is not the end of the story. The galaxies seem to be arranged along two-dimensional 
structures and filaments with huge separating voids. 

Suddenly in 1997 the author put forward a contra view of the universe: not so 
much dark matter, but what these days is called dark energy permeated the universe 
and dominated it. Under its influence the universe would not slow down as has been 
pictured earlier but rather it would accelerate, albeit very slowly [ 6– 8]. This startling 
effect was observed the very next year in 1998 itself. 

Perlmutter, Schmidt, and Reiss [ 9] got the Nobel Prize for this pathbreaking 
observation in 2011. This elicited some rueful comments: 

A very reputed publication quoted Nobel Laureate Antony Leggett, “It is of course 
clear that your equation predicts an exponential (inflation-type) expansion of the cur-
rent universe, hence acceleration. And it would have been nice if the Nobel committee 
had mentioned this”. Prof. Leggett also noted the author’s later work on signals of 
dark energy, ...looks very interesting. Prof Antony Hewish, a British astronomer who 
had won the Nobel for physics in 1974, also felt that the author’s work should have 
been recognized. “You must feel gratified that your ideas in 1997 were spot on”, 
Hewish wrote.
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“..I would guess that while you did not share the prize this year, the fact that you 
predicted something that was the key to the others getting the prize should make 
your chances quite high for the future”, wrote another Nobel Laureate Douglas 
Osheroff. He noted, “I certainly do appreciate that you are one of the very few to 
have recognized, on theoretical grounds, the possible need to reintroduce a non-zero 
cosmological constant ahead of the supernova experiments!” 

Nobel Laureate Prof. I. Prigogine described the work as “Very interesting” and, 
“I agree with you that spacetime has a stochastic underpinning”. And so on. 

1.2 Dark Energy: Different Perspectives 

1.2.1 The Quantum Vacuum 

It is commonly accepted that at absolute zero degree Kelvin there is no motion 
whatsoever: when thermodynamic motion ceases this is expected. In practice this 
is not found to be so as was observed by Nernst, the discoverer of the third law of 
thermodynamics. The superfluidity of Helium is caused by quantum mechanics— 
rather than the third law. We are referring to the spooky motion of supercooled 
Helium. Let us explore the quantum vacuum and the related zero point energy (ZPE). 

The Zero Point Energy and Its Manifestations 

• A familiar effect, the Casimir effect shows the existence of a force between gold 
plates without charge placed in a charge-free medium. This effect experimentally 
confirms the presence of the elusive zero point energy or quantum vacuum energy. 

• A miniscule vibration of an electron which orbits the nucleus of an atom can be 
observed by the Lamb shift. Leading to the conclusion that the zero point energy 
is causing this vibration. 

• Then there is the question of the anomalous quantum mechanical gyromagnetic 
ratio .g = 2 leading to the quantum mechanical spin half and so on [ 10– 12]. 

The quantum vacuum replaces the placid aether of yore. Now, electrons and positrons 
are incessantly created and destroyed in this turbulent medium, practically instan-
taneously. Of course the limits are set by the Heisenberg uncertainty principle to 
circumvent energy conservation violation. Quantum vacuum maybe looked upon 
as another state of matter, maybe a compromise between being and nonbeing. The 
Vedic seers, while referring to the universe, succinctly put it, thousands of years ago 
as: “Neither existence, nor non-existence”. 

The lowest state of any quantum field with zero momentum and energy maybe 
treated as quantum vacuum. Heisenberg’s principle attributes an infinite value to
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ZPE and has to be “renormalized”, implying that it is to be ignored. Unlike with the 
older concept of aether, quantum vacuum can take on different properties. Quantum 
vacuum is responsible for effects like quark confinement, which, roughly speaking, 
implies that it would not be possible to isolate an independent or free quark. Quantum 
vacuum also explains the spontaneous breaking of symmetry of the electroweak 
theory put forward by Abdus Salaam and others, as well as vacuum polarization. 
In vacuum polarization, electron-like particles are surrounded by a cloud of other 
oppositely charged particles. This tends to reduce or mask the main charge and so on. 
Regions having similarity with domain structures of ferromagnets could be found 
due to vacuum fluctuations. All elementary electron-magnets are aligned with their 
spins in a particular direction in a ferromagnet. But some regions with the spins 
aligned differently could also be found. 

Zeldovich and others as also the author [ 13, 14] emphasized that such a quantum 
vacuum can cause cosmic repulsion. The problem with this approach is the huge 
value of the cosmological constant that it throws up. In fact the universe would blow 
up almost immediately after it is created, with such a value. This is the so-called 
cosmological constant problem emphasized by Weinberg [ 15]. 

1.2.2 Stochastic Electrodynamics 

There is another approach, wherein stochastic electrodynamics treats the ZPE as 
independent and primary and attributes to it quantum mechanical effects [ 16]. It may 
be re-emphasized that the ZPE results in the well-known experimentally verified 
Casimir effect [ 17, 18]. We would also like to point out that contrary to popular 
belief, the concept of aether has survived over the decades through the works of 
Dirac, Vigier, Prigogine, string theorists like Wilzeck, and others [ 19– 21]. It appears 
that even Einstein himself continued to believe in this concept. 

The argument proceeds as follows: Elementary particles are formed as a result of 
the fluctuations of energy in the electromagnetic field. Einstein believed this to be 
true. According to Wilzeck, Einstein looked for a formulation where particles and 
radiation could have a unified origin. For Einstein, the fields were primary. Later on 
he tried to find precisely such a unified formulation. He was not successful in his 
efforts. 

We will now argue that indeed this can happen. In the words of Wheeler 
[ 12], “From the zero point fluctuations of a single oscillator to the fluctuations 
of the electromagnetic field to geometrodynamic fluctuations is a natural order of 
progression...”
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1.2.3 Wheeler’s Approach 

Let us consider Wheeler’s approach. The starting point of this approach is a harmonic 
oscillator in its ground state with a probability amplitude: 

. ψ(x) =
(mω

π�

)1/4
e−(mω/2�)x2 ,

where. x is the displacement from its position of classical equilibrium. The fluctuation 
of the oscillator occurs in an interval given by 

. Δx ∼ (�/mω)1/2.

The electromagnetic field is comprised of an infinite set of independent oscillators, 
bearing amplitudes .X1, X2, etc. The oscillators with amplitudes .X1, X2 · · · have a 
probability which now becomes the product of individual oscillator amplitudes: 

. ψ(X1, X2, · · · ) = exp[−(X2
1 + X2

2 + · · · )].

This would have to have a suitable normalization factor. This expression for prob-
ability gives the probability amplitude .ψ for a magnetic field with configuration 
.B(x, y, z). This maybe be given by the Fourier coefficients .X1, X2, · · · or directly 
in terms of the magnetic field configuration itself by 

. ψ(B(x, y, z))

= P exp

(
−

∫ ∫
B(x1) · B(x2)

16π3�cr212
d3x1d

3x2

)

.P being a normalization factor. Let us now specialize to the case of the magnetic 
field which is everywhere zero except in a region which has a dimension . l.  In  this  
region, the magnetic field is of the order of .∼ ΔB. The probability amplitude with 
the above configuration is proportional to 

. exp
[− (

(ΔB)2l4/�c
)]

.

This implies that the fluctuational energy in a volume of length. l will be [ 12, 22, 23] 

.B2 ∼ �c

l
. (1.1) 

It maybe noted that in Eq. (1.1)  i  f . l were to be taken to be the Compton wavelength 
of a typical elementary particle, then its energy .mc2 would be recovered. This can 
be verified easily. It was noted earlier by the author, Rueda [ 1, 24] and others, that 
inertial mass and energy may be deduced based on viscous resistance to the ZPE. 
This may also be deduced from quantum mechanical considerations, restricted to
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the Compton scale. This brings us back to the result in the context of the ZPE. The 
inverse dependence of the length scale and the energy (or momentum) is shown 
by (1.1). 

According to Einstein, such a condensation from the background electromagnetic 
field yielded the elementary particles (Cf. [ 14, 25] for details). The above result 
follows along the same lines. In the sequel, we also take the pion to represent a 
typical elementary particle, as in the literature. 

1.2.4 Large Number Considerations 

To proceed, as there are.N ∼ 1080 such particles in the universe, we get, consistently, 

.Nm = M, (1.2) 

where.M is the mass of the universe and. m is taken to be the pion mass as it represents 
a typical elementary particle, as mentioned earlier. It must be remembered that the 
energy of gravitational interaction between the particles is very much insignificant 
compared to the above electromagnetic considerations. 

In the following, we will use .N as the sole cosmological parameter. 
We next invoke the well-known relation [ 26– 28] 

.R ≈ GM

c2
, (1.3) 

where .M can be obtained from (1.2). We can arrive at (1.3) in different ways. For 
example, in a uniformly expanding Friedman universe, we have 

. Ṙ2 = 8πGρR2/3.

In the above if we substitute .Ṙ = c at . R, the radius of the universe, we get (1.3). 
We now use the fact that given .N particles, the (Gaussian) fluctuation in the 

particle number is of the order.
√
N [ 6, 8, 28– 31], while a typical time interval for the 

fluctuations is.∼ �/mc2, the Compton time, the fuzzy interval we encountered within 
which there is no meaningful physics. So particles are created and destroyed but the 
ultimate result is that .

√
N particles are created just as this is the net displacement in 

a random walk of unit step. So we have 

.
dN

dt
=

√
N

τ
, (1.4) 

whence on integration we get (remembering that we are almost in the continuum 
region, that is, .τ ∼ 10−23 s ≈ 0)
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.T = �

mc2
√
N . (1.5) 

We can easily verify that Eq. (1.5) is indeed satisfied where .T is the age of the 
universe. Next by differentiating (1.3) with respect to . t we get 

.
dR

dt
≈ HR, (1.6) 

where .H in (1.6) can be identified with the Hubble constant, and on using (1.3) . H
is given by 

.H = Gm3c

�2
. (1.7) 

Equations (1.2), (1.3), and (1.5) show that in this formulation, the correct mass, 
radius, Hubble constant, and age of the universe can be deduced given. N , the number 
of particles, as the sole cosmological or large-scale parameter. We observe that at 
this stage we are not invoking any particular dynamics—the expansion is due to the 
random creation of particles from the ZPE background. Equation (1.7) can be written 
as 

.m ≈
(
H�

2

Gc

) 1
3

. (1.8) 

Equation (1.8) has been empirically known as an “accidental” or a “mysterious” 
relation. As observed by Weinberg [ 32], this is unexplained: it relates a single cos-
mological parameter .H to constants from microphysics. We will touch upon this 
micro–macro nexus again. In our formulation, Eq. (1.8) is no longer a mysterious 
coincidence but rather a consequence of the theory. From Eq. (1.8), we can deduce 
that the value of .m ≈ 10−25 gm which is the pion mass. Indeed in the large number 
theory, as is well known, and as mentioned earlier, the pion is considered to be a 
typical elementary particle as it takes part in various interactions including hadronic. 

1.3 Cosmological Constant 

As (1.7) and (1.6) are not exact equations but rather, order of magnitude relations, 
it follows, on differentiating (1.6) that a small cosmological constant .Λ is allowed 
such that 

. Λ ≤ O(H 2).

This is consistent with observation and shows that .Λ is very small—this has been a 
puzzle, the so-called cosmological constant problem alluded to, because in conven-
tional theory, it turns out to be huge and unacceptable [ 33]. But it poses no problem
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in this formulation. This is because of the characterization of the ZPE as indepen-
dent and primary in our formulation, this being the mysterious dark energy. We shall 
further characterize .Λ later in this chapter. 

To proceed we observe that because of the fluctuation of.∼ √
N (due to the ZPE), 

there is an excess electrical potential energy of the electron, which in fact we identify 
as its inertial energy. That is [ 8, 28], 

. 

√
Ne2/R ≈ mc2.

On using (1.3) in the above, we recover the well-known gravitation-electromagnetism 
ratio, viz.: 

.e2/Gm2 ∼ √
N ≈ 1040 (1.9) 

or without using (1.3), we get, instead, the well-known so-called Weyl–Eddington 
formula: 

.R = √
Nl. (1.10) 

It appears that (1.10) was first noticed by H. Weyl. In fact (1.10) is the spatial 
counterpart of (1.5). If we combine (1.10) and (1.3), we get 

.
Gm

lc2
= 1√

N
∝ T−1, (1.11) 

where in (1.11), we have used (1.5). Following Dirac we treat .G as the variable, 
rather than the quantities .m, l, c and � which we will call microphysical constants 
because of their central role in atomic (and sub-atomic) physics. 

Next if we use .G from (1.11)  in (1.7), we can see that 

.H = c

l

1√
N

. (1.12) 

Thus apart from the fact that .H has the same inverse time dependence on .T as 
. G,  (1.12) shows that given the microphysical constants, and . N , we can deduce the 
Hubble constant also, as from (1.12)  o  r (1.7). 

Using (1.2) and (1.3), we can now deduce that 

.ρ ≈ m

l3
1√
N

. (1.13) 

Next (1.10) and (1.5)  giv  e
.R = cT . (1.14) 

Equations (1.13) and (1.14) are consistent with observation.
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Finally, we observe that using .M, G and H from the above, we get 

. M = c3

GH
.

This relation is required in the Friedman model of the expanding universe (and the 
steady-state model too). In fact if we use in this relation, the expression 

. H = c/R

which follows from (1.12) and (1.10), then we recover (1.3). 
As we saw the above model predicts a dark-energy-driven ever-expanding and 

accelerating universe with a small cosmological constant while the density keeps 
decreasing. Moreover, mysterious large number relations like (1.7), (1.13), or (1.10) 
which were considered to be miraculous accidents now follow from the underlying 
theory. This seemed to go against the accepted idea that the density of the universe 
equaled the critical density required for closure and that aided by dark matter, the 
universe was decelerating. However, as noted, from 1998 onwards, following the 
work of Perlmutter, Schmidt, and co-workers, these otherwise apparently heretic 
conclusions have been vindicated. 

It may be mentioned that the observational evidence for an accelerating universe 
was the American Association for Advancement of Science’s Breakthrough of the 
Year, 1998 while the evidence for nearly 75 percent of the universe being dark energy, 
based on the Wilkinson Microwave Anisotropy Probe (WMAP) and the Sloan Sky 
Digital Survey was the Breakthrough of the Year, 2003 [ 34, 35]. See Fig. 1.1. 

However one issue which has not yet been settled is the fundamental question, 
“What exactly is dark energy?” In the author’s analysis, to re-emphasize, this was 
a mysterious energy called the zero point energy which had been known for a long 
time, though its connection with dark energy had not been thought of. One way 
of understanding this is: if an object be suspended in deep space, with no forces 
whatever acting on it, then according to the usual laws of physics, it would not budge 
even a little. However the mysterious zero point energy would be buffeting it and 
contrary to conventional wisdom, it would be vibrating. It leads to what is called 
the cosmological constant, a repulsive force which Einstein had in a different and 
mistaken context introduced nearly a century earlier and soon retracted. 

Other scholars have tried to characterize dark energy with different and novel 
descriptions and interpretations, some of them very complicated and some of them 
invoking string theory. However, it is not clear if these models are fruitful. If the 
author’s characterization of dark energy as the zero point energy is correct, then it 
should leave a cosmic footprint, namely, a background of radio waves (including 
microwaves) [ 36, 37]. The problem is that the earth’s ionosphere filters out these 
radio waves. However, in the recent few years, NASA has conducted balloon-based 
experiments called the ARCADE experiments. 

These balloons reach a height of some 40 km, just outside the ionosphere. They 
lead to a shocking discovery which was called the space roar by the experimenters.
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This was a persistent hiss of radio waves. It is known that radio waves are received 
by the Earth from objects like Quasars or other radio sources. But the special feature 
of the space roar is that it does not come from any specific source or collection of 
sources. It is a uniform background. The balloon-borne instrument named ARCADE 
stands for the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emis-
sion. In July 2006, the instrument was launched from NASA’s Columbia Scientific 
Balloon Facility in Palestine, Texas, and flew to an altitude of 120,000 feet, where 
the atmosphere thins into the vacuum of space (see Fig. 1.2). Indeed the author’s 
1997 model and subsequent work shows that there should be exactly such a cosmic 
radio wave background as a signature of the all-pervading zero point energy. This is 
therefore a vindication of the 1997 model. 

Fig. 1.2 A mysterious 
extra-loud radio noise 
permeates the cosmos, 
preventing astronomers from 
observing infrared light from 
the first stars. The 
balloon-borne ARCADE 
instrument discovered this 
cosmic static on its July 2006 
flight. The surprising find 
was that the noise was six 
times louder than expected. 
Astronomers have no clue 
why. (Picture credit: 
NASA/ARCADE)



12 1 Dark Energy Universe

Finally, it may be asked: Why did this treatment of zero point energy work and not 
other formulations? The argument can be summarized as: (i) the Compton wavelength 
rather than the Planck length (or points) is the feature here [ 38] and (ii) fluctuations 
(Gaussian) are factored in. 

In fact the picture that emerges is starting from the background of the quantum 
vacuum, which essentially is a sea of Planck-sized or Planck-scale oscillators, there 
would be a phase transition at the Hagedorn temperature leading to the production 
of pions [ 37]. These pions in turn would form groups of other particles via the QCD 
interactions (Cf. Ref. [ 37]) as discussed in the above reference. What is remarkable 
is that this approach throws up a formula for the mass spectrum which covers all 
non-leptonic elementary particles, in most cases with an error of .1−1.5% (Cf. also 
[ 39]). 

1.4 The Different Shades of Dark Energy 

1.4.1 The Old Ideas of Dark Energy 

What is today called dark energy has been around since the early part of the last 
century itself. It was discussed by Nernst, the father of the third law of Thermody-
namics, in the context of superfluidity. He believed that this phenomenon was caused 
by dark energy, which for him was the zero point energy. He further believed that 
the universe is in an ocean of dark energy and that particles condense out of such 
an ocean [ 40]. Yet these ideas seem to have led nowhere and they died a death. The 
idea of the zero point energy in the context of the cosmological constant was revived 
some decades later, thanks to the work of Zeldovich and others. But again these ideas 
didn’t seem to lead anywhere. On the contrary, they led to what Weinberg called the 
cosmological constant problem [ 33]. What would happen is that the universe would 
blow up in almost no time. So strong would be the repulsive force. 

So in the late 90s it was believed that the universe was slowing down, thanks to 
the preponderance of dark matter which ostensibly comprised 95% of the universe. 
In fact, this was the standard big bang model of the 90s. As noted earlier in 1997, the 
author put forward the model of a dark-energy-driven accelerating universe, though 
with a small cosmological constant [ 6, 8]. Though there was initial scepticism, finally 
the dark-energy-driven accelerating universe was accepted [ 1, 7, 14]. 

Let us briefly analyse this matter—in particular, what was the difference between 
the earlier ideas and the author’s 1997 model. In the earlier case, dark energy was 
conceived in the context of the Planck scale so that the cosmological constant or the 
vacuum energy density would be huge, some .10120 times its observed values. This 
is because the cosmological constant (or vacuum energy density) would be 

.Λ ∼ 0

(
1

l4

)
(1.15)
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which  would  be  much  too  high if . l were the Planck length .∼ 10−33 cm. This would 
mean, as noticed, that the universe would blow up almost as soon as it was born. 

On the other hand, this would be the “scale of gravitation”. Let us see why. 

1.4.2 Gravitation 

Cercignani [ 41] had used quantum oscillations, though just before the dark energy 
era—these were the usual earlier zero point oscillations. Invoking gravitation, what 
he proved was, in his own words, “Because of the equivalence of mass and energy, 
we can estimate that this (i.e. chaotic oscillations) will occur when the former will 
be of the order of 

.G[�ω)c−2]2[ω−1c]−1 = G�
2ω3c−5, (1.16) 

where .G is the constant of gravitational attraction and we have used as distance, the 
wavelength. This must be less than the typical electromagnetic energy .�ω. Hence 
(from (1.16)), 

.ω < (G�)−1/2 · c5/2 (1.17) 

which gives a gravitational cutoff for the frequency in the zero-point energy”. In 
other words, he deduced that there has to be a maximum frequency of oscillators 
given by 

.G�ω2
max = c5 (1.18) 

for the very existence of coherent oscillations (and so a coherent universe). We would 
like to point out that if we use the above in Eq. (1.18) we get the well-known relation 

.Gm2
P ≈ �c (1.19) 

.mP being the Planck mass. Let us see how this happens: In (1.18), we use the fact 
that 

. �ω = mPc
2,

after rewriting it as 
. G�

2ω2 = c5 · �

This leads to 
. Gm2

Pc
4 = �c5,

where (1.19) follows. This shows that at the Planck scale the gravitational and elec-
tromagnetic strengths are of the same order. This is not surprising because it was the 
very basis of Cercignani’s derivation—if indeed the gravitational energy is greater 
than that given in (1.19) that is greater than the electromagnetic energy, then the zero 
point oscillators would become chaotic and incoherent—there would be no physics.
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However all this refers to a classical description because we are working here at 
the Planck scale. In fact (1.18) and (1.19) can be alternatively deduced, considering 
these Planck oscillations as phonons (Cf. Ref. [ 7]). So the picture that emerges is the 
following: till frequencies with a cutoff at the Planck length, a classical description 
of the zero point energy is valid. This is the domain of gravitation. Beyond that 
up to the Compton scale we have a quantum mechanical description and this leads 
to electromagnetism and other interactions. In any case, it is the zero point energy 
or dark energy all the way. 

1.4.3 The New Dark Energy: From the Planck Scale 
to the Compton Scale 

In the author’s model, it was not the Planck scale, but rather the Compton scale. This 
would sort out all the problems but there still has to be a mechanism for transiting 
from the Planck scale to the Compton scale. This can be achieved in a few ways. The 
first is by considering oscillations in dark energy at the Planck scale, what may be 
called Planck oscillations. It has been shown in great detail that when these Planck 
oscillations become coherent, the situation can be modelled in terms of Bénard cells 
in a liquid at a phase transition. We would then end up at the Compton scale [ 42]. 

Yet another way of looking at this would be via loop quantum gravity considera-
tions. 

Loop Quantum Gravity Considerations 

Another theory of quantum gravity, namely, loop quantum gravity (LQG) is also 
an attempt at reconciling quantum mechanics with general relativity. It is based 
directly on Einstein’s geometric formulation of general relativity. As a theory, LQG 
hypothesizes that the structure of space and time consists of finite loops intermeshed 
into a fine network. Such networks of loops are called spin networks. The evolution 
of a spin network, or spin foam, has a scale, interestingly above the order of a Planck 
length, approximately.10−35 m, (somewhat like this author’s work) and smaller scales 
are considered meaningless. In postulating this, not just matter, but space itself would 
have an atomic structure. 

Loop quantum gravity provides a description of the microstructure of quantum 
physical space. This physical space is characterized by a Planck scale discreteness. 
This discreteness emerges in a natural manner from quantum theory and provides a 
mathematical realization of Wheeler’s intuition of a spacetime “foam” [ 43]. 

There is also another way to reach the same conclusion: The argument is com-
pletely different though ultimately all methods are referring to the same phenomena.
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We start with Wheeler’s quantum foam, that is, Planck mass “point” particles, pre-
sumably created in a big bang event. The extension of these particles is given by the 
Planck length, while the mass is .10−5 gms. 

Another approach would be by considering a Herman Weyl type of reconcili-
ation which was rejected originally by Einstein as being ad hoc. However, in the 
author’s approach, this aspect is completely different. We must remember that the 
Dirac matrices are really bi-spinors describing positive-energy solutions say . φ and 
negative energy solutions .χ. These two have different behaviours under reflection 
with .φ �→ φ and .χ �→ −χ. Once this is recognized we can recover the Weyl-like 
equations reconciling gravitation and electromagnetism bypassing Einstein’s orig-
inal objection. This matter has been discussed in great detail in the author’s book, 
The Thermodynamic Universe [ 1]. 

1.5 The Origin of Inertial Mass 

References [ 44, 45]. Our starting point is an equation deduced by Feynman [ 46, 
Chap. 8] in a simple way, 

.ı�
∂C(x)

∂t
= −�

2

2m ′
∂2 C(x)

∂x2
, (1.20) 

where .C(x) ≡ |ψ(x)〉 is the probability amplitude for the particle to be at the point 
. x at some given moment of time. 

To deduce Eq. (1.20), we follow the development of [ 46, Chap. 8] and define a 
complete set of base states by the subscript .ı and U (t2, t1) the time elapse operator 
that denotes the passage of time between instants .t1 and . t2, .t2 greater than . t1.  We  
denote b y .Cı (t) ≡ 〈ı |ψ(t)〉, the amplitude for the state .|ψ(t)〉 to be in the state . |ı〉
at time . t, and 

. 〈ı |U | j〉 ≡ Uı j, Uı j (t + Δt, t) ≡ δı j − ı

�
Hı j (t)Δt.

We can now deduce from the superposition of states principle that 

. Cı (t + Δt) =
∑
j

[δı j − ı

�
Hı j (t)Δt]C j (t)

and finally, in the limit, 

.ı�
dCı (t)

dt
=

∑
j

Hı j (t)C j (t), (1.21)
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where the matrix .Hı j (t) is identified with the Hamiltonian operator. To facilitate 
comparison we stick to the notation and development as given in [ 46]. Before pro-
ceeding to derive the Schrodinger equation, we apply Eq. (1.21) to the simple case 
of a two-state system .(ı, j = 1, 2), respectively (cf. Ref. [ 46]). This will provide a 
physical picture for the later work. For a two-state system, we have 

. ı�
dC1

dt
= H11C1 + H12C2

. ı�
dC2

dt
= H21C1 + H22C2

leading to two stationary states of energies .E − A and .E + A, where . E ≡ H11 =
H22, A = H12 = H21. We can choose our zero of energy such that .E = 2A. Indeed 
as has been pointed out by Feynman, when this consideration is applied to the hydro-
gen molecular ion, the fact that the electron has amplitudes.C1 and.C2 of being with 
either of the hydrogen atoms manifests itself as an attractive force which binds the 
ion together, with an energy of the order of magnitude . A = H12.

To proceed, we consider in (1.21)  th  e . ı to be the space point .xı and we denote 
.C(xn) ≡ Cn the probability amplitude for the particle to be at this space point. Fur-
ther let .xn+1 − xn = b. Then considering only the point .xn and its neighbours .xn±1, 
Eq. (1.21) goes over into 

.ı�
∂C(xn)

∂t
= EC(xn) − AC(xn − b) − AC(xn + b). (1.22) 

In the limit .b → 0, with our choice of the arbitrary zero of energy, (1.22) goes over 
into Eq. (1.20) where we have now dropped the subscript distinguishing the space 
point and . m ′ = �

2/2Ab2.
We now observe that while Eq. (1.20) resembles the free Schrodinger equation, as 

has been pointed out by Feynman,.m ′ is not really the inertial mass, but an “effective 
mass” that emerges from the probability amplitude for the particle to be found at a 
neighbouring point. So (1.20) is not the Schrodinger equation. 

The Schrodinger equation can be obtained from (1.20) if it can be shown that . m ′
can somehow be replaced by .m, the inertial mass. This is what we propose to do. 

To start with, let us suppose that the particle has no mass other than the effective 
mass .m ′, so that we can treat Eq. (1.20) as the Schrodinger-type equation for such a 
particle which has only amplitude to be at neighbouring points. Let us now suppose 
that the particle acquires non-zero probability amplitude to be present non-locally 
at other than neighbouring points. We can then no longer work with Eqs. (1.22) and 
(1.20). We will have to use the full Eq. (1.21) which explicitly exhibits this possibility. 
We rewrite Eq. (1.21)  a  s

.ı�
dCı (t)

dt
= HııCı (t) + Hı,ı−1Cı−1(t) + Hı,ı+1Cı+1(t) +

∑
j

Hı,ı+ j (t)C j (t), ( j = ±2,±3, )
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or as in the transition of Eqs. (1.22)–(1.20), 

.ı�
∂C(x)

∂t
= −�

2

2m ′
∂2 C(x)

∂x2
+

∫
H(x, x ′)C(x ′)dx ′, (1.23) 

where we have replaced .Hı j by .H(x, x ′) and the points .xı are in the limit taken for 
the time being to be a continuum. This is as in the well-known case of the non-local 
Schrodinger equation for a non-local potential [ 47] but for a particle having only an 
effective mass. 

The matrix .H(x, x ′) gives the probability amplitude for the particle at . x to be 
found at . x ′, that is, 

.H(x, x ′) = 〈ψ(x ′)|ψ(x)〉, (1.24) 

where as usual we write .C(x) ≡ ψ(x)(≡ |ψ(x)〉, the state of a particle at the 
point . x . 

Usually the amplitude.H(x, x ′) is non-zero only for neighbouring points. x and. x ′, 
that is, .H(x, x ′) = f (x)δ(x − x ′). But if .H(x, x ′) is not of this form, then there is a 
non-zero amplitude for the particle to “jump” to an other than neighbouring point. In 
this case,.H(x, x ′)may be described as a non-local amplitude. Indeed such non-local 
amplitudes are implicit in the Dirac equation also and this will be commented on. 

We now give a quick derivation of how the inertial mass emerges from Eq. (1.23). 
The non-local Schrodinger equation (1.23), given only the effective mass.m ′, can be 
written, with the help of (1.24), as 

.ı�
∂ψ

∂t
= −�

2

2m ′
∂2ψ

∂x2
+

∫
ψ∗(x ′)ψ(x)ψ(x ′)U (x ′)dx ′, (1.25) 

where 
(i).U (x) = 1 for.|x | < R, R arbitrarily large and also.U (x) falls off rapidly as. |x | →
∞;U (x) has been introduced merely to ensure the convergence of the integral; and 
(ii) . H(x, x ′) = 〈ψ(x ′)ψ(x)〉 = ψ∗(x ′)ψ(x).

Equation (1.25) is an integro-differential equation of degree three. 
The presence of the, what at first sight may seem troublesome, non-linear and 

non-local term, viz. the last term on the right side of (1.25) can be satisfactorily 
explained. 

In (1.25), in the first approximation .ψ(x) can be taken to be the solution of the 
Schrodinger-like Eq. (1.20), viz. 

.ı�
∂ψ

∂t
= −�

2

2m ′
∂2ψ

∂x2
. (1.26) 

In effect, we linearize (1.25), so that we get 

.ı�
∂ψ

∂t
= [− �

2

2m ′
∂2

∂x2
+ m0]ψ, (1.27)



18 1 Dark Energy Universe

where 

. m0 =
∫

ψ∗(x ′)ψ(x ′)U (x ′)dx ′.

In operator language, (1.27) becomes 

.H = p2

2m ′ + m0, (1.28) 

where .H is the Hamiltonian operator, . �p is the momentum operator, . p is magnitude, 
.p2 = �p · �p and where, what can now be anticipated as a rest mass like term .m0, 
appears for a particle assumed not to have any rest mass in the absence of the non-
local amplitude term in (1.25). Also we have replaced the Hamiltonian matrix .H by 
.H to stress that, to start with, in (1.23) and (1.25), the particle has no inertial mass. 
To facilitate comparison with the usual theory, we next multiply both sides of (1.28) 
by the constant . m

′
m , where 

. m = (m0m
′)

1
2 /c,

. c being the velocity of light (the reason for the appearance of the velocity of light . c
can be seen below (cf. Eq. (1.30)) and the constant could be absorbed into the state 
vector, whose direction is all that matters. We then get 

.Ĥ = p2

2m
+ mc2. (1.29) 

The physical meaning of (1.29) is now clear. In an expansion of the classical 
relativistic expression for energy, 

. E = (p2c2 + m2c4)1/2

as is well known, if we keep terms up to the order .(p/mc)2, we get 

.E = p2

2m
+ mc2. (1.30) 

We can now easily identify .m in (1.29) with the rest mass on comparing this equa-
tion with (1.30). (Interestingly it is not accidental that Eq. (1.29) corresponds to the 
approximation (1.30) as will be seen below.) If further, we denote 

. H = Ĥ − mc2,

where .H can be easily identified with the usual kinetic energy operator (or energy 
operator in non-relativistic theory, remembering that we are considering a free 
particle only), (1.29) becomes
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.H = p2

2m
. (1.31) 

In a strictly non-relativistic context, where the rest energy of the particle is not 
considered, the Hamiltonian is given by (1.31); otherwise, it is given approximately 
by (1.29). We get from (1.31), the Schrodinger equation: 

.ı�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
. (1.32) 

All these considerations can be considered in a postulative development [ 44] and 
also generalized in a simple way to three dimensions, but as there is no new physical 
insight, the details are not given. 

The physical origin of the rest mass is clear from Eq. (1.29): in the two-state 
hydrogen molecular ion case considered earlier, it was the amplitude for the single 
electron to be with one hydrogen atom or the other which showed up as a binding 
energy. Similarly the amplitude of a particle to be at. x or. x ′, viz. the second term on the 
right side of Eq. (1.25) manifests itself as an (attractive) energy, which may be called 
the mass energy of the particle or the self-energy or the energy of self-interaction. 
This can be seen to be the particle’s inertial mass. 

We now come to the non-local term in Eq. (1.25), the term which gives the inertial 
mass. Non-locality implies superluminal velocities and the breakdown of causality 
which is not permissible in general. However without any contradiction to the theory 
it is well known that quantum mechanics allows such non-locality, owing to the 
uncertainity principle [ 32], within the Compton wavelength of a particle. So there 
is no contradiction if the non-local integral in (1.25) is taken within the region of 
the particle’s Compton wavelength, that is, the inertial mass is a result of non-local 
processes within the Compton wavelength of the particle. 

Indeed the usual Dirac equation also has a non-local character: The opera-
tor .c�α. �p + βmc2 is equivalent to and replaces the non-local square-root operator 
.(−�

2∇2 + m2c4)1/2. Here also the non-local effects in the form of negative energies 
are encountered—again within the Compton wavelength region (cf. Ref. [ 48]). 

In the light of the preceding considerations, we can derive the Schrodinger equa-
tion from an alternative angle: it appears that the “point” particle is really spread over 
the non-locality region .∼ b̄ = �

mc , the Compton wavelength. Further, the energy of 
the particle, i.e. the energy tied up within this region, viz. 2A is the inertial mass 
energy .mc2. We could now speak of the amplitude for the particle at . x to be found 
(locally) at a neighbouring point .x + b, except that in the limit, .b → b̄ (and not as 
earlier 0). The effective mass .m ′ in Eq. (1.20) is then given by 

. m ′ = �

2Ab2
= m,

that is the mass itself!
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So, Eq. (1.20) can be interpreted as the Schrodinger equation. 
It is worth re-emphasizing that it is the force of binding of non-local positions 

within the Compton wavelength, rather like the hydrogen molecular ion binding, that 
manifests itself as inertial mass. 

Finally, we briefly comment on the appearance of the extra mass energy term in 
equations like (1.23), (1.25), (1.28), (1.29), or (1.30)  [  44, 49, 50]. 

The Schrodinger equation is really the limiting case of the Dirac equation in which 
process an inessential phase factor is dropped. Another way of looking at this is that 
the constant potential .moc2 does not affect the dynamics. That is the reason why the 
Schrodinger equation is not Galilean invariant, as a non-relativistic theory should 
be, and in fact exhibits the Sagnac effect, which a strictly Galilean invariant theory 
should not [ 51]. 

The convergence of the above formulation and the Bohm hydrodynamical formu-
lation is evident once we restrict ourselves to the Compton wavelength and luminal 
velocities. The particle is now a relativistic fluid vortex circulating along a ring of 
radius equal to the Compton wavelength. For more details on the Bohm formulation, 
see [ 44] and references therein. 

Let us now consider distances of the order of the Compton wavelength. At this 
level, quantum mechanical phenomena like zitterbewegung, negative energy solu-
tions, and luminal velocities come into play. Taking a route through relativistic vor-
tices, monopoles, and classical considerations, we will lead to the model of lep-
tons and quarks as what may be called “Quantum Mechanical Kerr–Newman Black 
Holes” (QMKNBH), wherein features of quantum mechanics and general relativity 
are inextricably inter-woven. 

If.ψ is the wave function in the quantum foam then the probability amplitude that 
such a particle would be at a point . x is given by as deduced by the author in 1996 
[ 44] and details of the transition from the discrete to the continuous case are briefly 
outlined earlier. 

. ı�
∂ψ

∂t
=−�

2

2m ′
∂2ψ

∂x2

+
∫

ψ∗(x ′)ψ(x)ψ(x ′)U (x ′)dx ′. (1.33) 

The integral is over a small. δ interval around the point. x while.U (x) has been inserted 
for convenience: It is . 1 in this interval and . 0 outside. This immediately leads to the 
Landau–Ginzburg equation: 

. − �
2

2m
∇2ψ + β|ψ |2ψ = −αψ. (1.34) 

At this stage we would like to point out that the justification for treating the vari-
ables in Eq. (1.34) as spanning a continuum is as follows: firstly as we are dealing 
with miniscule intervals of the order of the Compton scale, Eq. (1.34) holds to a very
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good approximation. More mathematically this can be seen from Wheeler’s space-
time foam where lengths below the Planck length have no meaning. As discussed 
in detail and as Dirac pointed out, our concept of spacetime or space begins after 
averaging over intervals of the Planck or Compton scales. 1

In this case, there is a coherence length given by 

.ξ = �νF

Δ
(1.35) 

.Δ being the energy .mc2, where .m is the mass of the particle in the . δ interval and 

.νF = c is the maximal velocity. 
To see how this happens, we invoke the Landau–Ginzburg theory of superconduc-

tivity. In this case, as is well known, we have the equation which resembles (1.34), 
in the absence of electromagnetism. Specializing to the case of a homogeneous 
superconductor, we get 

.αψ + γ |ψ |2ψ + 1

2m
(−ı�∇ − 2eA)2ψ = 0, (1.36) 

where 
. αψ + γ |ψ |2ψ = 0

in the first approximation. A solution can immediately be seen to be 

. |ψ |2 = −α/γ

.|ψ |2 = α(T − Tc)

γ
. (1.37) 

All this is exactly as in the Landau–Ginzburg theory. The point about (1.37) is that as 
we approach the critical temperature, i.e..T → Tc from below,.|ψ |2 → 0 everywhere. 

This means that in our case, the wave function vanishes. Furthermore, in this 
theory, above the critical phase, we have the coherence length given by (1.35). 

This can clearly be seen to be the Compton wavelength as.νF is. c. In fact, Wigner 
and Salecker have argued at length that there can be no physical measurements 
within the Compton scale [ 52]. Furthermore, as is known, the interesting aspects of 
the critical point theory ([ 53]) are universality and scale. Broadly, this means that 
diverse physical phenomena follow the same route at the critical point, on the one 
hand, and on the other, this can happen at different scales, as exemplified for example, 
by the course graining techniques of the Renormalization Group [ 54]. 

So not only do we come up to the Compton scale and hence the 1997 cosmology 
but also we are able to deduce the so-called Large Number formulae of Eddington, 
Weinberg, and others which have been a puzzle for over a century.

1 As noted earlier, this conclusion can also be obtained by the use of LQG. 
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Let us see how this can happen. Equation (1.35) is the starting point. To high-
light this point we note that in critical point phenomena we have the reduced order 
parameter .Q̄ (which gives the fraction of the excess of new states) and the reduced 
correlation length . ξ̄ (which follows from (1.35)). Near the critical point we have 
well-known relations [ 55] like 

. (Q̄) = |t |β, (ξ̄ ) = |t |−ν

whence 
.Q̄ν = ξ̄ β . (1.38) 

In (1.38) typically .ν ≈ 2β.  A  s .Q̄ ∼ 1√
N

because .
√
N particles are created fluc-

tuationally, or in the transition given .N particles, and in view of the fractal two 
dimensionality of any path as explained by Abbott and Weiss [ 56] 

.Q̄ ∼ 1√
N

, ξ̄ = (l/R)2. (1.39) 

This gives back the Eddington formula: 

. R = √
Nl.

This is of course the spread. R in a random walk of step length. l and consisting of . N
steps. Other relations can also be deduced without much difficulty (Cf. Ref. [ 1]). 

It may be mentioned that Beck and Meckay too have considered a phase transition 
though a few years later which throws up an ultimate energy of.1.7T z [ 38] though it 
is not clear what exactly this represents. 

Recently the problems with the old cosmological constant and dark energy 
are being articulated again. For example, Harry Cliff of the LHC and Cambridge 
University comments [ 57] that physics is coming to a dead end because of this. 

1.6 Zero Point Energy (ZPE) 

The question which arises is, what exactly is this dark energy? In the author’s 
1997 formulation, it was the zero point energy (ZPE). What is quite remarkable 
is that to date, it remains the same. This ZPE is ubiquitous and generally has been 
renormalized. 

Let us look at this from another point of view. We observe that the coherent . N ′
Planck oscillators referred to above could be considered to be a degenerate Bose 
assembly. In this case as is well known we have 

.v = V

N ′
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(Cf. Ref. [ 29] here . z of the usual theory .≈ 1). .V the volume of the universe 
.∼ 1084 cm3. Whence 

. v = V

N ′ ∼ 10−36.

So that the wavelength 
.λ ∼ (v)1/3 ∼ 10−12 cm = l. (1.40) 

What is very interesting is that (1.40) gives us the Compton length of a typical 
elementary particle like the pion. So from the Planck oscillators we are able to 
recover the elementary particles exactly as before [ 58, 59]. 

So our description of the universe at the Planck scale is that of an entangled wave 
function as in 

.ψ =
∑
n

cnφn. (1.41) 

However, we perceive the universe at the elementary particle or Compton scale, 
where the random phases would have weakened the entanglement, and we have the 
description as in 

.ψ =
∑
n

bnφ̄n. (1.42) 

Does this mean that .N elementary particles in the universe are totally incoherent 
in which case we do not have any justification for treating them to be in the same 
spacetime? 

We can argue that they still interact among each other though in comparison this is 
“weak”. For instance, let us consider the background ZPE whose spectral frequency 
is given by 

.ρ(ω) = const · ω3. (1.43) 

Whence from 
.(ΔB)2 ≥ �c/L4 (1.44) 

the energy in the entire volume .∼ L3 is given by 

. ΔE ∼ �c/L2.

As we are in the Compton region, where .L = cT and furthermore .1/T is the 
frequency .ω, we are led to the well-known Eq. (1.43). 

If there are two particles at . A and .B separated by a distance . r , then those wave-
lengths of the ZPE which are at least .∼ r would connect or link the two particles. 
Whence the force of interaction between the two particles is given by, remembering 
that . ω ∝ 1/r,

.Force ∝
∫ ∞

r
ω3dr ∝ 1

r2
. (1.45)
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Thus from (1.45) we are able to recover the familiar Coulomb law of interaction. The 
background ZPE thus enables us to recover the action at a distance formulation and 
also the three dimensionality of space. In fact, a similar argument has been given by 
other authors to recover from QED the Coulomb law—here the carriers of the force 
are the virtual photons, that is, photons whose life time is within the Compton time 
of uncertainty permitted by the Heisenberg uncertainty principle. 

It is thus possible to synthesize the field and action at a distance concepts, once 
it is recognized that there is the ZPE and there are minimum spacetime intervals at 
the Compton scale [ 60]. Many of the supposed contradictions arise because of our 
characterization in terms of spacetime points and a differentiable manifold. Once the 
minimum cutoff at the Planck scale is introduced, this leads to the physical Compton 
scale and a unified formulation free of divergence problems. 

We now make a few comments. 

1.7 Rotation Curves 

In the intervening years, since there have been interesting developments. For example, 
cosmologist Riess has observed that there is roughly a 7% increase in the acceleration 
of the universe. This has been described and explained by the author as being further 
evidence of the existence of dark energy [ 61]. Further the author has been arguing 
that the role of dark matter is much exaggerated. There is very strong data of early 
galactic rotation curves [ 62]  (see  Fi  g. 1.3). 

In fact, Miligrom [ 63, 64] has argued that a slight modification of Newtonian 
mechanics can explain away dark matter. This theory is also called the Mond the-
ory. The author, on the other hand, and a few others have pointed out the ad hoc 
nature of this fix. The author himself prefers a continuous but slow change of the 
gravitational constant with time, somewhat on the lines of the “Dirac large number 
theory” [ 32, 65]. The author points out in [ 1, 7, 14, 66] in detail his distributional 
effect on .G (cf. also [ 67]). 

Fig. 1.3 Galactic rotation curves
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Fig. 1.4 Illustration of the Casimir effect 

Casimir Effect 

Subsequently it has been felt that the original Casimir experiment (See Fig. 1.4) can 
be explained by usual quantum effects rather than by the vacuum energy hypothesis 
(cf. [ 68]). 

Furthermore, it turns out, as explained in detail in [ 1], vacuum energy can be 
related to the inverse square force and three dimensions as we have just seen. But 
perhaps the most surprising finding has been that dark energy leads to Lorentz invari-
ance [ 68]. This is because of the dependence of the spectrum on .ω3 as we saw in 
Eq. (1.43). 

In retrospect it looks quite amazing that the zero point energy (ZPE) at the 
microscopic level leads to the macroscopic Lorentz invariance. 

It is well known that the Casimir effect can be demonstrated through the gold 
leaf microscope. Here we have energy conservation. But in Sidharth’s Dark energy 
model, there is no energy conservation and in this case, the Gold leaf microscope 
demonstrates the conversion of dark energy into real energy. 

1.8 Trouble in Paradise? 

Recently, Nobel Laureate Adam Reiss and co-workers have reported an anomalous 
finding: Under the present cosmological model, roughly 70% of the content of the
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universe is dark energy, some 25% is dark matter and about 5% is ordinary matter. 
Furthermore, the universe is not only expanding, but accelerating in the process, as 
pointed out, driven by dark energy, though the acceleration or cosmological con-
stant seems to be small. As we noted earlier, the latest observations report that the 
acceleration is 8% more than the present cosmological constant model admits. 

It will be recalled that in 1997 the accepted cosmological model was that of a dark 
matter-dominated universe with less than 5% of visible matter. This universe would 
be expanding, though decelerating before it came to a halt. 

Is this a similar situation is the question that arises, if the latest observations 
are correct. In other words is there something wrong with the present cosmological 
model? It may be mentioned that to date there has been no definite sighting of dark 
matter, which therefore remains conjectural. On the other hand, in the author’s work 
[ 1, 7], dark matter is replaced by a gravitational constant .G which decreases very 
slowly with time. In fact 

.

∣∣∣∣
Ġ

G

∣∣∣∣ ≤ 10−11/yr. (1.46) 

For example, we could consider an interaction of dark energy with a fermionic 
field, contained in dark matter, these fermions being neutrinos [ 69, 70]. Attempts 
have been made to formulate an equation of state for a dark energy fluid [ 71]. Ques-
tions have also been asked whether we have dissipative cosmology or conservative 
cosmology as a result [ 72], while a generalized second law has also been studied [ 73]. 
The coincidence problem is also being studied, viz. why the energy density of dark 
energy is roughly of the same order as a cosmological critical density [ 74– 76]. 
The author himself suggested earlier a model based on background cosmic neu-
trinos [ 67, 77]. Even more recently the problem has been studied by Li et al. who 
have compared nine different popular models for dark energy [ 78]. The models under 
consideration are the cosmological constant model, two equation of state parameteri-
zation models, the generalized Chaplygin gas model, two Dvali–Gabadadze–Porrati 
models, and three holographic dark energy models. All of these models are well-
known dark energy candidates and have attracted considerable attention in the past 
without leading anywhere in particular. 

1.9 The Zero Point Energy 

We first observe that the concept of a zero point energy (ZPE) or quantum vacuum (or 
vacuum energy) is an idea whose origin can be traced back to Max Planck himself. 
Quantum field theory attributes the ZPE to the virtual quantum effects of an already 
present electromagnetic field [ 79]. 

In a very intuitive and preliminary way, Faraday could conceive of magnetic 
effects in vacuum in connection with his experiments on induction. Based on this, an 
aether was used for the propagation of electromagnetic waves in Maxwell’s theory
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of electromagnetism, which in fact laid the stage for special relativity. This aether 
was a homogenous, invariable, non-intrusive, material medium which could be used 
as an absolute frame of reference, at least for certain chosen observers. However, 
the experiments of Michelson and Morley towards the end of the nineteenth century 
lead to its downfall, and thus was born Einstein’s special theory of relativity in which 
there is no such absolute frame of reference. 

Very shortly thereafter the advent of quantum mechanics lead to its rebirth in 
a new and unexpected avatar [ 80]. Essentially there were two new ingredients in 
what is today called the quantum vacuum. The first was a realization that classical 
physics had allowed an assumption to slip in unnoticed: in a source or charge free 
“vacuum”, one solution of Maxwell’s equations of electromagnetic radiation is no 
doubt the zero solution. But there is also a more realistic non-zero solution. That is, 
the electromagnetic radiation does not necessarily vanish in empty space. 

The second ingredient was the mysterious prescription of quantum mechanics, 
the Heisenberg uncertainty principle, according to which it would be impossible to 
precisely assign momentum and energy, on the one hand, and spacetime location, on 
the other. Clearly the location of a vacuum with no energy or momentum cannot be 
specified in spacetime. 

This leads to what is called a zero point energy. For instance, a harmonic oscillator, 
a swinging pendulum, for example, according to classical ideas has zero energy and 
momentum in its lowest position. But the Heisenberg uncertainty endows it with a 
fluctuating energy. This fact was recognized by Einstein himself way back in 1913 
who, contrary to popular belief, retained the concept of aether though from a different 
perspective [ 81]. It also provides an understanding of the fluctuating electromagnetic 
field in vacuum. 

This mysterious zero point energy or quantum vacuum energy has since been 
experimentally confirmed in effects like the Casimir effect which demonstrates a 
force between uncharged parallel plates separated by a charge-free medium, the Lamb 
shift which demonstrates a minute oscillation of an electron orbiting the nucleus in an 
atom—as if it was being buffetted by the zero point energy—the anomalous quantum 
mechanical gyromagnetic ratio .g = 2 and so on [ 11, 12, 82, 83]. 

The quantum vacuum is a violent medium in which charged particles like electrons 
and positrons are constantly being created and destroyed, almost instantly, within the 
limits permitted by the Heisenberg uncertainty principle for the violation of energy 
conservation. 

There are also claims that the virtual photons of the quantum vacuum have been 
realized as real photons, in an endorsement of the dynamical Casimir effect (Cf. Ref. 
[ 84]). One might call the quantum vacuum as a new state of matter, a compromise 
between something and nothingness. 

The quantum vacuum can be considered to be the lowest state of any quantum 
field, having zero momentum and zero energy. The properties of the quantum vacuum 
can under certain conditions be altered, which was not the case with the erstwhile 
aether. In modern particle physics, the quantum vacuum is responsible for phenomena 
like quark confinement, a property whereby it would be impossible to observe an 
independent or free quark, the spontaneous breaking of symmetry of the electroweak
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theory, vacuum polarization wherein charges like electrons are surrounded by a cloud 
of other oppositely charged particles tending to mask the main charge, and so on. 
There could be regions of vacuum fluctuations comparable to the domain structures 
of ferromagnets. In a ferromagnet, all elementary electron-magnets are aligned with 
their spins in a certain direction. However, as noted earlier, there could be special 
regions wherein the spins are aligned differently. 

There is another approach, sometimes called stochastic electrodynamics, which 
treats the ZPE as primary and attributes to it quantum mechanical effects [ 16]. 

We would next like to observe that the energy of the fluctuations in the background 
electromagnetic field could lead to the formation of elementary particles. Indeed this 
was Einstein’s belief. As he observed as early as 1920 itself [ 85], “... according 
to our present conceptions, the elementary particles are... but condensations of the 
electromagnetic field”. 

In the words of Wilzeck, [ 81], “Einstein was not satisfied with the dualism. He 
wanted to regard the fields, or aethers, as primary. In his later work, he tried to find a 
unified field theory, in which electrons (and of course protons, and all other particles) 
would emerge as solutions in which energy was especially concentrated, perhaps as 
singularities. But his efforts in this direction did not lead to any tangible success”. 
We will return to this point later. 

1.10 A Cosmological Signature 

Let us now refer to an interesting experiment performed by NASA: The ARCADE 
2 experiment. This is the second-generation Absolute Radiometer for Cosmology, 
Astrophysics, and Diffuse Emission (ARCADE 2) instrument. It comprises a balloon-
borne experiment. This takes measurements of the radiometric temperature of the 
cosmic microwave background and galactic and extra-galactic emission, performed 
by A. Kogut and others [ 86]. It discovered cosmic radio noise that is six times louder 
than what we would expect from old ideas. 

Another intriguing cosmological footprint of dark energy [48, 87] maybe inferred. 
As dark energy is the all pervading ZPE, and we bear in mind that the ZPE causes 
the Lamb Shift (as well as via zitterbewegung). In the hydrogen atom, the Lamb shift 
is .∼1000MHz or about .30 cm wavelength, corresponding to the radio region. The 
several dissipative processes in space would lead one to expect that the ZPE would 
lead to isotropic radio waves, which are not related to any particular radio source, 
say like quasars, in the sky. Such sources would be expected to have a wavelength 
of .30 cm or more. As the ionosphere reflects radio waves coming from outer space, 
such radio waves are difficult to detect on the earth. This is where the ARCADE 2 
experiment was of immense help.
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1.11 Ramifications of Dark Energy 

1. We would like to reiterate that the zero point energy at the microscopic level 
leads to Lorentz invariance as also the three dimensionality of space. 

2. With regard to the varying.G question, a good review has been given (see Uzan 
[ 88]). 

3. Very recently a team from Portsmouth University [ 89] has made the most detailed 
study yet of millions of galaxies and have come to the conclusion that the universe 
is flat! 

4. There have been attempts by a number of physicists to tap dark energy. But we 
must bear in mind that dark energy is more like the superfluidity of hydrogen—it 
doesn’t follow ordinary mechanics. This is brought out by the author’s thought 
experiment, as pointed out: the dark energy pendulum [ 90]. It is almost as if the 
pendulum bob is executing a three-dimensional random walk. 

5. It should be clear that dark energy disrupts the laws of thermodynamics, starting 
with the very first law and the second law, viz. the entropy law. However, it must 
be mentioned that Nernst, the father of the third law of thermodynamics himself 
believed in a scheme, not dissimilar to the scheme of the author. 

6. Something similar was done by Prof. Ilya Prigogine in his ideas [ 91]. He con-
sidered stochastic models and steady-state cosmology, out of which particles 
are irreversibly created by instability or fluctuation. In his words (Cf. Ref. [ 91]) 
“The big bang was an event associated with an instability within the medium that 
produced our universe. Although our universe has an age, the medium that pro-
duced our universe has none... We consider the big bang an irreversible process 
par excellence from a pre universe that we call quantum vacuum. This eventually 
would result from an instability in the pre universe...” 
[ 92]. 

7. From the above large number relations, we can also conclude that 

. 
Gm

lc2
= 1√

N
.

This is the same as 
. e2/Gm2 ∼ √

N ≈ 1040.

This gives the correct ratio of the field strengths of electromagnetism and 
gravitation. But it also shows the nature of gravitation as a distributed force. 

8. One may wonder why there is, what maybe called a micro–macro divide. The 
microuniverse is generally the universe we refer to, but the macrouniverse is 
more like the universe at large. It is remarkable that in spite of this, there is a 
nexus between the two. 

9. From the ethereal to the real: 
We had already deduced that the mysterious dark energy or ZPE, surprisingly 
follows what maybe called a shadow electromagnetic field. There is a shadow
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electromagnetic field tensor, current vector, etc. As noted, this field is ubiquitous. 
More importantly, as it is spread everywhere, though weak, we can exploit this 
electromagnetic field—it is a matter of technology. 

10. An interesting point to note is that, normally special relativity is a purely clas-
sical concept, whereas from the above discussion it appears that it is quantum 
mechanical, depending on probability amplitudes. 
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Chapter 2 
Violation of Lorentz Symmetry 

2.1 Introduction 

Violation of Lorentz invariance has been widely researched including by the author 
[ 1, 2], and references therein. This has been supported by experimental evidence. The 
approach followed in this chapter is to use a modified energy–momentum relation 
and examine its ramifications. The modified energy–momentum relation is the so-
called Snyder–Sidharth relation [ 3, 4]. This relation chooses the Compton length 
(including the Planck length) as the fundamental length. This gives a form of the 
Compton scattering formula as shown by the author [ 5]. In this approach, gamma rays 
travelling large distances (cosmologically speaking) undergo cumulative modified 
Compton lags as they collide with electrons and, in the process, develop an observable 
time lag. These scattering processes result in an observable time separation [ 6– 8]  of  
two gamma rays with different energies. We show that Lorentz symmetry violation 
for photons with high eV can be detected if such a simulation of high-energy rays 
is possible. Also using the modified energy–momentum relation an extension of 
the GZK cutoff maybe possible. This could explain the observations of AGASA 
collaboration [9] and the results of Hayashida [ 10]. These observations suggest some 
instances which violate the GZK cutoff. That is, the detection of ultra-high-energy 
cosmic rays (UHECR) is greater than about . 1020 eV.

2.2 Modification of the Compton Scattering, the GZK 
Cutoff and so on 

We begin with the Snyder–Sidharth energy–momentum relation: 

.E2 = m2c4 + p2c2 − λ2l2c2

�2
p4 (2.1) 
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the kinetic energy is thus 
.p21c

2 = T (T + 2mc2), (2.2) 

where .p21 = p2 − λ2l2

�2 p4. References [ 11, 12] .|λ| ∼ 10−3. As noted by Andri-
ambololona and Rakotonirina, in “A Study of the Dirac-Sidharth Equation”, the 
Compton scattering is given by [ 4] 

. 
c

ν ′ − c

ν
= �

mc
(1 − cos θ).

Here, .ν ′ is the modified frequency due to the new inputs. 
Using the Hamiltonian (2.1) and taking the momentum of the recoil electron as 

. �p this formula becomes [ 13] 

. 
1

ν ′ − 1

ν
= �

mc2
(1 − cos θ) − (2π)2λ2l2

2mc2�3c2νν ′ (Ω
2 + 2mc2Ω)2,

where .Ω = �ν − �ν ′. Writing .l = �

mc for the Compton length of the electron the 
Compton scattering formula becomes 

.
1

ν ′ − 1

ν
= �

mc2
(1 − cos θ) − (2π)2λ2l3

2c3νν ′ [(ν − ν ′)2 + c

l
(ν − ν ′)]2. (2.3) 

For the purpose of quantification, we take a simplified model consisting of two 
gamma rays propagating across large distances, cosmologically speaking. Let us 
assume that these rays are Compton scattered by an electron through the same angle 
. θ (say). From Eq. (2.3), the difference in the time taken by the two gamma rays to 
be Compton scattered is 

.

Δt =
(
1

ν
− 1

ν0

)
−

(
1

ν1
− 1

ν01

)

= (2π)2λ2l3

2c3

[
{(ν01 − ν1)

2 + c
l (ν01 − ν1)}2

ν1ν01

]

−{(ν0 − ν)2 + c
l (ν0 − ν)}2

νν0

, (2.4) 

where.ν0 and. ν and.ν01 and.ν1 are the initial and final frequencies of the first and the 
second gamma rays, respectively. We assume (without loss of generality) that the 
energy of the second gamma ray is greater than that of the first gamma ray, therefore 

.Δt > 0. (2.5) 

This implies that the gamma ray with higher energy or higher frequency is faster than 
that which has lower energy or lower frequency, as was also seen by Pavlopoulos [14].
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We can conclude now that using the Snyder–Sidharth dispersive relation (2.1) and 
the modified Compton scattering relation (2.3) we are able to prove that gamma rays 
with higher energy travel faster than those with lower energies. On the other hand, 
if . λ is neglected, 

. Δt = 0,

that is, there is no time lag. But, observations show that there is a time lag between 
higher energy and lower energy gamma rays. We can conclude that Eqs. (2.1) and 
(2.3) are meaningful. 

Thus we can infer that several successive Compton scattering processes can cause 
time lags. It may also be stated that if we consider two Compton scatterings of 
energies .≥1GeV (gamma rays and high-energy gamma rays) then we may observe 
a prominent time lag and the violation of Lorentz invariance. 

2.3 An Extension of GZK Considerations 

If a particle has total energy .E and momentum. �p, then its four momentum is 

.p =
(
E/c
�p

)
(2.6) 

and the square of the four momentum.p.p = p2 is defined as 

.p.p = p2 = −m2c2 + λ2l2

�2
p4 (2.7) 

using the modified Hamiltonian (2.1). Let us consider the following 

. proton + γ = n + π+,

that is, a high-energy proton combining with a photon, scatters away the photon 
from the cosmic background radiation. In the above interaction, the presence of the 
pion (.π+) allows the conservation of charge. In the lab frame, it is known that the 
proton requires energy of the order of .1020 eV, to ensure that this process occurs. 
This indeed is the GZK cutoff. This limit forbids the detection of cosmic rays with 
energies.> 1020 eV as these rays would scatter the CBR photons. However from the 
modified Hamiltonian (2.1), the energy of the proton .Ep is obtained as 

.Ep = 3 × 1020 eV + λ2
pl

2
p

�2

p4

4Eγ

. (2.8)
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The first term gives the GZK cutoff and we have .Ep > 1020. As mentioned earlier, 
this agrees with the results of AGASA [ 9] and Hayashida [ 10]. This maybe seen 
as the extended GZK cutoff. Thus justifying LSV (when the Compton scale is not 
neglected). Of course, in Eq. (2.8), the conventional GZK effect is obtained if we 
neglect. l p and set.λp = 0. The observed extensions of the GZK effect ensure that the 
second term in Eq. (2.8) need not be neglected. This is a vindication of the modified 
dispersion relation (2.1) and can be regarded as a realistic extension of the classical 
special relativity which includes the quantum level. 

2.4 Some Effects Due to Neutrino Behaviour 

Within the Compton wavelength, the special theory of relativity may not be valid as 
was shown by the author [ 2]. Let us consider the example of the neutrino. As known, 
the mass of the neutrino has not yet been exactly determined, we know only the error 
in the mass difference squares. The mass of the neutrino, one could say, is roughly 
.10−8 times the mass of the electron. Therefore, the Compton wavelength would be 
large. This yields a distance of about .10−3 cms, corresponding to .10−13 s. So, it can 
be said that for a neutrino, there is an element of uncertainty in position or time of 
this order. This creates a possibility (in this spacetime interval), for the neutrino to be 
superluminal. Perhaps, this is a plausible explanation for experiments like MINOS. 
It is apparent that further observations are called for. 

This time shift may be explained with the example of an optical fibre. In an optical 
fibre, there is a difference in the refractive index (R.I.) of the medium from core to 
cladding: the refractive index decreases from core to cladding. Near the core, a light 
ray faces more resistance in the medium, hence causing slower movement, and light 
rays closer to the cladding move faster because of lesser refractive index. (This in 
itself could cause some ripple-type interference.) 

Now let us consider the case of gamma ray bursts, focussing on an energy band 
within the burst. After traversing cosmological distances, gamma rays undergo dis-
persion. This is because of the ZPE, this “viscous” resistance varies between finite 
values. Thus, there is a frequency variation because there is a slight difference of 
energies .E1, .E2, etc. This spectra of energies have variations in travel time. There is 
a time lag due to their frequency distribution. 

2.5 Spectral Lags 

Let us consider the Snyder–Sidharth energy–momentum dispersion relation. Many 
authors have proposed a modification of the energy–momentum relation. They have 
also claimed to account for spectral lags in high-energy gamma rays. A few years 
ago, Ellis in [ 15] claimed the existence of events that indicate spectral lags. The 
author has claimed that Lorentz violation can be observed through a single Compton
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scattering process, during a simulation of high-energy gamma rays (.≥1GeV). In this 
chapter, the author argues that the GZK limit can be extended beyond.1020 eV.  It  may  
be reiterated here that so far there is no explanation of the observations of AGASA 
or Hayashida.

2.6 Spacetime Geometry and Superluminosity 

In a recent paper [ 16], using the noncommutativity of spacetime, the author argued 
that superluminal velocities were plausible. Superluminosity was also demonstrated 
experimentally by Megidish et al. [ 17– 19] via the phenomena of entanglement. Let 
us consider a gedanken experiment in which the present and the future maybe viewed 
as in a periscope. 

In this periscope, at the bottom, we have an observer belonging to the present 
moment and the observer looks through the periscope to find a transparent cube. The 
periscope is placed along the vertical axis, representing time. The two vertical faces 
of the cube are considered to be the inner and outer faces. Focussing attention on 
the outer face it seems that the cube is facing inwards and vice versa (see Fig. 2.1). 

Fig. 2.1 The periscope thought (gedanken) experiment
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Perception is created when photons strike the detector. It is as if the photon particles 
are moving in one temporal direction or the other. This could resemble a Wiener 
stochastic process. The cube maybe taken to be a trajectory in spacetime between 
the past and the future. Then, hypothetically the observer perceives from the past into 
the future, and from the future into the past. For more detailed analysis, see author’s 
work in [ 20]. 

Following this line of thought, suppose that an event in the future, as viewed in 
seen through the periscope is stochastic in the sense of a Wiener process. Let such 
an event be defined as 

. Et = μt + σWt ,

where .μ is the drift and . σ is the standard deviation. Let us fix these for an event 
.Et . Then .Wt maybe taken to be a Wiener process that constitutes the event. So, 
transposing the time . t is given by 

.t = 1

μ
[Et − σWt ]. (2.9) 

It may be reiterated that the observer’s perception and the faces of the cube are key. 
Consider the two configurations of the cube, that is, when the cube seems to be 
projected inward or outward. The parameters . μ, . σ , and .Wt should be such that the 
value of. t corresponds to.t ′, where. t ′ comes from special relativity. In a nutshell, one 
can say that the parameters’ values will be altered. 

This basically implies that the event is impacted. But this is meaningless since 
the event gets altered. In order to overcome this anomaly, that is, to keep the event 
unchanged, we could consider the time frame to be altered. 

This implies that there is a link between the present and future. 
In fact, the Wiener processes .Wt are involved in the conceptualization of the 

present–future link. From Eq. (2.9), it is obvious that it is valid for both positive 
and negative values, that is, . t is .±ve. While special relativity forbids violation of 
causality, the above analysis could still hold good for non-causal events. 

Because of the indistinguishability of photons, it makes no difference whether a 
photon arrives or departs. Basically, this means that an event can occur before it is 
perceived. That is, when a photon from the observer reaches the event and returns. The 
positive and negative values of time imply that a stochastic double Wiener process 
is indicated, that is, a present–future link. 

In this scenario, let us invoke a statistical approach. It is known that [ 21], for many 
photons with two likely states of “polarizations”, the average occupation number is 
given by 

.nk = 2

eβ�ω − 1
,
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where . k is the momentum and .β = 1
KBT

. Then, the expected number of photons 
given by the Bose–Einstein statistics is 

. n = gi
e(E−μ)β − 1

,

where . μ is the chemical potential and .gi represents the degeneracy of each energy 
level . i. Let us take the periscope cube to be a scheme wherein the photons are in 
incessant motion. It is known that photons can vanish into the vacuum when . μ
(the chemical potential) is set to zero [ 21]. So, (replacing .gi with . g,) if the average 
occupation number is the same as the expected number of particles, then the two 
equations above become 

. 
g

eβE − 1
= 2

eβ�ω − 1
.

Again, since .E = �ω, we deduce 
.g = 2 (2.10) 

this implies that degeneracy is two. This means that there are two states with the 
same energy level. Given the indistinguishability of photons this could imply the 
photon has two states. 

In one state, the photons reach the cube from the periscope and vice versa in the 
other state. The photons that originate from the periscope and return from the cube 
are not distinguishable from the photons that are originating from the cube. Thus 
making it unclear as to the origin of any particular photon. This is what was termed 
earlier as present–future correlations. 

This gives rise to an interpretation, where the photons themselves are the correla-
tion between the present and the future (with reference to the time axis, along which 
the periscope is aligned). 

2.7 A Second-Order Effect 

The author has argued that there could be the so-called Snyder–Sidharth energy– 
momentum dispersion relation, viz.: 

.E2 = m2 + p2 − 2l2 p4. (2.11) 

In the theory of scattering this further leads to a slight modification of the usual 
Compton formula, instead of which, we now have 

.k = mk0 + α l2

2 [Q2 + 2mQ]2
[m + k0(1 − cosΘ)] , (2.12)



42 2 Violation of Lorentz Symmetry

where we use natural units .c = � = 1,m is the mass of the elementary particle 
causing the scattering,.�k, �k0 are the final and initial momentum vectors, respectively, 
and.Q = k0 − k, and.Θ is the angle between the incident and scattered rays. Equation 
(2.12) shows that.k = k0 + ε, where. ε is a positive quantity less than or equal to.∼ l2, 
. l being the fundamental length. It must be remembered that in these units. k represents 
the frequency. The above can be written in more conventional form as 

.�ν = �ν0[1 + 0(l2)]. (2.13) 

Equation (2.13) effectively means that due to the Lorentz symmetry violation in 
the above theory, the frequency is increased or the speed of propagation of a given 
frequency is increased. As noted, such models in a purely phenomenological context 
have been considered by Glashow, Coleman, Carroll, and others [ 22– 24]. In any case 
what this means in an observational context is that higher frequency gamma rays 
should reach us earlier than lower frequency ones in the same burst. As Pavlopoulos 
reports (Cf. Ref. [ 14]) this indeed seems to be the case [ 25]. 

Let us try to find a further test of the extra term in (2.11) by considering Bragg’s 
law which is 

.nλ = 2dsinΘ. (2.14) 

It may be remembered that Bragg’s law gives the angles for coherent scattering of 
waves from a large crystal lattice. His law was originally formulated for X-rays, but 
it also is applicable to all types of matter waves. These include neutron and electron 
waves provided there are a large number of atoms. In (2.14),. d is the distance between 
atomic layers in a crystal while . λ is the wavelength of the incident X-ray beam and 
finally . n is an integer. 

We consider the simplest case of a bi-layer crystal of graphene or stanene or 
similar material. Such materials are not strictly speaking two dimensional but nearly 
have two layers one above the other. From (2.14), we have 

.nδλ = 2dcosΘδΘ. (2.15) 

From considerations leading to Eq. (2.13), we have 

.δλ ∼ L2, (2.16) 

where . L stands for a typical Compton wavelength, for example, what appeared in 
(2.11). Using (2.15), (2.16), and (2.14), we get finally 

.δΘ = L2/dcosΘ. (2.17) 

This shows that there is a deviation .δΘ given by (2.17) from the impinging X-rays, 
due to the second-order effect in Eq. (2.11)  o  r (2.13). It is interesting that 

.d ∼ 1 A◦, (2.18)
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while .Θ is an angle which the experimenter can control. In particular, if .Θ ∼ π/2, 
then we can see from (2.17) that .δΘ can take on non-trivial values. 

2.8 Back from the Future 

Very recently it has been pointed out based on work at several institutes that time 
entanglement, a purely quantum mechanical effect and also the identity of quantum 
mechanical particles would lead to a situation where a particle could come back to 
the present from the future, as described in greater detail below. 

Stephen Hawking would time and again say that time travel is possible. Of course 
all scholars of relativity know how (in principle) one can become younger than his 
own grandson. Was that what Hawking meant? Recently, however, several gedanken 
performed in Cambridge, Perimeter Institute, Israel, and elsewhere have demon-
strated a different effect, based purely on quantum theory. According to this, it is 
possible to travel into the past and observe the birth of one’s own grandfather. These 
arguments are based on two quantum mechanical inputs. The first is what has recently 
been termed as time entanglement, rather than spookiness of space entanglement. In 
other words a future event could in principle influence a past event which seems to 
go against causality. Another quantum mechanical principle is that all particles of a 
kind are identical. It is well known that we could substitute one particle by another. 
Let us see how it works. But first we will touch upon Einstein’s spookiness. 

2.9 The Spooky Universe 

Albert Einstein and Erwin Schrodinger debated a moot point in the 1930s: Einstein’s 
special and general relativity operated in conventional spacetime. Further, superlu-
minal speeds were prohibited by the theories of relativity. What this implies is that 
there would be causality, that is, for instance, the son could not be born before the 
father. Surprisingly, some experiments indicated otherwise (for more details about 
this, see [ 20]). This made Einstein coin the phrase spooky action at a distance.  It  
appeared that the barrier of the velocity of light had been breached. We elaborate 
this in some little detail. Consider two structureless and spinless particles initially 
together. These could be particles in a bound state. These would then get separated 
and move in opposite directions along the same straight line. Measuring the momen-
tum of one of the particles, say , .A gives immediately the momentum of the other 
particle . B. The momentum of particle .A is equal and opposite to the momentum 
of particle .B. This is because linear momentum is conserved. That this is true in 
quantum theory too is quite surprising since the momentum of particle .B does not 
have an a priori value, but can only be determined by a separate acausal experiment 
performed on it.
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This can be termed inherent because of the non-locality in quantum theory, aris-
ing from the fact that spacetime itself is homogeneous making the conservation of 
momentum a non-local event. It maybe pointed out that the displacement operator 
.
d
dx is, because of the homogeneity of space, independent of .x . This results in the 
conservation of momentum in quantum theory (cf. Ref. [ 26]). The displacement . δx
which leads to . ddx represents an instantaneous shift of origin corresponding to an 
infinite velocity and is compatible with a closed system. 

It can also be true if the instantaneous displacement is taken to be a real displace-
ment in actual time . δt . This is a possibility when the states are stationary, which is 
the case when the total energy is constant. 

Here the space and time displacement operators, which usually are not on the same 
footing, in this case maybe treated on par [ 27]. It maybe observed that in relativistic 
quantum mechanics,. x and. t are on an even keel. Also to be borne in mind is the fact 
that special relativity considers inertial or unaccelerated frames. 

In general, in field theory, we consider different space points but at the same instant 
of time. However, because of the finite velocity of light, this information is retrieved 
for different instants of time. If information is needed for the same instant of time, it 
is possible only for stationary states. Let us consider now the field equations which 
are derived from a variational principle: 

.δ I = 0. (2.19) 

In this deduction, the . δ operator which refers to an arbitrary variation commutes 
with the space and time derivatives. That is, the momentum and energy operators 
constitute a complete set of observables. As such the apparently arbitrary operator . δ
in (2.19) is constrained to be a function of these (stationary) variables [ 28]. 

All this highlights the following facts: first we are implicitly dealing with an a 
priori homogeneous space, that is, the physical space. Secondly, in the relativistic 
picture the space and time coordinates are taken to be on the same footing, which 
they are not, as noted by Wheeler [ 29]. Our concept of the universe is based on “all 
space (or as much of it as possible) at one instant of time”. 

It must be mentioned, though, that in conventional theory this is only an approxi-
mation. In the author’s conceptualization, the particles are fluctuationally created out 
of a background ZPE. It is these.N particles that define physical space, which makes 
it no longer a priori as in the Newtonian formulation. It is only in the thermodynamic 
limit in which, when.N → ∞ and.l → 0, that we recover the above classical picture 
of a rigid homogenous space, with the conservation laws. 

These conservation laws, strictly speaking, hold in what is called the thermo-
dynamic limit, which means that the number of particles tends to infinity. That is, 
effectively, .N is taken to be very large. 

This gives a description of a cosmology where .
√
N particles are created by fluc-

tuations in the background ZPE. This implies, because of the fluctuations, that the 
violation of energy conservation is proportional to . 1√

N
. Following a similar line of
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thinking, the violation of momentum conservation may be taken to be proportional 
to .

1√
N
(per particle). 

Therefore, there is a very small probability that the measurement on particle . A
will not lead to exact information about particle . B. 

From classical concepts of spacetime, this includes the theories of relativity this 
would be relevant. Since from classical theory it is possible to have information 
about two particles separated in space at the same instant of time. This is not the 
case in quantum theory, because we can ascertain a particle’s position and velocity 
only by making a measurement for one particle and a separate measurement for the 
second particle. Hence, Einstein characterized this “as spooky action at a distance”. 
Schrodinger, on the other hand, had a different take on this issue. He introduced 
the concept of non-separability. According to him, if two particles interact at an 
instant of time, they continue to remain “entangled” for all time. This means that, 
in principle, it is possible to obtain measurements of the momentum and position of 
the second particle also without any contradiction. What is being said is that there 
is no clash with the so-called concept of “spookiness”. Or the two particles are no 
longer independent, they remain “entangled”. This is an over-simplification of space 
entanglement. 

On the other hand, time entanglement requires a lot more subtlety as is evidenced 
from past discussions by the author and others. Many gedanken have been proposed 
by scholars: the Hebrew University of Jerusalem, the University of Cambridge, and 
so on. All these thought experiments relate to this phenomenon of time entangle-
ment. Specializing to the time event, intuitively, an event taking place now can exert 
influence on an event taking place later on. Strangely enough work suggests the 
opposite: that it is the future which influences the past. In other words, the particle in 
the future may influence the particle in the present. It was reported by Megidish and 
his colleagues that in some bizarre manner the future influences the present or past! 
Or they contended that there was entanglement between photons separated in time. 
These physicists at the Hebrew University of Jerusalem reported in 2013 that they 
had successfully performed an entanglement experiment with photons that did not 
coexist at all. Earlier experiments used a method called “entanglement swapping”. 
This had demonstrated quantum correlations across time. They delayed the measure-
ment of one of the coexisting entangled particles. Eli Megidish and his collaborators 
were the first to show entanglement between photons which never coexisted. The 
entanglement protocol entangles two distant non-interacting photons. 

They used the following technique: 
First, they entangled a pair of photons, say, 1 and 2. Then they measured the 

polarization of photon 1 (a property describing the direction of light’s oscillation) 
thus sending it to an eigenstate (step II). 

Photon 2 was sent on an irrelevant trajectory, and, at the same time, a new entangled 
pair, 3 and 4, was created (step III). 

A measurement was then made on photon 3 and photon 2 in such a way that the 
entanglement relation was swapped from the old pairs (1–2 and 3–4) onto the new 
2–3 combo (step IV).
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Fig. 2.2 Time line diagram. (I) birth of photons 1 and 2. (II) detection of photon 1. (III) birth of 
photons 3 and 4. (IV) Bell projection of photons 2 and 3. (V) detection of photon 4 (picture courtesy 
[ 17]) 

Sometime later (step V), the polarization of the surviving photon 4 was measured, 
and the results were compared with those of the long-gone photon 1 (back at step 
II). To sum up, the existence of quantum correlations between temporally non-local 
photons 1 and 4 was shown (see Fig. 2.2) which means that entanglement can take 
place for two quantum systems which, in the first place, had no coexistence. 

Finally, we would like to make the following comments 1: 

1. In the above scheme of things, causality exists although in a modified sense. 
An event could be caused by another event or could also cause it. This phenomenon 
can be pictured by a new Feynman-type “spacetime diagram”. Let us consider a 
rectangular matchbox configuration for example (this has been discussed in (Cf. 
Ref. [ 20])). The two faces of this matchbox are, say, ABCDE and FGHJI. These 
are either facing us or facing away. Both these are true depending on which face 
we see first. In the present instance, seeing first relates to making an observation. 
So both possibilities are equally probable. 

2. The author, as noted several times, proposed in 1997 a dark-energy-driven uni-
verse that would be accelerating [ 25]. The characterization here is of a universe 
embedded in a swathe of dark energy. This is somewhat reminiscent of the model 
of Nernst in the early 1900s. This dark energy model of the universe would dis-
pense with both the Liebnitzian and Newtonian concept of spacetime. This leads 
to a satisfactory holistic and Machine view of the universe which has no conflict 
with new phenomena. 

3. It must be observed that in the author’s work [ 25] the usual commutators of 
quantum physics are replaced by the so-called Snyder–Sidharth relations. With 
these any two quantum mechanical observables like space coordinates, momen-
tum coordinates, or spacetime have non-zero commutators even though the effect

1 Talk delivered at the University of Udine, May 2019. 
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maybe miniscule. This view has shades of Dirac’s characterization of commu-
tativity and compatibility [ 26]: where two commutating observables could be 
simultaneously measured as long as they were not non-commutating. So, with 
this new degeneracy, entanglement would spread all across the universe, macro 
as well as micro. 

4. Finally, it may be observed that the author has a completely different characteriza-
tion of spacetime [ 30]. In this characterization, the author brings out a correspon-
dence between spacetime intervals and the displacements of a random walk. In a 
random walk, as is known, even when the number of forward steps is equal to the 
backward steps there is still a non-zero displacement. And it is this displacement 
which defines space and time intervals. 

All the above considerations make time entanglement appear less incredible than 
what it might seem at first sight. 
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Chapter 3 
The Enigmatic Neutrino 

3.1 Introduction 

Ever since its postulation by Wolfgang Pauli in the 1930s and subsequent discovery, 
the neutrino has been an enigmatic particle that has defied our complete understand-
ing. The most prominent feature was its handedness, which made it a unique particle 
and a vital player in weak interactions. When the standard model of particle physics 
was completed around 1970, the neutrino was considered to be a massless particle. 
In the 90s, the author suggested a small mass for the neutrino [ 1]. Later alterna-
tive mechanisms for the neutrino mass were postulated [ 2]. This was confirmed in 
1999–2000 by the Super-Kamiokande experiment in Japan. 

This made the neutrino (with all its flavours) an even more problematic particle. It 
had a mass, miniscule albeit, but also it travelled with the speed of light. Nevertheless 
neutrino physics and astrophysics are fields of continuing intense study. We shall see 
some aspects of this below. 

3.2 A Background Neutrino Model for the Cosmological 
Constant 

As mentioned earlier, in 1997, the author came up with a model of a universe which 
was driven by dark energy. In this theory, the cosmological constant had a much 
smaller value than was the accepted one. The generally accepted view of universe 
at that period was in fact the opposite [ 1]. The author’s concept of an expanding 
universe was, in 1998, confirmed by the observations of Perlmutter and others, who 
came to this conclusion after observing distant type Ia supernovae. 

As noted in Chap. 1, the characterization of dark energy is a mystery to all sci-
entists, although the concept of dark energy is widely accepted. There are different 
approaches to the concept of dark energy by different scholars. 
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• The cosmological constant concept. 
• Another is to identify dark energy with a scalar field, for instance, quintessence. 
Quintessence is considered to be a hypothetical form of dark energy, a scalar field, 
proposed to provide an explanation of the accelerating rate of a universe which 
was expanding. Such a field can also be associated with a fundamental particle or 
a composite particle. 

• Tachyonic fields are another candidate [ 3– 5]. 
• As an example, an interaction of dark energy with a fermionic field, contained in 
dark matter, could be considered, these fermions being neutrinos [ 6, 7]. 

• Some authors [ 8] have attempted to formulate an equation of state for a dark energy 
fluid. 

• There have also been considerations about whether cosmology is dissipative or 
otherwise [ 9]. 

• Some scholars utilize a generalized second law for this purpose [ 10]. We had 
touched upon this earlier. 

• Another angle is via the coincidence problem, viz. why the energy density of dark 
energy is roughly of the same order as a cosmological critical density [ 11– 13]. 

In any case, as we renormalize, effectively an infinite amount of energy is neglected. 
At this juncture one could question whether dark matter exists or not. As is well known 
dark matter has not been observed after its existence was postulated decades ago. 
What dark matter is, is still unknown. What can be said is that there are alternative 
explanations which do not need dark matter. The author, in his cosmology, uses 
the gravitational constant that depends inversely on time. In this theory, the time-
varying gravitational constant can explain the anomalous phenomena attributed to 
dark matter. One such is the galactic rotation curves anomaly (Cf. Ref. [ 14] and 
several references therein). With the use of a time-varying gravitational constant a 
uniform cosmic acceleration is explained with an approximate order of .10−7 cm/s2. 
One could say that this approach could replace the modified Newtonian gravity 
approach (MOND). 

In the context of cosmic background neutrinos [ 15] let us examine dark energy. 
The author had shown earlier [ 16– 18] within the framework of the cold cosmic 
neutrino background that the neutrino mass and other neutrino parameters could be 
determined. The values of the neutrino mass thus computed are within the limits 
obtained from the Super-Kamiokande experiments. This work predicted the results 
[ 19] of the Super-Kamiokande experiments. To see this, consider the cold Fermi 
degenerate gas. In this case, we have the following: 

.p3F = �
3(N/V ), (3.1) 

where.pF is the Fermi momentum,.N is the number of particles, and. V is the volume 
of the gas.
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To deduce (3.1)  (Cf.  Ref. [20]), we use the fact that in the ground state of a cold 
degenerate Fermi gas, the particles occupy the lowest possible energy levels and fill 
all levels up to the Fermi energy.eF . Alternatively, in momentum space, the particles 
fill a sphere of radius .pF . So, the number .N of these particles is given by 

.
V

�3

∫
ep<eF

d3 p = N . (3.2) 

As 
. eF ∼ p2F/m

we find that .pF must satisfy Eq. (3.1). 
Substituting the neutrino parameters which are known, viz. [ 21] .N ∼ 1090 we 

get consistently the neutrino mass .∼ 10−3 eV [ 22]. The background temperature 
.T ∼ 1◦K as .KT is the Fermi energy.eF . Recently, physicists have been looking for 
the ripples of the early big bang in this neutrino background, as has been claimed in 
the work of Trotta and Melchiorri [ 23]. 

There is growing evidence for cosmic background neutrinos (see, for example, the 
work of Weiler [ 24]). It can be safely conjectured that the GZK photo pion process 
is the contributing factor. 

With this scenario we derive the cosmological constant from the Fermi energy of 
the cold neutrino background. We begin with the following: 

.Fermi Energy = N 5/3
�
2

mνR2
= MΛR2, (3.3) 

where.M is the mass of the universe,. R is radius.∼ 1027 cm, and. Λ is the cosmological 
constant .mν, the mass of the neutrino. 

Several years ago Hayakawa [ 17, 25] used the expression . N
5/3

�
2

mν R2 in (3.3)  for  the  
cold background neutrino Fermi energy. However, he did not use the cosmological 
constant. He had a suitable counter-balancing gravitational force.

From (3.3) we obtain a value for the cosmological constant, 

.Λ ∼ 10−37 s−2 (3.4) 

which is of the correct order [ 26]. The author has derived the same result from 
another perspective [ 27]. 

The cosmological constant is given by 

.Λ = 〈0 H |0〉 ≡ cosmological constant. (3.5) 

From which the cosmological constant .Λ is obtained by its familiar expression [ 28] 
. (c = 1)

.Λ =
∫ L

0

4πp2

(2π)3
dp

1

2

√
p2 + m2. (3.6)
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In (3.6) .L ∼ pF is the cutoff which makes it possible to take care of the divergent 
integral. Using the value of the neutrino mass .∼ 10−3 eV in (3.6) we obtain the 
cosmological constant as 

.Λ ∼ 10−48 GeV4 (3.7) 

which is the same as (3.4). 
Whereas conventional quantum field theory or string theory throws up a cosmo-

logical constant which is over a hundred orders of magnitude than this observed 
value, as already noted. 

3.3 Neutrino Mass 

In the year 2000, the author had proposed a modified form of special relativity, which 
takes into account the fact that there are no spacetime points but rather only dis-
crete spacetime intervals which are nevertheless miniscule. This leads to a modified 
energy–momentum formulation, the so-called Snyder–Sidharth Hamiltonian: 

.E2 = p2c2 + m2c4 + αc2

�2
l2 p4, (3.8) 

where . l is a minimum length like the Planck length, .p is the magnitude of the 
momentum vector. �p, and. α is positive for fermions or spin half particles like neutri-
nos [ 1, 14, 29– 31]. This equation treats spacetime as nondifferentiable at ultra-high 
energies. This, as mentioned earlier, is a deviation from conventional quantum theory 
with spacetime as points. In the modified scenario, the commutativity in quantum 
theory is replaced. This was pointed out by Snyder several decades ago (Cf. Refs.[ 1, 
30]) by 

.[x, y] = O(l2), [x, px ] = ı�[1 + l2]. (3.9) 

Equation (3.8) shows that at very high energies, the energy of fermions is greater 
than that which is thrown up by the special theory of relativity. This greater energy 
implies a superluminosity for fermions or the extra term in (3.8) can be treated as an 
extra mass or possibly energy that can be identified with Cherenkov radiation. It may 
be pertinent to mention that [ 32] Cherenkov surface waves consist of photonic quasi-
particles and propagate in two dimensions. These are emitted by free electrons. The 
reduced dimensionality is predicted to change the properties of free electron radiation. 
The results of the work in [ 32] concur with the theoretical prediction of the author 
that free electrons do not always emit classical light. These maybe entangled with 
the photons which they emit. 

This, in fact, is the mass-generating mechanism, as pointed out by the 
author [ 33, 34]. 

That is, the neutrino, which is supposedly massless, develops mass, as can be seen 
from Eq. (3.8). This mass turns out to be of the correct order.
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3.4 Neutrino Mass Measurements 

• The Standard Model predicts that neutrino masses are exactly zero. However, the 
discovery of neutrino oscillations disproved the Standard Model as far as neu-
trino masses were concerned. Neutrino oscillation measurements did not facilitate 
obtaining the scale of neutrino masses. Neutrino mass scale is obtained from the 
energy spectrum created by beta decay. Several measurements of neutrino mass 
have been made. See for example the review paper for the direct measurements of 
neutrino mass, Direct measurements of neutrino mass [ 35]. It has been seen from 
the measurements of the flux of solar neutrinos that there is a deficit of electron-type 
neutrinos which reach the Earth. This was the so-called solar neutrino problem. 
The data obtained shows that electron neutrinos are linear superpositions of at least 
two neutrino mass eigenstates. With one of these states having non-zero mass, the 
difference between the neutrino masses-squared is obtained to be of the order 
.Δ2

21 ≡ m2
2 − m2

1 ∼ 10−4eV 2. Here .m1 and .m2 are the masses of two different 
neutrino mass eigenstates. 

• For another perspective of understanding of neutrino masses and mixings, see 
[ 36]. The authors, in this review paper, survey the present and future outlook of 
the understanding of neutrino masses and mixings. They attempt to explain the 
flavour problem of quarks and leptons. 

3.5 Some Salient Aspects of Neutrinos 

1. Cherenkov radiation occurs when electrically charged particles travel faster than 
light in a medium, causing the release of photons. Therefore, Cherenkov radiation 
should not apply to neutrinos because they are electrically neutral. The conven-
tional view has been that neutrinos were electrically neutral fermions that interact 
with gravity and the weak interaction. They have a very small rest mass and typ-
ically pass through normal matter undetected. On the other hand, the author has 
proposed, based on his theory of Fluctuational Cosmology [ 16], that the neutrino 
can have an effective small “charge”, . ḡ, given by 

.ḡ2/e2 ∼ 10−13. (3.10) 

This would mean that neutrinos would have a faint Cherenkov effect. 
2. Bosons can be bound states of fermions, as proposed by the author and several 

others [ 1] and also Klauder [ 37] and others such as [ 38]. Consider a composite 
particle consisting of simple particles bound together by a potential. This can be a 
boson or a fermion, depending on the distance between the particles. The particle 
behaves like its constituent particles at small distances. At large distances, the 
particle behaves as a boson or fermion. Fermions can exhibit bosonic behaviour
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when they are bound loosely in pairs. For instance, electrons in superconducting 
materials form Cooper pairs through the exchange of phonons. 
Consider the wave function given by [ 39], with respect to neutrinos 

.χ j = E j + ı B j , χ0 = 0, (3.11) 

where .χ j is the wave function and .E j represents the electric field, and .Bj the 
magnetic field. The Maxwell equations then become 

.βμ

∂χν

∂xμ

= −1

c
jν (3.12) 

resembling the Dirac equation. Thus, the Cini–Toushek–Dirac equation which is 
the zero mass Dirac equation gives back Maxwell’s equations. The photon could 
be viewed as a combination of a neutrino and anti-neutrino. This also resembles 
an ultra-high-energy electron. Both of these can be represented as two-component 
spinors. To represent this we use the following combination 

.D( 1
2 0) ⊕ D(0 1

2 ) (3.13) 

rather than the regular bound state. 
3. The author proposed in [ 15, 40] that the neutrino is a two-dimensional object. 

This is apparent from the two-component neutrino equation itself. Interestingly, 
this very equation maybe used to describe particles or quasi-particles in graphene, 
a two-dimensional form of graphite. This maybe seen as follows: From the Dirac 
equation, considering only positive-energy solutions or negative-energy solutions 
alone [ 41], we get 

.ψ(+)(x, t) =
∫

d3 p

(2π�)1/2

√
mc2

E

∑
±s

b(p, s)u(p, s)e−ı pμxμ/�. (3.14) 

The expectation of the velocity operator is given by 

.J(+) =
∫

ψ(+)†c�αψ(+)d3x (3.15) 

which yields 

.J(+) = 〈cα〉+ =
〈
c2p
E

〉
+

= 〈Vgp〉+, (3.16) 

where.〈〉+ denotes the expectation with respect to a positive-energy packet. Clearly 
(3.16) shows that the velocity equals the speed of light. Also since 

.[H, c�α] 	= 0,
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the velocity is variable. It is interesting to point out here that Dirac noted this in 
the process of deriving the relativistic electron equation [ 42]. His rationale was 
that all measurements are averages for a short interval of time. This short interval 
would be of the order of the Compton time. In this short span, the zitterbewegung 
effects would be averaged out and a sub-luminal value for the velocity would 
emerge. Equivalently this is to say that a wave packet consisting of solutions of 
one sign moves with velocities equal to that of light. Thus a wave packet with both 
positive and negative energies would be needed to obtain the usual sub-luminal 
velocities and mass (for more details see [ 43]). 
So, what we are saying here is that the neutrino can be described as consisting of 
solutions with one sign of energy. This is the reason for its luminal speeds and 
near-vanishing mass. This implies that the Dirac spinor equation which consists 
of four components becomes a two-component one. Each of these components 
consists of two positive solutions and two negative solutions. That is, the Dirac 
spinor becomes a positive-only or negative-only chiral spinor. This of course is 
the familiar Weyl equation which represents neutrinos as two-component objects. 
Several features including the near masslessness chirality are easily seen. Also, 
the two-dimensional feature of neutrinos could explain their oscillations. 

4. The author, [ 44], a few years ago made a case that the neutrino and anti-neutrino are 
asymmetric. The same concept has also been worked out by others. For example, 
see [ 45]. Of course this would lead a charge-parity violation. Experiments at the 
MINOS of Fermilab and the T2K experiment (Tokai to Kamioka) corroborate this 
[ 46, 47]. The MINOS or Main Injector Neutrino Oscillation Search experiment 
is a neutrino experiment designed to observe neutrino oscillations. Firstly, the 
rate at which muon neutrinos disappear into other types is measured. Second, 
they measure whether those other types of neutrinos are known. Third (the most 
relevant to this work), they search for the appearance of electron neutrinos from 
muon neutrinos. This oscillation is perhaps the best way to measure CP-violations. 
This could also be at the root of the matter–antimatter asymmetry in the universe. 
As is known, this would imply that a mass is required for the oscillations. 

5. The energy–mass relation of special relativity maybe confirmed within an error 
.∼ 10−7 [ 48]. 
The author in Ref. [ 48] tests the mass–energy relationship directly by combin-
ing very accurate measurements of atomic-mass difference, .Δm and of . γ ray 
wavelengths to determine .E, the nuclear binding energy, for isotopes of sil-
icon and sulphur. The author of this study found that the energy mass for-
mula can be separately confirmed in two tests yielding a combined result of 
.1 − Δmc2/E = (−1.4 ± 1.4) × 10−7, indicating that it holds to a level of at 
least .0.00004%. 
Using this in the modified dispersion relation (3.8) within the limit of this error 
we have that the last term in (3.8) becomes of the order less than or .∼ 10−7.  This  
aids in the calculation of the mass to be .∼ 10−8 times the electron mass. This 
interestingly is the order the neutrino mass itself! In fact it is the order of the mass 
difference squared. This could be an alternative derivation. We return to this point 
later.
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3.6 A Model for Neutrinos 

3.6.1 Mass, Charge, Chirality, and Other Considerations 

In 1930, Wolfgang Pauli proposed the existence of a new tiny particle with no electric 
charge. The particle was postulated to be very light or maybe massless. It took 
more than 25 years for scientists to discover that neutrinos exist though they are 
everywhere. Since then, it has been found that its mass is.∼ 10−8 of the electron mass. 
Actually what has been observed is the mass differences between different flavours 
of neutrinos. Neutrinos turn out to be fermions travelling with almost the speed of 
light. It is estimated that there are some .1090 neutrinos in the universe. Recently, a 
cosmic neutrino background has also been detected [ 24]. The two-component Weyl 
equation aptly describes the neutrino unlike other fermions. The neutrino also exhibits 
chirality. According to John Wheeler, it is mandatory for the neutrino to have a general 
relativistic description. Unless this is so, its unification with quantum theory would 
not be possible [ 49]. From July 2006 to December 2012, the CERN Neutrinos to 
Gran Sasso (CNGS) project sent muon (. μ) neutrinos from CERN to the Gran Sasso 
National Laboratory (LNGS), 732 km away in Italy. The muon neutrinos changed to 
tau (. τ ) neutrinos in the CNGS beam as observed by the OPERA experiment. That 
is, .μ neutrinos had switched flavour to appear as . τ neutrinos at Gran Sasso. The 
question that comes up is whether such effects could solve the well-known problem 
of the solar neutrino deficit. 

3.6.2 Two Dimensionality 

A slightly heretic path is now boldly proposed. The author has been arguing for 
several years that the neutrinos are two-dimensional entities in some sense. This 
would possibly explain their maverick-like features. Firstly, the Dirac equation in 
two space dimensions maybe used to represent the neutrino. As was pointed out 
by the author a couple of decades ago [ 50, 51]. Furthermore, recently, this again 
resurfaced because of the work of the author on graphene, which is a two-dimensional 
sheet of graphite loosely. In this context, quasi-particles with distinctly neutrino-like 
properties are encountered [ 52– 54]. 

To see this let us linearize the relativistic energy–momentum relation: 

.E2 = p2c2 + m2
0c. (3.17) 

Here, . �p · �p = p2, . p representing the magnitude of . �p, and then the corresponding 
quantum mechanical equation is 

.Hψ = [c�α · �p + βm0c
2]ψ (3.18)
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where, as seen 

. �p ≡ �

ı

(
∂

∂x

∂

∂y

)
and H ≡ �

ı

∂

∂t
.

Multiplying (3.18)  b  y .H on the left side and .(c�α · �p + βm0c2) on the right side 
and comparing with Eq. (3.17), we get 

.(αıα j + α jαı ) = 2δı j , αıβ + βαı = 0, β2 = 1, ı j = 1, 2. (3.19) 

Equation (3.19) is satisfied if the set .(�α, β) is the set of Pauli matrices. 
Thus, Eq. (3.18) is clearly a two-component fermion whose relativistic covariance 

can be easily established. It has been the view of some authors that the neutrino is a 
two-component fermion [ 55]. Furthermore, the reason that the neutrino satisfies the 
Dirac equation or the Weyl equation (which is a special case of the Dirac equation 
having two components) is that the rest mass .m0 of the neutrino vanishes. 

So if a fermion can be confined to two dimensions, say, the surface of a thin strip 
of negligible thickness, possibly graphene, then it should behave like the massless 
and parity-violating neutrino. 

It maybe pointed out that the cosmic background neutrinos are ultra-cold being at 
temperature .T ≈ 3◦K which makes the collection of cosmic background neutrinos 
nearly mono-energetic. This leads to a bosonic behaviour. The argument is as follows. 
We start with the familiar expression for the occupation number of a fermion gas 
[ 20] 

.n̄ p = 1

z−1ebEp + 1
, (3.20) 

where .z′ ≡ λ3

v
≡ μz ≈ z because, here, as can be easily shown. μ ≈ 1,

. v = V

N
, λ =

√
2π�2

m/b

.b ≡
(

1

KT

)
, and

∑
n̄ p = N . (3.21) 

Let us consider a hypothetical, nearly mono-energetic collection of fermions. Its 
distribution is given by 

.n′
p = δ(p − p0)n̄ p, (3.22) 

where .n̄ p is given by (3.20). 
Let us consider a special collection of nearly mono-energetic particles in 

equilibrium so that we simulate the cosmic background neutrinos.
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By the usual formulation, we have 

.N = V

�3

∫
d �pn′

p = V

�3

∫
δ(p − p0)4πp2n̄ pdp = 4πV

�3
p20

1

z−1eθ + 1
, (3.23) 

where .θ ≡ bEp0 . 
The . δ function in (3.22) in momentum space causes a reduction in dimension. 

This could be considered a fractal two dimension. In the relativistic case, this could 
lead to anomalous behaviour (see [ 56] for details). Another perspective would be 
that dimensionality itself is connected to the virial distribution of velocities. In any 
case, in this situation, there is no such a velocity spread. In recent quantum gravity 
approaches [ 57], this two-dimensional aspect has been considered via the holographic 
principle. That is, three dimensionality is an artefact of observation as in a hologram. 
All aspects of the image are contained in two dimensions. Another example is a black 
hole, where all information is confined to the surface. The author has been postulating 
that the universe itself can be characterized as a black hole [ 14]. Also, in 1996, the 
author (and A.D. Popova) had hypothesized that the universe is asymptotically two 
dimensional. 

An alternative perspective would be to observe the dynamics of the rotation curves 
of galaxies [ 58]. Observations show that for galaxies with a large radius. R,  the  mas  s
.M has the relation: 

. M ∝ Rn, where n ≈ 2

approximating two dimensionality. 
All this bolsters the case for the neutrino to be treated as a two-dimensional object 

which satisfies the two-dimensional Dirac or Weyl equation [ 40]. 
Succinctly, a wave packet of solutions with one sign of energy moves with the 

velocity of light. A wave packet with both positive and negative energies would be 
needed (as mentioned earlier) to have the usual sub-luminal velocities and mass. This 
maybe seen in [ 43]. 

Thus to reiterate, the neutrino can be described as consisting of one sign of energy 
solutions only. 

This is the reason for its speed of light and mass which is nearly vanishing. This 
also means, as noted, that the Dirac spinor equation consisting of four components, 
two of which are positive solutions and two negative solutions, is a two-component 
wave function, with two spinors, that is, a positive-only or a negative-only spinor. 
We are alluding to the Weyl equation which represents neutrinos as two-component 
objects as seen earlier. Several features like the near masslessness and chirality are 
explained. 

We know that a particle localized in space can be represented by a wave packet 
containing both positive-energy and negative-energy solutions. Those particles with 
energy solutions of a single sign, positive or negative, would travel with the velocity of 
light and would hence be massless. Interestingly, this would mean that the Compton 
length of such particles, here we are talking about neutrinos, would be infinite or 
practically speaking very very large [ 41, 43, 59, 60].
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The author derives the cosmological constant from cosmic neutrino back-
ground [ 61]. Beginning with the cold Fermi degenerate gas we have (as mentioned 
in Sect. 3.2) 

.p3F = �
3(N/V ). (3.24) 

This can be deduced by using a property of the ground state of such a Fermi assembly. 
In this the neutrinos occupy the lowest possible energy levels. Of course all energy 
levels up to the Fermi energy. ε or.eF are occupied. This means that the neutrinos fill 
a sphere of radius .pF .  So  we  h  ave

.
V

�3

∫
ep<eF

d3 p = N (3.25) 

using 
. eF ∼ p2F/m

(3.24) follows. 
Invoking the neutrino parameter, viz. [ 21] .N ∼ 1090 we get a consistent neutrino 

mass.∼ 10−3eV [ 22]. Here the background temperature.T ∼ 1◦K as.KT is the Fermi 
energy .eF . 

These days it is hoped that neutrinos also display the ripples of the early big bang, 
a result claimed by Trotta and Melchiorri [ 23]. 

The GZK photo pion process seems to yield evidence for cosmic background 
neutrinos [ 24]. 

We now recall the expression for the Fermi energy 

.Fermi Energy = N 5/3
�
2

mνR2
= MΛR2, (3.26) 

where.M is the mass of the universe,. R is radius.∼ 1027 cm, and. Λ is the cosmological 
constant and get from (3.26): 

.Λ ∼ 10−37 s−2 (3.27) 

(3.27) which gives the cosmological constant of the right order. 
It maybe pointed out at this juncture that using conventional arguments a hugely 

wrong value of the cosmological constant which is.10120 times the order of magnitude 
of the observed cosmological constant is obtained. 

This suggests that Einstein was to a certain extent vindicated: to the extent that 
neutrinos are two-dimensional objects and can be treated as “part” of radiation.
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3.6.3 Two-Dimensional Neutrinos 

We next come to Dirac’s characterization of quantum mechanics. This arises if there 
is a minimum space or time interval which cannot be penetrated. Then we transit 
from classical physics to quantum physics. In other words, infinite precision implies 
classical physics. Dirac in [ 42] elaborated as follows: using zitterbewegung which is 
rapid oscillation that takes place within the Compton wavelength or Compton time 
and once averages over this interval are taken, the zitterbewegung disappears and we 
get back classical physics with an appendix which is the zitterbewegung region that 
is imaginary. Remembering that the Compton wavelength is given by .�/mc. This 
shows that a mass is thrown up. So, unless we go by the standard model prescription 
that the neutrino has no mass, we are led to conclude that as noted above the neutrino 
has a minuscule mass. Now mass is required for neutrino oscillations so herein is 
the origin of neutrino oscillations referred to above. (Actually, what we know are the 
squared differences of the neutrino masses.) 

3.7 Electrons and Neutrinos 

Mathematical Formulations 

Several authors have considered negative energy solutions of the Dirac equation and 
its ramifications. (Cf. Ref. [ 55] and also [ 62]) for a review). We now look at this with 
fresh perspectives and obtain some consequences, which are unanticipated. 

At very high energies, negative energies are encountered. The reason is due to the 
fact that the set of positive-energy solutions of the Dirac or Klein–Gordon equations 
are not a complete set [ 59]. At normal energies, the well-known Foldy–Wouthuysen 
transformation could be applied which yields a description consisting of positive 
energies alone. That is a description free of operators which mix negative-energy 
and positive-energy components of the wave function. This picture also leads it to 
the two-component Pauli equation in the non-relativistic limit [ 41]. 

Cini and Toushek have shown independently that when applied to very high ener-
gies, the Foldy–Wouthuysen transformation yields a different picture [ 63]. Let us 
see this in detail [ 55]. 

The Cini–Toushek transformation can be written in the form 

.e±ıs = E + |p|
2E

± �γ · �p
2E |p| · m. (3.28) 

Under (3.28), we know that the Dirac equation goes over to the massless neutrino 
equation: 

.Hψ = �α · �p
|p| E(p). (3.29)
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Using the following notation: 

.αk =
(
0 σ k

σ k 0

)
β =

(
I 0
0 − I

)
(3.30) 

.γ 0 = β (3.31) 

.γ k = βαk (k = 1, 2, 3), (3.32) 

where .σ k are the Pauli matrices and . I is the .2 × 2 unit matrix. 
Also needed here is the .γ5 operator, given by 

.γ5 = γ 0γ 1γ 2γ 3 = ı

(
I 0
0 − I

)
. (3.33) 

Using (3.28), the transformed matrix becomes 

.Γ5 = e−ısγ5e
ıs =

{
E + p

2E
+ ( �γ · �n)m

2E

}
γ5

{
E + p

2E
− ( �γ · �n)m

2E

}
, (3.34) 

which finally yields 

.Γ5 = γ5 +
(m
E

)
( �γ · �n) γ5, (3.35) 

where. �n is the unit vector in the direction of the momentum vector. We can see from 
(3.35) that 

.Γ5 = γ5 (3.36) 

whenever .m is negligible compared to .E, O (mE
)

<< 1. 
The Dirac equation is 

.
(
γ μ pμ − m

)
ψ = 0. (3.37) 

As commented upon earlier, the two-component spinors belonging to the represen-
tation in [ 55] 

. D( 1
2 0) or D(0 1

2 )

of the Lorentz group are solutions of the Dirac equation (3.37). But these can be seen 
to be no longer invariant under reflection [ 64]. The.4 × 4 representation is necessary 
to maintain invariance under reflection: 

. D( 1
2 0) ⊕ D(0 1

2 ).

Under reflection, the two spinors transform into each other. And the overall invariance 
is left intact [ 55].
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3.8 Spin of the Neutrino 

We also noted that, as is known [ 39], the Maxwell equations can also be written in 
the form of neutrino equations. Defining a four vector such that 

.χ j = E j + ı B j , χ0 = 0 (3.38) 

we can rewrite the Maxwell equations in the form: 

.βμ

∂χν

∂xμ

= −1

c
jν, (3.39) 

where, in a particular representation, for example, 

. β0 = I × I, β1 = −σ3 ⊗ σ2,

. β2 = σ2 ⊗ I, β3 = σ1 ⊗ σ2,

.“×” refers to the cross product, the. σ ’s being the Pauli matrices and wherein for our 
source-free vacuum case, the current four vector on the right-hand side of Eq. (3.39) 
vanishes. It is easy to show that the four-component Eq. (3.39) breaks down into two-
component neutrino-like equations, except that both these equations are coupled 
owing to the additional condition .χ0 = 0 in (3.38). This has been the problem in 
identifying (3.39) with the Dirac theory. 

In the above context, let us now approach the earlier considerations from the 
opposite point of view that of the Dirac equation. It is well known that the four 
linearly independent four spinor Dirac wave functions are given by [ 41], apart from 
multiplicative factors, 

.

⎡
⎢⎢⎣
1
0

pzc
E+mc2
p+c

E+mc2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0
1
p−c

E+mc2−pzc
E+mc2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

pzc
E+mc2
p+c

E+mc2

1
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p+c
E+mc2−pzc
E+mc2

0
1

⎤
⎥⎥⎦ (3.40) 

where .pz is the .z-component of the momentum and 

. p± = px ± ı py,

in a representation given by 

.γı = γ0

[
0 σı

σı 0

]
, γ0 =

[
1 0
0 − 1

]
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the . σ ’s being the Pauli matrices. It must be mentioned that any localized solution 
would contain solutions of both signs of energy. 

If we consider the .z-axis to be in the direction of motion, for simplicity and take 
the limit .m → 0, the spinors in (3.40) become 

.ψ1 =

⎡
⎢⎢⎣
1
0
1
0

⎤
⎥⎥⎦ψ2 =

⎡
⎢⎢⎣
0
1
0
−1

⎤
⎥⎥⎦ψ3 =

⎡
⎢⎢⎣
1
0
1
0

⎤
⎥⎥⎦ψ4 =

⎡
⎢⎢⎣
0
−1
0
1

.

⎤
⎥⎥⎦ (3.41) 

Indeed this is the case for the Cini–Toushek transformation as can be seen from 
(3.29). 

It should be noticed that in (3.41) .ψ1 = ψ3, and .ψ2 = ψ4 so that effectively, two 
of the spinors vanish exactly and we are left with two solutions as in the case of 
the solutions .χ of (3.39). (The mass zero four-component Dirac spinor does not 
represent a neutrino unless an auxiliary condition, which effectively destroys the 
lower two or upper two components, is imposed [ 55].) It can now be seen from the 
above considerations that the source-free vacuum electromagnetic field can be in a 
sense considered to be a composite of a neutrino and an anti-neutrino. For instance, 
from (3.40), we could see that 

. 

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1
0
0
1

⎤
⎥⎥⎦ .

All this is true in the UHE region where (3.29) would hold. 
We must remember that the Eq. (3.39) is actually coupled neutrino equations, 

coupled by the condition in (3.38). It may be mentioned that the possibility of bosons 
being bound states of fermions rather than being primary has been discussed by the 
author and other scholars [ 30, 37]. 

3.9 Additional Comments: Early Derivation 
of the Kerr–Newman Metric 

It is interesting that the transformation (3.38) was used by Newman [ 65, 66] to derive 
the linearized version of what is today called the Kerr–Newman metric. What was 
most surprising was that from this purely classical consideration the purely quantum 
mechanical .g = 2 emerges. This has been discussed at length by the author [ 1]: 
The mystery disappears if we remember that such a complexification of coordinates 
if generalized to three dimensions leads to a quarternionic description and the four-
dimensional Minkowski metric. In effect, we introduce spin half into the formulation.
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A slightly different way of looking at this is [ 67] as follows: Let us start with the 
charge-free Maxwell equations: 

. divE = 0,

.divB = 0. (3.42) 

Scalar multiplication of the curl equations on the right-hand side by the Pauli vector 
. σ

. σ = (σ1, σ2, σ3)

. σ1 =
(
0 1
1 0

)
, σ2 =

(
0 − ı
ı 0

)
, σ3 =

(
1 0
0 − 1

)
,

using the algebraic relation 

.(σ · ∇)(σ · A) = divA + ıσ · rotA (3.43) 

together with the two divergence equations (3.42) transforms the system into 

.

{
(σ · ∇)(σ · .H) − ε

c
∂
∂t (ıσ · E) = 0.

(σ · ∇)(σ · E) + μ

c
∂
∂t (σ · H) = 0.

}
(3.44) 

In matrix notation, this reads 

.

[(
1 σ

σ 0

)
· ∇ −

(
ε1 0
0 μ1

)
1

c

∂

∂t

] [
ı(σ · E)

(σ · H)

]
= 0. (3.45) 

Denoting the quantity on which the differential operators act by . Ψ , that is, 

.

(
ı(σ · E)

(σ · H)

)
=

⎛
⎜⎜⎝
ı E3 ı(E1 − E2)

ı(E1 + E2) − ı E3

H3 H1 − ı H2

H1 + ı H2 − H3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Ψ I
1 Ψ I I

1
Ψ I
2 Ψ I I

2
Ψ I
3 Ψ I I

3
Ψ I
4 Ψ I I

4

⎞
⎟⎟⎠ = Ψ (3.46) 

(the components of the electromagnetic field vectors are denoted by . E =
(E1, E2, E3) and .H = (H1, H2, H3)), and considering the well-known connection 
between the Pauli matrices . σ and the Dirac matrices . γ : 

.

(
0 σ

σ 0

)
= γ (3.47) 

we get for (3.45) the system: 

.

{[
γ · ∇ −

(
ε1 0
0 μ1

)
1
c

∂
∂t

]
Ψ = 0

}
. (3.48)
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Here one has to bear in mind that each of the two columns of the matrix (3.46) 
independently represents a system of functions solving (3.45)  o  r (3.48). From this, 
a separation of the time dependence according to 

.Ψ = ψe−ıωt (3.49) 

finally yields the amplitude equation: 

.

[
γ · ∇ + ı

ω

c

(
ε1 0
0 μ1

)]
Ψ = 0. (3.50) 

Its agreement with the Dirac equation 

.

⎡
⎣γ · ∇ + ı

ω

c

⎛
⎝
(
1 − Φ−m0c2

�ω

)
1 0

0
(
1 − Φ+m0c2

�ω

)
1

⎞
⎠
⎤
⎦Ψ = 0 (3.51) 

is obvious. That is the multiplication of the charge-free Maxwell equations by the 
Pauli spin vector leads to the Dirac equation. This is not surprising because spin is a 
typically quantum mechanical effect. 

It may appear strange, how a combination of a neutrino and an anti-neutrino could 
lead to a spin half electron in the high-energy representation. This can be brought 
out best by using a formulation due to Feshbach and Villars [ 59] interpretations. 
Feshbach and Villars interpreted the KG equation in a single particle rather than 
field theoretic context. In fact, they showed that this (F-V) formulation also applies 
to the Dirac equation. To see this, we can rewrite the K-G equation in the Schrodinger 
form, invoking a two-component wave function: 

.Ψ =
(

φ

χ

)
, (3.52) 

The .K − G equation then can be written as (Cf. Ref. [ 59] for details) 

. ı�(∂φ/∂t) = (1/2m)(�/ ı∇ − eA/c)2(φ + χ)

. + (eA0 + mc2)φ,

.ı�(∂χ/∂t) = −(1/2m)(�/ ı∇ − eA/c)2(φ + χ) + (eA0 − mc2)χ. (3.53) 

It will be seen that the components . φ and . χ are coupled in (3.53). In fact, we can 
analyse this matter further, considering free particle solutions for simplicity. We write 

. Ψ =
(

φ0(p)
χ0(p)

)
eı/�(p·x−Et)

.Ψ = Ψ0(p)e
ı/�(p·x−Et). (3.54)
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Introducing (3.54)  into (3.53) we obtain, two possible values for the energy . E , viz.: 

.E = ±Ep; Ep = [(cp)2 + (mc2)2] 1
2 . (3.55) 

The associated solutions are 

. 

E = Ep φ
(+)
0 = Ep+mc2

2(mc2Ep)
1
2

ψ
(+)
0 (p) : χ

(+)
0 = mc2−Ep

2(mc2Ep)
1
2

⎫⎬
⎭φ2

0 − χ2
0 = 1,

.

E = −Ep φ
(−)
0 = mc2−Ep

2(mc2Ep)
1
2

ψ
(−)
0 (p) : χ

(−)
0 = Ep+mc2

2(mc2Ep)
1
2

⎫⎬
⎭φ2

0 − χ2
0 = −1. (3.56) 

It can be seen from this that even if we take the positive sign for the energy in 
(3.55), the . φ and . χ components get interchanged with a sign change for the energy. 
Furthermore, we can easily show from this that in the non-relativistic limit, the . χ
component is suppressed by order .(p/mc)2 compared to the . φ component exactly 
as in the case of the Dirac equation [ 41]. 

We now observe that in the above formulation for the wave function 

.Ψ =
(

φ

χ

)
, (3.57) 

where, as noted, . φ and . χ are, for the Dirac equation, each two spinors. . φ (or more 
correctly . φ0) represents a particle while .χ represents an antiparticle. So, for one 
observer we have 

.Ψ ∼
(

φ

0

)
(3.58) 

and for another observer we can have 

.Ψ ∼
(
0
χ

)
, (3.59) 

that is, the two observers would see respectively a particle and an antiparticle. Usually 
we see localized particles including both (3.58) and (3.59). This would be the same 
for a single observer, if, for example, the particle’s velocity got a boost so that (3.59) 
rather than (3.58) would dominate after sometime. 

It is now easy to see that without any inconsistency or contradiction to the theory, 
in which case Eq. (3.58) represents a neutrino while Eq. (3.59) represents the anti-
neutrino. However, they are not independent, in the sense that they really describe 
the Dirac four spinor (3.57), appearing as either (3.58)  o  r (3.59) at different energies, 
in other words according to the considerations after (3.37) or before (3.38).
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The above scenario of antiparticle and particle at different times could be modelled 
as follows: The very high-energy antiparticle component,.u− let us say would decay 
rapidly, for example, exponentially with time while the normal particle .u+ would 
have the usual longer life time. In fact, this is exactly the case with the Kaon decay 
and the recently observed.B-meson decay, in both of which time-reversal symmetry 
is broken. 

3.10 Transmutations of Particles 

We would like to point out two things with regard to Eqs. (3.57), (3.58), (3.59). The 
first is that the transition from (3.58)  to (3.59), that is, particle to antiparticle or vice 
versa with a steep increase in energy can be looked upon as a particle–antiparticle 
“transmutation”. Indeed such “transmutations” have been observed recently in the 
so-called.B-factories involving the decays of .B-mesons. Secondly (3.58) and (3.59) 
in a previous communication [ 62] have been described as the up and down states of 
a super spin—that is, particles and antiparticles rather like two different states of the 
same entity given by (3.57). 

3.11 Neutrino Waves 

Recently the 60-year-old Glashow resonance was detected in Antarctica in the ice 
cube experiment. Sniffing out such a minute neutrino effect is indeed an awesome 
achievement. This was verified by the Russians in Lake Baikal in Siberia. In this 
spirit, we now propose what may be called neutrino “waves”. 

Our starting point is from an infinitesimal parallel displacement of a vector, 
namely: 

.δaσ = −Γ σ
μνa

μdxν . (3.60) 

This represents the displacement effects due to the curvature of space [ 30]. If space 
were flat, the right side of (3.60) would be zero. Considering the . μ coordinate, we 
get 

.
∂aσ

∂xμ
→ ∂aσ

∂xμ
− Γ σ

μνa
ν (3.61) 

which would also be written as 

. − Γ λ
μνg

ν
λa

σ = −Γ ν
μνa

σ .

Now let us write the metric as 

.gμν = ημν + hμν. (3.62)
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In the above (3.62). ημν is the Minkowski metric and .hμν would be a very small 
perturbative effect. So we get 

.
∂

∂xμ
→ ∂

∂xμ
− Γ ν

μν. (3.63) 

This is very similar to the minimum electromagnetic coupling and the last term in 
(3.63) would be the interaction term. However it must be remembered that even 
though the neutrino wave function can be represented in the usual manner [ 41], in 
terms of column vectors, in the above context let us now approach the above consider-
ations of that of the Dirac equation. It is well known that the four linearly independent 
four spinor Dirac wave functions are given by [ 41], apart from multiplicative factors, 

.

⎡
⎢⎢⎣
1
0

pzc
E+mc2
p+c

E+mc2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0
1
p−c

E+mc2−pzc
E+mc2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

pzc
E+mc2
p+c

E+mc2

1
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p+c
E+mc2−pzc
E+mc2

0
1

⎤
⎥⎥⎦ , (3.64) 

where .pz is the .z-component of the momentum and 

. p± = px ± ı py,

in a representation given by 

. γı = γ0

[
0 σı

σı 0

]
, γ0 =

[
1 0
0 − 1

]

the . σ ’s being the Pauli matrices. 
If we consider the.z-axis to be in the direction of motion, for simplicity and taking 

the limit .m → 0, the spinors become 

.ψ1 =

⎡
⎢⎢⎣
1
0
1
0

⎤
⎥⎥⎦ψ2 =

⎡
⎢⎢⎣
0
1
0
−1

⎤
⎥⎥⎦ψ3 =

⎡
⎢⎢⎣
1
0
1
0

⎤
⎥⎥⎦ψ4 =

⎡
⎢⎢⎣
0
−1
0
1

⎤
⎥⎥⎦ . (3.65) 

It should be noticed that here .ψ1 = ψ3, and .ψ2 = ψ4 so that effectively, two of the 
spinors vanish exactly and we are left with two solutions. This was elaborated upon 
by several authors starting from Dirac [ 42], Barut [ 39], and Sidharth [ 14]. 

We now observe that in the linearized theory of general relativity [ 68– 70], we 
have 

.�hμν = −16πTμν. (3.66)
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This is a wave equation á la linearized gravity waves which have been elaborated 
upon by the author [ 14]. Thus these are extremely faint waves or perturbations. 
Nevertheless it may now be possible to find them. 

As noted, the neutrino was introduced by Wolfgang Pauli. To balance the neutron 
decay equation 

. n → p+e−ν̄e.

The neutron decays into a proton, an electron, and an anti-neutrino of the electron 
type. For the balance to happen, the neutrino had to be of spin half and mass zero. 
That is how it has been in the standard model of particle physics. But over the past 
50 years the neutrino, if anything has become even more enigmatic and studies are 
continuing. Let us consider the neutrino by the usual rules of scattering. We get in 
the special case, where the mass is considered to be nearly zero, the formula for 
scattering becoming that of the Fermi point interaction. This is a clear verdict on the 
weakness of the neutrino interactions. 

We next consider the neutrino beam which is obviously mono-energetic. Such 
beams have been investigated by the author before 2008. The conclusion was that 
these beams are two dimensional in momentum space and therefore also in ordinary 
space time as seen earlier [ 14]. 

Let us now specialize to two-dimensional fermions. It can be argued that they 
behave like mono-atomic particles. A quick check of this is the following argument: 
In the case of mono-atomic particles, as also neutrinos in 2D we have for the pressure, 
volume, and energy, the relation 

.PV = 2

3
E . (3.67) 

Let us now return to such a collection, in this case, by using ordinary statistics. We 
have, as is well known, the number of particles in the interval .(c, c + dc) is given 
by.dN = A · N , A being a constant. The point is that there is a non-zero probability 
for the particles having a velocity . > c.

It may be mentioned that superluminal neutrinos were observed in the supernova 
1987A. On the other hand, the Gran Sasso underground neutrino experiment which 
supposedly threw up superluminal neutrinos turned out to be due to a faulty electrical 
connection. In any case, we would like to say that a few superluminal neutrinos may 
be observed with a very small probability. 

We discuss further ways in which we can observe superluminosity in neutrinos, 
albeit in the probabilistic fashion. The first way is by considering a stream of mono-
energetic neutrinos. This leads to two dimensionality as we saw earlier. 

The other is that if we leave the neutrino to explore the Weinberg spacetime 
interval, [ 71] there is a small gap which can be used for particles to go through. 
However, the effect would be minuscule except in the case of the neutrino which 
has a large Compton wave length. Finally, we showed that neutrinos are like waves, 
which is another way of saying that they are spread out. The question is: exactly at 
which point is the neutrino located. When quantum mechanical effects are factored



70 3 The Enigmatic Neutrino

in, we have a modification of the usual formula. Specifically, the uncertainty principle 
tells us that when we specify that a particle is at position.x1 at time. t1, we cannot also 
define its velocity precisely. In consequence there is a certain chance of a particle 
getting from.x1 to .x2 even if .x1 − x2 is spacelike. That is, 

.|x1 − x2| > |x01 − x02 |. (3.68) 

To be more precise, the probability of a particle reaching .x2 if it starts at .x1 is 
nonnegligible as long as 

.(x1 − x2)
2 − (x01 − x02 )

2 ≤ �
2

m2
, (3.69) 

where . � is Planck’s constant (divided by .2π ) and .m is the particle mass. (Such 
spacetime intervals are very small even for elementary particle masses; for instance, 
if. m is the mass of a proton then.�/m = 2 × 10−14cm or in time units.6 × 10−25sec. 
Recall that in our units .1sec = 3 × 1010cm.) There is a small difference, which 
from Eq. (3.69) is negligible, except in the case of neutrinos which have zero mass 
or the slightest of masses. Within this extended interval, the neutrino could have a 
superluminal speed. 

Remark on Superluminosity 

If we consider an electron collision with a neutrino as noted, we get the Fermi point 
interaction represented by an .X in propagator language [ 41]. 

We finally saw that there is one small chink through which Einstein’s relativity 
can be hoodwinked. 

Coming to the faster than light question, it turns out that due to quantum mechan-
ics, what is called the spacetime interval gets slightly extended, just by a wee bit, as 
we saw, which gives the opportunity to move faster than light. This wee bit is the 
maximum for particles with the tiniest of masses, namely, the neutrinos. We have 
written quite a bit on what may be called superluminal or faster than light neutri-
nos. As noted, the 1987A supernova detection is a little more serious and awaits a 
jury. In any case, it is conceivable that we can use superluminal neutrinos for distant 
communications. 

3.12 Is the Neutrino a Hybrid Particle? 

In this case, the earlier comments lead us to expect bosonic behaviour because there 
is hardly any energy spread. Our starting point is the well-known formula for the 
occupation number of a fermion gas [ 20]:
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.n̄ p = 1

z−1ebEp + 1
, (3.70) 

where .z′ ≡ λ3

v
≡ μz ≈ z because, here, as can be easily shown. μ ≈ 1,

. v = V

N
, λ =

√
2π�2

m/b

.b ≡
(

1

KT

)
, and

∑
n̄ p = N . (3.71) 

Let us consider, in particular, a collection of fermions which is somehow made nearly 
mono-energetic, that is, given by the distribution: 

.n′
p = δ( �p − p0)n̄ p (3.72) 

.p0 being the magnitude of the . 0th component of the momentum vector . �p where . n̄ p

is given by (3.70). 
This is not possible in general—here we consider a special situation of a collection 

of mono-energetic particles in equilibrium which is the idealization of a contrived 
experimental setup. 

By the usual formulation, we have 

.N = V

�3

∫
d �pn′

p = V

�3

∫
δ( �p − p0)4π �p2n̄ pd �p = 4πV

�3
p20

1

z−1eθ + 1
, (3.73) 

where .θ ≡ bEp0 . 
It must be noted that in (3.73) there is a loss of dimension in momentum space, 

due to the . δ function in (3.72)—in fact, such a fractal two-dimensional situation 
would be in the relativistic case lead us back to the anomalous behaviour already 
alluded to [ 72]. This again is symptomatic of distances in space (and momentum 
space) being more a measure of dispersion, rather than rigid distances. In the non-
relativistic case, two dimensions would imply that the coordinate .ψ of the spherical 
polar coordinates.(r, ψ, φ)would become constant,.π/2 in fact. In this case, the usual 
quantum numbers . l and .m of the spherical harmonics [ 73] no longer play a role in 
the usual radial wave equation 

.
d2u

dr2
+
{
2m

�2
[E − V (r)] − l(l + 1)

r2

}
u = 0. (3.74) 

The coefficient of the centrifugal term .l(l + 1) in (3.74) is replaced by .m2 as in 
classical theory [ 74]. 

To proceed, in this case, .KT =< Ep >≈ Ep so that .θ ≈ 1. But we can continue 
without giving . θ any specific value.



72 3 The Enigmatic Neutrino

Using the expressions for . v and . z given in (3.71)  in (3.72), we get 

. (z−1eθ + 1) = (4π)5/2
z

′−1

p0
,whence

.z
′−1A ≡ z

′−1

(
(4π)5/2

p0
− eθ

)
= 1, (3.75) 

where we use the fact that in (3.71), .μ ≈ 1 as can be easily deduced. 
A number of conclusions can be drawn from (3.75). For example, if 

. A ≈ 1, i.e.

.p0 ≈ (4π)5/2

1 + e
, (3.76) 

where. A is given in (3.75), then.z′ ≈ 1. Remembering that in (3.71),. λ is of the order 
of the de Broglie wavelength and. v is the average volume occupied per particle, this 
means that the gas gets very densely packed for momenta given by (3.76). In fact for 
a Bose gas, as is well known, this is the condition for Bose–Einstein condensation 
at the level .p = 0 (cf. Ref. [ 20]). 

On the other hand, if 

. A ≈ 0(that is
(4π)5/2

e
≈ p0)

then .z′ ≈ 0. That is, the gas becomes dilute or .V increases. 
More generally, Eq. (3.75) also puts a restriction on the energy (or momentum), 

because .z′ > 0, viz.: 

. A > 0(i.e.p0 <
(4π)5/2

e
)

. But if A < 0, (i.e.p0 >
(4π)5/2

e
),

then there is an apparent contradiction. 
The contradiction disappears if we realize that .A ≈ 0 or 

.p0 = (4π)5/2

e
(3.77) 

(corresponding to a temperature given by.KT = p20
2m ) is a threshold momentum (phase 

transition). For momenta greater than the threshold given by (3.77), the collection of 
fermions behaves like bosons. In this case, the occupation number is given by
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. n̄ p = 1

z−1ebEp − 1

instead of (3.70), and the right-side equation of (3.75) would be given by ‘.−1’ instead 
of .+1, so that there would be no contradiction. 
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Chapter 4 
The Bizarre Spacetime 

4.1 Why Noncommutative Geometry Puts a Bound on 
Velocities? 

The noncommutative feature of spacetime geometry is a topic of great interest. There 
is a vast amount of literature existing on this subject [ 1– 4]. Particularly, the author has 
used noncommutativity to provide a feasible interpretation for several phenomena [ 5, 
6]. The objective of the current chapter is to further explore this unique and intrinsic 
nature of spacetime on the premise of the noncommutativity introduced by Snyder 
[ 7] rather than to the Moyal–Weyl formalism [ 3, 8]. 

Particularly, we apply this noncommutativity to the Klein-Gordon equation and 
modify it considering the Compton length to be the fundamental length. On the 
other hand, for Snyder, it was a general small length. But as pointed out by Snyder 
himself the idea that a modification of the ordinary concept of spacetime was neces-
sary because the “elementary” particles had fixed masses and associated Compton 
wavelengths. In other words, it is assumed that the spectra of the spacetime coor-
dinate operators were invariant under Lorentz transformations. The principal result 
in Snyder’s work was that there exists a Lorentz invariant spacetime in which there 
is a natural unit of length. The introduction of such a unit of length would remove 
many of the divergence troubles of field theory. The concept of noncommutativity 
of .x, y, z, and t, would follow in a natural manner by the introduction of a smallest 
unit of length in spacetime according to Snyder’s analysis, otherwise the assumption 
of Lorentz invariance of the spectra of the operators.x, y, z, and t, if they commute, 
would imply continuous spectra. 

The second section deals with the modification of the Klein–Gordon equation by 
involving a parameter representing the noncommutative feature. In the third section, 
we modify the Foldy–Wouthuysen and the Cini–Toushek transformations that rep-
resent the low-energy and high-energy scenarios, respectively. In the fourth section, 
we investigate further regarding the parameter referred to as noncommutativity and 
in that course we find some novel results concerning the Lorentz factor. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
B. G. Sidharth, The Dark Energy Paradigm, 
https://doi.org/10.1007/978-981-96-3745-4_4 

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3745-4_4&domain=pdf
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4
https://doi.org/10.1007/978-981-96-3745-4_4


78 4 The Bizarre Spacetime

4.2 Modified Klein–Gordon Equation 

As the author has mentioned in several papers [ 5] and several references therein, the 
consideration of complex time .i × t leads to the Minkowski spacetime formalism 
while the ordinary time coordinate (. t) leads to the compact four space representing 
the zitterbewegung region. This effect was noticed by Dirac himself when he came 
up with his equation: the rapidly oscillating solutions were apparently unphysical. 
Dirac’s explanation was that our physical measurements are never instantaneous 
but rather spread over a small interval—it turns out to be the Compton time [ 9]. 
Zitterbewegung has been studied a lot over the years, notably by Huang, Hestenes, 
Kaiser, and other scholars including the author himself [ 10– 12]. More recently the 
author has re-examined it in the light of the Feshbach–Villars formulation [ 13]. To 
put it simply the four-component Dirac wave function can be written as 

. ψ =
(

χ

φ

)
,

where . χ and . φ are each two-component spinors. . χ are the so-called “high-energy” 
spinors and. φ the low-energy ones. The former become pronounced at high energies 
and the latter at lower energies. So the Dirac four spinor divides spacetime into two 
broad regions—the high-energy region where. χ dominates and the usual low-energy 
region where . φ dominates. We begin with the following complexified identification 
of time: 

.t �−→ αt + βi t ′, (4.1) 

where . α and . β are parameters that represent the scale below and above the Comp-
ton length, respectively. When one considers phenomena below the Compton scale, 
.β = 0, and have the ordinary time coordinate, . t . Again, when one considers phe-
nomena above the Compton scale, .α = 0, we have the complex time coordinate, . i t ′. 
Thus, relation (4.1) represents a region which is the juncture between the compact 
four space and the non-compact Minkwoski space. The metrics for the two different 
regions are, respectively: 

. x2 + y2 + z2 + c2t2

and 
. x2 + y2 + z2 − c2t ′2.

Now, for the juncture region, we write 

.ds2 = x2 + y2 + z2 + t t ′. (4.2) 

This yields 
.ds2 = x2 + y2 + z2 + αc2t2 − βc2t ′2. (4.3)
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This represents the critical region that is the boundary of the two regions. Ostensi-
bly, this is the region of the Compton length where the noncommutative nature of 
spacetime comes into play. Now, the d’Alembertian operator is 

. 
∂2

∂xμ∂xν
= ∇2 − 1

c2
∂2

∂t2
,

where, using the noncommutative feature given in (4.4) and (4.5), the different indices 
.μ and . ν lead to the d’Alembertian using Snyder’s noncommutativity relation [ 7]. 
From the following fundamental relation of noncommutativity due to Snyder [ 7], we 
have 

.[xμ, xν] = ηβ(l2), (4.4) 

where.β(l2) = βμν(l2) is a real, nonsingular, and antisymmetric square matrix and. l
is the Compton length. Since this relation is valid for any length segment it is valid 
for differentials also such as 

.[dxμ, dxν] = ξβ(l2) (4.5) 

because the differentials measure infinitesimal lengths and should concur with rela-
tion (4.4). It must be re-emphasized that Snyder’s original work leading to (4.4) 
was based on the existence of a minimum measurable length in a classical context. 
Throughout we consider the special case of the minimum length to be the Compton 
length. So (4.5) would also be valid for differentials which are small lengths. This 
was emphasized in an earlier communication [ 14]. Therefore, we have 

. dxμdxν = dxνdxμ + ξβ(l2).

From this relation, we may write 

. 
d2

dxμdxν
= d2

dxνdxμ

⎡
⎣ 1

1 + ξβ(l2)
dxνdxμ

⎤
⎦ .

Now, since .β(l2) is very small due to the Compton length “. l” being very small, 
the above relation can be approximated as 

.
d2

dxμdxν
=

[
1 − ξβ(l2)

dxνdxμ

]
d2

dxνdxμ

. (4.6) 

In terms of partial derivatives, we have 

.
∂2

∂xμ∂xν
=

[
1 − ξβ(l2)

∂xν∂xμ

]
∂2

∂xν∂xμ

, (4.7)
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where .β(l2) bears the signature of a noncommutative spacetime. This has also been 
shown elsewhere [ 15]. Anyway, we shall use relation (4.7) which is essentially a 
transformation on account of noncommutativity, in the case of the Klein–Gordon 
equation which can be written as 

.
∂2ψ

∂xμ∂xν
+ μ2ψ = 0, (4.8) 

where .ψ = ψ(x, t) is the wave function and .μ (.= mc
�
) is the mass-related term. 

Again, considering the transformation relation (4.4) for the d’Alembertian, using the 
noncommutative relations, and interchanging the indices (.μ ↔ ν) we can also write 
for (4.8) 

.

[
1 − ηβ(l2)

δxνδxμ

]
∂2ψ

∂xμ∂xν
= μ2ψ. (4.9) 

Now, writing 

. 

[
1 − ηβ(l2)

δxνδxμ

]
= ζ

and 
. μ′ = μ

ζ

we have finally the modified Klein–Gordon equation as 

.
∂2ψ

∂xμ∂xν
+ μ′2ψ = 0. (4.10) 

This is like Eq. (4.8). Here, . ζ is nearly equal to 1, since the .β(l2) is infinitesimal. 
It is almost as if the massless Goldstone Bosons which satisfy Eq. (4.8) acquire a 
miniscule mass because of the noncommutativity. Equation (4.10) relates the non-
commutative feature of spacetime through the matrix.β(l2) with the mass parameter 
(. μ). One can infer that the generation of mass is due to the noncommutative space-
time. This is because we see from Eq. (4.9), .[1 − εβ(l2)

δxν δxμ
] ∂2

∂xμ∂xν is an operator that 
operates on the wave function and produces the mass-related term . μ. This shows 
that the noncommutative feature of spacetime can be indeed interesting when taken 
into consideration. We shall see this more in the subsequent sections where we obtain 
a slight modification of the energy levels owing to the parameter . ζ . This parameter, 
as we shall see, leads to results that are in good accord with some observational phe-
nomena. It appears that, if the noncommutative nature of spacetime is neglected, then 
the parameter .β(l2) is 0, which leads to .ζ = 1 and we have the usual Klein–Gordon 
formulation.
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4.3 The Modified Transformations for High-Energy and 
Low-Energy Scenarios 

In the previous section, we have derived a modified form of the Klein–Gordon equa-
tion, the modification itself arising from noncommutativity. Here, we shall derive 
modified forms of the Foldy–Wouthuysen [ 16– 19] and the Cini–Toushek transfor-
mations [ 18, 20]. Now, the modified Klein–Gordon equation (4.10) can also be 
written as 

.(∂μ∂ν + μ′2)ψ = 0. (4.11) 

This can also be written as 

.(iγμ∂μ + μ′)(−iγν∂ν + μ′)ψ = 0. (4.12) 

From (4.12), as we know, one can infer 

. (γμ pμ + μ′)ψ = 0

or 
. (−γμ pμ + μ′)ψ = 0,

where we have chosen .� = c = 1 and .pμ = i∂μ and the .γ ′s are Dirac matrices. 
Again, in the presence of an electromagnetic interaction, these two equations can be 
rewritten as 

.[γμ(pμ − eAμ) + μ′]ψ = 0 (4.13) 

and 
.[γμ(−pμ + eAμ) + μ′]ψ = 0. (4.14) 

It is obvious that if Eq. (4.13) represents a particle of mass “m” and charge “e” then 
Eq. (4.14) represents the antiparticle with mass “m” and charge “-e”. Therefore, as we 
see the two equations that derive from the Klein–Gordon Equation (4.11) correspond 
to a matter–antimatter asymmetry. Now, without any interaction the equations can 
also be written, respectively, as 

.(α · �p + β
m

ζ1
)ψ = i

∂ψ

∂t
(4.15) 

and 

.(α · �p − β
m

ζ2
)ψ = i

∂ψ

∂t
, (4.16) 

where. α and. β are the usual matrices. Here, apparently we have distinguished between 
the . ζ ’s for the two equations (4.15) and (4.16). The rationale for this is the fact that 
these two distinct equations represent a particle and an antiparticle. Interestingly, we
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shall see later that the former corresponds to the low-energy case and the latter to 
the high-energy case. Now, let us consider a unitary transformation for Eq. (4.15) 

. U = eis,

. ψ ′ = eisψ

such that we have 

. i
∂ψ

∂t
=eis Hψ

=eis He−isψ ′

=H ′ψ ′,

where .H is the usual Dirac Hamiltonian. As we know [ 16], such a choice of trans-
formation is given by 

.eis = e(βα· �pθ( �p)) = cos pθ + β
α · �p
p

sin pθ. (4.17) 

Thus, the transformed Hamiltonian is given as 

. H ′ = (cos pθ + β
α · �p
p

sin pθ)((α · �p) + β
m

ζ1
)(cos pθ − β

α · �p
p

sin pθ)

= α · �p(cos 2pθ − β
m

ζ1 p
sin 2pθ) + β(

m

ζ1
cos 2pθ + p sin 2pθ).

Putting 

. tan 2pθ = ζ1 p

m
(4.18) 

in the first term of the last line, we obtain 

. H ′ = β(
m

ζ1
cos 2pθ + p sin 2pθ).

Now, squaring both sides, using (4.18) and after some rearranging, we obtain the 
transformed Hamiltonian as 

.H ′ = β

ζ1

√
m2 + ζ 2

1 p
2, (4.19) 

where we see that the effect of noncommutativity is included in the new transformed 
Hamiltonian, in the form of . ζ1. Of course, if .β(l2) = 0, then we have.ζ1 = 1 and we 
obtain the known transformed Hamiltonian [ 16]  as
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. H ′ = β
√
m2 + p2.

Incidentally, we have also found the modified unitary transformation as 

.UL = eβα· �pθ( �p) = exp

[
1

2
βα tan−1(

ζ1 p

m
)

]
, (4.20) 

where the subscript .L refers to the low-energy scenario. This is the modification 
of the Foldy–Wouthuysen transformation [ 17, 18]. Thus, we see that taking into 
consideration the noncommutative nature of spacetime one gets new effects. Next, 
we shall consider Eq. (4.16) and find out if it leads to the high-energy scenario. We 
consider a similar type of unitary transformation as before, namely, relation (4.17). 
Therefore, we have the transformed Hamiltonian as 

. H ′ = (cos pθ + β
α · �p
p

sin pθ)((α · �p − β
m

ζ2
))(cos pθ − β

α · �p
p

sin pθ)

= α · �p(cos 2pθ + β
m

ζ2 p
sin 2pθ) + β(

m

ζ2
cos 2pθ − p sin 2pθ).

Now, putting 

. tan 2pθ = m

ζ2 p
(4.21) 

in the second term of the last line, we obtain 

. H ′ = α.p(cos 2pθ + β
m

ζ2 p
sin 2pθ).

Squaring both sides, using (4.21) and rearranging the terms, we would obtain 

.H ′ = α

ζ2

√
m2 + ζ 2

2 p
2 (4.22) 

which is the new transformed Hamiltonian for the high-energy scenario, considering 
the noncommutative effects. As usual, for .β(l2) = 0,  we  have .ζ2 = 1 and the usual 
Hamiltonian 

. H ′ = α
√
m2 + p2.

We note that both the low-energy and the high-energy scenarios are presented in the 
unified formulation. Thus, we have obtained the following unitary transformation: 

.UH = eβα.pθ(p) = exp[1
2
βα tan−1(

m

ζ2 p
)], (4.23) 

where the subscript .H refers to the high-energy scenario and relation (4.22)  is  the  
modified Cini–Toushek transformation. We have corroborated the fact that theKlein–
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Gordon formulation is the combination of both the Foldy–Wouthuysen and the Cini– 
Toushek formulation, where the former refers to the low-energy case and the latter to 
the high-energy case. Besides, let us take a look at the transformed Hamiltonians that 
we have derived. For the low- and high-energy scenarios, we have, respectively, rela-
tions (4.19) and (4.22). Thus, from the modified Foldy–Wouthuysen transformation, 
we can derive 

.H ′
L = ULHLU

−1
L = βE ′

L , (4.24) 

where.E ′
L denotes the modified energy levels for the low-energy scenario (.m2 � p2) 

given as 

. E ′
L = 1

ζ1

√
m2 + ζ 2

1 p
2.

Again, from the modified Cini–Toushek transformation we have 

.H ′
H = UH HHU

−1
H = αE ′

H , (4.25) 

where.E ′
H denotes the modified energy levels for the high-energy scenario (.m2 	 p2) 

given as 

. E ′
H = 1

ζ2

√
m2 + ζ 2

2 p
2.

The transformed Hamiltonians (4.24) and (4.25) are the same as the conventional 
ones [ 18], except for the fact that the noncommutative feature of spacetime has been 
included in them which has culminated in the modification of the energy levels. 
Finally, we remark that both can go into one another if we introduce . i in the expo-
nential. This essentially means that compact space of four rotations goes into the 
Minkowski space. 

4.4 The Parameter . ζ

Now, the modified Hamiltonians (4.19) and (4.22) give the modified energy levels. 
Apparently, there is a shift from the known values of the energy levels which should 
be observed in experiments. This fact can be correlated to the modified mass–energy 
relation that has been studied in the author’s previous work [ 21– 23] given as 

.E2 = m2 + p2 − λ2l2c2

�2
p4. (4.26) 

Considering natural units, for a general case of (4.19) and (4.22), we can write 

.
1

ζ

√
m2 + ζ 2 p2 =

√
m2 + p2 − λ2l2 p4, (4.27)
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where .λ ≈ −10−3 is a constant, whose value had been previously deduced in [ 21] 
and. l is the Compton length (.l = �

mc ). But here, due to relativistic considerations we 
take it as the de Broglie length (.l = �

p ) of the particle. Incidentally, we had shown [21] 
that the constant . λ is related to the electron gyromagnetic ratio and the Schwinger 
correction terms by the relation: 

.g = 2[1 + α

2π
+ f (α)] = 2[1 − λ], (4.28) 

where . α is the fine structure constant and. f (α) consists of higher orders of . α.  From  
the above equation, one can easily see t hat

. λ ≈ − α

2π

neglecting the higher order terms of. α. This result also helped in explaining the GZK 
cutoff and the Lamb shift phenomenon, as we saw in previous work [ 24]. Essentially, 
.|λ| ≈ α

2π is the reduced fine structure constant. However, squaring both sides of 
(4.27) and after some rearrangement we derive the following result for the parameter 
. ζ

.ζ = (1 − ε2)−
1
2 , (4.29) 

where.ε = λlp2

m , in terms of natural units (.� = c = 1). Particularly, we know that the 
de Broglie length (. l)  is  given  as

. l = �

p

or reverting to ordinary units we have 

. ε = λlc

�

p2

mc2
.

Using the previous relation for . l and .p = mc the value of . ε is 

. ε =λc
mc

mc2

=λ.

Now, if we hadn’t considered .p = mc then we would have obtained 

.ε = λ
p

mc
. (4.30) 

Thus, we would have the general value of . ζ as 

.ζ = 1√
1 − λ2 p2

m2c2

. (4.31)
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Now, from Eq. (4.31) we can infer three possible cases (with.λ = −10−3), as follows: 

1. For, .p = mc we would have 

. ζ ≈ 1.0000005.

2. For, .p 	 mc (non-relativistic scenario) we have . ζ nearly equal to 1 but 

. ζ > 1.

3. For, the case .p � mc (ultra-relativistic scenario) we must have 

.(
p

mc
)max < +103 (4.32) 

which is a critical value, in the absence of any interactions. If.( p
mc )max ≥ 103 then we 

would have either an infinite or an imaginary value of. ζ which would make Equations 
(4.19) and (4.22) unrealistic and unphysical. Now, from special relativity we have 
the following relation: 

. p = γmv,

where. γ is the Lorentz factor and. v is the velocity of the particle under consideration. 
Thus, we may write 

. (
p

mc
)max = (

γ v

c
)max < 1000

giving 

. 
1√

1 − ( vc )
2
max

(
v

c
)max < 1000.

From here, we would obtain 

.(
v

c
)max < 0.9999995 (4.33) 

and the corresponding Lorentz factor as 

.(γ )max < 106 (4.34) 

Thus, we can infer that for a spin .− 1
2 particle obeying (4.15)  o  r (4.16), at the ultra-

relativistic limit, the Lorentz factor and the factor. vc , both have an upper bound, in the 
absence of any field or interaction. To be precise . vc < 1, with the noncommutative 
nature of spacetime in case of the particles referred to, there is a limit to velocities. 
This upper bound is borne out of several observations [ 25– 29]. So when the non-
commutative nature of spacetime is taken into consideration we have such feasible
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results. Now, neglecting this noncommutativity takes us back to the known scenarios 
and results. But the limit to the Lorentz factor is a non-trivial derivation since it might 
provide further insights into ultra-relativistic phenomena for particles obeying the 
relations (4.15) and (4.16), where the former concurs with the low-energy scenario 
(Foldy–Wouthuysen case) and the latter with the high-energy scenario (Cini–Toushek 
case). It must be borne in mind that these conclusions are for ordinary particles with 
an invariant mass, but not for neutrinos which are different, as seen. 

4.5 The Lorentz Factor Inherent in Noncommutativity 

In the light of the approach considered in this chapter, we see that the noncommu-
tative feature of spacetime plays an important role in the understanding of several 
phenomena. Particularly, as we saw, this inherent noncommutativity puts a restric-
tion on the Lorentz factor. This insight can be extended to achieve further interesting 
results. Let us consider the Lorentz factor and see if we can connect our approach 
with the acceleration of the universe. We have 

. γ = 1√
1 − ( vc )

2

from a purely heuristic point of view, just to get a feel, we differentiate both sides 
with respect to time we can get the acceleration as 

.a = dv

dt
= c√

1 − 1
γ 2

× 1

γ 3

dγ

dt
. (4.35) 

Strictly speaking, there should be a factor .Q to the time derivative, in this equation 
to take into account, effects like time dilatation. If we take the limiting value of the 
Lorentz factor as proposed above to be 

. γ ≈ 106

and write 

. 
dγ

dt
= Δ

then from (4.35) we get the acceleration as 

. a ≈ 1.0000005 × 10−8Δ cm/s2,

where .Δ is small since . γ is bounded. Thus, we can simply drop the “. Δ” factor and 
finally write



88 4 The Bizarre Spacetime

.a < 1.0000005 × 10−8 cm/s2. (4.36) 

This is interesting as it is almost exactly of the order of the acceleration produced 
by the cosmological constant [ 30] which is given by.

c2

R (where. R is the radius of the 
universe). In an altogether different approach, the bound in (4.36) was derived earlier 
by the author [ 31]. Also, this result corresponds to the anomalous acceleration of the 
Pioneer 10 and 11 [ 30, 32]. 

4.6 Minkowski Spacetime in the Light of Noncommutative 
Geometry of Modern Quantum Gravity Approaches 

The Minkowski spacetime is a combination of three-dimensional Euclidean space 
and time into a four-dimensional manifold where the spacetime interval between any 
two events is independent of the inertial frame of reference in which they occur. In 
this section, we investigate properties of the Minkowski space with the additional 
consideration of noncommutativity. We have shown [ 15] that space noncommuta-
tivity also implies momentum noncommutativity. One can begin with the following 
relation: 

.[px , py] = ηθ(l2), (4.37) 

where . η generally takes the value of “.±i” and .θ(l2) is a matrix with elements that 
are functions of the minimum fundamental length. l. Considering a representation of 
the momentum as 

. pi = Piσi ,

where . σ ’s are the Pauli matrices, one can deduce a relation of the form: 

. vxvy <
g(l2)

m2

which shows that the individual component velocities (.v′
i s) are bounded, i.e. the 

velocity cannot be infinite. This boundedness brings out the relativistic feature of 
Minkowski spacetime which prohibits infinite velocities. 

4.7 Dark Energy and Spacetime Geometry 

In this section, we try to find a connection between the noncommutative nature of 
spacetime and the zero point energy. We observe that extra effects come into play 
when we take into account the Compton scale effects in such a spacetime and the 
electromagnetic field tensor and the current density get modified. This defines an 
underlying connection between noncommutativity and the zero point energy.
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In contrast to the usual commutative spacetime, a noncommutative spacetime has 
been considered and studied by many authors including the author [ 5] as already 
noted, as the framework of various fundamental phenomena. As noted, this non-
commutative nature of spacetime was investigated by H. Snyder in the context of 
the infrared catastrophe of soft photons in the Compton scattering and in general to 
renormalize quantum field theory by applying the noncommutative quantized space-
time. Besides, such a framework has been widely studied by other authors [ 2, 3, 
33– 36] also. We begin with the following fundamental relation of noncommutativity 
[ 7]  a  s

.[xμ, xν] = εβ(l2), (4.38) 

where. ε is a constant and.β(l2), a suitable matrix, is some linear function of the square 
of the Compton length (. l) of the electron which is very small. Here, . l is the minimal 
physical length. Normally, in modern quantum gravity approaches, the minimum 
length . l is taken to be the Planck length [ 37, 38]. But over the years the author has 
considered. l to be the Compton wavelength [ 39– 42]. To see how this works let us go 
back to the Dirac coordinate [ 9] 

.x = (c2 p1H
−1t) + ı

2
c�(α1 − cp1H

−1)H−1 (4.39) 

with similar expressions for the other two coordinates. The first term in (4.39)  gives  
the usual position coordinates which commute with one another. It is the second 
term which gives the zitterbewegung spread over the Compton wavelength. In other 
words, as noted, our usual spacetime coordinates are real-valued averages over the 
Compton wavelength [9]. Let us analyse (4.39) in a little greater detail. Let us write 
it as 

.xl = x̄l + Θlk p̄k, (4.40) 

.pl = p̄l, (4.41) 

where the . x ′s, .x̄ and p̄ obey the usual commutation relations. 

.[x̄l , x̄k] = 0, (4.42) 

.[x̄l , p̄k] = ı�δlk, (4.43) 

.[ p̄l , p̄k] = 0, (4.44) 

where . x̄ represents the averaged space coordinate, that is, the first term in (4.39). 
However, it is easy to verify that for the . x’s and . p’s, as can be easily verified 

.[xl , xk] = −2ı�Θlk, (4.45) 

.[xl , pk] = ı�δlk, (4.46)
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.[pl , pk] = 0, (4.47) 

which alternatively follows from the Snyder treatment if the Compton wavelength 
is taken as the minimum length. It may be further pointed out that as noted by 
Wigner and Salecker [ 43] there can be no physical measurements within the Compton 
wavelength. 

At this point we would like to emphasize the well-known close relationship 
between the zero point energy, which manifests itself even when no external fields 
are applied and zitterbewegung which, as Schrodinger first noticed—and this can be 
attributed to the zero point fluctuations [ 42, 44]. Indeed all of space is filled with the 
zero point energy (Cf. Ref. [ 44]) or dark energy. 

In fact, as noted, this was the basis for the author’s 1997 cosmology [ 45], which, 
as we saw correctly predicted that the universe would be accelerating with a small 
cosmological constant, at a time when the ruling paradigm was exactly the opposite. 

Now, let us consider the antisymmetric field tensor in the electromagnetic case as 

.Fμν = −Fνμ. (4.48) 

Now, we know that this field tensor satisfies the relation 

. 
∂2Fμν

∂xμ∂xν

= 0

in the simple electromagnetic case. Here, the left-hand side can also be written as 

. 
∂2Fμν

∂xμ∂xν

= 1

2
[ ∂2Fμν

∂xμ∂xν

+ ∂2Fνμ

∂xμ∂xν

]

which gives (upon interchanging the indices .μ and . ν in the second term on the 
right-hand side) 

. 
∂2Fμν

∂xμ∂xν

= 1

2
[ ∂2Fμν

∂xμ∂xν

− ∂2Fμν

∂xν∂xμ

].

Now, from relation 

.
∂2

∂xμ∂xν

= [1 − εβ(l2)

δxνδxμ

] ∂2

∂xν∂xμ

, (4.49) 

we have 

.
∂2Fμν

∂xμ∂xν

= 1

2

[
∂2Fμν

∂xμ∂xν

− ∂2Fμν

∂xν∂xμ

]
= −1

2

[
εβ(l2)

δxνδxμ

]
∂2Fμν

∂xν∂xμ

.
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Using relation (4.48) this yields 

.
∂2Fμν

∂xμ∂xν

= 1

2

[
εβ(l2)

δxνδxμ

]
∂2Fνμ

∂xν∂xμ

. (4.50) 

Here, as before, we use the Snyder noncommutative relation in the d’Alembertian, the 
right-hand side arises due to the vacuum fluctuations of the electromagnetic field in a 
noncommutative spacetime. Now, interchanging. μ and. ν (.μ ↔ ν) on the right-hand 
side of the above equation and writing 

. 
1

2
[ β(l2)

δxνδxμ

] ∂2Fμν

∂xμ∂xν

= ∂2(Fμν)0

∂xμ∂xν

,

where .(Fμν)0 is the field tensor for the zero point energy, we get 

.
∂2F ′

μν

∂xμ∂xν

= 0 (4.51) 

or 

.
∂ j ′μ
∂xμ

= 0, (4.52) 

where 
.F ′

μν = Fμν − ε(Fμν)0 (4.53) 

and 
. j ′μ = jμ − ε( jμ)0 (4.54) 

are, respectively, the total field tensor and the total current density, respectively. We 
should remember that the last two relations are comprised of the normal electromag-
netic field and the zero point energy or the field of the quantum vacuum. Averaging 
over these fluctuations 

. 
1

2
[ β(l2)

δxνδxμ

] ∂2Fμν

∂xμ∂xν

= ∂2(Fμν)0

∂xμ∂xν

up to the Compton scale one would obtain the actual contribution from the zero point 
energy. 

Now, let us again consider the relations (4.53) and (4.54). These two equations 
will modify the Maxwell equations of electromagnetism owing to the modified field 
tensor .F ′

μν in 
.F ′

μν = (Fμν)0 + ξ(Fμν). (4.55)
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On the other hand, as seen in [ 21] we had considered the following identification 
based on the presence of the zero point energy 

.F ′
μν = (Fμν)0 + ξ(Fμν) (4.56) 

corresponding to a modified vector potential 

. A′
μ = (Aμ)0 + ξ Aμ

and a current density 
. j ′μ = jμ0 + ξ jμ,

where.(Aμ)0 is the vector potential associated with the zpe,. jμ0 is the current density 
corresponding to.(Aμ)0, and. ξ is a convenient constant which can be taken to be unity 
for the sake of simplicity. With these considerations it was shown that considering 
a modified field tensor .F ′

μν, the anomalous gyromagnetic ratio for the electron is 
explained very elegantly as we know [ 21] including Schwinger’s correction terms. 
In fact, it has been shown there that the current density . jμ0 in the Compton scale is 
the reason for the anomaly in the gyromagnetic ratio of the electron. More precisely, 
if we set .ε = −1 and .ξ = 1 in (4.55), then we have the same equations. Thus, we 
are able to see a rationale for Eqs. (4.53) and (4.54) that these extra effects give rise 
to certain phenomena that occur due to zitterbewegung effects in the Compton scale. 
On the other hand, it is clear from Eqs. (4.53) and (4.54) that if .ε = 0 then we get 
back the usual covariant Maxwell’s equations due to the normal field tensor .Fμν .  In  
this manner, we find that the noncommutative nature of spacetime and the zero point 
energy is intrinsically connected to the Compton scale. It is natural that we get the 
extra effects since the Compton length. l and consequently.β(l2) is extremely small it 
is easy to conceive that the extra effects are almost negligible. Therefore, it is natural 
that even if we neglect.β(l2) or set.ε = 0 we get relevant results. But, it is undeniable 
that there are some extra effects when we are in the domain of the Compton scale. 

Now, we have a relation between the electromagnetic tensor (.Fμν) and the zpe 
tensor .(Fμν)0 as 

.
1

2
[ β(l2)

δxνδxμ

] ∂2Fμν

∂xμ∂xν

= ∂2(Fμν)0

∂xμ∂xν

. (4.57) 

From this relation, we see that the total contribution of the zero point energy arises 
from averaging over the vacuum fluctuations of the electromagnetic field up to the 
Compton scale. The peculiar nature of this relation is due to the domain of the Comp-
ton scale, where zitterbewegung effects are also present. In fact, as reiterated earlier, 
we may state that zitterbewegung is due to the dark energy. Innumerable possibilities 
open due to the above consideration. It has been also shown by the author [ 6] and 
others [ 46] that the Dirac equation gets modified due to the noncommutative nature 
of spacetime. This modification, as noted, provides a remarkable explanation for the 
Lamb shift [ 21] in the energy levels of the hydrogen atom. Hence, we can perceive
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that the noncommutative nature of spacetime, the Compton scale, and the zero point 
energy are very significant in the sense that they can explain several phenomena that 
are inexplicable by conventional ideas. It appears that noncommutativity and ZPE 
are intimately connected. 

4.8 Going Beyond the Standard Model. ∗

In this section, we argue that we can account for the shortcomings of the standard 
model by including noncommutative geometry [ 47]. 1

It is well known that the standard model of particle physics is as of now the most 
complete theory and yet there are frantic efforts to go beyond the standard model to 
overcome its shortcomings. Some of these are 

1. It fails to deliver the mass to the neutrino which thus remains a massless particle 
in this theory. 

2. Apart from this, it does not include gravity, which is otherwise one of the four 
fundamental interactions. 

3. There is the hierarchy problem, viz. the wide range of masses for the elementary 
particles or even for the quarks. 

4. It appears that other as yet undiscovered particles exist which could change the 
picture, for example, in supersymmetry in which the particles have their super-
symmetric counterparts. 

5. The standard model has no place for dark matter, which, on the other hand, has 
not yet been definitely found. Nor is there place for dark energy. 

6. Finally, one has to explain the .18 odd arbitrary constants which creep into the 
theory. 

There are however obvious shortcomings which can be addressed in a relatively 
simple manner which could enable us to go beyond the standard model. Let us start 
with the standard model Lagrangian [ 48] 

. LGWS =
∑
f

(Ψ̄ f (ıγ
μ∂μ − m f )Ψ f − eQ f Ψ f γ

μΨ f Aμ) +

. + g√
2

∑
ı

(āıLγ μbıLW
+
μ + b̄ıLγ μaıLW

−
μ ) + g

2Cw

∑
f

Ψ̄ f γ
μ(I 3f − 2S2wQ f − I 3f γ5)Ψ f Zμ +

. − 1

4
|∂μAν − ∂ν Aμ − ıe(W−

μ W+
ν − W+

μ W−
ν )|2 − 1

2
|∂μW

+
ν − ∂νW

+
μ +

. − ıe(W+
μ + Aν − W+

ν Aμ) + ıg′cw(W+
μ Zν − W+

ν Zμ|2 +

1. ∗Invited talk at Frontiers of Fundamental Physics International Symposia Number 15, Orihuelle, 
Spain, November 2017. 
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. − 1

4
|∂μZν − ∂νZμ + ıg′cw(W−

μ W+
ν − W+

μ W−
ν )|2 +

. − 1

2
M2

ηη2 − gM2
η

8MW
η3 − g

′2M2
η

32MW
η4 + |MWW+

μ + g

2
ηW+

μ |2 +

. + 1

2
|∂μη + ıMZ Zμ + ıg

2Cw
ηZμ|2 −

∑
f

g

2

mF

MW
Ψ̄ f Ψ f η (4.58) 

which includes the Dirac Lagrangian among other things. We would now like to 
point out that all this has been on the basis of the usual point spacetime which is 
what may be called commutative. 

We are then left with no points but minimum intervals. 
All this leads to a noncommutative geometry. One model for this, which we saw, is 

that of Snyder [ 7, 49] applied at the Compton wavelength. This leads to the so-called 
Snyder–Sidharth dispersion relation, the geometry being given by [ 5] as seen 

.[xı , x j ] = βı j · l2. (4.59) 

As described in detail in Ref. [ 50] this leads to a modification in the Dirac and also the 
Klein–Gordon equation. This is because (4.59) in particular leads to the following 
energy–momentum relation (Cf. Ref. [ 5]): 

.E2 − p2 − m2 + αl2 p4 = 0, (4.60) 

where. α is a scalar constant,.∼ 10−3 [ 21, 51]. As noted,. α gives the Schwinger term. 

4.9 Gamma Matrices and Bilinear Covariants 

Let us introduce the well-known notation [ 52] . γ μ :

. γ 0 =β

γ i =βαi i = 1, 2, 3

. γ 0 =
(
I 0
0 −I

)
γ i =

(
0 σ i

−σ i 0

)
β =

(
I 0
0 −I

)
αi =

(
0 σ i

σ i 0

)
.

In terms of unit matrix . I and Pauli .σ i matrices. By forming the products of the 
. γ matrices it is possible to construct 16 linearly independent .4 × 4 matrices which 
play an important part in the theory of the Dirac equation also known as bilinear 
covariants.These are represented as is well known as



4.10 Noncommutativity and Relativity 95

. Γ s = 1, Γ V
μ = γμ, Γ T

μν = σμν, Γ
P = iγ 0γ 1γ 2γ 3 = γ5 ≡ γ 5 Γ A

μ = γ5γμ

(4.61) 
the .Γ n can be easily shown to be linearly independent [ 16, 52]. If we work with 
this energy–momentum relation (4.60) and follow the usual process we get as in the 
usual Dirac theory 

.
{
γ μ pμ − m

}
ψ ≡ {γ ◦ p◦ + Γ } ψ = 0, (4.62) 

where.Γ is a bilinear covariant given in Eq. (4.61). We now include the extra term in 
the energy–momentum relation (4.60). It can be easily shown that this leads to 

.p20 − (
Γ Γ + {Γβ + βΓ } + β2αl2 p4

)
ψ = 0, (4.63) 

whence the modified Dirac equation: 

.
{
γ ◦ p◦ + Γ + γ 5αlp2

}
ψ = 0. (4.64) 

The modified Dirac equation contains an extra term. The extra term gives a slight 
mass for the neutrino which is roughly of the correct order, viz. .10−8me , .me being 
the mass of the electron. The behaviour too is that of the neutrino [ 50, 53]. 

To sum up the introduction of the noncommutative geometry described in (4.59) 
leads to a Dirac-like equation (4.64) and a Lagrangian that leads to the neutrino mass. 

It must be pointed out that the modified Lagrangian differs from the usual 
Lagrangian in that the .γ 0 matrix is now replaced by a new matrix 

. γ 0′ = γ 0 + γ 0 · γ 5lp2

that includes the term which gives rise to the neutrino mass. Further as has been 
discussed in detail the extra term arising out of the noncommutative geometry is the 
direct result of the dark energy which thus also features in the modified standard 
model Lagrangian. This apart, from a different angle, this argument has been shown 
to lead to a mass spectrum for elementary particles that includes all the elementary 
particles, giving the masses with about .5% or less error [ 5]. So now features like 
neutrino mass and dark energy are included. 

4.10 Noncommutativity and Relativity 

The concept of relativity maybe deduced from noncommutative spacetime. In the 
sense that noncommutativity puts a cap on velocities, whereas there is no such cap 
in Galilean relativity. 

When dealing with special relativity we are led to a relationship between space 
and time. That is, there is a little of space in time and vice versa: they are woven into 
a single fabric called spacetime. Special relativity throws up several verifiable effects
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like contraction of length, time dilation, relativistic mass, a universal speed limit, etc. 
In this chapter, we show that one can obtain the relativistic effects of spacetime from 
noncommutativity. This work can be derived from Snyder’s [ 7, 49] noncommutative 
geometry without using the Weyl–Moyal formalism [ 3, 8]. 

In the following section, from the relations of noncommutativity, we deduce that 
there is a maximum possible velocity in the universe that cannot reach infinity. This 
is used to argue that special relativity arises from the concept of noncommutativity. 

The same concept of there being a maximal velocity is used in the subsequent 
sections to show length contraction, time dilation, and relativistic mass. Lastly, we 
discuss how the results of this chapter are connected to special relativity. 

4.10.1 Noncommutativity and Boundedness of Velocity 

It was shown earlier by the author some years ago in [ 54] that not only space non-
commutativity but also the related momentum noncommutativity can be examined. 
This was again re-examined and vindicated in [ 15]. The concept may be elaborated 
as follows: 

.[px , py] = ηθ(l2) (4.65) 

with. η taking the value “.±i”. This was also examined by other authors [ 3, 55].. θ(l2)
is a .2 × 2 matrix. Here . l is the fundamental minimum length which could be the 
Planck length or the Compton length. .θ(l2) in can be represented as 

. θ(l2) = f (l2)θxy,

where . f (l2) is a positive, finite, and real-valued scalar and .θxy is a .2 × 2 matrix. 
Further, for the momenta, we have 

. px = Pxσx

and 
. py = Pyσy,

where .Px and .Py are the scalar values of the momenta and the . σ ’s are the Pauli 
matrices. Thus we have from (4.65) 

. (Pxσx )(Pyσy) − (Pyσy)(Pxσx ) = η f (l2)θxy

. Px Py[σxσy − σyσx ] = η f (l2)θxy

which gives 
.Px Py[σx , σy] = η f (l2)θxy . (4.66)
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The well-known commutation relations of the Pauli matrices given by 

. [σx , σy] = 2iεxyzσz

whence from (4.66) 

.Pa Pb[εabcσc] = − i

2
η f (l2)θab, (4.67) 

where.a, b, c can take values .x, y, z but .a �= b �= c. In order to make relation (4.67) 
non-trivial, the Levi-Civita tensor is non-zero. Now, for even and odd permutations 
of .a, b and . c, the sign of the Levi-Civita tensor is adjusted with the sign of .η = ±i . 
Therefore, we have 

.(Pa Pb)σc = 1

2
f (l2)θab. (4.68) 

Multiplying both sides of (4.67)  b  y .σc we have 

. (Pa Pb)σ
2
c = f (l2)θabσc.

Using 
. σ 2
c = I

we have 
.(Pa Pb)I = f (l2)βab, (4.69) 

where . I is the identity matrix and .βab = θabσc is another .2 × 2 matrix. Now, since 
relation (4.69) is an equality, it holds good even after taking determinants 

.|(Pa Pb)I | = | f (l2)βab|. (4.70) 

Since, on both sides, we have scalars multiplying the .2 × 2 matrices, we have 

. (Pa Pb)
2|I | = { f (l2)}2|βμν |

which gives 
. (Pa Pb)

2 = { f (l2)}2ε2,

where 
. |βab| = |θabσc| = ε2.

In the matrix .θab, . ε is finite and real. Since the product of the scalar values of the 
momenta has to be positive, we have 

.Pa Pb = ε f (l2) (4.71)
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and the momentum–velocity relation is 

. P = mv

therefore we have from (4.71) that 

. vavb = ε f (l2)

m2
.

Again, . f (l2) is a finite-valued function of the square of the fundamental length. It 
is therefore independent of the momentum and the velocity. This makes the product 
.vavb bounded. This is because, one can always find a bound, namely, a function. g(l2)
(finite and real valued) such that 

. g(l2) > f (l2).

Therefore, we have 

. vavb <
εg(l2)

m2
.

Consequently, the individual velocities .va and .vb will be bounded above. From this 
we can conclude that the velocity of a particle is bounded 

.v ≤ α, (4.72) 

where. α is some finite velocity and it is the maximum possible velocity in the universe. 

4.10.2 Composition of Velocities and Relativity 

Let . S and .S′ be two frames of reference. The frame of reference . S is at rest and 
.S′ is not at rest with respect to . S. Let the velocity of .S′ with respect to . S be .ω. An 
observer in.S′ measures its velocity as. ω′. Therefore, the velocity of the moving body 
as measured by an observer in . S would be given by 

.V = ω + ω′. (4.73) 

From the inequality (4.72) we must have the following 

. ω ≤ α

.ω′ ≤ α
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and 
. V = ω + ω′ ≤ α.

Let us now consider the case where the values of . ω and .ω′ are such that 

. ω = ω′ ≈ 0.99999α

the values of the velocities are valid since both. ω and.ω′ are in agreement with relation 
(4.72). But, incidentally, we have 

.V = ω + ω′ = 1.99998α (4.74) 

which contradicts the bound in (4.72), since . α is the maximum possible velocity in 
the universe. This is a contradiction which needs to be resolved. This shows that the 
classical method of addition of velocities does not hold. Actually, this problem can 
be resolved if we insert the factor . ρ (.< 1) such that 

.V = ρ(ω + ω′) ≤ α. (4.75) 

This is a departure from the Galilean relativity within the Cartesian framework. 
Thus, it can be said that the notion of relativity originates from the factor .ρ. This 
quantity takes care of the apparent discrepancy which arises when velocities close 
to. α are taken. The factor. ρ depends on the velocities. ω, . ω′, and. α. Obviously, in the 
non-relativistic limit, with.ρ = 1 we recover Galilean relativity involving the simple 
addition of velocities. This brings out the connection between the noncommutativity 
of spacetime, Minkowski spacetime, and relativity itself. 

4.10.3 Relativistic Mass 

Let us revert back once more to the reference frames . S and .S′. Here .S′ moves with 
velocity . v with respect to . S. Let the x-axis of frame .S′ be designated as .x ′. We let 
two bodies each of mass .m ′ move in opposite directions along . x ′.  Le  t .ω′ and . −ω′
be their velocities along the .x ′-axis, for an observer in . S′. If the bodies merge into a 
single mass, then the new body will be at rest according to the law of conservation 
of momentum, with respect to the frame . S′. For an observer in the frame .S, the 
velocities of the two bodies accordingly will be 

. ω1 = ρ1(ω
′ + v)

and 
.ω2 = ρ2(−ω′ + v).
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From (4.75), where .ω1 and .ω2 are the velocities along .x-axis. Here, .ρ1, ρ2 < 1.  Le  t
.m1 and.m2 be the masses of the two bodies for an observer in the . S frame. Then the 
object that arises when the two individual masses merge will have the mass (.m1 + m2) 
moving with a velocity. v. Thus, from the law of conservation of momentum we write 

. m1ω1 + m2ω2 = (m1 + m2)v.

Using the values for .ω1 and .ω2 we have 

. m1[ρ1(ω
′ + v)] + m2[ρ2(−ω′ + v)] = (m1 + m2)v

whence 
. 
m1

m2
[ρ1(ω

′ + v)] + ρ2(−ω′ + v) = v
m1

m2
+ v

and this leads to 

.
m1

m2
= v + (ω′ − v)ρ2

ρ1(ω′ + v) − v
. (4.76) 

If we do not invoke relativity we must have that 

. m1 = m2

which, as will be seen cannot be the case. In (4.76) putting .m1 = m2 we get 

.v + (ω′ − v)ρ2 = ρ1(ω
′ + v) − v (4.77) 

for all values of. ω′, . v, . ρ1, and. ρ2. This being a general relation, if it does not hold for 
a special case, it will not hold in general. Rearranging the terms of Eq. (4.77), we get 

.v[2 − (ρ1 + ρ2)] = ω′(ρ1 − ρ2). (4.78) 

Now, since .ρ1, ρ2 < 1 the left-hand side is positive. The right-hand side could be 
negative if .ρ2 > ρ1. This cannot be so as it is a contradiction. Therefore, we have 

. m1 �= m2

for relativistic cases. In non-relativistic cases, where.ρ1, ρ2 ≈ 1 we recover the rela-
tion: 

. m1 = m2.

In Eq. (4.76), we set 

.
m1

m2
= ζ. (4.79)
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Therefore, if the velocity of the second body with respect to the system. S is observed 
as zero, i.e. if we have the velocity .ω2 = 0 then its mass is the rest mass given as 

. m2 = m0.

Now, writing .m1 = m,  we  ha  ve
.m = ζm0, (4.80) 

where. m is the relativistic mass and. ζ depends on the velocity. v of the moving frame 
. S′. The kinetic energy (. T ) of a moving body may be written as 

. T =
∫ t

0
Fdr,

where. F is generally the component of the force to the displacement. dr . Alternatively, 

. T =
∫ t

0

(dmv)

dt
dr

. T =
∫ v

0
vd(ζm0v),

whence 

.T = ζm0v
2 − m0

∫ v

0
ζvdv. (4.81) 

The two terms on the right-hand side of (4.81) represent the energy and the rest mass 
of the body. What all this means is that we obtain a relation for mass as in (4.80) and 
a relation for the energy of a body in motion as in (4.81). We have therefore 

.t = θ t0. (4.82) 

It can be clearly seen that this gives the time dilation relation. Thus noncommutativ-
ity yields results of special relativity including Minkowski spacetime. Therefore, the 
noncommutativity of spacetime leads to the special relativistic distortion of space-
time. We conclude that special relativity is a result of noncommutative Minkowski 
spacetime. This result can also follow from purely quantum mechanical consider-
ations as has been worked out by the author (see [ 5]). Similarly the mass energy 
can also be deduced. In non-relativistic cases, where.ρ1, ρ2 ≈ 1 we would obviously 
have 

. m1 = m2,

however, 

.
m1

m2
= ζ. (4.83)
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Therefore, if the velocity of the second body with respect to the system. S is observed 
to be stationary, i.e. velocity .ω2 = 0 then the mass will be the rest mass 

. m2 = m0

replacing .m1 = m, we get 
.m = ζm0, (4.84) 

where.m is the relativistic mass and. ζ is frame-velocity dependent. Next, the kinetic 
energy (. T ) of a moving body is given by 

. T =
∫ t

0
Fdr,

where .F is the component of the force given the displacement . dr .  This  i  s

. T =
∫ t

0

(dmv)

dt
dr

. T =
∫ v

0
vd(ζm0v)

whence 

.T = ζm0v
2 − m0

∫ v

0
ζvdv. (4.85) 

4.11 Special Relativity Derivations 

(1) In this chapter, we have shown that beginning with the basic considerations of 
noncommutativity one can extract the results of special relativity. Let us consider, 
for example, the relation (4.75) 

. V = ρ(ω + ω′) ≤ α.

Here, the factor . ρ apparently depends on the velocities . ω, . ω′, and . α too, in order 
to satisfy the condition (4.72). Incidentally, taking a cue from special relativity, we 
write 

. ρ = (1 + ωω′

α2
)−1

then we have the known formula arising from special relativity, considering 

.α = c,
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i.e. the velocity of light. Similarly, in the relation (4.72), i.e. 

. l0 = θl

the factor. θ depends on the velocity. v of the moving reference frame.S′ and will also 
depend on the limiting velocity . α. We can write 

. θ = (1 − v2

α2
)−

1
2

which gives the Lorentz factor when we consider.α = c. The same factor. θ emerges 
again in relation (4.82): 

. t = θ t0

and we have the known result for time dilation. Again, in case of relativistic mass, 
we had got the relation (4.78) where we argued that it is an invalid equation. This 
can be easily shown when we put .ρ1 = {1 + ω′v

α2 }−1 and .ρ2 = {1 + (−ω′)v
α2 }−1 since 

the bodies have velocities.ω′ and.−ω′. It is obvious from these expressions of.ρ1 and 
.ρ2 that 

. ρ2 > ρ1.

Therefore, the relation (4.78) is invalid in relativistic cases. Now, considering these 
values of .ρ1 and .ρ2 we would have 

. ζ = ρ2

ρ1
= 1 + ω′v

α2

1 + (−ω′)v
α2

= 1√
1 − v2

α2

.

Again, setting .α = c,  we  have . ζ as the Lorentz factor. Now, in Eq. (4.85), we had 
found 

. T = ζm0v
2 − m0

∫ v

0
ζvdv.

Thus, we have 

. T = m0v2√
1 − v2

c2

− m0

∫ v

0

v√
1 − v2

c2

dv.

After integrating the second term, one has 

. T = m0v2√
1 − v2

c2

+ m0c
2[

√
1 − v2

c2
− 1]

which finally gives 
.T = mc2 − m0c

2
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which is the desired result. Thus, it is clear that special relativity can be obtained 
from the noncommutative nature of spacetime. 

(2) Now, the infinitesimal increment in velocity (. u) can be seen in the relation: 

.v + u = ω + u. (4.86) 

Equation (4.86) can also be looked upon as a virtual increase in velocity. This means 
that “. u” leaves the physics of the system of reference frames unchanged in the long 
run. This infinitesimal velocity was introduced for heuristic purpose and it has no 
physical significance whatsoever. 

4.12 Some Issues in Noncommutative Spacetime Geometry 

(cf. also [ 5]). 
In this section, we find a connection between the noncommutative nature of space 

time and the zero point energy. We observe that extra effects come into play when we 
take into account the Compton scale effects in such a spacetime and the electromag-
netic field tensor and the current density get modified. This defines an underlying 
connection between noncommutativity and the zero point energy. 

Noncommutativity 

Much of physics in the twentieth century and earlier has been based on either New-
tonian space geometry or the Minkowski geometry of special relativity. These space 
times are smooth manifolds. But as higher and higher energies were realized, on 
the one hand, and quantum gravity approaches evolved, on the other, it was real-
ized that our very concept of spacetime of the twentieth century would have to be 
modified. Many of these new concepts define noncommutative spacetime geome-
try, with dramatically different consequences. In contrast to the usual commutative 
spacetime, a noncommutative spacetime has been considered and studied by many 
authors including the author himself [ 5], as the framework of various fundamental 
phenomena. In other words, our usual spacetime coordinates are real-valued averages 
over the Compton wavelength [ 9]. Let us analyse 

.x = (c2 p1H
−1t) + ı

2
c�(α1 − cp1H

−1)H−1 (4.87) 

in a little greater detail. Let us write it as 

.xl = x̄l + Θlk p̄k, (4.88) 

.pl = p̄l, (4.89)
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where the . x’s, .x̄ and p̄ obey the usual commutation relations. 

.[x̄l , x̄k] = 0, (4.90) 

.[x̄l , p̄k] = ı�δlk, (4.91) 

.[ p̄l , p̄k] = 0, (4.92) 

where . x̄ represents the averaged space coordinate that is the first term in (4.87). 
However, it is easy to verify that the . x’s and . p’s as can be easily verified from 
Eqs. (4.88) and (4.89) satisfy 

.[xl , xk] = −2ı�Θlk, (4.93) 

.[xl , pk] = ı�δlk, (4.94) 

.[pl , pk] = 0. (4.95) 

This is precisely what was required, which alternatively follows from the Snyder 
treatment if the Compton wavelength is taken as the minimum length. It may be 
further pointed, as postulated that as noted by Wigner and Salecker [ 43] there can be 
no physical measurements within the Compton wavelength. At this point, we would 
like to emphasize the well-known close relationship between the zero point energy, 
which manifests itself even when no external fields are applied and zitterbewegung 
which, as Schrodinger first noticed—and this can be attributed to the zero point 
fluctuations [ 41, 44]. Indeed all of space is filled with the zero point energy (Cf. Ref. 
[ 44]) or dark energy. 

4.13 2-D Crystals 

In the 1990s, the author had explored some interesting properties of low-dimensional 
electrons—in two and one dimensions [ 56, 57]. It was only after the discovery of 
graphene by Geim and Novoselov some 10 years later that some of these properties 
got highlighted. What is of relevance here is that graphene provides a test bed for 
noncommutative spacetime, because the space of graphene is rather like a chess 
board with holes [ 58]. This is discussed in detail in Chap. 6. The author, in a series 
of papers in International Journal of Modern Physics E and International Journal 
of Theoretical Physics, has further explored these possibilities [ 59– 62]. Some of 
the important properties that come out of these noncommutative crystal-like spaces 
include the fractional quantum Hall effect and the minimum conductivity 

.σ = 4
e2

�
. (4.96)
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Equation (4.96) is the expression of free current, except that it is very faint. We 
would like to comment that all these so-called magical properties of graphene are 
due to the noncommutative nature of the honeycomb-like graphene lattices, except 
that the exact geometrical pattern is irrelevant. What is of relevance is the lattice-
like structure which gives rise to noncommutative behaviour. In other words, we 
can conclude that these properties would be valid for any two-dimensional crystal 
structure, not just graphene. It is interesting that the same properties, the decade on 
have been found to be true for stanene as reported in Nature [ 63]. In other words, 
the properties of two-dimensional crystals arising from the noncommutative nature 
of space are independent of the exact nature of the crystal. 

Some Consequences of Noncommutativity 

1. We would like to re-emphasize a few points; Snyder’s original formulation was 
for a minimum length. We have considered this length to be the Compton length. 
Further, as far as the mass is concerned, this can, to a certain extent, and may fully 
be a manifestation of the noncommutative nature of spacetime. In the case of the 
neutrino, we have seen that the mass thrown up is not invariant. 

2. Another point which can be made is that the principle considered here is valid 
even if we do not take the exact value of the velocity of light. All that matters is 
that there is a maximal velocity. 

3. To look at these considerations, from another perspective, we need to take into 
account a modified form of special relativity in this scenario (see Eq. (4.60)). In 
momentum space, this is exactly the Snyder–Sidharth relation. 

4. Finally, we may add that these effects and consequences of noncommutativity 
can also be obtained in Minkowski space using a different approach, namely, that 
of Alain Connes [ 64]. 
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Chapter 5 
Mystery of the Missing Dark Matter 

5.1 Non-Dark Matter Approaches 

Many anomalous observations may sometimes be explained without resorting to dark 
matter. The MOND or Milgrom’s modified Newtonian dynamics is one approach 
which does not use dark matter. MOND is an alternative approach of dynamics, and 
attempts to replace Newtonian dynamics and general relativity. It aims to explain the 
omnipresent mass deviations in the Universe, without having to resort to dark matter 
which would be needed if one sticks to standard dynamics. Milgrom postulated 
that while Newtonian dynamics is valid up to the scale of the solar system, at the 
galactic scale, it needs to be modified to be applicable. Even though a modification 
of the distance term in the gravitation law explains the flattening of the galactic 
rotation curves, it does not predict the mass velocity relation. So Milgrom applied 
a modification to Newtonian dynamics: A test particle at a distance . r from a large 
mass .M is subject to the acceleration . a given by 

.a2/a0 = MGr−2, (5.1) 

where .a0 is an acceleration, so that Newtonian dynamics is a good approximation 
only for accelerations much larger than . a0.  But  Eq.  (5.1) would be true only when 
.a << a0. Both the statements in (5.1) can be combined in the heuristic relation: 

.μ(a/a0)a = MGr−2. (5.2) 

In (5.2) .μ(x) ≈ 1 when .x >> 1, andμ(x) ≈ x when .x << 1.  It  must  be  re  -
emphasized that (5.1)  o  r (5.2) do not result from any known theory, but have been 
prescribed in an ad hoc manner to account for observations. It must be mentioned 
furthermore that the exact form of .μ has no bearing on most of the implications 
of modified Newtonian dynamics or MOND. With this fix, the problem of galactic 
velocities is now solved. 
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The author has a method in which the gravitational constant is varying to explain 
certain inexplicable phenomena. 

The author’s varying .G method is as follows. Based on fluctuational cosmology 
we have 

.G = G0

T
, (5.3) 

where .G is the Newtonian constant of gravitation and .T is the age of the universe. 
Replacing.G with varying.G, for ordinary Keplerian velocity of rotation of stars and 
galaxies, we get about.300kms per second. As is required and this has been achieved 
without invoking dark matter. Surprisingly all the other standard observations like 
the precession of the perihelion of the planet Mercury, the shortening of the time 
period of binary pulsars and so on also follow from using a varying . G.

But then, dark energy which has been a topic for study and investigation for 
a century has not been taken seriously. At the beginning of the twentieth century, 
Nernst, the father of the third law of thermodynamics, appears to have introduced 
this idea. To explain the superfluidity of Helium 4, Nernst resorted to dark energy. He 
hypothesized that dark energy was ubiquitous. Zeldovich and other astronomers some 
decades later reinvoked the concept of dark energy. But the cosmological constant 
problem posed a hurdle. That is, the cosmological constant would be of such a high 
value that the universe would be blown out of existence almost as soon as it was 
created (as mentioned earlier). 

In 1997, the author worked on his concept of dark energy. His view was that 
the zero point energy should be used at the scale of the Compton wavelength 
.∼ O(10−13 cm), rather than the Planck scale .∼ O(10−33 cm). This was the key to 
solving the cosmological constant problem, namely, doing this leads to a small cos-
mological constant as required. It must be borne in mind that at that time the standard 
big bang model of cosmology focussed on the presence of dark matter which would 
slow down the expansion of the universe progressively and would bring it to a halt. In 
this dark matter scheme of things, the universe would be accelerating at a slow rate. 
But, on the contrary, this cosmic acceleration, which was observed by Perlmutter, 
Schmidt, and Reiss independently in 1998 and won them the Nobel Prize in 2011, 
was not as slow as the dark matter theory implied [ 1]. 

5.2 How Essential Is Dark Matter? 

For the sake of completeness, we play the devil’s advocate and consider two models 
which argue that dark matter is not an essential element, even though popular models 
postulate that it comprises roughly a fourth of a universe. 

Our starting point is the relation [ 2, 3] 

.G = G0

(
1 − t

t0

)
, (5.4)
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where .G0 is the present value of . G, . t0 is the present age of the universe, and . t is the 
time elapsed from the present epoch. Similarly one could deduce that (Cf. Ref. [ 3]) 

.r = r0

(
t0

t0 + t

)
. (5.5) 

In this scheme, the gravitational constant. G varies slowly with time. This is suggested 
by the author’s 1997 cosmology, which correctly predicted a dark-energy-driven 
accelerating universe at a time when the accepted paradigm was the standard big 
bang cosmology in which the universe would decelerate under the influence of dark 
matter (as mentioned before). 

We reiterate the following: In the problem of galactic rotational curves (cf. Ref. 
[ 3]), we would expect on the basis of straightforward dynamics that the rotational 
velocities at the edges of galaxies would fall off according to 

.v2 ≈ GM

r
. (5.6) 

However, it is found that the velocities tend to a constant value: 

.v ∼ 300 km/s. (5.7) 

This as known had lead to the postulation of as yet undetected additional matter, the 
so-called dark matter. We observe that from (5.5) it can be easily deduced that [ 4] 

.a ≡ (r̈o − r̈) ≈ 1

to
(tr̈o + 2ṙo) ≈ −2

ro
t2o

(5.8) 

as we are considering infinitesimal intervals . t and nearly circular orbits. Equation 
(5.8) shows (Cf. Ref [ 5] also) that there is an anomalous inward acceleration, as if 
there is an extra attractive force or an additional central mass. 

So, 

.
GMm

r2
+ 2mr

t2o
≈ mv2

r
(5.9) 

From (5.9) it follows that 

.v ≈
(
2r2

t2o
+ GM

r

)1/2

. (5.10) 

From (5.10), it is easily seen that at distances within the edge of a typical galaxy, that 
is, .r < 1023 cms the Eq. (5.6) holds but as we reach the edge and beyond, that is, for 
.r ≥ 1024 cms we have .v ∼ 107 cms per second, in agreement with (5.7). 

Thus, the time variation of. G explains observation without invoking dark matter. It 
may also be mentioned that other effects like the Pioneer anomaly and shortening of 
the period of binary pulsars can be deduced [ 6], while new effects also are predicted.
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Milgrom [ 7], as mentioned in Chap. 4, approached the problem by modifying 
Newtonian dynamics at large distances. This approach is purely phenomenological 
and ad hoc. The idea was that perhaps standard Newtonian dynamics works at the 
scale of the solar system but at galactic scales involving much larger distances perhaps 
the situation is different. However, a simple modification of the distance dependence 
in the gravitation law, as pointed by Milgrom would not do, even if it produced the 
asymptotically flat rotation curves of galaxies. Such a law would predict the wrong 
form of the mass velocity relation. So Milgrom suggested the following modification 
to Newtonian dynamics: A test particle at a distance. r from a large mass.M is subject 
to the acceleration . a given by 

.a2/a0 = MGr−2, (5.11) 

where.a0 is an acceleration such that standard Newtonian dynamics is a good approx-
imation only for accelerations much larger than . a0. The above equation however 
would be true when. a is much less than . a0. Both the statements can be combined in 
the heuristic relation: 

.μ(a/a0)a = MGr−2. (5.12) 

In (5.12) .μ(x) ≈ 1 when .x >> 1, andμ(x) ≈ x when .x << 1. As noted earlier, 
interestingly, it must be mentioned that most of the implications of MOND do not 
depend strongly on the exact form of . μ. 

It can then be shown that the problem of galactic velocities is solved [ 8– 12]. 
It is interesting to note that there is a relationship between the varying. G approach, 

which has a theoretical base and the purely phenomenological MOND approach. Let 
us write 

. β
GM

r
= r2

t20
orβ = r3

GMt20

whence 

. α0 = v2/r = GM

r2
α = r

t20

so that 

. 
α

α0
= r3

GMt20
= β.

At this stage, we can see a similarity with MOND. For if .β << 1 we are with the 
usual Newtonian dynamics and if .β > 1 then we get back to the varying .G case 
exactly as with MOND.
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5.3 Dark Matter Anomalies 

We argue that the most recent anomalous data on dark matter thrown up by the Planck 
satellite and the dark energy survey can be explained by varying .G theory. 

A recent article published in Nature raises serious questions about dark matter. A 
team lead by Reinhard Genzel of the Max Planck Institute for Experimental Physics 
using the 8.2 m very large telescope in Chile made a surprising finding: Some galaxies 
which are ten billion years old, born when the universe was just one-fifth of its 
current age did not display the flattening rotation curves which are a hallmark of dark 
matter, as is well known. Rather they displayed the normal rotation curves which 
can be attributed to Keplarian orbits. The conclusion is that dark matter developed 
in galaxies as the universe aged. 

Further, even more recently, thanks to the dark energy survey (DES) and the 
Planck satellite more confusion has been created. The latter has shown that the dark 
matter was 34% when the universe was young while DES shows it has 26%. The 
question is, what has happened to the missing dark matter? It may also be noted that 
to this day neither has dark matter been observed nor its identity established. 

5.4 Dark Matter: Confusion and Mystery 

We now consider various observations in the past few years which give contradictory 
results as far as the presence of dark matter is concerned. It is well known that dark 
matter was hypothesized more than 70 years ago by Fritz Zwicky. The reason behind 
the hypothesis was that in the velocity rotation curves of galaxies in the outermost 
curves the velocities seem to tend to a constant value of, for example, .∼300 km per 
second, whereas in the normal case they would be tending to zero according to the 
Keplarian law: 

. v ∝ 1/
√
r .

This indicated that there was some unseen or dark matter in the galaxy which was 
causing the deviation. Yet the fact remains that after more than eight decades we still 
do not have the faintest clue as to what exactly this mysterious dark matter is. Among 
the various speculative hypothesis advanced are: There could be some brown dwarf 
stars which have not been accounted for because of their low luminosity. Or even, 
there could be a massive black hole at the centre of the galaxies which we are not 
being able to access. Other hypothesis have included exotic particles, for example, 
sterile neutrinos, supersymmetric particles which partner ordinary particles, and so 
on. All these have eluded detection to date. Another hypothesis is: recently the LHC 
detected the heavy pentaquark. Could these pentaquarks be responsible? 

Further recent observations have revealed another anomalous feature: A study by 
the Max Planck Institute of Experimental Physics with the .8.2m telescope of older
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galaxies more than 10 billion years old reveals that there was no dark matter [ 13]. In 
this case, we have to suppose that dark matter developed at a later stage. 

Further there is a mismatch between the dark energy survey and the Planck satel-
lite [ 14]. While the former gives a .26% as the dark matter the latter gives .34%, 
prompting the question, is dark matter decreasing? 

The mystery deepens further because of observations of Adam Riess who shared 
the Nobel Prize in 2011 along with Saul Perlmutter and Brian Schmidt. These 
latest observations first reported in 2015/16 indicated that the universe driven by 
dark energy is accelerating some .8% faster than what current cosmological models 
suggest. Riess reconfirmed this anomalous finding in 2017/18. 

It must be noted that according to the current cosmological model, the universe is 
made up roughly of .23% dark matter, whatever that is and about a little over .90% of 
dark energy, with ordinary matter constituting roughly .4−5%. So from where does 
the extra acceleration come? 

The author and others [ 15] have calculated that if there were no dark matter at all 
or much less of it, then there would appear the extra.8% acceleration we are looking 
for. Indeed a few physicists and astronomers now suspect that dark matter could be 
just ordinary matter in “disguise”. 

In fact the author’s work on a time-varying gravitational constant could provide 
another alternative way out. In this case, the gravitational constant .G is given by 
(after the period of nucleo-synthesis there being no dark matter in the early period 
(Cf. Ref. [ 13]), [ 2, 3, 6, 16]: 

. G = G0

T
,

where. T is the age of the universe. This leads to precisely the non-Keplarian behaviour 
at edges of galaxies, viz. .v ∼ 300m/s which we actually observe today suggesting 
that dark matter could be an artefact of a time-varying .G (Cf. also [ 17]). 

In fact in this case we have (Cf. Ref. [ 2]). 

.v ≈
(
2r2

t2o
+ GM

r

)1/2

. (5.13) 

From (5.13), it is easily seen that at distances within the edge of a typical galaxy, 
that is, .r < 1023 cms the equation, as noted 

.v2 ≈ GM

r
(5.14) 

holds but as we reach the edge and beyond, that is, for .r ≥ 1024 cms we have . v ∼
107 cms per second, in agreement with 

.v ∼ 300 km/s. (5.15)
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In fact as can be seen from (5.13), the first term in the square root has an extra 
contribution (due to the varying . G) which is roughly some three to four times the 
second term, as if there is an extra mass, roughly that much more. 

Yet another way out would be the MOND or modified Newtonian dynamics 
hypothesis which has not found much favour because of its ad hoc character. 

In any case in 1997, the existing standard big bang model was that of a predom-
inantly dark matter universe with a hint of ordinary matter which was decelerating 
due to the dark matter gravitation. At that time, the author had proposed a model of 
an accelerating universe, the accelerating driven by what is now called dark energy. 
It was the very next year that dark energy and cosmic acceleration was observed by 
Perlmutter, Riess, and Schmidt. Are we today at a similar juncture? 

5.5 Anomaly of Dark Matter 

In this section, we see that the existence of dark matter is itself inconsistent with 
Hubble’s law. Considering the new observational values by Riess et al. regarding 
the Hubble constant we have arrived at this result. Also, we attempt to study the 
inconsistencies in galactic rotation curves by an alternative method. 

Hubble’s law is regarded as one of the major observational basis for the expansion 
of the universe. The existence of dark matter was hypothesized by Zwicky, as noted, 
[ 18, 19] who inferred the existence of unseen matter based on his observations of 
the rotational velocity curves at the edge of galaxies. Although Jacobus Kapteyn 
[ 20] and Jan Oort had [ 21] also had come to the same conclusions before Zwicky. 
Since then, various efforts have been made to prove the existence of dark matter [cf. 
Ref. [ 22] for detailed review]. Recently, some experiments were conducted to detect 
weakly interacting massive particles (WIMPs) that interact only through gravity and 
the weak force. These were hypothesized as the constituents of dark matter. Such 
attempts failed [ 23]. 

Interestingly, authors such as Milgrom [ 8], Bekenstein [ 24] as well as the author 
and Mannheim [ 25] have tried to find alternatives to the widely accepted dark matter. 
The author [ 5, 6, 26] has also given a suitable alternative to the conventional dark 
matter paradigm. Nevertheless, the objective of this chapter is to assert that the 
existence of dark matter is inconsistent with the recent observations made by Riess 
[ 27] regarding the Hubble’s constant. 

The generally accepted ideas may have to be revisited in view of latest observations 
of Riess et al., which point to the fact that cosmic acceleration is some.5−8% greater 
than what the usual cosmological model suggests.
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5.6 The Expanding Universe 

It is known that the Friedman equations govern the expansion of space in homoge-
neous and isotropic models of the universe within the context of general relativity. 
Let us begin with the following equation: 

. H2 = (
ȧ

a
)2 = 8πG

3
ρ − kc2

a2
+ Λc2

3
,

where.H is the Hubble parameter,. a is the scale factor,. G is the gravitational constant, 
. k is the normalized spatial curvature of the universe, and .Λ is the cosmological 
constant. Considering.k = 0 (a flat universe) with matter and dark energy dominating, 
one can derive the Hubble parameter as 

.H(z) = H0[ΩM(1 + z)3 + ΩDE (1 + z)3(1+w)] 1
2 , (5.16) 

where . z is the redshift value or the recessional velocity and the dimensionless 
parameter . w is given by 

. P = wρc2

.P being the pressure and . ρ being the density. Now, we would like to expand the 
function .H(z) using the Taylor expansion about some point . z0. This yields 

. H(z) = H(z0) + H′(z0)
1! + · · ·

Neglecting terms consisting higher order derivatives of the Hubble parameter and 
considering that .H(z0) = H0 we have, using (5.16) 

. H(z) = H0 + H0

2

3ΩM(1 + z0)2 + 3(1 + w)ΩDE (1 + z0)3(1+w)−1

[ΩM(1 + z)3 + ΩDE (1 + z)3(1+w)] 1
2

(z − z0)
2.

(5.17) 
Now, we know that if dark energy originates from a cosmological constant then 

. w = −1.

Therefore, in such a case, we have 

.H(z) = H0 + 3H0

2

ΩM(1 + z0)2

[ΩM(1 + z0)3 + ΩDE ] 1
2

(z − z0)
2. (5.18)
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Now, since numerical values suggest that .ΩDE > ΩM we can use another series 
expansion for the denominator of the second term above to get 

. H(z) = H0 + 3H
2

1√
ΩDE

[ΩM(1 + z0)
2][1 − ΩM(1 + z0)2

2ΩDE
](z − z0)

2.

Thus, we can write finally 

.H(z) = H0[1 + 3

2

1√
ΩDE

{ΩM(1 + z0)
2}{1 − ΩM(1 + z0)2

2ΩDE
}](z − z0)

2. (5.19) 

Now, considering this equation at the point .z0 = 0 and for .z = 1 to give 

.H = H0[1 + 3

2

ΩM√
ΩDE

{1 − ΩM

2ΩDE
}]. (5.20) 

Now, the standard cosmological model suggests that the universe is made up of 
baryonic matter, dark matter, dark energy, and some other constituents. In a nutshell, 
we have [ 28] 

. ΩBaryonic ≈ 0.04

. ΩDarkmatter ≈ 0.23

. ΩDarkenergy ≈ 0.73

and 

. ΩM = ΩBaryonic + ΩDarkmatter .

Using all these values in (5.20) we have the Hubble parameter 

. H = H0 + 0.39H0,

i.e. the acceleration of the universe should be approximately .39% greater than its 
value. But, due to recent observations, it has been shown that the acceleration is 
about .5−8% greater than its value. So, in fact, we should have 

. H = H0 + 0.08H0.

If this is the case then back working, we arrive at a quadratic equation in .ΩM as 

.(1 − 0.685ΩM )ΩM = 0.045. (5.21)
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Solving this equation we have the following two values for .ΩM : 

. ΩM ≈ 1.41 or 0.044.

Now, it is a fact that .ΩM < 1 since the value is unphysical and therefore we have 
the value of .ΩM as 

.ΩM ≈ 0.044. (5.22) 

But, this is very nearly equal to the value of Baryonic matter, i.e. .ΩBaryonic.  This  
suggests that

.ΩDarkmatter ≈ 0. (5.23) 

In other words, the existence of dark matter is itself inconsistent according to the 
latest observations of Riess et al. In such a case, the total density of the universe is 
given by 

.Ω = ΩBaryonic + ΩDarkenergy ≈ 0.77 (5.24) 

which is less than the critical density. This suggests that the universe will be expanding 
in an accelerated manner. 

5.7 Alternative to the Dark Matter Paradigm 

Very recently the LUX detector in South Dakota concluded [ 23] that it has not found 
any traces of dark matter. So far this has been the most precise detector. It will be 
recalled that dark matter was introduced in the 1930s by F. Zwicky to explain the 
flattening of the galactic rotational curves: With Newtonian gravity the speeds of 
these galactic curves at the edges should tend to zero according to the Keplerian 
law,.v ∝ 1/

√
r .  Her  e . r is the distance to the edge from the galactic centre. However, 

velocity. v remains more or less constant. Zwicky explained this by saying that there 
is a lot more of unseen matter concealed in the galaxies, causing this discrepancy. 
The fact is that even after nearly 90 years, dark matter has not been detected. 

The modified Newtonian dynamics approach of Milgrom [ 7– 12] was an interest-
ing alternative to the dark matter paradigm. The objection of this fix has been that it 
is too ad hoc, without any underlying theory.
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The author himself has been arguing over the years [ 5, 6, 26]  (Cf.  Ref. [2]  for  a  
summary) that the gravitational constant.G is not fixed but varies slowly with time in 
a specific way. In fact, this variation of the gravitational constant had been postulated 
by Dirac, Hoyle, and others from a different point of view (Cf. Refs. [ 2, 3]) which, 
for various reasons, including inconsistencies, have, in the author’s scheme, exactly 
accounted for the galactic rotation anomaly without needing dark matter and without 
contradictions. 
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Chapter 6 
Low-Dimensional Structures 

6.1 Quantum Mechanical Black Holes: Low-Dimensional 
Structures 

According to a recent model, [ 4– 7] the most elementary fermion, the electron can 
be treated as a Kerr–Newman-type black hole bounded by the Compton wavelength, 
which may be called a quantum mechanical black hole (QMBH). There is a naked 
singularity, that is, the radius becomes complex, but this is explained by the fact that 
inside the Compton wavelength there are negative energies manifesting themselves 
in the form of zitterbewegung. Indeed the position in the quantum mechanical case 
also becomes complex or equivalently the position operator is non-Hermitian. The 
well-known explanation for this is [ 8] that strictly speaking spacetime points are 
meaningless, while it is only spacetime intervals which are meaningful. In quantum 
mechanics as is well known on averaging over such intervals, the non-Hermitian 
position operator with complex eigenvalues goes over to a Hermitian operator with 
real eigenvalues. In any case, as is well known, the Kerr–Newman metric describes 
the field of an electron including, and this is remarkable, the quantum mechanical 
anomalous gyro magnetic ratio.g = 2. Such a model explains several interesting fea-
tures like the discreteness of the charge, the left-handedness of the neutrino, and so 
on. It also leads to a cosmology consistent with observation including a theoretical 
deduction of the mass, radius, and age of the universe and other cosmological param-
eters and the supposedly mysterious large number coincidences (cf. Refs. [ 2, 9]). 
Interestingly, the cosmological model predicts an ever-expanding and accelerating 
universe, which has been recently observationally confirmed ([ 10, 11]). On the other 
hand, the model also gives a rationale for weak interactions and for the structure of 
particles like baryons and mesons (cf. [ 12]). We now see how from the above model 
one can argue that at low temperatures fermions exhibit an anomalous character, 
indeed as seen in the superfluidity of .He3 [ 13]. We will also briefly comment on 
fermionic behaviour in two and one (spatial) dimensions. These considerations are 
corroborated by conventional theory. 
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In 1995, the author had put forward two papers [ 1, 2]. The first examined the 
motion of a fermion in one dimension and the other in two dimensions. To sum 
up, they describe motion in nanotubes and 2D materials. While nanotubes were 
discovered a few years thereafter, materials like graphene were discovered 10 years 
later. 

6.2 One- and Two-Dimensional Behaviour 

In connection with quantum mechanical Kerr–Newman metric considerations, we 
examine the two- and one-dimensional cases seen in Chap. 3. These are idealized 
and extreme scenarios, since, following Wheeler, spin . 12 is responsible for three 
dimensions [ 14]. Let us digress from this issue briefly, remembering also that we are 
dealing with constrained quantum systems. In the high-energy relativistic domain, 
the reduction of even a single dimension leads the considerations to be in less than 
the Compton wavelength. Whence the idea of inertial mass of particles and their 
other behaviours become dubious (cf. [ 4, 5]). In this scenario, we encounter for 
the most part, energy components which are negative and hence exhibit left-handed 
behaviour. Going back to the neutrino a similar behaviour is encountered. Although 
this is because a fermion without mass has nearly infinite or, in practice, very large 
Compton wavelength. This places us in the negative energy component region (see 
[ 5] for further details). This puts us in a position to follow on the lines of quantum 
field theory. Now, the Hamiltonian from quantum field theory is [ 15] 

.H =
∑

±s

∫
d3 p Ep[b+(p, s)b(p, s) − d(p, s)d+(p, s)]. (6.1) 

The coefficients represent creation and annihilation operators while .bb+ and . d+d
represent particle number operators with eigenvalues 1 or 0 only. Transitioning to 
empty states of the Dirac sea of opposite sign of energy is forbidden as these states 
are inaccessible. And hence the use of commutators as against anti-commutators. 

These can be verified easily. The relativistic covariant equations in two and one 
dimensions consist of two components displaying handedness [ 16]. To construct 
a Lagrangian with invariant mass, four components are needed and we return to 
three-dimensional space. To show consistency with the quantum mechanical Kerr– 
Newman metric model, consider the Lorentz covariant equation in one (spatial) 
dimension, in a familiar notation [ 15]: 

. 

(
iγ μ∂μ − mc

�

)
ψ = 0.

The left-handed solution is obtained, and it must be observed that the mass term (or 
the energy operator term) does not have the usual factor
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. 

(
1 0
0 −1

)

which is responsible for the positive and negative energy solutions and the zit-
terbewegung (cf. [ 8, 15]). This leads to equations like the Fermi gas equation 
[ 17]: 

.εF = p2F/2m =
(

�
2

2m

)(
6π2

ν

)2/3

. (6.2) 

Equation (6.2) holds for a collection of fermions. For phonons, on the other hand, 
the maximum frequency is given by [ 17] 

.ωm = c

(
6π2

ν

)1/3

(6.3) 

or to the quantum mechanical Kerr–Newman metric which is bounded by the Comp-
ton wavelength, and inertial mass [ 7]. The expectation value of the velocity operator 
.c�α, when considering solutions of a single sign, is given by [ 15] 

. J+ = 〈c�α〉+ = 〈c2 p/E〉+ = 〈vgp〉,

(where.vgp is the group velocity). This is a contradiction, because.c �α has eigenvalues 
.±c,whereas we require.vgp < c, for a massive particle. In other words, both positive 
and negative energy solutions have to be considered or it is as if the particle has no 
invariant mass. Here, we are dealing with particles similar to neutrinos. So for low 
dimensions there is fermion–boson transmutation and also some other statistics like 
anyone statistics [ 18, 19]. It can be shown that the behaviour of the collection of 
fermions is as if it is below the Fermi temperature: the average energy per unit length 
in one dimension is given by 

.e = π(kT )2

6�νF
, (6.4) 

where.νF ≡ �π N
L

m , . L being the length of the one-dimensional wire and.N the number 
of fermions therein which is the one-dimensional form of the Stephan–Boltzmann 
law for radiation [ 20]. Denoting the average interparticle distance, . LN ≡ ν1/3 and 
using [ 17] 

. kTF =
(

�
2

2m

) (
6π2

ν

)2/3

(.TF is the Fermi temperature) and 

.kT = eν1/3
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we obtain using 

.εm = p2m
2m

= �
2

2m

(
6π2

v

)2/3

(6.5) 

. T = 3

5
TF .

That is, the temperature is below the Fermi temperature, and also the gas is in the 
ground state, [ 17] irrespective of the temperature. 

6.3 Fermions and Bosons 

It is well known that fermions and bosons have different statistical behaviour obey-
ing, respectively, Fermi–Dirac and Bose–Einstein statistics. This holds good usu-
ally, but at very low temperatures or in low dimensions this compartmentalization 
becomes fuzzy because of what maybe called bosonization or semionic behaviour. 
The author’s quantum mechanical Kerr–Newman metric model in fact foretells such 
a bosonization effect with respect to fermions. Of course this happens at energy 
scales that correspond to space scales much larger than the Compton wavelength. 
The superfluidity of .He3 brings out this feature. Though this is usually explained in 
terms of the conventional Bardeen–Cooper–Schrieffer theory that describes super-
conductivity (BCS). This not withstanding, there are some unexplained features [ 13]. 
The author’s model [ 38] also anticipates handedness and the blurring of Fermi–Dirac 
statistics in low dimensions. All this has been confirmed by recent observations and 
are well known. Lastly, recent observations using carbon nanotubes [ 21– 24]  have  
thrown up the one-dimensional conductivity of such carbon nanotubes. Also that 
their behaviour is like low-temperature quantum wires. This confirms the above 
considerations.

6.4 Anomalous Behaviour of Bosons and Fermions 

The author had pointed out, back in 1995, that electrons will display strange neutrino-
like properties in two and one dimensions [ 2, 3, 25]. In fact, a two-component 
equation is obeyed [ 26]. A form of the Dirac equation is 

.

(
σμ∂μ − mc

�

)
ψ = 0, (6.6) 

where.σμ denote.2 × 2matrices. When the mass equals zero, (6.6) gives the equation 
for the neutrino. This consideration anticipated the discovery of graphene which came 
about a decade later. An equation suitable for the neutrino is
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.νF �σ · �∇ψ(r) = Eψ(r), (6.7) 

where .νF ∼ 106 m/s is the Fermi velocity which replaces . c, the velocity of light; 
.ψ(r) is a wave function of two components; and. �σ and. E denote Pauli matrices and 
energy, respectively. 

Landau several decades ago argued that such two- and one-dimensional structures 
would be unstable with their very existence being in question. He was proved to be 
wrong. 

It may be remarked that motion in a two-dimensional sheet is not Lorentz invariant 
(a theoretical exception maybe a hypothetical infinite sheet). The two-component 
wave function .ψ(r) in (6.7) arises from the wave functions belonging to two side-
by-side honeycomb lattices present in graphene. This, in a sense mimics, the spin-up 
and spin-down of electrons. We will return to this later. 

6.5 Graphene and Elementary Particles 

We now argue that we can exploit the properties of a graphene sheet to ascertain the 
behaviour patterns of elementary particles. It may be observed that (6.7) represents 
the equation for a massless fermion like a neutrino or some quasi-particle. For bi-
layered graphene, the mass needs to be considered. 

Graphene with its hexagonal structure maybe imagined to be a “chess board”. 
In the sense that chess moves have a minimum length [ 27]. This minimum length 
mandates a noncommutative geometry. 

So it follows that the commutator is given by 

.[xı , x j ] = Θ ı j l2, (6.8) 

where the noncommutativity of .xı and .x j is evident. This leads to a modification of 
the Maxwell equations to include an extra term, this was worked out in detail by the 
author in [ 28, 29]: 

.∂μFμν = 4π

c
jν + AλεFμν, (6.9) 

where the symbols have their usual meaning. In Eq. (6.9), . ε is a dimensionless 
number, 

. ε = 1 for the noncommutative case

= 0 otherwise.

With.ε = 0 the covariant Maxwell equations are obtained. Let us now consider a 
two-dimensional case 

.∂1F14 = 4π

c
j4 + A2εF14 (6.10)
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and such equations for the . j1 and . j2. For the electromagnetic tensor, the equations 
are 

.
∂Ex

∂x
= −4π

∂ρ

∂t
+ εAyEx (6.11) 

.
∂Ey

∂y
= −4π

∂ρ

∂t
+ εAx Ey (6.12) 

. − ∂Bz

∂x
= 4π jy + ε

∂Ey

∂t
(6.13) 

.
∂Bz

∂y
= 4π jx + ε

∂Ex

∂t
. (6.14) 

It must be pointed out that some of these equations are non-steady state. Such fields 
could give rise to radiation. Further, if, for example, the electric field gets a sudden 
surge due to external factors, then to balance the equation, so should the field on the 
left side. This is a separate effect which maybe experimentally observed. 

These are in the nature of additional electromagnetic effects. From (6.8), it must 
be noticed that there appears to be a magnetic field. This was demonstrated by the 
Saito and also the author [ 30, 31]. Then we have the equation: 

.Bl2 = �c/e. (6.15) 

These considerations are obviously valid for graphene, remembering that con-
stants like .νF and . l now have different meanings. In this case, 

. Bl2 = �νF/e.

The energy for these considerations becomes 

. Energy = ±νF | �p|.

Conduction relates to the positive sign while the negative sign relates to valence 
particles. These are the analogues of particles and antiparticles. 

The parallel particularly in the Cini–Toushek regime in high-energy physics 
is transparent (Cf. Ref. [ 32]). In the Cini–Toushek regime, a massless feature is 
apparent. For such high energies, we have [ 32] 

.Hψ = �α · �p
|p| E(p) (6.16)
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bearing a similarity to the massless (6.6). In (6.16), we have 

.αk =
(
0 σ k

σ k 0

)
β =

(
I 0
0 − I

)
(6.17) 

.γ 0 = β (6.18) 

which can be adapted to the neutrino equation. From (6.8), the Snyder–Sidharth 
dispersion relation may be obtained as 

.E2 = p2 + m2 + α
l2

�2
p4 (6.19) 

. α in (6.19) maybe positive or negative. 
However, this differs from the Dirac theory—as there is no Lorentz invariance 

and .νF is an analogue of the velocity of light. 
Keeping the above in mind, let us explore the possibility of graphene to be a test 

bed. The loss of dimensionality has been researched by the author [ 33, 34] for nearly 
mono-energetic beams of fermions or bosons. The beam would be two dimensional. 

Let us reconsider the occupation number of a fermion gas [ 17] given by 

.n̄ p = 1

z−1ebEp + 1
, (6.20) 

where .z−1 ≡ λ3

v ≡ μz ≈ z. Because it can be easily shown. μ ≈ 1,

. v = V

N
, λ =

√
2π�2

m/b

.b ≡
(

1

KT

)
, and

∑
n̄ p = N . (6.21) 

Let us consider in particular a collection of fermions which is mono-energetic, in the 
above context, for which the distribution is 

.n′
p = δ(p − p0)n̄ p, (6.22) 

where .n̄ p is given by (6.20) and .δ(p − p0) is Dirac’s Delta function. 
Now, again consider a collection of mono-energetic particles in equilibrium.
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By the usual formulation, we have 

.

N = V

�3

∫
d �pn′

p

= V

�3

∫
δ(p − p0)4πp2n̄ pdp

= 4πV

�3
p20

1

z−1eθ + 1
,

(6.23) 

where .θ ≡ bEp0 . 
It must be reiterated that in (6.23) there is a loss of dimension in momentum space, 

because of the presence of the . δ function in (6.22). 
In an earlier chapter (see Chap. 3), the author showed that neutrinos displayed 

two-dimensional behaviour. This is expected from the holographic principle [ 35]. 
Also, as stated earlier, the universe resembles a black hole, with a 

black hole being a two-dimensional object [ 37, 38]. This is because the interior 
of a black hole is inaccessible. The two dimensionality is because only the area of 
the black hole may be taken into consideration. The author had shown that the area 
of a black hole maybe deduced from 

.A = Nl2p. (6.24) 

These involve quantum gravity considerations which take into account the quantum 
of area [ 38, 39]. That is, the black hole consists of .N quanta of area. These quan-
tum gravity features are suitable to be tested by two-dimensional surfaces such as 
graphene. 

In a communication, the author [ 1] showed for the one-dimensional case, 
corresponding to nanotubes that 

.kT = 3

5
kTF , (6.25) 

where .TF is the Fermi temperature. For the two-dimensional case also .kT is very 
small. This results from the well-known formulae for two dimensions [ 20]: 

.kT = e�π

mνF
(6.26) 

.(kT )3 = 6e�νF

π
, (6.27) 

whence we have 
.(kT )2 = 6 · ν2

Fπ2 m. (6.28)
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As .νF ∼ 108, .kT is very small even for a particle which has an electron-type mass 
from (6.28). For the Fermi temperature, 

. kTF = �

2
(z × 6π)1/3 · νF

just to compare. Another interesting result may be stated, we have 

.ν2
F =

(
�π

m

)2

· 1

A
, (6.29) 

where .A ∼ l2 is the quantum of area. So 

.
m2ν2

F

�2
· l2 ∼ O(1). (6.30) 

This agrees with .νF → the velocity of light c and . �/mνF → the Compton
wavelength. What we would thus like to reiterate is that all that is needed is an 
.∞ graphene sheet and this leads to the spacetime of relativity and quantum mechan-
ics. In reality, this needs to be a very large sheet of graphene. That is, whatever 
the temperature, the ensemble effectively mimics a very low-temperature gas. This 
gives rise to multiple ramifications especially in the context of magnetism. 

Thus, we can analyse magnetism and electromagnetism in this new noncom-
mutative perspective. This yields fresh perspectives like the Haas–Van Alphen-type 
effect [ 28]. In this latter situation, the magnetization per unit volume shows a periodic 
behaviour. 

6.6 Noncommutative Repercussions 

Fluctuations of the zero point energy have been widely studied. Based on this the 
author in 1997, as noted earlier, predicted a contra model of the universe [ 4, 38] 
in which there would be a small cosmological constant, that is, an accelerating 
universe. In 1998, observations of Perlmutter, Reiss, and Schmidt confirmed this 
scenario. Today we call this dark energy. A manifestation of this is a noncommuta-
tive spacetime given in (6.8). This led to the so-called Snyder–Sidharth dispersion 
relation given in (6.19). We would like to point out that the extra magnetic effect in 
equations like (6.11) (and the following) can be attributed to this zero point effect 
of noncommutativity as given in (6.15). Closely related is the Casimir effect which 
has been observed even in graphene [ 40, 41]. This is a zero point energy fluctuation 
effect. The Casimir energy in graphene is given by 

.
Energy

area
= π2

240
· �c

a3
. (6.31)
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The energy itself is given by 

.Energy =
(

π2

240

)
· �c

a
, (6.32) 

where we consider the area to be .∼ a2. 
If, following Wheeler [ 14], we consider directly ground state oscillators of the 

zero point energy, we can deduce that 

. Energy ∼ �c/a

resembling (6.32). Similarly if we take the extra term in the dispersion relation (6.19), 
it is easy to show that this also has the same form. All this is hardly surprising because 
they are all manifestations of fluctuations in the quantum vacuum. 

It must be mentioned that the Casimir effect in graphene has been observed (see 
[ 42]). What is interesting is that a group of scientists from MIT, Harvard University, 
Oak Ridge National Laboratory, and other universities have used this zero point 
energy for a compact integrated silicon chip. Clearly the same would be possible for 
graphene too particularly in the context of quantum computers: The “spin”-up and 
spin-down being the qubits [ 43]. 

To proceed further we invoke (6.15) and the well-known result for a coil 

.ı = N BA

RΔt
, (6.33) 

where .N is the number of turns, . A is the area, and . R is the resistance. Use of (6.15) 
in (6.33)  now  give  s

.ı ≈ N A

R
· e

l2τ
. (6.34) 

Whatever be. N , if we think of a coil made up of nanotubes or graphene, remembering 
that. l is small and so is the resistance (6.34) would be observable, like indeed (6.15). 

Further observing that nanotubes and graphene can harbour fast-moving fermions 
(including neutrons) and of course carbon, we have all the ingredients for manipulat-
ing a version of table-top fusion possibly using the bosonization of fermions property. 
In this case, we use an equation like (6.23) and preceding consideration [ 1, 38]. 

To proceed, in this case, .kT =< Ep >≈ Ep so that .θ ≈ 1. But we can continue 
without giving . θ any specific value. 

Using the expressions for . v and . z given in (6.21)  in (6.22), we get 

. (z−1eθ + 1) = (4π)5/2
z

′−1

p0
;whence

.z
′−1A ≡ z

′−1

(
(4π)5/2

p0
− eθ

)
= 1, (6.35)
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where we use the fact that in (6.21), .μ ≈ 1 as can be easily deduced. 
A number of conclusions can be drawn from (6.35). For example, if, 

. A ≈ 1, i.e.

.p0 ≈ (4π)5/2

1 + e
, (6.36) 

where. A is given in (6.35), then.z′ ≈ 1. Remembering that in (6.21),. λ is of the order 
of the de Broglie wavelength and. v is the average volume occupied per particle, this 
means that the gas gets very densely packed for momenta given by (6.36). In fact for 
a Bose gas, as is well known, this is the condition for Bose–Einstein condensation 
at the level .p = 0 [ 17]. 

In any case, there is an anomalous behaviour of the fermions. 

6.7 Two-Dimensional Considerations 

Some enigmatic features of graphene may be accounted for by invoking noncommu-
tative geometry generated by the lattices of graphene which are like a honeycomb (or 
any two-dimensional crystal), for example, properties like the minimum conductivity 
or the mysterious fractional quantum Hall effect. The authors in reality in [ 27] study a 
model of electrons leap-frogging from atom to atom in graphene’s honeycomb lattice. 
They claim that this jumping gives rise to low-energy electronic excitations which 
can be identified with a 2+1-dimensional Dirac equation. Graphene’s “pseudospin” 
arises from the degeneracy present in the honeycomb lattice. It is also claimed by 
them that pseudospin is a real angular momentum. This, they claim, explains features 
like the suppression of backscattering in carbon nanotubes. 

The author has argued that in the infinite limit of these sheets, Minkowski space-
time is recovered, with the lattice length replaced by Compton length [ 44]. The 
test bed characteristic of graphene alluded to in Sect. 6.5 could be achieved by 
“scaling”—say, the velocity of light . c replacing the Fermi velocity. 

Let us refer to the work of Nobel Laureate, Geim [ 45], where he studies elec-
tron waves propagating through the honeycomb lattices of graphene. Then, these 
electrons, according to Geim, lose their effective mass, rendering them to be quasi-
particles. Such quasi-particles maybe represented by a Dirac-like equation rather 
than the Schrödinger equation. The Schrödinger equation—which is successful in 
depicting quantum properties of other materials—fails when it comes to graphene’s 
moving charges with their zero rest mass. Just as in [ 45] we use a two-component 
Dirac equation as for the massless neutrino 

.σμ∂μψ = 0 (6.37) 

the . σ s being the two-component Pauli matrices.
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Thence, the author showed some interesting features: 
For instance, a noncommutative geometry holds for graphene (Cf. also [ 28]). The 

lattices display a homogenous structure which leads to the noncommutative feature. 
The author independently had shown that noncommutative geometry yields magnetic 
fields. Saito [ 31] through a different approach also came to the same conclusion [ 46]. 
The author derived a relation for the magnetic field: 

.Bl2 = �c/e, (6.38) 

which has been seen in the author’s work before. This can be worked with more 
detail using the connectedness of non-integrable space [ 30]. The starting point is a 
non-integrable infinitesimal parallel displacement of a four vector: 

.δaσ = −Γ σ
μνa

μdxν . (6.39) 

The . Γ ’s are the Christoffel symbols, representing the extra effect in displacements, 
because of curved space. If space were flat the . Γ ’s on the right-hand side would 
disappear. Differentiating partially with respect to the .μ-th coordinate, this gives, 
from (6.39), 

.
∂aσ

∂xμ
→ ∂aσ

∂xμ
− Γ σ

μνa
ν . (6.40) 

The second term on the right side of (6.40) can be written as 

. − Γ λ
μνg

ν
λa

σ = −Γ ν
μνa

σ .

When the metric is linearized we have 

. gμν = ημν + hμν,

.ημν being the Minkowski metric and.hμν a small correction whose square is neglected. 
From (6.40), we conclude that 

.
∂

∂xμ
→ ∂

∂xμ
− Γ ν

μν. (6.41) 

We can identify 
.Aμ = Γ ν

μν (6.42) 

exactly as in Dirac’s monopole theory from the above, using minimum electromag-
netic coupling. 

If we use (6.41), we obtain the commutator relation: 

.
∂

∂xλ

∂

∂xμ
− ∂

∂xμ

∂

∂xλ
→ ∂

∂xλ
Γ ν

μν − ∂

∂xμ
Γ ν

λν. (6.43)
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Let us now use (6.42)  in (6.43): The R. H. S. does not vanish due to the presence of 
the electromagnetic field (6.42) and the momentum components of quantum theory 
being noncommutative. Indeed the L.H.S. of (6.43) can be written as 

.[pλ, pμ] ≈ O(1)

l2
, (6.44) 

. l being the Compton wavelength or minimum length. In (6.44), we have brought into 
play the fact that at the extreme scale of the Compton wavelength, the momentum 
is .mc (the Planck scale being a special case). For graphene this translates to . m ×
the Fermi velocity.

From (6.42), (6.43), and (6.44), we have 

.Bl2 ∼ 1

e

(
= �c

e

)
, (6.45) 

where .B is the magnetic field, with . � and . c restored from the natural units. There 
is an alternative method of proving (6.45). From the Landau theory of synchroton 
radiation, the frequency . ω is given by 

.ω = eB/mc. (6.46) 

And the maximum value of . ω is given by [ 38] 

.ω = c/ l. (6.47) 

Using (6.47)  in (6.46), we get (6.45)  (Cf.  also [47]). 

6.8 Electromagnetic Effects Due to Graphene 

In order to understand the electromagnetic effects due to graphene, let us take the 
inter-lattice distance to be . l. It must be borne in mind that the magnetic field .B and 
the electric field .E are generated by the geometry of the system. The minimum 
conductivity of graphene has been regarded as a puzzling feature which maybe 
attributed solely to the geometry of the system, rather than due to any external 
influences (Cf. Ref. [ 44]). 

Further it was shown by the author [ 44] that if an infinite graphene sheet is chosen, 
it displays properties of Minkowski space including noncommutativity. Here the 
lattice constant .L ∼ 2 Ȧ replaces the Compton wavelength. To see this, we note that 

.c = 300νF and mν ∼ 0.05m, (6.48)
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where .mν is the graphene “electron” mass and .m is the electron mass. Substituting 
this into the Compton wavelength expression 

.l = �

mc
, (6.49) 

where . l bears a strong resemblance to .L or correspond to each other. Here, we 
can immediately recognize from (6.48) and (6.49) a Reynold number-type scaling 
relation. 

Thus, it appears that . B and. E which arise in graphene due to the geometry of the 
structures could equally well be applicable to the Minkowski space in general after 
due scaling. 

An interesting observation here is that in the case of bi-layer graphene, there would 
be a small mass, which would lead to an identification with the four-component Dirac 
equation [ 48], rather than the earlier bispinorial case 

.(∂μγ μ − m)ψ = 0, (6.50) 

where . γ s are the Dirac four-component matrices. 
So there would be no chirality now, but noncommutative geometry would still be 

applicable. In this case, the above considerations would be approximately valid. 
On the other hand, in an earlier era, the origin of electromagnetism in statistical 

physics was explained via the Bohr–van Leeuwen theorem which went as follows. 
When statistical mechanics and classical mechanics are applied consistently, the 
thermal average of the magnetization is always zero. 

6.9 The Fractional Quantum Hall Effect in Relation 
with Graphene 

We propose to use (6.45) to derive the otherwise inexplicable fractional quantum 
Hall effect [ 49]: 

.BL2 = �c/e, (6.51) 

where .L2 defines a quantum of area exactly as in quantum gravity approaches 
[ 28, 29]. This is the area of individual lattices, in our case. 

In these considerations as noted, the Fermi velocity .νF replaces the velocity of 
light. So we have for the electron mobility and conductivity 

.μ = νF/|E | (6.52) 

.σ = (n/A)e · νF

|E | , A ∼ L2, (6.53)
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where . A, as in the usual theory, is the area and . n is the number of electrons. In our 
case as noted above . A, the area is made up of a number of honeycomb lattice areas, 
each with area .∼ L2, that is, 

. A = mL2,

where .m is an integer. 
We also note that the electric field strength .E equals the magnetic field strength 

. B in the case of 2D structures (Cf. Ref. [ 49]). Using these inputs in (6.53) we get 

.σ = n

m
· eνF
|B|L2

. (6.54) 

If we now use (6.51)  in (6.54) (with .νF replacing . c) we get for the conductance 

.σ = n

m
· e

2

h
(6.55) 

which defines the fractional quantum Hall effect. 
Earlier the author had shown that it is this noncommutative space feature in two-

dimensional structures that explains also Landau levels [ 47] or the minimum con-
ductivity that exists in graphene even when there are practically no electrons at the 
Dirac points [ 50]  (Cf.  also  Ref. [44]). In other words, several supposedly diverse 
phenomena arise from the noncommutative space of these two-dimensional struc-
tures and by extension, in Minkowski spacetime, e.g. the origin of electromagnetism 
itself. 

6.10 The Conductivity Mystery with Graphene 

One of the mysteries involving graphene is that there is a minimum conductivity 
which does not disappear. This conductivity (as seen above) is given by 

.σ = 4e2/�. (6.56) 

However, this mystery is easily solved if we remember that as seen earlier, because 
there is noncommutativity of space in the hexagonal two-dimensional crystal. We 
have as seen from Eqs. (6.11)–(6.14) that there is an extra electric and magnetic 
fields. To proceed, we have for the electron mobility . μ and conductivity . σ : 

.μ = νF/|E | (6.57) 

.σ = (n/A)e · νF

|E | , A ∼ l2. (6.58)
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The minimum of .n ∼ 1. Whence we get 

.σ = 1

l2
· e · ν

|B| where l =
(

�

2mνF

)
. (6.59) 

From (6.59) we can easily obtain (6.56). In other words, the mysterious minimum 
conductivity is due to the extra magnetic effect of noncommutative spacetime which 
holds for graphene. 

If we consider in (6.58). n to be the number of electrons in general and. A to be the 
area of .m honeycomb lattices, then we can get from (6.58) the fractional quantum 
Hall effect. It would be interesting to consider a computer with a two-dimensional 
chip that would replicate some of the above features. 

6.11 Magnetic Effect of Noncommutativity Again 

We know that the relativistic energy–momentum relation is given by 

.pμ p
μ = E2

c2
− p2 = m2c2 (6.60) 

or, equivalently, 
.E2 = p2c2 + m2c4. (6.61) 

Now if we take natural units, i.e. .� = c = 1 we can rewrite this equation as 

.E2 = p2 + m2. (6.62) 

This Eq. (6.62) can be considered only in the case where spacetime is continuous. 
But if we consider noncommutative geometry and the Snyder relation of position 
and momentum [ 51– 53] 

.[x, p] = � = �[1 + (l/�)2 p2], (6.63) 

where . l is the minimum length. We can see that if .l → 0 we get back the usual 
Heisenberg relation of position and momentum. Substituting Eq. (6.63)  in (6.62), we 
get 

.E = (m2 + p2[1 + l2 p2]−2)1/2 (6.64) 

or 
.E2 = p2 + m2 + αl2 p4. (6.65)
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As can be seen this equation is the so-called Snyder–Sidharth dispersion relation for 
fermions. This relation becomes important at high energies, for example, at energies 
which are expected in LHC [ 38]. 

6.12 The Honey-Comb Structure of Two-Dimensional 
Graphene 

We can now say that it is the noncommutative spacetime that leads to magnetic effects. 
A recent description of spacetime in graphene was given in [ 27] which approximates 
a 2D scenario for graphene. The authors show that the spin of the electron itself is 
due to the discrete nature of spacetime. Spacetime is considered by these authors 
to resemble a chess board. Such a discrete partition of spacetime would lead to the 
generation of a magnetic field. This magnetic field could affect the behaviour of the 
electron. 

The author has argued that spacetime is discrete and that during the hopping 
of electrons they could undergo a change in spin direction. The author has also 
postulated that space is not smooth. This gives rise to a magnetic field which can 
cause the change of spin in the electron during hopping. So we can see that the 
changing of the electron spin maybe compared with the appearance of a magnetic 
field in noncommutative spacetime. 

At this juncture, it maybe relevant to talk about the Hall effect. We comment on 
the Hall effect from the following novel point of view, namely, the strong parallel 
between two-dimensional quantum mechanics and graphene [ 44, 54]. The Hall 
effect itself was observed in the nineteenth century, in the case of a current (or a 
moving electron) .Ix along the .x-axis, a magnetic field .Bz along the .z-axis, leading 
to the Hall voltage along the .y-axis. This is given by 

.VH =
(

1

n|e|
)

· Ix
d
Bz . (6.66) 

The expression.

(
1

n|e|
)
is called the Hall resistance, .VH being the Hall voltage, and. d

the thickness of the conductor. (The Hall effect, as known, has a parallel in relativistic 
electromagnetic theory.) 

Electrons exhibit strange neutrino-like properties, in two and one dimensions as 
pointed out by the author, from the mid-90s [ 2, 3, 25] (graphene and nanotubes). 
The two component equation [ 26] for this is 

.

(
σμ∂μ − mc

�

)
ψ = 0, (6.67) 

where.σμ denote the.2 × 2 Pauli matrices. In case the mass vanishes, (6.67)  gives  the  
neutrino equation. This is pertinent in the case of graphene. Incidentally, graphene
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was discovered nearly a decade later. For the electron quasi-particles in graphene, 
we have 

.νF �σ · �∇ψ(r) = Eψ(r), (6.68) 

where.νF ∼ 106 m/s is the Fermi velocity which comes in place of. c, the velocity of 
light and .ψ(r) stands for a two-component wave function, .E denotes energy. 

Indeed, taking this to the next level, the author has pointed out that graphene (or 
more generally two-dimensional structures) could be a candidate for a test bed for 
high-energy physics. This may be understood in the sense of the role played by a 
wind tunnel, knowing Reynold’s numbers, for the actual problem [ 44, 54]. With this 
input, we can solve problems like the minimum conductivity observed in graphene, 
as also throw light on the fractional quantum Hall effect, something that has escaped 
explanation. 

It maybe noted that relativistic effects are exhibited by graphene when the Fermi 
velocity.νF replaces the velocity of light. And this also gives a “Lorentz” transform. 
Furthermore, in the electromagnetic case, this leads to the Lorentz force equal to 
.�v × �B where . �v is the velocity of the moving or conduction electron and . �B is the 
magnetic field. This Lorentz force can be immediately identified with the Hall effect 
EMF. 

The Lorentz force may be written as 

.Force = d �p
dt

= e

c
�u × �B. (6.69) 

So the energy is given by 

.Energy = 1

c
R
Ix Bz

d
, (6.70) 

where a factor .R denotes resistance, for the special case when the electron is not a 
free moving particle. Comparing (6.66) and (6.70) it is apparent from here that the 
Hall effect corresponds to the Lorentz force in relativistic electrodynamics. 

It must also be pointed out that as shown in [ 44, 54], it is the noncommutative 
nature of the graphene space which leads to enigmatic properties like the minimum 
conductance in graphene or the fractional quantum Hall effect. 

There are two other pertinent facts which may be emphasized. The first is that the 
magnetic field here is stronger than the usual Maxwellian field. In noncommutative 
space, it maybe written as 

.Bl2 = �c

e
. (6.71) 

In Eq. (6.71), symbols have their usual meaning except for . l which is the mini-
mum length, being the lattice length here. This was deduced independently by the 
author and partly by Saito (independently) some years ago [ 46]. The experimentally 
observed and puzzling minimum conductivity is given by
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.σ = 4
e2

�
, (6.72) 

with the symbols having their usual meanings in Eq. (6.72). What is remarkable is 
that the magnetic field (6.71) and the electric current following from (6.72) arise 
only because of the noncommutativity of the spacetime in these two-dimensional 
structures. 

6.13 Graphene and Entanglement 

We now consider entanglement in 2D structures. For a 2D crystal-like graphene, let 
us consider an Ising-like lattice model. In case of lattice models, the Hamiltonian 
from mean field theoretic approach is known to be given by 

.H = H0 + H1, (6.73) 

where .H0 = −∑
(s1,s2)

Eφs1φs2, .H1 = −∑
s Fφs , .E and .F being the energy and 

vacuum field energy respectively, and .φs is the state variable. It can be shown that 
in the absence of fluctuations, the corresponding energy for a single lattice site 
(.s ∈ S) must be greater or equal to the average value of all corresponding energy 
configurations for that site. Essentially this means 

.Fφs ≥ < Fφs > . (6.74) 

Thus, considering that there are no fluctuations and the condition (6.74) is fulfilled, 
one can visualize a graphene sheet of length . l and area . a that has the Hamiltonian 
as (6.73). Now, since graphene is known to have a minimum conductivity. We could 
investigate if the phenomena of entanglement can be manipulated using the minimal 
conductivity and the mean field theoretic approach. For more details on this, see [ 55]. 
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Chapter 7 
A Fifth Force in Nature? 

7.1 Introduction 

The prevalent theory among physicists about the fundamental interactions has been 
that the four basic interactions were adequate to explain all known phenomena. These 
interactions, as is known, are gravitation, electromagnetism, electroweak force, and 
what were previously called strong interactions. However, over two decades ago, the 
author, in a talk at Vanderbilt University, USA proposed that there is a brand new 
force over and above the four well-known forces. His model was that of a proton 
and a neutron in the nucleus which, in the absence of other known forces, would 
be identical particles. It is only when the electromagnetic interactions are “switched 
on” that they appear to be distinct. This proposal was reported in the press. It may 
be pertinent to mention that the author had proposed his theory of dark energy way 
back in 1997 which was observationally confirmed the very next year [ 3]. 

As far as the fifth force is concerned, this was already hinted by the author’s 
conceptualization of elementary particles as described by the Kerr–Newman metric. 
There have been claims off and on about the detection of a new and fifth force, 
notably from Fermilab, Chicago, and a Hungarian team [ 4, 5]. These claims were also 
substantiated by the University of California, Irvine. And yet a sense of scepticism 
persists among physicists. Recently, the LHC b or the Large Hadron Collider b in 
CERN, Geneva has given a further fillip to the existence of a fifth force. The team in 
LHC b was working on the beauty quark and its decay. 
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7.2 Theoretical Justification for the Existence of a Fifth 
Force 

1. The Kerr–Newmann Quantum Mechanical Black Hole 

When distances in the range of the Compton wavelength are focussed upon, many 
quantum phenomena come to light. These include phenomena like the zitterbe-
wegung, energy solutions which are negative and luminal velocities for particles 
not limited to photons. We start with the Kerr–Newman metric in which both 
quantum mechanics and general relativity are interlaced. This leads to a depiction 
of leptons and quarks. The Kerr–Newmann metric is known to be represented as 
follows (cf. Ref. [ 7]): 

. ds2 = − Δ

ρ2
[dt − a sin2 θdφ]2

+ sin2 θ

ρ2
[(r2 + a2)dφ − adt]2

+ ρ2

Δ
dr2 + ρ2dθ2, (7.1) 

where . a is the Compton wavelength and 

. Δ = r2 − 2mr + a2 + m2 + e2, ρ2 ≡ r2 + a2 cos2 θ.

At .r = a and .θ = π/2, .Δ = 2a2 as both . e and .m << a, and . ρ2 = a2.
We note here from Eq. (7.1) that there is additionally a short-range force of the 
order of .1/r3. There are also other forces of the order of .1/r3. These are shorter 
and stronger as . r becomes small. 

2. Vector bosons with a short range and life 
Let us write the Dirac equation [ 8, 9]  a  s

.(γ μ pμ − m)ψ = 0. (7.2) 

The .γ μ are the usual .4 × 4 matrices. The algebra they follow is the Clifford 
algebra. Here .ψ is a four-component spinor given by 

.ψ =
(

φ

χ

)
. (7.3) 

In Eq. (7.3) . φ and . χ are two-component spinors. . φ is sometimes called the large 
component. It is the positive-energy two component of (7.3). Similarly,. χ of (7.3) 
is the small or negative component. Furthermore, it is known that 

.χ ∼
(v

c

)2
φ. (7.4)
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However, at very high velocities (near the luminal velocity). φ and. χ reverse their 
roles (Cf. Refs. [ 10, 11]) and maybe described by the following equations: 

. ı�(∂φ/∂t) = cτ · (p − e/cA)χ + (mc2 + eφ)φ,

.ı�(∂χ/∂t) = cτ · (p − e/cA)φ + (−mc2 + eφ)χ. (7.5) 

If there is no electromagnetism then from (7.5) we get 

.t → −t, φ → −χ. (7.6) 

This in particular is true at or very near near the Compton scale. Furthermore, 
at this scale, we encounter zitterbewegung and other such phenomena. We can 
argue, as can be easily seen, also that time can be described by a [ 1] double Wiener 
process, then we can write 

.
d+
dt

x(t) = b+ ,
d−
dt

x(t) = b−. (7.7) 

In the one-dimensional case, for example. Equation (7.7) shows that .x(t) is not 
differentiable at time. t.We must remember that without loss of generality and for 
simplicity we are considering the one-dimensional case. Now let us consider the 
Fokker–Planck equations [ 12, 13] 

. ∂ρ/∂t + div(ρb+) = VΔρ,

.∂ρ/∂t + div(ρb−) = −UΔρ, (7.8) 

where 

.V = b+ + b−
2

; U = b+ − b−
2

. (7.9) 

Whence we can easily deduce 

.∂ρ/∂t + div(ρV ) = 0 (7.10) 

.U = ν∇lnρ. (7.11) 

In (7.10) and (7.11 ), .V and .U are averages of the respective velocities and the 
velocity differences. 
We define the following 

.V = 2ν∇S (7.12) 

.V − ıU = −2ıν∇(lnψ). (7.13)
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The significance of all this will be seen later (see [ 14] for further details). We 
now point out what maybe loosely called the complimentary roles of position 
and velocity: the complex velocity in (7.13) is defined for point space in terms of 
a positive time or time flowing in the usual direction where the coordinates are 
complex. 

.x → x + ı x ′. (7.14) 

Further (7.9) maybe written as 

.
dXr

dt
= V,

dXı

dt
= U. (7.15) 

Here .X is complex coordinate with real and imaginary parts .Xr and .Xı . On the 
other hand, the coordinate. X maybe differentiated with respect to time, where we 
treat time as the usual uni-directional coordinate. 
We can deduce from (7.9) and (7.15) that 

.W ≡ d

dt
(Xr − ı Xı ) (7.16) 

(Cf. Ref. [ 15]). 
Let us now cross over (7.14), which is in one dimension to three dimensions. This 
leads us surprisingly to four dimensions: 

. (1, ı) → (I, τ ),

where . I is the unit .2 × 2 matrix and . τ s are the Pauli matrices. Remarkably this 
yields the Lorentz invariant metric. What this shows is 

.x + ı y → I x1 + ı x2 + j x3 + kx4. (7.17) 

In this equation .(ı, j, k) are the Pauli matrices. This leads to 

.x21 + x22 + x23 − x24 (7.18) 

which is invariant. What we have done is, demonstrated the existence of a one-
to-one correspondence between (7.17) and Minkowski four vectors as shown by 
(7.18). 
Whence, it is easy to show that 

.[xıτ ı , x jτ j ] ∝ εı jkτ
k �= 0 (7.19) 

follows. Here . ı or . j are dummy indices as far as the summation is concerned. 
The whole exercise is to show that special relativity can follow from the above 
considerations. Alternatively, absorbing the .xı and .τ ı into each other, following



7.2 Theoretical Justification for the Existence of a Fifth Force 147

Feshbach and Villars [ 10], (7.19) transforms into 

.[xı , x j ] = βε
ı j
k τ k . (7.20) 

In Eqs. (7.19) and (7.20), the commutator brackets are .�= 0 and this obviously 
implies that the coordinates do not commutate. The author has been work-
ing on this type of spacetime (7.19) with the underlying noncommutativity in 
(Cf. [ 12]). It maybe recalled that Snyder had introduced such considerations based 
on the existence of a minimum spacetime length. It was hoped at that time that 
this would circumvent the problems which arose in quantum field theory like 
divergences. As we are considering only a positive-energy picture of the cos-
mos, we take into account the Compton wavelength to be the fundamental length. 
This is because, otherwise within the Compton wavelength we encounter several 
novel but unphysical phenomena like negative energies, zitterbewegung, and so 
on [ 16– 18]. 
We return at this stage to the Feshbach and Villars description in the context of 
these considerations. Reverting to (7.3), to return to the description of a particle– 
antiparticle pair. 
Utilizing the .SU (2) group representation we finally get [ 19] 

.ψ(x) → exp[1
2
ıgτ · ω(x)]ψ(x). (7.21) 

We can observe that Eq. (7.21) yields a gauge covariant derivative as follows: 

.Dλ ≡ ∂λ − 1

2
ıgτ · W λ. (7.22) 

From here, vector bosons .W λ can be obtained. Further, this in turn leads to a 
weak-type interaction: 

.W λ → W λ + ∂λω − gωΛW λ. (7.23) 

Nevertheless, we must bear in mind that we are no longer dealing with the usual 
isospin, but rather the interaction among positive and negative energy states (cf. 
Eq. (7.5)), that is, with particles and antiparticles. Here, we would like to point 
out that this interaction throws up a new non-electroweak force between particles 
and antiparticles. This force would have a short life, being as it is at the Compton 
scale. The Klein–Gordon equation description due to Feshbach and Villars would 
also have these features [ 10, 11]. Equations like (7.5) would be derivable, the 
only difference being that . φ and . χ are scalar functions. It must be reiterated for 
emphasis that the usual picture involving positive-energy solutions is valid only 
above the Compton scale (Cf. Refs. [ 8, 9]). Thus, in other words, Eq. (7.3)  throws  
up a new spinor in what maybe labelled “superspin” space.
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All this shows that vector bosons.W encountered here, describe a new short-range 
force. 

3. Let us now recall the following 

.gμν = ημν + hμν, hμν =
∫

4Tμν(t − |	x − 	x ′|, 	x ′)
|	x − 	x ′| d3x ′, (7.24) 

where 
.T μν = ρuuuv. (7.25) 

The author had shown earlier [12] that (7.25)  i  n (7.24) generates spin, gravitational 
potential and charge of an electron. This of course is at the Compton scale (Cf. 
[ 2] for details). We now invoke the macro-gravitoelectric and gravitomagnetic 
equations. This leads to the following: (Cf. Ref. [ 21]). 

.∇ · 	Eg ≈ −4πρ, ∇ × 	Eg ≈ −∂ 	Hg/∂t, etc. (7.26) 

. 	Eg = −∇φ − ∂ 	A/∂t, 	Hg = ∇ × 	A (7.27) 

.φ ≈ −1

2
(g00 + 1), 	Aı ≈ g0ı . (7.28) 

It must be borne in mind that the fields. E and.H do not really represent the electro-
magnetic field, but bear a superficial resemblance. The subscripts. g in Eqs. (7.26) 
and (7.27) bring out this distinction. Further using Eq. (7.27)  in  Eq  . (7.24), we get 

.| 	H | ≈
∫

ρV

r2
r̄ ≈ mV

r2
, (7.29) 

where the approximations indicate that these are order of magnitude equations as 
well as 

.| 	E | = mV 2

r2
, (7.30) 

where .V is the speed. 

These approximations are consistent if in (7.29) and (7.30) the distance . r >>

than the Compton scale. 
Recall that by Heisenberg’s principle: 

. mVr ≈ h

whence we get 

.| 	H | ∼ h

r3
, | 	E | ∼ hV

r3
. (7.31)
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An interesting observation at this stage would be that (7.31) has no particle mass. 
We will now try to look at this new force in greater detail. 
Indeed from Taylor [ 19], we can see that the Kerr–Newman metric gives a suit-
able description of the electron. Furthermore, here is an interesting feature, the 
anomalous gyromagnetic ratio,.g = 2 is also recovered. Using a different mode of 
reasoning, Nottale [ 22] also reaches the same conclusion. It must be stressed that 
interestingly enough the Kerr–Newman field has additional electric and magnetic 
terms (Cf. [ 23]), both of .O( 1

r3 ). Remarkably this may be obtained from (7.31). 
A pertinent consideration at this juncture would be to investigate the possible exis-
tence of such a force. To sum up we need mass independence, and spin dependence 
with a very short range. Maybe the hypothesized and mysterious .B(3) [ 24] short-
range force proposed by Evans would fill the bill. 
Unexpectedly, if the force is carried by a “massive” particle, that is, within a 
massive vector field, we can get back (7.30) and (7.31)  [  25]. 
Finally, we must bear in mind that the resemblance of equations like (7.26), (7.27), 
and (7.28) with those of electromagnetism is but accidental. This can be treated 
as an unexpected coincidence. In the Kerr–Newman metric formulation, there is 
a similarity to electromagnetism. But this, however, is not fortuitous, as it is the 
metric that gives rise to both electromagnetism and gravitation (Cf. also Refs. [ 2, 
26, 27]). 

7.3 Observational Conclusions 

A few years ago, some researchers from Hungary asserted that there is a new 
particle—called X17 which they discovered. It was their hypothesis that X17 would 
describe a fifth force of nature. Although there is a lot of scepticism about the 
existence of this particle. 

The scientific community is looking forward to the ratification of such a discovery. 
In the same vein, the Jefferson Laboratory performing the DarkLight experiment is 
trying to establish the existence of dark photons with masses in the range of 10–100 
MeV. They claim that this discovery has been made. Some physicists feels that this 
discovery strengthens the belief that there is indeed new force. It must be mentioned 
here however that some of the so-called new particles discovered have later not shown 
up. In some experiments, some excess decay signals were detected. This hinted of 
the existence of a new and very weak particle. If indeed there is such a particle its 
estimated mass would be roughly 50 times smaller than that of the proton. And due 
to its properties, it would be a boson. The findings were published in the Physical 
Review Letters [ 4, 5, 28]. 

The Large Hadron Collider (LHC) physicists, [ 6] in March 2021, reported hints 
of a new physics, viz. a possible fifth force. The LHC was referring to its beauty or 
bottom quark observations. A paper was published by this group in March 2021 based 
on results from the LHCb experiment. Using ultra-high-energy collisions the LHC 
studied the decay of beauty quarks. They discovered that the rate at which beauty
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quarks decayed into electrons and muons was different. This result was unexpected. 
Because one expects these rates to be the same. That is because a beauty quark 
employs the weak force to decay into electrons or muons with equal rates. According 
to the LHC team, muon decay was taking place at about 85% as that of the electron 
decay. They reasoned that this would require a new force of nature which would act 
on electrons and muons differently. This was the reason the team felt that there was a 
difference in the decay of beauty quarks. Of course this decay result had a statistical 
“three. σ” to its credit. Generally a “five. σ” would be required for certainty. Two other 
decays were also studied: one where the beauty quarks were paired with “down” 
quarks and another where they were also paired with “up” quarks. This time, muon 
decays happened around 70% as often as the electron decays and the result was a 
two. σ result. This could be leading to a major discovery, but more experimental data 
is needed. There are also other experiments at the LHC, and in addition there is the 
Belle 2 experiment in Japan, which hopes to uncover more such results. 

Quarks 

Let us talk now about a quark–anti-quark pair which is commonly referred to as 
quarkonium. A special case of this would be charmonium, [ 29]. The spectrum of 
this quark–anti-quark pair has been calculated with a particular potential of the type 
.A/r + Br, where. A and. B are constants. If we insert a .1/r2 term in the potential or 
.A/r + Br + C/r2 (from the Kerr–Newman metric), this maybe treated as a pertur-
bation to the charmonium energy level. This perturbation leads to shifts in the energy 
levels. For example, let us consider a theoretical cavity without any of the known 
forces, then the wobble of the muon would still be detected. 

In passing we would like to point out that the force could be of the type . S′U (2)
[ 19], where in .S′U (2) the prime denotes that this is not the usual weak interaction. 

Finally, it would seem that Fermilab has attained a 4.2 . σ level of confidence [ 30] 
in detecting a new force. 
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Chapter 8 
A Random Walk Through Miscellany 

8.1 Fission with a Difference 

A possible alternative route to releasing fission energy is considered here. Some 
recent work by the scientists Cruz Chu et al. [ 1] on this concept gives a clue for some 
further work. These physicists have done work which yielded nearly monochromatic 
radiation in the X-ray region. 

The starting point is, from a relativistic point of view, with the Lorentz 
transformation: 

.x = γ (x ′ − vt), γ = (1 − v2/c2)−1/2. (8.1) 

As is known, for a collection of relativistic particles, the mass centres lead to a 
two-dimensional disc .⊥ to the vector . �L denoting the angular momentum and with 
radius (Ref. [ 2]): 

.r = L

mc
. (8.2) 

When the system has positive energy, it has a radius.> r , while at distances.O(r) we 
begin to encounter negative energies. 

If we consider the system to be a particle of spin or angular momentum.L = �

2 , then 
Eq. (8.2)  give  s .r = �

2mc . That leads us to the Compton wavelength region. Further, it 
must be borne in mind that the disc of mass centres is two dimensional. 

Furthermore, we note that cf. Ref. [ 3]), if a spin half particle is represented by 
a Gaussian wave packet, then we come across negative energies at the Compton 
wavelength. Thus a particle can indeed be treated as a spherical shell of relativistic 
transient sub-constituents or what may be called “particles”. Indeed, this is another 
description of Dirac’s zitterbewegung or rapid oscillation. 

This is reminiscent of Dirac’s shell or membrane model of the electron [ 4– 6]. 
Outside this Compton region we have the usual Minkowski spacetime. But as we 

near the Compton wavelength region we come across a region where the space axis 
apparently transforms to a complex plane. This has been elaborated in detail by the 
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author, using the Feshbach formalism [ 7] which leads to the double Wiener process. 
Consider the following system: 

.

i�
∂φ

∂t
= 1

2m

(
�

i∇ − eA
c

)2

(φ + χ) + (eφ + mc2)φ

i�
∂φ

∂t
= − 1

2m

(
�

i∇ − eA
c

)2

(φ + χ) + (eφ − mc2)φ

(8.3) 

Reference [ 8]. The merit of this formalism is that it yields a particle interpretation 
to the usual wave formulation (see [ 7] for further details). It needs to be pointed out 
that the advantage of the Feshbach–Villars’ formalism is that we can now work with 
a particle interpretation. 

As we have seen the Compton scale is encountered repeatedly. Wigner [ 9] pointed 
out the remarkable universality of the Compton scale. 

From this characterization, it is clear that if an elementary particle is bombarded 
with very high-frequency radiation of the order of the Compton frequency, such an 
elementary particle would disintegrate, yielding its energy. The situation here is that 
the bell curve becomes compressed enough to be nearly a straight line or a spike, 
almost (see [ 10, 11]). It is this sharp spike under which the particle disintegrates 
giving up its mass as energy. 

In quantum theory, monochromatic waves are an idealization. In the sense that 
what we actually have are wave packets with different energies [ 12]. But somehow 
is it possible to obtain a pure or nearly pure frequency? This of course is a problem 
of experimental technology. Let us examine the theoretical aspect. To see this, let us 
start with the Schrodinger equation:[ 12] 

. 
d2ψ

dx2
+ p2

�2
ψ = 0,

where 
. p = √

2m[E − V (x)].

This leads to 
.φ(x)e± i

�

∫ x p(x)dx , (8.4) 

where it is evident that there is a wave packet with different values of. p or effectively 
frequencies. However, a hypothetical wave function like .ψ ′ = eikx−pt would be an 
idealization and would be monochromatic. Is this achievable? Some evidence is there 
due to the work of Cruz-Chu and co-workers [ 1] who have experimental work where 
single particle X-ray diffraction patterns could be analysed using a machine learning 
algorithm.
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In recent years, there has been some further progress in this direction [ 10, 11, 13]. 
A purely monochromatic signal would come in handy for communication theory as 
well. This is because, this causes an effective increase in the bandwidth [ 14]. An 
observation here is that if we split quarkonium particles, even greater energy maybe 
released. There is also an alternative way for this: Using .g = 2, there is a sort of 
a precession and, if we could radiate the particles with resonant frequencies, the 
particle would break up. This again could be a problem of technically realizing it. 

8.2 Ultra-High-Energy Decaying Fermions 

In this section, we return to ultra-relativistic fermions and their behaviour, with new 
inputs from quantum gravity approaches [ 15– 17]. This is extremely relevant as the 
Large Hadron Collider in Geneva has already attained 7 TeV and is on the verge of 
attaining full energy 14 TeV. 

No accelerator to date has achieved such high energies. Bearing this in mind we 
analyse ultra-high-energy fermionic collisions. 

8.2.1 The High-Energy Equation 

It is known that at very high energies, we encounter negative energy solutions. This is 
because the set of positive-energy solutions of the Dirac or Klein–Gordon equations 
is not a complete set [ 7] and so cannot describe a particle localized in any sense. At 
usual energies we could apply the well-known Foldy–Wouthuysen transformation to 
recover a description in terms of positive energies alone or more precisely a descrip-
tion free of operators which mix negative-energy and positive-energy components 
of the wave function. This description also leads in the non-relativistic limit to the 
two-component Pauli equation [ 3]. All this is well known. 

In the case of very high energies, it was shown several years ago by Cini and 
Toushek that we can modify the Foldy–Wouthuysen transformation and obtain a 
different description [ 19]. Let us examine this situation in greater detail [ 20]. 

The Cini–Toushek transformation can be written in the form 

.e±ıs = E + |p|
2E

± �γ · �p
2E |p| · m, (8.5) 

where the symbols like.E, p, and. γ have their usual meaning. Under (8.5), it is well 
known that the Dirac equation takes on the form of the massless neutrino equation: 

.Hψ = �α · �p
|p| E(p)ψ.



156 8 A Random Walk Through Miscellany

In the above we use the following notation: 

.αk =
(
0 σ k

σ k 0

)
β =

(
I 0
0 − I

)
(8.6) 

.γ 0 = β (8.7) 

.γ k = βαk (k = 1, 2, 3), (8.8) 

where .σ k are the Pauli matrices and . I is the .2 × 2 unit matrix. 
We will also require the transformation of the .γ5 operator, which is given by 

.γ 5 = γ 0γ 1γ 2γ 3 = ı

(
I 0
0 − I

)
. (8.9) 

Using (8.5), the transformed matrix is given by 

.Γ5 = e−ısγ5e
ıs =

{
E + p

2E
+ ( �γ · �n)m

2E

}
γ5

{
E + p

2E
− ( �γ · �n)m

2E

}
(8.10) 

which finally reduces to 

.Γ5 = γ5 +
(m
E

)
( �γ · �n) γ5. (8.11) 

In the above. �n is the unit vector in the direction of the momentum vector. We can see 
from (8.11) that 

.Γ5 = γ5 (8.12) 

whenever. m vanishes. This is of course the well-known two-component neutrino case 
where the wave function can be decomposed into the left-handed and right-handed 
neutrino wave functions. Let us use (8.11) to proceed along similar lines and write 

.ψ = ψ1 + ψ2, (8.13) 

where 

.ψ1 = 1

2
(1 − γ5)ψ and ψ2 = 1

2
(1 + ıγ5)ψ. (8.14) 

If (8.12) were to hold, as for the neutrinos, then (8.14) would be the decomposition 
in terms of the left-handed and right-handed wave functions. If the mass does not 
vanish, that is, (8.12) does not hold then we will have from (8.14) 

.ψ1 = (1 + m

E
)(1 + γ5)ψ − m

E
ψ ≡ (1 + m

E
)ψL − m

E
ψ (8.15)
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with a similar equation for.ψ2. Equations (8.13) and (8.15) show that if. mE is much less 
than . 1, that is, when the energy is much greater than the rest energy, then we have 
a nearly two-component neutrino-like situation. We could, for example, interpret 
(8.13) and (8.14) as a decomposition into the left- and right-handed wave functions 
where the particle, as can be seen from (8.15), nearly exhibits handedness. Or more 
specifically as can be seen from (8.15) the wave function has a large part that displays 
handedness and a small part which is the usual type of wave function. More generally 
we can write (8.15)  a  s

.ψ = ψĤ + ωψΔ, (8.16) 

where .ψĤ is the handed part and the second term is a small correction. 
It must be borne in mind that when the total energy is much greater than the rest 

energy (8.16) holds. One could hope to see the effects, hopefully in the LHC which 
as remarked has already reached the 7 TeV mark and is reaching the 14 TeV mark. 

8.2.2 Possible Consequences at High Energies 

Firstly, it must be observed that the above theory becomes relevant in view of the 
fact that the neutrino is now known to have a mass, though the mass values are not 
yet certain, unlike the mass differences. This is because equations like (8.14), (8.15), 
and (8.16) can now be applied to neutrinos. Apart from this, the above shows that 
fermions in general behave like “heavy” neutrinos at very high energies. In any case 
as can be seen, these equations imply that apart from a .O(mE ) correction, .γ5 gets 
multiplied effectively by a factor .(1 + O(mE )) (Cf. (8.15)). This means that in the 
usual Salam–Weinberg theory, a typical interaction term gets multiplied by a factor 
.(1 + O(mE )) [ 21] 

. 2
1
2 Gw

{
ν̄μγ λ 1

2
(1 + γ5)νμ

} {
ēγλ

[
1

2
(1 + γ5)cL + 1

2
(1 − γ5)cR

]
e

} (
1 + O

(m
E

))
.

(8.17) 
That is, .cL and .cR are also multiplied by a similar small deviation from unity to 
become .c′

L , c
′
R . This in turn implies that the differential cross section now becomes 

in terms of the fermion recoil energy . E ′

. 
dσ

dE ′
0

= [G2
w/(2πmeE

2
ν )][|c′

L |2(p · q)2 + |c′
R|2(p′ · q)2

. + 1

2
(c′∗

R c
′
L + c′∗

L c
′
R)m2

0q · q ′]. (8.18)
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In any case the use of .Γ5 given by (8.11) instead of .γ5 would mean that a decay 
process would be asymmetrical in the angular distribution of the type.(1 + PcosΘ) 
where .P is the average polarization. 

The point is that fermions at such high energies would show handedness in accor-
dance with (8.15)  or (8.16). The possibility of CP violation in ultra-high-energy 
cosmic rays has been discussed by Collady and others [ 22]. In any case, these effects 
would have been present in the early universe. 

Sudarshan et al. [ 23] use a similar analysis to get positive and negative energy 
operators .x± for position and similar momentum operators, but interestingly they 
show that the .x- and .y-components do not commute. Sudarshan and co-workers 
introduced a sub- or superscript .D and. E for the Dirac and extreme relativistic (that 
is, Cini–Toushek type) representations. Then they deduced 

. [x±, y±] =
(
ı p2
2p3

γ5Λ±E
)

E repres.

. =
(

± σ2

2ı p2
Λ±D

)
D repres.

, (8.19) 

where .Λ is a projection operator which is given by 

. Λ± = 1

2
(1 ± H/E)

in the considered representation. This matter was investigated earlier by Newton and 
Wigner too [ 9] from a slightly different angle. Some years ago the author revisited this 
aspect from yet another point of view [ 24] and showed that this noncommutativity 
which is exhibited by (8.19) is related to spin and extension. The noncommutative 
nature of spacetime has been a matter of renewed interest in recent years particularly 
in quantum gravity approaches. At very high energies, it has been argued that [ 8] 
there is a minimum fuzzy interval, symptomatic of a noncommutative spacetime, so 
the usual energy–momentum relation gets modified and becomes 

.E2 = p2 + m2 + αl2 p4 (8.20) 

the so-called Snyder–Sidharth dispersion relation [ 25– 27]. Using (8.20) it is possible 
to deduce the ultra-relativistic Dirac equation [ 28]: 

.(D + βlp2γ 5)ψ = 0 (8.21) 

.β = √
α.  In (8.21),.D is the usual Dirac operator above while the extra term appears 

due to the new dispersion relation (8.20). We can see from (8.21) that the dispersion 
relation now becomes non-Hermitian and takes on an extra term (. α) being positive 
(Cf. Ref. [ 18]): 

.H = M − ı N , (8.22)



8.2 Ultra-High-Energy Decaying Fermions 159

where.M is the usual Hamiltonian and.N is now Hermitian (Cf. [ 29]), that is, .M and 
.N are real. This indicates a decay. With the modified Dirac equation (8.21) in place 
of the usual Dirac equation, we can now treat the two states considered above, viz.: 

. ψL , ψR

as forming a two-state system in this sub-space of the Hilbert space of all states 
where the two components decay at different rates, in general as we will see below. 
The theory of such two-state systems is well known [ 30]. In fact the two states would 
now be given by 

.ψL ,R(t) = eıMt · e−NtψL ,R(0), (8.23) 

where the left side refers to the state of time. t and the right side is the wave function 
at the time .t = 0 (Cf. also [ 31]). We can write the Hamiltonian (8.22) above for the 
two state as 

. Hef f =
(
H11 H12

H21 H22

)
= M − ı N =

(
M11 M12

M21 M22

)
− ı

(
N11 N12

N21 N22

)

where, by virtue of the imaginary term. ı, both.M and.N are Hermitian. An additional 
constraint, namely, .H11 = H22, comes from the CPT theorem. Let us continue with 
the two-state analysis. 

The evolution equation (in this sub-space) 

. H |ψ〉 = ı
d

dt
|ψ〉

yields the usual solution 

. |ψH,L〉(t) = exp[−ı HH,L ]|ψH,L〉(0),

where .HH,L denotes the eigenvalues of . H , which are under the assumption of CPT 
symmetry given, as is well known, by 

. HH,L = H11 ± √
H12H21

and .|ψH,L〉 are eigenstates of the form: 

. |ψH,L〉 = p|ψ0〉 ∓ q|ψ̄0〉

with 

.
q

p
= −HH − HL

2H12
.
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Rewriting the time-dependent solution using .HH,L = MH,L − ı NH,L with real . M
and . N , we get 

. |ψH,L〉(t) = exp
[−NH,L

]
exp[−ıMH,L ](t)|ψH,L〉(0).

This represents two fermions (one perhaps heavier with mass .MH , one lighter with 
mass.ML ), decaying with (generally different) decay constants.NH,L . The mean mass 
.M = 1

2 (MH + ML) andΔM = MH − ML . It has been pointed out that equations 
like (8.14), (8.15), or (8.16) applied to neutrinos which are massless suggest one (or 
more) neutrinos. 

In any case, this analysis is true for fermions in general and one would expect 
handedness and even decomposition at very high energies. One could look at it in 
the following way. The extra term in the new Hamiltonian (8.20), the modified Dirac 
equation (8.21), and the non-Hermitian Hamiltonian (8.22) split the state, much like 
the introduction of a magnetic field leading to the Zeeman splitting. 

8.3 A Zeeman-Like Effect 

Consider two monochromatic waves, which can reinforce each other or destructively 
come to nothing. In case of constructive interference, we can consider it from the 
point of view of fusion. For this we use the beats interpretation of quantum mechanics. 
While the waves which are constructively lumped together can be considered as fused 
particles. We have fusion, otherwise it is just energy. We could even construct a wave 
packet. The question to be posed is that in general do we get fusion and energy? All 
this can be seen within the framework of two recent technological advances. One is 
the isolation of monochromatic waves [ 1]. The other is the realization of ultra short-
range interactions by using laser cooling techniques [ 32]. We have already touched 
upon graphene or any other two-dimensional honeycomb-like structures acting as a 
test bed for high-energy physics. Now let us suppose that a stream of high-energy 
particles, for example, neutrinos pass across this layer, then this volley would broadly 
consist of a mode of particles, let us say luminal and outliers, some of which may 
be superluminal. This has been argued elsewhere and what is equally important, this 
could explain the anomaly of the 1987 supernova emissions. 

Earlier, the author had derived an expression for a grand unified Lagrangian (pre-
sented in Frontiers of Fundamental Physics 15, Orihuela [ 33]) (as seen earlier). 
Further, the author had shown that based on noncommutativity it is possible to rec-
oncile electromagnetism and gravitation [ 34]. Finally, more recently the author along 
with the late Larissa Lapershvili, Nielsen et al., had reconciled weak interaction with 
gravitation [ 35]. This shows that, in this manner, it is possible to reconcile all four 
fundamental interactions in a unified manner.
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8.4 Epilogue: The Gravitation Frontier 

The ultimate unification achieved? This eluded Einstein while for a century physicists 
have been trying to obtain a unified description of gravitation and electromagnetism. 
Finally, the great Wolfgang Pauli declared “do not try to combine what Nature had 
meant to be separate”. There were attempts over the decades by several physicists, 
for example, Herman Weyl tried this combination, though Einstein rejected it, quite 
rightly, that gravitation was put in by hand.The author has tried this unification, 
and this is described in his book Thermodynamic Universe (World Scientific) [ 8]. 
Here the author brings out the fact that every point in space is bispinorial. This is 
because, if we consider the .4 × 4 Dirac matrices, they are really made up of two 
2-spinors (as mentioned earlier) with . φ representing the positive-energy solutions 
and .χ the negative-energy solutions. These have opposite properties under space 
reflections. This leads to, as explained in detail in the above reference, a formula that 
is mathematically identical to the Weyl formulation, except that Einstein’s objection 
is no longer valid because, now, it is the micro-property of spacetime that brings out 
a combined description. This is the desired unification. 
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