Tom Henricksen
 Node.js, Express.js, and More

Copyright © 2025 by Tom Henricksen
 All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise without written permission from the publisher. It is illegal to copy this book, post it to a website, or distribute it by any other means without permission.
 First edition
 This book was professionally typeset on Reedsy
Find out more at reedsy.com

 Contents
 Preface
 I. INTRO TO NODE.JS
 1. Heard of Node.js
 2. Installing Node.js
 3. Let’s code
 4. Stop server time!
 5. Syntax Errors
 6. Runtime Errors
 7. Logical Errors
 8. Debugging Errors
 II. EXPRESS.JS
 9. Express.js and Alternatives
 10. Installing Express.js
 11. Adding middleware in Express.js
 12. Handling different routes in Express.js
 13. How to parse an incoming request with Express.js
 14. Express.js, app.get() and app.post()
 15. Handling a “Page Not Found” error in Express.js
 16. Filter paths in Express.js
 17. Creating an HTML file in an Express.js
 18. The path module in Node.js
 19. Serving static files in Express.js
 20. Sharing data across requests and users

III. NODE.JS TEMPLATING ENGINES
 21. Level Up Your Node.js Apps with Template Engines
 22. Pug vs. Handlebars vs. EJS: Choosing Your Node.js Templating Champion
 23. Ditch the Clutter: Why Pug is Your Templating Savior
 24. Setup Pug
 25. Converting an HTML page into Pug
 26. Setup Handlebars
 27. Add Layout to Handlebars
 28. EJS: Your Dynamic Content Powerhouse in Node.js
 29. Install EJS
 30. Using partials with EJS

Preface
 This book is designed to be your comprehensive guide to mastering Node.js, Express.js, and essential web development techniques. Whether you’re a beginner eager to dive into server-side JavaScript or an experienced developer looking to enhance your Node.js skills, this book provides clear, practical insights to help you build robust and efficient web applications.
 The journey begins with Node.js, where you’ll learn the fundamentals of setting up your environment, understanding server-side logic, and handling errors effectively. The focus then shifts to Express.js, a powerful framework that simplifies Node.js development. You’ll discover how to create web applications, manage routes, use middleware, and handle requests.
 Finally, we’ll explore Node.js templating engines, including Pug, Handlebars, and EJS, to help you generate dynamic HTML content. Each section is filled with practical examples and clear explanations to ensure you not only understand the concepts but can also apply them in real-world scenarios.
 By the end of this book, you’ll be well-equipped to develop sophisticated web applications, utilize industry-standard tools, and optimize your development workflow. Let’s embark on this exciting journey into the world of Node.js and web development.

I
 Intro to Node.js
 In this first part, we’ll introduce Node.js and guide you through setting up your machine. We’ll then cover the fundamentals of servers and the web, and explore some helpful modules.

1
 Heard of Node.js
 Node.js is a powerful open-source platform built on the Google Chrome V8 JavaScript engine.
 JavaScript Everywhere
 Traditionally, JavaScript reigned supreme in the browser (front-end). Node.js breaks down those barriers, allowing you to wield JavaScript on the server side too. This “full-stack” approach with a single language streamlines development.
 Asynchronous & Event-Driven
 Node.js easily handles numerous concurrent connections. Its event loop model and non-blocking I/O make it perfect for real-time applications and push-based architectures.
 A Thriving Ecosystem
 Leverage a vast community and a rich ecosystem of libraries and frameworks like Express.js and NestJS. Plus, Node.js is incredibly versatile, running smoothly across Linux, Windows, and macOS.
 Ready to explore the power of Node.js?
 #nodejs #javascript #programming #fullstack #opensource”
 Build it!
 Node.js allows you to build a lot of great things

 Web Servers and APIs: Create robust backends for web applications, handling requests, managing databases, and serving dynamic content.
 Command-Line Tools: Develop powerful command-line utilities for automation, system administration, and more.
 Microservices: Build small, independent services that work together to form larger applications.
 Real-time Applications: Develop applications that require real-time, two-way communication, such as chat apps, online games, and collaborative tools.
 IoT Applications: Build applications for the Internet of Things, connecting and controlling devices

2
 Installing Node.js
 To install Node.js simply go to the Node.js Click install download to get the right files.

 Node.js page
 Find the file that you downloaded and click it to start the installation.

 Node package install on a Mac
 I clicked the install package on my Mac and then we came here.

 I accepted the license and destination. Then I clicked install.

 Ready to install
 Once I click install the files are added.

 Then it should finish up and you should see this.

 Now things should be set up for some fun with Node.js.

 Open up a command line or terminal and type node -v to ensure it works. You should see a message similar to the one you received when you installed the version.
 Your machine should now have Node.js up and running, enabling you to take the next step in your journey. Learning a new technology can be challenging and rewarding. Celebrate this small win before moving forward!

3
 Let’s code
 Now it is time to begin coding. Let’s start with something easy. In a code editor, I am using Visual Studio you can create the following file:

 Then we can run it from a terminal with the node and the name of the file. Just like this here.

 We wrote the output to the screen. Next, let’s write to a file. I have created another file here:

 In this file, we include ‘fs’, which gives us access to the file system.
 Now if we run this file it will create the file. Here is what that looks like.

 This short lesson started you writing code. We printed output to the screen and output to a file. The ‘fs’ include is part of the core modules. More on that later. Next let’s dip into Node.js strong point, the server.

4
 Stop server time!
 Due to its event-driven, non-blocking I/O architecture, Node.js excels at server-side applications. It operates within a single thread, efficiently handling multiple concurrent requests without the overhead of creating a new thread for each one. Node.js leverages asynchronous I/O capabilities built into its core library, preventing JavaScript code from becoming blocked while waiting for operations like file system access or network requests to complete.
 Example Server
 Let’s run through some code to see Node.js as a server. It’s a sweet spot to use.
 const { createServer } = require('node:http');

 const hostname = '127.0.0.1';
 const port = 3000;

 const server = createServer((req, res) => {
 res.statusCode = 200;
 res.setHeader('Content-Type', 'text/plain');
 res.end('Hello World');
 });

 server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);
 });
 This example creates a server on your localhost and port 3000. To run this go to the terminal and type node server.js(or whatever you named the file) and you should see this.

 The output isn’t too exciting but is a step in the right direction.

 Most Node.js applications run on the server as it shines there. However, you can use it for other things as well. Let’s understand what we did.
 const { createServer } = require('node:http');
 This line gets the HTTP module. This is one of the many libraries Node.js has to check the rest out

 Then we set up the two parameters to pass in to create the server.
 const hostname = '127.0.0.1';
 const port = 3000;
 This code creates the server and sets the status code to 200. This is for success. Remember 400s are errors(think 404 page not found!).
 const server = createServer((req, res) => {
 res.statusCode = 200;
 res.setHeader('Content-Type', 'text/plain');
 res.end('Hello World');
 });
 The header is set for the content type. Then we put the message.
 server.listen(port, hostname, () => {
 console.log(`Server running at http://${hostname}:${port}/`);
 });
 This code takes the port and hostname parameters and has the server listen at that location. That is where Node.js works for us.

 A quick word about JavaScript. If you’re not as familiar with it it may be helpful to brush up on it. I might suggest a short book to get you started Just the basics of JavaScript.

5
 Syntax Errors
 Finding syntax errors in Node.js can be a frustrating but necessary part of development. Here’s a breakdown of effective strategies, from basic to more advanced:
 1. The Obvious: Run Your Code and Read the Error Message
 How it works: Node.js itself is your first line of defense. When you execute your code (e.g., node your_script.js), the interpreter will attempt to parse and run it. If it encounters a syntax error, it will halt execution and print an error message.
 What to look for: The error message will usually tell you:
 The file name: your_script.js (or whatever your file is named).
 The line number: This is Go directly to this line.
 The character position (sometimes): This helps pinpoint the exact location of the error within the line.
 A description of the error: Examples: SyntaxError: Unexpected identifier, TypeError: Cannot read properties of undefined (reading ‘xyz’), ReferenceError: someVariable is not defined.
 // your_script.js
 console.log("Hello, world!); // Missing closing quote

 // Error message:
 // /path/to/your_script.js:1
 // console.log("Hello, world!);
 // ^^^^^^^^^^^^^^^^^^^^^^^^
 // SyntaxError: Invalid or unexpected token
 Limitations: Sometimes, the error message points to a location after the actual error. A missing semicolon, for instance, might be flagged on the next line.
 2. Linters (Static Analysis)
 How they work: Linters analyze your code without executing it. They check for potential problems, including syntax errors, style inconsistencies, and other common mistakes. They act like a “code proofreader.”
 Popular linters: ESLint (highly recommended), JSLint, JSHint. ESLint is the most widely used.
 Setup (using ESLint as an init -y (if you don’t have a package.json)
 npm install eslint —save-dev
 npx eslint —init (this will guide you through setting up a configuration file .eslintrc.js or .eslintrc.json). Choose a style guide (like Airbnb, Standard, or Google) or create your own.
 npx eslint your_script.js to check your code.

 Integrate with your editor (VS Code, Sublime Text, Atom, etc.) for real-time linting as you type.
 Benefits: Catch errors before running your code, and improve code quality and consistency.
 3. Debuggers
 How they work: Debuggers let you step through your code line by line, inspect variables, and understand the execution flow. They’re invaluable for tracking down complex errors, including logic errors that might manifest as syntax-like issues (e.g., using a variable before it’s declared).
 Node.js debugger: Node.js has a built-in debugger, but using a debugger integrated into your IDE is often more convenient.
 VS Code debugger (example): VS Code has excellent Node.js debugging support. You can set breakpoints (points where execution will pause), inspect variables, and step through your code.
 node inspects your_script.js: This will start the Node.js inspector. You can then use commands like n, s, c (next, step, continue) to control execution.
 Benefits: Understand exactly what your code is doing at each step, making complex error diagnosis much easier.
 4. TypeScript (Optional but Highly Recommended for Larger Projects)
 How it works: TypeScript is a superset of JavaScript that adds static typing. Types allow you to define the expected data types of your variables, function parameters, return values, etc.

 Benefits: Early error detection, improved code maintainability, better code documentation. It takes a little time to learn, but it’s well worth it for larger projects.
 5. Careful Code Review
 How it works: Having another set of eyes look at your code can often catch errors that you might have missed. This is especially helpful for complex code or when you’ve been staring at the same code for too long.
 Benefits: Catches errors, improves code quality, facilitates knowledge sharing.
 // your_script.js
 const name = "Alice";
 console.log("Hello, " + name; // Missing closing parenthesis

 function greet(name) {
 console.log("Hello, " + name);
 }

 greet(name);
 Linter (ESLint): ESLint will likely flag the missing parenthesis in the console.log call.

 Debugger: If you run the code, you’ll get a SyntaxError. Use the debugger to set a breakpoint before the greet function call and step through the code. This will help you see the exact point where the error occurs and understand why.
 Use a combination of these techniques. Linters are your first line of defense, catching many common errors early. Debuggers are essential for more complex issues. For larger projects, consider TypeScript. And don’t underestimate the power of careful code review.

6
 Runtime Errors
 Handling runtime errors effectively in Node.js is crucial for building robust and reliable applications. Here’s a breakdown of best practices:
 1. Try…Catch Blocks:
 Purpose: The most fundamental way to handle potential errors. Wrap the code that might throw an exception within a try block. If an error occurs, the execution jumps to the corresponding catch block.
 try {
 // Code that might throw an error (e.g., file I/O, network requests)
 const data = fs.readFileSync('myfile.txt', 'utf8');
 console.log(data);
 } catch (error) {
 // Handle the error
 console.error("Error reading file:", error.message);
 // Perhaps take alternative action, like using default data
 const data = "Default content"; // Or retry the operation
 }

 Best Practice: Use try…catch judiciously. Don’t wrap entire functions or large blocks of code unnecessarily. Focus on the specific operations that are likely to fail.
 2. Asynchronous Error Handling:
 Callbacks: For asynchronous operations (like file I/O, network requests, timers), errors are often passed as the first argument to a callback function.
 fs.readFile('myfile.txt', 'utf8', (err, data) => {
 if (err) {
 console.error("Error reading file:", err.message);
 return; // Important: Stop further execution if there's an error
 }
 console.log(data);
 });
 Promises: Promises provide a cleaner way to handle asynchronous errors using .catch():
 readFile('myfile.txt', 'utf8')
 .then(data => console.log(data))
 .catch(err => console.error("Error reading file:", err.message));
 Async/Await: async/await simplifies asynchronous code even further and works well with try…catch:

 async function readFileAsync() {
 try {
 const data = await readFile('myfile.txt', 'utf8');
 console.log(data);
 } catch (err) {
 console.error("Error reading file:", err.message);
 }
 }
 Best handle errors in asynchronous operations. Uncaught errors in callbacks or promises can lead to unexpected behavior and crashes.
 3. Error Objects:
 Use descriptive error messages: error.message should provide clear information about what went wrong.
 Include stack traces: error.stack gives you the call stack, which is essential for debugging. Log the stack trace in your error handling.
 Create custom error classes (for complex scenarios): Extending the built-in Error class can help you create more specific error types and organize your error handling.
 class FileNotFoundError extends Error {
 constructor(filename) {
 super(`File not found: ${filename}`);

 this.name = "FileNotFoundError"; // Set the error name
 }
 }

 try {
 // ...
 throw new FileNotFoundError('missing.txt');
 } catch (error) {
 if (error instanceof FileNotFoundError) {
 console.error("Custom error:", error.message);
 } else {
 console.error("Other error:", error.message);
 }
 }
 4. Graceful Degradation:
 Plan for failures: Don’t assume that everything will always work perfectly. Design your application to handle errors gracefully.
 Provide fallback mechanisms: If a service is unavailable, provide a default value or suggest an alternative action to the user.
 Avoid crashing the application: In most cases, you want your application to continue running even if an error occurs (unless it’s a critical error that makes the application unusable).
 5. Logging:
 Use a good logging library: Winston, Bunyan, and Pino are popular choices.

 Log errors with context: Include relevant information (timestamps, user IDs, request details) in your logs to help you understand what led to the error.
 Different log levels: Use different log levels (debug, info, warn, error) to categorize your logs.
 Centralized logging: Consider sending your logs to a centralized logging service (e.g., ELK stack, CloudWatch) for easier analysis and monitoring.
 6. Monitoring and Alerting:
 Monitor your application for errors: Use tools like Prometheus, Grafana, or cloud-based monitoring services.
 Set up alerts: Configure alerts to notify you when critical errors occur so you can take action quickly.
 7. Uncaught Exceptions:
 process.on(‘uncaughtException’): This event is emitted when an exception is thrown and not caught anywhere. Use this as a last resort to prevent your application from crashing. Log the error and try to perform any necessary cleanup. However, it’s generally best to handle errors explicitly using try…catch, or promises.
 process.on(‘unhandledRejection’): This event is emitted when a Promise rejection is not handled. Similar to uncaughtException, use this for last-resort error handling with Promises.

 process.on('uncaughtException', (err) => {
 console.error("Uncaught Exception:", err);
 // Perform cleanup or logging
 // It's generally not recommended to try to resume normal operation here.
 process.exit(1); // Or consider a restart if appropriate
 });

 process.on('unhandledRejection', (reason, promise) => {
 console.error("Unhandled Promise Rejection:", reason);
 // Log the rejection
 });
 8. Domain (Deprecated):
 Domains are no longer recommended: The domain module in Node.js is deprecated and should not be used. Use async/await and try…catch for asynchronous error handling instead.
 Example (Combining Best Practices):
 const fs = require('fs/promises'); // Use promises-based fs

 async function processFile(filename) {
 try {
 const data = await fs.readFile(filename, 'utf8');

 // ... process the data ...
 console.log("File processed successfully.");
 } catch (error) {
 if (error.code === 'ENOENT') {
 console.error(`File not found: ${filename}`);
 // Provide a default value or alternative action
 } else {
 console.error(`Error processing file ${filename}:`, error); // Log full error object
 // Consider retrying or other error-specific handling
 }
 }
 }

 processFile('myfile.txt');
 By following these best practices, you can create Node.js applications that are more resilient to errors and provide a better user experience. Remember that error handling is an ongoing process. Continuously monitor your application for mistakes and refine your error-handling strategies as needed.

7
 Logical Errors
 Logical errors can be among the most difficult to find. Let’s review some tips for identifying them. We can break them down into three categories.
 Proactive Prevention: (Things you do before running into bugs)
 Active Debugging: (Techniques used when actively trying to find a bug)
 Tooling & Automation: (Tools that assist in both prevention and debugging)
 A. Proactive Prevention:
 1. Unit Testing: Write comprehensive unit tests using frameworks like Jest or Mocha. Focus on testing edge cases and boundary conditions.
 2. Static Code Analysis: Use ESLint (with a good set of rules) and consider TypeScript.
 3. Code Reviews: Regular code reviews are invaluable. A fresh perspective can often spot logical flaws and improve code quality.
 4. Use TypeScript: Leverage TypeScript’s type system to catch type-related errors at compile time. Type errors are a common source of bugs, and TypeScript helps prevent them.

 5. Design for Testability: Structure your code to make it easier to test. Explain why this is crucial: Well-structured code makes it easier to write effective unit tests. Add practical advice: Use dependency injection, keep functions small and focused, and avoid global state.
 6. Read the Documentation (Essential): Thoroughly understand the libraries and functions you use. Explain why this is crucial: Misunderstandings lead to logical errors. Add practical advice: Refer to the documentation frequently, especially for complex or unfamiliar APIs.
 B. Active Debugging:
 7. Use a Debugger (Essential): Master Node.js’s built-in debugger or use the debugger in VS Code (or your preferred IDE). Explain why this is crucial: Stepping through code line by line and inspecting variables is the most effective way to understand what’s happening. Add practical advice: Learn how to set breakpoints, inspect variables, and step through code efficiently.
 8. Strategic Logging (Helpful): Use console.log() strategically. Explain why this is crucial: Logging helps you understand the flow of execution and the values of variables at specific points. Add practical advice: Avoid excessive logging; focus on key points in the logic. Consider using a logging library for more advanced features (e.g., log levels). Remove or comment out debugging logs before production.

 9. Break Down the Problem (Essential): Divide complex functions into smaller, more manageable pieces. Explain why this is crucial: This simplifies debugging by isolating the source of the error. Add practical advice: Follow the single responsibility principle.
 10. Reproduce the Bug (Essential): Before you start debugging, make sure you can reliably reproduce the bug. Explain why this is crucial: You can’t fix what you can’t reproduce. Add practical advice: Document the steps to reproduce the bug. This will also be helpful for testing your fix.
 11. Rubber Duck Debugging (Surprisingly Effective): Explain your code to someone (or something, like a rubber duck). Explain why this is crucial: The act of explaining forces you to think through your code step by step, often revealing the bug.
 C. Tooling & Automation:
 12. Automated Code Analysis Tools (Helpful): Use tools like SonarQube or similar static analysis platforms. Explain why this is crucial: These tools can identify potential bugs, security vulnerabilities, and code smells.
 13. Performance Profiling (Important for Performance Issues): Use Node.js’s built-in profiling tools or other profiling tools to identify performance bottlenecks. Explain why this is crucial: Profiling helps you optimize your code and improve performance.

 By categorizing and expanding on these tips, you provide a much more comprehensive and actionable guide to finding logical errors in Node.js code. Remember to emphasize the importance of prevention through testing, static analysis, and code reviews.

8
 Debugging Errors
 Debugging Errors can be a time-consuming process at times. However, if you use Visual Studio Code (VS Code), there are a few ways to make this easier. A great resource is using the configuration hooks to make it simple.
 A launch.json file in VS Code is a configuration file that defines how the debugger should be launched and attached to your application. It tells VS Code how to start your program in debug mode, what arguments to pass, and other important settings.
 Here’s a breakdown of what it does and why it’s important:
 Key Functions of launch.json:
 Defining Debug Configurations: launch.json allows you to define multiple debug configurations. Each configuration represents a different way to launch or attach to your application. For example, you might have one configuration for running your main application, another for running tests, and another for attaching to a running process.
 Specifying the Debugger: It specifies which debugger to use. VS Code supports various debuggers for different languages and platforms (e.g., Node.js, Python, Java).

 Setting Launch Arguments: You can specify command-line arguments to pass to your application when launching it in debug mode.
 Configuring Breakpoints: While you set breakpoints interactively in the editor, launch.json can also be used to predefine breakpoints that should be set automatically when the debug session starts.
 Attaching to Running Processes: launch.json allows you to define configurations for attaching to an already running process (rather than launching a new one).
 Setting Environment Variables: You can set environment variables that will be available to your application during the debug session.
 Specifying the Program to Debug: It tells VS Code which file or program to execute when starting the debug session (the program property).
 Configuring Pre-Launch and Post-Launch Tasks: You can define tasks that should be executed before or after the debug session starts. This is useful for tasks like building your project or running other setup scripts.
 Why launch.json is Important:
 Reproducible Debugging: It ensures that your debug sessions are consistent and reproducible. You don’t have to manually configure the debugger every time you want to debug.

 Multiple Debug Configurations: It allows you to easily switch between different debug configurations for different scenarios (e.g., debugging tests vs. the main application).
 Automation: It automates the debugging process, making it more efficient.
 Team Collaboration: By including launch.json in your project’s version control (like Git), you can share debug configurations with your team members and ensure everyone uses the same settings.
 Example (Node.js):
 {
 "version": "0.2.0",
 "configurations": [
 {
 "type": "node",
 "request": "launch",
 "name": "Launch Program",
 "skipFiles": [
 "/**"
],
 "program": "${workspaceFolder}/index.js" // Path to your main file
 }
]
 }
 This example defines a debug configuration for a Node.js application. It specifies that the debugger should launch the index.js file in the workspace folder.

 Launch.json is a crucial file for configuring and managing debug sessions in VS Code. It provides a structured way to define how your application should be debugged, making the debugging process more efficient, reproducible, and collaborative.
 Here is a great resource on debugging in Visual Studio code.

II
 Express.js
 In this second section we cover Express.js and what it can do for you. Essentially, it makes Node.js development easier. We also cover EJS, Pug, and Handlebars templating engines.

9
 Express.js and Alternatives
 Node.js development can sometimes feel like a series of repetitive tasks. That’s where Express.js comes in. It provides an intuitive web framework that significantly speeds up application development. If you have a background in Java, you might find its structure reminiscent of Struts. Express.js is particularly well-suited for quickly building both mobile and web applications.
 Key features include robust routing for managing different URL paths and HTTP methods, flexible middleware for request processing, and comprehensive error handling for consistent and graceful responses. Its simplicity and performance have cemented Express.js as a popular choice for building RESTful APIs and single-page applications (SPAs).
 While Express.js is a strong contender, there are alternatives worth exploring. Koa.js, created by the same team, offers a more streamlined and expressive experience. Nest.js, inspired by Angular, provides a structured architecture designed for building reliable and scalable server-side applications. Hapi.js, with its plugin-based configuration, is ideal for managing the complexities of large-scale applications.

10
 Installing Express.js
 To use Express.js you first need Node.js. To install Node.js go to the Node.js Click install download to get the right files.

 Once it downloads you can start the install process and accept the defaults.

 When it completes open a command line to ensure it is installed correctly.

 Then initialize a project from the command line.

 You need to type npm init and accept the defaults. This will create your package.json.
 {
 "name": "express",
 "version": "1.0.0",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "description": ""
 }
 It should look something like that.

 Next, to install Express.js you need to type npm install express. That should get you what you need.
 Now let’s code a basic server. Create a file called app.js in your Express folder.
 const express = require('express');
 const app = express();
 const port = 3000;

 app.get('/', (req, res) => {
 res.send('Hello World!');
 });

 app.listen(port, () => {
 console.log(`Server is running at http://localhost:${port}`);
 });
 Next, run your server by typing node app.js on the command line.

 You should see that message that your server started. Then go to http://localhost:3000 and you will see “Hello World!” printed on the screen.

11
 Adding middleware in Express.js
 Adding middleware in Express.js is quite simple! Middleware functions access the request object (req), the response object (res), and the next middleware function in the application’s request-response cycle. Here’s how you can add middleware to your Express.js application:
 Create a Middleware You can create a middleware function that performs a specific task. For example, let’s create a simple logging middleware:
 const logger = (req, res, next) => {
 console.log(`${req.method} ${req.url}`);
 next(); // Pass control to the next middleware function
 };
 Use the Middleware in Your You can use the app.use() method to add the middleware to your application. This middleware will be executed for every request to the server:
 const express = require('express');
 const app = express();
 const port = 3000;
 // Use the logger middleware
 app.use(logger);

 app.get('/', (req, res) => {
 res.send('Hello World!');
 });
 app.listen(port, () => {
 console.log(`Server is running at http://localhost:${port}`);
 });
 Route-Specific If you want to apply middleware to specific routes, you can do so by passing the middleware function as an argument to the route handler:
 app.get('/about', logger, (req, res) => {
 res.send('About Page');
 });
 Built-in Express.js also comes with some built-in middleware functions, such as express.json() and express.urlencoded(), which you can use to parse incoming request bodies:
 app.use(express.json());
 app.use(express.urlencoded({ extended: true }));

 Third-Party You can also use third-party middleware by installing it via npm and then using it in your application. For example, to use the Morgan logging middleware:
 npm install morgan
 const morgan = require('morgan');
 app.use(morgan('dev'));
 Middleware is a powerful feature in Express.js that allows you to add modular, reusable functionality to your application.

12
 Handling different routes in Express.js
 Directing traffic can be easier when we have a plan. That is where routing comes in handy. Handling different routes in Express.js is quite straightforward. Here’s a basic overview:
 Set Up Your Express Create a new file (e.g., app.js) and set up your Express application:
 const express = require('express');
 const app = express();
 const port = 3000;
 app.listen(port, () => {
 console.log(`Server is running on port ${port}`);
 });
 Define You can define routes using methods like app.get(), app.post(), app.put(), and app.delete(). Each method corresponds to an HTTP request method.
 // Handle GET request to the root URL
 app.get('/', (req, res) => {
 res.send('Hello, World!');
 });
 // Handle GET request to /about
 app.get('/about', (req, res) => {
 res.send('About Us');

 });
 // Handle POST request to /contact
 app.post('/contact', (req, res) => {
 res.send('Contact Us');
 });
 Use Route You can capture parameters in the URL using a colon (:) before the parameter name.
 // Handle GET request with a parameter
 app.get('/user/:id', (req, res) => {
 const userId = req.params.id;
 res.send(`User ID: ${userId}`);
 });
 Use Middleware functions can handle requests before they reach the route handlers.
 // Middleware to log request details
 app.use((req, res, next) => {
 console.log(`${req.method} request for '${req.url}'`);
 next();
 });
 // Define routes after middleware
 app.get('/', (req, res) => {
 res.send('Hello, World!');
 });

 Organize You can organize routes using the express for larger applications. Router class.
 const express = require('express');
 const app = express();
 const router = express.Router();
 // Define routes in the router
 router.get('/', (req, res) => {
 res.send('Home Page');
 });
 router.get('/about', (req, res) => {
 res.send('About Us');
 });
 // Use the router in your app
 app.use('/', router);
 app.listen(3000, () => {
 console.log('Server is running on port 3000');
 });
 These are the basics of handling different routes in Express.js. As you have heard, the best way to learn is to practice. Time for you to roll up your sleeves and code some routes.

13
 How to parse an incoming request with Express.js
 When you need to parse the incoming request, you can use the body-parser. To use body-parser with Express.js, follow these steps. Install body-parser by running the following command at a terminal.
 npm install body-parser
 First, we add the Require body-parser in your Express app:
 const express = require('express');
 const bodyParser = require('body-parser');
 const app = express();
 Next, we can use the body-parser middleware to do its magic…
 // Parse application/x-www-form-urlencoded
 app.use(bodyParser.urlencoded({ extended: false }));
 // Parse application/json
 app.use(bodyParser.json());

 Finally, we can handle requests that we receive with the following code:
 app.post('/submit', (req, res) => {
 console.log(req.body); // Access the parsed body
 res.send('Data received');
 });
 app.listen(3000, () => {
 console.log('Server is running on port 3000');
 });
 This setup allows your Express app to parse incoming request bodies in a middleware before your handlers, making it easier to handle form submissions and JSON payloads. You will find this quite useful in your Express.js coding adventures.

14
 Express.js, app.get() and app.post()
 Working on the web, you learn about HTTP operations. Two of the main ones are GET and POST. The GET operation allows you to get something from the server. You can pass parameters in the URL. A POST is for submitting data to the server.
 In Express.js, app.get() and app.post() define routes for handling HTTP GET and POST requests, respectively. Here are the key differences:
 app.get()
 Handles HTTP GET requests.
 Typically used to retrieve data from the server.
 app.get('/users', (req, res) => {
 res.send('GET request to the /users route');
 });
 app.post()
 Handles HTTP POST requests.
 Typically used to send data to the server, often for creating or updating resources.
 app.post('/users', (req, res) => {
 res.send('POST request to the /users route');
 });

 In summary, app.get() is used for fetching data, while app.post() is used for submitting data to be processed. As you work on the web, you will see cases for each one. Experience will help you learn the appropriate use. Start coding and you will learn.

15
 Handling a “Page Not Found” error in Express.js
 Handling a “Page Not Found” error in Express.js is straightforward. You can create a middleware function to catch all unmatched routes and respond with a 404 status code. Here’s a simple example:
 const express = require('express');
 const app = express();
 // Your route handlers go here
 // Catch-all handler for any request that doesn't match an existing route
 app.use((req, res, next) => {
 res.status(404).send('Page Not Found');
 });
 const PORT = process.env.PORT || 3000;
 app.listen(PORT, () => {
 console.log(`Server is running on port ${PORT}`);
 });
 In this example:
 Route Define your routes above the catch-all handler.
 Catch-All The app.use function with no path specified will match all routes that haven’t been matched by previous route handlers.

 The res.status(404).send(‘Page Not Found’) sends a 404 status code and a simple message.
 You can also customize the response to render a specific error page or JSON response, depending on your application’s needs.

16
 Filter paths in Express.js
 To filter paths in Express.js, you can use middleware functions. Middleware functions are functions that have access to the request object (req), the response object (res), and the next middleware function in the application’s request-response cycle. Here’s a basic example of how you can filter paths:
 const express = require('express');
 const app = express();
 // Middleware function to filter paths
 function pathFilter(req, res, next) {
 if (req.path === '/filtered-path') {
 res.send('This path is filtered.');
 } else {
 next();
 }
 }
 // Use the middleware function
 app.use(pathFilter);
 app.get('/', (req, res) => {
 res.send('Home Page');
 });
 app.get('/filtered-path', (req, res) => {
 res.send('You should not see this message.');
 });
 app.listen(3000, () => {

 console.log('Server is running on port 3000');
 });
 In this example:
 The pathFilter middleware function checks if the request path is /filtered-path.
 If it is, it sends a response indicating that the path is filtered.
 If it is not, it calls next() to pass control to the next middleware function or route handler.
 You can customize the pathFilter function to filter other paths or add more complex logic.
 Filter Multiple Paths
 To filter multiple paths in Express.js, you can extend the middleware function to check for multiple paths or use an array of paths. Here’s an example of how to do this:
 Using an Array of Paths
 You can define an array of paths and check if the request path is in that array:
 const express = require('express');
 const app = express();
 // Array of paths to filter
 const filteredPaths = ['/filtered-path1', '/filtered-path2', '/filtered-path3'];
 // Middleware function to filter paths
 function pathFilter(req, res, next) {

 if (filteredPaths.includes(req.path)) {
 res.send('This path is filtered.');
 } else {
 next();
 }
 }
 // Use the middleware function
 app.use(pathFilter);
 app.get('/', (req, res) => {
 res.send('Home Page');
 });
 app.get('/filtered-path1', (req, res) => {
 res.send('You should not see this message.');
 });
 app.get('/filtered-path2', (req, res) => {
 res.send('You should not see this message.');
 });
 app.get('/filtered-path3', (req, res) => {
 res.send('You should not see this message.');
 });
 app.listen(3000, () => {
 console.log('Server is running on port 3000');
 });
 Using Regular Expressions
 Alternatively, you can use regular expressions to match multiple paths:
 const express = require('express');

 const app = express();
 // Middleware function to filter paths using regular expressions
 function pathFilter(req, res, next) {
 const pathRegex = /^\/filtered-path[1-3]$/;
 if (pathRegex.test(req.path)) {
 res.send('This path is filtered.');
 } else {
 next();
 }
 }
 // Use the middleware function
 app.use(pathFilter);
 app.get('/', (req, res) => {
 res.send('Home Page');
 });
 app.get('/filtered-path1', (req, res) => {
 res.send('You should not see this message.');
 });
 app.get('/filtered-path2', (req, res) => {
 res.send('You should not see this message.');
 });
 app.get('/filtered-path3', (req, res) => {
 res.send('You should not see this message.');
 });
 app.listen(3000, () => {
 console.log('Server is running on port 3000');
 });

 In both examples:
 The middleware function checks if the request path matches the filtered paths.
 If it does, it sends a response indicating that the path is filtered.
 If it does not, it calls next() to pass control to the next middleware function or route handler.

17
 Creating an HTML file in an Express.js
 Creating an HTML file in an Express.js application involves setting up a basic Express server and serving the HTML file as a response to a client request. Here’s a step-by-step guide to help you get started:
 Setup project: Create a new project directory to hold your Express.js application.
 mkdir my-express-app
 cd my-express-app
 npm init -y
 npm install express
 Create the Project Create a basic project structure with the following files:
 my-express-app/
 ├── public/
 │ └── index.html
 ├── app.js
 └── package.json
 Create an HTML In the public directory, create an index.html file with some basic HTML content:
 html>

 lang="en">

Welcome to My Express App!

 Set Up the Express In the app.js file, set up the Express server to serve the HTML file:
 const express = require('express');
 const path = require('path');
 const app = express();
 // Serve static files from the 'public' directory
 app.use(express.static(path.join(__dirname, 'public')));
 // Define a route to serve the HTML file
 app.get('/', (req, res) => {
 res.sendFile(path.join(__dirname, 'public', 'index.html'));
 });
 // Start the server
 const PORT = process.env.PORT || 3000;
 app.listen(PORT, () => {

 console.log(`Server is running on http://localhost:${PORT}`);
 });
 Run the Start the server by running the following command in your project directory:
 node app.js
 Access the HTML Open your web browser and navigate to You should see the HTML content you created in the index.html file.
 That’s it! You’ve successfully created an HTML file and served it using Express.js.
 In conclusion, this guide demonstrates the fundamental process of integrating and serving static HTML files within an Express.js application. By setting up a basic Express server, structuring the project appropriately, and utilizing the Express.static middleware, we effectively delivered the index.html file to the client’s browser. This process highlights the simplicity and efficiency of Express.js in handling static assets, laying the groundwork for more complex web applications. This foundational understanding is crucial for developers seeking to build dynamic web content using Node.js and Express.js.

18
 The path module in Node.js
 The path module in Node.js provides utilities for working with file and directory paths. It’s often used in Express.js applications to handle file paths platform-independently. Here’s how you can use the path module in an Express.js application:
 Import the Path First, you need to import the path module at the top of your file:
 const path = require('path');
 Use Path The path module provides several useful methods. Here are a few common ones:
 Joins all given path segments together using the platform-specific separator as a delimiter, then normalizes the resulting path.
 const publicPath = path.join(__dirname, 'public');
 Resolves a sequence of paths or path segments into an absolute path.
 const absolutePath = path.resolve('public', 'index.html');

 path.basename(path, Returns the last portion of a path, optionally removing a given extension.
 const fileName = path.basename('/path/to/file.txt');
 Serve Static In an Express.js application, you can use the path module to serve static files. Here’s an example of how to serve static files from a public directory:
 const express = require('express');
 const path = require('path');
 const app = express();
 // Serve static files from the 'public' directory
 app.use(express.static(path.join(__dirname, 'public')));
 // Define a route to serve an HTML file
 app.get('/', (req, res) => {
 res.sendFile(path.join(__dirname, 'public', 'index.html'));
 });
 // Start the server
 const PORT = process.env.PORT || 3000;
 app.listen(PORT, () => {
 console.log(`Server is running on http://localhost:${PORT}`);
 });

 In this example, the path.join(__dirname, ‘public’) method creates a path to the public directory, ensuring that the path is correctly formed regardless of the operating system. Similarly, path.join(__dirname, ‘public’, ‘index.html’) is used to create a path to the index.html file.

19
 Serving static files in Express.js
 Serving static files in Express.js is quite straightforward. You can use the built-in middleware function express.static to serve static assets such as HTML files, images, CSS files, and JavaScript files. Here’s a step-by-step guide:
 Install If you haven’t already, install Express using npm:
 npm install express
 Set Up Your Create a new file, for example, app.js, and set up your Express application:
 const express = require('express');
 const app = express();
 const port = 3000;
 Serve Static Use the express.static middleware to serve your static files. Suppose your static files are in a directory named public:
 app.use(express.static('public'));
 Start the Finally, start your server:

 app.listen(port, () => {
 console.log(`Server is running at http://localhost:${port}`);
 });
 With this setup, any files in the public directory will be accessible from the root URL. For example, if you have a file public/index.html, it will be served at
 In conclusion, leveraging express.static in Express.js provides a simple and efficient method for serving static files. By installing Express, setting up a basic application structure, and employing the express.static middleware, and starting the server, developers can readily make assets like HTML, CSS, images, and JavaScript accessible to clients. This streamlined process eliminates the need for manual file handling and allows for organized and efficient delivery of static content, ultimately simplifying web application development with Express.js.

20
 Sharing data across requests and users
 Sharing data across requests and users in Node.js can be achieved in several ways, depending on your specific needs. Here are some standard methods:
 Global
 You can use global variables to store data that needs to be shared across different parts of your application. However, this approach is generally discouraged because it can lead to hard-to-debug issues and is not thread-safe.
 In-Memory Data
 Memory Use an in-memory data store like Redis or Memcached to store data that needs to be shared across requests and users. This is useful for caching and session management.
 Node.js You can create a module that exports an object or a function, and then require that module in different parts of your application. The data stored in the module will be shared across all instances where the module is required.

 Use a database (e.g., MongoDB, PostgreSQL) to store data that needs to be persistent and shared across requests and users. This approach is common for user data, application state, and other persistent data.
 Session

 Use session management libraries like express-session to store session data on the server. This data can be stored in memory, in a database, or in a distributed cache like Redis.
 Message
 Use message queues like RabbitMQ or Kafka to share data and communicate between different parts of your application. This is useful for decoupling different components and handling asynchronous tasks.

 Use WebSockets to maintain a persistent connection between the client and server, allowing real-time data sharing. Libraries like socket.io can help with this.
 Here’s a simple example of using Redis to share data across requests:
 const express = require('express');
 const redis = require('redis');
 const session = require('express-session');
 const RedisStore = require('connect-redis')(session);
 const app = express();
 const redisClient = redis.createClient();
 app.use(session({
 store: new RedisStore({ client: redisClient }),
 secret: 'your-secret-key',
 resave: false,
 saveUninitialized: false

 }));
 app.get('/', (req, res) => {
 if (!req.session.views) {
 req.session.views = 1;
 } else {
 req.session.views++;
 }
 res.send(`Number of views: ${req.session.views}`);
 });
 app.listen(3000, () => {
 console.log('Server is running on port 3000');
 });
 This example sets up an Express server with session management using Redis. The session data is shared across requests and users, allowing you to track the number of views for each user.
 Effectively sharing data across requests and users in Node.js hinges on selecting the appropriate strategy for your application’s specific requirements. While global variables offer simplicity, they are generally discouraged due to scalability and maintainability concerns. Robust solutions like in-memory data stores (Redis, Memcached) and databases (MongoDB, PostgreSQL) provide efficient and persistent data sharing, suitable for caching, session management, and storing critical application states. Session management libraries, particularly when integrated with Redis, offer a streamlined approach to managing user-specific data.

 For complex, asynchronous data exchange, message queues (RabbitMQ, Kafka) and WebSockets (socket.io) enable real-time communication and decoupled architectures. The provided example demonstrates the practical implementation of session management using Redis, showcasing how to track user-specific data across multiple requests. Ultimately, the choice of method should align with the application’s scale, performance needs, and data persistence requirements, ensuring a scalable and maintainable Node.js application.

III
 Node.js Templating Engines
 Enhance your Node.js applications by using template engines. We will begin by introducing the wide range of available options, and then focus on the three most popular options, Pug, Handlebars, and EJS.

21
 Level Up Your Node.js Apps with Template Engines
 Building dynamic web pages with Node.js becomes significantly easier with template engines. These tools bridge the gap between your server-side logic and the client-side presentation, allowing you to inject data into your HTML with ease.
 If you’re diving into Node.js development, you’ll find a plethora of template engines at your disposal, each with its unique flavor. Let’s explore some of the most popular options.
 Pug (formerly Jade) stands out for its elegant, clean syntax. If brevity and readability are your priorities, Pug is a strong contender, especially for Express.js applications.
 For those who prefer direct JavaScript embedding, EJS (Embedded JavaScript) offers unparalleled flexibility. It lets you seamlessly integrate JavaScript code within your HTML, making it ideal for rapid prototyping and dynamic content generation.
 an extension of Mustache, provides powerful features like helpers and partials, enabling you to create reusable templates. This is particularly useful for complex applications where maintainability is crucial.

 If simplicity is your guiding principle, Mustache is your go-to choice. This logic-less engine emphasizes readability, making it easy to understand and maintain your templates.
 Other noteworthy options include a feature-rich engine inspired by Python’s Jinja2, which draws inspiration from ASP.NET’s Razor syntax, and known for its asynchronous capabilities and performance optimization.
 Choosing the right template engine depends on your project’s specific needs. Consider factors like syntax preference, feature requirements, and performance considerations. Whether you prioritize simplicity, flexibility, or advanced features, there’s a template engine that fits the bill. So, which one will you choose for your next Node.js project?

22
 Pug vs. Handlebars vs. EJS: Choosing Your Node.js Templating Champion
 When building dynamic web applications with Node.js, template engines are indispensable. Among the many options, Pug, Handlebars, and EJS stand out as popular choices. Each offers a unique approach to generating HTML, and understanding their differences is crucial for selecting the right tool for your project.
 Pug (formerly Jade) is renowned for its concise and clean syntax. It uses indentation and keywords to define HTML structures, eliminating the need for closing tags. This results in highly readable and maintainable code. However, its unique syntax can have a steeper learning curve for developers accustomed to traditional HTML. Pug excels in projects where brevity and elegance are prioritized.
 on the other hand, is a logic-less templating engine that focuses on simplicity and readability. It uses double curly braces {{ }} to embed variables and expressions, making it easy to understand and use. Handlebars provide powerful features like helpers and partials, which allow for code reuse and efficient template management. It’s an excellent choice for projects requiring complex data manipulation and reusable components.

 EJS (Embedded JavaScript) offers a more flexible approach by allowing you to embed JavaScript code directly within your HTML. This provides a high degree of control over the generated output, making it suitable for projects with intricate logic and dynamic content. However, this flexibility can also lead to less maintainable code if not used carefully. EJS is a good option for developers who prefer a more direct and expressive way to generate HTML.
 In summary, Pug emphasizes brevity and elegance, Handlebars prioritizes simplicity and reusability, and EJS offers maximum flexibility. Consider your project’s specific needs and your team’s familiarity with each engine before making your decision. Ultimately, the best choice is the one that best aligns with your project’s requirements and development style.

23
 Ditch the Clutter: Why Pug is Your Templating Savior
 Tired of HTML’s verbose nature? Enter Pug, the templating engine that simplifies your markup and boosts your development workflow. If you’re looking for a cleaner, more efficient way to generate HTML, Pug deserves your attention.
 One of Pug’s most compelling advantages is its simplified Forget angle brackets and closing tags; Pug’s indentation-based structure makes your code incredibly readable. Imagine effortlessly navigating your templates, with the hierarchy clearly defined by indentation alone. This reduction in boilerplate translates to less meaning faster development and easier maintenance.
 Enhanced readability is another significant benefit. The visual clarity of Pug’s syntax minimizes the risk of errors and allows you to quickly grasp the structure of your HTML. Furthermore, Pug enables you to mix code and markup embedding JavaScript directly into your templates for dynamic content generation.

 For those building complex applications, Pug’s reusable components like mixins and includes are invaluable. Maintain consistency across your project and avoid repetitive coding with these powerful features. Plus, Pug’s built-in conditionals and loops allow you to add logic directly within your templates, eliminating the need for constant language switching.
 If you’re working with Node.js, Pug is a natural fit. Its seamless integration makes it a popular choice for server-side rendering in Express applications. And with a strong community and you’ll find plenty of resources and plugins to support your development.
 In short, Pug streamlines your templating process, making it more efficient and enjoyable. Give it a try, and you might just wonder how you ever coded without it.

24
 Setup Pug
 The steps to install and set up Pug in an existing Express.js/Node.js project:
 Install Open your terminal and navigate to your project directory. Then, run the following command to install Pug:
 npm install pug
 Set Pug as the View In your main server file (usually app.js or server.js), you need to set Pug as the view engine. Add the following lines of code:
 const express = require('express');
 const app = express();
 // Set Pug as the view engine
 app.set('view engine', 'pug');
 Create a Views Create a directory named views in the root of your project. This is where you will store your Pug templates.
 Create a Pug Inside the views directory, create a Pug file (e.g., index.pug). Add some content to this file:
 doctype html

 html
 head
 title My Pug Page
 body
 h1 Hello, Pug!
 Render the Pug In your route handler, use the res.render method to render the Pug template. For example:
 app.get('/', (req, res) => {
 res.render('index');
 });
 // Start the server
 const PORT = process.env.PORT || 3000;
 app.listen(PORT, () => {
 console.log(`Server is running on port ${PORT}`);
 });
 That’s it! Your Express.js/Node.js project should now be set up to use Pug as the templating engine.

25
 Converting an HTML page into Pug
 Converting an HTML page into Pug (formerly known as Jade) involves translating the HTML structure into Pug’s simplified, indentation-based syntax. Here’s a step-by-step guide to help you with the conversion:
 Install If you haven’t already, install Pug using npm:
 npm install pug
 Basic Start by understanding the basic structure of your HTML. For example:
 html>
 lang="en">

Hello, World!

 This is a paragraph.

 Convert to Translate the HTML into Pug syntax:
 doctype html
 html(lang="en")
 head
 meta(charset="UTF-8")
 meta(name="viewport" content="width=device-width, initial-scale=1.0")
 title Document
 body
 h1 Hello, World!
 p This is a paragraph.
 Pug relies on indentation to define the structure. Ensure that nested elements are properly indented.
 In Pug, attributes are enclosed in parentheses and separated by commas:
 a(href="https://example.com", target="_blank") Link
 Classes and Use dot (.) for classes and hash (#) for IDs:
 div#main.container
 h2.title Welcome

 Text Directly write text content after the tag:
 p This is a paragraph with some text.
 Loops and Pug supports loops and conditionals using JavaScript syntax:
 ul
 each item in items
 li= item
 By following these steps, you can convert your HTML pages into Pug templates.

26
 Setup Handlebars
 The steps to install and set up Handlebars in an existing Express.js/Node.js project:
 Install Open your terminal and navigate to your project directory. Then, run the following command to install Handlebars and its Express integration:
 npm install express-handlebars
 Set Handlebars as the View In your main server file (usually app.js or server.js), you need to set up Handlebars as the view engine. Add the following lines of code:
 const express = require('express');
 const exphbs = require('express-handlebars');
 const app = express();

 // Set Handlebars as the view engine
 app.engine('handlebars', exphbs());
 app.set('view engine', 'handlebars');
 Create a Views Create a directory named views in the root of your project. This is where you will store your Handlebars templates.

 Create a Handlebars Inside the views directory, create a Handlebars file (e.g., index.handlebars). Add some HTML content to this file:
 html>

 Hello, Handlebars!

 Render the Handlebars In your route handler, use the res.render method to render the Handlebars template. For example:
 app.get('/', (req, res) => {
 res.render('index');
 });

 // Start the server
 const PORT = process.env.PORT || 3000;
 app.listen(PORT, () => {
 console.log(`Server is running on port ${PORT}`);
 });

 That’s it! Your Express.js/Node.js project should now be set up to use Handlebars as the templating engine.

27
 Add Layout to Handlebars
 To add a layout to a Handlebars template engine, you can follow these steps:
 Create a Layout This file will serve as the base structure for your pages. For example, create a file named main.handlebars with the following content:
 html>
 lang="en">

 {{{body}}}

 Set Up Your View Configure your Express application to use Handlebars and set the default layout. Here’s an example:
 const express = require('express');
 const exphbs = require('express-handlebars');

 const app = express();
 app.engine('handlebars', exphbs({
 defaultLayout: 'main'
 }));
 app.set('view engine', 'handlebars');
 **. For example, create a file named home.handlebars with the following content:

 Welcome to My Website

 This is the home page.

 Render the In your route handler, render the view and pass any necessary data. For example:
 app.get('/', (req, res) => { res.render('home', { title: 'Home Page' }); });
 app.listen(3000, () => { console.log('Server is running on port 3000');
 these steps, you should be able to add a layout to your Handlebars template engine. If you have any specific questions or run into issues, feel free to ask!

28
 EJS: Your Dynamic Content Powerhouse in Node.js
 Building dynamic web applications in Node.js? Look no further than EJS (Embedded JavaScript), a templating engine that empowers you to create interactive and data-driven web pages with ease.
 EJS shines with its If you’re comfortable with HTML and JavaScript, you’ll feel right at home. Its intuitive syntax eliminates steep learning curves, allowing you to dive straight into development. This ease of use translates to faster development cycles and quicker iterations.
 The flexibility of EJS is another major draw. Embedding JavaScript directly within HTML templates allows for seamless dynamic content generation. Whether you need to fetch data from a database, display user-specific information, or manipulate content based on user interactions, EJS handles it gracefully.
 Its seamless integration with Express makes EJS a natural choice for Node.js developers. Express, a popular framework, works harmoniously with EJS, streamlining the process of setting up views and rendering dynamic content.

 Reusable or partials, are a key feature for maintaining clean and efficient code. By creating modular pieces like headers and footers, you avoid redundancy and ensure consistency across your application.
 EJS also provides robust support for conditionals and enabling you to control content rendering based on application logic. This capability empowers you to create responsive and interactive web pages that adapt to various scenarios.
 Performance is another advantage. EJS is lightweight and fast, contributing to quicker page load times and a smoother user experience.
 A strong community and comprehensive documentation bolster EJS’s appeal. Finding resources, tutorials, and support is a breeze, making it accessible to developers of all skill levels. Its broad compatibility with other Node.js modules and libraries further enhances its versatility.
 In essence, EJS offers a powerful combination of simplicity, flexibility, and performance, making it an ideal choice for building dynamic web applications with Node.js.

29
 Install EJS
 Here are the steps to install and set up EJS in an existing Express.js/Node.js project:
 Install Open your terminal and navigate to your project directory. Then, run the following command to install EJS:
 npm install ejs
 Set EJS as the View In your main server file (usually app.js or server.js), you must set EJS as the view engine. Add the following lines of code:
 const express = require('express');
 const app = express();
 // Set EJS as the view engine
 app.set('view engine', 'ejs');
 Create a Views Create a directory named views in the root of your project. This is where you will store your EJS templates.
 Create an EJS Inside the views directory, create an EJS file (e.g., index.ejs). Add some HTML content to this file:
 html>

Hello, EJS!

 Render the EJS Use the res.render method to render the EJS template in your route handler. For example:
 app.get('/', (req, res) => {
 res.render('index');
 });
 // Start the server
 const PORT = process.env.PORT || 3000;
 app.listen(PORT, () => {
 console.log(`Server is running on port ${PORT}`);
 });
 That’s it! Your Express.js/Node.js project should now be set up to use EJS as the templating engine.

30
 Using partials with EJS
 Using partials with EJS (Embedded JavaScript) is a great way to keep your code DRY (Don’t Repeat Yourself) and organized. Partials allow you to reuse common pieces of HTML across different views. Here’s a simple guide to get you started:
 Create a Partial First, create a new EJS file for your partial. For example, you might create a file called header.ejs for your site’s header.

 <%- include('partials/header') %>

Welcome to the Home Page

 This is the main content of the page.

 Organize Your It’s a good practice to keep your partials in a separate directory, like views/partials, to keep your project organized.
 Use Partials for Repeated You can create partials for any repeated sections of your site, such as footers, navigation bars, or sidebars.

 © 2025 My Website

 And include it in your main view:

 <%- include('partials/header') %>

Welcome to the Home Page

 This is the main content of the page.

 <%- include('partials/footer') %>

 By using partials, you can maintain a cleaner and more manageable codebase.

image-oq7kcsf5.png
LR] [tomhenricksen — -zsh — 80x24.

Last login: Wed Jan 22 15:23:13 on console
tomhenricksen@Tons-MacBook-Pro ~ % node —v
v22.13.1

tomhenzicksen@Toms-MacBook-Pro ~ % |

image-pwhal0k5.png
15 my-first-node-app.js
1 console. log('My first Node.js app!!');

image-cpmj5wzu.png
A @ Install Node.js.

Installing Node.js

Introduction
License
Destination Select

U R Moving items into place

© Installation

ing: Less than a minute

ne

image-7anvtqii.png
[X @ Install Node.js.

The installation was completed successfully.

This package has installed:
Introduction

* Node.js v22.13.1 to /usr/local/bin/node

License
© npmv109.2to /usr/local/bin/npm

Destination Select
Installation Type. Make sure that /usr/local/bin s in your SPATH.

Installation

© Summary

ne

image-vf79c9sh.png
(X @ Install Node.js.
Welcome to the Node s Installer
“This package will install:
© Introduction packag

* Node.js v22.13.1to /usr/local/bin/node
© npmv109.2to /usr/local/bin/npm

nede

Continue

)

image-n3ckbdzf.png
[X @ Install Node.js.

Standard Install on *Macintosh HD"

i This will take 314.2 MB of space on your computer.

License Click Install to perform a standard installation of this software
BTG on the disk “Macintosh HD".

© Installation Type

ne

Change Install Location...

GoBack Install

image-w5k80npl.png
Run JavaScript
Everywhere

Node.js® is a free, open-source, cross-platform
JavaScript runtime environment that lets
developers create servers, web apps, command
line tools and scripts.

Download Node s (LTS)

Downloads Node.js v22.13.1" with long-term support.
Nodes can also be installed via package managers.

Want new features sooner? Get Node.js v23.6.1" instead.

image-b8v097i1.png
« Downloads
Back/Forward

Name

@ node-v2213.1pkg

image-ctg73ogi.png
PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL PORTS

» tonhenricksen@Tons-HacBook-Pro node % node my-first-node-app. js
My first Node.js app!
tomhenricksengTons-MacBook-Pro node % Il

image-f29dlqpu.png
< first-text-file.txt
1 We are writing to a file now!

image-kf3spiyw.png
& My=S8cond=noue-sppJs / ..
1 const fs = require('fs');
2 fs.writeFilesync(' first-text-file.txt', 'We are writing to a file now!');

image-ditcdc9m.png
C @ O 127.0.0.1:3000

Hello World

image-t5kt8poq.jpg
PROBLEMS ~ OUTPUT DEBUG CONSOLE ~ TERMINAL PORT

‘tomhenricksen@Tons-MacBook-Pro node % node server.js
Server running at http://127.9.0.1:3000/

image-s3ifccx0.jpg
oo © Install Node js
Welcome to the Node s Installer
This e will install:
@ Introduction pekeg

* Node.js v22.13.1to /usr/local/bin/node
© npmv109.2to /usr/local/bin/npm

nede

Continue

image-f6jketw8.jpg
Run JavaScript
Everywhere

Node.js® is a free, open-source, cross-platform
JavaScript runtime environment that lets
developers create servers, web apps, command
line tools and scripts.

Download Nodk

Downloads Node.js v22.13.1" with long-term support.
Node js can also be installed via package managers.

Want new features sooner? Get Node.js v23.6.1" instead.

image-kodl9tr8.png
tomhenricksen@Toms-MacBook-Pro Express % npm init
This utility will walk you through creating a package.json file
It only covers the most common items, and tries to guess sensible defaults.

See ‘npm help init' for definitive documentation on these fields
and exactly what they do.

Use ‘npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press "C at any time to quit.
package name: (express)
version: (1.0.0)

description:

entry point: (index.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to /Users/tomhenricksen/Express/package.json:

image-pquxz15a.jpg
LR] [tomhenricksen — -zsh — 80x24

Last login: Wed Jan 22 15:23:13 on console
tomhenricksen@Toms-MacBook-Pro ~ % node —v
v22.13.1

ke o IR,

image-myrohwvk.jpg
‘tomhenricksen@Tons-MacBook-Pro Express % node app. js
Carver 15 running aF FEVET F710celhosts 3080

image-dl6940jn.png
tomhenricksen@Toms—MacBook-Pro Express % npm install express
added 69 packages, and audited 70 packages in 3s

14 packages are looking for funding
run ‘npm fund' for details

found @ vulnerabilities

