

Coding
All New Edition

by Paul McFedries

Coding For Dummies®, All New Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2026 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and
training of artificial technologies or similar technologies.

Media and software compilation copyright © 2026 by John Wiley & Sons, Inc. All rights reserved, including rights for
text and data mining and training of artificial technologies or similar technologies.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher
or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permissions.

The manufacturer’s authorized representative according to the EU General Product Safety Regulation is Wiley-VCH
GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media that is not included in the version you purchased, you may download this material at http://booksupport.
wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2025946286

ISBN 978-1-394-36556-2 (pbk); ISBN 978-1-394-36558-6 (ebk); ISBN 978-1-394-36557-9 (ebk)

http://www.wiley.com
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
mailto:Product_Safety@wiley.com
http://Dummies.com
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents iii

Table of Contents
INTRODUCTION . . 1

About This Book. . 1
Foolish Assumptions. . 2
Icons Used in This Book. . 3
Beyond the Book. . 3

PART 1: CODING BASICS . . 5

CHAPTER 1:	 What Is Coding?. . 7
Programming: Making a Computer Do Your Bidding 8
What Is a Programming Language? . . 9
The Role of Programming Languages . . 10
Understanding How Code Is Written and Executed. 12
Why Learn to Code? Let Me Count the Ways . . 15
Real-World Uses of Coding. . 19

CHAPTER 2:	 Coding Concepts You Need to Know. 23
Storing Stuff in Variables . . 24
Dealing with Data Types. . 27
Constructing Expressions. . 29
Making Decisions with Conditionals. . 33
Automating Repetitive Tasks with Loops. . 36
Organizing Code into Functions . . 38
Introducing Objects. . 41
Documenting Code with Comments . . 43
Debugging Code and Handling Errors. . 44

CHAPTER 3:	 Getting to Know Some Programming
Languages. . 49
Ranking Programming Languages . . 50
Assembly: Close to the Machine. . 50
Python: No Experience Required . . 53
JavaScript: The Glue that Binds the Web. . 55
Sneaking a Peek at a Few Other Popular Languages. 57
Grokking the Difference between Interpreted
and Compiled Languages. . 68

iv Coding For Dummies

PART 2: LEARNING PYTHON:
THE BEGINNER-FRIENDLY LANGUAGE. . 69

CHAPTER 4:	 Getting Started with Python. . 71
Getting to the Command Line. . 72
Installing Python . . 75
Running the Python Interpreter . . 80
Running Your First Python Program. . 84

CHAPTER 5:	 Getting Comfy with Some Python
Fundamentals. . 89
Declaring Variables. . 90
Exploring Python Data Types. . 91
Constructing Expressions. . 93
Messing Around with Strings. . 97

CHAPTER 6:	 Storing Data and Controlling Your Code. 105
Storing Stuff in Lists . . 105
More Ways to Store Stuff: Tuples and Dictionaries 111
Conditionals in Python. . 115
Python Loops. . 119
Adding Comments to Your Code. . 123
Example: Build Your Own Survey Bot. . 123

CHAPTER 7:	 Reusing Code. . 127
Making Your Code More Efficient with Functions. 128
Getting the Hang of Variable Scope. . 131
Avoiding Wheel Reinvention with Modules. . 134
Reuse Heaven: Installing External Libraries . . 141
Reusing Data by Writing and Reading Files. . 144
Example: Building a Quotations Archive. . 147

CHAPTER 8:	 Expanding Your Python Skills . . 153
Waxing Pythonic . . 154
Comprehending List Comprehensions . . 155
Introducing Object-Oriented Programming (OOP). 158
Working with APIs. . 165
Handling Program Errors. . 170
Debugging Your Code. . 174
Example: Cat Fact Cards. . 176

CHAPTER 9:	 Building Some Useful Python Projects. 179
Project 1: Anagram Guessing Game. . 180
Project 2: Text Analyzer . . 193

Table of Contents v

PART 3: LEARNING JavaScript: THE LANGUAGE
OF THE WEB . . 207

CHAPTER 10:	Getting Your Feet Wet with JavaScript. 209
JavaScript: Controlling the Machine. . 210
What You Need to Get Started . . 211
Basic Script Construction. . 211
Adding Comments to Your Code. . 212
Creating External JavaScript Files . . 213
Getting to Know the Console. . 214

CHAPTER 11:	Getting the Hang of a Few JavaScript
Fundamentals. . 219
I Do Declare: Variables in JavaScript. . 220
Code Looping in JavaScript. . 221
Harnessing the Power of Functions. . 224
Getting the Hang of Variable Scope. . 227

CHAPTER 12:	Tackling Some JavaScript Objects 231
Pulling Strings . . 231
Dealing with Dates and Times. . 236
Working with Numbers: The Math Object. . 240
Working with Arrays. . 244

CHAPTER 13:	Unleashing JavaScript in the Browser 251
Getting to Know the Document Object Model 252
Specifying Elements . . 253
Traversing the DOM. . 257
Manipulating Elements. . 260
Modifying CSS with JavaScript. . 264
Building Reactive Pages with Events. . 267

CHAPTER 14:	Debugging JavaScript . . 271
Examining Your Debugging Tools. . 272
Debugging with the Console Window . . 273
Pausing Your Code . . 275
Stepping Through Your Code . . 279

CHAPTER 15:	Putting JavaScript to Work. . 283
Project 1: A Photo Gallery. . 284
Project 2: Get a Random Quotation from an API. 286

vi Coding For Dummies

PART 4: THE PART OF TENS. . 293

CHAPTER 16:	Ten Things to Know about AI and Coding 295
Understanding How You Can Use AI . . 296
Learning What AI Can and Can’t Do. . 296
Crafting Effective Prompts. . 297
Learning to Code Using AI. . 298
Avoiding AI Dependency. . 298
Reviewing the Major AI Coding Tools. . 299
Vibe Coding Is Fun. . 300
Best Practices for Integrating AI . . 300
Avoiding Common Mistakes . . 301
Understanding Code Before Using It. . 301

CHAPTER 17:	Ten Vital HTML Tags and CSS Properties 303
Ten HTML Tags You Need to Know. . 304
Ten CSS Properties to Memorize. . 306
Ten CSS Selectors to Swoon Over. . 308

INDEX. . 313

Introduction 1

Introduction

Okay, whoa, wait a minute: a book about coding!? Now!? With our new arti-
ficial intelligence (AI) overlords about to take over everything, especially
programming jobs? Are your eyes deceiving you? Is the author deluded,

possibly even insane? Will these questions never end?

Fortunately for you, I can answer all these queries by paraphrasing the eminently
paraphrasable Mark Twain:

The reports of the death of coding are greatly exaggerated.

Sure, AI tools such as ChatGPT and Microsoft Copilot are very good at generating
and fixing programming code, but we’ve learned over the past year or two that the
human element in coding is still very much needed. Coding is a craft just as much
as it is a science, and coding well requires the kind of creativity that is noticeably
lacking in current AI models.

And I’ll let you in on a little secret that no one seems to talk about very much:
Coding generates joy. It’s true! When you get to the point where you know enough
about coding that you can think of an idea, write the code for it, and then get your
computer to run that code, well to my mind there’s no better feeling. It’s pure
coding joy.

Oh, and I might as well let you in on yet another secret: Getting to the point where
you can code whatever idea comes to mind is not that hard and does not take very
much time! Even if you’ve never coded before, I promise that you are this close to
getting there.

So, yes, a book about coding!

About This Book
Welcome, then, to Coding For Dummies, All New Edition. This book teaches you
everything you need to know about coding, from what it is, to how to get started,
to writing and running your first programs. My goal is to show you that going

2 Coding For Dummies

from being clueless about coding to being comfortable with not one but two
different programming languages is a lot easier than you probably think. This
book shows that even the greenest rookie coder can learn how to build programs
that will amaze their family and friends (and themselves).

Notice that I didn’t say that this book teaches you everything there is to know
about coding. If you’re looking for lots of programming history, computer science
theory, and long-winded explanations of coding concepts, I’m sorry, but you
won’t find any of those things here. My philosophy throughout this book comes
from Linus Torvalds, the creator of the Linux operating system: “Talk is cheap.
Show me the code.” I explain what needs to be explained and then I move on
without further ado (or, most of the time, without any ado at all) to examples and
scripts that do more to illuminate a concept that any verbose explanations I could
muster. (And believe me, I can muster verbosity with the best of them.)

Why does this book’s title have All New Edition tacked on to the end? Because this
version of the book has been reimagined, reorganized, and rewritten from the
ground up. What you get inside these pages is a fresh and modern take on learning
how to code.

How you approach this book depends on your current level of web coding
expertise (or lack thereof):

	» If you’re just starting out, begin at the beginning with the three chapters in
Part 1. This will give you all the knowledge you need to pick and choose what
you want to learn throughout the rest of the book.

	» If you want to learn how to code for its own sake or you want a solid founda-
tion for learning other programming languages, the Python language is your
best bet, and it’s the subject of the chapters in Part 2.

	» If you want to learn how to build dynamic web pages, that’s the province of
JavaScript, so head straight to Part 3.

Foolish Assumptions
This book is not a primer on using a computer or editing text. This is a book on
learning to code, pure and simple. This means I assume the following:

	» You know how to operate a basic text editor and how to get around the
operating system and file system on your computer.

Introduction 3

	» You have an internet connection.

	» You know how to use your web browser.

Yep, that’s it.

Okay, well, not quite. For the JavaScript portions of the book, I assume you’re
already familiar with HTML and CSS. If you’re not, you can check out Chapter 17
to learn a few basics. However, if you really want to get into web coding, may I
not-even-remotely-humbly suggest my book HTML, CSS, and JavaScript All-in-One
For Dummies (Wiley), which will tell you everything you need to know.

Icons Used in This Book
This icon points out juicy tidbits that are likely to be repeatedly useful to you — so
please don’t forget them.

Think of this icon as containing the fodder of an advice column. It offers what I
hope is wise advice or a bit more information about a topic under discussion.

Look out! In this book, you see this icon when I’m trying to help you avoid mis-
takes that can cost you time, money, or embarrassment.

When you see this icon, you’ve come across material that isn’t critical to under-
stand but will satisfy the curious. Think “inquiring minds want to know” when
you see this icon.

Beyond the Book
Some extra content for this book is available on the web. Go online to find the
following:

	» The examples used in the book: You can find these in the following places:

•	 My website: https://paulmcfedries.com/books/coding-fd

•	 GitHub: https://github.com/paulmcfe/coding-fd

https://paulmcfedries.com/books/coding-fd
https://github.com/paulmcfe/coding-fd

4 Coding For Dummies

The examples are organized by chapter. For each example, you can view the
code, copy it to your computer’s clipboard, and run the code at the command
line or in the browser. If possible, please resist the temptation to just copy and
paste the code. The best way to learn any programming language is to get
what I call a “fingertip feeling” for it by typing the code yourself. Sure, it takes
more effort, but the code will seep into your brain faster this way.

	» The Web Dev Workbench: To try your own HTML, CSS, and JavaScript code
and see instant results, fire up the following site:

https://webdevworkshop.io/wb

You won’t break anything, so feel free to use the site to run some experiments
and play around with HTML, CSS, and JavaScript.

1Coding Basics

IN THIS PART . . .

Get acquainted with what coding is and what you can
do with it.

Learn the most important coding concepts.

Review the most popular programming languages.

Get your coding career off to its best start.

CHAPTER 1 What Is Coding? 7

Chapter 1
What Is Coding?

Everybody should learn to program a computer because it teaches you
how to think.

—STEVE JOBS

Okay, I’ll admit it: I’m not one of those look-before-you-leap types. I’m a
dedicated leaper. With almost every new thing I learn, my philosophy is
that I learn best when I do the thing. I usually just jump in, get my hands

dirty, make mistakes, fix them, and before long I develop a feel for this new
hobby or skill.

Notice, though, that I said I do that with almost every new thing I learn. I don’t do
it when I’m learning something related to coding. Why not? “Just jumping in” is
a lousy strategy for learning to code because the mistakes you make are dumb
ones that teach you nothing (as opposed to smart mistakes that you can learn
from). When it comes to learning anything related to code, it’s always best to start
with the basics and work your way slowly and steadily to competency, then profi-
ciency, then mastery.

This chapter is your look-before-you-leap introduction to coding. Here you
explore what coding is and how it works. You discover the myriad reasons why it’s
good to learn to code, and you investigate quite a few real-world uses for coding.

IN THIS CHAPTER

	» Understanding how
programming works

	» Perusing a few
programming languages

	» Taking a peek under the coding hood

	» Figuring out why you’d want to
learn to code

	» Learning how code is used in the
real world

8 PART 1 Coding Basics

Programming: Making a Computer
Do Your Bidding

A computer is a machine that follows instructions. Or, to put a finer point on it, a
computer is a machine that does nothing until someone or something tells it what
to do. That might sound surprising. After all, computers cost many hundreds,
sometimes even thousands, of dollars, and are positively bristling on the inside
with electronic gadgetry. Surely something so expensive and so complex must be
capable of doing some useful tasks on its own.

Nope.

Sure, when you turn on a new computer for the first time, some hieroglyphics
appear on the screen and you eventually end up in Windows or macOS or some
other desktop. Doesn’t that so-called boot process mean that the computer is
doing something on its own?

Again, nope.

When you turn on a computer, it automatically loads a set of instructions that tell
the computer what it must do to get the hardware (keyboard, mouse, screen, and
so on) up and running and to get the operating system (Windows or macOS or
whatever) loaded. That set of instructions is known as the computer’s firmware,
which is a special type of program embedded in the computer hardware. When the
firmware has completed its job, it calls the bootloader, which loads the operat-
ing system.

Okay, that’s all fine, but where did the firmware and bootloader come from? I’m
glad you asked because at long last I can get to the point of all this: Someone
coded them.

Some very smart person versed in the esoterica of computer hardware and system
software programmed the firmware, and some other just as smart person coded
the bootloader. So, let me repeat myself: Computers can’t do anything unless
someone or something tells them what to do. And the way you tell a computer
what to do is via code.

Coding firmware or a bootloader is hideously complex and requires years of study.
Happily, you won’t be going anywhere near that level of complexity in this book.
Whew! But everything you do learn here will be a variation on the overall theme of
this section: telling a computer what you want it to do using code.

CHAPTER 1 What Is Coding? 9

Am I talking about making a computer do anything you want? Alas, no, although
that would be very useful! When you code, you’re given a set of tools for the job;
the tools you work with vary depending on the language you’re using. As I discuss
later in this book, the tools you get with Python (refer to Part 2) are much differ-
ent than the tools you get with JavaScript (check out Part 3). As an analogy, the
types of home projects you’d take on would be very different depending on
whether you had a carpenter’s toolbox or a sewing kit.

But no matter how you code — no matter what programming tools you have at
your disposal — you’re almost always doing one (or sometimes both) of the
following:

	» Solving a problem: One of the most common reasons that a piece of code
gets written is because the coder had a pain point or an inefficiency in their
life and saw a way to use code to make their life easier or more streamlined.

	» Creating something new: Another common reason to start coding is when
you get a great idea and want more than anything to bring that idea to life.

No matter what you work on in your coding career, you’re almost always doing
one (or both) of these things — solving problems, creating new stuff, or combin-
ing the two to make something that’s both new and improved.

What Is a Programming Language?
Python and JavaScript are programming languages. Okay, fine, but what does it
mean to call something a programming language? To understand this term, you
need look no further than the language you use to speak and write. At its most
fundamental level, human language is composed of two things — words and rules:

	» The words are collections of letters that have a common meaning among all
the people who speak the same language. For example, the word book
denotes a type of object; the word heavy denotes a quality; and the word read
denotes an action.

	» The rules are the ways in which words can be combined to create coherent
and understandable concepts. If you want to be understood by other
speakers of the language, you have only a limited number of ways to throw
two or more words together. “I read a heavy book” is an instantly comprehen-
sible sentence, but “book a I read heavy” is gibberish.

The key goal of human language is being understood by someone else who is lis-
tening to you or reading something you wrote. If you use the proper words to refer

10 PART 1 Coding Basics

to things and actions and if you combine those words according to the rules, the
other person will understand you.

A programming language works in more or less the same way. That is, it, too, has
words and rules:

	» The words are a set of terms that refer to the specific things that your
program works with or the specific ways in which those things can be
manipulated. These words are known as reserved words or keywords.

	» The rules are the ways in which the words can be combined to produce the
desired effect. In the programming world, these rules are known as the
language’s syntax.

The crucial concept here is that just as the fundamental purpose of human lan-
guage is to be understood by another person, the fundamental purpose of a pro-
gramming language is to be understood by whatever machine is processing the
language. The key, however, is that being “understood” by the machine really
means being able to control the machine. That is, your code “sentences” are com-
mands that you want the machine to carry out.

The Role of Programming Languages
Let’s say you travel to Igboland in Nigeria and want to ask a local for directions to
the nearest bathroom. If that person speaks only Igbo (the native language of
Igboland), one solution would be to find someone who speaks both English and
Igbo and ask that person to translate your request as well as the response. Prob-
lem solved!

The person who can translate your English into Igbo is called an interpreter, and
that task is essentially how we’re able to program a computer. The problem is that
a computer understands only its native language, which is called machine language
and consists of 1s and 0s. (I won’t get into this topic here, but if you’re curious to
know more, check out the sidebar “How computers work: A crash course for
would-be coders.”) A very simple machine language instruction to a computer
might look something like this:

10111000 00000001 00000000 00000000 00000000
10111111 00000001 00000000 00000000 00000000
01001000 10111110 00000000 01100000 01100000
00000000 00000000 00000000 00000000 00000000
10111010 00001101 00000000 00000000 00000000

CHAPTER 1 What Is Coding? 11

00001111 00000101 10111000 00111100 00000000
00000000 00000000 00110001 11111111 00001111
00000101

Yikes! No sane human wants to deal with something as weird as machine lan-
guage, so one of the first things that engineers did after computers were invented
was come up with two remarkable inventions:

	» A way of representing machine-language instructions as human-
understandable English words

	» A way of converting those English words back into the machine language
that the computer understands

The first invention is called a programming language and consists of, in part,
English (or, sometimes, English-like) words such as if, while, and return. You
use these generally comprehensible terms to construct statements, which are com-
mands that you want the computer to carry out on your behalf.

For example, the preceding machine language code began life, in part, as the fol-
lowing statement:

printf("Hello, World!");

This statement, which is written in the C programming language, outputs the text
Hello, World! C is an example of a high-level language, which describes any pro-
gramming language that abstracts away the mind-numbing complexity of the
computer’s native machine language.

HOW COMPUTERS WORK: A CRASH COURSE
FOR WOULD-BE CODERS
You might have heard someone say, with great authority, that “computers operate by
processing 1s and 0s.” If, upon hearing that, you were flummoxed, let me tell you that
your reaction is utterly normal. It really is incomprehensible to us mere mortals that
computers, which can do all these incredible things, perform those wonders by slinging
around just two values: 1 and 0. What’s behind this mystery?

At the lowest level, a computer is basically a collection of billions of unimaginably teensy
components called transistors, which operate essentially as on/off switches for electrical

(continued)

12 PART 1 Coding Basics

C is a notoriously difficult language to learn, so aside from a brief mention in
Chapter 3, I steer clear of it in this book. Instead, you learn two languages that
reside at an even higher (read: easier) level than C: Python (covered in Part 2) and
JavaScript (tackled in Part 3).

The second of the inventions I mentioned is called either an interpreter or a com-
piler, depending on the programming language. (I explain the difference between
interpreters and compilers in Chapter 3.) Either way, the purpose of this invention
is to take the English-like code of a programming language and convert it to
something (such as machine language) that the computer can read and run. All of
this happens behind the scenes, so, as a coder, you never have to lay your eyes on
a single 1 or 0 (unless it’s part of your Python or JavaScript code, of course).

Understanding How Code Is
Written and Executed

At this very early stage of your programming career, the process of coding might
seem more than a little mysterious, possibly even downright puzzling. After all,
from the outside a computer is a mystifying machine, so the idea that you can
somehow control this inscrutable hunk of electronica might seem the stuff of

current. When a transistor allows electrical current to pass through, by convention that
state is represented by a 1. When a transistor blocks electrical current from passing
through, by convention that state is represented by a 0. Each 1 or 0 is called a binary
digit, or bit. One bit offers only two options: 1 or 0. Combining two bits offers four
options: 00, 01, 10, or 11. Skipping ahead, I can tell you that combining eight bits offers
256 options, from 00000000 to 11111111 and every combo in between. A string of eight
bits is called a byte and the 256 possible byte values is enough to code every letter,
every number, every punctuation mark, plus a few other standard symbols that make
up the American Standard Code for Information Interchange (ASCII) table. The upper-
case letter H, for example, is 01001000 in binary. So, combine eight transistors, set them
so that they form the byte 01001000, and you’ve got the letter H stored on your circuit
board (which might be a memory module).

Do you need to memorize the byte values for every letter, number, and symbol to code
a computer? No, not even close! In fact, the history of coding can be seen as the moving
farther and farther away from how information is physically stored using transistors to
being able to make the computer do your bidding using relatively simple English words.

(continued)

CHAPTER 1 What Is Coding? 13

fantasy. Or even if you’ve already convinced yourself that you can make a com-
puter do your bidding, how you do that might still have you scratching your head.

Perhaps the secret to being able to code a computer is having the right equipment,
something like needing a loom for weaving or a lathe for woodworking.

Nope, you’re way off. Maybe the most surprising thing about code is that it’s
nothing but text. (To keep things simple, for now I’m ignoring non-text files such
as images and videos that you might incorporate in, say, a web page.) Ever used
Notepad in Windows or TextEdit on a Mac? Those bare-bones text files are essen-
tially what you use to write your code.

To describe the programming process in its most generic terms, I like to use what
I call the “three-and-a-half Rs” of coding — write, run, revise, and repeat:

	» Write: In a text file, you write your code as a series of statements, each of
which is essentially an instruction to the interpreter or compiler for whatever
programming language you’re using.

	» Run: You invoke the programming language’s interpreter or compiler and tell
it to process the code in the text file you wrote. The interpreter or compiler
then executes the code, and the results appear, which could be the program’s
output or one or more error messages.

	» Revise: Based on the results of the run, you edit your code to fix any errors
that crop up or to improve your code.

	» Repeat: You write more code (to, say, add new functionality), run it, revise it
as needed, and then repeat the cycle until your program or app or web page
or whatever is complete.

That’s the bird’s-eye view. The next two sections bring things slightly closer to
the ground by looking at the coding processes specifically for Python and
JavaScript.

How Python code works
I go into a pleasing amount of detail about Python in the chapters that make up
Part 2, so here I just provide you with a quick overview of the Python cod-
ing process:

1.	 Using a text editor or code editor, write your Python language state-
ments in a plain text file.

When you save your text file for the first time, be sure to name the file with the
.py file extension, which identifies it as a Python file.

14 PART 1 Coding Basics

2.	 At the command line, type python, a space, and the name of the Python
file, and then press Enter or Return.

For example, the following runs a file named hello.py:

python hello.py

The python part of the command invokes the Python interpreter, which
processes the content in the Python file one statement at a time. Note that the
Python interpreter is available on your computer only if you have installed
Python, as I describe in Chapter 4.

The interpreter then displays the results of the code, which might be some
output you defined or one or more error messages.

As I discuss in Chapter 4, there are other ways to execute Python code,
including an interactive Python shell that enables you to run one Python
statement at a time and code editors that enable you to run Python code from
the editor’s development environment.

3.	 Return to your code editor and modify the code as needed based on the
results of the most recent run, especially to troubleshoot any errors that
cropped up.

4.	 Repeat Steps 1 through 3 as required until your Python program
is complete.

How JavaScript code works
JavaScript is the subject of the chapters in Part 3, so I’ll just whet your appetite
here with a short-and-sweet review of the JavaScript coding process:

1.	 Using a text editor or code editor, write your JavaScript language
statements in a plain text file.

I assume for simplicity that you want to run your JavaScript statements in a
web page (that is, an HTML file, which usually uses the .html file extension),
so there are two ways to go:

•	 Create an external JavaScript file: Save your text file using the .js file exten-
sion, which identifies it as a JavaScript file, and then modify your web page
code to tell the browser about the file. For example, the following tags
reference a file named hello.js:

<script src="hello.js"></script>

•	 Embed the JavaScript code inside the HTML file: Your JavaScript statements
reside within a <script></script> block:

CHAPTER 1 What Is Coding? 15

<script>
 JavaScript statements go here
</script>

If this rapid-fire overview is confusing, don’t sweat it for now. I discuss all this in
more careful detail in Chapter 10.

2.	 Open the HTML file in a web browser or, if the HTML file is already open
in the browser, refresh the page.

The web browser contains a built-in JavaScript interpreter, so as soon as the
browser loads the HTML file, it begins processing the JavaScript code one
statement at a time. The browser then displays the results of the code, which
might be some output you defined, a web page modification, or one or more
error messages.

3.	 Switch back to your code editor and edit the code as required given what
happened when you opened or refreshed the HTML file. In particular, be
sure to tackle any errors that cropped up.

4.	 Repeat Steps 1 through 3 as required until your JavaScript code is running
the way you want it.

Why Learn to Code? Let Me
Count the Ways

Since you’re reading this book, I think it’s safe to assume that you want to learn
how to code. If that’s true, feel free to skip merrily over the rest of this section.
However, if you’re still on the fence, trying to decide whether you want to spend
the time and effort to learn to code, have I got a section for you!

If you’re short on time, my immediate answer to the question, “Should I learn to
code?” is a real timesaver: Yes, absolutely! If you still need to be convinced, let the
next few sections serve as my long answer.

Coding isn’t just for nerds
You might have an image of a stereotypical coder in your head, one that no doubt
envisages some not-recently-washed nerd sitting in a dank, dimly lit basement
surrounded by empty pizza boxes and crushed energy drink cans. Ah, so you have
seen photos of my office!

16 PART 1 Coding Basics

I’m sure many coders fit that stereotype, but most don’t and you certainly don’t
have to stop bathing and ruin your diet to code.

Lots of nerds code, but not all coders self-identify as nerds, so if the geeky reputa-
tion of coding is holding you back, forget about it. You can code just as you are.

Coding teaches you how to think
While it’s true that the essence of coding is writing instructions for a computer to
follow, it’s not like writing a list of items for your spouse to pick up when they go
to the grocery store. That is, you can’t just pick up the coding equivalent of a pen
and start writing things down as they pop into your head. Coding requires mul-
tiple kinds of thought, so in a sense coding teaches you how to think.

For example, when you’re considering how to tackle a coding project, it always
helps if you can break down the project into smaller, more manageable chunks.
Similarly, computers are relentlessly logical beasts, so successful coding requires
that you use your logical reasoning skills to “think” like the computer. Every pro-
gram ever written contains errors, so a big part of coding is troubleshooting prob-
lems, which requires understanding how your code works. Converting an idea in
your head into code that brings the idea to life is a task that requires large doses
of imagination.

All these skills — breaking down problems, logical reasoning, troubleshooting
problems, critical thinking, and imagination — not only make you a good coder
but are also tremendously useful outside programming. Whether it’s business,
finance, science, or trying to assemble some piece of IKEA furniture with its
inscrutable instructions, the thinking skills you hone via coding will help with
whatever you’re doing.

Coding is fun and creative
In the preceding section, I mentioned that getting code to run requires a logical,
channel-the-computer approach. I stand by that, but I’ll also admit that “think
like the computer” isn’t a clarion call for fun. That’s okay, though, because think-
ing logically is only part of what it takes to get a program running. Most of us
associate creativity with artistic endeavors, but I’m here to tell you that coding is
one of the most creative skills you can learn.

For starters, every non-trivial coding project you work on will present you with
hurdles that at first seem insurmountable but will soon yield to some creative
problem-solving.

CHAPTER 1 What Is Coding? 17

But coding creativity really begins with designing and implementing whatever
idea has fired your imagination. Want to make a game? Design a website? Create
an app? Craft some digital artwork? Whatever it is, coding enables you to take
almost any idea, no matter how pie-in-the-sky it might seem to you now, and
turn it into an actual, working project that you and others can play, run, or view.
Believe me when I tell you that building things from scratch and watching them
come to life not only gives your creativity circuits a workout but is also the very
definition of fun.

You can build (almost) anything
you can imagine
Being able to code is like having a superpower: If you can imagine something, you
can build it. Want to create a website for your side hustle? Code it. Have an idea for
an awesome game? Make it. Need an app to remind you to drink water? Build it.
(Then send it to me. I could really use that app!)

When you learn to code, you give yourself the near-magical ability to create some-
thing out of nothing. This ability is incredibly rewarding because now you’re not
just using apps — you’re making them.

Scoot over to the “Real-World Uses of Coding” section for a few practical and use-
ful project ideas.

Coding is a universal language
When people with different native languages want to communicate, they can
sometimes use another language that they have in common. That common lan-
guage is called a lingua franca.

In today’s technical world, code often acts as a kind of lingua franca because pro-
gramming is one of the few skills that works the same across every industry and
country. A JavaScript developer in Japan writes the same kind of code as one in
Canada. A Python script written in the U.S. can be used by someone in Germany.

This means coding opens up opportunities around the world. If you ever dream of
working internationally (or remotely for a global company), coding can help you
get there.

18 PART 1 Coding Basics

Coding opens the door to high-paying jobs
Speaking of working, coding is one of the best ways to land yourself a great job.
Let’s start with a big one: money. Tech jobs consistently rank among the highest
paying careers. What about opportunities? Even in the age of AI, the demand for
programmers continues to grow. Companies in nearly every industry — finance,
healthcare, entertainment, even agriculture — need developers. And many pro-
gramming jobs offer remote work opportunities, flexible hours, and great benefits.

Here are just a few example careers:

	» Software developer

	» Web developer

	» Data scientist

	» Cybersecurity analyst

	» AI/machine-learning engineer

But you need a computer science degree, right? Not necessarily. Plenty of people
who become professional programmers are self-taught using books just
like this one!

You don’t have to be a pro to benefit
from learning to code
Yep, I get it: Being a professional programmer isn’t for everyone. It might be the
hours, the constant sitting, all that screentime, or whatever. Turning pro is one
coding path, but it’s not the only one. Whatever field you work in (or want to work
in), having even basic coding know-how can give you an edge over your peers.

For example, if you work in marketing, knowing how to code can enable you to
automate reports and analyze customer data. If you work in finance, coding can
help you write scripts to track stock prices and investments. If healthcare is your
field, knowing how to code can help you manage patient data efficiently. If you’re
an educator, you can use code to create fun and interactive learning tools
for students.

Whatever your career, knowing how to code is a bonus skill that makes you more
valuable, more productive, and more creative.

CHAPTER 1 What Is Coding? 19

Coding is easier to learn than ever before
Back in the dim mists of time otherwise known as the twentieth century, learning
to code was hard. A few dedicated hobbyists taught themselves to program, mostly
using a relatively simple language called BASIC, but the vast majority of program-
mers learned to code by obtaining expensive college degrees that required reading
enormous textbooks filled with abstruse technical jargon and recondite computer
science theory.

Today? Ah, today we have beginner-friendly languages like Python and JavaScript
that enable anyone to learn to code, no fancy-schmancy college degree required.
Forget the jargon and the theory. If you can think reasonably logically and you can
break down a problem in smaller challenges, you can learn to code.

Coding is the future
Back in 2011, the venture capitalist Marc Andreesen wrote an op-ed piece titled
“Why software is eating the world.” He meant that software was and is trans-
forming entire industries and disrupting traditional ways of doing business. He
predicted that software would become a crucial and more deeply baked-in com-
ponent of company operations, products, and services.

However, before software can eat anything, it has to be coded. Before software can
be embedded into every facet of business, someone has to program it. Software is
all around us now and will soon be ubiquitous. Learning to code now future-
proofs your skills, ensuring that you stay relevant in this rapidly evolving, being-
eaten-by-software world.

Real-World Uses of Coding
The overall theme of this chapter has been that coding, at its most basic, is just
cajoling a computer into performing some task. As the early chapters in Part 2
(Python) and Part 3 (JavaScript) show, it’s not that hard to write code that makes
a computer do something trivial, such as display text on the screen. Simple and
straightforward examples are a great learning tool and an easy way to build your
coding confidence, but they lack, well, substance.

After writing and running a few such examples, you might start to wonder whether
that’s all there is to coding. Is programming all bun and no hamburger? All sizzle
and no steak? Are any vegetarians still reading this?

20 PART 1 Coding Basics

Fortunately, even beginner-welcoming languages such as Python and JavaScript
can be used to build useful and fun projects. You build some in this book a bit later,
but for now I want to give you a taste of what’s possible. Here, broken down into
five development categories, are a few things that folks in the real world are
building using Python:

	» Automation: Python can automate boring, repetitive tasks like renaming files,
sending emails, and scraping data from websites. For example, a marketer
can write a Python script to automatically send out weekly email reports
instead of doing it manually.

	» Data science: Big-time firms such as Google, Netflix, and Facebook use
Python to analyze the massive amounts of data they generate. Many business
users take advantage of Python libraries such as Pandas and NumPy to help
them make sense of customer behavior, market trends, and sales predictions.

	» Machine learning: This branch of AI enables computers to learn from data
and make decisions or predictions without being programmed. Python-based
machine-learning tools such as TensorFlow and scikit-learn enable companies
to develop AI-powered systems, such as recommendation engines (I’m looking
at you, Netflix suggestions).

	» Scientific computing and engineering: NASA and other scientific institutions
take advantage of Python to create complex simulations and calculations.
Python also helps engineers analyze large datasets in fields such as genetics,
physics, and climate modeling.

	» Web development: Python is used to build web applications using tools such
as Django and Flask, and companies such as Instagram and Spotify rely on
Python-based web services. However, in web development, Python is most
often called upon for building server systems for handling chores such as data
storage, user authentication, and security.

Once you’re comfortable with Python, be sure to read Chapter 9, where I take you
step-by-step through a few useful Python projects.

Here are some projects that coders in the real world are building using JavaScript,
arranged into five development categories:

	» Web page development: A sprinkling of JavaScript turns a boring web page
into something interactive and dynamic. Browser-based JavaScript can
request data from a server, display that data on the page, and handle user
input. For example, when you type some text in a web page search box and a
list of matching items appears lickety-split, that tells you that JavaScript is
working feverishly in the background to fetch and display those search results.

CHAPTER 1 What Is Coding? 21

	» Web server development: A JavaScript tool called Node.js runs on many
web servers and is used for back-end tasks, such as dealing with data,
authenticating users, and providing cloud services. Behemoth companies
such as LinkedIn and PayPal use Node.js to power their web apps.

	» Mobile apps: JavaScript tools are available that enable developers to build
mobile apps. Using the framework React Native, Facebook and Instagram
(and many others) use JavaScript to offer apps that work on both iOS and
Android devices.

	» Games: JavaScript tools such as Phaser.js enable developers to use JavaScript
to build games that run either in the browser or on mobile devices.

	» Smart devices: JavaScript is used to program smart home devices, such as
lights, security cameras, and thermostats. And with Node.js, developers can
connect JavaScript applications to Internet of Things (IoT) systems.

After you have the JavaScript basics down, head over to Chapter 15 to learn how to
code several practical JavaScript projects.

CHAPTER 2 Coding Concepts You Need to Know 23

Chapter 2
Coding Concepts You
Need to Know

Well begun is half done.
—ARISTOTLE

A certain class of programmer self-identifies as a kind of “high priest” of
software, versed, unlike us laypeople, in the esoteric and arcane rites of
programming. While it’s certainly true that top-level software engineers

are impressively knowledgeable about the systems they code, these high priest
types want you to believe that only a select group is capable of doing any kind of
programming.

You’re about to find out just how untrue that is. Coding, far from being a rarefied
intellectual pursuit available only to an elite few, is a democratic craft that anyone
can learn. As proof, I offer up this chapter, which demonstrates that true coding
requires understanding just a handful of programming concepts: variables, data
types, expressions, conditionals, loops, functions, and objects. Oh, sure, the high
priests know probably know a few dozen more programming ideas. But with this
chapter’s accessibly small list of coding concepts, you can build a lifetime’s worth

IN THIS CHAPTER

	» Getting to know variables, data
types, and objects

	» Building your own expressions
and functions

	» Controlling code with
conditionals and loops

	» Adding comments for readability

	» Debugging the inevitable errors

24 PART 1 Coding Basics

of apps, websites, games, or whatever you like. Your path to becoming a true
coder — ignore those blustering high priests over there — begins now.

Storing Stuff in Variables
By default, your programs live a life without the benefit of short-term memory. In
the case of Python and JavaScript, the interpreter executes your code one state-
ment at a time, until no more statements are left to process. It all happens in the
perpetual present. Ah, but notice that I refer to this lack of short-term memory as
the default state of your scripts. You have the power to give your scripts the gift of
short-term memory.

But why would a script need short-term memory? Because one of the most com-
mon concepts that crops up when coding is the need to store a temporary value for
use later. In most cases, you want to use that value a bit later in the same script.
However, you may also need to use it in some other script, to populate an HTML
form (if you’re coding a web page) or as part of a larger or more complex calcula-
tion. For example, if you’re constructing a shopping cart script, you may need to
calculate taxes on the order. To do that, you must first calculate the total value of
the order, store that value, and then later take a percentage of it to work out the tax.

In programming, the way you save a value for later use is by storing it in a vari-
able. A variable is a small chunk of computer memory set aside for holding pro-
gram data. The good news is that the specifics of how the data is stored and
retrieved from memory happen well behind the scenes, so it isn’t something you
ever have to worry about.

Declaring variables
The process of creating a variable is called declaring in programming terms. All
declaring really means is that you’re supplying the variable with a name and tell-
ing the browser to set aside a bit of room in memory to hold whatever value you
end up storing in the variable.

How you declare a variable depends on the programming language you’re coding
in. Python is nice and simple because you just set the name of the variable equal
to the value you want it to store initially:

cookies_eaten = 3

This statement declares a variable named cookies_eaten and sets the variable’s
value to 3.

CHAPTER 2 Coding Concepts You Need to Know 25

Most other languages require a bit more info. Here’s a variable declared in Java
(not the same as JavaScript; check out Chapter 3 if you don’t believe me):

float interestRate = 0.05

The added float keyword declares the variable with the floating-point data type.
Skip ahead to the “Dealing with Data Types” section to find out what on Earth the
phrase floating-point is referring to.

Variable names can’t include spaces, so when a name requires two or more words,
most coders smush the words together and capitalize the first letter of every word
after the first. This combination of lowercase and uppercase letters is called
camelCase (because it creates humps in the text; no, seriously).

Many languages enable you to declare a variable without also assigning it a value.
Here’s an example using the Go language:

var interestRate float32

Note the var keyword, which is short for variable and is a common keyword for
declaring variables. You then assign a value to the variable later in your code:

interestRate = 0.05

Including variables in other statements
With a variable declared and assigned a value, you can then use that variable in
other statements. When the interpreter comes across the variable, it goes to the
computer’s memory, retrieves the current value of the variable, and then substi-
tutes that value into the statement. The following code presents an example:

interestRate = 0.05
interestRate = interestRate / 12

This code declares a variable named interestRate with the value 0.05; it then
divides that value by 12 and stores the result in the variable.

If the second statement is something you’ve never come across before, it probably
looks a bit illogical. How can something equal itself divided by 12? The secret to
understanding such a statement is to remember that the interpreter always evalu-
ates the right side of the statement — that is, the expression to the right of the
equals sign (=) — first. In other words, it takes the current value of interestRate,
which is 0.05, and divides it by 12. The resulting value is what’s stored in

26 PART 1 Coding Basics

interestRate when all is said and done. For a more in-depth discussion of opera-
tors and expressions, fast-forward to the “Constructing Expressions” section.

Getting your head around arrays and lists
Variables are a fundamental aspect of coding, but it’s easy to use them ineffi-
ciently. For example, consider the following declarations:

day1 = "Monday"
day2 = "Tuesday"
day3 = "Wednesday"
day4 = "Thursday"
day5 = "Friday"
day6 = "Saturday"
day7 = "Sunday"

These are string variables (check out “Dealing with Data Types” to learn what a
string is), and together they store a collection of related things (days of the week,
in this case). Whenever you find you have multiple variables storing related or
similar items, you can group all those items into a single variable called an array,
or in Python, a list.

You can enter as many values as you want into the array or list, and the program-
ming language tracks each value using an index number. For example, the first
value you add is given the index 0. (For obscure reasons, programmers since time
immemorial have numbered lists of things starting with 0 instead of 1.) The sec-
ond value you put into the array or list is index 1; the third value gets 2; and so on.
You can then access any value in the array or list by specifying the index num-
ber you want.

You have to declare the array or list, and how you do that depends on the language.
Here’s an example list from Python:

days = ["Monday", "Tuesday", "Wednesday", "Thursday",
 "Friday", "Saturday", "Sunday"]

The square brackets ([and]) tell the interpreter that every item between the
brackets is part of the list assigned to the variable days.

In most programming languages, you reference an array or a list item using the
array or list name followed by the item’s index number in square brackets. For
example, days[0] refers to "Monday" and days[6] refers to "Sunday". (A few
languages — most notably Visual Basic and Visual Basic for Applications — use
regular parentheses instead of square brackets.)

CHAPTER 2 Coding Concepts You Need to Know 27

Dealing with Data Types
In programming, a variable’s data type specifies what kind of data is stored in the
variable. The data type is a crucial idea because it determines not only how two or
more variables are combined (for example, mathematically) but also whether they
can be combined at all. Literals are a special class of data type, and they cover
values that are fixed (even if only temporarily). For example, consider the follow-
ing variable assignment statement:

todaysQuestion = "Who let the dogs out?"

Here, the text Who let the dogs out? is a literal string value. All programming
languages support three kinds of literal data types: numeric, string, and Boolean.
The next three sections discuss each type.

Working with numeric literals
The two basic numeric literals are integers and floating-point numbers:

	» Integers: These numbers don’t have a fractional or decimal part. So you
represent an integer using a sequence of one or more digits, as in
these examples:

0
42
2001

-20

	» Floating-point numbers: These numbers do have a fractional or decimal
part. Therefore, you represent a floating-point number by first writing the
integer part, followed by a decimal point, followed by the fractional or decimal
part, as in these examples:

0.07
3.14159
-16.6666667
7.6543e+21
1.234567E-89

The last two floating-point examples require a bit more explanation. They use
exponential notation, which is an efficient way to represent really large or really
small floating-point numbers. Exponential notation uses an e (or E) followed by
the exponent, which is a number preceded by a plus sign (+) or a minus sign (-).

28 PART 1 Coding Basics

You multiply the first part of the number (that is, the part before the e or E) by 10
to the power of the exponent. Here’s an example:

9.87654e+5

The exponent is 5, and 10 to the power of 5 is 100,000. Multiplying 9.87654 by
100,000 results in the value 987,654.

Here’s another example:

3.4567e-4

The exponent is −4, and 10 to the power of −4 is 0.0001. Multiplying 3.4567 by
0.0001 results in the value 0.00034567.

Working with string literals
A string literal is a sequence of one or more letters, numbers, or punctuation marks,
enclosed in either double quotation marks (") or single quotation marks ('). Here
are some examples:

"Coding For Dummies"
'Literally a string literal'
""
"What's the deal with airline peanuts?"

The string "" (or '' — two consecutive single quotation marks) is called a null
string or an empty string. It represents a string that doesn’t contain any characters.

The final example shows that it’s okay to insert — or nest — one or more instances
of one of the quotation marks (such as ') inside a string enclosed by the other
quotation mark (such as "). Being able to nest quotation marks comes in handy
when you need to embed one string inside another, which is a common coding
situation. Here’s a JavaScript example:

onsubmit="processForm('testing')";

However, it’s illegal to insert in a string one or more instances of the same quota-
tion mark that encloses the string, as in this example:

"This is "illegal" in every programming language."

CHAPTER 2 Coding Concepts You Need to Know 29

Working with Boolean literals
Booleans are the simplest of all the literal data types because they can assume
only one of two values: true or false. That simplicity may make it seem as though
Booleans aren’t particularly useful, but the capability to test whether a particular
variable or condition is true or false is invaluable in programming.

You can assign Boolean literals directly to a variable, like this:

taskCompleted = true

Alternatively, you can work with Boolean values implicitly by using expressions
(refer to the section “Constructing Expressions” to learn more). For example, in
most languages, you can test whether two items are equal by using the == operator:

currentMonth == "August"

The comparison expression currentMonth == "August" asks the following: Is the
value of the currentMonth variable equal to the string "August"? If it is, the
expression evaluates to the Boolean value true (or True in some languages); if it’s
not, the expression evaluates to false (or False in some languages).

When you want to assign a value to a variable, you use a single equals sign (=),
which is known in the programming trade as the assignment operator. When you
want to compare two things to determine whether they’re equal, you use two
equals signs (==), which coders refer to as the equal to operator.

Constructing Expressions
An expression is a collection of symbols, words, and numbers that performs a cal-
culation and produces a result. That’s a nebulous definition, I know, so I’ll make
it more concrete.

When your check arrives after a restaurant meal, one of the first things you prob-
ably do is take out your smartphone and use the calculator to figure out the tip
amount. The service and food were good, so you’re thinking 20 percent is appro-
priate. With phone in hand, you tap in the bill total, tap the multiplication button,
tap 20%, and then tap Equals. Voilà! The tip amount appears on the screen and
you’re good to go.

30 PART 1 Coding Basics

A programming expression is something like this kind of procedure because it
takes one or more inputs, such as a bill total and a tip percentage, and combines
them in some way — for example, by using multiplication. In expression lingo,
the inputs are called operands, and they’re combined by using special symbols
called operators:

	» operand: An input value for an expression. An operand is the raw data that
the expression manipulates to produce its result. The operand could be a
number, a string, a variable, a function result (refer to “Organizing Code into
Functions,” later in this chapter), or an object property (check out “Introducing
Objects,” later in this chapter).

	» operator: A symbol that represents a particular action performed on one or
more operands. For example, the * operator represents multiplication, and
the + operator represents addition.

Assuming that your code has already declared a variable named billTotal that holds
the bill total, as well as a variable named tipPercentage that holds the percentage
you want to tip, here’s an expression that calculates a tip amount and assigns the
result to a variable named tipAmount:

tipAmount = billTotal * tipPercentage

The expression is everything to the right of the equals sign (=). Here, billTotal
and tipPercentage are the operands, and the multiplication sign (*) is
the operator.

Another analogy I like to use for operands and operators is a grammatical one —
that is, if you consider an expression to be a sentence, the operands are the nouns
(the things) of the sentence and the operators are the verbs (the actions) of
the sentence.

Building numeric expressions
Calculating a tip amount on a restaurant bill is a mathematical calculation, so you
may be thinking that code expressions are going to be mostly mathematical. If I
were standing in front of you and happened to have a box of gold stars on me, I’d
certainly give you one because, yes, math-based expressions are probably the
most common type you’ll come across.

A mathematical calculation is often called a numeric expression, and it combines
numeric operands and arithmetic operators to produce a numeric result. Every
programming language’s basic arithmetic operators are more or less the same as

CHAPTER 2 Coding Concepts You Need to Know 31

those found in your smartphone’s calculator app or on the numeric keypad of your
computer’s keyboard, plus a couple of extra operators for more advanced work.
Table 2-1 lists the basic arithmetic operators you can use in your code expressions.

Although most programming languages (including JavaScript) support the incre-
ment (++) and decrement (--) operators, some languages (including Python) don’t.

Almost all programming languages support a few extra operators that combine
some of the arithmetic operators and the assignment operator, which is the
humble equals sign (=) that assigns a value to a variable. Table 2-2 lists these
arithmetic assignment operators.

TABLE 2-1	 Basic Arithmetic Operators
Operator Name Example, where n = 10 Result

+ Addition n + 4 14

++ Increment n++ 11

- Subtraction n - 4 6

- Negation - n -10

-- Decrement n-- 9

* Multiplication n * 4 40

/ Division n / 4 2.5

% Modulus n % 4 2

TABLE 2-2	 Arithmetic Assignment Operators
Operator Example Equivalent

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

%= x %= y x = x % y

32 PART 1 Coding Basics

Building string expressions
A string expression is one where at least one of the operands is a string, and the
result of the expression is another string. String expressions are straightforward
in the sense that there is only one operator to deal with: the concatenation opera-
tor, which in most languages (including Python and JavaScript) is +. You use this
operator to combine (or concatenate) strings in an expression. For example, the
expression "Java" + "Script" returns the string "JavaScript".

Yep, it’s unfortunate that the concatenation operator is identical to the addition
operator because this similarity can lead to some confusion. For example, the
expression 2 + 2 returns the numeric value 4 because the operands are numeric.
However, the expression "2" + "2" returns the string value 22 because the two
operands are strings.

Building comparison expressions
You use comparison expressions to compare the value of two or more numbers,
strings, variables, function results, object properties, or object method results. If
the expression is true, the expression result is set to the Boolean value true; if the
expression is false, the expression result is set to the Boolean value false. You’ll
use comparisons with alarming frequency in your code, so it’s important to
understand what they are.

Table 2-3 summarizes the comparison operators used in most programming
languages.

TABLE 2-3	 Comparison Operators
Operator Name Example Result

== Equal to 10 == 4 false

!= Not equal to 10 != 4 true

> Greater than 10 > 4 true

< Less than 10 < 4 false

>= Greater than or equal to 10 >= 4 true

<= Less than or equal to 10 <= 4 false

=== Strictly equal to (JavaScript) "10" === 10 false

!== Strictly not equal to (JavaScript) "10" !== 10 true

CHAPTER 2 Coding Concepts You Need to Know 33

In Table 2-3, note that JavaScript uses === instead of == (and !== instead of !=).
JavaScript supports == (and !=), but for too-geeky-to-get-into reasons, your
JavaScript code should only ever use === (and !==).

Building logical expressions
You use logical expressions to combine or manipulate Boolean values, particularly
comparison expressions. For example, if your code needs to test whether two dif-
ferent comparison expressions are both true before proceeding, you can do that
with a logical expression.

Table 2-4 lists the most common logical operators.

In the Operator column of Table 2-4, note that most programming languages
(JavaScript is one of them) use the symbols &&, ||, and !. Just a few languages
(Python is one of them) use the words and, or, and not.

Making Decisions with Conditionals
One of the most common coding conundrums is controlling when part of your
code runs. For example, you might want a particular set of statements to run only
if today is Monday. Similarly, you might want some division code not to run if the

TABLE 2-4	 Logical Operators
Operator Name General Syntax Returned Value

&& or and AND expr1 && expr2

or

expr1 and expr2

true if both expr1 and expr2 are
true; false otherwise

|| or or OR expr1 || expr2

or

expr1 or expr2

true if one or both of expr1 and
expr2 are true; false otherwise

! or not NOT !expr

or

not expr

true if expr is false; false if expr
is true

34 PART 1 Coding Basics

divisor is equal to 0. Because constraints such as the day of the week and whether
a value is a particular number are used as conditions that dictate when or if some
code will execute, this programming logic is called conditional execution, and the
language features you use are called conditionals.

Making simple true/false decisions
The most basic test is the simple true/false decision (which could also be thought
of as a yes/no or an on/off decision). In this case, your program looks at a certain
condition, determines whether it’s currently true or false, and acts accordingly.
Comparison and logical expressions (covered in the preceding section) play a big
part here because they always return a true or false result.

In all programming languages, simple true/false decisions are handled by the if
statement, which has a similar syntax in most languages. You can use the single-
line syntax:

if (expression) statement

or the block syntax:

if (expression) {
 statement1
 statement2
 ...
}

Syntax refers to the symbols, keywords, and structures that define how code must
be written and formatted in a particular programming language to be correctly
interpreted and executed by a compiler or interpreter.

In both cases, expression is a comparison or logical expression that returns true
or false, and statement, statement1, statement2, and so on represent the code
to run if expression returns true. If expression returns false, the code doesn’t
run the statements.

For example, suppose your code includes variables named totalCookies and
totalApples that hold, respectively, the number of cookies and the number of
apples the user ate this week. In your analysis, it’s vital that you calculate the
user’s cookies-to-apples ratio (hey, it’s your analysis):

cookiesToApples = totalCookies / totalApples

CHAPTER 2 Coding Concepts You Need to Know 35

That’s fine, but your code will generate an error if totalApples equals 0 since
dividing by 0 is illegal. To prevent that error, you can use an if statement:

if (totalApples != 0) {
 cookiesToApples = totalCookies / totalApples
}

If totalApples isn’t 0, the expression totalApples != 0 returns true, so
the division statement runs. If, instead, totalApples is 0, the expression
totalApples != 0 returns false, so the division statement doesn’t run and no
error occurs.

Note that in the block syntax, I’ve been indenting the statements by four spaces.
This increases the readability of the code by making it clear which statements
belong to the block (that is, the part between the braces: { and }). Some program-
mers use two spaces, but four makes the indentation clearer. (If someone tells you
to use tabs instead of spaces, ignore them.)

Branching with if. . .else statements
Using the if statement to make decisions adds a powerful new weapon to your cod-
ing arsenal. However, the simple version of if suffers from an important limita-
tion: A false result only bypasses one or more statements; it doesn’t execute any of
its own. This is fine in many cases, but there will be times when you need to run
one group of statements if the condition returns true and a different group if the
condition returns false. To handle these scenarios, you need to use an if. . .else
statement which, again, has a similar syntax in most languages:

if (expression) {
 statements-if-true
} else {
 statements-if-false
}

The expression is a comparison or logical expression that returns true or false.
statements-if-true represents the block of statements you want your code to
run if expression returns true, and statements-if-false represents the block
of statements you want executed if expression returns false.

As an example, consider the following code:

if (currentDay == "Monday") {
 discountRate = 0.25
} else {

36 PART 1 Coding Basics

 discountRate = 0.1
}
discountedPrice = regularPrice * (1 - discountRate)

This code calculates a discounted price of an item, where the discount depends on
whether the current day is Monday. Assume that earlier in the code, the script set
the value of the current day (currentDay) and the item’s regular price (regular
Price). An if. . .else statement checks whether currentDay equals Monday. If
it does, discountRate is set to 0.25; otherwise, discountRate is set to 0.1.
Finally, the code uses the discountRate value to calculate discountedPrice.

Automating Repetitive Tasks with Loops
It’s one thing to write code that gets the job done, but your goal as a coder should
always be to write code that gets the job done as efficiently as possible. Efficient
programs run faster, take less time to code, and are usually (not always, but usu-
ally) easier to read and troubleshoot.

One of the best ways to introduce efficiency into your coding is to look for areas
where you’re essentially repeating the same code over and over. For example,
consider the following code:

total = 0
total = total + 1
total = total + 2
total = total + 3
total = total + 4
total = total + 5
total = total + 6
total = total + 7
total = total + 8
total = total + 9
total = total + 10

This code first declares a variable named total and sets it equal to 0. The next line
adds 1 to the total, the next line adds 2, and so on down to the final line, which
adds 10 to the total. Besides being a tad useless, this code reeks of inefficiency
because most of the code consists of repeatedly adding a value to the total variable.

To make code such as this more efficient, you can use a loop, which is a program-
ming structure that repeats one or more statements for as long as you need it to.
Quite a few different loop types are available, which tells you how important loops

CHAPTER 2 Coding Concepts You Need to Know 37

are to the coding process. I won’t go through the different loop types here. Refer
to Chapter 5 to learn about looping in Python and to Chapter 11 to get the goods
on JavaScript loops.

For now, I’ll hint at the loop wonders to come by introducing you to one of the
most common loop types: the while loop, which uses the following syntax:

while (expression) {
 statements
}

Here, expression is a comparison or logical expression (that is, an expression
that returns true or false) that, as long as it returns true, tells your code to
keep executing the statements in the block.

Essentially, the programming language interpreter handles a while loop as
follows: “Okay, as long as expression remains true, I’ll keep running through
the loop statements, but as soon as expression becomes false, I’m out of there.”

Here’s a closer look at how a while loop works:

1.	 Evaluate the expression in the while statement.

2.	 If expression is true, continue with Step 3; if expression is false, skip
to Step 5.

3.	 Execute each of the statements in the block.

4.	 Return to Step 1.

5.	 Exit the loop (that is, execute the next statement that occurs after the
while block).

The following code demonstrates how to use while to rewrite the inefficient code
I presented earlier in this section:

total = 0
num = 1

while (num <= 10) {
 total = total + num
 num = num + 1
}

The code begins by initializing the total variable to 0, as before. To control the
loop, the code declares a variable named num and initializes it to 1, which means

38 PART 1 Coding Basics

the expression num <= 10 is true, so the code enters the while block, adds num to
total, and then increments num. This is repeated until the 11th time through the
loop, when num is incremented to 11, at which point the expression num <= 10
becomes false and the loop is done.

Organizing Code into Functions
Imagine, if you will, cooking a dish that you make up as you go along. You assem-
ble the ingredients you need, perform all the prep work and cooking, and then
enjoy the resulting meal. A month or so later, you remember that the meal you
thought up was delicious, so you repeat the process: You assemble the ingredients
(perhaps with some slight variations this time), perform all the prep work and
cooking (hoping you remember the steps correctly), and then once again chow
down on the resulting dish.

That second time also produced a good meal, but there’s an extra cognitive load
involved because you’re trying to remember what you did the first time. If it’s a
meal you think you’ll cook a lot, just making it up from scratch every time is hard.
A much better and easier way to go would be to write a recipe that has the follow-
ing characteristics:

	» It has a name.

	» It has a list of ingredients.

	» It has a set of instructions.

	» It produces a dish.

In coding, the equivalent of a recipe is called a function, and every programming
function has recipe-like features:

	» It has a name.

	» It has a list of inputs called arguments.

	» It has a set of statements that it runs.

	» It produces a result.

A function, then, is a group of statements that are separate from the rest of the
program and that perform a designated task. (Technically, a function can perform
any number of chores, but as a rule it’s best for each function to focus on a specific

CHAPTER 2 Coding Concepts You Need to Know 39

task.) When your program needs to perform that task, you tell it to run — or
execute, in programming vernacular — the function.

The way you define a function varies depending on the programming language,
but in the simplest case (used in languages such as JavaScript, PHP, and Visual
Basic), the basic structure of a function looks like this:

function functionName([arguments]) {
 statements
}

where:

	» function identifies the block of code that follows it as a function. (Some
languages use func, others use fun, Python uses def, and some languages
don’t bother with a keyword.)

	» functionName is a unique name for the function. In most languages, function
names must begin with a letter or an underscore (_); the rest of the function
name can include any letter, any number, or the underscore; and you can’t
use any other characters, including spaces, symbols, and punctuation marks.

	» arguments are zero or more values that are passed to the function and act as
variables within the function. Arguments (or parameters, as they’re sometimes
called) are typically one or more values that the function uses as the raw
materials for its tasks or calculations. You always enter arguments between
parentheses after the function name, and you separate multiple arguments
with commas. If you don’t use arguments, you must still include the parenthe-
ses after the function name.

	» statements are the code that performs the function’s tasks or calculations.

When I present the syntax of a function that includes one or more optional
arguments, I surround those arguments with square brackets — [and] — to
let you know.

Note how the statements line in the example is indented slightly from the left
margin. This standard and highly recommended programming practice makes
your code easier to read. This example is indented four spaces, which is enough to
do the job but isn’t excessive. Some programmers use two spaces.

Note, too, the use of braces ({ and }). These are used in many languages (includ-
ing JavaScript) to enclose the function’s statements within a block, which tells
you (and the interpreter or compiler) where the function’s code begins and ends.

40 PART 1 Coding Basics

Here’s an example function:

function getDiscountedPrice (currentDay, regularPrice) {
 if (currentDay == "Monday") {
 discountRate = 0.25
 } else {
 discountRate = 0.1
 }
 discountedPrice = regularPrice * (1 - discountRate)

 return discountedPrice
}

This function is named getDiscountedPrice and accepts two arguments:
currentDay and regularPrice. Inside the function, the code sets the discount
Rate based on the day of the week, performs the calculation, and then uses the
return statement to send the result back. Back to where? Back to whichever state-
ment executed — or called — the function.

Here’s a slightly more complete example that demonstrates this function
being called:

function getDiscountedPrice (currentDay, regularPrice) {
 if (currentDay == "Monday") {
 discountRate = 0.25
 } else {
 discountRate = 0.1
 }
 discountedPrice = regularPrice * (1 - discountRate)

 return discountedPrice
}

dayOfWeek = "Friday"
listPrice = 19.95
reducedPrice = getDiscountedPrice(dayOfWeek, listPrice)

The final three statements declare and initialize the dayOfWeek and listPrice
variables, and then call the getDiscountedPrice function, passing the values of
the dayOfWeek and listPrice variables as arguments. The value returned by the
function is stored in the reducedPrice variable.

CHAPTER 2 Coding Concepts You Need to Know 41

Introducing Objects
Only the simplest programs do nothing but assign values to variables and calcu-
late expressions. To go beyond these basic programming beginnings — that is, to
write truly useful programs — your code needs to manipulate things. Okay, I
know things is annoyingly unspecific, but what your code manipulates depends on
what the program was designed to do.

Take JavaScript as an example. JavaScript was designed from the start to manipu-
late the web page that it’s displaying. That’s what browser-based JavaScript is all
about, and that manipulation can come in many forms:

	» Add text and HTML attributes to an element.

	» Modify a CSS property of a class or other selector.

	» Store some data in the browser’s internal storage.

	» Validate a form’s data before submitting it.

The bold items in this list are examples of the things you can work with, and
they’re special for no other reason than that they’re programmable. In coding
parlance, these programmable things are called objects.

You can work with objects in your code in any of the following three ways:

	» You can read and make changes to the object’s properties.

	» You can make the object perform a task by activating a method associated
with the object.

	» You can define a procedure that runs whenever a particular event happens to
the object.

To help you understand objects and their properties, methods, and events, I’ll put
them in real-world terms. Specifically, consider your computer as though it were
an object:

	» If you wanted to describe your computer as a whole, you’d mention things like
the name of the manufacturer, the price, the size of the hard drive, and the
amount of RAM. Each of these items is a property of the computer.

	» You also can use your computer to perform tasks such as writing letters,
crunching numbers, and coding programs. These are the methods associated
with your computer.

42 PART 1 Coding Basics

	» A number of things happen to the computer that cause it to respond in
predefined ways. For example, when the On button is pressed, the computer
runs through its Power On Self-Test, initializes its components, and so on.
The actions to which the computer responds automatically are its events.

These properties, methods, and events give you an overall description of
your computer.

But your computer is also a collection of objects, each with its own properties,
methods, and events. The hard drive, for example, has various properties, includ-
ing its speed and data-transfer rate. The hard drive’s methods are actions such as
storing and retrieving data. A hard drive event may be a scheduled maintenance
task, such as checking the drive for errors.

In the end, you have a complete description of the computer: its appearance (its
properties), how you interact with it (its methods), and to what actions it responds
(its events).

In most programming languages, you reference an object’s properties and meth-
ods using dot notation, as shown using the syntax in the following generic
expressions:

object.property
object.method()

where

	» object is the object that has the property or method.

	» property is the name of the property you want to work with.

	» method is the name of the method you want to run. Note that some methods
are function-like in that they accept one or more arguments.

For example, consider the following JavaScript expression:

document.location

This expression refers to the document object’s location property, which holds
the address of the document (usually a web page) currently displayed in the
browser window.

Because a property always contains a value, you’re free to use property expres-
sions in just about any type of statement and as an operand in an expression. You

CHAPTER 2 Coding Concepts You Need to Know 43

can assign a property value to a variable and in many cases you can assign a new
value to the object property.

Methods that return values are similar: You can use them in expressions and
assign their results to variables.

Documenting Code with Comments
A program that consists of just a few lines is usually easy to read and understand.
However, your programs won’t stay that simple for long, and these more complex
creations will be correspondingly more difficult to read. (This difficulty will be
particularly acute if you’re looking at the code a few weeks or months after you
first wrote it.) To help you decipher your code, it’s good programming practice to
make liberal use of comments throughout the script. A comment is text that
describes or explains a statement or group of statements. Comments are ignored
by the interpreter or compiler, so you can add as many as you deem necessary.

For short, single-line comments, use either the double-slash (//) or a hash symbol
(#). Most programming languages (including JavaScript) support //, but some
(such as Python) require #.

Put the // (or the #) at the beginning of the line and then type your comment after
it (with a space in between for readability). Here’s an example:

// Calculate the discounted price
discountedPrice = regularPrice * (1 - discountRate)

It’s fine to use // (or #) for two or three comment lines in a row. However, most
programming languages support multiple-line comments that begin with the /*
symbol and end with the */ symbol. Here’s an example:

/*
This code is released under the Creative Commons Zero
v1.0 Universal (CC0 1.0) license. To the fullest extent
permitted by law, I (the author) have dedicated this work
to the public domain.

This means:
 - You are free to copy, modify, distribute, and use this
 code, for any purpose, even commercially.
 - No permission or attribution is required, but giving
 credit is appreciated.

44 PART 1 Coding Basics

 - This code is provided "as-is," without any warranties
 or guarantees.

For more details, refer to:
https://creativecommons.org/publicdomain/zero/1.0/
*/

Although it’s fine to add quite a few comments when you’re just starting out, you
don’t have to add a comment to everything. If a statement is trivial or its purpose
is glaringly obvious, forget the comment and move on. If you’re not sure whether
to comment some code, go ahead and add the comment, particularly while you’re
just getting started building a program. Adding copious comments to your new
code is a great way to organize your thoughts and keep your code readable. You
can always go back later and delete comments that you no longer need.

Debugging Code and Handling Errors
It usually doesn’t take too long to get short scripts and functions up and running.
However, as your code grows larger and more complex, errors inevitably creep in.
In fact, it has been proven mathematically that any code beyond a minimum level
of complexity will contain at least one error and probably quite a lot more.

Many of the bugs that crawl into your code will consist of simple typos that you
can fix quickly, but others will be more subtle and harder to find. For the latter —
whether the errors are incorrect values returned by functions or problems with
the overall logic of a script — you need to be able to get inside your code to scope
out what’s wrong.

The good news is that most programming languages have a ton of top-notch tools
that can remove some of the burden of program problem solving, which is known
as debugging in the coding trade.

Understanding error types
When a problem occurs, you first need to determine what kind of error you’re
dealing with. The three basic error types are syntax errors, runtime errors, and
logic errors:

	» Syntax errors: These errors arise from misspelled or missing keywords,
incorrect punctuation, or mangled indentation in Python.

CHAPTER 2 Coding Concepts You Need to Know 45

	» Runtime errors: Runtime errors occur during the execution of a program.
They generally mean that the interpreter or compiler has stumbled upon a
statement that it can’t figure out. A runtime error might be caused by trying to
use an uninitialized variable in an expression.

	» Logic errors: If your code zigs instead of zags, the cause is usually a logic
error, which is a flaw in the logic of your script. It might be a loop that never
ends or a function that doesn’t return a value. Logic errors are usually the
toughest to pin down because you don’t get an error message to give you a
clue about what went wrong and where.

Taking a look at some debugging
techniques
Debugging effectively is closer to an art than a science and something you’ll
acquire an intuitive feel for as you become more experienced as a coder (which is
the same thing as saying “as you become more experienced dealing with the inev-
itable errors in your code”). I talk about language-specific debugging techniques
in Chapter 8 (Python) and Chapter 14 (JavaScript), but here’s a general look at the
three main debugging techniques:

	» Pausing code execution: In this technique, you temporarily stop your code,
which puts the code into break mode to let you examine certain elements, such
as the current values of variables or object properties. Break mode also lets
you execute program code one statement at a time (refer to the next item in
this list) so that you can monitor the flow of the script. If you know approxi-
mately where an error or a logic flaw is occurring, you can enter break mode at
a specific statement in the program by setting a breakpoint on that statement.

	» Stepping through your code: One of the most common (and most useful)
debugging techniques is to step through the code one statement at a time.
Doing so lets you get a feel for the program flow to make sure that things
such as loops and function calls are executing properly. You can use three
main techniques:

•	 Step one statement at a time: Executes the current statement and then
pauses on the next statement. If the current statement to run is a function
call, stepping takes you into the function and pauses at the function’s first
statement. You can then continue to step through the function until you
execute the last statement, at which point the browser returns you to the
statement after the function call.

46 PART 1 Coding Basics

•	 Step over some code: For a statement that calls a function, executes the
function normally without stepping into it, and then resumes break mode
at the next statement after the function call.

•	 Step out of some code: Takes you immediately out of a function that you’ve
stepped into. This is handy when you’ve accidentally stepped into a
function that you’d meant to step over.

	» Monitoring script values: Many runtime and logic errors are the result of (or,
in some cases, can result in) variables assuming unexpected values. If your
program uses or changes these elements in several places, you’ll need to
enter break mode and monitor the values of these elements to figure out
where things go awry.

More debugging strategies
Debugging your programs can be a frustrating job, even for relatively small apps.
Here are a few tips to keep in mind when tracking down programming problems:

	» Indent your code for readability. All code is immeasurably more readable
when you indent the code in each statement block. Readable code is that
much easier to trace and decipher, so your debugging efforts have one less
hurdle to negotiate. How far you indent is a matter of personal style, but two
or four spaces is typical:

function myFunction() {
 Each statement in this function
 block is indented four spaces.

}

If you nest one block inside another, indent the nested block by another
four spaces:

function myFunction() {
 Each statement in this function
 block is indented four spaces.
 while (something <= somethingElse) {
 Each statement in this nested while
 block is indented another four spaces.
 }

}

Note that when you code in Python, nesting block statements four spaces
is required.

CHAPTER 2 Coding Concepts You Need to Know 47

	» Break down complex tasks. Don’t try to solve all your problems at once. If
you have a large program or function that isn’t working right, test it in small
chunks to try to narrow down the problem.

	» Break up long statements. One of the most complicated aspects of script
debugging is making sense out of long statements (especially expressions). It’s
usually best to keep your statements as short as possible. After you get things
working properly, you can often recombine statements for more efficient code.

	» Comment out problem statements. If a particular statement is giving you
problems, temporarily deactivate it by turning the statement into a comment
(check out “Documenting Code with Comments” for more info). If you have a
number of consecutive statements you want to skip, you can turn them all
into a multiline comment.

	» Use comments to document your scripts. Speaking of comments, it’s a
programming truism that good code — meaning (at least in part) code that
uses clear variable and function names and a logical structure — should be
self-explanatory. However, almost every piece of non-trivial code contains
sections that, when you examine them later, aren’t immediately obvious. For
those sections, it’s another programming truism that you can never add enough
explanatory comments. The more comments you add to complex and poten-
tially obscure chunks of your code, the easier your programs will be to debug.

CHAPTER 3 Getting to Know Some Programming Languages 49

Chapter 3
Getting to Know Some
Programming Languages

There are only two kinds of languages: the ones people complain about and
the ones nobody uses.

—BJARNE STROUSTRUP (INVENTOR OF C++)

Long-time coders tend to be a tad, well, opinionated about certain aspects of
programming. Some of these aspects are reasonably described as trivial, such
as whether two or four spaces should be used to indent code and whether

strings should be delineated with double quotes (") or single quotes ('). More
substantively, most experienced coders will defend their choice of programming
editor to the death (which is only a slight exaggeration). Coders spend an inordi-
nate amount of time waging these and other so-called holy wars over non-holy
subjects such as braces, semicolons, and commas.

But these battles have nothing on those that surround programming languages,
which spark some of the most intense holy wars in tech. Coders can be fiercely
loyal to their favorite languages, sometimes to the point of raving lunacy. The web
is littered with the rubble of scorched-earth battles over the merits of C versus
C++, Python versus Ruby, and JavaScript versus TypeScript.

Happily, this chapter doesn’t rehash any of these ancient (and fundamentally
irresolvable) language wars. What you do get in this chapter is an introduction to

IN THIS CHAPTER

	» Getting your first looks at Python and
JavaScript

	» Peeking at a few other languages

	» Learning how each language is used

	» Figuring out interpreters
versus compilers

50 PART 1 Coding Basics

the most popular and the most useful languages around today. Although the rest
of this book delves into Python and JavaScript in more depth, you really can’t go
wrong if you decide to learn any of the languages that I mention in this chapter
(with a few noted exceptions).

Ranking Programming Languages
When it comes to choosing a programming language to learn, it’s best to first
decide what you want to make, then find a language that can make it happen,
preferably with a learning curve that’s not too long and not too steep.

If, after all that, you’re still not sure, another useful angle for comparing lan-
guages is to look up where each language ranks in terms of popularity or usage.
The web has tons of such rankings, but two are considered to be the most useful:

	» TIOBE Index (www.tiobe.com/tiobe-index/): Measures the popularity of
programming languages by counting the number of search engine queries
for each language (using data from Google, Bing, Yahoo!, Wikipedia, Amazon,
YouTube, and Baidu), as well as the number of skilled engineers, courses,
and third-party vendors mentioning a language. The TIOBE Index is updated
monthly. (For what it’s worth, TIOBE stands for The Importance of Being Earnest,
which is the title of an Oscar Wilde play.)

	» IEEE Spectrum (https://spectrum.ieee.org/): Ranks programming
languages based on usage and demand by aggregating data from GitHub (a
site for code repositories), Stack Overflow (a site for code discussions), Google
Search trends, social media mentions, Reddit, IEEE Xplore (academic papers),
and Indeed (job postings). The IEEE Spectrum ranking is updated annually.

Neither is perfect, but together they give you a reasonable sense of the popularity
of a programming language. I provide both rankings for each language I mention
in this chapter. (The TIOBE Index rankings are from August 2025 and the IEEE
Spectrum rankings are from 2024.)

Assembly: Close to the Machine
Back in Chapter 1, I talked about how computers use 1s and 0s internally and that,
at the most fundamental level, computers respond to instructions written in
machine code. But writing raw machine language is like trying to have a dinner

https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/

CHAPTER 3 Getting to Know Some Programming Languages 51

conversation using only Morse code — sure, it’s technically possible, but nobody in
their right mind would think it’s a good idea.

To get away from the inefficiency and tedium of trying to communicate with a
computer in its native tongue, a British computer scientist named Kathleen Booth
invented something called assembly language way back in the 1940s. Assembly
language acts as a kind of bridge between human-understandable code and the
raw binary instructions that a computer executes.

For example, a typical machine code instruction looks like this:

01001000 11000111 11000000 00000001 00000000 00000000 00000000

Yuck! Now here’s the assembly code equivalent:

mov rax, 5

Hmm, well, okay, I guess that’s every bit as incomprehensible to you as the
machine code, but at least you’re dealing with letters and with numbers beyond
those unfathomable 1s and 0s.

The key point is that assembly language is easier to write than pure machine code
because instead of memorizing binary patterns (as if!), you use short commands
called mnemonics, such as mov for moving data and add for addition.

In the preceding example, the instruction is telling the computer to move (mov)
the value 5 into the register (a small storage area in the CPU) named RAX (rax).

Here’s a longer example:

mov rax, 5
mov rbx, 3
add rax, rbx

This code puts 5 into register RAX and 3 into register RBX, and then adds the con-
tents of RBX to RAX, which in this case means that RAX now holds the value 8.

Assembly allows for fine control over the computer’s central processing unit
(CPU). High-level languages such as Python hide the details of how the CPU exe-
cutes code, but assembly lets you optimize performance and interact directly with
hardware. Therefore, assembly is foundational for understanding how computers
work. If you ever want to dive deep into cybersecurity, embedded systems (task-
specific computers squirreled inside larger devices such as medical devices and
industrial machines), or operating systems, you’ll need to get your hands dirty
with assembly code.

52 PART 1 Coding Basics

Unlike Python or JavaScript, which work on any computer, assembly language is
specific to the type of CPU you’re using. An Intel x86 processor understands dif-
ferent assembly instructions than an ARM (Advanced RISC Machine) processor
(like the one in most smartphones). This means that learning assembly is often
tied to a particular CPU architecture.

If you want to give assembly a whirl (how brave of you!), here are some next steps:

	» Decide which architecture you want to write for. The architecture will be
either x86 for Windows programs or ARM for M-series Macs, Raspberry Pi
boards, and most smartphones and smart home devices.

	» Look at simple examples, preferably lots of them. Many online resources
provide basic assembly programs.

	» Get yourself an assembler. An assembler is a compiler for translating
assembly code into machine code. Examples include NASM (Netwide
Assembler) and MASM (Microsoft Macro Assembler) for x86, and ARMASM
(ARM Assembler) for ARM.

	» Experiment in a sandbox. Websites like Try It Online (https://tio.run/)
and Compiler Explorer (https://godbolt.org/) enable you to choose an
assembler, write assembly code for it, and compile the code. (It’s called a
sandbox because it’s a place where you can play with the code without fear of
wrecking anything.)

Since time immemorial, programming teachers have introduced students to a
language by offering a “Hello, World!” program, which is generally used as an
example of the simplest working program in the language. Who am I to break with
tradition? Therefore, for each language I introduce in this chapter, I provide a
“Hello, World!” example. Here’s one for x86 (64-bit) assembly language written
for the Linux operating system:

section .data
 msg db "Hello, World!", 0 ; Define the string to print

section .text
 global _start ; Set the program entry point

_start:
 mov rax, 1 ; Set syscall to 1 (sys_write)
 mov rdi, 1 ; Set the file descriptor to 1 (stdout)
 mov rsi, msg ; Store a pointer to the message
 mov rdx, 13 ; Store the message length
 syscall ; Execute the system call

https://tio.run/
https://godbolt.org/

CHAPTER 3 Getting to Know Some Programming Languages 53

 mov rax, 60 ; Set syscall to 60 (sys_exit)
 mov rdi, 0 ; Set the exit code to 0
 syscall ; Execute the system call

Note that, in assembly code, a semicolon marks the start of a comment. So in the
preceding code, any text to the right of a semicolon is a comment describing the
code to the left of the semicolon.

All the code in this chapter is available with this book’s example files. Head back
to the Introduction to learn how to get your mitts on those files.

What about rankings? Not surprisingly, assembly doesn’t rank near the top in any
ranking, but neither is it mired anywhere near the bottom:

TIOBE Index: 20th

IEEE Spectrum: 33rd

Python: No Experience Required
By far the most common complaint I hear about learning programming is how
finicky coding can be. Forget a brace ({ or }) or a semicolon (;) or some other rarely
used punctuation mark and your program fails miserably. That’s a valid criticism
for most programming languages because they tend to be syntax-heavy, which
means they have a seemingly endless list of complex and strict rules about what
goes where.

Fortunately, there are exceptions to these exacting languages. One such exception
is Python, one of the most popular and beginner-friendly programming languages
in the world. Designed from the ground up to be easy to read and write, Python is
the antithesis of all those persnickety languages.

Python’s emphasis is on simplicity and readability, which makes it a great choice
for anyone just getting started with coding. Unlike all those other programming
languages that are defined by their labyrinthine syntax and overly meticulous
rules, Python is forgiving and intuitive. That easygoing nature enables beginners
to focus on learning core programming concepts and to get programs up and run-
ning quickly without getting bogged down by syntactical complexities.

54 PART 1 Coding Basics

To give you just the teensiest taste, here’s a complete, working “Hello, World!”
program in Python:

message = "Hello, World!"
print(message)

Here, print() is a built-in Python function that outputs text to the screen. After
running this program, the text Hello, World! appears on your screen.

Because Python is so popular, a vast community of developers is out there ready
to answer questions, write tutorials, offer coding challenges, and generally pro-
vide whatever support you need on your quest to learn the Python language.
Python’s popularity also means a rich ecosystem of prefabricated Python code —
called libraries — exists to enable you to create programs that perform sophisti-
cated tasks such as data analysis without having to code everything from
scratch. Nice.

If Python was just easy to read and write, it would be a worthy candidate for your
first programming language. But Python is also extremely flexible and versatile,
which means you can use it for an eye-popping variety of tasks:

	» Automate everyday tasks. Python saves time by automating repetitive tasks.
With just a few lines of code, you can rename multiple files at once, automati-
cally send emails or reminders, or scrape information from websites.

	» Work with and analyze data. If you like numbers or want to explore data,
Python makes it easy to create simple charts and graphs and analyze basic
statistics (like averages, trends, or word frequency).

	» Build simple games. Python lets you dip your toes into game development.
As a beginner, you can create a text-based adventure game or a guess-the-
number game. With libraries such as Pygame, you can even start adding
graphics to your games as you progress.

	» Create simple apps. Python makes it easy to build small applications that
help you stay organized. For example, you could make a to-do list app to
track your tasks or build a basic calculator.

	» Interact with online data sources. Even as a beginner, you can use Python
to pull in real-time data from the internet, including live weather updates for
your city, fun facts, random jokes, or recent news headlines.

	» Experiment with AI and machine learning. Python is a major player in AI,
and beginners can start with simple chatbots that respond to user input, a
program that predicts numbers based on past data, or a script that recognizes
common words in text. Make no mistake: AI is an advanced topic, but Python
makes it easy to experiment as you learn.

CHAPTER 3 Getting to Know Some Programming Languages 55

	» Build your own websites. Python is used in web development with frame-
works like Flask and Django. (A framework is a library that makes it easy to
build websites by providing prefabricated code to handle common tasks such
as database interactions and user authentication.)

	» Control hardware and IoT projects. You can use Python to control a
Raspberry Pi to make small gadgets, automate home devices (like turning
lights on and off), and even read sensor data from small machines.

If Python sounds like the right choice for your first foray into coding, head on over
to Part 2, where I take you through everything you need to know to get started
with this beginner-friendly language.

Rankings:

TIOBE Index: 1st

IEEE Spectrum: 1st

JavaScript: The Glue that Binds the Web
When you surf the web, each page you visit consists of text, images, maybe a video
or two. How all that data is structured on the page is the job of a technology called
Hypertext Markup Language, or HTML. How all that data looks on the page is the
job of a technology called Cascading Style Sheets, or CSS. Together, HTML and CSS
make up the front end of the web.

I don’t cover HTML and CSS in depth in this book due to the proverbial space limi-
tations, but you get a brief introduction to both in Chapter 17. If that quick look
gets you hankering for more, may I suggest my book HTML, CSS, and JavaScript
All-in-One For Dummies, which will tell you everything you need to know.

But have you ever wondered where all that data comes from? Sometimes the data
is added directly to the page, but in this modern age more often than not the data
comes from a database that resides on a special computer called a web server. The
database and the code that works with the data make up the back end of the web.

JavaScript is the secret sauce that brings the front end and the back end
together to create the vast majority of web pages you visit today. JavaScript is the
default programming language used for coding websites today. JavaScript is, first
and foremost, a front-end web development language. That is, JavaScript runs
inside the web browser and has access to everything on the page: text, images,
HTML tags, CSS properties, and more. Having access to all the web page stuff

56 PART 1 Coding Basics

means that you can use code to manipulate, modify, and even add and delete web
page elements.

But although JavaScript runs in the browser, it’s also capable of reaching out to
the server to access back-end stuff. For example, with JavaScript, you can send
data to the server to store that data in a database and you can request data from
the server and then use code to display that data on the web page.

JavaScript, then, is the backbone of the modern web, powering everything from
interactive websites to web applications and even mobile and desktop apps. It’s a
versatile and beginner-friendly programming language that enables developers to
add dynamic behavior to web pages, making it one of the most essential languages
for anyone interested in coding.

What makes JavaScript a great starter language is that it enables beginners to
write, run, and troubleshoot code directly in a web browser without needing any
special setup or tools. As long as you have access to a web browser (it doesn’t even
have to be online), you can experiment with code and display the results instantly.
But you need a special browser, right? Nope. JavaScript is the only programming
language supported by all modern web browsers, so you can use any browser
you like.

Happily, the syntax of JavaScript is straightforward, especially for fundamental
coding constructs such as variables, loops, and conditionals. That straightfor-
wardness makes JavaScript an excellent language for learning core program-
ming concepts.

Want a sample? Okay: Here’s a complete, working “Hello, World!” program in
JavaScript:

let message = "Hello, World!";
console.log(message);

Here, console.log() is a built-in JavaScript function that prints messages to the
console (an output area in a web browser’s development tools). In this case, after
running this program, the text Hello, World! appears in your browser’s console.

JavaScript is one of the best programming languages for beginners because you
can start creating fun and useful projects almost immediately. Whether you’re
interested in building websites, making interactive elements, or even experi-
menting with simple games, JavaScript has something exciting for you. Here’s
what you can expect to do as a beginner:

	» Make web pages interactive. If you’ve ever clicked a button on a web page
and something changed — such as a menu appeared, a pop-up showed up,

CHAPTER 3 Getting to Know Some Programming Languages 57

or a form responded to your input — that’s JavaScript at work. You can also
show and hide sections of a page or create a simple image slideshow.

	» Build fun mini-projects. JavaScript enables you to quickly build small projects
that you — and anyone else who has access to your site — can use. Need a
countdown timer for an event? JavaScript can do it. Want a random joke
generator that shows a new joke when you click a button? That’s
JavaScript at work.

	» Create simple games. Even as a beginner, you can start making basic games
with JavaScript. With a bit of coding, you can create a number-guessing game
where the user has to guess the correct number, a rock-paper-scissors game
that plays against the computer, or a simple quiz where users can answer
questions and get a score.

	» Add cool features to your pages. Once you get comfortable, you can start
adding features that make your pages more dynamic and engaging. For
example, you could add a dark mode toggle that switches between light and
dark themes, or you could add a search bar that filters page content.

	» Connect to online data. JavaScript can pull information from the internet in
real time. Even as a beginner, you can learn how to connect to online sources
to display random facts or quotes, show the latest news headlines or weather
updates, or build a simple app around online data (such as a list of movies
or books).

If you’re interested in exploring the possibilities of JavaScript, check out Part 3,
where you can learn everything you need to know to get started in the world of
JavaScript coding.

Rankings:

TIOBE Index: 6th

IEEE Spectrum: 3rd

Sneaking a Peek at a Few Other
Popular Languages

By a conservative estimate, something like 700 programming languages are in
existence, with at least 100 languages in active use. 100! That’s way too many to
get your head around, so in this section I offer potted descriptions of the ten lan-
guages that I think are the most useful to know about.

58 PART 1 Coding Basics

C
C is a powerful, low-level programming language that has been around since the
1970s. It’s known for its speed, efficiency, and direct access to hardware (that’s
what low-level means), making it a foundational language in computer science.
Lots of modern languages, including C++ (covered next), Java, and Python, are
influenced by C.

C is a fast and efficient language, making it great for performance-critical appli-
cations. C doesn’t have a bunch of fancy features, so its programs tend to be
super-compact. All these features are why C is the code underlying many of
today’s most complex projects:

	» Operating systems: Windows, macOS, and Linux are all primarily written in C.

	» Embedded systems: Smart devices, IoT devices, and device firmware are
routinely coded in C.

	» Game development: Game engines such as Unreal Engine are written in C.

	» Compilers and interpreters: Many programming language compilers and
interpreters are written in C. For example, the most widely used Python
interpreter, called CPython, is written in C.

	» High-performance applications: Many databases, networking tools, and
scientific computing tools use C for maximum performance.

But coding in C is not for the faint of heart. There are no built-in safety features,
so C, unlike newer languages, doesn’t protect against common programming
mistakes like buffer overflows (where a program writes more data to a memory
area — called a buffer — than the area can hold, causing adjacent memory to be
overwritten, often disastrously). Also with C, the developer has to allocate and free
memory manually, which can lead to memory leaks (gradual increases in memory
usage caused by failing to release no longer needed memory).

Here’s a “Hello, World!” example in C:

#include <stdio.h>

int main() {
 char message[] = "Hello, World!";
 printf("%s\n", message);
 return 0;
}

CHAPTER 3 Getting to Know Some Programming Languages 59

Rankings:

TIOBE Index: 3rd

IEEE Spectrum: 9th

C++
As its name implies, C++ (pronounced “SEE-plus-plus”) is an extension of C,
adding object-oriented programming (OOP) features while maintaining the speed
and efficiency of C. OOP is a programming philosophy based on the concept of
objects (refer to Chapter 2) which, when used correctly, can make code more
organized, easier to reuse, and easier to scale. Many modern languages use OOP
principles, including Python, JavaScript (partially), C#, Kotlin, PHP, and Swift.

Like C, C++ runs close to the hardware, making it great for performance-critical
applications. But with the addition of OOP features, C++ code is more reusable
and more organized and supports both high-level and low-level programming.
C++ is widely used for high-performance applications and system programming:

	» Game development: Lots of game-related code is written in C++ because
game engines and interfaces have to be fast and require access to hardware.

	» High-performance software: Many financial trading systems and scientific
computing applications are coded in C++ for high performance.

	» Operating systems and embedded systems: C++ is used to code many
Windows components and the firmware for many IoT devices.

	» Web browsers: The core components of browsers such as Chrome and
Firefox are written in C++.

	» Graphics and virtual reality (VR) applications: Many 3D rendering applica-
tions and VR simulations use C++.

On the downside, C++ has a huge learning curve and is far more complex than
Python or even Java. As with C, developers must manually manage the allocation
and release of memory, problems with which can lead to bugs and memory leaks.
For these reasons, writing and debugging C++ code can take longer than in higher-
level languages.

60 PART 1 Coding Basics

Here’s a “Hello, World!” example in C++:

#include <iostream>

int main() {
 std::string message = "Hello, World!";
 std::cout << message << std::endl;
 return 0;
}

Rankings:

TIOBE Index: 2nd

IEEE Spectrum: 4th

C#
C# (pronounced “SEE-sharp”) is a modern, high-level programming language
developed by Microsoft. It’s heavily used for Windows applications, game devel-
opment, and web services, and runs on the .NET framework. (.NET — it’s pro-
nounced DOT-net — is a software development platform created by Microsoft. It
provides the tools, libraries, and a runtime environment needed to build and run
Windows applications, web apps, and services. .NET also supports cross-platform
development across Windows, macOS, and Linux using the unified .NET platform.)

You might be thinking that since C++ was an extension of C, C# must be an exten-
sion of C++. Yes and no. C# does extend C++ by automating the allocation and
release of memory, so it removes the burden of manual memory management. But
C# also removes the features found in both C and C++ that give developers low-
level access to the hardware.

C# is an OOP language that’s relatively easy to learn (at least compared to C++)
and has strong error checking. It’s a must if you ever want to get into Windows
application development because it works seamlessly with .NET. C# is popular
today for not only Windows applications but also game development, Azure cloud
computing services, enterprise software, and web development.

Here’s a “Hello, World!” example in C#:

using System;

class Program {
 static void Main() {

CHAPTER 3 Getting to Know Some Programming Languages 61

 string message = "Hello, World!";
 Console.WriteLine(message);
 }
}

Rankings:

TIOBE Index: 5th

IEEE Spectrum: 7th

Go
Go (also called Golang) is a modern, open-source programming language devel-
oped by Google in 2009. It was designed to be a relatively easy language to learn
by offering developers simple, clean, and easy-to-read code with a minimum of
fussy rules (such as the semicolons that C and Java require at the end of each
statement).

Go is a compiled language, so the resulting files are super-fast. Go is also cross-
platform because you can compile your code to run on Windows, macOS, or Linux.
That performance is why Go is very popular and is used for multiple areas of
development:

	» Cloud computing and DevOps: Go is used by bigtime cloud concerns such as
Docker, Kubernetes, and Terraform. (DevOps is a set of practices and tools
that integrate software development — the Dev part — and IT operations —
the Ops part — to improve collaboration, automate workflows, and accelerate
software delivery.)

	» Web development: Go is a popular language for coding back-end application
programming interfaces (APIs) and microservices. (An API is software that
enables different apps to communicate with each other. A microservice is a
program that performs a specific task — such as user authentication — and is
part of a larger application consisting of multiple such services.)

	» Networking and distributed systems: Go code is fast and scalable (able to
expand without running into problems), so it can handle large num-
bers of users.

	» High-performance applications: Go is the language-of-choice when
companies such as Google, Uber, and Dropbox feel the need for speed.

	» Command-line tools: Go is great for building automation scripts that run
from the command prompt.

62 PART 1 Coding Basics

Here’s a “Hello, World!” example in Go:

package main

import "fmt"

func main() {
 var message string
 message = "Hello, World!"
 fmt.Println(message)
}

Rankings:

TIOBE Index: 8th

IEEE Spectrum: 8th

Java
Java is a powerful and widely used programming language best known for enabling
developers to create “write once, run anywhere” code. That is, Java programs can
run as-is on different devices (Windows PCs, Macs, mobile devices, you name it).
How is that possible? It’s all thanks to a chunk of software called the Java Virtual
Machine (JVM), which acts as a kind of translator between your Java code and each
device’s operating system.

So, Java and JavaScript are close language cousins, right? Nope. Other than both
being coding languages, the two have little in common. As I like to say, Java is to
JavaScript what ham is to hamburger.

Java has a bit of a learning curve, is one of those syntax-heavy languages I men-
tioned earlier, and requires the installation of a special development kit to get
started, so it’s not an ideal language for beginners.

To give you a taste, here’s a “Hello, World!” example in Java:

public class HelloWorld {
 public static void main(String[] args) {
 String message = "Hello, World!";
 System.out.println(message);
 }
}

CHAPTER 3 Getting to Know Some Programming Languages 63

That code is quite a bit denser than the equivalent code in JavaScript and espe-
cially Python.

However, experienced Java developers love its clear syntax and strong error
checking, which is why Java is a very popular language used all over the place:

	» Android app development: Many Android apps are built with Java.

	» Web applications: Java is used to build apps in banking, e-commerce, and
enterprise systems.

	» Game development: Java is a very popular choice for mobile and
desktop games.

	» Big data and cloud computing: Java is used in back-end services for handling
large-scale applications.

Rankings:

TIOBE Index: 4th

IEEE Spectrum: 5th

Kotlin
Kotlin is a modern, concise, and safe programming language developed by
JetBrains. Google has anointed Kotlin as the preferred language for Android app
development. Kotlin is designed to be easier to read and write than Java while
maintaining high performance. Kotlin is also fully interoperable with Java, which
means it works seamlessly with existing Java projects.

Even though Kotlin code can be a bit slower than the equivalent Java code and even
though Kotlin does have a relatively steep learning curve, it’s one of the fastest
growing languages today and developers are using it for lots of things:

	» Android app development: Kotlin is the primary language for coding
modern Android apps.

	» Web development: You can use Kotlin libraries such as Ktor and Spring Boot
to build back-end web applications, APIs, and microservices.

	» Cross-platform apps: With Kotlin Multiplatform, you can share code between
Android, iOS, and web apps.

64 PART 1 Coding Basics

	» Data science and machine learning: You can use Kotlin libraries such as
Kotlin for Data Science to crunch data and KotlinDL (where DL is short for
deep learning) to build AI applications.

Here’s a “Hello, World!” example in Kotlin:

fun main() {
 val message: String = "Hello, World!"
 println(message)
}

Rankings:

TIOBE Index: 19th

IEEE Spectrum: 17th

PHP
PHP (the name is a recursive acronym for PHP: Hypertext Processor) is a server-
side scripting language designed for web development. (Server-side refers to oper-
ations that run on a server. The opposite is client-side, which refers to code that
runs on a client, a system used to access a server. In web development, a web
server represents the server side, and the web browser represents the client side.)
PHP is widely used for building dynamic websites and web applications and is
designed to work seamlessly with databases such as MySQL (pronounced “MY-
ess-kew-ell” or sometimes “MY-sequel”).

PHP is a beginner-friendly language with relatively simple syntax. Its syntax
shares similarities with JavaScript, such as the use of braces and semicolons, so if
you learn one, you’ll be able to pick up the other quickly. (Someone who can code
both the client-side and the server-side is well on their way to becoming what’s
known in the trade as a full-stack developer.)

Although PHP has been around forever (the first version was released way back in
1995!), it remains a powerful and popular language for many different uses:

	» Server-side web development: PHP is designed to handle web forms, user
authentication, database chores, and pretty much anything else required for
web development on the server. About 75 percent of websites use PHP,
including WordPress, Facebook, and Wikipedia.

CHAPTER 3 Getting to Know Some Programming Languages 65

	» Content management systems: A CMS is software that enables users to
create, edit, manage, and publish digital content, such as a blog. Many bigtime
CMS platforms — including WordPress, Drupal, and Joomla — are built
using PHP.

	» Ecommerce websites: PHP is the engine behind lots of sites that enable
ecommerce, including WooCommerce and Magento.

	» APIs and back-end services: Many developers use PHP to create APIs, and
a PHP framework called Laravel helps developers create web apps.

	» Automating web tasks: PHP is widely used for automating routine web
chores such as form handling, file uploads, and sending email.

While newer languages like server-side JavaScript (Node.js) are growing in
popularity, PHP still powers a massive chunk of the web and remains a great
choice for anyone who wants to learn server-side web development.

Shameless plug: If you want to learn both PHP and JavaScript and how they can
work together to build amazing web apps, may I not-even-remotely-humbly
suggest my book Web Coding & Development All-in-One For Dummies, 2nd Edition?

Here’s a “Hello, World!” example in PHP:

<?php
$message = "Hello, World!";
echo $message;
?>

Rankings:

TIOBE Index: 15th

IEEE Spectrum: 13th

Rust
Rust is a systems programming language known for its speedy performance and
memory safety. It was built originally by a team at Mozilla (developer of the
Firefox web browser) but is now an open-source project led by the Rust
Foundation. Rust is widely used for developing high-performance, safe, and
reliable software. Unlike C and C++, Rust offers developers built-in tools for pre-
venting memory leaks and memory-related program crashes.

66 PART 1 Coding Basics

The blazing speed of Rust programs (they’re comparable to C and C++ programs)
and the safety of the code mean that Rust is rapidly finding lots of adherents in
the high-end coding world:

	» Systems programming: Rust is widely viewed as a modern alternative to C
and C++ for operating system development.

	» WebAssembly: Rust is often used to create WebAssembly code, which is
high-performance, compiled code that runs in the web browser.

	» Embedded systems: Rust provides safe and efficient code for IoT devices.

	» Game development: Rust is used in many high-performance game engines.

	» Networking and cloud services: Rust enables developers such as Amazon
Web Services and Cloudflare to create fast, safe back-end services.

	» Cybersecurity and blockchain: Rust is popular with developers who need to
build secure applications and cryptographic tools.

Rust is powerful and complex, but it’s becoming very popular, so it would be a
great language to learn if you want a career in coding. If you’re interested, you can
check out my book Rust All-in-One For Dummies.

Here’s a “Hello, World!” example in Rust:

fn main() {
 let message = "Hello, World!";
 println!("{message}");
}

Rankings:

TIOBE Index: 18th

IEEE Spectrum: 11th

Swift
Released in 2014 by Apple, Swift is a modern, fast, and safe programming
language created for coding apps across Apple’s major operating systems: iOS,
iPadOS, macOS, tvOS, and watchOS. Swift is designed to be easy for beginners
while powerful enough for professionals. Swift combines a clean and readable
syntax reminiscent of Python, the speed of C thanks to being a compiled language,
and some of the modern features of JavaScript. If you want to code apps only in
the Apple ecosystem, you might want to take a close look at Swift.

CHAPTER 3 Getting to Know Some Programming Languages 67

Here’s a “Hello, World!” example in Swift:

let message = "Hello, World!"
print(message)

Rankings:

TIOBE Index: 25th

IEEE Spectrum: 21st

TypeScript
TypeScript is just JavaScript with extra features that enable you to specify a data
type when you declare a variable and to warn you when you try to mix data types.
To understand why this is useful, first check out a basic variable declaration in
JavaScript:

let message = "Hello, World!";

All is good: You’re just storing a string literal in a variable named message. But
later in the same program, your code could do this:

message = 42;

Now, instead of a string literal, you’re using the same message variable to store a
numeric literal. JavaScript is totally fine with that.

JavaScript might not protest at this mixing of data types, but such mixing can lead
to problems in complex programs or when you use a method that requires a par-
ticular data type (such as a string). To avoid such woes, Microsoft invented Type-
Script, which enables developers to specify a data type when they declare a
variable. Here’s an example:

let message: string = "Hello, World!";
console.log(message);

Here, message is the variable name and the extra : string characters specify that
message can only contain string data. If, later in the same program, your code
tried to assign a number to the message variable, TypeScript would display an
error message.

68 PART 1 Coding Basics

Rankings:

TIOBE Index: 35th

IEEE Spectrum: 5th

Grokking the Difference between
Interpreted and Compiled Languages

No matter which programming language you use, all programs must be translated
into something that a computer can understand and execute. The coding world
uses two different tools to do this translating: compilers and interpreters.

A compiler is a software program that translates the entire source code of a
program into machine code (sometimes called binary) before execution. The
resulting machine code file can then be run repeatedly without further
translation. The main advantages of compiled code are that it runs very fast and
the compiler will let you know if your code contains syntax errors. The main
disadvantage of compiled code is that the larger and more complex the code, the
longer the compilation time. Compiled languages include C, C++, Go, Rust,
and Swift.

An interpreter is a software program that translates and executes the source code
one statement at a time, rather than converting the entire program into machine
code beforehand. The interpreter reads and executes source code directly, so
interpreted code runs slower because the translation happens at runtime. The
interpreter stops executing the code at the first error it trips over. Interpreted
languages include Python, JavaScript, and PHP.

Some languages use both a compiler and an interpreter. That is, the original code
is compiled and then the compiled code is executed using an interpreter. Languages
that use both a compiler and an interpreter include C#, Java, and Kotlin.

2Learning Python:
The Beginner-
Friendly
Language

IN THIS PART . . .

Set up your Python environment.

Learn the basics of Python.

Explore lists, conditionals, and loops.

Level up with functions, files, and object-oriented
programming.

Debug your Python programs.

Tackle some Python projects.

CHAPTER 4 Getting Started with Python 71

Chapter 4
Getting Started
with Python

Python is the most powerful language you can still read.
—PAUL DUBOIS

When you read the results of any of the billion or so developer surveys
available online, Python is almost always in the top three and more
often than not is number one. It doesn’t matter whether the survey

question is about which language developers use most often, which language
they enjoy using the most, or even which language they want to learn next. In
survey after survey, Python always ranks at or near the top. And if the survey is
aimed at people who are just learning to code? Ah, then Python floats to the top
almost without fail.

Why all the love for Python? Almost all of today’s most-used languages have mul-
tiple quirks — such as requiring a semicolon at the end of every statement or
using punctuation marks such as colons (:) or braces ({ and }) in idiosyncratic
ways. These syntax oddities aren’t mentally taxing, but they do serve as barriers
that tend to put off beginners (and even many experienced coders). Python is
mercifully free of all that syntax noise. A Python program is clean and clear, mak-
ing it a pleasure to both write and read. But that simplicity doesn’t mean that

IN THIS CHAPTER

	» Installing Python on your computer

	» Setting up your Python coding
environment

	» Executing Python code interactively

	» Running your first Python program

	» Starting your inevitable love affair
with Python

72 PART 2 Learning Python: The Beginner-Friendly Language

Python is a toy language. No way. Once you know the language, you can use it for
sophisticated applications such as data science and even artificial intelligence.
Python programs pack a punch.

In this chapter, you run your first Python program. But before you get that far,
this chapter also takes you on a brief but necessary trip to get your computer set
up to do the Python thing.

Getting to the Command Line
Whether you use Windows or macOS, you’re no doubt used to making things hap-
pen by using your mouse or trackpad to click or double-click icons, buttons, and
other visual knickknacks. But every Windows PC and every Mac has an alternative
tool for getting things done: the command line. The command line (also known as
the command-line interface, or CLI) is a text-based interface that enables you to
interact with the computer by typing commands rather than clicking and drag-
ging graphical elements.

When you first start learning to code with Python, it all happens on the command
line, so it can feel a little like having a chat with your computer. You say some-
thing like this:

print('Hello!')

and your computer instantly responds with this:

Hello!

It’s not quite a conversation (since, via your code, you’re telling the computer
what to say or do), but as a coding process it’s simple, direct, and super satisfying.

Okay, so where does this conversation take place? This style of coding — one
statement at a time — is done in the Python interactive shell, also called REPL
(read, evaluate, print, loop; I explain these a bit later in the “Running in interac-
tive mode [REPL]” section). REPL is a safe and secure place for

	» Trying out new Python features

	» Test-driving little ideas

	» Making mistakes and learning fast

CHAPTER 4 Getting Started with Python 73

Sure, executing one statement at a time might not sound useful now, but it’s a
great way to get started. Eventually, you’ll graduate to writing full Python scripts
and building cool stuff in a code editor.

For now, most of what you’ll do with Python will take place at your computer’s
command line, and how you get there depends on whether you’re using Win-
dows or macOS.

Launching Terminal on Windows
Windows offers a Terminal app with two command-line environments, and it
doesn’t matter which one you use to run your Python statements or scripts:

	» Windows PowerShell: Click Start, type term, and then click Terminal in the
search results. Alternatively, right-click Start and then click Terminal in the
shortcut menu that pops up. PowerShell is the default Terminal environment,
so that’s what appears whenever you launch Terminal.

	» Command Prompt: Click Start, type cmd, and then click Command Prompt in
the results. Alternatively, right-click Start, click Run (or press Windows+R) to
open the Run dialog box, type cmd, and then click OK.

If you’re running an older version of Windows that doesn’t include Terminal, you
can download the app from the Microsoft Store.

Figure 4-1 shows the Terminal window with Windows PowerShell as the
command-line environment. Note that you can click the arrow pointed out in
Figure 4-1 to switch between Command Prompt and PowerShell.

FIGURE 4-1:
The Windows
Terminal app

running Windows
PowerShell.

74 PART 2 Learning Python: The Beginner-Friendly Language

Launching Terminal on macOS
macOS offers the Terminal app for all your Mac-related command-line frolics.
You have three main ways to get there:

	» Spotlight Search: Click the Spotlight Search icon in the menu bar (and shown
in the margin) or press ⌘  +Spacebar, type term, and then click Terminal in the
search results.

	» Launchpad: Click Launchpad on the dock, click Other, then click Terminal.

	» Finder: Click Finder on the dock, and then click Applications  ➪    Utilities  ➪   
Terminal.

Figure 4-2 shows the macOS Terminal app.

Some useful Terminal shortcuts
You’ll likely spend much of your Python career hanging around the command line,
so you might as well learn a few handy keyboard shortcuts to make your terminal
work easier and more efficient. To that worthy end, Table 4-1 presents a bunch of
keyboard techniques and their Windows and macOS shortcuts.

FIGURE 4-2:
The macOS

Terminal app.

TABLE 4-1	 Terminal Keyboard Shortcuts
Action Windows shortcut macOS shortcut

Interrupt or stop current command Ctrl+C Control+C

Clear terminal screen Ctrl+L Control+L or Cmd+K

Exit terminal or session Ctrl+D, or type exit then Enter Control+D, or type exit() then Return

Cancel typed text or line Esc Control+U

CHAPTER 4 Getting Started with Python 75

Installing Python
Programming languages evolve. New features are added, existing features are
changed, no longer useful features are jettisoned, performance is improved, and
security holes are patched. For many languages, new versions seem to arrive
almost randomly, but not Python. Ever since version 3.9 was released in October
2020, a new version of the language has appeared faithfully every October. As I
write this, Python 3.13 was released in October 2024, so that’s the version I use in
this book. More accurately, I use version 3.13.5. That extra “.5” tacked on at the
end is there because Python releases minor versions (3.13.1, 3.13.2, and so on)
regularly. Here’s how to read a version number such as 3.13.5:

	» 3: The major version number (some perhaps overly dramatic folks insist that
we’re currently in the “Python 3 era”).

	» 13: The feature release version number (the number bumped up by one
each October).

	» 5: The patch or bug fix version number (small fixes or improvements that are
released every month or two).

The good news is that you don’t have to worry about version numbers all that
much because the Python folks are careful about releasing only proven versions of
the language. When it’s time to install Python, just use whatever the Python web-
site says is the latest version and you’ll always be fine.

Action Windows shortcut macOS shortcut

Autocomplete file or command Tab Tab

Cycle command history Up arrow or down arrow Up arrow or down arrow

Search command history F8 or Ctrl+R Control+R

Delete word (backward) Ctrl+Backspace Control+W

Delete line (cursor to start) Ctrl+U Control+U

Delete line (cursor to end) Ctrl+K Control+K

Move cursor word by word Ctrl+left arrow or Ctrl+right
arrow

Option+left arrow or Option+ right
arrow

Move to start or end of line Home or End Control+A or Control+E

Paste from clipboard Right-click or Ctrl+V Cmd+V or Control+Y

Copy selected text Right-click or Ctrl+C Cmd+C

Scroll up or down terminal output Ctrl+Up or Ctrl+Down Shift+Page Up or Shift+Page Down

76 PART 2 Learning Python: The Beginner-Friendly Language

Does your computer already have
Python installed?
Before diving into the steps required to install Python, it’s a good idea to check
whether it’s already installed and, if it is, to check which version you have.

Open a terminal in Windows or macOS, and then do the following:

	» Windows: Type python --version and press Enter.

	» macOS: Type python3 --version and press Return.

To be clear, there are two hyphens (-) before the word version in each command.
One of three things will be true:

	» A recent version of Python is installed. A message showing the Python
version number appears, which will be similar to the following:

Python 3.13.5

As long as that number is 3.10 or higher, you’re good to go. Feel free to skip
over the upcoming instructions for installing Python. However, if you’re a
release or two behind, it’s a good idea to install the most recent version, as I
describe in that section.

	» An older version of Python is installed. A message showing the Python
version number appears, but it’s older than version 3.10. For example:

Python 3.6.2

or even older:

Python 2.7.18

It’s important to upgrade these older versions, so head down to the Python
installation section for your operating system to learn how to get the latest
version on your computer.

	» Python is not installed. A message similar to the following appears:

Python was not found

In this case, saunter over to either the “Installing Python on Windows”
section or the “Installing Python on macOS” section to get Python running
on your machine.

CHAPTER 4 Getting Started with Python 77

In Windows Terminal, the Python was not found message might be followed by
this suggestion:

run without arguments to install from the Microsoft Store

Indeed, if you type python and press Enter, the Microsoft Store appears and dis-
plays a page prompting you to install the latest version of Python. I highly recom-
mend that you not do this! The version of Python you get works fine, but it works
with a configuration that can cause problems if you try to do anything but the
most basic Python tasks. Do yourself a favor and get Python directly from the
Python website. You’ll thank me in the end.

Installing Python on Windows
If Python isn’t installed, or if you want to upgrade to the latest version, here are
the steps to follow on Windows:

1.	 Point your favorite web browser to the Python website at www.python.
org/downloads.

The Python website should automatically detect that you’re using Windows
and display the message Download the latest version for Windows, as
shown in Figure 4-3. If this message doesn’t appear, click Downloads and then
click Windows.

FIGURE 4-3:
The Python site is
smart enough to
detect that your

PC is running
Windows.

https://www.python.org/downloads
https://www.python.org/downloads

78 PART 2 Learning Python: The Beginner-Friendly Language

2.	 Click the Download button (or link) for the latest version.

In Figure 4-3, it’s the Download Python 3.13.5 button.

Your web browser downloads the Python installation program, which will
have a name along the lines of python-3.13.5-amd64.exe.

3.	 When the download is complete, run the downloaded file.

Your web browser might display a link such as Open File, which you can click.
Otherwise, open File Explorer, navigate to your Downloads folder, and then
double-click the downloaded file.

A Python Setup dialog similar to the one shown in Figure 4-4 shows up.

4.	 Select the Add python.exe to PATH check box.

It’s really important that you select this check box because doing so enables
you to run Python from the command line and, later, enables a code editor
such as VS Code editor to find Python automatically. If you forget to select this
check box or you’ve already moved on, don’t sweat it. Just run the Python
installer again and be sure to select the check box this time.

5.	 Click Install Now.

The Python installation program does just that, which takes a minute or two.
When the program is done, the Setup Was Successful dialog appears.

6.	 Click Close.

Python is ready to rumble!

FIGURE 4-4:
The Python Setup

dialog appears
when you run the

installer.

CHAPTER 4 Getting Started with Python 79

To make sure, launch a new Terminal tab or window (if you had Terminal open
before the Python installation, you need to close that window or start a new tab)
and run the following command:

python --version

A response similar to the follow should appear:

Python 3.13.5

Installing Python on macOS
To install Python or upgrade to the latest version on macOS, follow these steps:

1.	 Send your nearest web browser to the Python website at www.python.
org/downloads.

The Python website should automatically detect that you’re using macOS and
display the message Download the latest version for macOS, as shown in
Figure 4-5. If this message doesn’t appear, click Downloads and then click macOS.

2.	 Click the Download button (or link) for the latest version.

In Figure 4-5, it’s the Download Python 3.13.5 button.

3.	 If a dialog appears asking to allow downloads on www.python.org,
click Allow.

Your web browser downloads the Python installer package, which will have a
name along the lines of python-3.13.5-macos11.pkg.

FIGURE 4-5:
The Python site is
clever enough to

detect that you’re
running macOS.

https://www.python.org/downloads
https://www.python.org/downloads
http://www.python.org

80 PART 2 Learning Python: The Beginner-Friendly Language

4.	 When the download is complete, run the downloaded installer.

Your web browser might display a link such as Open File, which you can click.
Otherwise, open Finder, navigate to your Downloads folder, and then double-
click the downloaded package file.

The Install Python package runs and the Introduction dialog shows up.

5.	 Click Continue in each dialog box that appears.

6.	 When you get to the Installation Type dialog, click Install.

7.	 If a prompt about your password shows up, use whatever method works
best to authorize the installation.

The Python installer package performs the installation, which takes a minute or
so. When the program is done, a Finder window pops up showing the installed
Python files. Close that window because you don’t need it.

8.	 Click Close.

If a message appears wondering if you want the Python installer moved to the
trash, go ahead and click Move to Trash because you don’t need the installer
file any longer.

Python is ready for action!

To double-check that all is well, launch a new Terminal window (if you had Ter-
minal open before the Python installation, you need to close that window and
launch a new one) and run the following command:

python3 --version

A response like the following should appear on your screen:

Python 3.13.5

Running the Python Interpreter
Python is an interpreted language, which means Python code gets executed one
statement at a time. So, when I talk about the “Python interpreter,” I’m talking
about the program that runs your Python code. However, the Python interpreter
can do that job in two ways: in interactive mode or in script mode.

CHAPTER 4 Getting Started with Python 81

Running in interactive mode (REPL)
Interactive mode means that you open a terminal, launch Python (I explain how
to do that shortly), and then enter your commands one at a time. Each time you
enter a command, Python gives you a response related to what you entered. It’s a
bit like chatting with Python, and this conversational version of the interpreter is
called REPL:

	» Read: After you press Enter or Return, the interpreter reads what you typed at
the command line.

	» Evaluate: The interpreter examines your code. If there are no errors, the
interpreter executes the code.

	» Print: The interpreter displays the result of your code. Note that some
commands don’t have results (for example, storing a value in a variable), so in
these cases REPL displays nothing.

	» Loop: The interpreter waits for you to enter your next statement.

Suppose that you type the following and press Enter or Return:

>>> 2 + 2

Here, >>> is the REPL prompt; it isn’t something you type. You type the 2 + 2 part
(shown in bold). The interpreter evaluates the code and then prints the result:

4

With its work done for now, the interpreter waits for the next command. That’s
REPL in action — it’s Python’s instant response playground. It’s perfect for
experimenting, testing ideas, and just poking around while you’re learning.

When you’re finished working in REPL, you need to close it to get back to the
regular Terminal prompt:

	» Windows: Either press Ctrl+D or type exit and press Enter.

	» macOS: Either press Control+D or type exit() and press Return.

Running in script mode
REPL is a great place to get comfy with Python when you’re just getting started,
but very soon you’ll graduate to more complex scripts that require many

82 PART 2 Learning Python: The Beginner-Friendly Language

statements. In the Python world, you package those statements into a text file
called a script that you save using the .py file extension.

To execute the commands in your script, you open a terminal, type py or python
(on Windows) or python3 (on macOS) followed by the name of your .py file. Here’s
an example:

python my_script.py

The Python interpreter gets to work and reads the script one line at a time, top to
bottom, and executes each statement in order.

Running Python on Windows
To get the Python interpreter running on your Windows PC, you have two choices:

	» Command-line method: Open Terminal and then type either python or py
and press Enter. Wait! What? py? Where did that come from? py is a Python
launcher, a special program used only to run Python. It offers some fancy
tricks (such as being able to run different installed versions of Python), but
there’s no need to get into any of that. For our purposes, just think of it as a
way to fire up the Python interpreter in four fewer characters.

	» Start menu method: Click Start, click All, click the Python version folder, and
then click Python version, where, in both cases, version is the version number
of Python that you installed. For example, Figure 4-6 shows a Start menu with
the Python 3.13 folder and Python 3.13 command.

Either way, the Python interpreter launches in the Terminal window and the fol-
lowing prompt appears (see Figure 4-7):

>>>

A cursor blinks on and off to the right of the prompt, which is your cue to type
a command.

Running Python on macOS
To get the Python interpreter off the ground on macOS, open Terminal, type
python3, and press Return. This method displays the Python interpreter’s >>>
prompt, as shown in Figure 4-8.

CHAPTER 4 Getting Started with Python 83

FIGURE 4-6:
Running Python

from the
Windows

Start menu.

FIGURE 4-7:
The Python
interpreter

waiting patiently
for its next

command in
Windows
Terminal.

FIGURE 4-8:
The Python

interpreter at
your beck and
call in macOS

Terminal.

84 PART 2 Learning Python: The Beginner-Friendly Language

Running Your First Python Program
Assuming you have the Python interpreter running, give it a whirl by typing the
following command (remember to type just the bold part, not the >>> prompt part):

>>> print("Hello, Python World!")

When you press Enter or Return, the Python interpreter runs your command,
which in this case displays the following:

Hello, Python World!

Running single commands is fine for trying out basic stuff, but you can also use
the Python interpreter to run multistatement programs. You can convince the
Python interpreter to handle scripts with two or more statements in several ways.
But before I get to those methods, following is an example script you can use:

name = input("What's your name? ")
print("Nice to meet you, " + name + "!")
chars = len(name)
print("Your name contains " + str(chars) + " characters.")

Here’s a look at what this script does:

1.	 name = input("What’s your name? ")

This statement uses Python’s input() function (covered in Chapter 5) to
display the prompt What’s your name? on the screen. (Note the extra space
at the end of the prompt, which is there to provide some daylight between the
end of the prompt and what you type.) When you type your name and press
Enter or Return, what you typed is stored in the name variable.

2.	 print("Nice to meet you, " + name + "!")

This statement takes the phrase Nice to meet you, appends the value of
the name variable (in Python, you combine two strings using the + operator),
and tacks on an exclamation point (!). The entire string is then displayed on
the screen using the print() function.

3.	 chars = len(name)

This statement uses the len() function (it’s short for length) to calculate the
number of characters in the string that’s stored in the name variable, and then
stores that number in the chars variable.

CHAPTER 4 Getting Started with Python 85

4.	 print("Your name contains " + str(chars) + " characters.")

This statement takes the phrase Your name contains, appends the number
stored in the chars variable, uses the str() function (it’s short for string) to
convert the number to a string to avoid an error, and adds the text characters.
to the end. The print() function then outputs the entire string to the screen.

Running the program in interactive mode
In the Python REPL, you have two ways to run a multistatement program:

	» Add one statement at a time. For each statement, type it (or copy it if you
have it written down elsewhere and then paste it at the >>> prompt), and
then press Enter or Return. Figure 4-9 shows the example program having
been entered in REPL one statement at a time.

	» Paste the entire program. Assuming you have the entire script available
somewhere, copy the entire script, paste it at the >>> prompt, and then press
Enter or Return. The Python interpreter goes through each statement one by
one, starting from the first line.

Running the program in script mode
Another way to run the program — and by far the most common way once your
Python programs get beyond just a few statements — is to save the code to a .py
file and then ask the Python interpreter to execute the file.

So, the first step is to use your favorite text editor to start a new text file, type your
code into that file, and then save the file using the .py file extension. Figure 4-10
shows the example program (with a few added comments — the lines beginning
with #) saved as the whats_your_name.py file in the VS Code editor.

FIGURE 4-9:
Running the

example program
one statement

at a time
in the REPL.

86 PART 2 Learning Python: The Beginner-Friendly Language

From here, how you proceed depends on whether you’re using Windows or macOS.

Running a script file in Windows
To run a script file in Windows, you need to use your terminal window to navigate
to the same folder as the one you used to save your .py file. Here’s how:

1.	 Open File Explorer.

2.	 Navigate to the folder that contains the subfolder where your .py file
is stored.

For example, if your file is in Documents\PythonStuff, navigate to the
Documents folder.

3.	 Right-click the subfolder that contains your .py file, and then click Open
in Terminal.

A new Terminal tab appears and switches to the folder you right-clicked.

Now you’re ready to tell the Python interpreter to run the file in script mode:

python file_name.py

Replace file_name.py with the name of your script file. Here’s an example:

python whats_your_name.py

The Python interpreter loads the .py file, and then reads and runs each line from
top to bottom without pausing between statements — unless your script includes
one or more input() functions.

FIGURE 4-10:
The example

Python program
saved to a .py

file in the VS
Code editor.

CHAPTER 4 Getting Started with Python 87

Running a script file in macOS
To run your script file in macOS, you need to navigate Terminal to the same folder
as the one you used to save your .py file. Here are the steps to plow through:

1.	 Arrange the Terminal and Finder windows so that both are visible on
your desktop.

2.	 In Terminal, type cd followed by a space.

The cd command is short for change directory, which is what you’ll be doing any
second now. And, yep, you really do need to add a space after cd.

3.	 Switch over to Finder.

4.	 Navigate to the folder that contains the subfolder where your .py file
is stored.

For example, if your file is in Documents\PythonGoodies, navigate to the
Documents folder.

5.	 Drag the subfolder that contains your .py file and drop it inside the
Terminal window.

The path of the folder now appears after the cd command.

6.	 Press Return.

Terminal switches to that folder.

Now, at long last, it’s time to get the Python interpreter to run the .py file in
script mode:

python3 file_name.py

Replace file_name.py with the name of your script file. Here’s an example:

python3 whats_your_name.py

The Python interpreter reads the .py file and then runs each statement one
at a time.

CHAPTER 5 Getting Comfy with Some Python Fundamentals 89

Chapter 5
Getting Comfy
with Some Python
Fundamentals

It’s humbling to start fresh. It takes a lot of courage. But it can be
reinvigorating. You just have to put your ego on a shelf and tell it to be quiet.

—JENNIFER RITCHIE PAYETTE

Python’s reputation as a benign language for beginners comes in part because
Python mostly does away with the annoying rules (I’m looking at you, “End
every statement with a semicolon”) and oddball syntactic symbols (I’m

looking at you, curly braces) that festoon other languages. But Python is also a
great first language to learn because you don’t have to learn much of it to do
useful things.

In this chapter, I hope to prove how far you can get by learning just a few Python
fundamentals. In the pages that follow, you explore Python variables, data types,
and expressions. You also investigate what you can do with strings and how to get
input from the user. By the time this chapter is done, you’ll know just enough to
be dangerous, er, I mean, just enough to write some useful little programs.

IN THIS CHAPTER

	» Declaring variables and working with
data types

	» Building Python expressions

	» Making strings bend to your will

	» Handling user input

90 PART 2 Learning Python: The Beginner-Friendly Language

Declaring Variables
In most programming languages, you need to let the compiler or interpreter know
that you’re declaring a variable by starting off with a special keyword, such as
var or let. (JavaScript, as I show in Chapter 10, is one of these languages.)

In Python, thankfully, you don’t need any kind of keyword to declare a variable.
Instead, you just get right down to it by thinking up a name for the variable and
assigning it a value using the appropriately named assignment operator — =:

name = "Alice"
price = 9.95
is_cool = True

If you’re assigning a string literal, surround it with either double quotation marks
(") or single quotation marks ('). If you’re assigning a numeric literal, just type
the number. If you’re assigning a Boolean value, use True or False. That’s it! No
fuss. This is one reason why Python has a reputation for being beginner-
friendly.

Not that we’re in “anything goes” territory, mind you, because there’s a short list
of rules you need to follow. In Python, variable names

	» Must start with a letter or an underscore (_): The other characters can be a
letter, an underscore, or a number.

	» Can’t have spaces: If you need to use multiple words to make a variable name
more descriptive, it’s traditional in Python to use snake_case, where you separate
the words using underscores. For example, user_name or high_score.

	» Are case-sensitive: For example, the names total, Total, and TOTAL refer
to three different variables.

Although using all lowercase letters in your variable names isn’t a requirement, I
recommend that you do so. Lowercase names are faster to type, and you never
have to worry about what capitalization you used when you declared the variable.
Also, it’s best to use descriptive names when you can. A name such as temp_
celsius is clearer and easier to read than t_c or just t.

Python doesn’t mind if you declare multiple variables in a single statement, which
is useful when you need to initialize two or more variables with the same
value, such as:

player1_health = player2_health = 100

CHAPTER 5 Getting Comfy with Some Python Fundamentals 91

Exploring Python Data Types
Like any programming language, Python has a relatively long list of data types.
Happily for you, there are just three main types that you’ll use most often as
you’re getting your Python feet wet:

	» String: A text value, which can be a string literal such as "kumquat" or
'rutabaga', a value returned by one of Python’s string methods (check
out “Messing Around with Strings,” later in this chapter), or text returned by
a custom function or an object property. The Python interpreter uses the
str keyword to refer to the string data type.

	» Number: A numeric value, which can be either an integer such as 42 or a
floating-point decimal such as 3.14159. A number can be a literal, the result
of an expression, the return value of a function, or the value of an object
property. The Python interpreter uses the int (for integer) and float (for
floating point) keywords to refer to the number data type.

When your code requires a large number, you can make the number more
readable by inserting an underscore (_) where you’d normally use a thousands
separator if you were writing the number in the real world:

preferred_salary = 1_500_000

	» Boolean: The value True or the value False. A Boolean can be an expression
result, a function return value, or an object property value. The Python
interpreter uses the keyword bool to refer to the Boolean data type.

When you declare a variable, as I describe in the preceding section, Python auto-
matically figures out what type of data you’re storing: a string, a number, or a
Boolean. Nice.

Python defines quite a few more data types, but most of them can be filed under
the “For Nerds Only” category. Some other data types that I cover in Chapter 6
and that you’ll use often are the list, the range, and the tuple and dictionary.

Mixing data types
Python is generally pretty easygoing about data types, meaning that however you
use a string, a number, or a Boolean, the interpreter will do its best to figure out
what you mean. Not that what the interpreter figures out is always obvious. For
example, Python is fine mixing numbers and Booleans because internally Python

92 PART 2 Learning Python: The Beginner-Friendly Language

represents True as 1 and False as 0. For example, you could enter the following
(remember: just the bold text) at the REPL prompt:

>>> 3 + True

The result is 4, because 3 + True is equivalent to 3 + 1.

Yep, Python allows Booleans and integers to overlap, but mixing them intention-
ally in complex logic can confuse your future self — or anyone reading your code.
It’s best to use Booleans just for logic and integers just for math.

As another example, you might wonder what will happen here:

>>> "ho" * 3

Somewhat surprisingly, this is the result:

'hohoho'

That is, when the Python interpreter comes across "string" * number, it repeats
string, number times.

However, sometimes mixing data types just doesn’t work. For example, in Python
you combine — or concatenate — two strings using the + operator. The expression
"lolla" + "palooza" produces the string "lollapalooza". However, suppose
you enter the following statement at the REPL prompt:

>>> account_number = "ac" + 12345

Instead of what you might expect — that the value ac12345 is now stored in the
account_number variable — you instead the following error appears:

TypeError: can only concatenate str (not "int") to str

This error is saying, “Hey, whoa, wait just a second. You’re only allowed to con-
catenate a string with another string. You tried to concatenate a string with an
integer. Sorry, no can do.”

Converting data types
Despite the Python interpreter’s objections, sometimes your code really does need
to mix data types in a particular way. To work around any errors that might crop
up, you can use some built-in Python functions to convert — or coerce, in pro-
gramming lingo — one data type into another:

CHAPTER 5 Getting Comfy with Some Python Fundamentals 93

	» str(number): Converts number into a string.

	» int(string): Converts string into a number. This conversion works only if
string contains a valid integer written in digits and surrounded by quotation
marks, like "42". If it says “forty-two” or includes any letters or symbols,
Python will throw a tantrum.

	» float(value): Converts value from a string or an integer into a floating-point
number. Again, if value is a string, it must be a valid integer or floating-point
number in quotation marks.

	» bool(value): Converts value to a Boolean. Non-zero numbers and
non-empty strings are converted to True; 0 and "" (the empty string) are
converted to False.

For example, from the preceding section, I showed that the following throws an
error because you can’t concatenate a string with an integer:

>>> account_number = "ac" + 12345

To make this work, you need to convert the number 12345 into a string, like so:

>>> account_number = "ac" + str(12345)

Now the value ac12345 gets stored properly in the account_number variable.

Constructing Expressions
Okay, so you’ve got your variables, and each one has a data type that Python has
noted for you behind the scenes. Maybe you’ve stored your name in a variable. Or
maybe you’ve stored the number of cookies you’ve eaten in one variable and how
many uneaten cookies are left in another. What happens next? What can you actu-
ally do with those variables?

One of the most common uses of variables is to use them in expressions. A Python
expression is a bit of code that combines one or more operands, such as variables
or literal values, with one or more operations, such as addition or multiplication,
to produce a result.

For example, here’s a simple expression you could type at the REPL prompt:

>>> 2 + 2

94 PART 2 Learning Python: The Beginner-Friendly Language

The Python interpreter reads that and says, “Easy. That’s 4.” It evaluates the
expression and displays the result onscreen.

Expressions get a whole lot more interesting and useful once you start using
variables as operands. Here’s an example (in this book’s example files, refer to
chapter05/example01.py):

cookies_eaten = 3
cookies_not_eaten = 2
total_cookies = cookies_eaten + cookies_not_eaten
print(total_cookies)

Here, cookies_eaten + cookies_not_eaten is the expression. The result — 5, in
this case — is stored in the total_cookies variable.

Basic math operators in Python
Python comes with a toolbox of common mathematical operators that you can
wield to build your arithmetic expressions. Table 5-1 lists the available math
operators.

If two numbers divide evenly, regular division (/) doesn’t return an integer result,
as you might expect. It always returns a floating-point result.

Python also comes with a few extra operators that combine some of the arithmetic
operators and the assignment operator (=). Table 5-2 lists these arithmetic
assignment operators.

TABLE 5-1	 Python’s Math Operators
Operator Name What It Does Example Result

+ Addition Adds values 2 + 3 5

- Subtraction Subtracts values 5 - 2 3

* Multiplication Multiplies values 4 * 2 8

/ Division Divides values 8 / 2 4.0

// Floor division Returns only the integer portion of a division 7 // 2 3

% Modulo Returns the remainder after a division 7 % 2 1

** Exponentiation Raises one number to the power of another 2 ** 3 8

CHAPTER 5 Getting Comfy with Some Python Fundamentals 95

Comparison operators in Python
When you need an expression that compares one value with another, Python has
your back by offering a complete list of comparison operators, as shown in
Table 5-3.

You’ll use these operators a ton when writing conditionals and loops in Chapter 6
(refer to “Conditionals in Python” and “Python Loops,” respectively).

Building logical expressions in Python
You use logical expressions to combine or manipulate Boolean values, particularly
comparison expressions. For example, your code might need to know whether two
comparison expressions are both True before continuing. That kind of test is the
province of the logical expression, which you build in Python using the logical
operators listed in Table 5-4.

TABLE 5-2	 Python Arithmetic Assignment Operators
Operator Example Equivalent

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

**= x **= y x = x ** y

%= x %= y x = x % y

TABLE 5-3	 Python’s Comparison Operators
Operator Name Example Result

== Equal to 5 == 5 True

!= Not equal to 5 != 3 True

> Greater than 7 > 3 True

< Less than 2 < 1 False

>= Greater than or equal to 4 >= 4 True

<= Less than or equal to 3 <= 2 False

96 PART 2 Learning Python: The Beginner-Friendly Language

Here’s an example (chapter05/example02.py):

hungry = True
has_cookies = False
if hungry and has_cookies:
 print("Time to munch!")
else:
 print("No cookies for you!")

To learn how Python if statements work, head over to the “Conditionals in
Python” section in Chapter 6.

A quick peek at order of operations
Python follows the standard math rules for the order of operations — also known
in the coding trade as PEMDAS:

1.	 Parentheses

2.	 Exponents

3.	 Multiplication and division

4.	 Addition and subtraction

For example, what value is stored in the result variable?

>>> result = 2 + 3 * 4

If you just process the expression from left to right, you might come up with 20 as
the answer (2 + 3 = 5, then 5 * 4 = 20). But the Python interpreter, following
PEMDAS, performs the multiplication first, and then the addition to get the cor-
rect result of 14 (3 * 4 = 12, then 2 + 12 = 14).

TABLE 5-4	 Python’s Logical Operators
Operator What It Does Example Result

and Returns True if both expressions are True; returns False, otherwise True and
False

False

or Returns True if at least one expression is True; returns False
otherwise

True or
False

True

not Returns True if the expression is False; returns False otherwise not True False

CHAPTER 5 Getting Comfy with Some Python Fundamentals 97

To force Python to perform the addition first, surround that part of the expression
with parentheses:

>>> result = (2 + 3) * 4

In this case, the Python interpreter, still avidly following PEMDAS, performs the
addition first (2 + 3 = 5) because it appears within parentheses, and then it per-
forms the multiplication (5 * 4 = 20) to get a result of 20.

Messing Around with Strings
Earlier in this chapter in the “Exploring Python Data Types” section, I provide the
following facts about Python strings:

	» A string is text surrounded by double (") or single (') quotation marks.

	» You can smush two strings together by using the concatenation operator (+).
For example, "Cowa" + "bunga" produces "Cowabunga".

	» You can repeat a string by using the multiplication operator (*). For example,
"yadda" * 3 produces 'yaddayaddayadda'.

	» You can convert a number to a string using Python’s built-in str() function.
For example, str(1812) produces the string "1812".

	» The special string "" (or '') is called the empty string because nothing is
between the two quotation marks.

That’s a pretty good start, but there’s much more to know about strings, as the
following sections show.

Understanding string indexes
For a given string, the position of a single character in that string is called the
index of the character. Like just about every programming language under the sun,
Python’s indexes are 0-based, which means the index of the first character is 0,
the index of the second character is 1, and so on. This is weird, I know, but you’ll
be surprised how quickly you get used to it.

Indexes are useful when you need to grab a chunk of a string in your code. For a
single character, you use the following syntax:

string[index]

98 PART 2 Learning Python: The Beginner-Friendly Language

where:

	» string is the string you’re working with.

	» index is the index number of the character you want.

Here’s an example (chapter05/example03.py):

greeting = "hello"
print(greeting[0])
print(greeting[1])

The first print() statement returns h; the second print() statement returns e.

If you need a bigger slice of a string, you can use the following syntax to get
the job done:

string[start:stop]

where:

	» string is the string you’re working with.

	» start is the index number of the first character you want.

	» stop is the index number that is one more than the last character you want.

Here’s an example (chapter05/example04.py):

word = "rutabaga"
print(word[0:3])
print(word[4:7])

The first print() statement returns rut; the second print() statement
returns bag.

If you ever need to know how many characters are in a string, use the len() function:

len(string)

where string is a reference to some string value. For example, len("rutabaga")
would return 8.

CHAPTER 5 Getting Comfy with Some Python Fundamentals 99

Mixing strings with variables
One of the most common coding problems occurs when you want to create a
string, but part of the string is stored inside a variable. One solution is to use con-
catenation, as in this example (chapter05/example05.py):

name = "Alphonse"
total = 7
print("I hear " + name + " ate " + str(total) + " cookies.")

Here’s the output:

I hear Alphonse ate 7 cookies.

So, yep, it works, but getting all those quotation marks right is harder than it
seems, and the string is super-hard to read.

A better solution is to use an f-string — short for formatted string — where you slap
an f in front of the string and surround each variable with braces ({ and }). Here’s
the same example, this time using an f-string (chapter05/example06.py):

name = "Alphonse"
total = 7
print(f"I hear {name} ate {total} cookies.")

Ah, better. Not only are there just the two quotation marks to worry about, but the
string is much more readable and you don’t have to convert the total variable to a
string. You’re welcome!

String methods
In Python, a string is an object, so like any object worthy of the name, a string
comes with various methods that you can use to perform operations on that
string. For each method, you use the following general syntax:

string.method([parameter(s)])

where:

	» string is the string object on which you want to perform the operation.

	» method is the name of the method.

	» parameter(s) represents one or more optional parameters that you use
as input for the method.

100 PART 2 Learning Python: The Beginner-Friendly Language

There are tons of these methods, so Table 5-5 just summarizes the most
useful ones.

If you just want to know whether a particular substring exists anywhere within a
larger string, use the following

substring in string

TABLE 5-5	 Useful String Methods
Method What It Does Example Result

count() Returns the number of
instances of a substring within
a string

fruit = "papaya"

print(fruit.count("a"))

3

endswith() Returns True if a string ends
with the specified substring;
returns False, otherwise

veg = "kumquat"

print(veg.endswith("k"))

False

find() Returns the position of the
first instance of a substring
within a string

fruit = "papaya"

print(fruit.find("p"))

0 (find() returns
-1 if the substring
isn’t found)

lower() Converts a string to lowercase
letters

my_str = "TOO LOUD!"

print(my_str.lower())

too loud!

replace() Replaces one substring with
another within a string

message = "Hello,
world!"

print(message.
replace("world",
"Python"))

Hello, Python!

title() Capitalizes just the first letter
of each word in a string

print("the beaches".
title())

The Beaches

upper() Converts a string to uppercase
letters

message = "Hello,
world!"

print(message.upper())

HELLO, WORLD!

startswith() Returns True if a string begins
with the specified substring;
returns False, otherwise

veg = "kumquat"

print(veg.
startswith("k"))

True

CHAPTER 5 Getting Comfy with Some Python Fundamentals 101

where:

	» substring is the characters or characters that you want to check for
in string.

	» string is the string in which you want Python to look for substring.

Python returns True if substring is anywhere in string; it returns False,
otherwise.

Splitting and joining strings
One of the most popular use cases for Python code is working with text, which
might be user input, data trapped in a comma-separated values (CSV) text file,
data scraped from the web, and much more. To work with text, Python offers a
couple of super-useful string object methods: split() and join().

The split() method
The split() method chops up a string into smaller bits for easier processing:

string.split([separator])

where:

	» string is the string object on which you want to perform the split.

	» separator is an optional character that defines how you want the string to be
split. If you don’t include separator, Python uses the space character.

Here’s an example (chapter05/example07.py):

sentence = "I love Python"
words = sentence.split()
print(words)

The result is the following list (check out the section “Storing Stuff in Lists” in
Chapter 6 to learn more about Python lists):

['I', 'love', 'Python']

102 PART 2 Learning Python: The Beginner-Friendly Language

Alternatively, you can tell Python where you want the splits to occur in the string
(chapter05/example08.py):

csv_data = "apple,banana,cherry"
fruits = csv_data.split(",")
print(fruits)

Here’s the resulting list:

['apple', 'banana', 'cherry']

The join() method
The join() method is kind of the opposite of split() in that it glues two or more
strings into a single string:

separator.join(list)

where:

	» separator is the string you want Python to use to separate each substring.
If you don’t want a separator, use the empty string.

	» list is a comma-separated list of the strings you want to join, surrounded
by square brackets ([and]).

Here’s an example (chapter05/example09.py):

parts = ["Coding", "For", "Dummies", "rules!"]
message = " ".join(parts)
print(message)

Here I’m asking Python to join the strings in the parts list by separating each
with a space (" "). Here’s the result:

Coding For Dummies rules!

Ah, thanks!

Getting input from the user
Python uses a built-in function called input() to get information from the user:

input([prompt])

CHAPTER 5 Getting Comfy with Some Python Fundamentals 103

The prompt is an optional message that appears on the screen followed by a colon
and is used to tell the user what to type. (You can leave out prompt, but then the
user just gets a blinking cursor, which might be confusing; it’s best to always use
a prompt.) Note that it’s good practice to include a space at the end of your prompt
so that the user’s typing doesn’t butt up against the prompt text.

When your program runs input(), Python displays the prompt, pauses the pro-
gram, and waits for the user to type something and press Enter or Return. Python
grabs whatever the user types as a string, which you usually store in a variable for
later use in your program.

Here’s an example (chapter05/example10.py):

name = input("What's your name? ")
print(f"Hello, {name}!")

When you run this program, the output will look something like this:

What's your name? Bartholomew
Hello, Bartholomew!

It’s important to remember that whatever the user types is returned as a string,
even if it looks like a number. To understand why this can be a big deal, consider
the following code (chapter05/example11.py):

age = input("How old are you? ")
age_next_year = age + 1
print(f"Next year, you'll be {age_next_year}!")

Running this program produces the following output:

Traceback (most recent call last):
 File "example11.py", line 2, in <module>
 age_next_year = age + 1
                    ~~~~^~~
TypeError: can only concatenate str (not "int") to str

Ouch! Can you figure out the problem? That’s right: Python interprets age + 1 as 
concatenation, but you can’t combine a string and an integer. If you want to do 



104      PART 2  Learning Python: The Beginner-Friendly Language

math on whatever the user inputs, you need to convert the string to the appropri-
ate numeric data type. Here’s a revised version of the code (chapter05/ 
example12.py):

age = input("How old are you? ")
age_next_year = int(age) + 1
print("Next year, you'll be " + str(age_next_year) + "!")

This code uses int(age) to convert the input string to an integer. Now when you 
execute the program, it runs error-free:

How old are you? 99
Next year, you'll be 100!

You can convert the user’s input to another data type right away by using the 
input() function itself as the argument for whatever conversion function you 
want to use:

age = int(input("How old are you? "))



CHAPTER 6  Storing Data and Controlling Your Code      105

Chapter 6
Storing Data and 
Controlling Your Code

There should be one — and preferably only one — obvious way to do it.
—TIM PETERS

Coders  — from grizzled veterans to the greenest rookies  — love Python. 
They take to it because Python code is clean, clear, and easy to write and 
read (at least compared to other programming languages). But coders  

stay with Python because the language has an inherent elegance, an undeniable 
grace that sets it apart from other languages. Python code sparks joy.

In this chapter, you get your first glimpse at just how delightfully different Python 
is from other languages by looking at three common coding structures that  
Python implements uniquely: lists, conditionals, and loops.

Storing Stuff in Lists
A variable usually stores a single item of data, such as a grade, a day of the week, 
or the name of a Kardashian. But it’s extremely common for your code to work 
with two or more (usually many more) items of related data, such as the grades 
for an entire class, every day of the week, or the names of everyone in a particu-
lar family.

IN THIS CHAPTER

	» Storing data in your Python code

	» Controlling Python with 
conditionals and loops

	» Finding out first-hand why beginners 
love Python



106      PART 2  Learning Python: The Beginner-Friendly Language

Sure, you could create a separate variable for each item, but Python offers a faster, 
simpler, and more powerful way: the list. A list is a collection of items that resides 
in a single container. That description might sound underwhelming at the 
moment, but as I hope to show in the sections that follow, lists are a big deal in 
the Python world.

Making a list
You construct a list by starting with a pair of square brackets [ and ], and then fill-
ing those brackets with the values you want to store, separated by commas. A list 
can hold just about anything: numbers, strings, Booleans  — even other lists 
(chapter06/example01.py):

shopping_list = ["milk", "eggs", "bread", "Snickerdoodles"]
lucky_numbers = [7, 11, 548834]
mixed_bag = ["hello", 3.14, True, 42]

You can store as many items as you want and, as demonstrated in the third  
example, the items don’t need to be the same data type (though using a single 
data type per list usually makes your coding life easier).

If you ever need to know how many items are in a list (that actually comes up a 
lot), use the len() function:

len(list)

Where list is the name of the list. Here’s an example (chapter06/example02.py):

>>> print(len(shopping_list))
4

Making a list from a range of numbers
When you need a list that’s a collection of numbers, the range() function is a 
great tool:

range(stop)
range(start, stop[, step])



CHAPTER 6  Storing Data and Controlling Your Code      107

where:

	» start is the first number you want in the range. If you specify only the stop 
argument, Python uses 0 as the start value.

	» stop is the last number you want in the range, minus one. For example,  
if you set stop to 10, the last number in the range will be 9.

	» step is the difference between each number in the range. The default 
value is 1.

range() gets you a range data type, so to turn that object into a proper list, use  
the range() function as an argument for the list() conversion function. Here  
are some examples (chapter06/example03.py):

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(1, 6))
[1, 2, 3, 4, 5]
>>> list(range(2, 20, 2))
[2, 4, 6, 8, 10, 12, 14, 16, 18]

To reverse the range, use the reversed() function:

>>> list(reversed(range(10)))
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Getting an item from a list
In the same way as I described earlier for a string (check out Chapter 5), list  
items are numbered according to their position in the list, and that number is 
called the index. The first item in the list has index 0, the second item has index 1, 
and so on.

So, you can grab something from a list by specifying the item’s index number in 
square brackets after the list name. Here are some examples (chapter06/ 
example04.py):

>>> print(shopping_list[0])
milk
>>> print(shopping_list[2])
bread



108      PART 2  Learning Python: The Beginner-Friendly Language

To get multiple items, you can slice the list with list[start:end], where list is 
the name of the list, start is the index of the first item you want, and end is the 
index of the item that comes after last item you want. Python returns the items 
as a list:

>>> print(shopping_list[1:3])
['eggs', 'bread']

If you ask for an index that doesn’t exist, Python throws a little tantrum:

>>> print(shopping_list[5])
IndexError: list index out of range

Changing an item in a list
Once you create a list, its items aren’t set in stone. Python geeks like to say that 
lists are mutable, which is an eyeroll-inducing way of saying they’re changeable. 
To change an item in a list, you set that item to the new value, like so (chapter06/ 
example05.py):

>>> shopping_list[1] = "chocolate"
>>> print(shopping_list)
['milk', 'chocolate', 'bread', 'Snickerdoodles']

Adding and removing list items
Another way that lists are changeable is that you’re free to add new items to the 
list and remove existing items from the list. Python offers a couple of ways to 
mess with the contents of a list in these ways, as I describe in the next two sections.

Adding list items
In Python, you can use the append() method to add an item to the end of the list or 
the insert() method to shoehorn an item into a list at a specific index:

list.append(item)
list.insert(index, item)



CHAPTER 6  Storing Data and Controlling Your Code      109

where:

	» list is the list object in which you want to add the item.

	» item is the item you want to add.

	» index is the position within list where you want item to appear when using 
the insert() method.

Here are some examples (chapter06/example06.py):

>>> shopping_list = ["milk", "eggs", "bread", "Snickerdoodles"]
 
>>> shopping_list.append("butter")
>>> print(shopping_list)
['milk', 'eggs', 'bread', 'Snickerdoodles', 'butter']
 
>>> shopping_list.insert(1, "coffee")
>>> print(shopping_list)
['milk', 'coffee', 'eggs', 'bread', 'Snickerdoodles', 'butter']

Removing list items
If you need to prune a list, you can use the pop() method to either remove the  
item that’s at the end of the list or remove an item at a specified index, or you can 
use the remove() method to remove the first item that matches a value that 
you specify:

list.pop([index])
list.remove(item)

where:

	» list is the list object from which you want to remove the item.

	» index is the position within list of the item you want to expunge. If you  
leave out index, pop() removes the last item in the list.

	» item is the item you want to remove.

Note that pop() not only removes an item from the list but also returns that item, 
which you could then store in a variable for later use.



110      PART 2  Learning Python: The Beginner-Friendly Language

Here are some examples (chapter06/example07.py):

>>> shopping_list = ["milk", "eggs", "bread", "Snickerdoodles"]
 
>>> last_item = shopping_list.pop()
>>> print(last_item)
Snickerdoodles
 
>>> print(shopping_list)
['milk', 'eggs', 'bread']
 
>>> first_item = shopping_list.pop(0)
>>> print(first_item)
milk
 
>>> print(shopping_list)
['eggs', 'bread']
 
>>> shopping_list.remove("eggs")
>>> print(shopping_list)
['bread']

Searching in a list
Want to know if something’s in a list? Use the in keyword:

item in list

where:

	» item is the item you’re looking for.

	» list is the list object in which you’re looking.

If the item does appear somewhere in the list, the in expression returns True; 
otherwise, you get False. Here’s an example (chapter06/example08.py):

>>> shopping_list = ["milk", "eggs", "bread", "Snickerdoodles"]
 
>>> print("bread" in shopping_list)
True
 
>>> print("rutabaga" in shopping_list)
False



CHAPTER 6  Storing Data and Controlling Your Code      111

More Ways to Store Stuff: Tuples  
and Dictionaries

When you’re just getting started, there are two other Python data structures that 
you probably won’t use all that often but are worth knowing in case you come 
across them in someone else’s code. As you get more experienced with Python, 
you’ll come to rely on these useful data structures (they’re also Python data 
types): the tuple and the dictionary.

Storing unchanging data in a tuple
A tuple is a data structure that enables you to store multiple items in a single vari-
able. Yes, I know, that sounds just like a list. However, there’s one big difference: 
Tuples can’t be changed (yep, the nerds insist on describing them as immutable). 
Once you forge a tuple, it’s locked in. No changing items, no adding items, and no 
removing them. That sounds restrictive, but a tuple is a useful thing to have 
around when you’re working with data that must never change.

For example, if you’re making a game in which you have to track player positions 
on a 2D plane using (x, y) coordinates (where x is the horizontal position and y is 
the vertical position), the following conditions are true:

	» A given position only has just two values: x and y.

	» You don’t want either x or y to be changed accidentally.

	» You don’t want a third value added to the position.

	» You do want the capability to change both values at once (for example, when 
a player’s position changes).

You can meet all these conditions by storing a player’s current position in a tuple:

player_position = (125, 280)

Tuple values can be any valid Python data type, including strings, numbers,  
Booleans, lists, dictionaries (discussed in the next section), functions (refer to 
Chapter 7), and even other tuples. And, yes, you’re free to mix and match data 
types within a single tuple.



112      PART 2  Learning Python: The Beginner-Friendly Language

As with lists, tuple values are indexed, with the first value at index 0, the second 
at index 1, and so on. You use the index in square brackets to extract that value 
from a tuple. Here’s an example (chapter06/example09.py):

player_position = (125, 280)
x = player_position[0]
y = player_position[1]
print(f"The player is at position ({x}, {y}).")

Python supports tuple unpacking where you assign variables to each item in the 
tuple. That is, rather than this:

x = player_position[0]
y = player_position[1]

You can do this:

x, y = player_position

You can’t change a single element in a tuple, nor can you add elements to or delete 
elements from a tuple. What you can do is replace the entire tuple. So, for example, 
if the player’s position changes, you can update the entire tuple:

player_position = (160, 210)

What else can you do with a tuple? You can find out how many items it contains 
using len():

>>> print(len(player_position))
2

Also, you can iterate (a fancy-schmancy programming term that means loop) 
through a tuple using a for loop, as in this example (chapter06/example10.py):

quiz_answers = (
    "Rumpelstiltskin",
    "bullet bra",
    "antidisestablishmentarianism",
    "Senegalese",
    42)
for answer in quiz_answers:
    print(answer)



CHAPTER 6  Storing Data and Controlling Your Code      113

Looking up data in a dictionary
A dictionary is a data structure that enables you to store multiple items in a single 
variable. Yes, I know, that sounds just like a list or a tuple. However, in a diction-
ary, each item is actually a pair: the value you want to store and a label that 
describes the value. That label is called a key, so these pairs are known as key-
value pairs.

That label is important because it can make your code more readable. For exam-
ple, it’s not at all clear what the following refers to:

person[0]

But even without looking at the rest of the code, it’s pretty obvious what the  
following means:

person["age"]

Here are the general steps to follow to build a dictionary:

1.	 Type an opening curly brace ({).

2.	 Type a key, which can be a string surrounded by quotation marks,  
a number, or a tuple.

You’ll almost always use a string for the key. Also note that within a dictionary, 
the keys must be unique.

3.	 Type a colon (:), a space, and then type the value, which can be any valid 
Python data type, including a string, number, Boolean, list, tuple, or even 
a dictionary.

4.	 Type a comma, then press Enter or Return.

5.	 Repeat Steps 2 through 4 for each item you want to store in the dictionary.

6.	 Type a closing curly brace (}).

Here’s an example to make things more concrete (chapter06/example11.py):

person = {
    "name": "Alice",
    "age": 30,
    "is_student": False
}

The keys are "name", "age", and "is_student", and the values are "Alice", 30, 
and False.



114      PART 2  Learning Python: The Beginner-Friendly Language

To get a value from a dictionary, use the key in square brackets:

>>> print(person["age"])
30

Dictionary values are changeable, and you update a value by setting its key to the 
new value:

>>> person["age"] = 31

You can also add a new key/value pair on-the-fly:

>>> person["email"] = "alice@somewhere.com" 

You can use del to remove a key:

>>> del person["is_student"]

To iterate through a dictionary, you have a couple of choices. First, you can loop 
through just the keys:

for key in person:
    print(key)

Or you can loop through both the keys and the values:

for key, value in person.items():
    print(key, "=", value)

YET ANOTHER DATA STRUCTURE: SETS
One of the reasons pros such as data analysts and data scientists love Python is that it 
offers a seemingly endless menu of ways to store and mess around with data. So far in 
this chapter I’ve covered lists, tuples, and dictionaries. But you may hear Pythonistas 
talking about the “big four” data structures that every coder should know. What’s  
missing? An occasionally handy data structure called the set, which stores only unique 
values and doesn’t impose any order on its items.

You create a set by surrounding a comma-separated list of items (which can be num-
bers, strings, Booleans, or tuples) with braces ({ and }):

fave_fruits = {"peach", "apple", "orange", "cherry"}



CHAPTER 6  Storing Data and Controlling Your Code      115

Conditionals in Python
As I mention in Chapter 2, the way you make your code do something smart is to 
create a conditional statement, where your code executes one or more statements 
only if a certain condition is met. In Python, you use three keywords to set up your 
conditionals: if, else, and elif.

The basic if statement
The simplest Python conditional involves using if all by itself:

if expression:
    statement1;
    statement2;
    ...

Here, expression is a comparison or logical expression that returns True or 
False, or a Boolean value. Note, too, that Python requires a colon (:) immediately 

You can then check if a value is in the set:

if "apple" in fave_fruits:
    print("Apple is a favorite fruit!")

But perhaps the handiest use of sets is to extract just the unique values from a collec-
tion by running set(collection), where collection is a list, string, range, or tuple. 
Here’s an example:

str = "it was the best of times it was the worst of times"
 
# Extract the individual words into a list
words = str.split()
 
# Use set() to get just the unique words
unique_words = set(words)
 
print(unique_words)

Here’s the output:

{'best', 'was', 'the', 'worst', 'it', 'of', 'times'}



116      PART 2  Learning Python: The Beginner-Friendly Language

after expression. Next, statement1, statement2, and so on represent the Python 
statement or statements the interpreter will run if expression returns True. If 
expression returns False, Python skips over the statements.

Here’s an example (chapter06/example12.py):

score = int(input("What was your score? "))
if score >= 80:
    print(f"Wow, your score was {score}.")
    print("Nice job!")

If the condition (score >= 80) returns True, Python runs the two indented 
print() statements; otherwise, Python skips them.

How does Python know which statements to run if the condition returns True? 
Those statements form the if block, and that block is defined as every statement 
after the colon (:) that is indented by the same number of spaces from the begin-
ning of the if statement. In other words, in Python, indentation isn’t an optional 
stylistic choice to make your code more readable — it’s how Python knows what 
belongs to the if block.

Python doesn’t care how many spaces you use to indent, just as long as you use 
the same number of spaces within the block. For ideal readability of your code, the 
recommended number of indentation spaces is four.

Consider the following example (chapter06/example13.py):

is_raining = input("Is it raining (if not, just press Enter)? ")

 

if is_raining:

    print("Bring an umbrella!")

print("Have a great day!")

Pressing Enter (or Return) at the input() prompt returns an empty input that’s 
equivalent to False; any other input (such as y, yes, or cats and dogs!) is equiv-
alent to True. When the variable is_raining is True, the if statement prints 
Bring an umbrella! to the screen. However, since the next print() statement 
(the one that prints Have a great day!) isn’t indented, it’s not part of the if 
block, so it will run no matter whether the is_raining variable is True or False.

Adding an else statement
An if statement all by its lonesome runs one or more statements when its condi-
tion returns the value True and lightly leaps over those statements if the condition 



CHAPTER 6  Storing Data and Controlling Your Code      117

returns False. But what if, when the condition returns False, you want Python to 
run a different set of statements? Ah, to handle that scenario you need to augment 
the if statement with an else statement:

if expression:
    statement-if-true1;
    statement-if-true2;
    ...
else:
    statement-if-false1;
    statement-if-false2;
    ...

The expression is either a comparison or logical expression that returns True  
or False, or a Boolean. statement-if-true1, statement-if-true2, and so on 
define the block of statements that Python executes if expression returns True; 
statement-if-false1, statement-if-false2, and so on define the block of 
statements that Python executes if expression returns False.

Here’s an example (chapter06/example14.py):

score = int(input("What was your score?"))
 
if score >= 80:
    print(f"Wow, your score was {score}")
    print("Nice job!")
else:
    print(f"Too bad, your score was {score}")
    print("Keep practicing!")

Even more choices with the elif statement
Making a this-or-that decision using if/else statements is extremely common in 
programming, so you’ll turn to that structure again and again in your projects. 
But sometimes the world presents you with multiple conditions that your code has 
to somehow take into account. With a test score, for example, it’s not enough to 
just check whether the score was greater than or equal to 80. Your code probably 
also has to check for scores greater than or equal to 90, 70, and so on.



118      PART 2  Learning Python: The Beginner-Friendly Language

When you need to check multiple conditions, that’s where Python’s elif (short 
for “else if”) statement shines:

if expression1:
    statement-if-expression1-true1;
    statement-if-expression1-true2;
    ...
elif expression2:
    statement-if-expression2-true1;
    statement-if-expression2-true2;
    ...
else:
    statement-if-false1;
    statement-if-false2;
    ...

Python first tests expression1. If expression1 returns True, Python runs the 
statement-if-expression1-true block and skips over everything else. If 
expression1 returns False, Python then tests expression2. If expression2 
returns True, Python runs the statement-if-expression2-true block and skips 
over everything else. Otherwise, if all the if and elif tests return False, Python 
runs the statement-if-false block.

Feel free to add as many elif statements as you need. Here’s an example  
(chapter06/example15.py):

score = int(input("What was your score? "))
 
if score > 90:
    print(f"Woot, your score was {score}.")
    print("You get an A+")
elif score >= 80:
    print(f"Wow, your score was {score}.")
    print("You get an A.")
elif score >= 70:
    print(f"Not bad, your score was {score}.")
    print("You get a B.")
elif score >= 60:
    print(f"Okay, your score was {score}.")
    print("You get a C.")
elif score >= 50:
    print(f"Hmm, your score was {score}.")
    print("You get a D.")



CHAPTER 6  Storing Data and Controlling Your Code      119

else:
    print(f"Oh, snap, your score was {score}.")
    print("You get an F.")

Python Loops
As you code larger and more complex programs, one conundrum that will come up 
again and again is repetitious code. Here’s an example (chapter06/example16.py):

shopping_list = ["milk", "eggs", "bread", "Snickerdoodles"]
 
print(f"Don't forget to buy {shopping_list[0]}")
print(f"Don't forget to buy {shopping_list[1]}")
print(f"Don't forget to buy {shopping_list[2]}")
print(f"Don't forget to buy {shopping_list[3]}")

This code displays the following:

Don't forget to buy milk
Don't forget to buy eggs
Don't forget to buy bread
Don't forget to buy Snickerdoodles

So, yep, the code works just fine, but all those print() statements are a drag to 
type. Imagine if the shopping list had a dozen items on it or two dozen. For-
get about it!

Whenever you come across repetitive code like this, it’s time to get Python to do 
some of the heavy lifting by using a loop, which is code that handles all the repeti-
tion for you.

Looping through a collection of things
One of the main types of Python loop is the for loop, which goes through every 
item in a collection, which could be just about any set of things you can define in 
Python, including a list, a string, a tuple, a dictionary, a set, or a range of num-
bers. Here’s the general syntax:

for item in collection:
    statement1;
    statement2;
    ...



120      PART 2  Learning Python: The Beginner-Friendly Language

Here, item is a variable that stores an item from collection (which is a list, a 
string, a range, or another Python collection), and statement1, statement2, and 
so on represent the Python statements the interpreter will run for each item. 
These statements must be indented four spaces from the for statement.

Any item that you can loop through using for is known in the Python trade as 
an iterable.

Here’s an example (chapter06/example17.py):

shopping_list = ["milk", "eggs", "bread", "Snickerdoodles"]
 
for product in shopping_list:
    print(f"Don't forget to buy {product}")

This code displays the following:

Don't forget to buy milk
Don't forget to buy eggs
Don't forget to buy bread
Don't forget to buy Snickerdoodles

Look at that: You get the same output as before, but you had to type the print() 
statement only once. Sweet! What’s happening here is that Python is going 
through the items in shopping_list one by one. For each item, it stores the item’s 
value in the product variable, which is then available to your code within the for 
block. The first time through the loop, product is given the value milk, the second 
time through product is set to eggs, and so on.

You can loop through strings too (chapter06/example18.py):

for letter in "Hello":
    print(letter)

Here’s the output:

H
e
l
l
o



CHAPTER 6  Storing Data and Controlling Your Code      121

When you need to loop a set number of times, the range() function will get the 
job done (chapter06/example19.py):

for i in range(5):
    print(f"Loop number {i}")

Here’s the output:

Loop number 0
Loop number 1
Loop number 2
Loop number 3
Loop number 4

Looping while a condition is True
The other main type of Python loop is the while loop, which repeats one or more 
statements as long as a specified condition returns True:

while expression:
    statement1;
    statement2;
    ...

Here, expression is a comparison or logical expression that returns True or 
False, or a Boolean value. statement1, statement2, and so on represent the 
Python statements the interpreter will run as long as expression returns True. 
(These statements must be indented four spaces from the while statement.) The 
general idea is something in the while block will update a value used in  
expression, such as a counter variable. Eventually, one pass through the while 
block will update that value in such a way that expression now returns False 
instead of True, and the while loop ends.

Here’s an example (chapter06/example20.py):

counter = 0
 
while counter < 3:
    print(f"The loop counter is now: {counter}")
    counter += 1



122      PART 2  Learning Python: The Beginner-Friendly Language

This code initializes a variable named counter to 0. In the while statement, the 
expression counter < 3 returns True, so Python runs the statements inside the 
while block: The current value of counter is printed and then the value of  
counter is increased by 1. The code then loops back to the while statement, 
rechecks the counter < 3 expression, and repeats for as long as that expression 
returns True. After the third time through the loop, the value of counter is now 3, 
which means counter < 3 returns False and the loop shuts down.

Here’s the output

The loop counter is now: 0
The loop counter is now: 1
The loop counter is now: 2

Interrupting loop execution
If you ever need to exit a loop before it’s finished, use the break statement 
(chapter06/example21.py):

while True:
    value = input("Type a number (or q to quit): ")
    if value == "q":
        break
    else:
        print(f"The cube of your number is {int(value) ** 3}")

This code uses while True to set up an endless loop. After getting a value from  
the user, the code uses if to check whether that value was "q" (for quit). If it was, 
the code uses break to quit the loop; otherwise, it continues with the rest 
of the loop.

A slightly different case is when you need a loop to skip the rest of the code in the 
current loop because of some condition. To skip the rest of a loop and return to  
the beginning, use the continue statement (chapter06/example22.py):

tax_factors = [1.05, 1.08, 1.04, 0.00, 1.03]

price = 100.00

for factor in tax_factors:

    if factor == 0:

        continue

    else:

        original_price = price / factor

        tax_rate = int((factor - 1) * 100)

        print(f"The price less {tax_rate}% tax is ${original_price:.2f}")



CHAPTER 6  Storing Data and Controlling Your Code      123

This code loops through the items in the tax_factors list. If it comes across an 
item that equals 0, it uses continue to skip the rest of the loop (and thereby avoid 
an illegal division by zero) and return to the beginning for the next item. Here’s 
the output:

The price less 5% tax is $95.24
The price less 8% tax is $92.59
The price less 4% tax is $96.15
The price less 3% tax is $97.09

Adding Comments to Your Code
I discuss comments in general in Chapter 2. Python keeps comments simple by 
offering just a single symbol to indicate the start of a comment: #, the hash or 
pound sign.

You can add single-line comments that appear on their own line in your code, or 
inline comments which appear on the same line as some code. The following 
example (chapter06/example23.py) demonstrates both types:

# Initialize the counter
counter = 0
 
# Loop as long as the counter is less than 3
while counter < 3:
    print(f"The loop counter is now: {counter}")
    counter += 1  # Increment the counter

Example: Build Your Own Survey Bot
To complete this chapter, I offer the following example (chapter06/example24.
py), which demonstrates most of the concepts I present in this chapter and  
Chapter 5, including variables, data types, expressions, strings, lists, conditionals, 
and loops. I added lots of comments to help you understand what the code is doing.

# Simple Survey Analyzer

 

print("Welcome to the Super Quick Survey!")



124      PART 2  Learning Python: The Beginner-Friendly Language

print("----------------------------------")

 

# Store the survey questions in a list

questions = [

    "What's your name? ",

    "How old are you? ",

    "What's your favorite programming language so far? "

]

 

# Create an empty list to store the answers

answers = []

 

# Loop through the questions

for question in questions:

 

    # Get the answer to the next question

    answer = input(question)

 

    # Add the answer to the answers list

    answers.append(answer)

 

# Unpack the answers into variables

name = answers[0]

age = int(answers[1])

language = answers[2]

 

# Respond based on their input

# The \n in the string prints a blank line

print(f"\nThanks, {name}! Here's your survey summary:\n")

 

print(f"You are {age} years old.")

 

# Add some conditional feedback

# about their age

if age < 18:

    print("You're off to an early start — awesome!")

elif age > 60:

    print("Proving it's never too late to learn!")

else:

    print("Perfect time in life to be learning something new!")

 



CHAPTER 6  Storing Data and Controlling Your Code      125

print(f"\nYou enjoy coding in {language}.")

 

# Add some conditional feedback about

# their programming language choice

if language.lower() == "python":

    print("Great choice — Python is beginner-friendly and powerful!")

elif language.lower() == "javascript":

    print("Nice! JavaScript makes the web come alive.")

else:

    print(f"{language}? Very cool. Every language has its own superpower.")

 

print("\nThanks for taking the survey!")





CHAPTER 7  Reusing Code      127

Chapter 7
Reusing Code

Good programmers know what to write. Great ones know what to reuse.
—ERIC S. RAYMOND

One of the secrets to programming productivity is also one of the oldest 
pieces of advice in the world: Don’t reinvent the wheel! If you or someone 
else has already solved a particular programming puzzle, use that solu-

tion instead of re-solving the puzzle every time you come across it.

Avoiding reinventing wheels in coding generally involves reusing existing code as 
much as possible. If you’ve already written some code, you can structure it so that 
you can easily reuse it elsewhere. If you find code in one of Python’s public code 
repositories, you can bring that code into your Python file.

This chapter marks a turning point in your Python path where you go from  
writing the one-off bits of code in Chapters 5 and 6 to creating efficient, reusable, 
and powerful programs. This chapter is all about teaching you how to use func-
tions to break your code into reusable chunks; how to use modules to expand your 
Python toolkit without having to write new code; how to use libraries to borrow 
useful tools that others have made; and how to reuse data by writing it to and 
reading it from files.

IN THIS CHAPTER

	» Defining and calling functions

	» Wrapping your head around 
variable scope

	» Installing and importing 
Python modules

	» Working with external code libraries

	» Reusing data stored in files



128      PART 2  Learning Python: The Beginner-Friendly Language

Making Your Code More Efficient 
with Functions

One of the superpowers of a good coder is to always be on the lookout for  
inefficient places in your code. If you’ve declared a bunch of variables for similar 
data, perhaps you could bring all those variables into a single list (covered in 
Chapter 6). If you have to repeat some code for each item in a string or list or for 
a specified number of times, write the code once and wrap it in a for or while  
loop (also covered in Chapter 6).

Another way to write ridiculously efficient code is to look for a collection of state-
ments that you need to run frequently. For example, suppose your program, given 
a price, needs to calculate a final cost that includes tax and shipping. Here’s an 
example (in this book’s example files, check out chapter07/example01.py): 

# Get the price
price = float(input("Enter the price: "))
 
# Calculate 7% tax
tax = price * 0.07
 
# Is the price at least $50?
if price >= 50:
 
    # If so, charge a flat rate for shipping
    shipping = 5.00
else:
 
    # Otherwise, charge 10% of the price for shipping
    shipping = price * 0.1
 
# Calculate the total
total = price + tax + shipping
 
print(f"Total with tax and shipping: ${total:.2f}")

You might be wondering what the symbols :.2f are doing in the f-string in the 
final statement. The colon (:) indicates formatting instructions are coming up; 
the .2 tells Python to output exactly two digits after the decimal; and the f  
formats the number as a floating-point value.



CHAPTER 7  Reusing Code      129

That code works fine for a single price, but what if you have to calculate the total 
for ten prices, or a hundred? Not fun! The efficient solution is to wrap the code 
inside a function, which has the following general syntax in Python:

def function_name([arguments]):
    statement1
    statement2
    ...
    return value

where:

	» def: Identifies the block of code that follows it as a function. def is short 
for define.

	» function_name: A unique name for the function. The naming rules and 
guidelines that I outline for variables in Chapter 5 also apply to function names.

	» arguments: Optional one or more comma-separated values that are passed 
to the function and act as variables within the function. If you don’t use 
arguments, you must still include the parentheses after the function name.

	» statement1, statement2, and so on: The code that performs the function’s 
tasks or calculations.

	» return value: Sends value back as the result of the function, where value 
is something calculated or in some other way determined by your function 
statements. Note that if the function doesn’t use a return value, you can forgo 
the return statement.

As with conditionals and loops (refer to Chapter 6), you tell Python which state-
ments are included in the function by indenting them (four spaces is the standard 
indentation).

To run a function, your code uses the function name, followed by the arguments 
in parentheses, if any. (If the function doesn’t require arguments, you still need 
to include the parentheses.) Here’s an example (chapter07/example02.py):

def get_user_name():
    name = input("What's your name? ")
    return name
 
your_name = get_user_name()
print(f"Nice to meet you, {your_name}!")



130      PART 2  Learning Python: The Beginner-Friendly Language

This code defines a get_user_name() function, which prompts the user for their 
name and then returns that name. When the function is called using get_user_ 
name(), the return value is store in the your_name variable, which is then printed 
to the screen.

For the earlier example of calculating a total including tax and shipping, all the 
calculation code can go inside a function. In the following code (chapter07/ 
example03.py), I shoehorned the calculations inside a function named 
calculate_total():

def calculate_total(price):
 
    # Calculate 7% tax
    tax = price * 0.07
 
    # Is the price at least $50?
    if price >= 50:
 
        # If so, charge a flat rate for shipping
        shipping = 5.00
    else:
 
        # Otherwise, charge 10% of the price for shipping
        shipping = price * 0.1
 
    # Calculate the total
    total = price + tax + shipping
 
    # Return the total
    return total
 
counter = 0
 
while (counter < 3):
    # Get the price
    price = float(input("Enter the price: "))
 
    # Get the total with tax and shipping
    total = calculate_total(price)
 
    print(f"Total with tax and shipping: ${total:.2f}")
 
    counter += 1



CHAPTER 7  Reusing Code      131

Following the function, a while loop asks for a price and then calls calculate_ 
total() with price as the argument. The function result is stored in the total 
variable, which is then printed to the screen as before. The loop repeats this two 
more times before quitting. I added the loop to demonstrate that with the calcula-
tion code handily stored in the calculate_total() function, you can reuse that 
function as many times as you need.

Because Python is an interpreted language, it reads your code from top to bottom, 
like reading a recipe as you cook. So, if you try to call a function before it’s defined, 
Python will look confused and throw an error. That’s why, in the examples I’ve 
shown so far, the statements that call the function come after the function.

Getting the Hang of Variable Scope
You may be tempted to think that once you declare a variable, you can then use 
that variable anywhere later in the same program. It makes sense. For example, 
suppose you declare a variable as the first statement of a function inside your 
program. Python is an interpreted language that processes one statement at a 
time from top to bottom, so once Python has processed your function variable 
declaration, you should be able to use that variable as needed anywhere later in 
the program, all the way to the end of the file. Right?

Nope. Welcome to the world of variable scope, where you learn who can access 
what, when, and where.

What is variable scope, anyway?
Variable scope — often shortened to just scope — defines where in the program a 
variable can be used and where it can’t be used. To put it another way, a variable’s 
scope determines which statements and functions can access and work with the 
variable. Scope, then, is just a fancy way of saying, “Where does this variable 
exist?” or “Where can this variable be used?”

You definitely want to care about scope in your Python scripts for several reasons:

	» You may need to use the same variable in multiple functions. For 
example, a function may use a variable to store the result of a calculation, and 
other functions may also need to use that result. In this case, you’d set up the 
scope of the variable so that it’s accessible to multiple functions.



132      PART 2  Learning Python: The Beginner-Friendly Language

	» You may want to use the same variable name in multiple functions.  
If these variables are otherwise unrelated, you’ll want to make sure that 
there is no confusion about which variable you’re working with. In other 
words, you’ll restrict the scope of each variable to the function in which it 
is declared.

	» It helps with debugging. When a Python program zigs instead of zags, 
understanding the scope of the variables involved can be crucial to figuring 
out the problem.

Python lets you establish two types of scope for your variables:

	» Global scope

	» Function scope

The next two sections describe each type in detail.

Global: The “everyone’s invited” scope
When a variable has global scope, the variable has the following properties:

	» The variable is declared outside any function.

	» The variable is available to be used in any statement after the declaration.

	» In particular, the variable is available to be used inside any function defined 
after the variable declaration.

Here’s an example (chapter07/example04.py):

message = "Hello, scope world!"  # global variable
 
def greet():
    print(message)  # works just fine
 
greet()

Here, even though the print(message) statement resides in the greet()  
function, that function can still access the message variable because it was  
defined outside any function and therefore has global scope.



CHAPTER 7  Reusing Code      133

Local: The “for function eyes only” scope
When a variable has local scope, the variable has the following properties:

	» The variable is declared inside a function.

	» The variable is available to be used in any statement that comes after the 
declaration in the same function.

	» The variable is unavailable to any statements outside that function.

Here’s an example (chapter07/example05.py):

def greet():
    user_name = input("What's your name? ") # local variable
    print(f"Hi, {user_name}!")  # works just fine
 
greet()
 
print(user_name)  # Not gonna happen

Here’s a sample output:

What's your name? Dweezil
Hi, Dweezil!
Traceback (most recent call last):
  File "chapter07/example05.py", line 7, in <module>
    print(user_name)  # Not gonna happen
          ^^^^^^^^^
NameError: name 'user_name' is not defined

Whoops! Here, the user_name variable is declared in the greet() function. This 
declaration makes user_name a local variable, so the print() statement in  
the greet() function works as expected. However, when the code tries to use the 
user_name variable outside the function in the final print() statement, the 
Python interpreter implodes with NameError: name 'user_name' is not 
defined because outside the function, Python has no idea what user_name is — 
that variable lives and dies inside greet().

So why not just make everything a global variable? That may seem like a reason-
able way to go, and it’s true that global variables can be handy. However, if you 
use them too much, your code gets messy and hard to manage. It’s like leaving all 
your clothes on the floor instead of putting them in drawers. If a variable is only 
ever used inside a function, make it a local variable and save global variables for 
those relatively rare times you need a value throughout your program.



134      PART 2  Learning Python: The Beginner-Friendly Language

Here’s an example (chapter07/example06.py) that demonstrates when you  
should use a global variable:

app_title = "Awesome App"  # Global variable
 
def show_welcome():
    print(f"Welcome to {app_title}!")
 
def show_goodbye():
    print(f"Thanks for using {app_title}! Goodbye!")
 
show_welcome()
show_goodbye()

Here’s the output:

Welcome to Awesome App!
Thanks for using Awesome App! Goodbye!

In this example, the app_title variable has global scope, so both functions can 
use the variable without any problem.

Avoiding Wheel Reinvention with Modules
When you get some experience with Python, you’ll start noticing all kinds of  
puzzles in the form of what appear to be gaps in the language. How do you calcu-
late how many days are between two dates? How do you calculate the square root 
of a number? How do you find the mean or the standard deviation of a list of num-
bers? How do you generate a random number between 1 and 6 to simulate a dice 
roll for a game?

Sure, with a lot of effort and a lot of Googling you might be able to solve these 
puzzles yourself, but you’d just be reinventing some very difficult wheels. That’s 
because Python comes with an impressively large toolbox full of prewritten code, 
all of which is available for you to use in your Python programs. This toolbox is 
called the standard library, and you access this library using special Python files 
called modules.



CHAPTER 7  Reusing Code      135

A module is a file containing prefab Python code  — such as functions or  
constants — that you can bring into any project instead of writing the code from 
scratch. There are modules available to plug all the “gaps” I just mentioned:

	» The datetime module enables you to work with dates and times, including 
calculating the number of days between two dates.

	» The math module offers a huge number of math-related functions, including 
one that calculates the square root of a number.

	» The statistics module provides a ton of stats functions, including ones that 
calculate the arithmetic mean and the standard deviation of a sample.

	» The random module offers functions for generating random values, including 
one function that can generate a random integer between any two values.

Who codes all these modules? Most of what you’ll find in the standard library is 
created and maintained by the Python Software Foundation (PSF) and a team of 
core Python developers from around the world. It’s a community-driven effort, 
and many of the modules have been around (and evolving) for years. So, as you 
dive into these modules, if you ever find yourself thinking, “Dang, this is handy,” 
remember that you’re standing on the shoulders of giants — dedicated and skilled 
Python coders who built a bunch of useful tools so you don’t have to.

To browse a complete list of the modules available in the standard library, surf to 
https://docs.python.org/3/library/. Here you find modules organized by 
category, including data types, numeric and mathematical modules, generic oper-
ating system services, and internet data handling.

Want a sneak peek? Here’s a tiny sample:

Module Used For

math Math functions and constants

random Random numbers and choices

datetime Manipulating dates and times

os Interacting with the operating system

sys Getting info about the Python system

time Sleep, timestamps, and more

statistics Calculating mean, median, and other stats

json Working with JSON data (refer to Chapter 8)

https://docs.python.org/3/library/


136      PART 2  Learning Python: The Beginner-Friendly Language

Importing a module
Python’s standard library modules are separate parts of the language, and to use 
any module you must import it into your Python program. To import a module 
means to make the module’s code available to your Python program.

To import an entire module, you have two choices:

import module
import module as alias

where:

	» module is the name of the module in the standard library.

	» alias is a nickname that you use to refer to the module instead of the name 
module. In most cases, your alias will be something shorter or easier to type 
(or both) than the module’s name.

For example, to import the statistics module, you’d include the following in  
your Python program (usually at the top of the file):

import statistics

Alternatively, you can import statistics using an alias, such as stats:

import statistics as stats

After you import a module, you can display a list of all the stuff inside that module 
by running the print(dir(module)) statement, where module is the name of the 
imported module:

import math
print(dir(math))

Using a module
Once you’ve imported a module, it’s available to your program as an object. That 
means you can use Python’s standard dot notation to access all the goodies the 
module provides, such as functions, constants, data structures (such as lists), and 
classes (refer to Chapter 8):



CHAPTER 7  Reusing Code      137

module.function()
module.constant
module.list
module.class

Here, module is the name of the imported module or its alias, and function(), 
constant, list, or class is the name of the module element you want to use.

For example, the statistics module offers a mean() function that returns the 
arithmetic mean of some collection of numbers. The following code (chapter07/
example07.py) puts that function through its paces:

# Import the statistics module to use the mean() function
import statistics
 
# Store the test scores in a list
test_scores = [77, 65, 82, 71, 90, 53, 68, 79, 47, 77]
 
# Calculate the mean value of the test scores
test_mean = statistics.mean(test_scores)
 
print(test_mean) # Output: 70.9

WHAT HAPPENS WHEN YOU 
IMPORT A MODULE?
Suppose you include something like the following in your code:

import math

What’s really happening here? Behind the scenes, Python performs the following steps:

1.	 It finds the math.py file in the standard library.

2.	 It loads and runs the math.py code.

3.	 It creates a module object, which acts like a container full of whatever functions, 
classes, and constants are defined in the module.

4.	 It assigns the name math to that container. If you specify an alias with the import 
statement, Python assigns that alias to the container, instead.

Now your module is ready for action.



138      PART 2  Learning Python: The Beginner-Friendly Language

The key here is the second-last statement, which uses statistics.mean(test_ 
scores) to run the statistics module’s mean() function on the test_scores list.

Similarly, a common bit of logic needed in certain games is calculating the dis-
tance between two points on the 2D plane. If both points are represented as  
(x, y) tuples (refer to Chapter 6), you take the difference between the x values, 
square that difference, take the difference between the y values, square that  
difference, sum those two squares, and then take the square root of that sum. This 
is the good old Pythagorean theorem in action. Here’s some code (chapter07/ 
example08.py) that implements this algorithm:

# Import the math module to use the sqrt() function
import math
 
# Define two points as (x, y) tuples
point1 = (3, 4)
point2 = (7, 1)
 
# Calculate the difference between the x values
dx = point2[0] - point1[0]
 
# Calculate the difference between the y values
dy = point2[1] - point1[1]
 
# Apply the Pythagorean theorem:
# distance = √(dx² + dy²)
distance = math.sqrt(dx**2 + dy**2)
 
print(f"The distance between the points is: {distance:.2f}")

Importing part of a module
You don’t always have to import an entire module. Your code will be a little cleaner 
and easier to understand if you import just the part of the module — such as a 
particular function, constant, or class — you need:

from module import element

Here, module is the name of the module and element is the name of the module 
element you want to import. When you import only part of a module, you no lon-
ger need to use the dot notation; just refer to the element name directly.



CHAPTER 7  Reusing Code      139

For example, the previous code (chapter07/example08.py) requires only the 
sqrt() function, so the import statement could have been this:

from math import sqrt

In that case, the distance calculation changes to this:

distance = sqrt(dx**2 + dy**2)

You can specify more than one element. If you do, be sure to separate them with 
commas, as in this example:

from math import sqrt, pi, pow

As a final example, here’s some code (chapter07/example09.py) that uses the 
date class of the datetime module to get the user’s birth date, and then calculates 
the user’s age, in days:

# Import just the date class from the datetime module

from datetime import date

 

# Get today's date

today = date.today()

 

# Ask the user for their birth date

year = int(input("Enter the year you were born (e.g., 1990): "))

month = int(input("Enter the month you were born (1–12): "))

day = int(input("Enter the day you were born (1–31): "))

 

# Create a date object for the birth date

birth_date = date(year, month, day)

 

# Calculate the difference between today and the birth date

days_old = (today - birth_date).days

 

print(f"You are {days_old} days old!")

Here are the main highlights of this code:

	» Just the date class is imported from the datetime module.

	» The date.today() function returns today’s date.

	» The user is asked to input their birth year, month, and day.

	» The date() constructor creates a new date object from the user’s input.



140      PART 2  Learning Python: The Beginner-Friendly Language

	» The birth date is subtracted from today to produce a timedelta object, which 
represents the difference between two dates.

	» The timedelta object’s days property returns how many whole days are in 
that difference.

Here’s a sample output:

Enter the year you were born (e.g., 1990): 2000
Enter the month you were born (1–12): 1
Enter the day you were born (1–31): 1
You are 9322 days old!

Rolling your own modules
Although you’ll usually import modules from Python’s standard library, nothing 
is stopping you from building your own library of reusable Python code and using 
import to bring any part of that library into your projects.

Creating and using your own modules requires just three steps:

1.	 Create a text file and populate it with the functions, constants, lists, and 
other data that you want to make available to other Python files.

2.	 Save your text file as a Python (.py) file.

For simplicity’s sake, save this module in the same folder as whatever file or 
files you’ll be using to import the module.

3.	 In another Python file, import your module by adding the statement 
import module, where module is the name of the file you saved in Step 2 
minus the .py extension.

For example, suppose I copy the calculate_price() function (from the “Making 
Your Code More Efficient with Functions” section) and save it in a file named 
my_module.py (chapter07/my_module.py):

def calculate_total(price):
 
    # Calculate 7% tax
    tax = price * 0.07
 
    # Is the price at least $50?



CHAPTER 7  Reusing Code      141

    if price >= 50:
 
        # If so, charge a flat rate for shipping
        shipping = 5.00
    else:
 
        # Otherwise, charge 10% of the price for shipping
        shipping = price * 0.1
 
    # Calculate the total
    total = price + tax + shipping
 
    # Return the total
    return total

Here’s the code from a separate file (chapter07/example10.py):

import my_module
 
counter = 0
 
while (counter < 3):
    # Get the price
    price = float(input("Enter the price: "))
 
    # Get the total with tax and shipping
    total = my_module.calculate_total(price)
 
    print(f"Total with tax and shipping: ${total:.2f}")
 
    counter += 1

This code imports my_module, and then uses my_module.calculate_total() to 
call the module’s calculate_total() function.

Reuse Heaven: Installing External Libraries
Python comes with a ton of useful built-in features, and importing modules from 
Python’s standard library (which I cover in the preceding section) gives you access 
to a wide range of powerful tools. Depending on the types of projects you’re  



142      PART 2  Learning Python: The Beginner-Friendly Language

looking to build, having these two code sources at your disposal may give you 
everything you need.

But probably not.

If you have a project that grabs data from a website or a server; displays attractive 
charts; works with Excel files; involves building a chatbot; or is related to creating 
any kind of reasonably sophisticated game, you’re going to need some help.

Fortunately, that help is almost always just a few clicks away in the form of an 
external library. An external library is custom Python code that someone wrote and 
shared with the world. These libraries aren’t included with Python by default, nor 
are they part of Python’s standard library, but you can download and install them 
in seconds. Think of them as plug-ins or expansion packs for your Python powers.

Most Python libraries live on the Python Package Index (PyPI), which is like the 
App Store for Python code. You can browse and search the entire index of libraries 
by steering your favorite browser to https://pypi.org. Be warned, though: The 
site is home to hundreds of thousands (yes, you read that right: hundreds of  
thousands) of libraries  — everything from game engines to machine learning  
toolkits.

Installing a library
Python includes a tool called pip (short for Pip Installs Packages; yep, it’s another 
one of those recursive acronyms; refer also to PHP in Chapter 3). pip is your per-
sonal library installer.

To install a library, you open your terminal or command prompt, exit the Python 
REPL if you have a session running, and type the following:

pip install library

In macOS Terminal, you may need to run this command, instead:

pip3 install library

Here, replace library with the name of the Python library you want to install. For 
example, one of the most popular libraries is requests, which enables a Python 
program to make requests to websites and application programming interfaces 
(APIs). Refer to Chapter 8 for the details about APIs and the request library. For 
now, know that you install requests by running the following command at 
the terminal:

pip install requests

https://pypi.org


CHAPTER 7  Reusing Code      143

Or, in macOS Terminal:

pip3 install requests

Importing and using a library
Once you’ve convinced pip to install a library, you use the library in your Python 
code just as though it was a module. That is, you first import the library using the 
import statement:

import library
import library as alias

where:

	» library is the name of the installed library.

	» alias is a nickname that you use to refer to the library instead of the name 
library. In most cases, your alias will be something shorter or easier to type 
(or both) than the library’s name.

For example:

import requests

You then use dot notation to access the library’s functions, constants, lists, 
and classes:

library.function()
library.constant
library.list
library.class

Here’s an example (check out chapter07/example11.py) that uses requests.get to 
connect to the Random Joke API:

import requests

 

# Get a random joke



144      PART 2  Learning Python: The Beginner-Friendly Language

response = requests.get("https://official-joke-api.appspot.com/random_joke")

 

if response.status_code == 200:

    print("I was able to connect to the API no problem.")

else:

    print("Something went wrong. This is not a joke.")

For a version of this code that not only explains what’s happening here but also 
gets and displays a random joke, refer to Chapter 8.

Reusing Data by Writing and Reading Files
In Chapter 6 I talk about storing data in a list, a tuple, and a dictionary. These data 
structures are extremely useful, but their utility ends when the program’s done. 
That is, if you’ve plopped some data in a list or whatever, that data evaporates as 
soon as the Python interpreter executes the final statement of the program.

This chapter has been all about reusing code both to make your programs more 
efficient and more powerful and to make coding those programs much faster and 
easier. But all the benefits of reusing code apply equally to reusing data — and the 
more data you have, the greater the benefit.

But how do you reuse data? The key is to store that data in its own file outside any 
Python program. You can use Python to write the data to its own file, or you might 
already have data in some format, such as a text file. Python also offers ways to 
read the data in that file, which enables you to reuse the data by bringing it into 
any Python program.

Reading and writing files turns your little Python script into something that can

	» Save data between runs

	» Keep a log of user activity

	» Save and load settings or configurations

	» Store progress in a game or project

	» Generate reports

	» Build real-world tools like notepads or file converters

In this section, you learn how to work with files on your computer using Python, 
so your programs can save and retrieve — in short, reuse — data, just like the pros.



CHAPTER 7  Reusing Code      145

Opening a file
In Python, you work with files using the open() function:

open(file, mode)

where:

	» file is the name of the file you want to work with, surrounded by quotation 
marks. If the file is in the same folder as your program, just provide the 
filename. Otherwise, you need to specify the path to the file.

	» mode is an optional letter, surrounded by quotation marks, that indicates how 
you want Python to open the file. Most of the time, you’ll use either w (for 
write mode; refer to “Writing data to a file”) or r (for read mode, which is the 
default; refer to “Reading data from a file”).

You always use open() in the following context:

with open(file, mode) as alias:
    statement1
    statement2
    ...

where:

	» alias is a temporary name you use in your code to refer to the file you opened.

	» statement1, statement2, and so on represent the code you use to manipu-
late the open file in some way. Note that each of these statements must be 
indented from the with statement by the same number of spaces.

When the with block is complete, Python automatically closes the file.

Writing data to a file
To write some data to a file, the open() function uses "w" (short for write) as the 
mode argument and the with block uses the open file object’s write() method to 
write a string to the open file. Here’s an example (chapter07/example12.py):

with open("limerick.txt", "w") as file:
    file.write("Limerick #1\n")
    file.write("There once was a coder named Ray\n")
    file.write("Who wrote Python all night and day\n")



146      PART 2  Learning Python: The Beginner-Friendly Language

    file.write("Through one missing colon\n")
    file.write("His sanity was stolen\n")
    file.write("Now code just makes him run away\n")
    file.write("\n")

This code opens a file named limerick.txt in write mode ("w") using the  
alias file. If limerick.txt doesn’t exist, Python creates it; if limerick.txt  
does exist, Python overwrites it (so you want to be careful here that you don’t 
overwrite a file you don’t want to trash). Then a series of file.write() methods 
writes a few strings to the open file. The \n text at the end of each string is called 
the newline character and ensures that the next string added to the file begins on 
its own line.

If you have an existing file, you may prefer to add new content to it rather than 
overwriting it. No problem! Just open the file in append mode, where your open() 
function uses "a" (short for append) as the mode argument (chapter07/
example13.py):

with open("limerick.txt", "a") as file:
    file.write("Limerick #2\n")

Reading data from a file
If you have an existing file that has data you want to use in a program, you can 
read the contents of that file by using the open() function with "r" (short for 
read) as the mode argument. The with block uses the open file object’s read() 
method to grab the entire contents of the open file. Here’s an example (chapter07/
example14.py):

with open("limerick.txt", "r") as file:
    content = file.read()
    print(content)

This example opens the limerick.txt file from the preceding section in read 
mode ("r") using the alias file. The file.read() method grabs everything from 
the file and stores it in the content variable, which is then printed.

Read mode is the default, so if you leave out the mode argument, Python assumes 
you want to open the file in read mode.



CHAPTER 7  Reusing Code      147

Sometimes it’s better to read a file one line at a time. You can do that with ease 
using a for loop that runs through each line in the open file (chapter07/
example15.py):

with open("limerick.txt", "r") as file:
    for line in file:
        no_newline = line.strip()
        print(no_newline)

The strip() method removes whitespace characters at the beginning and end  
of a string. In this case, strip() removes each newline character that Python 
automatically adds to the end of each line, so you don’t get empty spaces 
between lines.

It’s often useful to read all the file data at once and append each line of the file as 
an item in a list. You can do that with the file object’s readlines() method. Here’s 
an example (chapter07/example16.py):

with open("limerick.txt", "r") as file:
    lines = file.readlines()
    for line in lines:
        print(line.strip())

Example: Building a Quotations Archive
To complete this chapter, this section presents some code for an example program 
that creates and maintains an archive of quotations. The archive is stored in a text 
file, uses several modules from the standard library, and corrals most of the code 
into functions to keeps things organized and readable.

Here’s the full code (chapter07/example17.py):

# Import the necessary modules

import random

from datetime import date

 

# Create a constant for the name of the text file

QUOTATIONS_FILE = "quotations.txt"

 

# This function displays the app menu



148      PART 2  Learning Python: The Beginner-Friendly Language

def show_menu():

    print("\nWelcome to the Quotations Archive!\n")

    print("What would you like to do?")

    print("1. View all quotations")

    print("2. Add a new quotation")

    print("3. Get a random quotation")

    print("4. Quit")

 

# This function reads the quotations from the file

# and returns them as a list

def read_quotations():

    # Start with an empty list

    quotations = []

 
    # Check if the file exists before trying to read it

    if not file_exists(QUOTATIONS_FILE):

        # If the file doesn't exist, return an empty list

        return quotations

 

    # Open the file in read mode

    with open(QUOTATIONS_FILE, "r") as file:

        # Read each line from the file

        for line in file:

            # Strip whitespace and add the line to the list

            quotations.append(line.strip())

 

    # Return the list of quotations

    return quotations

 

# This function checks if the file exists

# and returns True or False

def file_exists(filename):

 

    # Import the os module to check for file existence

    import os

 

    # Use os.path.exists to check if the file exists

    # and return the result

    return os.path.exists(filename)

 

# This function saves a new quotation to the file

def save_quotation(quotation):

    # Open the file in append mode

    with open(QUOTATIONS_FILE, "a") as file:



CHAPTER 7  Reusing Code      149

 

        # Get the current date and format it

        # and format it as YYYY-MM-DD

        today = date.today().isoformat()

 

        # Write the quotation and the date to the file

        file.write(f"{quotation} (added on {today})\n")

 

# This function asks for a new quotation        

def add_new_quotation():

 

    # Prompt the user for a new quotation

    quotation = input("Enter your quotation: ")

 

    # Save the quotation to the file

    save_quotation(quotation)

 

    # Inform the user that it has been saved

    print("Quotation saved!")

 

# This function displays all saved quotations

def view_all_quotations():

 

    # Read the quotations from the file

    quotations = read_quotations()

 

    # Check if there are any quotations

    if not quotations:

        # If not, inform the user

        print("No quotations saved yet.")

    else:

        # If there are, display them

        print("\nYour saved quotations:")

        for quotation in quotations:

            print(f"- {quotation}")

 

# This function displays a random quotation

def show_random_quotation():

    # Read the quotations from the file

    quotations = read_quotations()

 



150      PART 2  Learning Python: The Beginner-Friendly Language

    # Check if there are any quotations

    if not quotations:

        # If not, inform the user

        print("No quotations to show. Try adding some first!")

    else:

        # If there are, choose one at random

        # and display it

        print("\nHere's a random quotation:")

        print(random.choice(quotations))

 

# This function is the main loop of the program

def main():

    # Loop until the user chooses to quit

    while True:

 

        # Show the menu and get the user's choice

        show_menu()

        choice = input("Choose an option (1-4): ")

 

        # Check the user's choice,

        # then call the appropriate function

        if choice == "1":

            # Display all the quotations

            view_all_quotations()

        elif choice == "2":

            # Prompt for a new quotation

            add_new_quotation()

        elif choice == "3":

            # Display a random quotation

            show_random_quotation()

        elif choice == "4":

            # Exit the program

            print("Goodbye! Keep those quotations coming.")

            # Exit the loop to quit the program

            break

        else:

            # Handle a choice that's not 1-4

            print("Invalid option. Please try again.")

 

# Run the main function to start the program

main()



CHAPTER 7  Reusing Code      151

The code is liberally sprinkled with comments, so it should be straightforward  
to follow what it’s doing. Here are a few not-so-straightforward things to 
watch out for:

	» The archive file (quotations.txt) must be in the same folder as the 
Python file.

	» The name of the archive file (quotations.txt) is used several times in the 
code. To avoid having to edit all those instances if you decide to change the 
filename, the program defines the constant QUOTATIONS_FILE and sets it 
equal to the filename as a string. Using all-uppercase letters for the names  
of constants is standard programming practice.

	» The file_exists() function imports the os module and uses the path 
object’s exists() method to determine whether the quotations archive 
file exists.

	» In the show_random_quotation() function, the random module’s choice() 
function is used to grab a random item from the list of quotations.

	» The main() function defines the overall logic of the program, which is  
a common Python organizing structure. In this program, main() uses a 
while True loop to display the menu, prompt the user to choose a menu 
option, and handle the input by calling the appropriate function. Using 
while True means the loop runs until the user cancels the program by 
choosing the Quit menu option. At that point, the while loop is exited  
by running the break statement.





CHAPTER 8  Expanding Your Python Skills      153

Chapter 8
Expanding Your 
Python Skills

The code you write makes you a programmer. The code you delete makes you 
a good one. The code you don’t have to write makes you a great one.

—MARIO FUSCO

Python fundamentals such as variables, lists, conditionals, and loops (the 
topics of Chapters  5 and  6), and ever-so-slightly-more-advanced topics 
such as functions, modules, libraries, and file handling (the topics of 

Chapter 7), enable you to create a wide variety of honest-to-goodness programs. 
Even if you never learn another speck of Python, you now have coding skills that 
will last you a lifetime.

But with that nicely stocked Python toolbox at your disposal, the programs you 
code may lack a certain something and feel a bit, well, limited. I’m pretty sure 
you’re not going to the trouble of reading this book just to write limited code! On 
the contrary, my assumption is you picked up this book because you have  
ambitions that include writing powerful programs that do useful things.

That, I’m happy to report, is totally doable! What has to happen now is that you 
need to expand your Python repertoire to match your ambitions. And adding to 
your Python toolkit is what this chapter is all about. In this chapter, you dive into 

IN THIS CHAPTER

	» Coding the Pythonic way

	» Swooning over list comprehensions

	» Hitting the big-time with object-
oriented programming

	» Connecting with APIs

	» Debugging your code



154      PART 2  Learning Python: The Beginner-Friendly Language

the deep end of Python by exploring list comprehensions, object-oriented pro-
gramming, APIs, handling errors, and debugging your programs. By the time 
you’re done, you might need to level up your ambitions to match your new skills!

Waxing Pythonic
If you spend even a little time around Python coders either online or off, you’ll 
come across the adjective Pythonic quite a bit. Pythonic describes code that follows 
the spirit, style, and best practices of Python. In other words, Pythonic code is

	» Clean, meaning the code is easy to read and understand.

	» Concise, meaning the code does what it needs to with minimal fuss.

	» Expressive, meaning the code clearly shows the intent of the author.

	» Elegant, meaning the code avoids clunky, repetitive patterns.

A collection of guiding principles for writing Python code called the Zen of Python 
also reflects the Pythonic way: 

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Readability counts.

There should be one — and preferably only one — obvious way to do it.

To see the full list of principles in the Zen of Python, head over to the  
terminal, start a new Python interpreter session, type import this, and press Enter 
or Return.

For example, suppose you have a list named recipe that includes all the ingredi-
ents in a recipe. The unPythonic way to loop through the list is to use a counter, 
which is a common structure in many other programming languages:

for i in range(len(recipe)):
    print(recipe[i])



CHAPTER 8  Expanding Your Python Skills      155

It takes a bit of effort to figure out what this code is even doing! Now check out the 
Pythonic version:

for ingredient in recipe:
    print(ingredient)

Ah, that’s better. That’s straightforward, efficient, readable  — in a word, 
Pythonic — code.

Comprehending List Comprehensions
By now, you’ve probably spent some quality time with for loops. Maybe you’ve 
even used one to build up a list of things  — like squares of numbers, filtered 
words, or your top five pizza toppings in alphabetical order. Well, Python has a 
handy shortcut for that sort of thing. It’s called a list comprehension, and once you 
get the hang of it, you’ll find a thousand and one ways to use it.

Setting up a basic list comprehension
Let’s say you want to make a list of the squares of numbers 0 through 10. You 
could code it like so (refer to chapter08/example01.py in this book’s example files):

squares = []
for x in range(11):
    squares.append(x ** 2)

That works just fine. But Python says, “Why not do all that in a single statement?” 
With a list comprehension, you can do this (chapter08/example02.py), instead:

squares = [x ** 2 for x in range(11)]

Wild, huh? You get the same result, but with far less typing, no append calls (so 
it’s faster), and fewer chances for typos or indentation mishaps. Just one rather 
lovely little line of logic.

What’s up with the word comprehension here? It sounds like a highfalutin term 
you’d hear in an English exam, not in Python code. The term comprehension come 
from set comprehension in mathematics (also called set abstraction). In math, you 
can define a set like this:

The set of all y such that y is a square number between 0 and 100.



156      PART 2  Learning Python: The Beginner-Friendly Language

That’s a set comprehension. Python borrowed the idea and turned it into a more 
readable way of constructing lists. So, a Python list comprehension is just a way of 
expressing what you want your list to contain, based on some rule or pattern.

A list comprehension follows this basic recipe:

[do_this for each_thing in some_collection]

where:

	» do_this is an expression that performs some operation on  
each_thing and returns a value. In the squares example,  
do_this is the expression x ** 2.

	» each_thing is an item from some_collection. In the squares example, 
each_thing is x.

	» some_collection is anything Python can loop through, such as a list, a string, 
a range, a tuple, or a dictionary. In the squares example, some_collection is 
range(11), which returns a range of numbers from 0 to 10.

Here’s another example (chapter08/example03.py):

words = ["aardvark", "clunker", "kludge", "moist", "razz"]
word_lengths = [len(word) for word in words]
print(word_lengths)

This list comprehension applies the len() function to determine the number of 
characters in each word in the words list. Here’s the output:

[8, 7, 6, 5, 4]

Adding a filter
By default, a list comprehension creates a new list that has the same number of 
items as the collection it iterates over. In the squares example from the preceding 
section, the list comprehension collection range(11) contains eleven values  
(0 through 10), so the list of squares also has eleven values:

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]



CHAPTER 8  Expanding Your Python Skills      157

What if you want the squares of only even numbers? No problem. List comprehen-
sions support if statements, and a particular item in the collection is operated on 
only if the logical expression defined for the if statement returns True:

[do_this for each_thing in some_collection if condition]

Here, the added condition part tells Python to perform the do_this operation on 
the current item in some_collection only if condition returns True when it’s 
applied to that item.

The following example (chapter08/example04.py) adjusts the squares code to 
square only even numbers:

even_squares = [x ** 2 for x in range(11) if x % 2 == 0]

The if at the end acts as a filter that says, “Only square x if x is divisible by 2.” 
(The % operator — it’s called modulo — returns the remainder when the left side 
is divided by the right side. If the remainder is 0 when a number is divided by 2, it 
means the number is even.) This means you can build and filter a list at the same 
time — which is kind of like baking a cake and slicing it in the same pan: efficient 
and delicious!

Sometimes the do_this part of a list comprehension returns just the each_thing 
part. That may sound weird, but it’s useful for a common list comprehension task: 
extracting the items in a collection that match some condition, such as starting 
with a particular letter.

Suppose you want to extract from a list of names all those that start with A. Here’s 
how you could do this using regular code (chapter08/example05.py):

matches = []
for name in names:
    if name.startswith("A"):
        matches.append(name)

Now here’s the list comprehension version (chapter08/example06.py):

matches = [name for name in names if name.startswith("A")]

This list comprehension is saying, “For each name in the names collection, add 
name to the matches list if the name starts with the letter A.” All that in one line? 
Now that is some efficient code!



158      PART 2  Learning Python: The Beginner-Friendly Language

Introducing Object-Oriented 
Programming (OOP)

Once you start tackling larger projects, you may get to a point that’s familiar to all 
programmers: It feels like your code is getting out of control. Maybe you have 
dozens of variables floating around or functions that feel disconnected from the 
data they’re supposed to work on. You’re copying and pasting the same code over 
and over with tiny tweaks. You’re starting to feel like you’re juggling spaghetti.

If you’ve never experienced this state, believe me when I tell you that one day you 
will. It happens even to the most experienced coders. But those coders — and, 
soon, you  — know the solution to messy, redundant code: object-oriented  
programming, or OOP for short.

The problem: Everything’s scattered
Let’s say you’re building a little pet-tracking app for an animal shelter. You might 
start out like this (chapter08/example07.py):

pet1_name = "Chase"
pet1_species = "dog"
pet1_age = 3
 
pet2_name = "Whiskers"
pet2_species = "cat"
pet2_age = 1
 
pet3_name = "Hammy"
pet3_species = "hamster"
pet3_age = 2

Then, later in your code, you write a function to print the pet info:

def print_info(name, species, age):
    print(f"{name} is a {age}-year-old {species}.")
 
print_info(pet1_name, pet1_species, pet1_age)
print_info(pet2_name, pet2_species, pet2_age)
print_info(pet3_name, pet3_species, pet3_age)



CHAPTER 8  Expanding Your Python Skills      159

Here’s the output:

Chase is a 3-year-old dog.
Whiskers is a 1-year-old cat.
Hammy is a 2-year-old hamster.

It works! But now imagine that the shelter has not three pets, but three dozen pets. 
That’s a lot of variables. Okay, fine, it’s for a good cause, so you create all those 
variables. But now the shelter has asked that the app also track vaccinations and 
show which pets are due to be vaccinated. Later they come back to you and ask you 
to track adoption status, including which pets having been waiting the longest to 
be adopted. Now you have a huge pile of unwieldy variables and functions, all 
loosely connected, and your code starts to look like a junk drawer of pet facts.

The solution: Bring it all together with OOP
Rather than having a large number of variables supported by a bunch of functions 
located in various places of your code, your program would be easier to read and 
maintain if you could bring together all those variables and functions. That, in a 
nutshell, is what object-oriented programming is all about. It enables you to 
group related data and functions into something called a class.

To understand what a class does, imagine putting together a blueprint for a car. 
Those specs would include properties that describe the car — such as the make, 
model, and color — and a list of what the car can do — such as start, accelerate, 
and brake. With a detailed enough blueprint in hand, you could (theoretically, at 
least) create a car.

In OOP, a class is a kind of blueprint for a real or virtual thing you want to repre-
sent in your code, such as a pet, a car, or a character in a game. The class includes 
two types of items:

	» Properties: These describe the thing. For a pet, the properties could be the 
pet’s name, species, and age. (In OOP circles, properties are often referred to 
as attributes.)

	» Methods: These specify either what the thing can do or what can be done 
with the thing. For a pet, a method could be to print the pet’s info.

Once you have a class, you can use it to create data for your program based on that 
blueprint. Each piece of data you create with a class is called an object.



160      PART 2  Learning Python: The Beginner-Friendly Language

Okay, it’s time to brush all that theory aside and do some OOP coding by learning 
how to build a class. Before I show you the general syntax involved, however, I 
take you through building a pet class for the shelter project.

Here’s what that might look like in Python (chapter08/example08.py):

class Pet:

 

    def __init__(self, name, species, age):

        self.name = name

        self.species = species

        self.age = age

 

    def print_info(self):

        print(f"{self.name} is a {self.age}-year-old {self.species}.")

Yep, I hear you: There’s a lot going on here. The key with OOP is that you put a 
bunch of work into building a class; then creating objects for your program 
is a breeze.

Okay, here’s an overview of what’s going on in this class:

	» The class keyword tells Python you’re building a class with, in this case, 
the name Pet.

	» The __init__() function defines the properties for the class, which in this 
example are name, species, and age.

	» The print_info() function defines a method for the class, which in this 
example prints info about a pet.

Remember that the class is just a blueprint. Once you’ve defined that blueprint, 
you can use it to make the objects that you’ll use in your code. To that end, it’s 
time to make a few pet objects (chapter08/example08.py [continued]):

chase = Pet("Chase", "dog", 3)
whiskers = Pet("Whiskers", "cat", 1)
hammy = Pet("Hammy", "hamster", 2)
 
chase.print_info()
whiskers.print_info()
hammy.print_info()



CHAPTER 8  Expanding Your Python Skills      161

Here’s the output:

Chase is a 3-year-old dog.
Whiskers is a 1-year-old cat.
Hammy is a 2-year-old hamster.

Same results as before, but now the data and the behavior are in one neat package 
(the class), which makes your code more readable, more organized, less repeti-
tious, easier to expand, and easier to maintain. Win, win, win, win, win.

Okay, I skipped over all kinds of details in this example, so now it’s time to put 
meat on these OOP bones.

Building a class
All your OOP adventures start with building a class, which you can think of as a 
kind of blueprint or set of instructions for building something you want to work 
with in your code.

A class begins, appropriately enough, with a class statement:

class ClassName:

Here, ClassName is the name you want to use for your class. In Python, class 
names follow these conventions:

	» If the name is one word, capitalize just the first letter of the word.

	» If the name is multiple words, capitalize just the first letter of each word and 
smush them all together (that is, don’t separate the words with underscores 
or any other character).

For the record, this way of writing class names is called CapWords (or sometimes 
Pascal Case or UpperCamelCase). Note, as well, the colon at the end, as also seen 
in this example:

class Pet:

Now you can define the code that you want Python to run every time it uses the 
class to create an object. That startup code is a method called the class initializer, 
and it’s one of Python’s weirder-looking features:

def __init__(self, initial_values):



162      PART 2  Learning Python: The Beginner-Friendly Language

where:

	» __init__ is the special name for the method (the init part is short for 
initializer).

	» self refers to the object being created. The class uses self to refer to the 
object’s properties (such as self.name) or the object’s methods (such as 
self.print_info()).

	» initial_values refers to one or more comma-separated values that the 
initializer uses to set the object’s properties.

Note that the initializer isn’t required. So if you’re creating a class that requires no 
initialization code, feel free to skip the __init__ method.

You’ll mostly use the __init__ method to initialize the properties of the object 
you’re creating. (An object is said to be an instance of the class, so these properties 
are often referred to as instance attributes.) In the following code, the properties are 
name, species, and age:

class Pet:
 
    def __init__(self, name, species, age):
        self.name = name
        self.species = species
        self.age = age

If you want, you can also populate the initializer with other code you want to run 
each time you create an object. For example, you might test a property value to 
make sure it’s valid.

After the class statement, you have the option of declaring one or more class attri-
butes, which are class-level variables that apply to every object you create from the 
class. Here’s an example:

class Pet:
    adoption_fee = 75
 
    def __init__(self, name, species, age):
        self.name = name
        self.species = species
        self.age = age

Presumably the shelter’s adoption fee is the same for every pet; this code includes 
that value as the class-level adoption_fee attribute.

http://self.name


CHAPTER 8  Expanding Your Python Skills      163

Okay, you’re getting there! The final piece of the class puzzle involves adding 
whatever methods you want to make available to each object. You do this by defin-
ing a function in the class and passing that function the self argument. Here’s 
the Pet class with the print_info() method added (chapter08/example09.py):

class Pet:

    adoption_fee = 75

 

    def __init__(self, name, species, age):

        self.name = name

        self.species = species

        self.age = age

 

    def print_info(self):

        print(f"{self.name} is a {self.age}-year-old {self.species} and costs 

${self.adoption_fee} to adopt.")

Note that by passing self to the method as an argument, the method can now 
refer to both the class attribute (self.adoption_fee) and the class properties 
(such as self.name).

Creating an object
Once you have a class defined (which is the hard part of OOP), you’re ready to use 
that class to create — or, as the nerds like to say, instantiate — objects in your 
code. You create an object from a class by calling that class and passing it the ini-
tial values you want to apply to the new object’s properties:

ClassName(initial_values)

where:

	» ClassName is the name of the class.

	» initial_values refers to one or more comma-separated values that you 
want passed along to the class __init__() method.

Want some examples? You got ’em:

chase = Pet("Chase", "dog", 3)
whiskers = Pet("Whiskers", "cat", 1)
hammy = Pet("Hammy", "hamster", 2)

http://self.name


164      PART 2  Learning Python: The Beginner-Friendly Language

Here’s what’s going on behind the scenes when you create an object in this way:

1.	 Python calls the class Pet.

2.	 The class creates a new object.

3.	 The class runs its __init__() method on the new object, using the values  
you passed in.

4.	 The class returns a shiny, new, and ready-to-use Pet object that your code 
would store in a variable, a list, or another data structure.

Using an object in your code
After you create an object from a class, that object has access to the properties, 
methods, and class attributes defined in the class.

You access an object property using dot notation:

object.property

Here, object is a reference to the object (such as a variable name) and property 
is the name of the property. For example:

print(chase.name)    # Chase
print(whiskers.age)  # 1

You call an object method using dot notation:

object.method()

Here, object is a reference to the object (such as a variable name) and method() 
is the name of the method. For example:

chase.print_info()  # Prints the info for Chase
hammy.print_info()  # Prints the info for Hammy

And, finally, you access an object’s class attributes using dot notation on either 
the class or the object:

Class.attribute
object.attribute



CHAPTER 8  Expanding Your Python Skills      165

Here, Class is the name of the class; object is a reference to the object (such as a 
variable name); and attribute is the name of the class attribute. For example:

print(Pet.adoption_fee)       # 75
print(whiskers.adoption_fee)  # Also 75

Working with APIs
Okay, it’s Friday night, you just got home from work or school, and you’re hungry. 
But you don’t want to chow down on just anything. No, tonight it has to be pizza. 
What do you do? Well, one possibility would be to crank up the oven, roll out some 
dough, throw on some sauce and toppings, and cook your own pie.

Hah, as if! No, you’re much more likely to peruse the website of your local pizza 
joint, place your order, and then a bit later  — voilà!  — your pizza arrives at 
your door.

Your Python programs face a similar choice. On the one hand, you could supply 
your program with the particular data or services or both it needs, but on the  
other hand you can “order” what you need and have it “delivered” to your app.

That’s essentially what an application programming interface does. An API is just 
a set of rules that lets one program ask another program for something, such as 
data, and get a response. An API is a way for two programs to talk to each other. 
For our purposes, an API is a way for your Python code to order data from another 
program and get it delivered.

Let’s say you have a Python program that requires today’s weather. In the make- 
your-own-pizza version, you’d do something like this:

1.	 Open your favorite web browser.

2.	 Google your local weather.

3.	 Copy the weather info you need.

4.	 Switch to your Python code and paste the weather data.

5.	 Repeat Steps 1-4 every day for the rest of your life.

Or you could do the “takeout” version where you replace all five steps with code 
that connects to a weather API. Doesn’t that sound easier? It is! In fact, with just 
a few lines of Python, you can request the current weather, and the API sends it 



166      PART 2  Learning Python: The Beginner-Friendly Language

back, usually in a nice, computer-friendly format that you can work with in 
your code.

Using APIs means your code can

	» Get live data from the internet, including weather, sports scores, stock prices, 
and cat facts.

	» Use powerful services, such as translating text, recognizing images, or even 
sending emails.

	» Pull in fun stuff for projects, such as jokes, trivia, movie info, or Pokémon stats.

APIs turn your humble Python script into something that feels way bigger because 
now it can connect with the real world.

Talking to an API with Python
As an example over the next couple of sections, I’ll use a fun, free API that serves 
up a random joke each time you call it. Can’t we all use a little more humor in our 
lives these days?

Okay, the API lives at this URL:

https://official-joke-api.appspot.com/random_joke 

Try pasting that address into your browser and you’ll see a random joke that looks 
something like this:

{"type":"programming","setup":"What do you call a computer mouse that swears a 

lot?","punchline":"A cursor!","id":435}

Probably not what you were expecting, right? That response is in a special format 
that’s commonly used for sending API data. I explain it a bit later in the “Working 
with the data you get back” section. For now, it’s time to show you how to get that 
same data in Python.

The easiest way to talk to an API in Python is by using a handy tool called the 
requests library. (Refer to Chapter 7 to learn how to install it using pip.) Think of 
it as your program’s personal delivery driver: It handles the pickup and brings the 
data back.



CHAPTER 8  Expanding Your Python Skills      167

To use requests in your code, you import it:

import requests

This gives your code access to functions that can send requests to APIs and handle 
the responses. For an API, you cajole it into returning data by submitting a GET 
request, which is a nerdy way of saying, “Yo, API, please give me some data.” You 
send a GET request using the requests.get() method:

requests.get(URL)

Here, URL is the address of the API. The API will send back a response, and you 
always store that response in a variable, like so:

response = requests.get("https://official-joke-api.appspot.com/random_joke")

As part of the response, the API will return a status code, which is a number that 
represents how the transaction went. The only status code you need to worry 
about is 200, which means OK. The response object includes a status_code prop-
erty that should be the first thing your code checks (chapter08/example10.py):

import requests

 

# Get a random joke

response = requests.get("https://official-joke-api.appspot.com/random_joke")

 

# Check the status code

if response.status_code == 200:

    print("I was able to connect to the API no problem.")

else:

    print("Something went wrong. This is not a joke.")

Assuming you received an OK status code, you can now do something useful with 
the returned data.

Working with the data you get back
If the connection went well, you’re ready to work with the data the API sent back. 
The most basic way you can do that is to work with the response object’s 
text property:

print(response.text)



168      PART 2  Learning Python: The Beginner-Friendly Language

Here’s what you see:

{"type":"general","setup":"What cheese can never be yours?","punchline":"Nacho 

cheese.","id":156}

Why, look at that: It’s in the same format as the text that appears in the web 
browser if you surf directly to the URL. This text format is known as JavaScript  
Object Notation, or JSON (it’s pronounced like the name Jason). Despite the  
JavaScript in the name, it’s a popular format for transmitting text in most  
programming languages.

To help you understand JSON a bit better, let me rearrange the response text a bit:

{
"type": "general",
"setup": "What cheese can never be yours?",
"punchline": "Nacho cheese.",
"id": 156
}

Now you can see that JSON is a collection of property-value pairs where, on each 
line, the item to the left of the colon is the property name and the item to the right 
of the colon is the value.

This format is similar to the Python dictionaries I cover in Chapter 6. In fact, the 
response object comes with a json() method that converts the JSON returned by  
the API into a Python dictionary:

joke = response.json()

If you run print(joke), here’s what you see:

{'type': 'general', 'setup': 'What cheese can never be yours?', 'punchline': 

'Nacho cheese. ', 'id': 156}

Yep, that’s a Python dictionary! The difference is that the dictionary is a set of 
key-value pairs, with the key to the left of the colon and the value to the right. To 
extract a value from the dictionary, you put the key in square brackets after the 
dictionary name. For example, to use the value of the setup key, you’d do this:

joke["setup"]



CHAPTER 8  Expanding Your Python Skills      169

Here’s a complete example (chapter08/example11.py):

import requests

 

# Get a random joke

response = requests.get("https://official-joke-api.appspot.com/random_joke")

 

# Check the status code

if response.status_code == 200:

 

    # Convert the JSON to a dictionary

    joke = response.json()

 

    print("Here's a joke for you:")

 

    # Print the joke setup

    print(joke['setup'])

 

    # Wait for the user to press Enter

    input("...")

 

    # Print the joke punchline

    print(joke['punchline'])

else:

    print("Something went wrong. This is not a joke.")

If the response isn’t valid JSON, calling .json() will raise an error. I show you 
how to catch these kinds of runtime errors a bit later in the “Handling Program 
Errors” section.

A few API repositories
If you’re convinced that APIs are a great way to enhance your Python programs, 
you’ll be happy to know that tons of them are available. Here are some useful API 
repositories to check out:

	» Public APIs (https://github.com/public-apis/public-apis): A huge, 
community-curated list of free APIs on GitHub. It’s organized by category 
(from Animals to Weather). This is a great site if you’re just getting started 
with APIs.

https://github.com/public-apis/public-apis


170      PART 2  Learning Python: The Beginner-Friendly Language

	» RapidAPI (https://rapidapi.com/): A marketplace for APIs, so it’s sort of 
like the App Store for APIs. The site enables you to search, test, and connect to 
APIs from a single dashboard. There are lots of free APIs, but you need to set 
up an account because some APIs require payment.

	» API List (https://apilist.fun/): A quirky, fun collection of APIs with lots of 
interesting ideas for small projects and experiments. Categories to check out 
include Humor, Meme, and Random.

Handling Program Errors
The Python interpreter runs through a program one statement at a time, starting 
from the top line. Ideally, the interpreter will make it all the way to the last state-
ment without a hiccup, but what happens if the interpreter comes across some 
code that it can’t figure out? Ah, that’s when the interpreter has a little tantrum, 
stops processing the code, and chastises you with an error message.

Decoding Python traceback messages
The specific message you see depends on the program and the error, but a typical 
example will suffice to give you the idea. First, here’s a program (chapter08/
example12.py):

age = input("How old are you? ")
age_next_year = age + 1
print(f"Next year, you'll be {age_next_year}!")

Running this program produces the following output:

Traceback (most recent call last):
  File "example12.py", line 2, in <module>
    age_next_year = age + 1
                    ~~~~^~~
TypeError: can only concatenate str (not "int") to str

Well, okay, that’s a little intimidating! But there’s actually a ton of useful informa-
tion here to help you solve the problem. Let me break it down for you:

	» Traceback: This output is a report from the interpreter that shows the path
your program took right before it ran into an error.

https://rapidapi.com/
https://apilist.fun/

CHAPTER 8 Expanding Your Python Skills 171

	» most recent call last: The report traces your program’s path back from
the error, beginning with the most recent line of code or function call to the
first call that began the path that led to the error.

	» File "example12.py", line 2: There are no function calls in the example
code, so the interpreter just shows the name of the file and which line caused
the error. In more complicated cases, you’d see a series of these statements
tracing back the logic that caused the error to the beginning.

	» in <module>: The error happened in the main part of your file, not inside a
function or class. If the error or trace points to something inside a function or
class, you’d see in function or in class (where function and class are
names) instead of in <module>.

	» age_next_year = age + 1: This code contains the statement that caused
the error.

	» ~~~~^~~: The tildes (~) “underline” the part of the code where the problem
lies and the caret (^) points at the specific spot where the interpreter ran
into trouble.

	» TypeError: can only concatenate str (not "int") to str: This line
displays the error type and the error message. This part of the traceback tells
you what exactly went haywire in your program. In this example, the inter-
preter is letting you know that your code seems to be trying to concatenate a
string value (age) and an integer value (1), which is illegal. Changing the
expression to int(age) + 1 will make the interpreter happy again.

So, in short, a traceback is Python’s “what, where, and how” error report because
it shows you what went wrong (such as a TypeError), where it went wrong (such as
line 2 of your Python file), and how it got there (if the logic that led to the error
went through one or more functions or files).

Table 8-1 lists a few of the most common error types that you’re likely to
stumble upon.

Handling errors with try and except
If you’re just running your code for yourself, dealing with tracebacks is par for the
Python course. But if you want other people to run your programs, you certainly
don’t want them having to come face-to-face with some gnarly error message
and you almost certainly would prefer that your program keep running instead of
crashing. You can accomplish both goals — hide tracebacks and avoid program
crashes — by using special Python code to handle any errors that crop up.

172 PART 2 Learning Python: The Beginner-Friendly Language

For example, suppose your code includes the following statement:

number = int(input("Enter a number: "))

What happens if the user enters, say, a number with text characters instead of
digits? Let’s see:

Enter a number: three
Traceback (most recent call last):
 File "<python-input-1>", line 1, in <module>
 number = int(input("Enter a number: "))
ValueError: invalid literal for int() with base 10: 'three'

Yuck! A more robust and user-friendly way to handle this task would be to ask
Python to watch for such an error and then display a message to the user when the
error occurs. You accomplish this by using try and except blocks (chapter08/
example13.py):

try:
 number = int(input("Enter a number: "))
 print(f"The square of your number is {number ** 2}.")
 print(f"The cube of your number is {number ** 3}.")
except ValueError:
 print("Oops! That wasn't a number.")

TABLE 8-1	 Common Python Error Types
Error Type What It Means Example

ValueError You used some invalid data. int("three")

TypeError You used the wrong type of data (such as
adding a string to a number).

"hello" + 3

NameError Python doesn’t recognize the name
you typed.

Typo in a variable name:

age = input("How old are
you? ")

age_next_year = int(agw) + 1

IndexError You asked for an item in a list that
doesn’t exist.

my_list[5] when the list has only
three items

KeyError You asked for a dictionary key that’s not
there.

my_dict['pizza'] when 'pizza'
doesn’t exist

ZeroDivisionError You tried to divide by zero, which is illegal. 10 / 0

RequestException Something went wrong with your API call. Server is down, bad URL, and so on

CHAPTER 8 Expanding Your Python Skills 173

Here’s what this code does:

1.	 Python enters the try block.

2.	 Python executes the next statement in the try block.

3.	 Python checks to see if an error occurred:

•	 If no error occurs and there are more statements to execute in the try
block, Python returns to Step 2. If no error occurs and the current state-
ment is the last one in the try block, Python skips over the except block
and continues with Step 5.

•	 If an error does happen, Python enters the except block.

4.	 Python executes each statement in the except block, and then continues
with Step 5.

5.	 Python executes the rest of the program.

Here’s a sample output with no errors:

Enter a number: 6
The square of your number is 36.
The cube of your number is 216.

Here’s a sample output when an error occurs:

Enter a number: three
Oops! That wasn't a number.

Look, ma, no traceback!

Handling API errors
Using try and except blocks is an especially handy technique when you’re making
an API call because that call could fail if the website is down, the address is wrong,
or the internet disappears into the void.

Here’s how to handle such failures gracefully (chapter08/example14.py):

import requests

try:
 response = requests.get("https://catfact.ninja/fact")

174 PART 2 Learning Python: The Beginner-Friendly Language

 # Check for an error
 response.raise_for_status()

 data = response.json()
 print(data['fact'])
except requests.exceptions.RequestException:
 print("There was a problem contacting the API.")

The key addition here is the raise_for_status() method, which checks the
response status code and raises an exception if the response was an error. If the
response code is in the 400s (indicating a client error) or the 500s (indicating a
server error), your code will be diverted to the except block. This way, if some-
thing goes wrong, your program doesn’t crash. Instead, it calmly alerts the user
to what happened.

Debugging Your Code
Debugging is the process of finding and fixing coding errors — known semi-
affectionately in the coding trade as bugs — so your program runs the way you
expect it to. (Some wag once wrote that if debugging is defined as the process of
removing bugs from code, programming must be defined as the process of
putting them in!)

If you’re thinking that your programs may have a few bugs now because you’re
just getting started but eventually you’ll be a proficient enough programmer to
write bug-free code, think again. Everyone — from the rawest rookie to the most
polished pro — writes buggy code. Debugging isn’t some technique that you’ll use
less and less as you gain experience; it’s a normal, ho-hum aspect of coding that
all developers do every day.

In fact, for many developers, debugging code is more interesting than writing
it in the first place. These developers don’t see program glitches as failures;
they see them as a chance to don their virtual deerstalker hats and switch into
detective mode.

When it comes to debugging Python code, you have three main routes to take:

	» Follow the general debugging strategies that I list in Chapter 2.

	» Use VS Code’s Python Debugger.

	» Run through a few Python-specific debugging techniques, which are
coming right up.

CHAPTER 8 Expanding Your Python Skills 175

When your Python code zigs instead of zags, returns the wrong result, or goes up
in digital flames, it’s time to crack your knuckles and get down to the labor of
figuring out what went wrong and then patching the problem. It’s not glamorous,
but it’s one of the most important coding skills you’ll learn.

So, without further delay, here’s a four-step Python-specific procedure to follow
to understand what went wrong, find out where it went wrong, and fix
what’s wrong:

1.	 Read the error message.

If your program blows up, the Python interpreter gives you a traceback, as I
describe in the preceding section. That message contains a fistful of debugging
gold because it tells you the type of error, specifies the line number and file
where the error happened, and shows the operation Python was trying to
execute when things went south.

Most of the time, the error message contains enough info to debug
the problem.

2.	 Use print() to monitor program values.

By far the most common Python debugging technique is to add print()
statements that output the current value of whatever variable, expression, or
function result you want to monitor.

For example, here’s some code (chapter08/example15.py) that prompts the
user for their age and then uses a print() statement to output the value of the
age variable:

Prompt for an age
age = input("How old are you? ")

Print the age variable value
print(f"The value of age is {age}.")

age_next_year = int(age) + 1
print(f"Next year, you'll be {age_next_year}!")

Here’s a sample output from this code:

How old are you? 29
The value of age is 29.

Next year, you'll be 30!

176 PART 2 Learning Python: The Beginner-Friendly Language

3.	 Use type() to check data types.

A major cause of program errors is when your code is expecting a variable or
function result to have a particular data type, but it ends up with some other
type that wreaks havoc at execution time. You can take advantage of Python’s
type() function to find out the data type of something in your code.

For example, here’s some code (chapter08/example16.py) that prompts the
user for their age and then uses a print() statement to output the data type of
the age variable:

Prompt for an age
age = input("How old are you? ")

Print the age variable data type
print(f"The data type of age is {type(age)}")

age_next_year = int(age) + 1
print(f"Next year, you'll be {age_next_year}!")

Here’s a sample output from this code:

How old are you? 29
The data type of age is <class 'str'>

Next year, you'll be 30!

4.	 Use print() to locate errors.

Another good use of print() statements for debugging is when your Python
code fails, but you don’t get an error message. Now you have no idea where
the problem lies, so what’s a developer to do? You can gradually narrow down
where the error occurs by adding a print() statement to your code that
outputs a message like Made it this far!. If you see that message, you
move the print() statement a little further down the code, repeating this
procedure until you don’t see the message, meaning the code failed before
getting to the print() statement.

Don’t worry about “cluttering” your code with a bunch of print() statements;
you can delete them after you’ve squashed the bug.

Example: Cat Fact Cards
Here’s a fun little example (chapter08/example17.py) that combines OOP, APIs,
and handling errors in one program that creates, for each of three cats, a card with
a random cat-related fact from the Cat Fact API:

CHAPTER 8 Expanding Your Python Skills 177

Bring in requests for API calls
import requests

Define the CatFactCard class
class CatFactCard:

 # Initializer
 def __init__(self, name):
 self.name = name
 self.fact = self.get_fact()

 # Get a random cat fact
 def get_fact(self):

 # Store the Cat Facts API URL
 url = "https://catfact.ninja/fact"

 # Try to get a fact from the API
 try:
 response = requests.get(url)

 # Check for an error
 response.raise_for_status()

 # If we're good, get the response
 data = response.json()

 # Send back the returned cat fact
 return data['fact']

 # Did an error occur?
 except:
 # If so, send back a message
 return "Sorry, couldn't fetch a fact right now."

 # Display the card's data
 def show(self):
 print(f"{self.name} says:")
 print(f"\"{self.fact}\"")
 print()

Create some cat fact cards
cat1_card = CatFactCard("Whiskers")

178 PART 2 Learning Python: The Beginner-Friendly Language

cat2_card = CatFactCard("Peanuts")
cat3_card = CatFactCard("Slyvester")

Display the cards
cat1_card.show()
cat2_card.show()
cat3_card.show()

Here’s a sample output:

Whiskers says:
"A group of cats is called a clowder."

Peanuts says:
"A cat's nose pad is ridged with a unique pattern, just like the

fingerprint of a human."

Slyvester says:
"Neutering a cat extends its life span by two or three years."

If you happen to get the same fact more than once, don’t worry about it because
that’s just how this API works sometimes. You could say it’s like herding cats!

CHAPTER 9 Building Some Useful Python Projects 179

Chapter 9
Building Some Useful
Python Projects

Not only is example the best way to teach, it is the only way.
—ALBERT SCHWEITZER

The best way to learn coding is to be exposed to tons of small examples that
illustrate whatever new programming concept is being introduced, type
that code yourself (to get that “fingertip feeling” I mention in the

Introduction), run it, and then play around with it to get a feel for how things
work. Ideally, these small code snippets should be what I like to call “maximally
trivial.” That is, the code does more than just print “Hello, World!,” but not so
much that the underlying programming concept gets lost.

But there comes a time in every new coder’s education when those training wheels
need to come off so you can tackle something significant. That’s what this chapter
is all about. My assumption is that you know the fundamentals of Python and all
about data structures, loops and conditionals, and files and modules. With that
knowledge in your head, this chapter expands your coding horizons with two lar-
geish projects that you build from scratch: an anagram guessing game and a text
analysis app. Both scripts are well over 100 statements long, so these will be by far
the biggest projects you’ve worked on so far. But I wouldn’t have come up with
these projects if I didn’t think you could handle them, so let’s get coding!

IN THIS CHAPTER

	» Opening, reading, and massaging
project data files

	» Handling user input

	» Cleaning data for analysis

	» Analyzing words and sentences

	» Analyzing text sentiment

180 PART 2 Learning Python: The Beginner-Friendly Language

Project 1: Anagram Guessing Game
The first project is a game called Guessagram, where you’re given a randomly
selected word and your mission is to find as many anagrams of that word as you
can. Which of your shiny, new Python skills will you use? Quite a few:

	» Reading data from a file and catching errors

	» Working with lists and dictionaries

	» Filtering with list comprehensions

	» Making random selections

	» Building a game loop using while

	» Working with strings

	» Interacting with users using input()

	» Keeping score and giving hints

The next few sections take you through the major sections of the code, so you can
follow along and build your own version of the game.

Loading a list of words from a CSV file
The game data comes from a CSV file named word_list.csv, which has four col-
umns of data:

	» Word: A list of English words, in uppercase, from AAH to ZYGOTES. Over
65,000 words are in the full list.

	» Alpha: The letters from the Word column arranged alphabetically. This format
is useful in anagram coding because when two or more words are anagrams
of each other, they’ll have identical alphabetical letter arrangements. For
example, the words DESPAIR, DIAPERS, and PRAISED are anagrams, and the
Alpha value for each is ADEIPRS.

	» Rank: A number from 1 to 4, where the higher the number, the less
common the word. This ranking comes from the Corpus of Contemporary
American Usage.

	» AnagramCount: The number of anagrams each word has in the list.

CHAPTER 9 Building Some Useful Python Projects 181

Here’s a sample from word_list.csv:

Word,Alpha,Rank,AnagramCount
AAH,AAH,3,1
AAHED,AADEH,3,1
AAHING,AAGHIN,3,0
AAHS,AAHS,3,0
AARDVARK,AAADKRRV,3,0

To read this data into the game, you import a module named csv, which offers
methods for reading from and writing to CSV files:

import csv

Now you need to define a function to load the CSV data:

def load_words(path):

 try:

 with open(path, newline='') as csv_file:

 except FileNotFoundError:

 print(f"Whoops! The file {path} wasn't found!")

 print("Make sure it's in the same folder as this script.")

 sys.exit()

The load_words() function takes the location (path) of the CSV file and, in a try
block, runs open() to open the file in read mode (not specified here because it’s
the default mode). The newline='' argument tells the csv library to handle line
endings on its own, which you should always do with CSV files.

If the file specified by the path argument wasn’t found, a FileNotFoundError is
raised and the code jumps to the except block, where it displays a message and
exits the program using sys.exit() (which comes from the sys module that the
program imports at the top of the code).

Assuming no error was raised, now the code can read the CSV data:

reader = csv.DictReader(csv_file)

This statement uses the DictReader() method, which reads the CSV data into a
collection of Python dictionaries, where each dictionary represents a row in the

182 PART 2 Learning Python: The Beginner-Friendly Language

CSV file with the items in the CSV header as the dictionary keys. Here’s a partial
look at that collection:

{'Word': 'AAH', 'Alpha': 'AAH', 'Rank': '3', 'AnagramCount': '1'}

{'Word': 'AAHED', 'Alpha': 'AADEH', 'Rank': '3', 'AnagramCount': '1'}

{'Word': 'AAHING', 'Alpha': 'AAGHIN', 'Rank': '3', 'AnagramCount': '0'}

{'Word': 'AAHS', 'Alpha': 'AAHS', 'Rank': '3', 'AnagramCount': '0'}

{'Word': 'AARDVARK', 'Alpha': 'AAADKRRV', 'Rank': '3', 'AnagramCount': '0'}

Now you could leave things here and work with every word, but that doesn’t suit
the purposes of our game. In fact, it would be best to filter the complete list to
exclude the following:

	» Words that are too short (less than 4 letters)

	» Words that are too long (more than 10 letters)

	» Words that are too obscure (Rank = 4)

Filtering the collection sounds like a job for a list comprehension:

words = [row for row in reader
 if len(row['Word']) >= 4
 and len(row['Word']) <= 10
 and row['Rank'] != '4']

With that done, the code can then return the words list and move on. Here’s what
we have so far:

import sys

import csv

def load_words(path):

 try:

 with open(path, newline='') as csv_file:

 reader = csv.DictReader(csv_file)

 words = [row for row in reader

 if len(row['Word']) >= 4

 and len(row['Word']) <= 10

 and row['Rank'] != '4']

 return words

CHAPTER 9 Building Some Useful Python Projects 183

 except FileNotFoundError:

 print(f"Whoops! The file {path} wasn't found!")

 print("Make sure it's in the same folder as this script.")

 sys.exit()

words = load_words('word_list.csv')

Finding anagrams
Later, after the game chooses a random word from the filtered word list (check out
“Getting a random word and its anagram,” a bit later), the code needs to deter-
mine all the anagrams of that word. Since finding anagrams happens frequently,
it makes sense to plop that code in its own function:

def find_anagrams(word, word_list):

Here, word is the word to be anagrammed and word_list is the filtered list of
words returned by the load_words() function in the preceding section.

Recall that any two anagrams will have identical alphabetic orderings of their let-
ters, so the first thing the find_anagrams() function needs to do is sort the letters
of the word argument:

sorted_word = ''.join(sorted(word.upper()))

Here, sorted() is a Python function that returns a sorted list of the items in
whatever iterable it was passed, such as a string in this case. (The words in the
CSV are all uppercase, so that’s why the preceding statement uses word.upper().).
The code needs a word, not a list, so the join() method combines the sorted
letters, which are stored in the sorted_word variable.

Grabbing all the anagrams is straightforward; we search the word_list collection
for items where the Alpha key value is the same as the sorted_word value. Once
again, a list comprehension does it in a single statement:

anagrams = [w['Word'] for w in word_list
 if w['Alpha'] == sorted_word
 and w['Word'] != word]

184 PART 2 Learning Python: The Beginner-Friendly Language

The condition w['Word'] != word is required so that the code doesn’t return
the word as its own anagram. Here’s the complete find_anagrams() function:

def find_anagrams(word, word_list):

 sorted_word = ''.join(sorted(word.upper()))

 anagrams = [w['Word'] for w in word_list
 if w['Alpha'] == sorted_word
 and w['Word'] != word]

 return anagrams

Displaying a welcome message
A well-designed game keeps the user in mind at all times, starting right at the
beginning, when the game should welcome the user and provide information they
may need to play the game.

Here’s the welcome message for Guessagram:

print("\n==============================")

print(" Welcome to Guessagram!")

print("==============================")

print("Your mission, should you choose to accept it, "

 "is to find all the anagrams of a random word.")

print("Some are easy. Some...not so much. Think you're up for the challenge?")

print("Type 'HINT' for a hint, or 'QUIT' to give up (no judgement...maybe).")

print("Let's twist some letters!\n")

Setting up the game loop
A common game structure is to set up an endless loop that runs through one
iteration of the game and then asks the user if they want to continue. If they want
to keep going, the loop runs another iteration of the game; if they’re done, the
loop ends and the program quits.

Here’s some code to implement the endless game loop for Guessagram:

while True:

 # The game code for each iteration will go here

CHAPTER 9 Building Some Useful Python Projects 185

 # Ask the user if they want to play again

 again = input("Do you want to play again? (y/n): ").strip().lower()

 # If the user doesn't want to play again, exit the game

 if again != 'y':

 print("\nOkay, see you. Thanks for playing!")

 break

An input() function asks the user if they want to play again and prompts them to
press y or n. Then an if statement checks the input: If it was anything other than
y, a break statement ends the game’s main while loop.

METHOD CHAINING
Take a closer look at the following statement:

again = input("Do you want to play again? (y/n): ").strip().lower()

Note that the end of the statement calls two methods: strip() and lower().
When a statement includes one method after another, it’s called method chaining.
In this example, the input() function returns a string object, which is then used as
the object for the strip() method (which removes any whitespace characters from
the beginning and end of the input text). That method also returns a string object,
which is then used as the object for the lower() method (which converts the
stripped input to lowercase).

That is, this one statement:

again = input("Do you want to play again? (y/n): ").strip().lower()

is the same as these three statements:

again = input("Do you want to play again? (y/n): ")
again = again.strip()
again = again.lower()

Condensing three statements into one concise statement is very Pythonic (although
method chaining isn’t exclusive to Python; you can do it with JavaScript, too, for
example).

186 PART 2 Learning Python: The Beginner-Friendly Language

Getting a random word and its anagrams
The first thing the game needs to do once it enters the main game loop is grab a
random word from the list of words. A Python library called random is a perfect
choice because it includes a method called choice() that returns a random ele-
ment from a collection, such as a list. So, at the top of the program, be sure to
import that module:

import random

The code shouldn’t just pick out any old word because some words don’t have any
anagrams or have just a trivial number of them (one or two). So, the code needs to
use a list comprehension to filter the word list to include only those words where
the AnagramCount column is at least 3:

random_word = random.choice([word['Word'] for word in words

 if int(word['AnagramCount']) >= 3])

With the word in hand, the code can determine its anagrams:

anagrams = find_anagrams(random_word, words)

Finally, we tell the user what the word is and how many anagrams they have to find:

print(f"\nFind {len(anagrams)} anagrams of the word "
 f"'{random_word.upper()}':\n")

Tracking user data
Any game worthy of the description will track one or more bits of data about the
user, such as their current score or current level. For Guessagram, two pieces of
user data seem appropriate: the correct anagram guesses and the total number of
guesses they’ve made so far.

The main loop next initializes two variables to store this data:

Initialize an empty list to store the guessed anagrams
guessed = []

Track the number of guesses
guesses = 0

CHAPTER 9 Building Some Useful Python Projects 187

Looping a single round
The main while loop is for the overall game, but within that loop the user can play
multiple rounds, so the game needs an inner loop to handle a single round. That
loop will run until one of the following happens:

	» The user guesses all the anagrams for the random word.

	» The user quits the round.

To determine whether the user has guessed all the anagrams, the code compares
the number of items in the user’s guessed list with the number of items in the
anagrams list:

while len(guessed) < len(anagrams):
 remaining = len(anagrams) – len(guessed)

Each time through this loop, the code calculates how many anagrams the user has
left to find and stores that value in the remaining variable.

Handling user input
Now the code is ready to start handling the user’s anagram guesses. This game
offers two other input options to the user:

	» Type hint to see the first letter of one of the unfound anagrams.

	» Type quit to end this round without finding all the anagrams.

Here’s the input() function with a prompt that also uses the remaining value to
tell the user how many anagrams they have left to find:

guess = input(f"Enter your guess ({remaining} left to find): ").strip().upper()

Increment the number of guesses

if guess != "HINT" and guess != "QUIT":

 guesses += 1

This code also increments the guesses value when the input isn’t HINT or QUIT.

188 PART 2 Learning Python: The Beginner-Friendly Language

Now the code needs to handle all the input possibilities using a series of if, elif,
and else statements:

Has the user already guessed this word?

if guess in guessed:

 print("\nYou already guessed that one!\n")

Did the user guess an anagram?

elif guess in [a.upper() for a in anagrams]:

 # If so, add it to the list of guessed anagrams

 guessed.append(guess)

 print("\nYes! Good one!\n")

Does the user want a hint?

elif guess == "HINT":

 # Loop through the anagrams

 for a in anagrams:

 # If the anagram hasn't been guessed yet

 if a.upper() not in guessed:

 # Print the anagram's first letter as a hint

 print(f"\nPsst. One of the remaining anagrams starts with "

 f"{a[0].upper()}.\n")

 break

Does the user want to quit?

elif guess.upper() == "QUIT":

 # If so, print a message and break out of the loop

 print("\nOkay, thanks for playing!\n")

 break

If we get this far, the guess was not an anagram

else:

 print("\nNope, sorry. Please try again.\n")

Print the user's found anagrams (if any)

if len(guessed) > 0:

 print("So far, you've found:")

 print(", ".join(guessed) + "\n")

This inner while loop finishes by printing the user’s found anagrams (if there are
any to print, that is).

CHAPTER 9 Building Some Useful Python Projects 189

Completing a round
Once the user has finished a round (by guessing all the anagrams or by typing
quit at the prompt), the game needs to offer a summary of the round:

Check if the user found all the anagrams

if len(guessed) == len(anagrams):

 print(f"Great job! You found all {len(anagrams)} anagrams in "

 f"{guesses} guesses!\n")

 print("You are now officially an Anagram Wizard.\n")

else:

 print("Guessagram wins this round. Better luck next time!\n")

 # Print the list of anagrams

 print("The anagrams were:")

 print(", ".join(anagrams) + "\n")

If the user’s guessed list and the anagrams list contain the same number of items,
the user found every anagram, so a congratulatory message is displayed. Other-
wise, a consolatory message appears and the list of anagrams is printed.

The full code
Here’s the full code for Guessagram (chapter09/project01.py):

Import some libraries

import sys

import csv

import random

Function to load words from a CSV file.

It returns a list of dictionaries with the filtered words

def load_words(path):

 # Open the CSV file

 try:

 with open(path, newline='') as csv_file:

 # Read the CSV file into a dictionary

 # The keys are the column names and

 # the values are the cell values

 reader = csv.DictReader(csv_file)

 # Filter the words based on the criteria

 # This list comprehension filters out words that are

190 PART 2 Learning Python: The Beginner-Friendly Language

 # * Too short (less than 4 letters)

 # * Too long (more than 10 letters)

 # * Too obscure (Rank = 4)

 words = [row for row in reader

 if len(row['Word']) >= 4

 and len(row['Word']) <= 10

 and row['Rank'] != '4']

 # Return the list of word dictionaries

 return words

 except FileNotFoundError:

 print(f"Whoops! The file {path} wasn't found!")

 print("Make sure it's in the same folder as this script.")

 sys.exit()

Get the list of words from the CSV file

The file should be in the same directory as this script

words = load_words('word_list.csv')

Function to find anagrams of a word from a list of words

def find_anagrams(word, word_list):

 # Sort the letters of the word alphabetically

 sorted_word = ''.join(sorted(word.upper()))

 # The anagrams are all the words in the word list where

 # the Alpha key is the same as the word's sorted letters

 # The list comprehension also filters out the original word

 anagrams = [w['Word'] for w in word_list

 if w['Alpha'] == sorted_word

 and w['Word'] != word]

 # Return the list of anagrams

 return anagrams

Print the welcome message

print("\n==============================")

print(" Welcome to Guessagram!")

print("==============================")

print("Your mission, should you choose to accept it, "

 "is to find all the anagrams of a random word.")

print("Some are easy. Some...not so much. Think you're up for the challenge?")

print("Type 'HINT' for a hint, or 'QUIT' to give up (no judgement...maybe).")

print("Let's twist some letters!\n")

CHAPTER 9 Building Some Useful Python Projects 191

Run the main game loop

The game continues until the user decides to quit

while True:

 # Get a random word

 # The word must have at least 3 anagrams

 random_word = random.choice([word['Word'] for word in words

 if int(word['AnagramCount']) >= 3])

 # Find the anagrams of the random word

 anagrams = find_anagrams(random_word, words)

 # Print the word and the number of anagrams

 print(f"\nFind {len(anagrams)} anagrams of the word "

 f"'{random_word.upper()}':\n")

 # Initialize an empty list to store the guessed anagrams

 guessed = []

 # Track the number of guesses

 guesses = 0

 # Loop until all anagrams are guessed or the user quits

 while len(guessed) < len(anagrams):

 # Calculate the number of remaining anagrams

 remaining = len(anagrams) - len(guessed)

 # Prompt the user for a guess. The user can

 # enter a word, ask for a hint, or quit the game

 guess = �input(f"Enter your guess ({remaining} left to find): ").

strip().upper()

 # Increment the number of guesses

 if guess != "HINT" and guess != "QUIT":

 guesses += 1

 # Has the user already guessed this word?

 if guess in guessed:

 print("\nYou already guessed that one!\n")

 # Did the user guess an anagram?

 elif guess in [a.upper() for a in anagrams]:

192 PART 2 Learning Python: The Beginner-Friendly Language

 # If so, add it to the list of guessed anagrams

 guessed.append(guess)

 print("\nYes! Good one!\n")

 # Does the user want a hint?

 elif guess == "HINT":

 # Loop through the anagrams

 for a in anagrams:

 # If the anagram hasn't been guessed yet

 if a.upper() not in guessed:

 # Print the anagram's first letter as a hint

 print(f"\nPsst. One of the remaining anagrams starts with "

 f"{a[0].upper()}.\n")

 break

 # Does the user want to quit?

 elif guess == "QUIT":

 # If so, print a message and break out of the loop

 print("\nOkay, thanks for playing!\n")

 break

 # If we get this far, the guess was not an anagram

 else:

 print("\nNope, sorry. Please try again.\n")

 # Print the user's found anagrams (if any)

 if len(guessed) > 0:

 print("So far, you've found:")

 print(", ".join(guessed) + "\n")

 # Check if the user found all the anagrams

 if len(guessed) == len(anagrams):

 print(f"Great job! You found all {len(anagrams)} anagrams in "

 f"{guesses} guesses!\n")

 print("You are now officially an Anagram Wizard.\n")

 else:

 print("Guessagram wins this round. Better luck next time!\n")

 # Print the list of anagrams

 print("The anagrams were:")

 print(", ".join(anagrams) + "\n")

CHAPTER 9 Building Some Useful Python Projects 193

 # Ask the user if they want to play again.

 again = input("Do you want to play again? (y/n): ").strip().lower()

 # If the user doesn't want to play again, exit the game

 if again != 'y':

 print("\nOkay, see you. Thanks for playing!\n")

 break

Project 2: Text Analyzer
One of Python’s strong suits is analyzing text, which can mean finding the words
in an email or essay that are used most often, finding the longest words used in a
document, or determining whether the sentiment of a letter is positive, negative,
or neutral.

In this project, you bring all these text analyses to bear on a fairly large text (a
public domain copy of Alice’s Adventures in Wonderland). Which Python skills will
you need? More than you might think:

	» Importing libraries

	» Opening and reading a text file and catching any errors that occur

	» Using string methods to clean up the text and prepare it for analysis

	» Splitting the words into a list

	» Using a set to get the unique words from the text

	» Sorting dictionaries and sets

	» Looping through lists, dictionaries, and sets

Okay, word nerds, it’s time to get the project started.

Installing and downloading some stuff
You’re going to need some elements from Python’s Natural Language Toolkit
(NLTK) for this project, so first you need to install that library. Crank up a termi-
nal window, exit your Python REPL session if you have one going, and enter the
following command:

pip install nltk

194 PART 2 Learning Python: The Beginner-Friendly Language

On some Macs, you might need to use pip3, instead:

pip3 install nltk

With that done, launch a Python session and run the following commands at the
REPL prompt:

>>> import nltk
>>> nltk.download('stopwords')
>>> nltk.download('punkt')
>>> nltk.download('vader_lexicon')

At some point while entering these commands, you may get a CERTIFICATE_
VERIFY_FAILED error. It’s always something! If this error pops up, get yourself to
a terminal prompt and run the following command:

/Applications/Python\ x.y/Install\ Certificates.command

Replace x.y with the version of Python you’re using, such as 3.15. Restart your
Python session and try the above commands again.

Next, you need to install the Matplotlib library:

pip install matplotlib

Or:

pip3 install matplotlib

Now you’re ready to code! In a new .py file, specify what you need to import into
the project:

import sys
import string
import matplotlib.pyplot as plt
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.sentiment import SentimentIntensityAnalyzer

Over the next few sections, I explain what these libraries do.

CHAPTER 9 Building Some Useful Python Projects 195

Opening and reading the text file
The text to be analyzed is in a file named alice.txt, so the first order of business
is to read that file’s data:

try:
 with open("alice.txt", encoding="utf-8-sig") as file:
 raw_text = file.read()
except FileNotFoundError:
 print("Whoops! The file wasn't found!")
 print("Make sure it's in the same folder as this script.")
 sys.exit()

Within a try/accept block, the open() function opens the file in read mode (not
specified here because it’s the default mode). The encoding="utf-8-sig"
argument is there to make sure the program can read characters such as curly
(versus straight) quotes, em dashes, accented letters, and emojis without
crashing. The file’s data is stored in the raw_text variable.

If the file wasn’t found, the FileNotFoundError is raised and the code jumps to
the except block, where it displays a message and exits the program using sys.
exit() (which comes from the sys module imported at the top of the code).

Cleaning the text
Most of the time, you’ll want to clean up your text so that it can be analyzed prop-
erly. For this project, cleaning the data means just two things:

	» Converting all the text to lowercase so that, say, “rabbit” and “Rabbit” are
treated as the same word. You accomplish this with the lower() method
applied to the text:

clean_text = raw_text.lower()

	» Removing all punctuation from the text so that it doesn’t interfere with
operations such as counting the words.

In just a second, the code will use a loop to remove every punctuation mark by
replacing each punctuation character with an empty string (""). However, using
this approach leads to problems with two characters: the hyphen (-) and the em
dash(—). Just removing hyphens, for example, would mean turning phrases such
as rabbit-hole and tea-party into rabbithole and teaparty.

196 PART 2 Learning Python: The Beginner-Friendly Language

Instead, it’s better to replace these characters with spaces:

clean_text = clean_text.replace("-", " ")
clean_text = clean_text.replace("—", " ")

At the beginning of the project, the string module was imported so that the code
can take advantage of a predefined list of punctuation marks:

string.punctuation

However, that list doesn’t include a few common punctuation marks, such as
single and double curly quotes, so the code specifies them directly:

extra_punctuation = '""''...'

Now a loop can run through all the punctuation marks to remove them:

for mark in string.punctuation + extra_punctuation:
 clean_text = clean_text.replace(mark, "")

Finding the most common words
A useful text analysis is to display a list of the words that appear in the text most
frequently. This can tell you if you’re overusing a particular word, for example, or
if a word you want to emphasize in the text appears often enough.

The task of finding the most frequently used words begins by splitting the text
into a list of individual words:

words = clean_text.split()

Now create a dictionary to count the occurrences of each word:

word_counts = {}

It’s important at this point to decide whether you want your analysis to include
filler words such as the, and, to, and a. In the text analysis industry, such words are
known as stop words. This project assumes you don’t want to include those words,
which is why earlier in the code we imported the stopwords list from
the nltk library. Your code now needs to store that list in a set:

stop_words = set(stopwords.words("english"))

CHAPTER 9 Building Some Useful Python Projects 197

Now you’re ready to loop through the list of words:

for word in words:

 # If the word is a stop word, don't count it

 if word in stop_words:

 continue

 # Has the word already come up?

 if word in word_counts:

 # If so, increment its count

 word_counts[word] += 1
 else:

 # If not, add it to the dictionary with a count of 1

 word_counts[word] = 1

This loop first checks to see if the word is a stop word; if it is, a continue
statement skips the rest of the loop. If it’s not a stop word, the loop checks to see
if the word is already in the dictionary. If it is, the word’s count is incremented;
otherwise, the word is added to the dictionary and its count is set to 1.

With the loop complete, the word_counts dictionary now contains a count for each
word, where each key is a word and each value is the count for that word.
Here’s a sample:

{
'alices': 13,
'adventures': 7,
'wonderland': 3,
'rabbit': 49,
'hole': 6,
'pool': 12,
'tears': 12,
...
}

Now the code needs to sort the dictionary by descending order of word
frequency:

sorted_words = sorted(word_counts.items(), key=lambda item: item[1],

reverse= True)

198 PART 2 Learning Python: The Beginner-Friendly Language

Okay, there’s a lot going on here, so let me unpack it for you:

	» sorted(): Sorts iterables such as lists and dictionaries.

	» word_counts.items(): Turns the dictionary into a list of (word, count)
tuples. Here’s a taste:

[('alices', 13), ('adventures', 7), ('wonderland', 3),...]

	» key=lambda item: item[1]: Tells Python what data to use for the sort. Each
item is a tuple, such as (alices, 13). The code item[1] grabs the number
part (13), so the word count values are used for the sort.

	» reverse=True: Sorts from highest to lowest.

What’s up with the lambda keyword in the second sorted() argument? Believe it
or not, it’s a function! A lambda function is a short, one-line, anonymous func-
tion. So, this:

lambda item: item[1]

is basically the same as this:

def get_value(item):
 return item[1]

But instead of writing a whole def block, Python lets you use lambda when all you
need is a quick, simple function, which is particularly useful when sorting or
filtering.

Okay, now the code is ready to print the ten most common words:

print("The 10 most common words in the text are:")
for word, count in sorted_words[:10]:
 print(f"{word}: {count}")

In the for loop, sorted_words[:10] means “everything from the start of the list
up to, but not including, the item with index 10.”

Here’s the output:

The 10 most common words in the text are:
said: 462
alice: 386
little: 129
one: 103
know: 87

CHAPTER 9 Building Some Useful Python Projects 199

like: 85
would: 83
went: 83
could: 77
thought: 74

Interesting!

Finding the longest words
The next text analysis trick is to print a list of the longest words in the text. This
technique is useful for an essay or a post to let you know if you’re using too many
(or not enough!) big words.

The analysis begins by getting the set of the unique words in the text:

unique_words = set(words)

Here you see where converting a dictionary into a set is super helpful. Since a set
can contain only unique items, the code simply has to run set(words) and you’ve
got your unique words, just like that.

Next you sort that set based on the length of each word, from largest to smallest:

longest_words = sorted(unique_words, key=len, reverse=True)

Now all that’s left is to print the top ten:

print("Top 10 longest words:")
for word in longest_words[:10]:
 print(f"{word} is {len(word)} characters long.")

Here’s the output:

Top 10 longest words:
multiplication is 14 characters long.
contemptuously is 14 characters long.
disappointment is 14 characters long.
affectionately is 14 characters long.
inquisitively is 13 characters long.
straightening is 13 characters long.
circumstances is 13 characters long.
conversations is 13 characters long.
extraordinary is 13 characters long.
uncomfortable is 13 characters long.

200 PART 2 Learning Python: The Beginner-Friendly Language

Analyzing sentence lengths
One of the keys to strong writing is to monitor the lengths of your sentences:

	» Too many short sentences may mean your text is pitched at too low a level
(depending on your target audience, of course).

	» Too many long sentences may mean your text is pitched at too high a level
(again, taking into account your typical reader).

	» Too many sentences of approximately the same length may mean your text
lacks the variety that provides for a good text flow.

Okay, it’s time to whip up some code to analyze sentence lengths and even display
a graph that shows the distribution of the lengths!

First up, you need to break the text into sentences using NLTK’s sent_tokenize()
function. However, that function doesn’t do well with sentences that end with a
period followed by a curly quote. So, just in case your text has such a combination,
it’s best to first clean the raw text to replace curly quotes with straight quotes:

raw_text = raw_text.replace(""", '"').replace(""", '"')
raw_text = raw_text.replace("'", "'").replace("'", "'")

Okay, now the raw text is ready for the sent_tokenize() function:

sentences = sent_tokenize(raw_text)

Note that I used raw_text for tokenizing sentences. You can’t use the cleaned ver-
sion of the text for the sentence tokenizing because that text has been scrubbed of
sentence-ending punctuation such as periods, question marks, and exclama-
tion points.

Now you can use a list comprehension to store the length of each sentence, in
words, using NLTK’s word_tokenize() function:

sentence_lengths = [len(word_tokenize(sentence)) for sentence in
sentences]

Alright, it’s time to do some honest-to-goodness sentence analysis, specifically
the number of sentences, the shortest sentence, the longest sentence, and the
average sentence length:

total_sentences = len(sentences)
shortest_sentence = min(sentence_lengths)
longest_sentence = max(sentence_lengths)

CHAPTER 9 Building Some Useful Python Projects 201

average_sentence = sum(sentence_lengths) / total_sentences

Display the results
print(f"Number of sentences: {total_sentences}")
print(f"Shortest sentence: {shortest_sentence} words")
print(f"Longest sentence: {longest_sentence} words")
print(f"Average length: {average_sentence:.1f} words")

Here’s a sample output:

Number of sentences: 1624
Shortest sentence: 2 words
Longest sentence: 202 words
Average length: 21.00 words

Wow: a 202-word sentence!

In general, here, you want to look out for super-long sentences, which might be
due either to a mistake (you typed, say, a comma instead of a period) or to your
words getting away from you. The average sentence length is useful, as well:

	» Short sentences (average words: 5–15): Easier to read and understand, so
are best used for casual writing or text aimed at children. Shorter sentences
also suggest clarity and conciseness, so they’re a good choice for how-to
manuals and other teaching materials.

	» Medium length sentences (average words: 15–25): Provide a balance
between clarity and complexity, so are often found in general non-fiction,
journalism, and web writing.

	» Long sentences (average words: 25 and up): An indication of complexity, so
are typical in academic texts, legal documents, and classic literature. However,
long sentences can also be the hallmark of verbosity. They’re also harder to
parse, which can affect readability.

That’s pretty good, but now it’s time to raise the text analysis game to a higher
level by plotting the sentence lengths on a graph. To do that, the code uses a
library called Matplotlib, which offers rich tools for visualizing data in Python.

Recall the following from the top of this project:

import matplotlib.pyplot as plt

This statement imports Matplotlib’s pyplot() function (under the alias plt),
which is used for creating static, interactive, and animated visualizations, par-
ticularly 2D plots like line graphs, bar charts, and scatter plots.

202 PART 2 Learning Python: The Beginner-Friendly Language

For this project, a histogram chart will do the job nicely, so let’s use pyplot() to
build a histogram from the sentence_lengths list, using 30 bins (in a histogram,
a bin is a range of values used to group data points):

plt.hist(sentence_lengths, bins=30, edgecolor='black')

Toss in a title and some axis labels:

plt.title("Sentence Lengths in Words")
plt.xlabel("Words per sentence")
plt.ylabel("Number of sentences")

Then display the graph:

plt.show()

Figure 9-1 shows the graphs that appears for this project’s sample data.

Analyzing text sentiment
One of the most interesting ways you can analyze text is to determine its overall
sentiment, which refers to the emotional tone or attitude expressed in the text.
Sentiment analysis is a way of identifying and categorizing the subjective infor-
mation embedded in written language.

FIGURE 9-1:
A histogram of

sentence lengths
generated by

Matplotlib’s
pyplot()

function.

CHAPTER 9 Building Some Useful Python Projects 203

Most sentiment analysis identifies three common sentiment categories:

	» Positive: The text shows approval, happiness, or praise (for example, “The
movie was amazing!” or “I’m finding this book about coding super helpful!”).

	» Negative: The text indicates disapproval, anger, or criticism (for example,
“The service was terrible!” or “Naked handball was the worst experience of
my life!”).

	» Neutral: The text is generally factual, objective, or without emotional tone (for
example, “The meeting starts at 3 PM.” or “That kumquat was only so-so.”).

Several approaches to detecting the sentiment of text exist, but perhaps the most
straightforward is lexicon-based, which uses a predefined dictionary of words (a
lexicon) in which each word is associated with a sentiment score. If the words in a
text are mostly positive, the sentiment is probably positive, and the same goes
with negative and neutral words.

NLTK offers a lexicon-based sentiment analysis tool called VADER (Valence Aware
Dictionary and sEntiment Reasoner), which you downloaded at the beginning of
this project. You import it into your Python code with the following statement:

from nltk.sentiment import SentimentIntensityAnalyzer

Using VADER for a basic sentiment analysis requires just two statements:

analyzer = SentimentIntensityAnalyzer()
scores = analyzer.polarity_scores(raw_text)

Then you print the results:

print("Sentiment scores:")
print(scores)

Here’s the output from the sample text:

Sentiment scores:

{'neg': 0.086, 'neu': 0.821, 'pos': 0.093, 'compound': 0.9998}

Here’s what each part means:

	» neg: How much of the text is negative in tone

	» neu: How much is neutral

204 PART 2 Learning Python: The Beginner-Friendly Language

	» pos: How much is positive

The three values neg, neu, and pos are proportions of the total, so they add
up to 1.0 (or very close to it, depending on rounding errors).

	» compound: The overall sentiment score, squished into a single number
from -1 to +1. Here’s how you interpret this score:

•	 > 0.05: Positive overall sentiment; the higher the value, the more positive
the sentiment

•	 < -0.05: Negative overall sentiment; the lower the value, the more negative
the sentiment

•	 -0.05 to 0.05: Neutral or mixed sentiment

Just for fun, I wrote a short Python script (chapter09/example01.py) where you
type some text and the program analyzes the sentiment.

The full code
Here’s the full code for the text analysis project (chapter09/project02.py):

Import all the things

import sys

import string

import matplotlib.pyplot as plt

from nltk.corpus import stopwords

from nltk.tokenize import sent_tokenize, word_tokenize

from nltk.sentiment import SentimentIntensityAnalyzer

Open and read the text file

try:

 with open("alice.txt", encoding="utf-8-sig") as file:

 raw_text = file.read()

except FileNotFoundError:

 print("Whoops! The file wasn't found!")

 print("Make sure it's in the same folder as this script.")

 sys.exit()

Make everything lowercase

clean_text = raw_text.lower()

Replace hyphens and em dashes with spaces

clean_text = clean_text.replace("-", " ")

clean_text = clean_text.replace("—", " ")

CHAPTER 9 Building Some Useful Python Projects 205

Define extra punctuation to remove (e.g., curly quotes)

extra_punctuation = '""''...'

Remove punctuation marks such as commas and periods

for mark in string.punctuation + extra_punctuation:
 clean_text = clean_text.replace(mark, "")

Split the text into a list of individual words

words = clean_text.split()

Create a dictionary to count the occurrences of each word

word_counts = {}

Store all the stop words

stop_words = set(stopwords.words("english"))

Loop through the list of words

for word in words:

 # If the word is a stop word, don’t count it

 if word in stop_words:

 continue

 # Has the word already come up?

 if word in word_counts:

 # If so, increment its count

 word_counts[word] += 1
 else:

 # If not, add it to the dictionary with a count of 1

 word_counts[word] = 1

Sort the dictionary by word count (highest first)

sorted_words = sorted(word_counts.items(),

 key=lambda item: item[1],

 reverse= True)

Print the 10 most common words

print("The 10 most common words in the text are:")

for word, count in sorted_words[:10]:

 print(f"{word}: {count}")

Get a list of unique words

unique_words = set(words)

Sort the unique words by length (longest first)

longest_words = sorted(unique_words, key=len, reverse=True)

206 PART 2 Learning Python: The Beginner-Friendly Language

Print the 10 longest words

print("Top 10 longest words:")

for word in longest_words[:10]:

 print(f"{word} is {len(word)} characters long.")

Replace curly quotes with regular quotes

raw_text = raw_text.replace(""", '"').replace(""", '"')

raw_text = raw_text.replace("'", "'").replace("'", "'")

Break the text into sentences

sentences = sent_tokenize(raw_text)

Determine the length of each sentence, in words

sentence_lengths = [len(word_tokenize(sentence)) for sentence in sentences]

Now get some basic stats

total_sentences = len(sentences)

shortest_sentence = min(sentence_lengths)

longest_sentence = max(sentence_lengths)

average_sentence = sum(sentence_lengths) / total_sentences

Display the results

print(f"Number of sentences: {total_sentences}")

print(f"Shortest sentence: {shortest_sentence} words")

print(f"Longest sentence: {longest_sentence} words")

print(f"Average length: {average_sentence:.2f} words")

Plot the sentence lengths on a graph

plt.hist(sentence_lengths, bins=30, edgecolor='black')

plt.title("Sentence Lengths in Words")

plt.xlabel("Words per sentence")

plt.ylabel("Number of sentences")

plt.show()

Get a reference to VADER

analyzer = SentimentIntensityAnalyzer()

Run a sentiment analysis on the raw text

scores = analyzer.polarity_scores(raw_text)

Print the sentiment scores

print("Sentiment scores:")

print(scores)

3Learning
JavaScript: The
Language
of the Web

IN THIS PART . . .

Learn the basics of JavaScript.

Master variables, loops, and functions.

Wield strings, dates, and arrays like a pro.

Use JavaScript to make dynamic web pages.

Debug your JavaScript apps.

Code some JavaScript projects.

CHAPTER 10 Getting Your Feet Wet with JavaScript 209

Chapter 10
Getting Your Feet Wet
with JavaScript

JavaScript is the duct tape of the internet.
—CHARLIE CAMPBELL

When many people hear the word coding these days, their thoughts auto-
matically do one of two things: Shut down completely until the threat
goes away, or fantasize about building amazing web pages. Web pages?

Yep. Even though the technologies that underly all web pages — HTML and CSS —
don’t technically qualify as programming languages, to many people that’s nerdy
nitpicking. (Hey, who’re you calling a nerd!?) They just want to get a presence on
the web without resorting to lame, one-size-fits-no-one templates.

Alas, I don’t focus on HTML and CSS in this book (although I do offer a taste of
these technologies in Chapter 17). But if you already have a basic web page built
and want to do some real coding, have I got a language for you! JavaScript is the
default coding language of the web and is available in all web browsers, free of
charge. Anybody can use HTML and CSS to cobble together a standard-issue page,
but if you want to craft dynamic, interactive pages (of course you do!), welcome to
JavaScript world.

IN THIS CHAPTER

	» Understanding what JavaScript does
for a living

	» Learning the tools you need to
get coding

	» Adding JavaScript code to a web page

	» Getting acquainted with the
all-important Console

210 PART 3 Learning JavaScript: The Language of the Web

JavaScript: Controlling the Machine
When a web browser is confronted with an HTML file, it goes through a simple but
tedious process: It reads the file one line at a time, starting from (usually) the
<html> tag at the top and finishing with the </html> tag at the bottom. Along
the way, it might have to break out of this line-by-line monotony to perform
some action based on what it’s read. For example, if it comes upon an tag,
the browser will immediately ask the web server to ship out a copy of the graphics
file specified in src.

The point here is that, at its core, a web browser is just a page-reading machine
that doesn’t know how to do much of anything else besides follow the instructions
(the markup) in an HTML file. (For convenience, I’m ignoring the browser’s other
capabilities, such as saving bookmarks.)

One of the reasons that many folks get hooked on creating web pages is that they
realize from the beginning that they have control over this page-reading machine.
Slap some text between an tag and its corresponding end
tag, replace url with an address, and the browser dutifully displays the text as a
link. Create a CSS Grid structure and the browser displays your formerly haphaz-
ard text in nice, neat rows and columns, no questions asked. These two examples
show that, instead of just viewing pages from the outside, you now have a key to
get inside the machine and start working its controls. That is the hook that grabs
people and gets them seriously interested in web page design.

Imagine that you could take this idea of controlling the page-reading machine to
the next level. Imagine that, instead of ordering the machine to process mere tags
and text, you could issue much more sophisticated commands that could control
the inner workings of the page-reading machine. Who wouldn’t want that?

Well, that’s the premise behind JavaScript. It’s essentially just a collection of
commands that you can wield to control a web page. Like HTML tags, JavaScript
commands are inserted directly in the web page file. When the browser does its
line-by-line reading of the file and comes across a JavaScript command, it exe-
cutes that command, just like that.

However, the key here is that the amount of control JavaScript gives you over the
page-reading machine is much greater than what you get with HTML tags. The
reason is that JavaScript is a full-fledged programming language. Although the L
in HTML stands for language, there isn’t even the tiniest hint of a programming
language associated with HTML. JavaScript, though, is the real programming deal.

CHAPTER 10 Getting Your Feet Wet with JavaScript 211

What You Need to Get Started
One of the nicest things about building web pages with HTML and CSS is that the
hurdles you have to leap to get started are not only low but few in number. In fact,
you really need only two things, both of which are free: a text editor to enter the
text, tags, and properties and a browser to view the results. (You also need access
to a web server to host the finished pages, but the server isn’t necessary when
you’re creating the pages.) Yes, there are high-end HTML editors and fancy
graphics programs, but these fall into the bells-and-whistles category; you can
create perfectly respectable web pages without them.

The basic requirements for JavaScript programming are the same as for HTML: a
text editor and a browser. Again, programs are available to help you write and test
your scripts, but you don’t need them.

Basic Script Construction
Okay, that’s more than enough theory. It’s time to roll up your sleeves, crack your
knuckles, and start coding. This section describes the standard procedure for con-
structing and testing a script and shows you where to put the script to make it work.

The <script> tag
The basic container for a script is, naturally enough, the HTML <script> tag and
its associated </script> end tag:

<script>
 JavaScript statements go here
</script>

Where do you put the <script> tag?
With certain exceptions, it doesn’t matter a great deal where you put your
<script> tag. Some people place the tag between the page’s </head> and <body>
tags. The HTML standard recommends placing the <script> tag in the page
header (that is, between <head> and </head>), so that’s the style I use in this book:

<!DOCTYPE html>
<html lang="en">
 <head>

212 PART 3 Learning JavaScript: The Language of the Web

 <meta charset="utf-8">
 <title>Where do you put the script tag?</title>
 <script>
 JavaScript statements go here
 </script>
 </head>
 <body>
 </body>
</html>

Here are the exceptions to the put-your-script-anywhere technique:

	» If your script is designed to write data to the page, the <script> tag must be
positioned in the page body (that is, between the <body> and </body> tags) in
the exact position where you want the text to appear.

	» If your script refers to an item on the page (such as a form object), the script
must be placed after that item. In most cases where the script refers to one or
more page objects, coders plop the <script> tag at the bottom of the page
body (that is, just above the </body> tag).

	» With many HTML tags, you can add one or more JavaScript statements as
attributes directly in the tag.

It’s perfectly acceptable to insert multiple <script> tags in a single page, as long
as each one has a corresponding </script> end tag and as long as you don’t put
one <script> block in another one.

Adding Comments to Your Code
As I describe in Chapter 2, to help others decipher your code (or to help you deci-
pher it after you haven’t looked at it for a while), it’s good programming practice
to make liberal use of comments throughout the script. For short, single-line
comments, use the double-slash (//). Put the // at the beginning of the line and
then type in your comment after it. Here’s an example:

// Change the background color of the page

document.body.style.backgroundColor = 'antiquewhite';

You can also use // comments for two or three lines of text by adding // at the
beginning of each line. If you have more lines than that, however, you’re better off

CHAPTER 10 Getting Your Feet Wet with JavaScript 213

using multiple-line comments that begin with the /* symbol and end with the */
symbol. Most JavaScript coders put these comment symbols on separate lines,
begin each comment line with an asterisk, and align the asterisks for maximum
readability. Here’s an example:

/*
 * This script demonstrates JavaScript's capability
 * to change the background color of the web page
 * by setting the backgroundColor property to a
 * color name, hex code, RGB value, or HSL value.
 * This script is copyrighted 2026 Paul McFedries.
 */

Creating External JavaScript Files
Putting a script inside the page header or body isn’t a problem if the script is rela-
tively short. However, if your script takes up dozens or hundreds of lines, your
HTML code can look cluttered. Another problem you might run into is needing to
use the same code on multiple pages. Sure, you can just copy the code to each page
that requires it, but if you make changes down the road, you need to update every
page that uses the code.

The solution to both problems is to move the code out of the HTML file and into
an external JavaScript file. Moving the code reduces the JavaScript presence in the
HTML file to a single line (as you learn shortly) and means that you can update the
code by editing only the external file.

Here are some things to note about using an external JavaScript file:

	» The file must use a plain text format.

	» Use the .js extension when you name the file.

	» Don’t use the <script> tag in the file. Just enter your statements directly.

	» The rules for when the browser executes statements in an external file are
identical to those used for statements in an HTML file. That is, statements
outside functions are executed automatically when the browser comes across
your file reference, and statements in a function aren’t executed until the
function is called.

214 PART 3 Learning JavaScript: The Language of the Web

To let the browser know that an external JavaScript file exists, add the src attri-
bute to the <script> tag. For example, if the external file is named myscripts.js,
you set up your <script> tag as follows:

<script src="myscripts.js">

This example assumes that the myscripts.js file is in the same directory as the
HTML file. If the file resides in a different directory, adjust the src value accord-
ingly. For example, if the myscripts.js file is in a subdirectory named scripts,
you use this:

<script src="scripts/myscripts.js">

You can even specify a file from another site (presumably your own!) by specifying
a full URL as the src value:

<script src="http://www.host.com/myscripts.js">

Getting to Know the Console
All major web browsers come with a sophisticated set of debugging tools that can
make your life as a web developer much easier and much saner. Most web devel-
opers debug their scripts using Google Chrome, so I focus on that browser in this
book. But in this section, I give you an overview of the tools available in all the
major browsers and how to get at them.

Displaying the developer tools
in various browsers
Here’s how you open the web development tools (often shorted to just dev tools by
all the cool kids) in Chrome, Firefox, Microsoft Edge, and Safari:

	» Chrome for Windows: Click the Customize and Control Google Chrome icon
(three vertical dots to the right of the address bar), and then choose More
Tools ➪ Developer Tools. Shortcut: Ctrl+Shift+I.

	» Chrome for Mac: Choose View ➪ Developer ➪ Developer Tools. Shortcut:
Option+⌘  +I.

CHAPTER 10 Getting Your Feet Wet with JavaScript 215

	» Firefox for Windows: Click the open Application menu icon (three horizontal
lines on the far right of the toolbar), and then choose More Tools ➪ Web
Developer Tools. Shortcut: Ctrl+Shift+I.

	» Firefox for Mac: Choose Tools ➪ Browser Tools ➪ Web Developer Tools.
Shortcut: Option+⌘  +I.

	» Microsoft Edge for Windows or Mac: Click the settings and more icon
(the three vertical dots to the right of the address bar), and then choose
More Tools ➪ Developer Tools. Shortcuts: Ctrl+Shift+I (Windows) or
Option+⌘  +I (Mac).

	» Safari: Click Develop ➪ Show Web Inspector. Shortcut: Option+⌘  +I. If you
don’t have the Develop menu, click Safari ➪ Settings, click the Advanced tab,
and then select the Show Features for Web Developers check box.

These development tools vary in the features they offer, but each provides the
same set of basic tools, which are the tools you’ll use most often. These basic web
development tools include the following:

	» HTML viewer: This tab (called Inspector in Firefox and Elements in the other
browsers) shows the HTML source code used in the web page. When you
hover the mouse pointer over a tag, the browser highlights the element in the
displayed page and shows its width and height, as shown in Figure 10-1. When
you click a tag, the browser shows the CSS styles applied with the tag, as well
as the tag’s box dimensions (again, refer to Figure 10-1).

	» Console: This tab enables you to view error messages, log messages, test
expressions, and execute statements. I cover the Console window in more
detail in the next section.

	» Debugging tool: This tab (called Debugger in Firefox and Sources in the other
browsers) enables you to pause code execution, step through your code,
watch the values of variables and properties, and much more. This is the most
important JavaScript debugging tool, so I cover it in detail later in Chapter 14.

	» Network: This tab tells you how long it takes to load each file referenced by
your web page. If you find that your page is slow to load, this tab can help you
find the bottleneck.

216 PART 3 Learning JavaScript: The Language of the Web

Displaying the Console window
in various browsers
If your web page is behaving strangely — for example, the page is blank or miss-
ing elements — you should first check your HTML code to make sure it’s correct.
(Common HTML errors are not finishing a tag with a greater than sign — > — not
including a closing tag, and missing a closing quotation mark for an attribute
value.) If your HTML checks out, there’s a good chance that your JavaScript code
is wonky. How do you know? A trip to the Console window is your first step.

The Console window is an interactive browser window that shows warnings and
errors, displays the output of console.log() statements, and enables you to exe-
cute expressions and statements without having to run your entire script. The
Console window is one of the handiest web browser debugging tools, so you need
to know your way around it.

To display the Console window, open your web browser’s development tools and
then click the Console tab. You can also use the following keyboard shortcuts:

	» Chrome for Windows: Press Ctrl+Shift+J.

	» Chrome for Mac: Press Option+⌘  +J.

	» Firefox for Windows: Press Ctrl+Shift+K.

FIGURE 10-1:
The HTML viewer,
such as Chrome’s

Elements tab,
enables you to

inspect each
element’s styles

and box
dimensions.

CHAPTER 10 Getting Your Feet Wet with JavaScript 217

	» Firefox for Mac: Press Option+⌘  +K.

	» Microsoft Edge for Windows: Press Ctrl+Shift+J.

	» Microsoft Edge for Mac: Press Option+⌘  +J.

	» Safari: Press Option+⌘  +C.

Example: Logging data to the
Console window
The first thing you need to know is that your JavaScript code can use the console.
log() method to output a message to the console. Displaying messages to the
console is one of the most common techniques that developers use when writing
and troubleshooting their code. The simplest method for sending a message to the
console is to invoke console.log with some text:

console.log("message")

Replace message with the text you want to appear in the console. The following
example (chapter10/example02.html in this book’s example files) sends the
message Hello JavaScript World! to the console:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Sending a Message to the Console</title>
 <script>
 console.log("Hello JavaScript World!");
 </script>
 </head>
 <body>
 </body>
</html>

Figure 10-2 shows Chrome’s Console tab with the Hello JavaScript World!
message displayed.

218 PART 3 Learning JavaScript: The Language of the Web

FIGURE 10-2:
A message

displayed in the
Chrome web

browser’s
console.

CHAPTER 11 Getting the Hang of a Few JavaScript Fundamentals 219

Chapter 11
Getting the Hang of
a Few JavaScript
Fundamentals

Always bet on JavaScript.
—BRENDAN EICH (CREATOR OF JAVASCRIPT)

JavaScript is a massive and powerful programming language, a full description
of which would require ten books this size. I’m pretty sure you’d have no
interest in reading all those books even if they did exist, so my challenge here

is to condense all the JavaScript fundamentals down to just a few dozen pages in
this chapter and the next. I’m not going to lie to you: There’s a lot of material to
explore, but once you’re done, you’re going to have such a solid base of JavaScript
know-how in your brain that you’ll be able to code some pretty amazing web apps
even without the slightly more advanced topics that I cover in subsequent chapters.
So, pour yourself a coffee, a tea, something pumpkin-spiced, or whatever is your
go-to energy drink, and let’s get started.

IN THIS CHAPTER

	» Working with variables

	» Controlling code with loops

	» How to use functions

	» Figuring out variable scope

220 PART 3 Learning JavaScript: The Language of the Web

I Do Declare: Variables in JavaScript
To declare a variable in JavaScript, you precede the variable name with either the
let keyword or the const keyword:

let variableName1 = value1;
const variableName2 = value2;

One difference between the two is that the value of a variable declared with let
can be changed, but the value of a variable declared with const (which is short for
constant) can’t be changed.

Older versions of JavaScript declared variables using the obsolete var keyword,
which is still part of the language and is prevalent in many older scripts, so you’ll
still see it here and there.

Why would you ever want a variable that doesn’t change? Sometimes a variable
holds a value that, if changed, could cause errors to crop up in your script. For
example, if your script converts miles to kilometers, you might include the
following declaration:

const milesToKilometers = 1.60934;

It makes sense to use const here because you don’t want some later part of your
script to change that conversion value.

The other main difference between const and let is that you must specify a value
when declaring const variables, but with let you can just declare the variable by
itself and assign it a value later:

let interestRate;

JavaScript has only a few rules for variable names:

	» The first character must be a letter or an underscore (_). You can’t use a
number as the first character.

	» The rest of the variable name can include any letter, any number, or the
underscore. You can’t use any other characters, including spaces, symbols,
and punctuation marks.

	» As with the rest of JavaScript, variable names are case sensitive. That is, a
variable named InterestRate is treated as a different variable than one
named interestRate.

CHAPTER 11 Getting the Hang of a Few JavaScript Fundamentals 221

	» There’s no limit to the length of the variable name.

	» You can’t use one of JavaScript’s reserved words (such as let, const, or var)
as a variable name.

Right about here is where I’d normally add some coverage of building expressions
in JavaScript. But I’ve already done that! That’s right: Everything I wrote about
expressions in Chapter 2 applies to JavaScript, so if you need an expressions
refresher, that chapter is the place to go.

Code Looping in JavaScript
When you need your JavaScript code to repeat some statements a few times, the
language offers a few different loop types you can turn to. First, know that
JavaScript supports the while loops that I introduced in Chapter 2. But JavaScript
also offers two other loop methods, which I talk about in the next couple of sections.

Using for loops
Although while is the most straightforward of the JavaScript loops, the most
common type by far is the for loop. This is slightly surprising when you consider
(as you will shortly) that the for loop’s syntax is a bit more complex than that of
the while loop. However, the for loop excels at one thing: looping when you know
exactly how many times you want to repeat a group of statements. This task is
common in all types of programming, so it’s no wonder for is so often used
in scripts.

The general syntax used with for loops is complicated, so I’m going to simplify
things considerably by presenting the version of the syntax that’s used in
99 percent of for loops:

for (let counter = start; counterExpression; counterUpdate) {

 statement(s)

}

There’s a lot going on here, so I’ll take it one bit at a time:

	» counter: A numeric variable used as a loop counter. The loop counter is a
number that counts how many times the procedure has gone through the
loop. (Note that you need to include let only if this is the first time you’ve

222 PART 3 Learning JavaScript: The Language of the Web

used the variable in the script.) It’s common to use letters such as i and j for
the counter variable name.

	» start: The initial value of counter. This value is usually 1, but you can use
whatever value makes sense for your script.

	» counterExpression: A comparison or logical expression that determines the
number of times through the loop. This expression usually compares the
current value of counter to some maximum value.

	» counterUpdate: An expression that changes the value of counter. Most of
the time you’ll increment the value of counter with the expression counter++.

Here’s an example (in this book’s example files, check out chapter11/example01.
html):

let sum = 0;
let num;
for (let i = 1; i <= 3; i++) {
 num = prompt("Type a number:", 1);
 sum += Number(num);
}
console.log("The total of your numbers is " + sum);

After declaring a couple of variables, this script sets up a for loop. The counter
variable is i, which starts at 1, and the code loops until i is 3, so there are three
iterations altogether. Within each loop, the code uses JavaScript’s prompt() func-
tion to ask the user for input (a number, in this case), which is added to the sum
variable. The prompt() function returns a string, so the code uses Number() to
convert the string to a number. After the loop is done, the sum of the three num-
bers is displayed in the Console window. (Refer to Chapter 10 to learn how to
display the Console window in your browser.)

Using do. . .while loops
Besides while and for, JavaScript has a third and final type of loop that I’ve left
until last because it isn’t one you’ll use often. It’s called a do...while loop, and
its general syntax looks like this:

do {
 statements
}
while (expression);

CHAPTER 11 Getting the Hang of a Few JavaScript Fundamentals 223

Here, statements represents a block of statements to execute each time through
the loop, and expression is a comparison or logical expression that, as long as it
returns true, tells JavaScript to keep executing the statements within the loop.
This structure ensures that JavaScript executes the loop’s statement block at
least once.

For example, the following shows you how to use do...while to restructure
the prompt-and-sum code I presented in the preceding section (chapter11/
example02.html):

let sum = 0;

let num;

do {

 num = prompt("Type a number; when you're done, click Cancel:", 1);

 sum += Number(num);
}

while (num !== null || sum === 0);

console.log("The total of your numbers is " + sum);

This code is similar to a while loop. All that’s really changed is that the while
statement and its expression have been moved after the statement block so that
the loop must be executed once before the expression is evaluated.

Controlling loop execution
Most loops run their natural course and then the procedure moves on. Sometimes,
however, you may want to exit a loop prematurely or skip over some statements
and continue with the next pass through the loop. You can handle each situation
with, respectively, the break and continue statements.

You use break when your loop comes across some value or condition that would
prevent the rest of the statements from executing properly or that satisfies what
the loop was trying to accomplish.

Here’s an example (chapter11/example03.html):

let sum = 0;

let num;

for (let i = 1; i <= 3; i++) {
 num = prompt("Type a number: (or click Cancel to bail out)", 1);

 if (num === null) {

 break;

 }

224 PART 3 Learning JavaScript: The Language of the Web

 sum += Number(num);
}

console.log("The total of your numbers is " + sum);

If when prompted to enter a number the user instead clicks Cancel, the input()
function returns the value null. This code checks for that value with if(num ===
null). If this expression returns true, the code runs break to bail out of
the for loop.

The continue statement is similar to break, but instead of exiting a loop
entirely, continue tells JavaScript to bypass the rest of the statements in the
loop block and begin a new iteration of the loop. Here’s an example (chapter11/
example04.html):

let sum = 0;

let num;

do {

 num = prompt("Type a number; when you're done, click Cancel:", 1);

 if (isNaN(num) && num !== null) {

 continue;

 }

 sum += Number(num);
}

while (num !== null || sum === 0);

console.log("The total of your numbers is " + sum);

After getting the user’s input, this code uses JavaScript’s isNaN() function (short
for is Not a Number) to determine if the input is a number (in which case isNaN()
returns false) or something else, such as a string (in which case isNaN() returns
true). To handle the case where the user clicks Cancel, the if statement also
checks num !== null).

Harnessing the Power of Functions
The function syntax that I described in Chapter 2 is identical to the syntax used by
JavaScript, so here I’ll just cover some other JavaScript-specific material related
to functions.

For most applications, it doesn’t matter where you put your functions, as long as
they reside in a <script> block. However, one of the most common uses of
functions is to handle triggered events (refer to Chapter 13). It’s possible that a
particular event may fire when the page is loading, and if that happens before the

CHAPTER 11 Getting the Hang of a Few JavaScript Fundamentals 225

browser has parsed the corresponding function, you could get strange results or
an error. To prevent that, it’s good practice to place the script containing all your
functions in the page’s header section (or in an external JavaScript file).

After your function is defined, you’ll eventually need to tell the browser to
execute — or call — the function. You can do this in three main ways:

	» When the browser parses the <script> tag

	» After the page is loaded

	» In response to an event, such as the user clicking a button

The next two sections cover the first two scenarios. You’ll need to head over to
Chapter 13 to learn about event handling in JavaScript.

Calling a function when the <script>
tag is parsed
The simplest way to call a function is to include in your script a statement con-
sisting of only the function name, followed by parentheses (assuming for the
moment that your function uses no arguments). The following code (check out
chapter11/example05.html) provides an example. (I listed the entire page to show
you the location in the page code of the function and the statement that calls it.)

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Calling a function when the <script> tag is parsed</title>

 <script>

 function displayGreeting() {

 const currentHour = new Date().getHours();

 if (currentHour < 12) {

 console.log("Good morning!");

 } else {

 console.log("Good day!");

 }

 }

 displayGreeting();

 </script>

</head>

226 PART 3 Learning JavaScript: The Language of the Web

<body>

 <h1> Calling a function when the <script> tag is parsed</h1>

 <p>

 (Please open the browser's console to see

 the result of this page's script.)

 </p>

</body>

</html>

The <script> tag includes a function named displayGreeting, which determines
the current hour of the day and then writes a greeting to the console based on
whether it’s currently morning. The function is called by the displayGreeting
statement that appears just after the function.

Calling a function after the page is loaded
If your function references a page element, calling the function from the page’s
head section won’t work because when the browser parses the script, the rest of
the page hasn’t loaded yet, so your element reference will fail.

To work around this problem, place another <script> tag at the end of the body
section, just before the closing </body> tag, as shown here (chapter11/
example06.html):

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Calling a function after the page is loaded</title>

 <script>

 function makeBackgroundTomato() {

 document.body.style.backgroundColor = "tomato";

 console.log("The background is now tomato.");

 }

 </script>

</head>

<body>

 <h1>Calling a function after the page is loaded</h1>

 <p>

 (Please open the browser's console to see

 the result of this page's script.)

 </p>

 <script>

CHAPTER 11 Getting the Hang of a Few JavaScript Fundamentals 227

 makeBackgroundTomato();

 </script>

</body>

</html>

The makeBackgroundTomato function does two things: It uses document.body.
style.backgroundColor to change the background color of the body element to
tomato, and it uses console.log to write a message to that effect on the console.

In the function, document.body is a reference to the body element, which doesn’t
exist until the page is fully loaded. If you try to call the function in the head sec-
tion, you’ll get an error. To execute the function properly, a second <script> tag
appears at the bottom of the body element, and that script calls the function with
the following statement:

makeBackgroundTomato();

By the time the browser executes that statement, the body element exists, so the
function runs without an error.

Getting the Hang of Variable Scope
In programming, the scope of a variable defines where in the script a variable can
be used and where it can’t be used. Put another way, a variable’s scope determines
which statements and functions can access and work with the variable. You need
to be concerned with scope for two main reasons:

	» You may want to use the same variable name in multiple functions. If
these variables are otherwise unrelated, you’ll want to make sure that there’s
no confusion about which variable you’re working with. In other words, you’ll
want to restrict the scope of each variable to the block or function in which it
is declared.

	» You may need to use the same variable in multiple blocks or functions.
For example, a function may use a variable to store the results of a calculation,
and other functions may also need to use that result. In this case, you’ll want
to set up the scope of the variable so that it’s accessible to multiple functions.

228 PART 3 Learning JavaScript: The Language of the Web

JavaScript lets you establish three types of scope for your variables:

	» Block scope

	» Function scope

	» Global scope

The next three sections describe each type in detail.

Working with block scope
When a variable has block scope, the variable was declared using let or const
inside a statement block — that is, between a set of braces: { and } — and the
only statements that can access the variable are the ones in that same block.
Statements outside the block and statements in other blocks can’t access the
variable (chapter11/example07.html):

if (true) {
 const myMessage = "I'm in the scope!";
 console.log("Inside the if block: " + myMessage);
}
console.log("Outside the if block: " + myMessage);

This code uses an if construction to create a statement block. Inside that block,
the code declares a variable named myMessage, sets its value to a text string, and
uses JavaScript’s console.log method to display the string in the console.

After the if block, another console.log statement attempts to display the
myMessage variable. However, JavaScript generates an error that says myMessage
is not defined:

Inside the if block: I'm in the scope!
Uncaught ReferenceError: myMessage is not defined

Why? Because the scope of the myMessage variable extends only to the if block.
Any statement outside that block can’t “see” the myMessage variable, so it has
nothing to display. In fact, after the if statement finishes executing, JavaScript
removes the myMessage variable from memory, so that’s why the myMessage
variable referred to in the final line is undefined.

CHAPTER 11 Getting the Hang of a Few JavaScript Fundamentals 229

Working with function scope
When a variable has function scope (often also known as local scope), the variable
was declared inside a function and the only statements that can access the
variable are the ones that come after that declaration in that same function.
Statements outside the function and statements in other functions can’t access
the variable.

The following code demonstrates function scope (chapter11/example08.html):

function A() {
 const myMessage = "I'm in the scope!";
 console.log("Function A: " + myMessage);
}
function B() {
 console.log("Function B: " + myMessage);
}
A();
B();

There are two functions here, named A and B. Function A declares a variable named
myMessage, sets its value to a text string, and uses JavaScript’s console.log
method to display the string in the console.

Function B also uses console.log to attempt to display the myMessage variable. As
shown next, JavaScript generates an error that says myMessage is not defined.

Function A: I'm in the scope!
Uncaught ReferenceError: myMessage is not defined

Why? Because the scope of the myMessage variable extends only to function A;
function B can’t “see” the myMessage variable, which was removed from memory
as soon as function A finished executing.

The same result occurs if you attempt to use the myMessage variable outside any
function, as in the following code:

function A() {
 const myMessage = "I'm in the scope!";
 console.log("Function A: " + myMessage);
}
A();
// The following statement generates an error:
console.log(myMessage);

230 PART 3 Learning JavaScript: The Language of the Web

Working with global scope
What if you want to use the same variable in multiple functions or even in mul-
tiple script blocks within the same page? In that case, you need to use global scope,
which makes a variable accessible to any statement or function on a page. (That’s
why global scope is also called page-level scope.) To set up a variable with global
scope, declare it outside any block or function. The following code gives this a
whirl (chapter11/example09.html):

const myMessage = "I've got global scope!";

if (true) {

 console.log("Inside the if block: " + myMessage);
}

function C() {

 console.log("Function C: " + myMessage);
}

C();

console.log("Outside any block or function: " + myMessage);

The script begins by declaring the myMessage variable and setting it equal to a
string literal. Then an if block uses a console.log statement to attempt to dis-
play the myMessage value. Next, a function named C is created and displays a con-
sole message that attempts to display the value of myMessage. After the function
is called, another console.log statement attempts to display the myMessage value
outside any block or function. Here are the results:

Inside the if block: I've got global scope!
Function C: I've got global scope!
Outside any block or function: I've got global scope!

All three console.log statements display the value of myMessage without
a problem.

CHAPTER 12 Tackling Some JavaScript Objects 231

Chapter 12
Tackling Some
JavaScript Objects

Learning JavaScript used to mean you weren’t a serious software developer.
Today, not learning JavaScript means the same thing.

—TIM O’REILLY

Although your JavaScript code will spend much of its time dealing with web
page knickknacks such as HTML tags and CSS properties, it will also per-
form lots of behind-the-scenes chores that require manipulating strings,

dealing with dates and times, and performing mathematical calculations. To help
you through these tasks, in this chapter you explore four of JavaScript’s built-in
objects: the String object, the Date object, the Math object, and the Array object. You
investigate the most important properties of each object, master the most fre-
quently used methods, and encounter lots of useful examples along the way.

Pulling Strings
Strings play a major role in all JavaScript programming, and it will be a rare script
that doesn’t have to deal with strings in some fashion. So, it pays to become pro-
ficient at manipulating strings, which includes locating text within a string and
extracting text from a string. You learn about all that and more in this section.

IN THIS CHAPTER

	» Controlling strings

	» Handling dates

	» Crunching numbers

	» Arranging arrays

232 PART 3 Learning JavaScript: The Language of the Web

Any string you work with — whether it’s a string literal or the result of a method
or function that returns a string — is a String object. So, for example, the following
two statements are equivalent:

const bookName = new String("Coding For Dummies");
const bookName = "Coding For Dummies";

All these different ways of referring to a string means you have quite a bit of
flexibility when applying the properties and methods of String objects. For
example, the String object has a length property that I describe a bit later (see
“Determining the length of a string”). The following are all legal JavaScript
expressions that use this property:

bookName.length;
"Coding For Dummies".length;
prompt("Enter the book name:").length;
myFunction().length;

The last example assumes that myFunction() returns a string value.

Working with string templates
Before diving into the properties and methods of the String object, take a second to
examine a special type of string designed to solve three string-related problems
that will come up again and again in your coding career:

	» Internal quotation marks: String literals are surrounded by quotation
marks, but what do you do when you need the same type of quotation mark
inside the string?

One solution is to use a different type of quotation mark to delimit the string.
For example, this is illegal:

'There's got to be a better way to do this.'

But this is fine:

"There's got to be a better way to do this."

A second solution is to escape the internal quotation mark with a slash, like so:

'There\'s got to be a better way to do this.'

These solutions work fine, but remembering to use them is harder than you
may think!

CHAPTER 12 Tackling Some JavaScript Objects 233

	» Variable values: When you need to use the value of a variable inside a string,
you usually end up with something ungainly, such as the following:

const adjective = "better";

const lament = "There's got to be a " + adjective +
" way to do this.";

	» Multiline strings: It’s often useful to define a string using multiple lines.
However, if you try the following, you’ll get a string literal contains an
unescaped line break error:

const myHeader = '
 <nav class="banner">
 <h3 class="nav-heading">Navigation</h3>
 <ul class="nav-links">
 Home
 Away
 In Between

 </nav>'

You can solve all three problems by using a string template (also called a template
literal), which is a kind of string literal where the delimiting quotation marks are
replaced by back ticks (`):

`Your string goes here`

Here’s how you can use a string template to solve each of the three problems just
described:

	» Internal quotation marks: You’re free to plop any number of single or
double quotation marks inside a string template:

`Ah, here's the better way to do this!`

	» Variable values: String templates support something called variable
interpolation, which is a technique for referencing a variable value directly
within a string. Here’s an example:

const adjective = "better";

 const paean = `Ah, here's the ${adjective} way to
do this!`;

234 PART 3 Learning JavaScript: The Language of the Web

Within any string template, using ${variable} inserts the value of variable,
no questions asked. Actually, you don’t have to stick to just variables.
String templates can also interpolate any JavaScript expression, including
function results.

	» Multiline strings: String templates are happy to work error-free with strings
spread over multiple lines:

const myHeader = `
 <nav class="banner">
 <h3 class="nav-heading">Navigation</h3>
 <ul class="nav-links">
 Home
 Away
 In Between

 </nav>`

Determining the length of a string
The only inherent property of a String object is its length, which tells you how
many characters are in the string:

string.length

All characters in the string — including spaces and punctuation marks — count
towards the length. The only exceptions are escape sequences (such as \n), which
count as one character. The following code grabs the length property value for
various String object types:

function myFunction() {
 return "filename.htm";
}
const bookName = "Coding For Dummies";

length1 = myFunction().length; // Returns 12
length2 = bookName.length; // Returns 18
length3 = "123\n5678".length; // Returns 8

What the String object lacks in properties, it more than makes up for in methods.
There are dozens, and they enable your code to perform many useful tasks, from
converting between uppercase and lowercase letters to finding text in a string to
extracting parts of a string.

CHAPTER 12 Tackling Some JavaScript Objects 235

Searching for substrings
A substring is a portion of an existing string. For example, some substrings of the
string "JavaScript" would be "Java", "Script", "vaSc", and "v". When working
with strings in your scripts, you’ll often have to determine whether a given
string contains a given substring. For example, if you’re validating a user’s email
address, you should check that it contains an @ symbol.

Table 12-1 lists the several String object methods that find substrings in a
larger string.

Methods that extract substrings
Finding a substring is one thing, but you’ll often have to extract a substring, as
well. For example, if the user enters an email address, you may need to extract just
the username (the part to the left of the @ sign) or the domain name (the part to
the right of @). For these kinds of operations, JavaScript offers six methods, listed
in Table 12-2.

TABLE 12-1	 String Object Methods for Searching for Substrings
Method What It Does

string.endsWith(substring,
position)

Tests whether substring appears at the end
of string

string.includes(substring,
position)

Tests whether substring appears in
string

string.indexOf(substring,
position)

Searches string for the first instance of
substring

string.lastIndexOf(substring,
position)

Searches string for the last instance of
substring

string.startsWith(substring,
position)

Tests whether substring appears at the
beginning of string

236 PART 3 Learning JavaScript: The Language of the Web

Dealing with Dates and Times
Dates and times seem like the kind of things that ought to be straightforward
programming propositions. After all, there are only 12 months in a year, 28 to
31 days in a month, 7 days in a week, 24 hours in a day, 60 minutes in an hour, and
60 seconds in a minute. Surely something so set in stone couldn’t get even the
least bit weird, could it?

You’d be surprised. Dates and times can get strange, but they are much easier to
deal with if you remember three crucial points:

	» JavaScript time is measured in milliseconds, or thousandths of a second. More
specifically, JavaScript measures time by counting the number of milliseconds
that elapsed between January 1, 1970 and the date and time in question. So,
for example, you may come across the date January 1, 2001 and think, “Ah,
yes, the start of the new millennium.” JavaScript, however, comes across that
date and thinks “978307200000.”

	» In the JavaScript world, time began on January 1, 1970, at midnight Greenwich
Mean Time. Dates before that have negative values in milliseconds.

TABLE 12-2	 String Object Methods for Extracting Substrings
Method What It Returns

string.charAt(index) The character in string that’s at the index
position specified by index

string.charCodeAt(index) The code of the character in string that’s
at the index position specified by index

string.slice(start, end) The substring in string that starts at the
index position specified by start and ends
immediately before the index position
specified by end

string.split(separator, limit) An array where each item is a substring in
string, where those substrings are
separated by the separator character

string.substr(start, length) The substring in string that starts at the
index position specified by start and is
length characters long

string.substring(start, end) The substring in string that starts at the
index position specified by start and ends
immediately before the index position
specified by end

CHAPTER 12 Tackling Some JavaScript Objects 237

	» Since your JavaScript programs run inside a user’s browser, dates and times
are almost always the user’s local dates and times. That is, the dates and times
your scripts will manipulate will not be those of the server on which your page
resides. This means you can never know what time the user is viewing
your page.

Arguments used with the Date object
Before getting to the nitty-gritty of the Date object and its associated methods, I’ll
take a second to run through the various arguments that JavaScript requires for
many date-related features. Doing so will save me from repeating these argu-
ments tediously later. Table 12-3 has the details.

Working with the Date object
Whenever you work with dates and times in JavaScript, you work with an instance
of the Date object. More to the point, when you deal with a Date object in
JavaScript, you deal with a specific moment in time, down to the millisecond. A
Date object can never be a block of time, and it’s not a kind of clock that ticks
along while your script runs. Instead, the Date object is a temporal snapshot that

TABLE 12-3	 Arguments Associated with the Date Object
Argument What It Represents Possible Values

date A variable name A Date object

yyyy The year Four-digit integers

yy The year Two-digit integers

month The month The full month name from "January" to "December"

mth The month Integers from 0 (January) to 11 (December)

dd The day of the month Integers from 1 to 31

hh The hour of the day Integers from 0 (midnight) to 23 (11:00 PM)

mm The minute of the hour Integers from 0 to 59

ss The second of the minute Integers from 0 to 59

ms The milliseconds of the second Integers from 0 to 999

238 PART 3 Learning JavaScript: The Language of the Web

you use to extract the specifics of the time it was taken: the year, month, date,
hour, and so on.

Specifying the current date and time
The most common use of the Date object is to store the current date and time. You
do that by invoking the Date() function, which is the constructor function for
creating a new Date object. Here’s how you use the Date() function:

const dateToday = new Date();

Specifying any date and time
If you need to work with a specific date or time, you need to use the Date()
function’s arguments. There are five versions of the Date() function syntax (refer
to the list of arguments near the beginning of this section):

const date = new Date("month dd, yyyy hh:mm:ss");
const date = new Date("month dd, yyyy");
const date = new Date(yyyy, mth, dd, hh, mm, ss);
const date = new Date(yyyy, mth, dd);
const date = new Date(ms);

The following statements give you an example for each syntax:

const myDate = new Date("August 23, 2026 3:02:01");
const myDate = new Date("August 23, 2026");
const myDate = new Date(2026, 8, 23, 3, 2, 1);
const myDate = new Date(2026, 8, 23);
const myDate = new Date(1790136000000);

Extracting information about a date
When your script just coughs up whatever Date object value you stored in the
variable, the results aren’t particularly appealing. If you want to display dates in a
more attractive format or if you want to perform arithmetic operations on a date,
you need to dig a little deeper into the Date object to extract specific information
such as the month, year, and hour. You do that by using the Date object methods
listed in Table 12-4.

CHAPTER 12 Tackling Some JavaScript Objects 239

Setting the date
When you perform date arithmetic, you often have to change the value of an exist-
ing Date object. For example, an e-commerce script may have to calculate a date
that is 90 days from the date that a sale occurs. It’s usually easiest to create a Date
object and then use an expression or a literal value to change the year, month, or
some other component of the date. You do that by using the Date object methods
listed in Table 12-5.

TABLE 12-4	 Date Object Methods That Extract Date Values
Method Syntax What It Returns

date.getFullYear() The year as a four-digit number (1999, 2000, and so on)

date.getMonth() The month of the year from 0 (January) to 11 (December)

date.getDate() The date in the month from 1 to 31

date.getDay() The day of the week from 0 (Sunday) to 6 (Saturday)

date.getHours() The hour of the day from 0 (midnight) to 23 (11:00 PM)

date.getMinutes() The minute of the hour from 0 to 59

date.getSeconds() The second of the minute from 0 to 59

date.getMilliseconds() The milliseconds of the second from 0 to 999

date.getTime() The milliseconds since January 1, 1970 GMT

TABLE 12-5	 Date Object Methods That Set Date Values
Method Syntax What It Sets

date.setFullYear(yyyy) The year as a four-digit number (1999, 2000, and so on)

date.setMonth(mth) The month of the year from 0 (January) to 11 (December)

date.setDate(dd) The date in the month from 1 to 31

date.setHours(hh) The hour of the day from 0 (midnight) to 23 (11:00 PM)

date.setMinutes(mm) The minute of the hour from 0 to 59

date.setSeconds(ss) The second of the minute from 0 to 59

date.setMilliseconds(ms) The milliseconds of the second from 0 to 999

date.setTime(ms) The milliseconds since January 1, 1970 GMT

240 PART 3 Learning JavaScript: The Language of the Web

For example, here’s some code that creates a new Date object (orderDate) based
on today’s date, creates a second Date object (paymentDueDate) from the first one,
and then sets that second date to 90 days in the future:

const orderDate = new Date();
const paymentDueDate = new Date(orderDate);
paymentDueDate.setDate(paymentDueDate.getDate() + 90);

Working with Numbers: The Math Object
It’s a rare JavaScript programmer who never has to deal with numbers. Most of us
have to cobble together scripts that process order totals, generate sales taxes and
shipping charges, calculate mortgage payments, and perform other number-
crunching duties. JavaScript’s numeric tools aren’t the greatest in the program-
ming world, but they have plenty of features to keep most scripters happy. This
section tells you about those features, with special emphasis on the Math object.

The first thing to know is that JavaScript likes to keep things simple, particularly
when it comes to numbers. For example, JavaScript is limited to dealing with just
two types of numeric data: integers — numbers without a fractional or decimal
part, such as 1, 759, and −50 — and floating-point numbers — values that have a
fractional or decimal part, such as 2.14, 0.01, and −25.3333.

Converting between strings and numbers
When you’re working with numeric expressions in JavaScript, it’s important to
make sure that all your operands are numeric values. For example, if you prompt
the user for a value, you need to check the result to make sure it’s not a letter or
undefined (the default prompt() value). If you try to use the latter, for example,
JavaScript will report that its value is NaN (not a number).

Similarly, if you have a value that you know is a string representation of a number,
you need some way of converting that string into its numerical equivalent.

For these situations, JavaScript offers several techniques to ensure that your oper-
ands are numeric.

The parseInt() function
I begin with the parseInt() function, which you use to convert a string into
an integer:

CHAPTER 12 Tackling Some JavaScript Objects 241

parseInt(string[,base]);

where:

	» string is the string value you want to convert.

	» base is an optional base used by the number in string. If you omit this value,
JavaScript uses base 10.

Note that if the string argument contains a string representation of a floating-
point value, parseInt() returns only the integer portion. Also, if the string
begins with a number followed by some text, parseInt() returns the number
(or, at least, its integer portion). The following table shows you the parseInt()
results for various string values.

string parseInt(string)

“5” 5

“5.1” 5

“5.9” 5

“5 feet” 5

“take 5” NaN

“five” NaN

The parseFloat() function
The parseFloat() function is similar to parseInt(), but you use it to convert
a string into a floating-point value:

parseFloat(string);

Note that if the string argument contains a string representation of an integer
value, parseFloat() returns just an integer. Also, like parseInt(), if the string
begins with a number followed by some text, parseFloat() returns the number.
The following table shows you the parseFloat() results for some string values.

string parseFloat(string)

“5” 5

“5.1” 5.1

242 PART 3 Learning JavaScript: The Language of the Web

string parseFloat(string)

“5.9” 5.9

“5.2 feet” 5.2

“take 5.0” NaN

“five-point-one” NaN

The + operator
For quick conversions from a string to a number, I most often use the + operator,
which tells JavaScript to treat a string that contains a number as a true numeric
value. For example, consider the following code:

const numOfShoes = '2';
const numOfSocks = 4;
const totalItems = +numOfShoes + numOfSocks;

By adding + in front of the numOfShoes variable, I force JavaScript to set that
variable’s value to the number 2, and the result of the addition will be 6.

The Math object’s properties and methods
The Math object is a bit different than most of the other objects you come across
in your JavaScript work because you never create an instance of the Math object
that gets stored in a variable. Instead, the Math object is a built-in JavaScript
object that you use as is. This section explores some properties and methods
associated with the Math object.

Properties of the Math object
The Math object’s properties are all constants that are commonly used in mathe-
matical operations. Table 12-6 lists some of the available Math object properties.

Methods of the Math object
The Math object’s methods enable you to perform mathematical operations such
as square roots, powers, rounding, and trigonometry. Many of the Math object’s
methods are summarized in Table 12-7.

CHAPTER 12 Tackling Some JavaScript Objects 243

TABLE 12-6	 Some Properties of the Math Object
Property Syntax What It Represents Approximate Value

Math.E Euler’s constant 2.718281828459045

Math.LN10 The natural logarithm of 10 2.302585092994046

Math.LN2 The natural logarithm of 2 0.6931471805599453

Math.LOG2E Base 2 logarithm of E 1.4426950408889633

Math.LOG10E Base 10 logarithm of E 0.4342944819032518

Math.PI The constant pi 3.141592653589793

Math.SQRT1_2 The square root of 1/2 0.7071067811865476

Math.SQRT2 The square root of 2 1.4142135623730951

TABLE 12-7	 Some Methods of the Math Object
Method Syntax What It Returns

Math.abs(number) The absolute value of number (that is, the number without any sign)

Math.cbrt(number) The cube root of number

Math.ceil(number) The smallest integer greater than or equal to number (ceil is short
for ceiling)

Math.cos(number) The cosine of number; returned values range from −1 to 1 radians

Math.exp(number) E raised to the power of number

Math.floor(number) The largest integer that is less than or equal to number

Math.log(number) The natural logarithm (base E) of number

Math.max(number1, number2) The larger of number1 and number2

Math.min(number1, number2) The smaller of number1 and number2

Math.pow(number1, number2) number1 raised to the power of number2

Math.random() A random number between 0 and 1

Math.round(number) The integer closest to number

Math.sin(number) The sine of number; returned values range from −1 to 1 radians

Math.sqrt(number) The square root of number (which must be greater than or equal to 0)

Math.tan(number) The tangent of number, in radians

Math.trunc(number) The integer portion of number

244 PART 3 Learning JavaScript: The Language of the Web

For example, to calculate the area of a circle, you use the formula πr2, where π (pi)
is the ratio of the circumference of a circle to its diameter and r is the radius of
the circle. Here’s a function that takes a radius value and returns the area of the
circle (chapter12/example01.html):

function areaOfCircle(radius) {
 return Math.PI * Math.pow(radius, 2);
}

The code uses Math.PI to represent pi and Math.pow(radius, 2) to raise the
radius value to the power of 2.

Working with Arrays
JavaScript is an array powerhouse that boasts not only multiple ways to declare
and populate arrays but also an impressive collection of methods for looping
through and manipulating arrays. If that sounds like it’s going to be complicated,
you’re right: It certainly would be. Which is why I’m going to spare you most of
JavaScript’s array complexity and focus on the essentials.

Declaring an array
I mention in the opening paragraph that JavaScript offers multiple ways to declare
arrays, but here’s a tip: Almost nobody uses most of them! The only way to
declare an array in JavaScript that you really need to know about is called creating
an array literal. In the same way that you create, say, a string literal by enclosing
a value in quotation marks, you create an array literal by enclosing one or more
values in square brackets. Here’s the general format:

const arrayName = [value1, value2, ...];

where:

	» arrayName is the name you want to use for the array variable.

	» value1, value2, . . . are the initial values with which you want to
populate the array.

An example:

const fruits = ["aprium", "limequat", "pluot"];

CHAPTER 12 Tackling Some JavaScript Objects 245

Including values in the declaration of an array literal is optional, which means
that you can declare an empty array using the following statement:

const arrayName = [];

Iterating an array: forEach()
One of the most common array techniques is to loop — or iterate, in coding
lingo — through each element in an array so that your code can perform some
kind of operation on each element. Probably the most common method for iterat-
ing an array in JavaScript is the Array object’s forEach() method, which runs a
function (it’s known as a callback function) for each element in the array. That
function takes up to three arguments:

	» value: The value of the element

	» index: (Optional) The array index of the element

	» array: (Optional) The array being iterated

If the callback function exists elsewhere in your code, you use the following syntax:

array.forEach(namedFunction);

where:

	» array is the Array object you want to iterate.

	» namedFunction is the name of an existing function. This function should
accept the value argument and can accept the optional index and array
arguments.

Alternatively, you can define a function right inside the forEach() method:

array.forEach(function (value[, index][, array]) {
 code
});

where:

	» array is the Array object you want to iterate.

	» value, index, and array are the arguments.

	» code is the collection of statements to run during each iteration.

246 PART 3 Learning JavaScript: The Language of the Web

“Hey, wait a minute! When you declare a function, aren’t you supposed to give
it a name?” Hah, nice catch! Yes, most JavaScript functions have a name, but
JavaScript also supports a special class called anonymous functions that don’t
have names.

Here’s an example (chapter12/example02.html):

// Declare the array

const fruits = ["aprium", "limequat", "pluot"];

// Iterate the array

fruits.forEach(function(value, index) {

 console.log(`Element ${index} has the value ${value}`);

});

After declaring the array, the code uses forEach() to iterate the array. During
each iteration, console.log() (refer to Chapter 10) displays a string that includes
the index and value parameters. Here’s what gets displayed in the browser’s
Console window:

Element 0 has the value aprium
Element 1 has the value limequat
Element 2 has the value pluot

Here’s another example, this time using a separate callback function (chapter12/
example03.html):

// Declare the array
const fruits = ["aprium", "limequat", "pluot"];

// Declare the callback function
function capitalizeIt(value, index) {
 console.log(`${index}: ${value.toUpperCase()}`);
}

// Iterate the array
fruits.forEach(capitalizeIt);

This code declares the same array, and then declares a function named
capitalizeIt(), which takes the value argument. For each element in the
array, the forEach() loop calls capitalizeIt() (without the parentheses) and
(behind the scenes) passes along the value and index arguments. Here’s the
output that appears in the Console window:

CHAPTER 12 Tackling Some JavaScript Objects 247

0: APRIUM
1: LIMEOUAT
2: PLUOT

Iterating an array: for . . . of
Although you’ll usually iterate an array with the forEach() method, you’ll some-
times need to use a more traditional loop to run through each array element. That
loop type is the for. . .of loop:

for (element of array) {
 code
}

where:

	» array is the Array object you want to iterate.

	» element it the current array element during each pass through the loop.

	» code is the collection of statements to run during each iteration.

Here’s an example (chapter12/example04.html):

// Declare the array

const fruits = ["aprium", "limequat", "pluot"];

// Iterate the array

for (const fruit of fruits) {

 console.log(`${fruit} is a fruit of ${fruit.length} letters`);

}

After declaring the array, the code uses a for...of loop to iterate the array.
During each iteration, console.log() displays a string that includes the value of
the current element and the length of the value:

aprium is a fruit of 6 letters.
limequat is a fruit of 8 letters.
pluot is a fruit of 5 letters.

248 PART 3 Learning JavaScript: The Language of the Web

Working with the length property
The Array object has just a couple of properties, but the only one of these that
you’ll use frequently is the length property:

array.length

The length property returns the number of elements in the specified array. This
is useful whenever you need to reference the number of elements in the array.

Here’s an example (chapter12/example05.html):

// Declare the array

const fruits = ["aprium", "limequat", "pluot"];

// Iterate the array

fruits.forEach(function(value, index, array) {

 console.log(`${value} is fruit ${index + 1} of ${array.length}`);
});

This code iterates through the fruits array using a forEach() loop where the
function takes all three arguments: value, index, and array. For each element,
the function displays a console message that outputs the value, index + 1, and
array.length:

aprium is fruit 1 of 3
limequat is fruit 2 of 3
pluot is fruit 3 of 3

More array methods
Arrays are one of JavaScript’s most powerful features, but I’m out of space to talk
about them! To give you a taste of what’s available, Table 12-8 lists a few of the
most useful Array object methods.

CHAPTER 12 Tackling Some JavaScript Objects 249

TABLE 12-8	 Some Methods of the Array Object
Method Syntax What It Returns

array.concat(array1, array2, . . .) A new array that contains the elements of array
concatenated with the elements of array1, array2,
and so on.

array.join([separator]) A string formed by concatenating the elements of
array, with each element separated by the optional
separator character (the default separator is a
comma).

array.pop() The value of the last element in array; that element is
then removed from array.

array.push(value1, value2, . . .) A new version of array that has value1, value2, and
so on added to the end.

array.reverse() A new version of array with its elements in reverse
order.

array.shift() The value of the first element in array; that element is
then removed from array.

array.slice(start [, end]) A new array that contains a subset of the elements in
array, defined by start, the index of the first element
in array that you want to include in the subset, and
optionally end, the index of the element in array before
which you want the subset to end. (If you omit end, the
last element is used.)

array.sort() A new version of array with its elements sorted in
ascending alphabetical or numerical order.

array.unshift(value1, value2, . . .) A new version of array that has value1, value2, and
so on added to the beginning.

CHAPTER 13 Unleashing JavaScript in the Browser 251

Chapter 13
Unleashing JavaScript
in the Browser

The programmer, like the poet, works only slightly removed from pure
thought-stuff. He builds his castles in the air, from air, creating by exertion
of the imagination.

—FRED BROOKS

JavaScript was born and raised inside the web browser and that’s where
JavaScript’s tremendous power and flexibility really shine. With JavaScript,
you can take control over every aspect of the web page. Want to change some

web page text on the fly? JavaScript can do that. Want to add an element to the
page? JavaScript’s up to the task. Want to modify an element’s CSS? JavaScript’s
all over that. Want to perform some action based on the user clicking something
or pressing a key combination? JavaScript raises its hand and says, “Ooh, ooh,
pick me, pick me!”

In this chapter, you explore the fascinating world of the Document Object Model.
You learn lots of powerful coding techniques that enable you to make your web
pages do almost anything you want them to do. You learn, too, that this is where
web coding becomes fun and maybe just a little addictive (in a good way, I promise).

IN THIS CHAPTER

	» Diving deep into the DOM

	» Specifying elements by ID, tag,
and more

	» Programming parents and children

	» Getting to know events

252 PART 3 Learning JavaScript: The Language of the Web

Getting to Know the Document
Object Model

Here’s some source code for a simple web page:

<html lang="en">

 <head>

 <title>So Many Kale Recipes</title>

 </head>

 <body>

 <header>

 <h1>Above and Beyond the Kale of Duty</h1>

 </header>

 <main>

 <p>

 Do you love to cook with kale?

 </p>

 </main>

 </body>

</html>

One way to examine this code is hierarchically. That is, the html element is the
topmost element because every other element is contained in it. The next level
down in the hierarchy contains the head and body elements. The head element
contains a title element, which contains the text So Many Kale Recipes.
Similarly, the body element contains a header element and a main element. The
header element contains an h1 element with the text Above and Beyond the
Kale of Duty, while the main element contains a p element with the text Do you
love to cook with kale?.

Hierarchies are almost always more readily grasped in visual form, so Figure 13-1
graphs the page elements hierarchically.

When speaking of object hierarchies, if object P contains object C, object P is said
to be the parent of object C, and object C is said to be the child of object P. In
Figure 13-1, the arrows represent parent-to-child relationships. Also, elements
on the same level — such as the header and main elements — are known as siblings.

The page as a whole is represented by the document object. Therefore, this hierar-
chical object representation is known as the Document Object Model, or the DOM as
it’s usually called. The DOM enables your JavaScript code to access the complete
structure of an HTML document. This access is the source of one of JavaScript’s
most fundamental features: The capability it offers you as a web developer to read
and change the elements of a web page, even after the page is loaded.

CHAPTER 13 Unleashing JavaScript in the Browser 253

Specifying Elements
Elements in the DOM represent the tags in a document, so you’ll be using them
constantly in your code. This section shows you several methods for referencing
one or more elements.

Specifying an element by ID
If you want to work with a specific element in your script, you can reference the
element directly by first assigning it an identifier using the id attribute:

<header id="page-banner">

With that done, you can then refer to the element in your code by using the
document object’s getElementById() method:

document.getElementById(id)

where id is a string representing the id attribute of the element you want to
work with.

FIGURE 13-1:
The web page

code as a
hierarchy.

254 PART 3 Learning JavaScript: The Language of the Web

For example, the following statement (refer to chapter13/example01.html in this
book’s example files) returns a reference to the above <header> tag (the one that
has id="page-banner"):

const pageBanner = document.getElementById("page-banner");

When you’re coding the document object, don’t put your <script> tag in the web
page’s head section (that is, between the <head> and </head> tags). If you place
your code there, the web browser will run the code before it has had a chance to
create the document object, which means your code will fail, big time. Instead,
place your <script> tag at the bottom of the web page, just before the </body> tag.

Specifying elements by tag name
Besides working with individual elements, you can work also with collections of
elements. One such collection is the set of all elements in a page that use the same
tag name. For example, you could reference all the <a> tags or all the <div> tags.
Using a collection is a handy way to make large-scale changes to these tags (such
as by changing all the target attributes in your links).

The mechanism for returning a collection of elements that have the same tag is
the getElementsByTagName() method:

document.getElementsByTagName(tag)

where tag is a string representing the HTML element name used by the tags you
want to work with.

This method returns an array-like collection that contains all the elements in the
document that use the specified tag. (Refer to Chapter 12 to find out how arrays
work. Also check out “Working with collections of elements,” later in this
chapter.) For example, to return a collection that includes all the p elements in the
current page, you’d use the following statement (chapter13/example02.html):

const paragraphs = document.getElementsByTagName("p");

Specifying elements by class name
Another collection you can work with is the set of all elements in a page that use
the same class. The JavaScript tool for returning all the elements that share a
specific class name is the getElementsByClassName() method:

document.getElementsByClassName(class)

CHAPTER 13 Unleashing JavaScript in the Browser 255

where class is a string representing the class name used by the elements you
want to work with.

This method returns an array-like collection that contains all the elements in the
document that use the specified class name. The collection order is the same as
the order in which the elements appear in the document. Here’s an example
(chapter13/example03.html):

const keywords = document.getElementsByClassName("keyword");

Specifying elements by selector
CSS offers several selectors that you can use to specify what you want to style
(refer to Chapter 17), including the ID, tag, and class selectors, the descen-
dant, child, and subsequent-sibling combinators, pseudo-classes, and pseudo-
elements. You can use those same selectors in your JavaScript code to
reference page elements by using the document object’s querySelector() and
querySelectorAll() methods:

document.querySelector(selector)
document.querySelectorAll(selector)

where selector is a string representing the selector for the element or elements
you want to work with.

The difference between these methods is that querySelectorAll() returns a
collection of all the elements that match your selector but querySelector()
returns only the first element that matches your selector.

For example, the following statement returns the collection of all p elements
that are direct children of a main element (chapter13/example04.html):

const main_paragraphs = document.querySelectorAll("main > p");

Rather than use three distinct document object methods to reference page
elements by id, tag, and class — that is, getElementById(), getElementsBy
TagName(), and getElementsByClassName() — many web developers prefer the
more generic approach offered by querySelector() and querySelectorAll().

Working with collections of elements
The getElementsByTagName(), getElementsByClassName(), and querySelector
All() methods each return an array-like collection that contains all the elements
in the document that use the specified tag, class, or selector, respectively. The

256 PART 3 Learning JavaScript: The Language of the Web

collection order is the same as the order in which the elements appear in the docu-
ment. For example, consider the following HTML code (chapter13/example05.html):

<div id="div1">
 This, of course, is div 1.
</div>
<div id="div2">
 Yeah, well this is div 2!
</div>
<div id="div3">
 Ignore those dudes. Welcome to div 3!
</div>

Now consider the following statement:

divs = document.getElementsByTagName("div");

In the resulting collection, the first item (divs[0]) will be the <div> element with
id equal to div1; the second item (divs[1]) will be the <div> element with id
equal to div2; and the third item (divs[2]) will be the <div> element with
id equal to div3.

You can also refer to elements directly by using their id values. For example, the
following statements are equivalent:

const firstDiv = divs[0];
const firstDiv = divs.div1;

To learn how many items are in a collection, use the length property:

const totalDivs = divs.length;

To perform one or more operations on each item in the collection, you can use a
for. . .of loop to run through the collection one item at a time. In the JavaScript
trade, this is known as iterating over the collection. Here’s the syntax to use:

for (const item of collection) {
 statements
}

where:

	» item is a variable that holds an item in the collection. The first time through
the loop, item is set to the first element in the collection; the second time
through the loop, item is set to the second element; and so on.

CHAPTER 13 Unleashing JavaScript in the Browser 257

	» collection is the collection of elements you want to iterate over.

	» statements is the JavaScript code you want to use to manipulate (or view, or
whatever) item.

For example, here’s some code that iterates over the preceding div elements and
displays each item’s id value in the console (chapter13/example05.html):

divs = document.getElementsByTagName("div");
for (const d of divs) {
 console.log(d.id);
}

Traversing the DOM
One common task in JavaScript code is working with the children, parent, or sib-
lings of some element in the page. This is known as traversing the DOM because
you’re using these techniques to move up, down, and across the DOM hierarchy.

In this section, I use the following HTML code for each example technique
(chapter13/example06.html):

<html lang="en">

 <head>

 <title>So Many Kale Recipes</title>

 </head>

 <body>

 <header id="page-banner">

 <h1>Above and Beyond the Kale of Duty</h1>

 </header>

 <main id="page-content">

 <p>

 Do you love to cook with kale?

 </p>

 </main>

 </body>

</html>

Getting the children of a parent element
When you’re working with a particular element, it’s common to want to
perform one or more operations on that element’s children. Every parent element

258 PART 3 Learning JavaScript: The Language of the Web

offers several properties that enable you to work with all or just some of its
child nodes:

	» All the child nodes

	» The first child node

	» The last child node

Getting all the child nodes
To return a collection of all the child element nodes of a parent element, use the
children property:

parent.children

where parent is the parent element.

For example, the following statement stores all the child element nodes of the
body element in a variable:

const bodyChildren = document.body.children;

The result is an HTMLCollection object, which is an array-like collection of ele-
ment nodes. If you were to use the console to display the value of bodyChildren
(say, by including the statement console.log(bodyChildren) in your code),
you’d get the output shown here:

HTMLCollection(2) [header#page-banner, main#page-content, page-
banner: header#page-banner, page-content: main#page-content]

Hmm. Click the arrow to the left of this output and you get the following:

0: header#page-banner
1: main#page-content
page-banner: header#page-banner
page-content: main#page-content
length: 2

Yep, still confusing. Okay, 0 and 1 are the index numbers of each child. For exam-
ple, you could use bodyChildren[0] to refer to the first element in the collection,
which in this example is the header element. However, because both the header
element and the main element have id attributes, the browser is telling you that
another way to refer to these nodes is via their id values. So, for the header
element, the following are equivalent:

CHAPTER 13 Unleashing JavaScript in the Browser 259

bodyChildren[0]
bodyChildren["page-banner"];

Similarly, for the main element, the following are equivalent:

bodyChildren[1]
bodyChildren["page-content"];

Getting the first child node
If you use a parent element’s children property to return the parent’s child
nodes, as I describe in the preceding section, you can refer to the first item in the
resulting collection by tacking [0] onto the collection’s variable name. For example:

bodyChildren[0]

However, the DOM offers a more direct route to the first child node:

parent.firstElementChild

where parent is the parent element.

To get the first child element node of the main element from the code at the begin-
ning of this section, you’d do something like this (chapter13/example07.html):

const content = document.getElementById("page-content");
const firstContentChildElement = content.firstElementChild;

This code returns the p element.

Getting the last child node
If your code needs to work with the last child element node, use the
lastElementChild property:

parent.lastElementChild

where parent is the parent element.

To get the last child element node of the p element from the code at the beginning
of this section, you could do this (chapter13/example08.html):

const para = document.querySelector("main > p");
const lastParaChildElement = para.lastElementChild;

This code returns the a element.

260 PART 3 Learning JavaScript: The Language of the Web

Getting the parent of a child element
If your code needs to work with the parent of a child element, use the child
element’s parentNode property:

child.parentNode

where child is the child element.

For example, suppose you want to work with the parent element of the h1 element
from the HTML example at the beginning of this section. This code does the job
(chapter13/example09.html):

const childElement = document.querySelector("h1");
const parentElement = childElement.parentNode;

Manipulating Elements
Once you have a reference to one or more elements, you can use code to manipu-
late those elements in various ways, as shown in this section.

Adding an element to the page
One of the most common web development chores is to add elements to a web
page on the fly. When you add an element, you always specify the parent element
to which it will be added, and then you decide whether you want the new element
added to the end or the beginning of the parent’s collection of children.

To add an element to the page, you follow three steps:

1.	 Create an object for the type of element you want to add.

2.	 Add the new object as a child element of an existing element.

3.	 Insert some text and tags into the new object.

Step 1: Creating the element
For Step 1, you use the document object’s createElement() method:

document.createElement(elementName)

where elementName is a string containing the HTML element name for the type of
the element you want to create.

CHAPTER 13 Unleashing JavaScript in the Browser 261

This method creates the element and then returns it, which means you can store
the new element in a variable. Here’s an example:

const newArticle = document.createElement("article");

Step 2: Adding the new element as a child
With your element created, Step 2 is to add it to an existing parent element. You
have four choices:

	» Add the new element to the end of the parent’s collection of child
elements: Use the append() method:

parent.append(child)

where:

•	 parent is a reference to the parent element to which the new element will
be appended.

•	 child is a reference to the child element you’re appending. Note that you
can append multiple elements at the same time by separating each
element with a comma. The child parameter can also be a text string.

	» Add the new element to the beginning of the parent’s collection of child
elements: Use the prepend() method:

parent.prepend(child)

where:

•	 parent is a reference to the parent element to which the new element will
be prepended.

•	 child is a reference to the child element you’re prepending. Note that you
can prepend multiple elements at the same time by separating each
element with a comma. The child parameter can also be a text string.

	» Insert the new element just after an existing child element of the
parent: Use the after() method:

child.after(sibling)

where:

•	 child is a reference to the child element after which the new element will
be inserted.

•	 sibling is a reference to the new element you’re inserting. Note that you
can insert multiple elements at the same time by separating each element
with a comma. The sibling parameter can also be a text string.

262 PART 3 Learning JavaScript: The Language of the Web

	» Insert the new element just before an existing child element of the
parent: Use the before() method:

child.before(sibling)

where:

•	 child is a reference to the child element before which the new element will
be inserted.

•	 sibling is a reference to the new element you’re inserting. Note that you
can insert multiple elements at the same time by separating each element
with a comma. The sibling parameter can also be a text string.

Here’s an example that creates a new article element and then appends it to
the main element (chapter13/example10.html):

const newArticle = document.createElement("article");
document.querySelector("main").append(newArticle);

Here’s an example that creates a new nav element and then prepends it to the
main element:

const newNav = document.createElement("nav");
document.querySelector("main").prepend(newNav);

Step 3: Adding text and tags to the new element
With your element created and appended or prepended to a parent, the final step
is to add some text and tags using the innerHTML property:

element.innerHTML = text

where:

	» element is a reference to the new element within which you want to add the
text and tags.

	» text is a string containing the text and HTML tags you want to insert.

In this example, the code creates a new nav element, prepends it to the main
element, and then adds a heading (chapter13/example10.html):

const newNav = document.createElement("nav");
document.querySelector("main").prepend(newNav);
newNav.innerHTML = "<h2>Navigation</h2>";

CHAPTER 13 Unleashing JavaScript in the Browser 263

If you only want to add text to an element, use the textContent property, instead:

element.textContent = text

where:

	» element is a reference to the new element within which you want to
add the text.

	» text is a string containing the text you want to insert.

For example, suppose your page has an empty p element:

<p id="output">

</p>

Here’s some code that populates this element with text (chapter13/example11.
html):

const output = document.getElementById("output");
output.textContent = "Hello, kale world!"

Whatever value you assign to the innerHTML or textContent property over-
writes the element’s existing text and tags, so use caution when wielding these
properties.

Removing an element
If you no longer require an element on your page, you can use the element’s
remove() method to delete it from the DOM:

element.remove()

For example, the following statement removes the element with an id value of
temp-div from the page:

document.getElementById("temp-div").remove();

264 PART 3 Learning JavaScript: The Language of the Web

Modifying CSS with JavaScript
Although you specify your CSS rules in a static stylesheet (.css) file, that doesn’t
mean the rules themselves have to be static. With JavaScript on the job, you can
work with and modify an element’s CSS in a number of ways. You can

	» Read the current value of a CSS property.

	» Change the value of a CSS property.

	» Add or remove a class.

	» Toggle a class on or off.

This section lets you in on the details.

Changing an element’s styles
Most HTML tags can have a style attribute that you use to set inline styles.
Because standard attributes all have corresponding element object properties, you
won’t be surprised to learn that most elements also have a style property that
enables you to get and modify a tag’s styles. It works like this: The style property
returns a style object that has properties for every CSS style. When referencing
these style properties, you need to keep two things in mind:

	» For single-word CSS properties (such as color and visibility), use all-
lowercase letters.

	» For multiple-word CSS properties, drop the hyphen and use uppercase for the
first letter of each subsequent word if the property has more than two. For
example, the font-size and border-left-width CSS properties become
the fontSize and borderLeftWidth style object properties, respectively.

Here’s an example (chapter13/example12.html):

const pageTitle = document.querySelector("h1");
pageTitle.style.fontSize = "64px";
pageTitle.style.color = "maroon";
pageTitle.style.textAlign = "center";
pageTitle.style.border = "1px solid black";

This code gets a reference to the page’s first <h1> element. With that reference
in hand, the code then uses the style object to style four CSS properties of the
heading: font-size, color, text-align, and border.

CHAPTER 13 Unleashing JavaScript in the Browser 265

Adding a class to an element
If you have a class rule defined in your CSS, you can apply that rule to an element
by adding the class attribute to the element’s tag and setting the value of the class
attribute equal to the name of your class rule. You can manipulate these classes
using JavaScript.

First, you can get a list of an element’s assigned classes by using the
classList property:

element.classList

where element is the element you’re working with.

The returned list of classes is an array-like object that includes an add() method
that you can use to add a new class to the element’s existing classes:

element.classList.add(class)

where:

	» element is the element you’re working with.

	» class is a string representing the name of the class you want to add to element.
You can add multiple classes by separating each class name with a comma.

Here’s an example (chapter13/example13.html), and Figure 13-2 shows the result.

HTML:

<div id="my-div">
 Hello World!
</div>

FIGURE 13-2:
This code

uses the add()
method to add

the class named
my-class to the

<div> tag.

266 PART 3 Learning JavaScript: The Language of the Web

CSS:

.my-class {
 display: flex;
 justify-content: center;
 align-items: center;
 border: 6px dotted black;
 font-family: Verdana, serif;
 font-size: 2rem;
 background-color: lightgray;
}

JavaScript:

document.getElementById('my-div').classList.add('my-class');

If the class attribute doesn’t exist in the element, the addClass() method inserts
it in the tag. So, in the preceding example, after the code executes, the <div> tag
would appear like this:

<div id="my-div" class="my-class">

Removing a class
To remove a class from an element’s class attribute, the classList object
offers the remove() method:

element.classList.remove(class)

where:

	» element is the element you’re working with.

	» class is a string representing the name of the class you want to remove from
element. You can remove multiple classes by separating each class name
with a comma.

Here’s an example:

document.getElementById('my-div').classList.remove('my-class');

CHAPTER 13 Unleashing JavaScript in the Browser 267

Toggling a class
One common web development scenario is switching a web page element between
two different states. For example, you may want to change an element’s styles
depending on whether a check box is selected or deselected, or you may want to
alternate between showing and hiding an element’s text when the user clicks the
element’s heading.

The easiest way to handle switching between two states is to use the classList
object’s toggle() method, which does all the hard work for you. That is, it checks
the element for the specified class. If the class is there, JavaScript removes it; if
the class isn’t there, JavaScript adds it. Sweet! Here’s the syntax:

element.classList.toggle(class)

where:

	» element is the element you’re working with.

	» class is a string representing the name of the class you want to toggle
for element.

Here’s an example:

document.getElementById('my-div').classList.toggle('my-class');

Building Reactive Pages with Events
In web development, an event is an action that occurs in response to some
external stimulus. A common type of external stimulus is when a user interacts
with a web page. Here are some examples:

	» Surfing to or reloading the page

	» Clicking a button

	» Pressing a key

	» Scrolling the page

How can your web page possibly know when any of these actions occur? The
secret is that JavaScript was built with events in mind. As the computer science
professors would say, JavaScript is an event-driven language. This means that you

268 PART 3 Learning JavaScript: The Language of the Web

can make your web pages “listen” for particular events to occur. You do that by
setting up special chunks of code called event handlers that say, in effect, “Be a
dear and watch out for event X to occur, will you? When it does, be so kind as to
execute the code I’ve placed here for you. Thanks so much.” An event handler
consists of two parts:

	» Event listener: An instruction to the web browser to watch out (“listen”) for a
particular event occurring on a particular element

	» Callback function: The code that the web browser executes when it detects
that the event has occurred

In the rest of this chapter, I talk about how to use JavaScript to build your own
event handlers and take your scripts to a more interactive level.

Listening for an event
You configure your code to listen for and react to an event by setting up an
event handler using the element object’s addEventListener() method. Here’s
the syntax:

element.addEventListener(event, callback)

where:

	» element is the web page element to be monitored for the event. The event is
said to be bound to the element.

	» event is a string specifying the name of the event you want the browser to
listen for. For the main events I mention in the preceding section, use one
of the following, enclosed in quotation marks: DOMContentLoaded, click,
dblclick, mouseover, keypress, focus, blur, change, submit, scroll,
or resize.

	» callback is the callback function that JavaScript executes when the
event occurs.

Here’s an example (chapter13/example14.html):

HTML:

<div id="my-div"></div>
<button id="my-button">Click to add some text, above</button>

CHAPTER 13 Unleashing JavaScript in the Browser 269

JavaScript:

const myButton = document.getElementById('my-button');
myButton.addEventListener('click', function() {
 const myDiv = document.getElementById('my-div');
 myDiv.innerHTML = '<h1>Hello Click World!</h1>';
});

The HTML code sets up an empty div element and a button element. The
JavaScript code attaches a click event listener to the button, and the callback
function adds the HTML string <h1>Hello Click World!</h1> to div. Figure 13-3
shows the resulting page after the button has been clicked.

Getting data about the event
When an event fires, the DOM creates an Event object, the properties of which
contain info about the event, including the following:

	» target: The web page element to which the event occurred. For example,
if you set up a click handler for a div element, that div is the target of
the click.

	» which: A numeric code that specifies the key that was pressed during a
keypress event.

	» metaKey: A Boolean value that equals true if the user had the Windows key
() or the Mac Command key (⌘  ) held down when the event fired.

	» shiftKey: A Boolean value that equals true if the user had the Shift key held
down when the event fired.

To access these properties, you insert a name for the Event object as an argument
in your event handler’s callback function:

element.addEventListener(event, function(e) {
 This code runs when the event fires
});

FIGURE 13-3:
The click event
callback function
adds some HTML

and text to the
div element.

270 PART 3 Learning JavaScript: The Language of the Web

where e is a name for the Event object that the DOM generates when the event
fires. You can use whatever name you want, but most coders use e (although evt
and event are also common).

For example, when handling the keydown event, you need access to the Event
object’s which property to find out the code for the key the user is pressing. Here’s
an example page that can help you determine which code value to check for
(chapter13/example15.html):

HTML:

<div>
 Type a key:
</div>
<input id="key-input" type="text">
<div>
 Here's the code of the key you pressed:
</div>
<div id="key-output">
</div>

JavaScript:

const keyInput = document.getElementById('key-input');
keyInput.focus();
keyInput.addEventListener('keydown', function(e) {
 const keyOutput = document.getElementById('key-output');
 keyOutput.textContent = e.which;
});

The HTML code sets up an <input> tag to accept a keystroke and a <div> tag with
id="key-output" to use for the output. The JavaScript code adds a keydown event
listener to the input element, and when the event fires, the callback function
writes e.which to the output div. Figure 13-4 shows the page in action.

FIGURE 13-4:
Type a key in the

input box, and
JavaScript

displays the
numeric code of
the pressed key.

CHAPTER 14 Debugging JavaScript 271

Chapter 14
Debugging JavaScript

Testing proves a programmer’s failure. Debugging is the programmer’s
vindication.

—BORIS BEIZER

It usually doesn’t take too long to get short scripts and functions up and running.
As your code grows larger and more complex, however, errors inevitably creep
in. In fact, it has been proven mathematically that any code beyond a minimum

level of complexity will contain at least one error and probably quite a lot more.

Many of the bugs that crawl into your code will be simple syntax problems that
you can fix quickly, but others will be more subtle and harder to find. For the
latter — whether the errors are incorrect values returned by functions or prob-
lems with the overall logic of a script — you need to be able to get inside your code
to scope out what’s wrong.

The good news is that JavaScript and modern web browsers offer a ton of top-
notch debugging tools that can remove some of the burden of program problem
solving. In this chapter, you delve into these tools to explore how they can help
you find and fix most programming errors.

IN THIS CHAPTER

	» Debugging errors in the
Console window

	» Setting breakpoints

	» Strolling through your code

272 PART 3 Learning JavaScript: The Language of the Web

Examining Your Debugging Tools
All major web browsers come with a sophisticated set of debugging tools that can
make your life as a web developer much easier and much saner. Most web devel-
opers debug their scripts using Google Chrome, so I focus on that browser in this
chapter. But in this section, I give you an overview of the tools available in all the
major browsers and how to get at them.

Here’s how you open the web development tools in Chrome, Firefox, Microsoft
Edge, and Safari:

	» Chrome for Windows: Click the Customize and Control Google Chrome icon
(shown in the margin), and then choose More Tools ➪ Developer Tools.
Shortcut: Ctrl+Shift+I.

	» Chrome for Mac: Choose View ➪ Developer ➪ Developer Tools. Shortcut:
Option+⌘  +I.

	» Firefox for Windows: Click the open Application menu icon (shown in the
margin), and then choose More Tools ➪ Web Developer Tools. Shortcut:
Ctrl+Shift+I.

	» Firefox for Mac: Choose Tools ➪ Browser Tools ➪ Web Developer Tools.
Shortcut: Option+⌘  +I.

	» Microsoft Edge for Windows: Click the Settings and More icon (shown in
the margin), and then choose More Tools ➪ Developer Tools. Shortcut:
Ctrl+Shift+I.

	» Microsoft Edge for Mac: Choose View ➪ Developer ➪ Developer Tools.
Shortcut: Option+⌘  +I.

	» Safari: Click Develop ➪ Show Web Inspector. Shortcut: Option+⌘  +I. If you
don’t have the Develop menu, click Safari ➪ Settings, click the Advanced tab,
and then select the Show Features for Web Developers check box.

These development tools vary in the features they offer, but each provides the
same set of basic tools, which are the tools you’ll use most often. These basic web
development tools include the following:

	» HTML viewer: This tab (called Inspector in Firefox and Elements in the other
browsers) shows the HTML source code used in the web page. When you
hover the mouse pointer over a tag, the browser highlights the element in the
displayed page and shows its width and height, as shown in Figure 14-1. When
you click a tag, the browser shows the CSS styles applied with the tag, as well
as the tag’s box dimensions (again, refer to Figure 14-1).

CHAPTER 14 Debugging JavaScript 273

	» Console: This tab enables you to view error messages, log messages, test
expressions, and execute statements. I cover the Console window in more
detail in the next section.

	» Debugging tool: This tab (called Debugger in Firefox and Sources in the other
browsers) enables you to pause code execution, step through your code,
watch the values of variables and properties, and much more. This is the most
important JavaScript debugging tool, so I cover it in detail later in this chapter
(starting with the “Pausing Your Code” section).

Debugging with the Console Window
The Console window is an interactive browser window that shows warnings
and errors, displays the output of console.log() statements, and enables you to
execute expressions and statements without having to run your entire script.
The Console window is one of the handiest web browser debugging tools, so you
need to know your way around it.

FIGURE 14-1:
The HTML viewer,
such as Chrome’s

Elements tab,
enables you to

inspect each
element’s styles

and box
dimensions.

274 PART 3 Learning JavaScript: The Language of the Web

Displaying the Console window
in various browsers
To display the Console window, open your web browser’s development tools and
then click the Console tab. You can also use the following keyboard shortcuts:

	» Chrome for Windows: Press Ctrl+Shift+J.

	» Chrome for Mac: Press Option+⌘  +J.

	» Firefox for Windows: Press Ctrl+Shift+K.

	» Firefox for Mac: Press Option+⌘  +K.

	» Microsoft Edge for Windows: Press Ctrl+Shift+J.

	» Microsoft Edge for Mac: Press Option+⌘  +J.

	» Safari: Press Option+⌘  +C.

Logging data to the Console window
You can use the console.log() method of the special Console object to print text
and expression values in the Console window:

console.log(output)

where output is the expression you want to print in the Console window. The
output expression can be a text string, a variable, an object property, a function
result, or any combination of these.

For debugging purposes, you most often use the Console window to keep an eye
on the values of variables, object properties, and expressions. That is, when your
code sets or changes the value of something, you insert a console.log() state-
ment that outputs the new value. When the script execution is complete, you can
open the Console window and check out the logged value or values.

Executing code in the Console window
One of the great features of the Console window is that it’s interactive, which
means that you can not only read messages generated by the browser or by your
console.log() statements but also type code directly in the Console window.
That is, you can use the Console window to execute expressions and statements.
There are many uses for this feature:

CHAPTER 14 Debugging JavaScript 275

	» You can try some experimental expressions or statements to determine their
effect on the script.

	» When the script is paused, you can output the current value of a variable
or property.

	» When the script is paused, you can change the value of a variable or property.
For example, if you notice that a variable with a value of zero is about to be
used as a divisor, you can change that variable to a nonzero value to avoid
crashing the script.

	» When the script is paused, you can run a function or method to determine
whether it operates as expected under the current conditions.

Each browser’s Console tab includes a text box (usually marked by the > prompt)
that you can use to enter your expressions or statements.

If you want to repeat an earlier code execution in the Console window, or if you
want to run some code that’s very similar to code you ran earlier, you can recall
statements and expressions that you used in the current browser session. Press
the up arrow key to scroll back through your previously executed code; press the
down arrow key to scroll forward through your code.

Pausing Your Code
Pausing your code midstream lets you examine certain elements, such as the cur-
rent values of variables and properties. It also lets you execute program code one
statement at a time so that you can monitor the flow of the script.

When you pause your code, JavaScript enters break mode, which means that
the browser displays its debugging tool and highlights the current statement (the
one that JavaScript will execute next). Figure 14-2 shows a script in break mode in
Chrome’s debugger (the Sources tab).

Entering break mode
JavaScript gives you two ways to enter break mode:

	» By setting breakpoints

	» By using a debugger statement

276 PART 3 Learning JavaScript: The Language of the Web

Setting a breakpoint
If you know approximately where an error or a logic flaw is occurring, you can
enter break mode at a specific statement in the script by setting a breakpoint. Here
are the steps to set a breakpoint:

1.	 Display your web browser’s developer tools and switch to the debugging
tool (such as the Sources tab in Chrome).

2.	 Open the file that contains the JavaScript code you want to debug.

How you do this depends on the browser: In Chrome (and most browsers), you
have two choices:

•	 In the left pane, click the HTML file (if your JavaScript code is in a script
element in your HTML file) or the JavaScript (.js) file (if your code resides in
an external JavaScript file).

•	 Press Ctrl+P (Windows) or ⌘  +P (macOS) and then click the file in the list
that appears.

3.	 Locate the statement where you want to enter break mode.

JavaScript will run every line of code up to but not including this statement.

4.	 Click the line number to the left of the statement to set the breakpoint,
as shown in Figure 14-3.

FIGURE 14-2:
In break mode,

the web browser
displays its

debugging tool
and highlights the

statement that it
will execute next.

CHAPTER 14 Debugging JavaScript 277

To remove a breakpoint, most browsers give you three choices:

	» To disable a breakpoint temporarily, deselect the breakpoint’s check box in
the Breakpoints list.

	» To disable all your breakpoints temporarily, click the Deactivate Breakpoints
icon (shown in the margin). Click this icon again to reactivate all breakpoints.

	» To remove a breakpoint completely, click the statement’s line number.

Entering break mode by using a debugger
statement
When developing your web pages, you’ll often test the robustness of a script by
sending it various test values or by trying it out under different conditions. In
many cases, you’ll want to enter break mode to make sure things appear okay. You
could set breakpoints at specific statements, but you’ll lose them if you close the
file. For something a little more permanent, you can include a debugger statement
in a script. JavaScript automatically enters break mode whenever it encounters a
debugger statement.

Here’s a bit of code that includes a debugger statement (chapter14/example01.
html):

// Display the sentence with animation
debugger;
const display = document.getElementById('sentence-display');
display.style.opacity = '0';

FIGURE 14-3:
In the browser’s
debugging tool,

click a line
number to set a

breakpoint on
that statement.

278 PART 3 Learning JavaScript: The Language of the Web

Viewing a variable value in break mode
If you want to just eyeball the current value of a variable, the developer tools in
Chrome (and all major browsers) make this straightforward:

1.	 Enter break mode in the code that contains the variable you
want to check.

2.	 If the script hasn’t yet set the value of the variable, step through the code
until you’re past the statement that supplies the variable with a value.

If you’re interested in how the variable’s value changes during the script, step
through the script until you’re past any statement that changes the value. Refer
to the section “Stepping Through Your Code” to learn how to do just that.

3.	 Hover the mouse pointer over the variable name.

The browser pops up a tooltip that displays the variable’s current value.
Figure 14-4 shows an example. Also note in Figure 14-4 that the dev tools
display the current value of any variable immediately after any statement that
sets or changes the variable value.

Exiting break mode
To exit break mode, you can use either of the following methods in the browser’s
debugging tool:

	» Click the resume icon. Chrome’s version of this icon is shown in the margin.

	» Press the browser’s Resume keyboard shortcut. In Chrome (and most
browsers), either press F8 or press Ctrl+\ (Windows) or ⌘  +\ (macOS).

FIGURE 14-4:
In break mode,

hover the mouse
pointer over a

variable name to
display the

variable’s
current value.

CHAPTER 14 Debugging JavaScript 279

Stepping Through Your Code
One of the most common (and most useful) debugging techniques is to step
through the code one statement at a time. Doing so lets you get a feel for the pro-
gram flow to make sure that things such as loops and function calls are executing
properly. You can use four techniques:

	» Step one statement at a time.

	» Step into some code.

	» Step over some code.

	» Step out of some code.

Stepping one statement at a time
The most common way of stepping through your code is to step one statement at
a time. In break mode, stepping one statement at a time means two things:

	» You execute the current statement and then pause on the next statement.

	» If the current statement to run is a function call, stepping takes you into the
function and pauses at the function’s first statement. You can then continue
to step through the function until you execute the last statement, at which
point the browser returns you to the statement after the function call.

To step through your code one statement at a time, set a breakpoint and then,
after your code is in break mode, do one of the following to step through a single
statement:

	» Click the step icon (the Chrome version is shown in the margin).

	» Press the browser’s step keyboard shortcut. In Chrome and most browsers
(except Firefox, which doesn’t support step as of this writing; use the step
into icon instead), press F9.

Keep stepping through until the script ends or until you’re ready to resume
normal execution (by clicking the resume icon, shown in the margin).

280 PART 3 Learning JavaScript: The Language of the Web

Stepping into some code
In all the major browsers (except Firefox), stepping into some code is the same as
stepping through the code one statement at a time. The difference comes when a
statement executes asynchronously (that is, it performs its operation after some
delay rather than right away).

To understand the difference, consider the following code (I added line numbers
to the left; they’re not part of the code; check out chapter14/example02.html):

1 setTimeout(() => {
2 console.log('Inside the setTimeout() block!');
3 }, 5000);
4 console.log('Outside the setTimeout) block!');

This code uses setTimeout() to execute some code after five seconds
(5000 milliseconds). Suppose you enter break mode at the setTimeout() state-
ment (line 1). What happens if you use step versus step into here? Check it out:

	» Step: Clicking the step icon doesn’t take you to line 2, as you might expect.
Instead, because setTimeout() is asynchronous, step essentially ignores the
anonymous function and takes you directly to line 4.

	» Step into: Clicking the step into icon does take you to line 2 but only after the
specified delay (five seconds, in this case). You can then step through the
anonymous function as needed.

To step into your code, set a breakpoint and then do one of the following after your
code is in break mode:

	» Click the step into icon (Chrome’s version of this icon is shown in the margin).

	» Press the browser’s step into keyboard shortcut. In Chrome (and most
browsers), press F11 or press Ctrl+; (Windows) or ⌘  +; (macOS).

My description of step into here doesn’t apply (at least as I write this) to Firefox.
Instead, the Firefox step into feature works like the step feature I describe in the
preceding section.

Stepping over some code
Some statements call other functions. If you’re not interested in stepping
through a called function, you can step over it. Stepping over a function means that
JavaScript executes the function normally and then resumes break mode at the
next statement after the function call.

CHAPTER 14 Debugging JavaScript 281

To step over a function, first either step through your code until you come to the
function call you want to step over, or set a breakpoint on the function call and
refresh the web page. When you’re in break mode, you can step over the function
using either of the following techniques:

	» Click the step over icon (Chrome’s version of this icon is shown in ther margin).

	» Press the browser’s step over keyboard shortcut. In Chrome (and most
browsers), press F10 or press Ctrl+’ (Windows) or ⌘  +’ (macOS).

Stepping out of some code
I’m always accidentally stepping into functions I’d rather step over. If the func-
tion is short, I just step through it until I’m back in the original code. If the
function is long, however, I don’t want to waste time stepping through every
statement. Instead, I invoke the step out feature using either of these methods:

	» Click the step out icon (Chrome’s version of this icon is shown in the margin).

	» Press the browser’s step out keyboard shortcut. In Chrome (and most
browsers), press Shift+F11 or press Ctrl+Shift+; (Windows) or ⌘  +Shift+;
(macOS).

JavaScript executes the rest of the function and then reenters break mode at the
first line after the function call.

CHAPTER 15 Putting JavaScript to Work 283

Chapter 15
Putting JavaScript
to Work

The only way to learn a new programming language is by writing
programs in it.

—DENNIS RITCHIE

This chapter puts your newfound JavaScript know-how to work by building a
couple of projects. The first project is a simple photo gallery that shows
thumbnails of each photo. The magic happens when you use JavaScript to

display the full version of any photo just by double-clicking it.

The second project is more ambitious: fetching data remotely from an API (refer
to Chapter 7 is you’re not sure what an API is all about) and populating a web
page with the returned data. To make this happen, you learn several powerful
JavaScript techniques that enable you to get data from any online source, whether
it’s a public API or a server to which you have access.

IN THIS CHAPTER

	» Creating a JavaScript-driven
photo gallery

	» Getting data from an API

	» Understanding asynchronous
operations

	» Fetching data from an API

	» Populating a page with API data

284 PART 3 Learning JavaScript: The Language of the Web

Project 1: A Photo Gallery
It’s not hard to set up a simple photo gallery page, especially if you lay out the
page using Flexbox. But most photo galleries show just thumbnail versions of
the images, and the user must perform some action to see the full version. You
could go to the trouble of linking each thumbnail to a separate page that contains
the full image, but that sounds like a lot of work to me. Instead, why not let
JavaScript do the heavy lifting? Specifically, in this project you learn how to
display the full version of any image by double-clicking (or double-tapping) it.
Double-clicking (or -tapping) the full image again hides it, and the user sees the
image gallery once again.

The dblclick event fires when the user double-clicks the primary button of a mouse
or double-taps a pointing device such as a trackpad or a touchscreen. (To make
the rest of this section less repetitive, from here on when I write double-click, I also
mean double-tap. You’re welcome.) So, given an object named image, your app
would use the following code to listen for double-clicks. (For the full project code,
check out chapter15/project01.html in this book’s example files.)

image.addEventListener('dblclick', function(e) {
 // Code you want to run goes here
});

To style the two versions of each image — that is, the thumbnail version and the
full-size version — this project uses two CSS classes:

.thumbnail {
 width: 100px;
 height: auto;
}
.full-size {
 position: absolute;
 top: 50px;
 left: 0;
 width: 100%;
}

With these two class rules defined, your dblclick event handler just needs to
toggle the full-size class on (to show the full image) and off (to return to the
regular thumbnail view):

// Toggle the full-size class on the image
image.classList.toggle('full-size');

CHAPTER 15 Putting JavaScript to Work 285

Here’s a portion of the gallery HTML:

<p>Double-click an image to expand/shrink it</p>

<section class="gallery">

 <div>

 </div>

 <div>

 </div>

 <div>

 </div>

...

</section>

Now here’s the full JavaScript:

// Get all the img elements
const images = document.querySelectorAll('.thumbnail');

// Loop through the images
for (const image of images) {

 // Listen for the dblclick event on each image
 image.addEventListener('dblclick', function(e) {

 // Prevent the default action
 e.preventDefault();

 // Toggle the full-size class on the image
 image.classList.toggle('full-size');
 });
}

The JavaScript first returns the collection of img elements on the page (each of
which is assigned the class thumbnail) and then loops through that collection to
add a listener for the dblclick event to each image. The callback function prevents
the default action and then toggles the full-size class. Toggling that class means
that double-clicking an image expands it to the width of the browser window, and
double-clicking the same image shrinks the image back to its thumbnail size.

286 PART 3 Learning JavaScript: The Language of the Web

Project 2: Get a Random Quotation
from an API

JavaScript gets super-powerful — and super-useful — when you connect it to an
online API to display data, weather, or, as in this project, an inspirational quota-
tion. The source for this project’s quotations is called Echoes (https://echoes.
soferity.com/), which doesn’t require you to create an API key or register to
use the API.

I begin with the project’s HTML code:

<h1>Inspiration Station</h1>
<div id="quote-box">
 <div id="quote-text"></div>
 <div id="quote-author"></div>
</div>
<button id="new-quote-button">Get a New Quote</button>

Yep, it’s pretty simple: a title; a box to display the quotation, which is itself divided
into two boxes, one for the quotation and one for the author; and a button to click
to get a fresh quotation. A pile of CSS styling makes everything look nice (check
out Figure 15-1), but to preserve space I leave it up to you to check it out. (All the
code is in chapter15/project02.html.)

FIGURE 15-1:
The interface for

this project.

https://echoes.soferity.com/
https://echoes.soferity.com/

CHAPTER 15 Putting JavaScript to Work 287

Okay, now it’s time to tackle the good stuff: the JavaScript code that makes this
project go. The code begins by storing references to the three main page elements
(the quote, the author, and the button):

const quoteText = document.getElementById('quote-text');

const quoteAuthor = document.getElementById('quote-author');

const button = document.getElementById('new-quote-button');

Now the code adds a click event listener to the button object:

button.addEventListener('click', getQuote);

The getQuote() function that runs when the user clicks the button is the heart of
this project, so I’ll run through it carefully. First, here’s the complete function:

async function getQuote() {

 const apiUrl = 'https://echoes.soferity.com/api/quotes/random?lang=en';

 try {

 const response = await fetch(apiUrl);

 if (!response.ok) {

 throw new Error('Could not fetch quote');

 }

 const data = await response.json();

 quoteText.textContent = `"${data.quote}"`;

 quoteAuthor.textContent = `— ${data.author || 'Unknown'}`;

 updateColors();

 } catch (error) {

 quoteText.textContent = 'Oops! Something went wrong.';

 quoteAuthor.textContent = '';

 document.body.style.backgroundColor = '#ffcccc';

 }

}

288 PART 3 Learning JavaScript: The Language of the Web

Getting your head around
asynchronous operations
When your code deals with only page-related operations, the web browser
executes that code one statement after the other, in each case waiting for the
current statement to complete before moving on to the next one. In programming
parlance, this wait-for-a-task-to-complete-before-moving-to-the-next-task
mode is described as synchronous.

However, synchronous operations become a problem when you start dealing with
back-end tasks (tasks that run on a web server, as opposed to front-end tasks,
which run in the web browser), such as asking a remote API to send some data.
Why is that a problem? Because you don’t know in advance how long a back-end
task might take. Typically, front-end statements execute in milliseconds, but it
might take a remote server multiple seconds to respond to a request for data.
Performing such tasks synchronously means that your code must wait for the
server operation to complete before continuing; the remainder of your code is said
to be blocked by the server request. Blocked code will almost certainly lead to
thumb-twiddling frustration on the part of your users.

Fortunately, you can keep your users happy and their thumbs constructively
occupied by implementing some powerful techniques that prevent code blocking.
The way modern JavaScript prevents such code blocking is by using asynchro-
nous operations, where asynchronous describes an operation that runs separately
in the background and therefore doesn’t prevent the rest of the code from
executing.

JavaScript has several techniques for making operations asynchronous. The
method I use in this project is the async function, which is a function declaration
preceded by the keyword async:

async function functionName() {
 // Asynchronous function code goes here
}

where functionName is the name of the asynchronous function. Here’s how this
project sets up its async function:

async function getQuote() {

 const apiUrl = 'https://echoes.soferity.com/api/quotes/random?lang=en';

 // The rest of the asynchronous function code goes here

}

CHAPTER 15 Putting JavaScript to Work 289

The function leads off by storing the API’s address in the apiURL variable for
later use.

Using await to wait for an asynchronous
operation to complete
Asynchronous operations are awesome, but they create a new problem that’s sort
of the opposite of the blocking problem described previously. When you eventu-
ally get the data from the server, you almost always have to process that data in
some way: perform data conversions, write the data to existing HTML elements
on the page, create elements for the data, and so on. In other words, in this case
you don’t want the browser to process these statements right away. What’s
needed here is a way to say something like, “Yo, wait until you get all the data
from the server, and then perform the following tasks to process that data.”

The way you convince the browser to hold off until an asynchronous operation is
complete before processing the code that follows is by using the await operator:

const resultVar = await expression

where:

	» resultVar is the name of the variable that stores the result of the asynchronous
operation.

	» expression is a reference to an object that runs an asynchronous operation.

You always use the await operator in an async function. Here’s how it’s done in
this project:

const response = await fetch(apiUrl);

What’s up with the fetch() method? The next section explains all.

Fetching data with the fetch() method
Asynchronous operations shine when you use them to fetch data from a server
and display that data on a web page. In JavaScript, you fetch remote data by
using the aptly named fetch() method. Here’s the simplified version of the
fetch() syntax:

const responseVar = await fetch(resource);

290 PART 3 Learning JavaScript: The Language of the Web

where:

	» responseVar is the name of the variable that stores the response returned by
the asynchronous fetch() operation.

	» resource is the URL of the resource you want to fetch.

Here’s how this is done in this project:

const response = await fetch(apiUrl);

The code uses fetch() to get data from the API, and then the await operator tells
the code to wait until that response is received.

Handling JSON data returned by the server
Most APIs send back a response in JSON format (which I introduce in Chapter 8).
To process JSON data returned by an API, you use the response object’s json()
method to parse the returned data. Here’s the syntax:

const data = await response.json();

where:

	» data is the variable that will store the parsed data.

	» response is the variable that contains the response returned by the fetch() call
to the API.

Here’s how it’s done in this project:

const data = await response.json();

Note that since the conversion of the response to JSON format is also an asyn-
chronous operation, the code again uses await to stand by for the conversion
operation to finish before moving on.

Now, with the JSON data in hand, your code can use that data. Most often, you use
the JSON data to modify or populate HTML elements on the page. In this project,
the code populates the quotation text and author fields:

quoteText.textContent = `"${data.quote}"`;

quoteAuthor.textContent = `— ${data.author || 'Unknown'}`;

CHAPTER 15 Putting JavaScript to Work 291

In the final line, if data.author comes back as null or undefined or some other
non-response, the code will display the text Unknown, instead.

Handling errors
When working with an API, your code needs to handle any errors that might crop
up. The basic error-handling procedure is a try/catch structure, which in
JavaScript is similar to the Python try and except blocks, which I talk about
in Chapter 8:

try {

 const response = await fetch(apiUrl);

 if (!response.ok) {

 throw new Error('Could not fetch quote');

 }

 const data = await response.json();

 quoteText.textContent = `"${data.quote}"`;

 quoteAuthor.textContent = `— ${data.author || 'Unknown'}`;

 updateColors();

} catch (error) {

 quoteText.textContent = 'Oops! Something went wrong.';

 quoteAuthor.textContent = '';

 document.body.style.backgroundColor = '#ffcccc';

}

This code says, “Go ahead and try to run all the statements in the try block. If an
error comes up, bail out and run the code in the catch block, instead.”

Finally, note that the final statement in the try block is a call to the update
Colors() function:

function updateColors() {

 const randomHue = Math.floor(Math.random() * 360);

 const newBGColor = `hsl(${randomHue} 50% 75%)`;

 const newTextColor = `hsl(${randomHue} 50% 25%)`;

 document.body.style.backgroundColor = newBGColor;

 document.getElementById('new-quote-button').style.backgroundColor =

newTextColor;

 document.getElementById('quote-text').style.color = newTextColor;

 document.getElementById('quote-author').style.color = newTextColor;

}

292 PART 3 Learning JavaScript: The Language of the Web

This function gets a random number between 0 and 359 and uses that value as the
hue value of the CSS hsl() function. This color is then applied to the page back-
ground and a darker version of the same color is applied to the button background
and to the quotation and author text.

At the very bottom of the JavaScript code is the final statement:

getQuote();

This calls the getQuote() function so that a quotation appears when you first
load the page.

4The Part of Tens

IN THIS PART . . .

Discover ten not-to-be-missed tidbits about
coding with AI.

Get the lowdown on ten HTML tags, CSS properties,
and CSS selectors you need to know.

CHAPTER 16 Ten Things to Know about AI and Coding 295

Chapter 16
Ten Things to Know
about AI and Coding

What’s in your hands, I think and hope, is intelligence: the ability to see
the machine as more than when you were first led up to it, that you can
make it more.

—ALAN PERLIS

There has been a proverbial elephant in the room through the first 15 chapters
of this book: AI. These days, you can’t have a chinwag with anyone even
remotely connected to programming without the conversation eventually

turning to the connection between AI and coding. Why? For the simple reason that
modern AI models such as GitHub Copilot and ChatGPT are scarily good at gener-
ating any type of code with a simple text prompt.

So, is it any surprise when surveys show that more than three quarters of pro
developers now use AI tools to help them get their work done? At the same time,
though, research has shown that almost half of all AI-generated code contains
bugs or vulnerabilities. Therefore, before you dive into AI coding, it’s vital that
you understand both the tremendous opportunities and the serious risks involved.
That’s what this chapter is all about.

IN THIS CHAPTER

	» Understanding how to use AI

	» Avoiding becoming dependent on AI

	» Reviewing the AI coding tools

	» Avoiding mistakes when using AI

296 PART 4 The Part of Tens

Understanding How You Can Use AI
Today’s code-focused AI tools are powerful assistants that can perform a wide
variety of tasks. Many of these tasks are suitable only for professional developers,
but folks relatively new to coding can leverage AI, too. There are five main ways to
use AI to help you code:

	» Autocompleting: Automatically entering one or more lines of code based on
the context. Integrating a tool such as GitHub Copilot into an editor such as
Visual Studio Code for autocompletion can be a huge timesaver.

	» Prompting: Providing a text description of the code you want AI to generate.
Refer to the “Crafting Effective Prompts” section for more.

	» Automating: Getting AI to handle the creation of boilerplate code and to
perform routine tasks.

	» Explaining: Asking AI to teach you how a piece of code works, clarify the
concepts used by some code, or suggest use cases.

	» Debugging: Leveraging AI to figure out why a piece of code generates an
error or doesn’t work the way it’s supposed to.

Learning What AI Can and Can’t Do
AI coding assistants have been trained on billions of lines of public code, which is
the main reason why they’re so good at generating code. That vast training data
means that AI tools are exceptionally good at the following:

	» Generating boilerplate code and repetitive patterns with high accuracy

	» Explaining existing code and breaking down complex logic into understandable
chunks

	» Converting code between different programming languages

	» Debugging syntax errors and providing quick fixes

	» Suggesting improvements based on coding best practices

Pretty good! But today’s AI code assistants also have some critical limitations,
meaning there are a few things they’re just not good at:

CHAPTER 16 Ten Things to Know about AI and Coding 297

	» Comprehending complex business logic

	» Making architectural decisions that require deep know-how of the current system

	» Debugging issues across multiple, interconnected systems

	» Optimizing for performance, especially with highly specialized code or with
code that uses cutting-edge technologies

	» Guaranteeing that generated code is secure

Therefore, it’s probably best to think of AI assistants as the equivalent of intelligent
junior developers: They write solid code but need guidance on design decisions
and business context.

Crafting Effective Prompts
It’s not even remotely a stretch to say the quality of your AI code output depends
entirely on the quality of your input prompts. Effective prompting is a skill that
dramatically improves AI tool usefulness.

The context-first approach works best:

	» Example of a poor prompt: “Write a function to sort data.”

	» Example of a good prompt: “I’m working on an e-commerce web app using
JavaScript. I need a function to sort product objects by price, name, or rating.
The product interface has the following fields: id, name, price, rating, and
category. Please follow camelCase convention, use only vanilla JavaScript
(no frameworks), and comment the code liberally.”

Here are some proven prompting techniques for code:

	» Specify requirements clearly. Always include error handling, documentation
needs, and edge case considerations in your request.

	» Use iterative refinement. Start with just the basic functionality and then
build complexity through follow-up prompts rather than trying to get every-
thing perfect in one request.

	» Apply constraint-driven prompts. Specify limitations such as “use only
vanilla JavaScript” or “keep under 50 lines” to get more focused code.

298 PART 4 The Part of Tens

	» Try the documentation-first pattern. Write detailed comments describing what
you want, and then ask AI to generate code based on those specifications. This
enables you to specify lots of detail about what you want AI to implement.

Learning to Code Using AI
First, the good news: AI can actually accelerate learning to code when you use it
thoughtfully (as I describe next). Research shows that AI-assisted programming
increases student motivation and reduces programming anxiety. Now, the bad
news: If you use AI as a crutch to always handle the parts of the code you don’t
know or don’t understand, you end up with gaping holes in your knowledge. And
over the long term, if you become dependent on AI, your ability to solve problems
independently atrophies to the point of non-existence. Not good!

You can and should use AI to help you learn to code, but that learning will serve
you best if you approach it in phases:

	» Fundamentals phase (no AI assistance): Master the basic syntax of your
programming language of choice, hone your logic skills, and solve problems,
all without AI assistance. This builds the foundation that you’re going to need
to effectively direct AI tools down the road.

	» Skill building phase (moderate AI assistance): Use AI for specific tasks such
as generating boilerplate code, brainstorming ideas, generating test cases, or
explaining complex concepts. However, you still maintain all responsibility for
your app’s core logic and algorithms.

	» Advanced integration phase (full-bore AI assistance): Leverage the full
capabilities and tools of your AI assistant to help you with complex projects.
However, you still need to keep your eye on the big picture by controlling
the overall architecture of the project and by critically evaluating all code
generated by AI.

Avoiding AI Dependency
I mention in the preceding section that long-term use of AI as a crutch to handle
difficult coding tasks can create an unhealthy dependency that erodes rather than
enhances your skill as a coder. To avoid that fate, here are some practical strate-
gies aimed at promoting a balanced use of AI:

CHAPTER 16 Ten Things to Know about AI and Coding 299

	» Treat AI as a smart but occasionally careless assistant that requires your
supervision and direction.

	» Schedule regular AI detox periods where you do without any AI assistance.
This approach will help revitalize your coding skills and knowledge.

	» For all but the most basic boilerplate, avoid the temptation to copy-and-paste
AI-generated code. Type the code yourself to transform passive answers into
active learning.

	» If you’re not sure what AI-generated code is doing, always ask AI to explain it
line-by-line.

	» Practice debugging coding problems independently to keep your trouble-
shooting skills sharp. If you’re still stumped after giving a problem an honest
shot, you can ask AI to tackle it.

Reviewing the Major AI Coding Tools
The AI coding landscape is always changing and pretty much the only thing you
can count on is that the tools will become more powerful, more useful, and more
reliable with each release. From the perspective of a beginning coder, you
probably can’t go wrong with whatever tool you use because, at this point in the
evolution of AI coding, all the major models are mature and powerful. That said,
understanding the current options and how they can assist beginning coders
might help you choose an AI assistant:

	» GitHub Copilot: Probably the most popular AI coding tool with over 15 million
active users, more than 1.3 million of which are paying customers. GitHub
Copilot is a great choice for beginners because it offers a powerful free tier,
it integrates seamlessly into VS Code and other editors, and it offers an
autocomplete feature that suggests code as you type. There’s also a chat
feature for explaining code and debugging problems.

	» ChatGPT (OpenAI): Probably the most versatile general-purpose coding
assistant because you can build everything from simple functions to full-
fledged apps with simple text prompts. ChatGPT is a popular choice for coding
beginners because even the free tier gives you access to powerful OpenAI
models and it offers excellent code explanations for learning. Subscribing to
Plus gives you access to the Codex AI model, which enables you to run code
right from a chat.

	» Claude (Anthropic): Probably offers the highest code quality of the major AI
coding assistants. Claude can turn plain-language project ideas into working

300 PART 4 The Part of Tens

code. Claude is a great beginner’s choice because even the free version can
build app prototypes quickly from simple, natural -language prompts.

	» Gemini (Google): Probably the easiest tool to use if you’re already using other
Google tools and you want to stay within the Google ecosystem. Gemini is a
conversational AI with code writing, debugging, and web-search capabilities.
A free subscription is available.

If you’re still not sure, give GitHub Copilot a whirl. It’s free (with limitations), it
integrates directly into VS Code, and it gives you a choice of which AI model to use,
including OpenAI’s GPT (the model behind ChatGPT), Anthropic’s Claude, and
Google’s Gemini.

Vibe Coding Is Fun
Vibe coding refers to describing the app or web page you want to build in natural
language, letting AI generate the code, and then repeating these two steps to
gradually refine the result, all without examining the code itself. Essentially,
you’re just talking to AI and describing what you want; you’re not coding at all.

Vibe coding is great fun when you just need a simple app or a prototype for a larger
app, but it’s not a great technique to rely on over time or for larger projects. First,
you don’t learn anything about building apps or scripts or pages if you let your AI
lackey do all the work. Second, it’s distressingly common for AI-generated code to
include security vulnerabilities and subtle errors that could cause huge problems
down the road.

Best Practices for Integrating AI
Successfully integrating AI into your coding workflow is mostly a matter of treat-
ing AI as a powerful collaborator rather than a replacement for human judgment.
Some tips to make this work for you:

	» Start small. Begin with basic autocompletion and syntax help, and then
gradually expand to more complex tasks as you build confidence and
understanding.

	» Establish context. Always provide comprehensive background information,
including project structure, business requirements, coding standards, and
technical constraints.

CHAPTER 16 Ten Things to Know about AI and Coding 301

	» Be the boss. Position yourself as the senior developer directing an AI
assistant, never the other way around.

	» Keep your focus on long-term skill development. Focus on building
durable skills that complement AI tools, including system design, debugging
methods, and big-picture thinking.

Avoiding Common Mistakes
New programmers often fall into predictable traps when using AI tools:

	» The 70 percent trap: AI tools can help beginners get apps up to 70 percent
functionality without breaking a sweat, but that last 30 percent (which
includes crucial components such as error handling and edge cases) is the
difference between a polished product and a mere working prototype. Avoid
bypassing that final 30 percent just because it’s difficult and unglamorous.

	» The let-AI-do-it trap: Becoming over-reliant on AI-generated code causes
your programming skills to atrophy. Maintain some balance by regularly
coding without AI and focusing on understanding the code rather than just
pasting it.

	» The over-sharing trap: AI tools can leak confidential information. Never
share proprietary, sensitive, or confidential code with AI tools that train on
user data.

	» The knowledge gap trap: Skipping core computer science concepts in favor
of AI-generated code creates knowledge gaps that compound over time. Build
strong programming foundations first before relying heavily on AI assistance.

Understanding Code Before Using It
The biggest mistake beginners make is copying-and-pasting AI code without
comprehension. This creates technical debt (not understanding the code now can
cause problems later), security vulnerabilities, and missed learning opportunities
that compound over time. Before you copy any AI-generated code, run through
the following checklist:

	» Understand how the code flows. Figure out exactly how the code executes
step by step.

302 PART 4 The Part of Tens

	» Validate input and output. Know what data goes in and what comes out.

	» Check error handling. Identify how the code behaves when things go wrong.

	» Vet third-party tools. Verify all external libraries suggested by AI to ensure
that they’re legit and that you have the right to use them.

	» Check for edge cases. Recognize scenarios where the code might fail.

CHAPTER 17 Ten Vital HTML Tags and CSS Properties 303

Chapter 17
Ten Vital HTML Tags
and CSS Properties

HTML elements enable Web-page designers to mark up a document’s
structure, but beyond trust and hope, you don’t have any control over your
text’s appearance. CSS changes that. CSS puts the designer in the driver’s seat.

—HÅKON WIUM LIE

HTML and CSS aren’t programming languages, but you can’t get very far
with browser-based JavaScript if you don’t know how to build a web page
around your code. Building a web page requires HTML for the overall

structure of the page and CSS to make that structure look good (or a reasonable
facsimile of good, depending on your design skills).

So, even though this is a book about coding, I’d feel remiss if I didn’t offer you at
least a taste of what HTML and CSS have to offer. (After this appetizer, if you want
the full HTML and CSS meal, please check out my book HTML, CSS, & JavaScript
All-in-One For Dummies.) In this chapter, you learn the ten most useful HTML tags
and CSS properties. As a bonus, I also take you through ten particularly useful CSS
selectors. Bon appétit!

IN THIS CHAPTER

	» The top ten HTML tags of all time

	» Ten CSS properties for all your
styling needs

	» Bonus: Ten ridiculously useful
CSS selectors

304 PART 4 The Part of Tens

Ten HTML Tags You Need to Know
A web page is really just an undifferentiated sea of text unless you structure that
text in some way. This structure comes via the HTML tags that you insert strate-
gically into your file.

The basic HTML template
All your web projects need a strong beginning, and the following template does
just that (refer to chapter17/example01.html in this book’s example files):

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title></title>

 <style>

 /* Your styles go here */

 </style>

 </head>

 <body>

 <!-- Your page text and tags go here -->

 <script>

 // Your JavaScript code goes here

 </script>

 </body>

</html>

Here are a few things to bear in mind when using this template:

	» Put your page title (that is, what you want to appear in the browser tab when
someone surfs to your page) between the <title> and </title> tags.

	» If you want to specify CSS style rules for just this page, plop them between
the <style> and </style> tags. If, instead, you want your styles to apply
to multiple pages, add the rules to a separate file — called, say, styles.
css — and then in each page replace the <style> and </style> tags with a
reference to that file (including the path to the file subdirectory, if needed):

<link href="styles.css" rel="stylesheet">

CHAPTER 17 Ten Vital HTML Tags and CSS Properties 305

	» All your text and HTML tags go between the <body> and </body> tags but
above the <script> tag.

	» If you want to use some JavaScript for just this page, insert the code between
the <script> and </script> tags. If, instead, you want to use your code on
multiple pages, add the code to a separate file — called, say, code.js — and
then in each page replace the <script> and </script> tags with a reference
to that file (including the path to the file subdirectory, if needed):

<script src="code.js"></script>

The top ten tags
Okay, with your HTML template saved as a .html file, you’re ready to populate the
body element with your text and tags. HTML has something like a hundred tags,
but the following ten categories contain the workhorse tags you’ll use most often:

	» Structure: HTML defines seven tags that you use to form the overall structure
of your page:

•	 <header>: Holds the introductory content of the page, such as the main
title (almost always an h1 element), a subtitle, and a logo.

•	 <nav>: Holds the navigational content of the page, particularly links to
other site pages.

•	 <main>: Holds the main content of the page which, in practice, means one
or more <article>, <section>, and <aside> tags.

•	 <article>: Holds a self-contained composition, such as a post, a blog entry,
or an article.

•	 <section>: Holds a standalone portion of the page content. For example,
if a page article has one or more logical sections, each with its own
heading, each of those sections should be surrounded by <section>
and </section> tags.

•	 <aside>: Holds content that is indirectly related to the current <article> or
<section> content.

•	 <footer>: Holds the closing content of the page, such as a copyright notice,
author information, or links to other site pages.

	» Headings: HTML defines six heading tags, from <h1> to <h6>, with <h1>
representing the highest level and <h6> representing the lowest. Pages
should have just one <h1> tag.

	» Paragraphs: The <p> tag holds the content of a single paragraph.

306 PART 4 The Part of Tens

	» Divisions: The <div> tag represents a separate container for page content.
Use this tag when structural tags such as <article>, <section>, and <aside>
aren’t appropriate for the content.

	» Line breaks: The
 tag creates a line break, where the text immediately
following the
 tag appears at the beginning of the next line.

	» Spans: The tag surrounds a run of text, which can be as short as a
single character or as long as a multiword phrase. You almost always span
text in this way to apply some CSS styling to it.

	» Links: The <a> tag turns the specified page text into a clickable link to another
page or site. Here’s the basic syntax, where url is the address of the page or
site and text is the page text that you want the user to click:

text

	» Images: The tag inserts an image into the page. Here’s the basic syntax,
where image is the path to the image file and text is alternative text that
describes the image:

	» Lists: The (unordered list), (ordered list), and (list) tags create
lists. Use to create a bulleted list, where each bullet item is surrounded
by and tags. Use to create a numbered list, where each
numbered item is surrounded by and tags.

	» Buttons: The <button> tag creates a clickable button. You need to add a
JavaScript event listener that listens for clicks on the button and then per-
forms some action. Check out project 2 in Chapter 15 for an example.

With the exception of the
 and tags, all the tags just mentioned have a
corresponding closing tag (the same tag, but with a / shoehorned inside it). For
example, you mark the start of a paragraph with the <p> tag, and then you mark
the end of the paragraph with the closing </p> tag.

Ten CSS Properties to Memorize
While HTML tags define the structure of the web page, the look of the page is the
domain of CSS. Unfortunately, CSS is huge, with several hundred properties to
play with. Happily, though, when you’re just getting started with web design,
you’ll spend almost all your time working with just ten properties. For a

CHAPTER 17 Ten Vital HTML Tags and CSS Properties 307

specified element or selector (refer to the next section, “Ten CSS Selectors to
Swoon Over”), here’s what these ten properties do:

	» background-color: Sets the background color. To set a color in CSS, you
have four main ways to go:

•	 Color keyword: Such as red, green, or magenta. Check out www.w3.org/
TR/css-color-4/#named-colors for the full list.

•	 RGB code: A code of the form #rrggbb, where rr specifies the red portion
with a hexadecimal value between 00 and ff; gg specifies the green portion
with a hexadecimal value between 00 and ff; and bb specifies the blue
portion with a hexadecimal value between 00 and ff.

•	 rgb(red green blue) function: Replace each of the red, green, and blue
values with a number between 0 and 255.

•	 hsl(hue saturation lightness) function: Replace hue with a number
between 0 and 359; replace saturation with a percentage value between
0% and 100%; and replace lightness with a percentage value between
0% and 100%.

	» border: Sets the width, style, and color of the surrounding border using the
following syntax (where you replace width with a CSS length value; style with a
border style keyword, such as solid, double, or dashed; and color with any valid
CSS color value):

border: width style color;

	» color: Sets the text color. Use any of the color techniques specified previously
in the background-color item.

	» display: Sets the layout to use for the element’s content, such as grid (for CSS
Grid) or flex (for CSS Flexbox). You can also use none to hide the element.

	» font: Sets various font properties:

•	 font-family: Sets the typeface, such as font-family: "Comic Sans",
sans-serif;.

•	 font-size: Sets the type size, such as font-size: 1.5rem;.

•	 font-style: Sets the type style, such as font-style: italic;.

•	 font-weight: Sets the font weight, such as font-weight: bold;.

	» height: Sets the height. Use a value with any valid CSS length unit, such as px,
em, rem, vh, or %.

	» margin: Sets the size of the margin that lies outside the border. Use a value
with any valid CSS length unit, such as px, em, rem, or %.

https://www.w3.org/TR/css-color-4/%23named-colors
https://www.w3.org/TR/css-color-4/%23named-colors

308 PART 4 The Part of Tens

	» padding: Sets the size of the space between the content and the border (which
is called the padding). Use a value with any valid CSS length unit, such as px,
em, rem, or %.

	» text: Sets various text-related properties:

•	 text-align: Sets the text alignment using a keyword, such as left, center,
right, or justify.

•	 text-decoration: Sets the appearance of decorative lines on text. This
property is most often used to remove underlines from links:

	 a {
		 text-decoration: none;

	 }

•	 text-indent: Sets the size of the indent of the first line of the text. Use a
value with any valid CSS length unit, such as px, em, rem, or %.

	» width: Sets the width. Use a value with any valid CSS length unit, such as px,
em, rem, vw, or %.

Ten CSS Selectors to Swoon Over
When you add a CSS rule to an internal or external style sheet, you assemble your
declarations into a declaration block (that is, you surround them with the { and
} thingies, known in the trade as braces) and then assign that block to the page
item (or items) you want to style. For example, consider the following rule:

h2 {
 font-size: 1.5rem;
 font-family: Verdana;
 text-align: center;
}

The h2 that appears before the opening brace ({) tells the browser that the prop-
erty declarations that follow are to be applied to the page’s <h2> tags. The text
that specifies which elements are to be styled (such as h2 in the preceding
example) is called the selector.

CHAPTER 17 Ten Vital HTML Tags and CSS Properties 309

The selector you assign to the declaration block doesn’t have to be an HTML tag
name. In fact, CSS has a huge number of ways to specify a selector to define what
parts of the page you want to style. Lucky for you, the ten that I take you through
in the following list should cover most of your web development needs:

	» Type selector: An HTML element name, such as p, header, or h2. The browser
applies the style declarations to every instance of that element on the page.

	» Class selector (.): The name of a class, preceded by a period. The browser
applies the style declarations to every element on the page that includes the
class name as an attribute. For example, if you have one or more elements
with the class caption — such as <div class="caption"> — then you can
style every such element as follows:

.caption {
 font-size: .75rem;
 font-style: italic;

}

	» ID selector (#): The id of an element, preceded by the hashtag symbol (#). The
browser applies the style declarations to the element that has the specified id
attribute value. For example, if your page has the tag <h2 id="subtitle">,
you can style that element as follows:

#subtitle {
 color: gray;
 font-size: 1.75rem;
 font-style: italic;

}

	» Universal selector (*): The browser applies the style declarations to every
element on the page. You normally use the universal selector to apply what’s
known in CSS as a reset, where you remove some of the browser’s defaults.
Here’s a simple reset:

* {
 margin: 0;
 padding: 0;
 box-sizing: border-box;

}

310 PART 4 The Part of Tens

	» Attribute selector: An element name, followed by an attribute name in
square brackets ([and]). The browser applies the style declarations to every
page element that includes the attribute. For more specific styling, you can set
the attribute equal to a particular value. For example, to match every <input>
tag where the type attribute equals text, you’d do the following:

input[type="text"] {
 border: 2px dashed blue;
 font-size: 1.25rem;
 margin: 0.5rem;

}

	» Child combinator (>): Two selectors, separated by a greater-than sign
(selectorA > selectorB). The browser applies the style declarations to
every instance on the page where selectorB is a child element of selectorA
(that is, selectorB is contained in selectorA). For example, if you have an ol
element (a numbered list), it will contain two or more li elements. Those li
elements are the children of the ol, so you can style the li elements
as follows:

ol > li {
 color: darkgray;
 font-family: 'Times New Roman', serif;
 font-style: italic;

}

	» Descendant combinator (space): Two selectors, separated by a space
(selector1 selector2). The browser applies the style declarations to
every instance on the page where selector2 is a descendant element of
selector1 (that is, selector2 is the child, or the child of a child, and so on,
of selector1). For example, suppose you have an article element that
contains multiple section and aside elements, each of which contains one
or more p elements. Those p elements are the descendants of the article
element, so you can style the p elements as follows:

article p {
 font-size: 1.1rem;
 padding: 1rem;
 text-indent: 0.5rem;

}

CHAPTER 17 Ten Vital HTML Tags and CSS Properties 311

	» :hover pseudo-class: The text :hover preceded by a selector. The browser
applies the style declarations to an instance of the selector when the user
hovers the mouse pointer over a page element represented by the selector.
For example, the following rule temporarily changes the background color of
a button element when the user hovers the mouse pointer over that button:

button:hover {
 background-color: red;

}

	» :first-child pseudo-class: The text :first-child preceded by a selector.
The browser applies the style declarations to every child element that is the
first of a parent element’s children. For example, the following rule targets
every p element that’s the first child of a parent:

p:first-child {
 text-indent: 0;

}

In case you’re wondering, yep, there’s a :last-child pseudo-class that
targets every child element that is the last of a parent element’s children.

	» :nth-child(n) pseudo-class: The text :nth-child(n) preceded by a
selector. The browser applies the style declarations to one or more elements
based on their position in a parent element’s collection of siblings. The
parameter n is a number, an expression, or a keyword that specifies the
position or positions of the child elements you want to match. You can specify
n in five main ways:

•	 A (an integer): Selects the child element in the Ath position. For example,
p:nth-child(2) selects any p element that’s the second child of a parent.

•	 An (an integer multiple): Selects every Ath child element. For example,
p:nth-child(3n) selects any p element that’s in the third, sixth, ninth,
and so on, position of a parent’s child elements.

•	 An+B (an integer multiple plus an integer offset): Selects every child
element that is in the Ath position, plus B. For example, p:nth-child(3n+2)
selects any p element that’s in the second (n=0), fifth (n=1), eighth (n=2),
and so on, position of a parent’s child elements.

•	 even (keyword): Selects all the sibling elements that are in even-numbered
positions (2, 4, 6, and so on). For example, p:nth-child(even) selects
any p element that is in an even-numbered position within a parent’s child
elements. This is equivalent to p:nth-child(2n).

312 PART 4 The Part of Tens

•	 odd (keyword): Selects all the sibling elements that are in odd-numbered
positions (1, 3, 5, and so on). For example, p:nth-child(odd) selects any
p element that is in an odd-numbered position within a parent’s child
elements. This is equivalent to p:nth-child(2n+1).

For example, here’s a selector that targets just the even elements that use the
product class:

.product:nth-child(even) {
 background-color: lightgray;

}

Index 313

Index
A
add() method, JavaScript

DOMTokenList, 265
addEventListener() method,

JavaScript, 268–269
after() method, JavaScript, 261
AI see artificial intelligence
American Standard Code for Information

Interchange (ASCII), 12
anagram guessing game (Python

project), 180
completing a round, 189
displaying welcome message, 184
finding anagrams, 183–184
full code of, 189–193
getting a random word and its

anagrams, 186
handling user input, 187–188
loading a list of words from a CSV

file, 180–183
looping a single round, 187
setting up game loop, 184–185
tracking user data, 186

Andreesen, Marc, 19
Android app development, 63
anonymous functions, JavaScript, 246
API List, 170
APIs see application programming

interfaces

append() method
JavaScript, 261
Python, 108–109

application development, 54
Android, 63
web, 63
Windows, 60

application programming interfaces (APIs),
61, 65, 142

errors, 173–174
getting random quotation from

(JavaScript project), 286–292
Python, 165–170

arithmetic assignment operators,
31, 94, 95

arithmetic operators, 30–31
array literals, 244
arrays, 26
arrays, JavaScript

declaring, 244–245
for. . .of loop, 247
forEach() method, 245–247
length property, 248, 256
methods, 248, 249

artificial intelligence (AI), 1, 20, 54, 295
avoiding common mistakes when

using, 301
best practices for integrating, 300–301
and coding, 296, 298

314 Coding For Dummies

artificial intelligence (AI) (continued)
coding tools, 299–300
dependency, avoiding, 298–299
prompting, 297–298
strengths and limitations of coding

assistants, 296–297
understanding code generated

by, 301–302
vibe coding, 300

ASCII see American Standard Code for
Information Interchange

assembler, 52
assembly language, 50–53
assignment operators, 29, 90
async function, JavaScript, 288
asynchronous operations, 288–289
attribute selector, 310
automation, 20, 54, 65, 296
await operator, JavaScript, 289, 290

B
back end, 21, 55, 56, 61, 65, 288
backtick, 233–234
before() method, JavaScript, 262
big data, 3
bit, 12
block scope, JavaScript, 228
block syntax, 34, 35
blockchain, 66
bool() function, Python, 93
Boolean

literals, 29
Python, 90, 91, 92, 115, 121

Booth, Kathleen, 51
bootloader, 8

break mode, 45, 46, 275, 276
breakpoint, 276–277
exiting, 278
using debugger statement for

entering, 277
viewing a variable value in, 278
see also stepping (debugging)

break statement
JavaScript, 223–224
Python, 122, 151, 185

breakpoint, 45
removing, 277
setting, 276, 277, 280

buffer overflow, 58
byte, 12

C
C, 11, 12, 58–59
C++, 59–60
C#, 60–61
callback function, 245, 246, 268,

269, 270, 285
camelCase, 25
Cascading Style Sheets (CSS), 55,

209, 211, 303
modification of, 264–267
properties, 306–308
selectors, 255, 308–312
see also Hypertext Markup

Language (HTML)
central processing unit (CPU), 51, 52
charAt() method, JavaScript, 236
charCodeAt() method, JavaScript, 236
ChatGPT (OpenAI), 299
child combinator (>), 310

Index 315

child element
getting parent of, 260
new, adding, 260–263

children property, JavaScript, 258–259
choice() function, Python, 151, 186
class, CSS

adding to an element, 265–266
removing, 266
toggling, 267, 285

class, Python, 159–161
attributes, 162, 164
building, 161–162
class initializer, 161–162
methods, 159
properties, 159

class name, specifying DOM elements
by, 254–255

class selector, 309
class statement, Python, 160, 161
classList property, JavaScript, 265–266
Claude (Anthropic), 299–300
cloud computing, 61, 63, 66
CMS see content management systems
code blocking, and synchronous

operations, 288
coding, 1, 7, 8–9

as a bonus skill, 18
and creativity/fun, 16–17
and jobs, 18
and nerd stereotype, 15–16
real-world uses of, 19–21
reasons for learning, 15–19
and thinking skills, 16
three-and-a-half Rs of, 13

as a universal language, 17
writing and execution of code, 12–13
see also artificial intelligence (AI);

JavaScript; Python
coding concepts

comments, 43–44
conditionals, 33–36
data types, 27–29
debugging and handling errors, 44–47
expressions, 29–33
functions, 38–40
loops, 36–38
objects, 41–43
variables, 24–26

command line
definition of, 72
launching Terminal on macOS, 74
launching Terminal on Windows, 73
and Python, 72–73
running Python on Windows, 82, 83
tools, 61

Command Prompt, 73
comments, 43–44

and debugging, 47
JavaScript, 212–213
Python, 123
turning problem statements into, 47

comparison expressions, 32–33
comparison operators, 32, 94–95
compiler, 12, 13, 58, 68
computers, 8–9, 10, 11–12
concat() method, JavaScript, 249
concatenation operator, 32, 93, 99
conditional execution, 34

316 Coding For Dummies

conditionals, 33–34
if. . .else statements, 35–36
Python, 116–119
true/false decisions, 34–35

Console window in web browsers, 215,
216–217, 273

debugging with, 273–275
displaying, 274
executing code in, 274–275
logging data into, 217, 218, 274

console.log() method, JavaScript, 217,
227, 228, 229, 230, 246, 247, 274

const keyword, JavaScript, 220, 228
content management systems (CMS), 65
continue statement

JavaScript, 224
Python, 122–123, 197

count() method, Python, 100
CPU see central processing unit
createElement() method, JavaScript, 261
creativity, and coding, 16–17
cross-platform apps, 63
CSS see Cascading Style Sheets
csv.DictReader() method, 181–182
cybersecurity, 66

D
data science, 20, 54, 64
data types, 27

Boolean literals, 29
conversion, in Python, 92–93
mixing, in Python, 91–92
numerical literals, 27–28, 90
Python, 91–93, 176
string literals, 28, 90, 91, 232–234

date and time, JavaScript, 236–237
arguments, 237
current, 238
extracting information about, 238, 239
setting, 239–240
specific, 238

date class, Python, 139–140
Date() function, JavaScript, 238
datetime module, Python, 135, 139–140
debugger statement, JavaScript, 277
debugging

Python code, 174–176
strategies, 46–47
techniques, 45–46
tools, in web browsers, 214, 215, 272, 273
use of AI for, 296
and variable scope, 132

debugging, JavaScript, 271
with Console window, 273–275
pausing the code, 275–279
stepping, 279–281
tools, 272–273

decrement operator, 31
descendant combinator (space), 310
DevOps, 61
dictionary, Python, 113–114, 168, 181–182
distributed systems, 61
Django, 20, 55
do. . .while loop, JavaScript, 222–223
Document Object Model (DOM), 252–253

getting data about event, 269–270
listening for event, 269, 270
manipulation of elements, 260–263
modification of CSS, 264–267

Index 317

specifying elements in, 253–257
traversing, 257–260

DOM see Document Object Model
dot notation, 42, 136, 143, 164
.NET framework., 60

E
ecommerce websites, 65
elements, Document Object Model, 252

adding class to, 265–267
adding new element as a child,

261–262
adding text and tags to, 262–263
creating new element, 260–261
getting the children of a parent

element, 257–260
getting the parent of a child element, 260
modification of CSS, 264–267
removing, 263
removing class from, 266
specifying by class name, 254–255
specifying by ID, 254
specifying by selector, 255
specifying by tag name, 254–255
styles, changing, 264
toggling class, 267, 285
working with collection of, 255–257

elif statement, Python, 117–119, 188
embedded systems, 58, 59, 66
empty string see null string
endsWith() method, JavaScript, 235
endswith() method, Python, 100
equal to operator, 29

errors, code
JavaScript, 291–292
types of, 45–46
see also debugging

errors, Python
API errors, 173–174
common types of, 172
debugging, 174–176
decoding traceback messages, 170–171
try and except blocks, 171–174

events, 42, 224, 267–268
event handlers, 267–268
event listener, 268, 287
getting data about, 269–270
listening for, 268–269, 270

except block, Python, 171–174, 181, 195
exists() function, Python, 151
exponential notation, 27–28
expressions

comparison, 32–33
debugging, 47
definition of, 29
logical, 33
numeric, 30–31
Python, 93–97
string, 32

F
fetch() method, JavaScript, 289–290
files, Python, 144

opening, 145
reading data from, 146–147
writing data to, 145–146

318 Coding For Dummies

filter, in Python list
comprehensions, 156–157

find() method, Python, 100
Firefox, 215, 272, 274
firmware, 8
:first-child pseudo-class, 311
Flask, 20, 55
float() function, Python, 93
float keyword, JavaScript, 25
floating-point numbers, 25, 27–28,

240, 241–242
for. . .of loop, JavaScript, 247, 256
for loop

JavaScript, 221–222
Python, 112, 119–121, 128, 147, 198

forEach() method, JavaScript, 245–247
f-string (formatted string), 99, 128
full-stack developers, 64
function scope, JavaScript, 229
functions, 38–40

Python, 128–134
and stepping, 45–46, 280–281

functions, JavaScript, 224–225
calling, after page is loaded, 226–227
calling, when <script> tag is

parsed, 225–226

G
game development, 21, 54, 57, 58,

59, 63, 66
see also anagram guessing game

(Python project)
Gemini (Google), 300
get() method, Python, 167

getDate() method, JavaScript, 239
getDay() method, JavaScript, 239
getElementById() method,

JavaScript, 254
getElementsByClassName() method,

JavaScript, 254, 255
getElementsByTagName() method,

JavaScript, 254, 255–257
getFullYear() method, JavaScript, 239
getHours() method, JavaScript, 239
getMilliseconds() method,

JavaScript, 239
getMinutes() method, JavaScript, 239
getMonth() method, JavaScript, 239
getSeconds() method, JavaScript, 239
getTime() method, JavaScript, 239
GitHub Copilot, 299, 300
global scope

JavaScript, 230
Python, 132

Go, 25, 61–62
Golang see Go
Google Chrome, 214, 272, 274

break mode, 276
Console window in, 217, 218
HTML viewer in, 216, 273

graphics, 59

H
hardware control, 55
high-level languages, 11, 51, 60
high-performance applications, 58, 59, 61
histograms, 202
:hover pseudo-class, 311

Index 319

HTML see Hypertext Markup Language
HTMLCollection object, JavaScript, 258
HTTP status codes, 167
Hypertext Markup Language (HTML), 55,

209, 210, 211–212, 303
basic template, 304–305
file, embedding JavaScript code

inside, 14–15
HTML viewer, 215, 216, 272, 273
tags, 305–306
see also Cascading Style Sheets (CSS);

Document Object Model (DOM);
JavaScript

I
id attribute, 254, 309
ID selector (#), 309
IEEE Spectrum, 50
if. . .else statement, 35–36,

116–117, 188
if statement, 34–35

JavaScript, 224
Python, 115–116, 157, 185, 188

import statement, Python, 136, 137,
138–139, 143

in keyword, Python, 110
includes() method, JavaScript, 235
increment operator, 31
indentation of code, 35, 39, 46,

116, 120, 129
index number, 26
indexes, Python

list, 107–108
string, 97–98
tuples, 112

indexOf() method, JavaScript, 235
__init__() function, Python, 160, 162
innerHTML property, JavaScript, 262, 263
input() function

JavaScript, 224
Python, 102–104, 116, 185, 187

insert() method, Python, 108–109
instance attributes, 162
int() function, Python, 93, 104
integers, 27, 240–241
interactive mode, Python, 81, 85
Internet of Things (IoT), 21, 55
interpreter, 12, 13, 24, 25, 58

definition of, 68
Python, 80–83, 85, 86, 170

IoT see Internet of Things
isNaN() function, JavaScript, 224

J
Java, 62–63
Java Virtual Machine (JVM), 62
JavaScript, 9, 41, 55–57, 64, 65, 209–210

adding comments to code, 212–213
arrays, 244–248, 249
basic script construction, 211–212
coding process, 14–15
comparison operators, 33
date and time, 236–240
debugging, 271–281
external files, creating, 213–214
functions, 224–227
getting a random quotation from an API

project, 286–292

320 Coding For Dummies

JavaScript (continued)
loops, 221–224
math object, 240–244
nesting quotation marks in, 28
objects, 42, 231–249
photo gallery project, 284–285
real-world uses of, 20–21
strings, 231–235
TypeScript, 67–68
variable scope, 228–230
variables in, 25, 220–221
see also Document Object Model (DOM)

JavaScript Object Notation (JSON),
168, 290–291

join() method
JavaScript, 249
Python, 102, 183

JSON see JavaScript Object Notation
json() method

JavaScript, 290
Python, 168

JVM see Java Virtual Machine

K
key (Python dictionary), 113–114
key-value pairs (Python

dictionary), 113–114
keywords, definition of, 10
Kotlin, 63–64

L
lambda keyword, Python, 198
lastElementChild property,

JavaScript, 259
lastIndexOf() method, JavaScript, 235

len() function, Python, 98, 106, 112, 156
length

of arrays, JavaScript, 248, 256
sentence, analyzing, 200–202
of strings, JavaScript, 234

let keyword, JavaScript, 220, 228
lexicon-based sentiment analysis, 203
libraries, Python, 54, 141–142, 193–194

importing and using, 143–144
installation of, 142–143
for interacting with APIs, 166–167

list comprehensions, Python,
183–184, 186, 200

adding filter, 156–157
setting up, 155–156

lists, 26
lists, Python, 105–106

adding items, 108–109
changing an item in, 108
constructing, 106
getting an item from, 107–108
looping through, 120
from range of numbers, 106–107
removing items, 109–110
searching in, 110

literals
array, 244
Boolean, 29
definition of, 27
numerical, 27–28, 90
string, 28, 90, 91, 232–234

local scope
JavaScript, 229
Python, 133–134

Index 321

logic errors, 45, 46
logical expressions, 33, 95–96
logical operators, 33, 96
loop counter, 221–222
loops, 36–38
loops, JavaScript, 221
do. . .while loop, 222–223
execution, controlling, 223–224
for loop, 221–222

loops, Python, 119, 151, 184–185, 196, 197
execution, interrupting, 122–123
through collection of things, 119–121
when a condition is true, 121–122

lower() method, Python, 100, 185, 195

M
machine language, 10–11, 50–51
machine learning, 20, 54, 64
macOS

checking Python installation status in, 76
Console window in browsers of, 274
installation of Python library on, 142–143
installation of Python on, 79–80
launching Terminal on, 74, 74
running on Windows, 82, 83
running Python on, 82, 83
running Python script file in, 86
Terminal shortcuts, 74–75
web development tools in browsers of,

214–217, 272
main() function, Python, 151
math module, Python, 135, 138, 139
math object, JavaScript, 240–244

Math object methods, JavaScript, 242, 244
Math.abs(), 243
Math.cbrt(), 243
Math.ceil(), 243
Math.cos(), 243
Math.exp(), 243
Math.floor(), 243
Math.log(), 243
Math.max(), 243
Math.min(), 243
Math.pow(), 243
Math.random(), 243
Math.round(), 243
Math.sin(), 243
Math.sqrt(), 243
Math.tan(), 243
Math.trunc(), 243

Math object properties, JavaScript, 242, 244
Math.E, 243
Math.LN2, 243
Math.LN10, 243
Math.LOG2E, 243
Math.LOG10E, 243
Math.PI, 243
Math.SQRT1_2, 243
Math.SQRT2, 243

math operators, Python, 94–95
Matplotlib library, 194, 201
mean() function, Python, 137–138
memory leaks, 58, 59, 65
method chaining, 185
microservices, 61
Microsoft Edge, 215, 272, 274

322 Coding For Dummies

mnemonics, 51
mobile apps, 21
modules, Python, 134–135

creating, 140–141
element, importing, 138–140
importing, 136, 137
using, 136–138

multiline strings, 233, 234

N
Natural Language Toolkit (NLTK),

193–194, 200, 203
networking, 61, 66
newline character, Python, 146
NLTK see Natural Language Toolkit
Node.js, 21, 65
:nth-child(n) pseudo-class, 311–312
null string, 28
numbers

floating-point, 25, 27–28, 240, 241–242
integers, 27, 240–241
making Python list from, 106–107
numeric expressions, 30–31
numerical literals, 27–28, 90
Python, 91
and strings, conversion

between, 240–242

O
object-oriented programming

(OOP), 59, 60
class, 159–161
Python, 158–165

objects, 41–43
JavaScript, 231–249
Python, 163–165

online data sources, 54, 57
OOP see object-oriented programming
open() function, Python, 145,

146, 181, 195
operands, 30
operating systems, 58, 59

see also macOS; Windows
operators, 30

arithmetic, 30–31
arithmetic assignment, 31, 94, 95
assignment, 29, 90
comparison, 32, 94–95
logical, 33, 96
math, 94–95

order of operations, Python, 96–97

P
page-level scope see global scope
parent element, 264

getting all child nodes, 258–259
getting first child node, 259
getting last child node, 259

parentNode property, JavaScript, 260
parseFloat() function,

JavaScript, 241–242
parseInt() function, JavaScript, 240–241
PEMDAS, 96–97
Phaser.js, 21
photo gallery (JavaScript project), 284–285
PHP, 64–65

Index 323

pip, 142
+ operator, JavaScript, 242
pop() method

JavaScript, 249
Python, 109–110

prepend() method, JavaScript, 261
print_info() function, Python, 160, 163
program errors see errors, code
programming see coding
programming languages, 9–10

assembly language, 50–53
C, 11, 12, 58–59
C#, 60–61
C++, 59–60
compiled, 68
Go, 25, 61–62
interpreted, 68
Java, 62–63
Kotlin, 63–64
PHP, 64–65
ranking of, 50
role of, 10–12
Rust, 65–66
Swift, 66–67
Typescript, 67–68
see also JavaScript; Python

prompt() function, JavaScript, 222, 240
prompting, AI, 296, 297–298
PSF see Python Software Foundation
public APIs, 169
push() method, JavaScript, 249
PyPI see Python Package Index

pyplot() function, Python, 200–201
Python, 9, 53–55, 71–72, 179

anagram guessing game project, 180–193
cat fact cards (example), 176–178
coding process, 13–14
and command line, 72–73
comments, 123
conditionals, 116–119
data types, 91–93, 176
debugging, 174–176
declaring arrays/lists in, 26
dictionary, 113–114, 168, 181–182
expressions, 93–97
external libraries, 141–144
files, 144–147
functions, 128–131
handling program errors, 170–174
interactive mode, 81, 85
list comprehensions, 155–157,

183–184, 186, 200
lists, 105–110
loops, 119–123, 184–185, 196, 197
modules, 134–141
order of operations, 96–97
program, running, 84–87
Pythonic code, 154–155
quotations archive (example), 147–151
real-world uses of, 20
running on Windows, 82, 83
script mode, 81–82, 85–87
sets, 114–115
standard library, 134–135

324 Coding For Dummies

Python (continued)
strings, 97–104
survey bot (example), 123–215
text analyzer project, 193–206
tuples, 111–112
variable scope, 131–134
variables in, 24, 90, 99
version number of, 75, 82
see also libraries, Python

Python, APIs in, 165–166
connection, 166–167
handling errors, 173–174
repositories, 169–170
working with API data, 167–169

Python, installation of, 75
checking installation status, 76–77
on macOS, 79–80
on Windows, 77–79

Python, OOP in, 158–159
building class, 161–162
class, 159–161
creating objects, 163–164
using objects in code, 164–165

Python launcher (Windows), 82
Python Package Index (PyPI), 142
Python Software Foundation (PSF), 135

Q
querySelector() method, JavaScript, 255
querySelectorAll() method,

JavaScript, 255
quotation marks, in string literals, 28,

90, 232, 233

R
raise_for_status() method,

Python, 174
random module, Python, 135, 151, 186
random quotation from API (JavaScript

project), 286–287
asynchronous operations, 288–289
await operator, 289
fetch() method, 289–290
handling errors, 291–292
handling JSON data returned by the

server, 290–291
interface, 286

range() function, Python, 106–107, 121
RapidAPI, 170
read() method, Python, 146
readlines() method, Python, 147
remove() method

JavaScript DOMTokenList, 264, 266
Python, 109–110

REPL (read, evaluate, print, loop), 72, 81,
85, 92, 93

replace() method, Python, 100
requests library, Python, 142–144, 166–167
reserved words, 10
reverse() method, JavaScript, 249
reversed() function, Python, 107
runtime errors, 45, 46
Rust, 65–66

S
Safari, 215, 272, 274
sandbox, 52

Index 325

scientific computing, 20
scikit-learn, 20
script mode, Python, 81–82, 85–87
<script> tag, 211, 213, 224,

225–226, 227, 254
script values, monitoring, 46
selectors, CSS, 308–312

definition of, 308
specifying DOM elements by, 255

sentiment analysis, 202–204
sent_tokenize() function, Python, 200
server-side web development, 64
setDate() method, JavaScript, 239
setFullYear() method, JavaScript, 239
setHours() method, JavaScript, 239
setMilliseconds() method,

JavaScript, 239
setMinutes() method, JavaScript, 239
setMonth() method, JavaScript, 239
sets, Python, 114–115
setSeconds() method, JavaScript, 239
setTime() method, JavaScript, 239
shift() method, JavaScript, 249
single-line syntax, 34
slice() method, JavaScript, 236, 249
smart devices, 21
sort() method, JavaScript, 249
sorted() function, Python, 183, 198, 199
split() method

JavaScript, 236
Python, 101–102

sqrt() function, Python, 138, 139
src attribute, 214

startsWith() method, JavaScript, 235
startswith() method, Python, 100
statements, definition of, 11
statistics module, Python, 135,

136, 137–138
stepping (debugging), 45–46, 279

into a code, 280
one statement at a time, 279
out of a code, 281
over a code, 280–281

stop words, 196–197
str() function, Python, 93
string expressions, 32
string literals, 28, 90, 91, 232–234
string module, Python, 196
strings, 26

multiline, 233, 234
using variable values in, 233

strings, JavaScript, 231–232
converting between strings and

numbers, 240–242
extraction of substrings, 235, 236
length of, 234
searching for substrings, 235
templates, 232–234

strings, Python, 91
getting input from user, 102–104
indexes, 97–98
looping through, 120
methods, 99–101, 100
mixing with variables, 99
splitting and joining, 101–102

326 Coding For Dummies

strip() method, Python, 147, 185
style property of HTML elements, 264
substr() method, JavaScript, 236
substring() method, JavaScript, 236
substrings, JavaScript, 235, 236
Swift, 66–67
synchronous operations, 288
syntax

block, 34, 35
definition of, 10, 34
single-line, 34

syntax errors, 44
sys.exit() function, Python,

181, 195
systems programming, 66

T
template literals, 233–234
TensorFlow, 20
Terminal

launching on macOS, 74
launching on Windows, 73
shortcuts, 74–75

text analyzer (Python project), 193
analyzing sentence length, 200–202
analyzing text sentiment, 202–204
cleaning the text, 195–196
finding longest words, 199
finding most common words,

196–199
full code of, 204–206
library installation for, 193–194
opening and reading text file, 195

textContent property,
JavaScript, 262–263

thinking skills, and coding, 16
time see date and time, JavaScript
TIOBE Index, 50
title() method, Python, 100
toggle() method, JavaScript, 267
traceback messages, Python,

170–171
transistors, 11–12
true/false decisions, 34–35
try block, Python, 171–174, 195
try/catch structure, JavaScript, 291
tuples, Python, 111–112
type() function, Python, 176
type selector, 309
Typescript, 67–68

U
universal selector (*), 309
unpacking, tuple, 112
unshift() method, JavaScript, 249
upper() method, Python, 100

V
VADER (Valence Aware Dictionary and

sEntiment Reasoner), 203
var keyword

Go, 25
JavaScript, 220

variable interpolation, 233
variable scope, 227

JavaScript, 228–230
Python, 131–134

Index 327

variables, 24
arrays, 26
declaring, 24–25
inclusion in other statements, 25–26
JavaScript, 25, 220–221
lists, 26
Python, 90, 99

vibe coding, 300
virtual reality (VR) applications, 59
VR see virtual reality applications

W
web application development, 63
web browsers, 15, 59, 210, 251

debugging tools in, 214, 215, 272, 273
HTML viewer in, 215, 216, 272, 273
web development tools in,

214–218, 272–273
see also Console window in web browsers

web development, 20, 55, 56–57, 61, 63
server-side, 64
tools, in browsers, 214–218, 272–273
see also JavaScript

web server, 21, 55
WebAssembly, 66

while loop, 37
JavaScript, 221, 223
Python, 121–122, 128, 131,

184–185, 187, 188
while True statement, Python, 122, 151
Windows

application development, 60
checking Python installation status

in, 76, 77
Console window in browsers of, 274
installation of Python library on, 142
installation of Python on, 77–79
launching Terminal on, 73, 73
running Python on, 82, 83
running Python script file in, 86
Terminal shortcuts, 74–75
web development tools in browsers of,

214–217, 272
Windows PowerShell, 73
with statement, Python, 145–146
word_tokenize() function, Python, 200
write() method, Python, 145–146

Z
Zen of Python, 154

About the Author
Paul McFedries is the president of Logophilia Limited, a technical writing
company, and has worked with computers large and small since 1975. While now
primarily a writer, Paul has worked as a programmer, consultant, database devel-
oper, and website developer. He has written more than 100 books that have sold
over four million copies worldwide. Paul invites everyone to drop by his personal
website at https://paulmcfedries.com, or to follow him on X (@paulmcf) or
Facebook (www.facebook.com/PaulMcFedries/).

Dedication
To Karen and Chase, of course.

Author’s Acknowledgments
If we’re ever at the same cocktail party and you overhear me saying something
like “I wrote a book,” I hereby give you permission to wag your finger at me and
say “Tsk, tsk.” Why the scolding? Because although I did write this book’s text
and take its screenshots, those represent only a part of what constitutes a “book.”
The rest of it is brought to you by the dedication and professionalism of Wiley’s
editing, graphics, and production teams, who toiled long and hard to turn my text
and images into an actual book.

I offer my heartfelt thanks to everyone at Wiley who made this book possible, but
I’d like to extend some special thank-you’s to the folks I worked with directly:
executive editor Steve Hayes, project editor and copy editor Susan Pink, and tech-
nical editor Guy-Hart Davis.

https://paulmcfedries.com/
http://www.facebook.com/PaulMcFedries/

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Managing Editor: Sofia Malik

Project and Copy Editor: Susan Pink

Production Editor: Magesh Elangovan

Technical Editor: Guy Hart-Davis

Proofreader: Debbye Butler

Cover Images: © Luis Alvarez/Getty Images,
Screen capture courtesy of Paul McFedries

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Part 1 Coding Basics
	Chapter 1 What Is Coding?
	Programming: Making a Computer Do Your Bidding
	What Is a Programming Language?
	The Role of Programming Languages
	Understanding How Code Is Written and Executed
	How Python code works
	How JavaScript code works

	Why Learn to Code? Let Me Count the Ways
	Coding isn’t just for nerds
	Coding teaches you how to think
	Coding is fun and creative
	You can build (almost) anything you can imagine
	Coding is a universal language
	Coding opens the door to high-paying jobs
	You don’t have to be a pro to benefit from learning to code
	Coding is easier to learn than ever before
	Coding is the future

	Real-World Uses of Coding

	Chapter 2 Coding Concepts You Need to Know
	Storing Stuff in Variables
	Declaring variables
	Including variables in other statements
	Getting your head around arrays and lists

	Dealing with Data Types
	Working with numeric literals
	Working with string literals
	Working with Boolean literals

	Constructing Expressions
	Building numeric expressions
	Building string expressions
	Building comparison expressions
	Building logical expressions

	Making Decisions with Conditionals
	Making simple true/false decisions
	Branching with if. . .else statements

	Automating Repetitive Tasks with Loops
	Organizing Code into Functions
	Introducing Objects
	Documenting Code with Comments
	Debugging Code and Handling Errors
	Understanding error types
	Taking a look at some debugging techniques
	More debugging strategies

	Chapter 3 Getting to Know Some Programming Languages
	Ranking Programming Languages
	Assembly: Close to the Machine
	Python: No Experience Required
	JavaScript: The Glue that Binds the Web
	Sneaking a Peek at a Few Other Popular Languages
	C
	C++
	C#
	Go
	Java
	Kotlin
	PHP
	Rust
	Swift
	TypeScript

	Grokking the Difference between Interpreted and Compiled Languages

	Part 2 Learning Python: The Beginner-Friendly Language
	Chapter 4 Getting Started with Python
	Getting to the Command Line
	Launching Terminal on Windows
	Launching Terminal on macOS
	Some useful Terminal shortcuts

	Installing Python
	Does your computer already have Python installed?
	Installing Python on Windows
	Installing Python on macOS

	Running the Python Interpreter
	Running in interactive mode (REPL)
	Running in script mode
	Running Python on Windows
	Running Python on macOS

	Running Your First Python Program
	Running the program in interactive mode
	Running the program in script mode

	Chapter 5 Getting Comfy with Some Python Fundamentals
	Declaring Variables
	Exploring Python Data Types
	Mixing data types
	Converting data types

	Constructing Expressions
	Basic math operators in Python
	Comparison operators in Python
	Building logical expressions in Python
	A quick peek at order of operations

	Messing Around with Strings
	Understanding string indexes
	Mixing strings with variables
	String methods
	Splitting and joining strings
	Getting input from the user

	Chapter 6 Storing Data and Controlling Your Code
	Storing Stuff in Lists
	Making a list
	Making a list from a range of numbers
	Getting an item from a list
	Changing an item in a list
	Adding and removing list items
	Searching in a list

	More Ways to Store Stuff: Tuples and Dictionaries
	Storing unchanging data in a tuple
	Looking up data in a dictionary

	Conditionals in Python
	The basic if statement
	Adding an else statement
	Even more choices with the elif statement

	Python Loops
	Looping through a collection of things
	Looping while a condition is True
	Interrupting loop execution

	Adding Comments to Your Code
	Example: Build Your Own Survey Bot

	Chapter 7 Reusing Code
	Making Your Code More Efficient with Functions
	Getting the Hang of Variable Scope
	What is variable scope, anyway?
	Global: The “everyone’s invited” scope
	Local: The “for function eyes only” scope

	Avoiding Wheel Reinvention with Modules
	Importing a module
	Using a module
	Importing part of a module
	Rolling your own modules

	Reuse Heaven: Installing External Libraries
	Installing a library
	Importing and using a library

	Reusing Data by Writing and Reading Files
	Opening a file
	Writing data to a file
	Reading data from a file

	Example: Building a Quotations Archive

	Chapter 8 Expanding Your Python Skills
	Waxing Pythonic
	Comprehending List Comprehensions
	Setting up a basic list comprehension
	Adding a filter

	Introducing Object-Oriented Programming (OOP)
	The problem: Everything’s scattered
	The solution: Bring it all together with OOP
	Building a class
	Creating an object
	Using an object in your code

	Working with APIs
	Talking to an API with Python
	Working with the data you get back
	A few API repositories

	Handling Program Errors
	Decoding Python traceback messages
	Handling errors with try and except
	Handling API errors

	Debugging Your Code
	Example: Cat Fact Cards

	Chapter 9 Building Some Useful Python Projects
	Project 1: Anagram Guessing Game
	Loading a list of words from a CSV file
	Finding anagrams
	Displaying a welcome message
	Setting up the game loop
	Getting a random word and its anagrams
	Tracking user data
	Looping a single round
	Handling user input
	Completing a round
	The full code

	Project 2: Text Analyzer
	Installing and downloading some stuff
	Opening and reading the text file
	Cleaning the text
	Finding the most common words
	Finding the longest words
	Analyzing sentence lengths
	Analyzing text sentiment
	The full code

	Part 3 Learning JavaScript: The Language of the Web
	Chapter 10 Getting Your Feet Wet with JavaScript
	JavaScript: Controlling the Machine
	What You Need to Get Started
	Basic Script Construction
	The <script> tag
	Where do you put the <script> tag?

	Adding Comments to Your Code
	Creating External JavaScript Files
	Getting to Know the Console
	Displaying the developer tools in various browsers
	Displaying the Console window in various browsers
	Example: Logging data to the Console window

	Chapter 11 Getting the Hang of a Few JavaScript Fundamentals
	I Do Declare: Variables in JavaScript
	Code Looping in JavaScript
	Using for loops
	Using do. . .while loops
	Controlling loop execution

	Harnessing the Power of Functions
	Calling a function when the <script> tag is parsed
	Calling a function after the page is loaded

	Getting the Hang of Variable Scope
	Working with block scope
	Working with function scope
	Working with global scope

	Chapter 12 Tackling Some JavaScript Objects
	Pulling Strings
	Working with string templates
	Determining the length of a string
	Searching for substrings
	Methods that extract substrings

	Dealing with Dates and Times
	Arguments used with the Date object
	Working with the Date object
	Extracting information about a date
	Setting the date

	Working with Numbers: The Math Object
	Converting between strings and numbers
	The Math object’s properties and methods

	Working with Arrays
	Declaring an array
	Iterating an array: forEach()
	Iterating an array: for . . . of
	Working with the length property
	More array methods

	Chapter 13 Unleashing JavaScript in the Browser
	Getting to Know the Document Object Model
	Specifying Elements
	Specifying an element by ID
	Specifying elements by tag name
	Specifying elements by class name
	Specifying elements by selector
	Working with collections of elements

	Traversing the DOM
	Getting the children of a parent element
	Getting the parent of a child element

	Manipulating Elements
	Adding an element to the page
	Removing an element

	Modifying CSS with JavaScript
	Changing an element’s styles
	Adding a class to an element
	Removing a class
	Toggling a class

	Building Reactive Pages with Events
	Listening for an event
	Getting data about the event

	Chapter 14 Debugging JavaScript
	Examining Your Debugging Tools
	Debugging with the Console Window
	Displaying the Console window in various browsers
	Logging data to the Console window
	Executing code in the Console window

	Pausing Your Code
	Entering break mode
	Viewing a variable value in break mode
	Exiting break mode

	Stepping Through Your Code
	Stepping one statement at a time
	Stepping into some code
	Stepping over some code
	Stepping out of some code

	Chapter 15 Putting JavaScript to Work
	Project 1: A Photo Gallery
	Project 2: Get a Random Quotation from an API
	Getting your head around asynchronous operations
	Using await to wait for an asynchronous operation to complete
	Fetching data with the fetch() method
	Handling JSON data returned by the server
	Handling errors

	Part 4 The Part of Tens
	Chapter 16 Ten Things to Know about AI and Coding
	Understanding How You Can Use AI
	Learning What AI Can and Can’t Do
	Crafting Effective Prompts
	Learning to Code Using AI
	Avoiding AI Dependency
	Reviewing the Major AI Coding Tools
	Vibe Coding Is Fun
	Best Practices for Integrating AI
	Avoiding Common Mistakes
	Understanding Code Before Using It

	Chapter 17 Ten Vital HTML Tags and CSS Properties
	Ten HTML Tags You Need to Know
	The basic HTML template
	The top ten tags

	Ten CSS Properties to Memorize
	Ten CSS Selectors to Swoon Over

	Index
	EULA

Cal)
Codlng

“ @

=y

