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Foreword 

Even though each of the eleven chapters of this book was independently written, 
they all contribute to a common theme and the book delivers a common message, 
which is that dynamic models and analysis are more appropriate for economics and 
management sciences than static ones, the latter seemingly being more prevalent in 
these fields. The editors of the book, Fouad El Ouardighi and Gustav Feichtinger, 
make a strong case for delivery of this position—what I would consider to be an 
irrefutable fact—by their selection of the individual entries comprising the book, 
preceded by their introductory chapter “Turning the page,” discussing the overall 
goal and contents of the chapters. I say that superiority of dynamic models and 
analysis over static ones is an irrefutable fact, because of the richness such a 
framework provides, accounting for the most common type of decision-making 
process taking place over a horizon (and not be restricted to a single point in time), 
which is most natural for problems in economics and management sciences. This 
is the case regardless of whether there is a single decision-maker in full control 
of the evolution of the process (in which case optimal control theory provides 
the right set of tools), or even if there is a single decision-maker who however 
is not in full control of the process (and the outcome) because of dynamic (and 
stochastic) uncertainties or adversarial inputs (in which case robust optimal control 
theory or theory of zero-sum dynamic games provides the appropriate framework 
and the set of tools), or multiple decision-makers (players) strategically interacting 
under partially conflicting objectives (which calls for the theory of non-cooperative 
nonzero-sum dynamic games, with a plethora of information structures and its rich 
set of equilibrium solution concepts). This richness provides the researcher with 
the flexibility to come up with (and design) models that better capture “reality,” 
and not be confined to myopic decision making which overlooks the long-term (or 
even relatively short-term but multi-stage) benefits of giving serious consideration 
(optimum in a precise sense) to how current stage decisions impact performance at 
future stages. In addition to this trade-off between stagewise gains and long-term 
(multi-stage) benefits, there is also the importance of the delicate balance a decision 
policy has to maintain between performance-driven action(s) and information to 
be transmitted to future stages for more accurate decision making in the future,

v



vi Foreword

which would result in better overall performance—two roles that would sometimes 
be conflicting, particularly in game situations with strategic policy making. Such 
issues of trade-offs and conflicts (known as dual or triple roles of decision policies), 
which are quite common in multi-stage decision making, necessitating also bringing 
in of a learning element, clearly do not arise in static/myopic decision making. 

Many prominent economists, including several Nobel Laureates, have actually 
advocated dynamic models for economic decision making. For example, in their 
book Robustness (Princeton University Press, 2008), the two Nobel Laureates Lars 
Peter Hansen and Thomas J. Sargent work with stochastic dynamic models to 
address economic decision making when the decision-maker is faced with mis-
specified models or does not fully trust the model at hand; see my review of the 
book in Automatica (95:511–513, September 2018). Two pillars of the approach 
advocated by Hansen and Sargent, as also acknowledged in the Preface of their 
book, are the connection established in the book (T. Başar and P. Bernhard, H-
infinity optimal control and related minimax design problems: A dynamic games 
approach, Birkhauser, 1995) between robust control and a class of parameterized 
zero-sum dynamic games, and the approach to robustness in stochastic control 
problems through optimization of exponentiated cost (known also as risk-sensitive 
optimal control) as expounded in (P. Whittle, Risk-sensitive optimal control, Wiley, 
1990), where the latter is also connected to parameterized zero-sum dynamic games 
(this time stochastic). This is of course all dynamic modeling and analysis, and to 
quote a statement made by the authors on pages 19–20 of Robustness: “The 1950s– 
1960s control and estimation theories have contributed enormously to the task of 
constructing dynamic equilibrium models in macroeconomics and other areas of 
applied economic dynamics. We expect that the robust control theories will also 
bring many benefits that we cannot anticipate.” This is a clear corroboration of the 
dictum that dynamic models are more appropriate (than static ones) for economic 
decision making—a position I have also advocated going back multiple decades, 
as in, for example (S.J. Turnovsky, T. Başar, and V. D’Orey, Dynamic strategic 
monetary policies and coordination of interdependent economies, The American 
Economic Review, 78(3):341–361, 1988; T. Başar and M. Salmon, Credibility and 
the value of information transmission in a model of monetary policy and inflation, 
Journal of Economic Dynamics and Control, 14:97–116, 1990). Among many 
others, the most recent (2024) Nobel Laureate, Daron Acemoglu, has also advocated 
the use of dynamic models for economic decision making, and he has predominantly 
used frameworks of stochastic control and stochastic dynamic games with also 
elements of learning in his particularly more recent work. 

In concluding, I applaud the editors of this book for bringing the issue of decision 
making using dynamic models to the broader community through the contributions 
they have collected and put together as a coherent volume. 

University of Illinois Urbana-Champaign 
Champaign, IL, USA 

Tamer Başar



Preface 

At the 15th Viennese Workshop on Optimal Control and Dynamic Games that 
took place in Austria in July 2022, many colleagues shared their perception that, 
though less effective than dynamic decision-making models, static models were 
increasingly widespread in several research areas of economics and management 
sciences, in terms of publications in scientific journals, attraction of doctoral 
students, fundraising for research, etc. This perception led us to publish a book that 
highlights the economic and/or social cost of founding decisions on static models 
in various fields of economics and management, and thus shows the superiority 
of dynamic models and methods in these areas. The dual objective is to explain 
the inability of static decision-making models to provide accurate economic and 
managerial prescriptions, and to promote dynamic approaches in economics and 
management sciences. We thereby encourage teachers, researchers, students, editors 
of scientific journals, and decision-makers to move beyond static approaches in 
economics and management science whenever possible. 

We express our gratitude to the Springer Nature editors for their enthusiastic 
reception in favor of our work project, especially to Ms. Jianlin Yan. We are also 
grateful to Ms. Sneha Arunagiri for her coordination efforts and to Ms. Karen 
Sherman for the English editing. The editors appreciate the financial support from 
the research center of ESSEC Business School (CERESSEC). 

Cergy Pontoise Cedex, France Fouad El Ouardighi 
Vienna, Austria Gustav Feichtinger
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Chapter 1 
Turning the Page 

Fouad El Ouardighi and Gustav Feichtinger 

Scientific knowledge is always the reformation of an illusion 
Gaston Bachelard, Etudes, 1970 

Abstract In economics and management science, static models are not conceived 
as an intermediate step, a milestone, in the process of scientific understanding 
of a given phenomenon, but have become an end in itself. This chapter seeks to 
encourage teachers, researchers, students, publishers, and research fund providers 
to turn the page on static approaches in order to carry out research that is mindful of 
the future, more responsible research. 

Keywords Static decision-making models · Myopia · Farsightedness · 
Responsible research 

In a remarkable effort to establish a clear distinction between statics and dynamics 
in economic analysis, the famous economist Fritz Machlup (1959) reached the 
troubled conclusion that the division of economic analysis into statics and dynamics 
makes too many senses rather than no sense. Therefore, he advocated against the use 
of the terms statics and dynamics, and recommended that the terms be replaced by 
more meaningful concepts whenever possible.1 At a time when economic analysis 

1 Machlup (1959) drolly summarized the cacophony reflecting the then prevailing controversial 
definitions of the two terms: “For more than twenty years I have been telling my students that one 
of the widespread uses of ‘Statics’ and ‘Dynamics’ was to distinguish a writer’s own work from 
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2 F. EI Ouardighi and G. Feichtinger

was seeking to establish the main laws (or uniformities) of economics (Pareto, 
1906), according to a partially prevalent, mechanics-based, consensus—mainly 
inherited from John Stuart Mill (1848)—the term statics referred to steady-state 
equilibrium characterization whereas dynamics referred to the transient path toward 
steady-state equilibrium analysis (e.g., Clark, 1898; Edgeworth, 1925; Hicks, 1939; 
Stigler, 1947).2 Because both transient and steady-state analysis are inseparably 
complementary approaches in the mathematical analysis of dynamical systems, 
Machlup’s conclusion of separating the proponents of the two approaches from 
one another may have seemed reasonable. In the current times, however, it appears 
somewhat indulgent. The reasons are threefold. First, economic analysis nowadays 
is mainly decision-making driven. In this regard, normative rather than descriptive 
models, involving one or several decision-makers, are sought in the distinct areas 
of economics and management sciences. Depending on whether a static or dynamic 
approach is adopted, such models may prescribe quite different courses of actions 
with potentially considerable stakes at hand. Therefore, a clear-cut, non-partisan 
position regarding the accuracy of the two approaches is needed. Second, whereas 
in Machlup’s time, optimal control theory was still emerging, and no sufficiently 
established knowledge corpus on dynamic games was yet available, the progress 
of mathematical analysis of decision-making models during the last few decades 
has been considerable. This progress has expanded the set of methodological 
criteria of distinction between static and dynamic approaches toward decision-
making. These criteria shed broader light to facilitate comparison between the two 
approaches. Finally, a marked preference for the static approach toward decision-
making among researchers, scientific journals, and research funds providers can 
be observed regarding issues for which dynamics should naturally prevail. An 
obvious illustration is provided by the issue of environmental sustainability that has 
been tackled in the area of management science for two decades, most often with 
static models, from which managerial prescriptions should be derived for firms’ 
use.3 This is nonsense because this mainstream limits the corporate environmental 
responsibility to the level of instantaneous polluting emissions with no account 
of the effects of the pollution accumulation process. In this specific area, some 
top journals categorically reject research manuscripts dealing with the issue of 
environmental sustainability simply because they use dynamic modeling. In this 
context, PhD students are naturally discouraged from opting for the out-of-the-
mainstream and thus risky path of dynamic modeling. Accordingly, funds in this 
area remain unduly invested in the less risky, yet potentially misleading, static 
model-based research mainstream. Therefore, static models are not conceived as 

that of his opponents against whom he tried to argue. Typically, ‘Statics’ was what those benighted 
opponents have been writing; ‘Dynamics’ was one’s own, vastly superior theory” (p. 100).
2 Another partially prevalent consensus was instilled by Thorstein Veblen (1898) and, to some 
extent, also by Joseph Schumpeter (1943), who conceived of statics and dynamics as taxonomic 
and evolutionary approaches to economics, respectively. 
3 See the reviews by Kleindorfer et al. (2005), Corbett and Klassen (2006), Tang and Zhou (2012), 
and Jaehn (2016). 
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an intermediate step, a milestone, in the process of scientific understanding of a 
given phenomenon, but have become an end in itself. This phenomenon is all the 
more irrevocable as, because they are simpler to formulate and to resolve than 
their dynamic counterparts, these models can be learnedly and broadly shared 
in postgraduate and PhD programs, including with students who are the least 
enthusiastic about mathematical modeling.4 

As noted by Ragnar Frisch in 1930, the distinction between statics and dynamics 
is a “distinction between two different ways of thinking, not a distinction between 
two different kinds of phenomena” (Frisch, 2011). Static decision-making models 
thus lead one to disregard the future consequences of current actions. That is, 
they promote myopic decision-making practices. In contrast, dynamic decision-
making models seek to support farsightedness in decision-making. The virtues of 
farsightedness are obvious when one has to deal with decision problems involving 
stock variables besides flow variables (e.g., pollution stock besides instant polluting 
emissions, a firm’s reputation goodwill besides its current advertising efforts, 
addictive behavior besides current consumption, a firm’s inventory besides its 
current output, etc.). In fact, there are many more reasons to promote farsightedness 
in decision-making in economics and management science. We list a few of them 
below: 

• First, a static decision-making model is unable to depict the whole spectrum of 
long-term possible outcomes associated with the resolution of a decision prob-
lem. In contrast, a dynamic decision-making model enables one to characterize 
the transient path of a system and the eventual complex behavior (e.g., limit 
cycling) associated with this path for any parameterization of the model. 

• Relatedly, a static decision-making model prevents researchers from considering 
the possibility of history-dependent multiple solutions related to a decision-
making problem, or the eventual case where such solutions are indifferent from 
the decision-maker’s viewpoint. In contrast, a dynamic model can make such 
situations explicit and help to delimit indifference thresholds (usually called 
Skiba thresholds) related to transient paths and/or to the long-run outcomes, 
whenever these thresholds exist. 

• Third, a static decision-making model makes it difficult to account for structural 
features that might affect a decision-making problem over time. Such structural 
features enable one to establish a categorization within a modeled stock variable, 
with heterogeneous reactions to specific actions. Dynamic decision-making 
models with distributed parameters are commonly used to disaggregate the 
modeled stock variable considered and improve the accuracy of the decisions 
inferred for each of the categories of the stock variable.

4 In an effort to define a vision of responsible research in the area of operations management, 
Netessine (2021) stated several general principles, including the need for implementation of 
sound scientific methods and processes in both quantitative and qualitative or both theoretical and 
empirical domains. This effort will remain futile as long as farsightedness is excluded from the 
definition of responsible research. 



4 F. EI Ouardighi and G. Feichtinger

• Fourth, a static decision-making model does not allow for the consideration of 
an abrupt change in the context of a decision-making problem over time. Such 
switching regimes can severely modify the set of feasible actions of a decision-
maker. Dynamic decision-making models can easily include the possibility of a 
switch and enable decision-makers react accordingly. 

• Finally, a static decision-making model does not take into account the structure 
of information in a multi-agent decision problem setting. This implies that such 
models cannot distinguish among the alternative modes of play that can be 
considered by non-cooperative decision-makers. In contrast, dynamic models can 
serve to characterize economic and managerial prescriptions that are contingent 
upon distinct modes of play, and thus provide a richer understanding of players’ 
behavior. 

Given the above explanations, one could reasonably paraphrase William Baumol 
(1968) to conclude that neglecting dynamic aspects in economics and management 
science is like playing Shakespeare’s Hamlet without the Prince of Denmark. 
For our part, we would rather be inclined to consider the denial of dynamic 
approaches in these areas as the manifestation of scientific unawareness coupled 
with an inclination toward intellectual indolence. To some extent, “better complete 
ignorance than knowledge deprived of its fundamental principle,” as professed by 
M. Gaston Bachelard (Bachelard, 1938). 

Dynamic decision-making approaches have made considerable progress in terms 
of modeling and methods of resolution. Evidence is provided by the considerable 
number of widely acclaimed books published in recent decades, including those 
of Bensoussan et al. (1974), Tapiero (1977), Sethi and Thompson (1980), Başar 
and Olsder (1982), Bensoussan and Lions (1982), Feichtinger and Hartl (1986), 
Kamien and Schwartz (1981), Léonard and Long (1992), Dockner et al. (2000), 
Erickson (2003), Jørgensen and Zaccour (2004), Kogan and Tapiero (2007), Grass et 
al. (2008), Long (2010), Bensoussan et al. (2013), Kim (2017), Lambertini (2019), 
and Sethi (2022). 

In view of such progress, it is important to make dynamic approaches more 
visible and accessible to the community of researchers, postgraduate and doctoral 
students, editors of scientific journals, policy makers, managers, research funders, 
etc., in economics and management science. The use of dynamic models should 
gradually become the rule, unless there are specific constraints that impose a static 
approach as an intermediate though self-degradable step. However, this requires 
active involvement by scientific journal editors in the areas of concern, to impose 
compliance with three major principles: diversity, fairness, homogeneity. First, 
editorial boards should be constituted in such a way that dynamic approaches are 
well represented in the journals of reference in each area. This represents a minimal 
requirement for ensuring methodological diversity in these journals. Second, the 
authors should be required to convincingly motivate the use of a static approach in 
lieu of a dynamic one, rather than the converse. By reversing the burden of proof 
against myopia, this would be a minimal condition for promoting methodological 
fairness among authors. Finally, only competent reviewers should be involved in the
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evaluation of dynamic approach-based manuscripts. This would be a minimal clause 
for ensuring homogenous methodological competency among reviewers. 

This book is based on a widely shared belief that a shift from static to dynamic 
decision-making models might open up new opportunities for research in economics 
and management science. To this end, prominent experts in dynamic methods 
in both areas were invited to provide their particular perspective regarding the 
invalidity of static decision-making models in the form of very readable chapters. 
Below we briefly present their contents. 

In Chap. 2, entitled “On the use of dynamic models in economics,” Gilles 
Rotillon demonstrates the accuracy of dynamic modeling, though abstract and 
simplifying, for the analysis of the interaction between growth and the environment. 
The two most representative theoretical models related to this issue are presented, 
and their relevance with respect to the current societal debates is discussed. The 
chapter then states the relevant positioning of economists relative to the established 
social preferences and the pattern of consumption. 

In Chap. 3, entitled “What to do with uncertainties?” Alain Bensoussan raises 
the issue of uncertainties. A number of important questions are considered: Can we 
improve our knowledge of these uncertainties? Is there a science of uncertainties? 
Is there an engineering of uncertainties? Do we have mathematical models of 
uncertainties? What is a product, if such a concept is possible for uncertainties? 
Understanding and mitigating uncertainties is an essential step in decision-making. 
This mitigation is related to obtaining information. Modeling and measuring 
information are key in the process, which is obviously dynamical. 

Chapter 4, “Optimization in age-structured dynamic economic models,” by 
Michael Freiberger, Michael Kuhn, Alexia Prskawetz, Miguel Sanchez-Romero, 
and Stefan Wrzacezk, presents the mathematical theory and potential applications 
of age-structured optimal control models. After presenting the general form of the 
problem and the related necessary optimality conditions, a model on air pollution is 
introduced, where consumption induces pollution, which in turn negatively affects 
utility, fertility, and mortality. The model is solved analytically and numerical 
simulations are then presented. The potential of age structure to solve non-standard 
optimal control models is finally demonstrated by considering optimal control 
models with random switches or time lags and delays. 

Chapter 5, entitled “A vindication of open-loop equilibria in differential games,” 
by Luca Lambertini, assesses the properties of open-loop equilibria in non-
cooperative dynamic games, and illustrates the classes of such games that yield 
degenerate feedback strategies and equilibria under an open-loop information 
structure, and the resulting normative prescriptions. 

In Chap. 6, “A linear-state game of advertising à la Vidale-Wolfe,” by Luca 
Lambertini and Andrea Montovani, the tradition of advertising models stemming 
from Vidale and Wolfe (1957) is revisited to illustrate the possibility of building up a 
game delivering a (degenerate) feedback equilibrium under open-loop rules. To this 
end, assuming situations where advertising has an essentially predatory/defensive 
nature, the state equation of the generic firm is reformulated in such a way that 
its own advertising effort and the rivals’ reaction to it enter the state dynamics

http://doi.org/10.1007/978-3-031-88638-6_2
http://doi.org/10.1007/978-3-031-88638-6_3
http://doi.org/10.1007/978-3-031-88638-6_4
http://doi.org/10.1007/978-3-031-88638-6_5
http://doi.org/10.1007/978-3-031-88638-6_6
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additively. This modeling strategy results in a linear-state game structure, which 
can be resolved to provide an Arrovian result concerning the relationship between 
the aggregate advertising effort and industry structure. 

In Chap. 7, “The cost of myopia with respect to a switching time in an advertising 
model, by Alessandra Buratto, Luca Grosset, Maddalena Muttoni, and Bruno 
Viscolani,” the ability to react to abrupt changes is considered a fundamental skill 
for decision-makers, especially in dynamic contexts where problem structures can 
change over time. However, there are situations in which planners are myopic, i.e., 
unaware of the impending changeover, a context that inevitably results in a loss of 
profit. This chapter aims to assess the cost of adopting a myopic approach toward 
system changes in a marketing context. While the demand for a given product is 
influenced by the goodwill of the firm that produces, advertises, and sells it, the 
production costs may change abruptly with a hazard rate that depends on the demand 
for the product. An optimal control problem with stochastic switching time is thus 
formulated and resolved. Two situations are compared: The case of a planner who is 
aware of the possibility of a switch and that of a planner who is myopic with respect 
to such an event. 

Chapter 8, “The limits of static decision-making rules in supply chain manage-
ment, by Fouad El Ouardighi, Suresh P. Sethi, and Christian van Delft,” shows that 
the use of static supply chain models can lead to wrong decisions. A series of simple 
issues representative of supply chain management are successively considered. For 
each issue, two versions of a supply chain game are defined, one static and the 
other dynamic. For the static version, an anticipative rather than a naïve formulation 
is adopted, wherein the repetition of the static game over a given time horizon 
accounts for the update of the previous period’s considered performance on the 
current period. The decision rules and outcomes respectively inferred from the static 
and dynamic versions of the supply chain game considered are then compared. For 
each issue of interest, it is shown that the static decision rules provide distorted 
outcomes and misleading managerial prescriptions. 

Chapter 9, “On the rebound effect of cleaner technologies and climate change: 
Radical technology innovations needed,” by Hassan Benchekroun and Amrita 
Ray-Chaudhuri, starts by pointing out that technological innovations that reduce 
emissions per output can backfire and may result in countries increasing their 
emissions. In the case of climate change, assessing the size of this rebound effect 
requires a fully fledged dynamic analysis since the externality occurs across space 
and time. The welfare analysis needs to account for the sum of all generations’ 
welfare. In a dynamic game, the impact of a technological innovation on emissions 
is ambiguous and depends on the initial stock of pollution. Therefore, relying on 
a simplified static version of the game or focusing the analysis on the steady state 
only can be misleading. Because the rebound effect may be strong enough to result 
in a decrease in welfare, it is advocated that policies aimed at fostering R&D in 
innovative clean technologies should target R&D projects with radical rather than 
incremental technological innovations. 

Chapter 10, entitled “On the effects of an increase in the number of abaters in 
pollution abatement games,” by Luca Colombo and Paola Labrecciosa, the effects of

http://doi.org/10.1007/978-3-031-88638-6_7
http://doi.org/10.1007/978-3-031-88638-6_8
http://doi.org/10.1007/978-3-031-88638-6_9
http://doi.org/10.1007/978-3-031-88638-6_10
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an increase in the number of abaters in pollution abatement games are investigated, 
first in a static and then in a dynamic (continuous-time) game. In both games, it 
is assumed that m countries/agents agree on taking action to reduce the stock of 
pollution, which is a public bad, whereas n-m countries free-ride on the abatement 
levels of the abaters. Moreover, abaters can either coordinate their contributions or 
not. In the static game, in both the coordination and the non-coordination scenarios, 
an increase in m leads to a decrease in the stock of pollution and to an increase 
in social welfare. In the dynamic game, in contrast, in both the coordination and 
the non-coordination scenarios, an increase in m may result in a higher steady-state 
stock of pollution and a lower social welfare, depending on the “business-as-usual” 
level of output. The authors conclude that the price of omitting the time dimension 
might be a wrong policy recommendation. 

Chapter 11, entitled “Agroecology and biodiversity: A benchmark dynamic 
model,” Emmanuelle Augeraud-Véron, Raouf Boucekkine, and Rodolphe Desbor-
des highlight how the choice between expanding agricultural land or retaining forest 
land is shaped by the bi-directional relationship between agriculture and biodiversity 
as well as the utility derived from biodiversity consumption. The static case shows 
that a high stock of biodiversity may be deliberately maintained as long as the 
agroecological productivity effect is important enough. This result also holds in the 
dynamic case. However, in the latter case, a large intertemporal discount rate can 
lead to total biodiversity loss along with the full collapse of the economy. It is also 
shown that the effect of a shift of consumer preferences toward agricultural goods 
(instead of biodiversity goods) on the biodiversity stock is much more ambiguous 
in the dynamic case than in the static case, depending on the strength of the 
agroecological productivity effect. These results have profound implications for 
biodiversity conservation. 

Chapter 12, “Open-loop control-based linear-quadratic stochastic game with 
application to counter terror: Farsighted versus myopic policies,” Konstantin Kogan 
and Dmitry Tsadikovich first notice that the typical solution to stochastic linear-
quadratic problems in optimal control and differential game applications is based on 
feedback control. In contrast with real life, feedback control implies that the state 
dynamics are observable despite their stochastic nature. The authors overcome this 
unobservability drawback by deriving an open-loop equilibrium control for a linear-
quadratic dynamic game with applications to counter-terror activities characterized 
by stochastic terrorist resource stocks. To do so, an open-loop Nash equilibrium 
solution based on expected terrorist resources rather than on the true state of 
the resource stock and its time-dependent feedback representation are derived. A 
comparison of the found equilibrium control with myopic behavior in response to 
resource dynamics by one or both parties shows that a farsighted party always has 
an advantage over a myopic party (i) under simultaneous commitments and (ii) 
when a farsighted party’s leader openly commits to actions and the myopic party 
is a follower responding to the farsighted leader’s actions. Furthermore, uncertainty 
improves the position of the farsighted party in terms of resource goals. 

This book is intended to encourage teachers, researchers, students, and publishers 
to break with the established order imposed by the proponents of static approaches.

http://doi.org/10.1007/978-3-031-88638-6_11
http://doi.org/10.1007/978-3-031-88638-6_12
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It is high time to turn the page on static approaches in order to carry out research 
that is mindful of the future, more responsible research. 
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Chapter 2 
On the Use of Dynamic Models 
in Economics 

Gilles Rotillon 

Abstract Our purpose is to show that dynamic economic modeling, far from being 
useless, has on the contrary the advantage to emphasize the main point, on the 
condition that results are not misinterpreted. To illustrate this point of view we 
analyze two canonical models of exhaustible resources of exploitation. 

Keywords Dynamic modeling · Sustainable development · Exhaustible 
resources 

2.1 Introduction 

Economists often receive criticism for being capable of explaining why they were 
wrong yesterday. Theoretical economics, an esoteric “science” that escapes the 
real world in mathematical abstraction, is particularly targeted. The recent financial 
crisis that began in 2008 highlighted the risks of uncontrolled use of sophisticated 
models used to evaluate new financial products. Their complexity reserved them 
for the few “mathematical geniuses” who had designed them and they served as a 
reference for everyone to justify the valuations they predicted, thereby maintaining 
the belief in their reliability until reality suddenly reminded us that “trees don’t grow 
to the sky.” The bursting of the financial bubble has, in turn, raised suspicion about 
economic modeling in general, rekindling the debate about the autism of economists 
lost in their enchanted world(s) where equations replace real people as they act. 
This suspicion is all the stronger when we focus on the future with the ambition, 
if not to predict it completely, at least to shed some light on the directions it could 
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take. If the future time is one of the dimensions of the problem we are trying to 
understand, any attempt at modeling can only appeal to dynamic methods such as 
dynamic programming or optimal control, thereby taking the risk of being accused 
of de-realizing abstraction. 

This text does not aim to continue this debate in all its generality, but more 
modestly to participate in it by showing that dynamic modeling, however abstract 
and simplifying it may be, can still be useful, provided that we do not expect more 
from it than it can give. In doing so, theoretical economists are neither “rational 
fools” à la Sen nor all-powerful demigods reading the future and dictating what 
should be in the name of Science, but participants in a public debate that they are 
not meant to close. 

To illustrate this point of view, we focus on the relationships between growth 
and the environment as they have been studied over the past 30 years in academic 
journals along with the research on sustainable development. The first section 
presents the two theoretical models that seem to us to synthesize the essential on 
this subject. The second section is devoted to the lessons that these models teach us 
and their relevance to the corresponding societal debates. In conclusion, we return 
to the more general debate that we posed in the introduction and the position that 
the economist should, in our opinion, adopt. 

2.2 Thirty-Five Years of Modeling Between Growth 
and the Environment 

The aim here is not to provide a history of the modeling of the links between growth 
and the environment, nor even to present the most representative models. We want 
to stick to the essentials, namely the most general representations possible aimed at 
answering a key question: in what sense can we speak of sustainable development, 
given the appearance of new environmental constraints? The very idea of sustainable 
development, no matter what the precise meaning is, refers to the long term, making 
any attempt at modeling necessarily dynamic. 

To pose it in all its acuity, the most standard cake-eating model below questions 
the intergenerational sharing of a depletable resource that can be considered 
“optimal.” Optimal here means maximizing a criterion that is a formalization of 
a society’s social preferences, which are characterized by its properties that we’ll 
discuss further below. 

. Max
∫ ∞

0
U (ct ) e−δt dt

. 
dS

dt
= −c(t)

.c(t) ≥ 0, S(0) = S0
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This depletable resource, whose initial stock is S0, produces for society, repre-
sented by the function U(.), a “utility” linked at each instant to the quantity extracted 
ct. We put utility in quotes to indicate the high level of abstraction we are operating 
at. To fix ideas, one can think of a stock of oil whose flows serve a certain number 
of uses which are summarized here in the function U(.). It is obviously possible to 
open the black box that is U(.) and place a productive device inside, with several 
sectors, other resources, substitutability and complementarity, strategic behavior of 
economic actors, uncertainty, etc. All of this has been done, but the general message 
has not been changed, and it is this that we wish to emphasize. 

Obviously, everything depends on the assumptions made about the utility 
function, i.e., the social preferences it represents. These (whose meaning we discuss 
in the second section) are usually as follows: U(.) is increasing, is strictly concave, 
and satisfies the Inada conditions, U

′
(0) =  +  ∞  and U

′
(∞) = 0. Under these 

assumptions, the optimal solution is to asymptotically exhaust the resource in such 
a way that the implicit price of the resource (equal to the marginal utility of the 
resource U

′
(ct)) is constant in present value: this is the Hotelling rule. If the discount 

rate delta is zero, this problem has no solution.
Note the importance of the condition U

′
(0) = + ∞. This is what excludes the 

corner solution ct = 0 for certain dates.
The problem with this model, whose message will be explained in the second 

section, is that it gives no importance to the resource as such. Only its use counts. 
Representative of the way our societies thought about their relationship to natural 
resources before the early 1970s, when the issue of the depletability of certain 
resources was not perceived as a problem, it is no longer sufficient to take into 
account the emergence of environmental issues and the values attached to them, 
regardless of the uses that are made of them. Today, nature is not (or no longer) just 
a reservoir of resources useful to humans, it increasingly has value in itself, and the 
question of its preservation (in a form to be determined) is urgent. Krautkraemer 
(1985) was the first to model this idea by introducing a utility function that depends 
on both the flow that can be obtained from the resource and its stock. In this case, 
the previous model becomes: 

. Max
∫ ∞

0
U (ct , St ) e−δt dt

. 
dS

dt
= −c(t)

. c(t) ≥ 0, S(t) ≥ 0, S(0) = S0

This formalization in the spirit of Krautkraemer takes into account the amenity 
values provided by the environment (such as climate regulation by forests, the 
insurance functions implied by biodiversity, or the life-support functions enabled
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by certain environmental assets), but as Heal (1998) notes, these values make 
the environment a means rather than an end; however, environmental assets also 
have intrinsic value, regardless of their instrumental values. This is what monetary 
valuation methods used in environmental economics conceptualize as an existence 
value. At the level of abstraction where we stand, it ultimately matters little 
whether the formalization adopted, introducing the resource stock in the utility 
function, is interpreted as an amenity value or an existence value. What matters 
is that we recognize that the use of the environment as input alone is no longer 
sufficient to provide social utility and that a new trade-off between the direct use 
of the environment and its preservation appears. This formalization, undoubtedly 
simplistic, nevertheless emphasizes the rise of environmental issues in societal 
issues that have been observed in the last 40 years. These lead to the emergence 
of an environmental law, in the rise of ecological parties in political spheres, or the 
emergence of environmental NGOs and increasingly assertive opinion movements. 

We can observe this new trade-off, for example, in the opposition between the 
supporters of the Notre-Dame-des-Landes airport (who prioritize ct) and those who 
emphasize the preservation of the wetland that would disappear if the airport were 
built (thus wishing to maintain S(t) at a certain level). However, if we maintain the 
Inada condition U

′
(0) = + ∞, it is clear that “consumption” ct (by “consumption” 

we mean here the use that society makes of the resource, whatever it may be) will 
always be positive and that introducing an environmental concern into the social 
representation does not modify the previous solution of asymptotically exhausting 
the resource. Therefore, we must assume U

′
(0) < + ∞. 

In the case where the utility function is separable, that is, where U(ct, St) = 
U1(ct) + U2(St), the optimal solution consists of reaching a steady state (c∗ , S*) 
where c∗ = 0 and S* satisfies U′1(0) = U2(S*)/δ. In other words, at the steady 
state, the marginal utility of consumption must be equal to the discounted marginal 
utility of the stock. Indeed, in the trade-off between consumption and preservation 
of the stock, the loss due to foregoing consumption is then exactly offset by the gain 
provided by the permanent increase in the stock and, given the assumptions on the 
utility function, S* is strictly positive. The proof of this result and the argumentation 
that validates it for a non-separable utility function can be found in Heal (1998). 
The interest of these abstract models is precisely to focus only on the essential: is 
a society that derives “utility” from a depletable resource sustainable? The society 
is “simply” represented by U(.) with the properties attributed to it, and the only 
resource it can use is depletable. It is obviously a much less favorable case than if 
it were renewable, and has the added advantage of representing one of the essential 
features of our mode of production and consumption. This fundamentally relies on 
the extraction of many depletable resources, foremost among which is oil. With 
a renewable resource, it is obviously possible to achieve balanced growth while 
maintaining the resource stock constant, since it is only necessary not to extract 
more than its own reproductive capacity. Certainly, in practice, we use renewable 
resources too intensively, transforming them, alas, increasingly into depletable 
resources. But this is less an economic problem than a political problem of poor 
management of the stocks of these resources. The real constraint on development
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that can be described as sustainable in the sense that, as Solow (1993) indicates, 
“something is conserved over the very long term” is the intensive use we make of 
depletable resources, foremost among which are fossil energy resources. Moreover, 
introducing a productive activity where the resource is no longer directly the source 
of social utility but a simple factor of production adds nothing essential but only 
places the problem at the level of the means to be used to respond to social 
preferences. These are certainly important issues, which have been the subject of 
most of the academic literature of the last 40 years, where the more or less strong 
substitutability of factors of production, the role of technical progress, externalities, 
etc., are fundamental. But these are still secondary issues if the answer to the 
previous question about the existence of sustainable development is negative, and it 
is on this question that we intend to focus. It is now time to leave the sky of theory 
and return to the more solid ground of interpretations. 

2.3 What Are the Lessons to be Learned from These Models? 

What this first model tells us is that a society that values only the use it makes of 
a depletable resource can only deplete it, extracting less and less as it becomes 
exhausted if it has a preference for the present. We can ignore the case where 
this preference for the present would not exist (δ = 0) on the grounds that such 
a society does not exist in the present world. Thus, in such a society, sustainable 
development is not possible, regardless of the sense given to this term, which can 
only concern utility (constant U), the resource (constant S), or its use (constant 
c). Furthermore, such a society is not intergenerationally equitable since it favors 
present generations over future generations, even though social preferences (the 
“utility” function) remain constant. One might think that such a society would 
not be socially sustainable in the sense of a social contract that could be accepted 
by all. One might also think that this model illustrates quite well the functioning 
of developed societies from the early twentieth century to the early 1970s, where 
environmental constraints arising from the existence of depletable resources, such 
as oil, were ignored, and that it highlights the reason for this mode of operation and 
the impasse to which it leads, namely collective preferences for “consumption,” 
i.e., the use made of the resource. This “preference for consumption” is at the 
heart of assumptions about the utility function. Its increasing nature means non-
satiation, with greater consumption always implying greater social utility. Similarly, 
the condition of Inada U

′
(0) equals to infinity implies that consumption is always 

strictly positive, and it is this assumption that necessarily leads to the asymptotic 
depletion of the resource. In our modern consumer societies, these two assumptions 
fairly represent the consumer who can never really be satisfied since he would then 
have no further demand. He is therefore condemned to a runaway consumption, 
supported by advertising that aims to transform desires, which are by nature infinite 
and never satisfied, into needs. If such a society is built on the exploitation of 
depletable resources, this first model tells us that it can only deplete its resources,
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thus endangering its very existence. The second model confirms this result, since 
the introduction of an environmental “concern” (in the sense that the environment 
provides social utility independent of its uses, and expressed in the formalization by 
the introduction of the stock in the utility function) does not modify the previous 
result if the “absolute preference” for consumption implied by the condition U

′
(0, .) 

< + ∞  is not modified. Hence the first result provided by the second model: it is 
necessary to modify social preferences regarding the use of depletable resources if 
sustainable development is sought. At this level of abstraction, this formalization 
can be accepted as much by a convinced utilitarian as by a militant ecocentrist. This 
conclusion is also reinforced by that part of the literature that questions the criterion 
that formalizes social preferences. These developments, which were initiated by 
Chichilnisky (1996) with her axiomatic reflection on sustainable development, show 
clearly that optimal trajectories are modified in the direction of greater conservation 
of the resource when the social choice criterion explicitly takes the very long 
term into account. In this second model, it is possible to reach a stationary state 
(and therefore sustainable) where unused resources will be preserved. However, 
we may be surprised by the “mathematical” result and return to the economists’ 
interpretation of autism that it could illustrate. Because what this model strictly 
tells us is that we will reach a situation in finite time where we will consume 
nothing and where utility will only come from contemplating the unused resource 
(S* strictly positive). The love of nature (and mathematics) leads straight to decay! 
Even advocates of degrowth do not go that far. 

This is forgetting the abstract nature of the model and taking c(t) for real 
consumption and not for its concept. Just as Spinoza taught us that the concept of a 
dog does not bark, the concept of consumption does not feed. What this model very 
concretely tells us is that what we called “consumption” in the previous model is 
no longer essential to provide social utility. In other words, sustainable development 
based on exhaustible resources is only possible if our consumption patterns change. 
This precisely reflects one of the societal themes at the heart of questions about 
the possibility of sustainable development, and which everyone knows more or less 
subconsciously is not possible by hoping to generalize the American (or even Italian 
or Portuguese) way of life to the planet. The link between social preferences and 
lifestyle needs to be explained. In these models, the former refers to the properties 
of the utility function and is, as usual in this formalized approach, primitive data, 
while the latter refers to the control variable c(t) which reflects the pressure that 
preferences exert on the environment. It follows that since preferences are primitive, 
they generate the “optimal” depletion of resources and thus lead to the resulting 
“way of life.” But in practice, awareness is most often raised by the realization 
that our lifestyles are not sustainable. To take just one example, this is what the 
successive reports of the IPCC continue to illustrate. And if the world’s current 
population had a final energy consumption level equivalent to that of Americans (an 
average American currently consumes 4.9 toe/year compared to 0.5 for an African), 
global consumption would be triple the current level and 50% more than the global 
consumption projected for 2050 by the IEA.
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We must emphasize the significance of this interpretation, as it is not very intu-
itive for many economists who, in our view, remain too confined to their theoretical 
models. During a seminar where we presented this work, we were criticized, on the 
one hand, for presenting an unrealistic result since zero consumption is contrary 
to the very existence of any life and, on the other hand, for having an outdated 
interpretation since it does not take into account the introduction of endogenous 
technical progress à la Acemoglu (2009) allowing us to compensate for resource 
depletion. On the first point, it should be emphasized that the fact that consumption 
is zero at the stationary state is not our result but the classical one that can be 
found in the literature and was perfectly explained by Heal (1998) without anyone 
raising any criticism. Our “result” lies in the interpretation we give to this impossible 
zero consumption and seeks to give it a meaning which it seems a priori devoid 
of. On the second point, it should be noted that endogenous technical progress à 
la Acemoglu is at the very least ad hoc with a continuum of firms all doing the 
same thing at equilibrium! If we criticize zero consumption on the grounds of its 
unreality, we cannot defend such a conception of technical progress, even if it is 
called endogenous. 

Finally, we can see that these models, with such a high level of abstraction that 
they may seem irrelevant, actually highlight that the two main questions that should 
be at the center of public debate on sustainable development are those of social 
preferences (translated in the language of modeling by the properties of the utility 
function) and the lifestyle that we must adopt (synthesized here by the variable 
c(t)). Of course, then come the questions of the means to use to achieve the goals 
that we have set ourselves. But if we do not realize that this excess consumption 
precisely comes from our social preferences, the implementation of means aimed 
at changing this lifestyle without changing these preferences is necessarily doomed 
to failure. However, when we look at the public debate on these issues, we rather 
find an absence of questioning of our lifestyles than a reflection on defining new, 
more sustainable ones. On the other hand, there is an abundance of proposals on the 
instruments, technologies, and institutions that should be implemented to continue 
as long as possible on the trajectory that we are still following for the moment, 
and that our simple models tell us is not sustainable. Thus, in a very concrete 
debate on such regulations (such as a carbon tax), such protocols (such as those 
from the various COPs that remain ineffective), or such technology presented as 
a substitute for fossil energy (renewable resources accounting for 6.7% of global 
energy consumption compared to 82% for fossil energy), we should first question 
the role they play in redefining our social preferences and lifestyles. For example, 
we can analyze the debates around the aborted French carbon tax project as a debate 
between the majority of the social body that highlighted the problems of wealth 
transfers it would have involved and those who saw it as a necessary means of 
transforming behaviors to combat carbon emissions. The former remained in the 
model where consumption in its current form is a priority, while the latter sought 
a way out. It may be regrettable that, like Ulysses, we have to impose a constraint 
to escape the sirens’ songs, and we can dream of a better solution, but given the 
current state of the problem and social preferences, a return to the status quo is
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clearly not the right choice since it implies a continuation of carbon pollution. 
And what our model tells us is that this choice is not sustainable in the long term. 
And this debate is much more fundamental than the academic debate where some 
are between so-called weak sustainability and strong sustainability. The former 
approach, initiated by Solow (1974), then by Hartwick (1977), considers that only 
the aggregate stock of capital counts, which allows the substitutability of different 
forms of capital (natural, human, produced), while for the latter, of which Daly 
(1977) is the precursor, natural capital is not always substitutable for other forms of 
capital. When it is the case, the sustainability of the economy requires to preserve 
these forms of “critical” capital above certain thresholds to be defined. A balanced 
presentation of the two approaches can be found in Neumayer (2003), but most 
of the time, they are laid out as antagonistic, as in Vivien (2005). Again, this is 
confusing the formal results of abstract models and their meaning. For example, 
emphasis must be set on technical progress just as the potential means to bring 
out this substitutability. And if there is opposition between the two approaches, 
it lies mainly in the ways that must be prioritized in the search for sustainable 
development, with technical progress for one and the definition of thresholds and 
critical capital for the other. This doesn’t necessarily appear irreconcilable, but it 
positions this debate as secondary to the one underlying our two models. 

2.4 Conclusion 

One could argue that the above reflects a narrow conception of economics, with 
the two models presented appearing representative of the so-called neoclassical 
approach which, while undoubtedly dominant in universities, is increasingly being 
questioned by both “heterodox” economists and specialists from other social 
sciences. However, we are not here engaging in an epistemological debate on the 
validity of the neoclassical representation, which lies at the level of the assumptions 
made about preferences (complete pre-order, transitivity, continuity), but rather at 
a higher degree of abstraction that does not put any particular content a priori on 
what is meant by “social preferences” or “utility.” On the contrary, the content of 
social preferences is precisely the subject of debate, and its definition, necessarily 
contingent on the social context, cannot be posited a priori. This means that here 
ends the economist’s power. 

What place do these models then give to the theoretical economist? Certainly 
not the central place that some might have hoped for, since the essential choices are 
not within his or her purview. The normative economist, advisor to the Prince from 
the heights of his or her knowledge, is undoubtedly challenged, and the 2008 crisis 
triggered by the subprime crisis should convince even the most stubborn among 
them. He or she does not have to define social preferences and, until recently, has 
not been particularly concerned about them, considering these preferences, against 
all evidence, as given and immutable. But he or she is not useless, if he or she can 
translate what his or her models tell him or her into clear language, and deliver
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them to the public so that they can use them as compasses that constantly bring 
us back to verify that we are on the right track. Of course, the compass is not 
enough, but without it, we are quickly lost. And ours indicates, first, that we must 
work to modify social preferences that currently favor the status quo, and second, 
to rethink our consumption patterns. It can be added that these two orientations 
are sufficiently general not to be reserved for specific actors (experts, companies, 
politicians, etc.), but rather concern all members of society, especially since it is not 
possible to impose specific social preferences, which is why we attach importance 
to public debate, which alone can lead to a modification in our behavior that is freely 
accepted in the end. 

Finally, the above results should not be overestimated. Knowing that a model 
allows us to think that sustainable development is possible (in terms of the constancy 
of certain indicators, here consumption and resource stock) does not tell us how 
to achieve it in the real world. One thing is to know that we are heading in the 
right direction (i.e., discussing our consumption patterns, our social preferences, 
and thus the type of society we want); another thing is to choose the best means 
to achieve it. Here we return to the realm of concrete policies to be implemented, 
which were explicitly excluded from the abstract models we have discussed and 
which also require other informed public debates. It remains that, for the moment, 
the North that our compass points to is not the direction in which we are heading. 
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Chapter 3 
What to Do with Uncertainties? 

Alain Bensoussan 

Abstract The objective of this chapter is to discuss the issue of uncertainties. 
Uncertainties are certainly a reality, and we do not know them. Can we improve 
our knowledge of these uncertainties? Is there a science of uncertainties? Is there 
an engineering of uncertainties? Do we have mathematical models of uncertainties? 
What is a product, if such a concept is possible for uncertainties? 

Keywords Uncertainty · Probability · Decision making · Risk management · 
Information 

3.1 Introduction 

Sciences like Physics, Chemistry, Biology, Economics, and others are concerned 
with understanding better and better the reality of our world. It is a common goal; 
they are simply specialized in sectors of this reality. This reality is not really known, 
but scientists are able to formulate theories or models of this reality. At any time, 
the job of scientists is to develop convincing arguments to assert that their models 
are close to reality and the closest possible at the current time. 

Alongside sciences, we have Engineering with all possible subdomains. We have 
Medicine, we have Management Sciences and many others, which develop, from 
the progress of scientific knowledge, a multitude of applications which improve our 
living conditions. They use the models of sciences, extend, or adapt them, or develop 
specific ones. They can be called applied sciences, since the major difference with 
the fundamental sciences lies in the sector or domain of interest, which is more 
focused because products should be the outcome of the research. 
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Mathematics is also called Mathematical sciences. However, they are different 
from the other ones. Mathematicians are not interested in a specific domain of 
reality. They are equally interested in all of them. If fact, they develop a language 
and techniques of reasoning, which appear to be the most efficient possible for the 
models used by the other scientists to improve their knowledge of reality. It is a 
remarkable fact indeed that the most useful models of reality are mathematical ones. 
Quite interestingly, it may appear that the same mathematical model can be adapted 
to two different sciences, for instance, physics and economics. Of course, computers 
are essential, mostly because they can implement mathematical models fast and 
speed up the progress toward improving knowledge and obtaining applications and 
products. 

The objective of this paper is to discuss the issue of uncertainties. Uncertainties 
are certainly a reality, and we do not know them. Can we improve our knowledge 
of these uncertainties? Is there a science of uncertainties? Is there an engineering of 
uncertainties? Do we have mathematical models of uncertainties? What is a product, 
if such a concept is possible for uncertainties? 

Understanding and mitigating uncertainties is an essential step in decision 
making. 

This mitigation is related to obtaining information. Modeling and measuring 
information are key in the process. It is obviously a dynamic process. 

3.2 Historical Vision 

It is important to realize that the lack of knowledge in the real world was not 
considered in history as uncertainties. Religion was the reason. Since God has 
created the world, the fact we have a limited knowledge of its reality is simply 
due to our own limitations. It is quite legitimate to improve our knowledge. It does 
not make man equal to God, in doing that. But if uncertainties represent something 
which will occur in the future, how can we pretend to know what will happen? The 
decision of what will happen relies on God. How can we pretend knowing God’s 
decisions? It will position Man at the level of God. 

If, conversely, we consider that God does not interfere much, it is different. Of 
course, the world exists, and we constantly increase our knowledge about it, but 
we will never have a full knowledge. We will never know what happened before the 
Bing Bang. We can leave the creation to God, or accept that we will never know, and 
focus on the uncertainties of the future. For them, if God does not interfere, we may 
act and see what we can do about uncertainties. This explains why the scientific 
approach of uncertainties was considered much later of the scientific approach of 
Nature.
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3.3 A Change of Paradigm 

We can do a lot for uncertainties. We can apprehend the uncertainties in the future, 
first because they are largely consequences of what happened or was done in the 
past. Second, the source of uncertainty is, quite often, complexity. In the real world, 
many aspects interfere. Even though individual aspects can be understood, their 
combination can have intricate consequences which can be unpredictable. 

In these two cases, mathematical modeling will help a lot. We will discuss this in 
the next section. 

The engineering part of uncertainties is risk analysis and decision making. We 
cannot separate uncertainties from their impact. At the end of the day, it is the impact 
which is significant. Here again, mathematics will be essential. 

In this set up, the science and the engineering of uncertainties exist and are 
comparable to other sciences and engineering applications. 

3.4 Mathematical Concepts and Models 

The main mathematical theory developed to deal with uncertainties is probability 
theory. As usual with mathematics, it offers a model of reality, not reality itself. This 
model can address any uncertainty, very simple ones as well as very sophisticated 
ones. For simple ones, where intuition can suggest results, it should coincide with 
what the intuition provides and, thanks to the power of mathematics, should also 
provide the solution in complex cases, where intuition is powerless. 

For instance, if the uncertainty relates to the outcome of rolling dice, the intuition 
will say that there are 6 possibilities, which are equally likely, unless the dice is 
flawed. We immediately associate to each outcome a probability of 1/6. But if we 
are interested in the income of Americans, compared to the income of Chinese what 
can probability theory do for us? 

We need to get some information and start reasoning. To simplify, we may split 
the wealth into tranches, for instance, from 0 to $20,000, from $20,000 to $40,000 
up to $200,000 and one tranche for wealth above $200,000. We need to associate to 
each tranche a probability. This is the basic element of the construction of the model. 
Probabilities are decisions of the model builder, obtained from some information 
and some reasoning. Obtaining information is like realizing experiences in physics. 
Ideally, we should count the number of Americans in each tranche. Nobody will 
object that the probability of a tranche should be chosen as the ratio of the number in 
this tranche divided by the total number of Americans. This is called the frequency. 
Since acquiring the information in this way will be extremely costly, we proceed 
with taking a sample of say 1000 American. This sample should be representative 
of the population, as far as wealth is the characteristics of interest. For a sample, we 
can do what was mentioned above for the full population and choose as probabilities 
of tranches, the frequencies of tranches in the sample. We may try to improve this



24 A. Bensoussan

choice, by all techniques of learning. This is the job of mathematicians. We build 
the model of approximation when we decide that the frequencies in the tranches of 
population are the same as those of the sample and call them probabilities that the 
wealth belongs to the respective tranches. 

The wealth of Americans is then considered as a random variable. This reflects 
the uncertainty, since it is not a deterministic number, and the various probabilities 
constitute a probability distribution. 

A big breakthrough arose when probabilists agreed that probabilities could be 
considered as measures of uncertainties, in a way very similar to measures of length, 
surface, or volume in physics. This is particularly helpful to get rid of tranches and 
address a continuum of randomness. This analogy with measure was quite precious 
because mathematicians had developed a very sophisticated theory of measure, with 
many useful results, which could be immediately used in probability theory. 

Consider next uncertainties due to the fact that we are interested in events in 
the future. This is clearly a very common situation. For that purpose, probabilists 
developed the theory of stochastic processes. It has led to an impressive number of 
concepts, methods, and results. 

We mentioned above the information obtained by sampling. It is clear that in 
the case of stochastic processes, the issue of information is essential, since we are 
interested in predicting some future event, based on the information obtained in the 
past. Probabilists were able to quantify information, to measure it. After collecting 
all the progress made, we can rely now on very efficient tools to address complex 
uncertainties, including those which will occur in the future. 

It is amazing to see how vague concepts like independence or dependence of 
information have been mathematically defined in a way that allows quantification 
even for complicated sets of information. At the same time, it is also important 
to recognize limits. For instance, the mathematical apparatus is only able to take 
account of information which increases with time. No possibility of forgetting is 
allowed, no possibility of degradation can be considered. This concerns the general 
mathematical theory of course. In practice, some treatment cannot be avoided. 

Why is that so being not clear. It is part of the mystery of mathematics. If we 
insert a slight change in a model, which works very well, everything may collapse. 
This is true for Probability theory. It explains that it has been challenged as the right 
model for uncertainties. Data Analysis has been one attempt. We should learn from 
reading data, without any probabilistic set up. Another attempt has been Fuzzy Sets. 
Now we see Data Science. We can observe that probability has resisted all attempts 
to supersede it. It is the best compromise between a good level of approximation of 
reality and possibilities of reasoning with significant results. 

An important approach of probabilistic models for practical purposes is sim-
ulation. It is the opposite of deriving probabilities from frequencies. For a given 
probability distribution we can generate a sample whose frequencies are close to the 
probabilities of the distribution. How it is done is magic. Indeed, algorithms used by 
computers are always deterministic. Mathematicians can design algorithms whose 
results look random. They fool us for a good cause.
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Probability theory is adequate for what is called “Risk Analysis,” namely, 
describing uncertainties. But Risk analysis is part of the story, it is not the end. 
The end of the story is Risk Management, which is the methodology of decision 
making under uncertainty. Once we have a probabilistic description of risks, how do 
we act? 

The general idea is that of cost-benefit analysis, taking account of uncertainties. 
We may first try to reduce uncertainties, by acquiring more information. This is 
always costly, in terms of money and time. At some point, the additional information 
which can be obtained is not worth the cost. It means that at the end of the day, we 
must decide even though there remains uncertainty. How can mathematics help? 

Let us go back to history and consider the situation after World War II, with the 
development of Operations Research, which originates in the difficulties of logistics 
related to military operations. The issue was efficiency. How to produce fast and 
abundantly, with limited resources. The mathematicians introduced optimization 
under constraints, scheduling, queueing theory, and many other developments. This 
was the core of Management Science from the war to the mid-seventies. We were 
helped by economic growth, and a stable political situation, based on nuclear 
deterrence. 

Uncertainties were important in two basic cases, reliability and quality control in 
industry, and financial risks in insurance and banks. 

Life Insurance is a good example of how stochastic optimization works. Age 
of death is a random variable, but its probability distribution is sufficiently known. 
To pay a premium each year for a sum to be given by the insurance company to the 
spouse of the insured makes a lot of sense. It must be computed so that the insurance 
company is profitable, but it should not be too high; an easy problem of stochastic 
optimization. 

Financial markets offer another example of stochastic optimization for which 
mathematicians have provided many methods and tools. Assets are described as 
stochastic processes, whose evolution and correlations have been subject to a lot of 
research, in what is called Mathematical Finance. The optimization of investment 
decisions is a well-known problem, and a solid theory exists. It justifies the idea of 
diversification, which comforts a commonsense attitude. 

Risk Management needs to introduce the impact of risks. What are the conse-
quences of the failure of equipments, what are the consequences of investments in a 
financial product? 

Once this is apprehended, mathematicians have worked a lot to create tools and 
methods to help decision makers. 

Is the situation of decision making under uncertainties satisfactory, thanks to the 
progress of the past decades? The answer is unfortunately no, for reasons addressed 
in the next sections.
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3.5 Big Changes in the Past 50 Years 

From a world where risks and uncertainties were limited and well apprehended 
by mathematical methods, we have evolved to a world with new risks, which are 
huge, structural, and diverse. Can we use mathematics? Much less. Mathematics is 
adequate when risks are of technical origin, or natural. The major change is that 
the new risks we are facing now have been mostly created by us. Even when we 
consider innovation and technology, the fantastic development of AI has become 
the source of huge concern, because we do not use it rationally. Similarly, the 
Covid pandemic is very likely originated by human failures, and its management 
has been chaotic. The political situation has evolved from a stable confrontation 
between rational players to a multipolar world involving dictatorships and religious 
fundamentalism. 

Climate Change is also related to Humans. It is, however, more rational. We 
realize that we have a common challenge, but the price to pay for a solution 
is naturally a matter of harsh discussions. Nevertheless, it is quantifiable and 
negotiable. At any rate, in the case of climate change, we may be in a situation 
where risks occur so often and periodically, that they can be considered as certain. 
Probability theory is not relevant if probabilities are very high. We are in a 
deterministic context. Think of storms and hurricanes in the US, as a good example. 

We must accept that, within this framework of new risks, quantitative and mathe-
matical techniques cannot apprehend all aspects. Opinions are not the consequence 
of rational reasoning based on facts, but the consequence of charismatic speeches 
on social media, made by extremists. 

Leadership is needed to confront this new reality. It is important to understand 
that when leaders are failing, there is little hope to see subordinates acting rightly. 

What makes a good leader remains largely an open question. 

3.6 What to Do with New Uncertainties? 

We focus on enterprises because for government one needs to incorporate aspects 
which are not present in corporations. A parallel analysis could be made for the 
government. 

The evolution of uncertainties does not imply that those of the past have 
disappeared. An enterprise must still offer products and services and be profitable. 

An enterprise must still innovate and adapt to opportunities. Technical risks 
remain present and all the quantitative techniques to handle them remain valid. 

But Enterprise leaders must have comprehensive perspectives: profit is more a 
constraint than the main objective. The perspective is to understand the risks and to 
control them for all activities and decisions. If production is done abroad, having an 
efficient production tool is not the issue. The issue is to be sure of the reliability of 
suppliers.
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Alongside technical aspects, the CEO should be aware of psychological aspects 
and organizational aspects. 

3.7 Psychological Aspects 

The fact that Humans are essential players in social systems is of course known 
for long. Mathematicians have worked on this issue and proposed methods which 
are part of Risk Management. Decision theory and Game theory are the main 
scientific outcomes of this effort. For instance, a clear psychological fact is that 
humans do not like to decide on probabilities. They want to be sure, or at least 
to decide on indicators of risks which are simple and adequate. In that regard, a 
huge methodology of risk indicators has been developed. They provide a successful 
approach to the problem, in particular for financial decisions. 

Another well-known psychological aspect of decision making under uncertainty 
is risk-aversion, or its opposite risk-appetite. Can we have a quantitative approach? 
The theory of utility function has been developed successfully in that regard. 

Unfortunately, mathematics can help in modeling human behavior only when 
there is rationality, or at least a clear understanding of what could look irrational. 

It turns out that the biggest catastrophes have resulted from what is called the 
taboo effect, or what may be called the blindness of Ego. The bigger the risk, 
the less we want to consider it. To some extent, we are blind to things that others 
see quite well. It is very likely that Ego has a lot to do with this blindness, but 
Greed can also be a reason. For instance, why so many smart people have been 
gullible to Madoff? There is also an opposite effect: an excessive precautionary 
principle. The public emotion disseminated by media may compel governments 
to take hasty and unreasonable decisions. Nuclear energy is a good example. A 
reasonable approach would be to compare this source of energy to others, analyzing 
all consequences on climate change, on the stability and reliability of sources, on 
geopolitics and global economy. 

People, Societies have not, by themselves, a rational attitude toward big risks. 
They are too emotional. They also can be too permissive. Why, hard to tell! In 2010, 
the offshore drilling rig Deepwater Horizon of British Petroleum exploded in the 
Gulf of Mexico, originating catastrophic damages. Nevertheless, in October 2011, 
BP got the green light from the US government to drill again in the gulf. 

In projects of this kind, where public opinion is so irrational, the best is to be 
very transparent, with all stakeholders, including the public; to provide as soon as 
possible all relevant information on opportunities as well as on risks. It may be easier 
to say than to do. Indeed, it works if there is trust. After Fukushima, the Japanese 
had lost trust in their government, when they discovered that the regulating agencies 
were not really independent; a big difference with countries like the US or France, 
where regulatory agencies are fully independent, and trust exists.
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3.8 Organizational Aspects 

We can say with quasi-certitude that at the origin of the most catastrophic events 
there is a human failure, or at least a blatant lack of preparation. This is not only 
true for banks, where greed is often put forward. It is also true for highly technical 
domains like space, where greed cannot be the reason, at least within space agencies. 
It may look paradoxical for a domain like space, where standards of security are so 
high and where norms and procedures are examples for industries like aeronautics, 
railways, and cars. However, the two major accidents of the shuttle, Challenger in 
1986 and Columbia in 2003, are due to human failures, which were predictable 
and should not have occurred. No wonder that it is also true for all industries and 
naturally the financial sector. 

The reason is simple. Humans are governed by emotions more than by rationality. 
It can be greed, but more simply and universally ego. In addition, we forget the 
lessons of the past, even more because situations cannot be exactly similar. 

For any institution, including naturally corporations, the only way to mitigate 
risks and to be ready if they occur is to put in place a solid organization, which 
involves all members, starting at the level of the CEO, who must be convinced 
of the need for efficient risk management. The CEO must promote the culture of 
risk across the company, explain how helpful it is and that it is not an additional 
bureaucratic layer. 

Among the basic elements of culture, there is the idea that risk management 
must be comprehensive. Especially in view of the new risks, focusing on the 
technical risks related to the production process and neglecting external risks can 
be catastrophic. 

Fortunately, many enterprises have made progress toward the creation of a 
strong risk management structure. A new position has appeared within the Board 
of Directors, that of CRO (Chief Risk Officer). The CRO is at the head of a 
risk management unit. Among the major tools, there is the ERM (Enterprise Risk 
Management) which is an information system integrating all elements of risk 
analysis and risk management. The goal of the structure and the related tools is 
to get a risk intelligent organization to obtain the best risk-informed decisions. 

It is very important to clarify that the CRO is not responsible for the risks. Each 
operational unit bears the responsibility for its own risks. The CRO is responsible 
for providing the common framework and for the fact that nothing is forgotten and 
that lessons of the past have resulted in necessary changes. The CRO is responsible 
for building trust with all stakeholders, including employees and the public. 

3.9 Framework of Methodology 

Quantitative techniques are essential, since at the end of the day we need to quantify 
to compare risks, to allocate resources and take the best risk-informed decisions. An
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important difference concerns the case of a single event, for instance, the occurrence 
of an accident, versus a continuum of uncertainties, for instance, the analysis of 
future revenue or future income. In the case of a single event, the mathematical 
set up is limited. One needs to define the probability of occurrence and the impact 
(amount of damage) of the event. Of course, obtaining a precise assessment of these 
two numbers may be complex and may require some sophistication. 

This is particularly true for systems. If we ask the question of probability of a 
crash of a plane flying tomorrow, we address a system, not a specific equipment. 
The calculation depends on the reliability of each part or each equipment and on the 
correlations between the failure of various parts. In the literature, risk analysis for 
systems is called PRA, probabilistic risk assessment. 

Finally, one obtains a simple and efficient indicator of risk by taking the product 
of the two numbers. The comparison of two risks is easy with this indicator. In the 
case of a continuum of uncertainties things are more complex. The full power of 
probability theory and stochastic processes may be necessary if time is an element 
of the model. There is no immediate indicator in general. We rely on decision 
theory, on stochastic programming, and on stochastic control to obtain an optimal 
solution. When there is time in the problem, the issue of what is a decision comes 
in, because the information depends on time. The decision must depend on the level 
of information which is available when it is applied. What we look for is a decision 
rule, which tells us what to do in each circumstance. 

We have already said that it is essential to have a comprehensive list of risks. 
It is very natural to introduce a typology of risks. There are numerous typologies, 
which make sense, and are helpful. We can compare risks of the same type, before 
comparing risks of different types. In industry one uses commonly the following 
typology:

• Strategic risks (survival of the company is at stake)
• Legal and reputational risks
• Financial risks
• Operational risks 

It is only in the last type that one can find the technical risks. For banks we have 
commonly

• Financial markets
• Credit risk
• Operational risks 

Although banks do not produce physical products, they have operations per-
formed with people and information systems. 

Proceeding with risk analysis requires identifying all risks, measuring them, 
and quantifying indicators. Indicators are built on structural randomness. This 
randomness is that which remains after all efforts to reduce the initial one have 
been implemented. Indeed, the initial randomness can be reduced by obtaining more 
information, or by any other measurement. Since the operation of obtaining more
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information is costly, at some point we decide that it is not worth the cost. The 
randomness which remains is structural randomness. 

Note that opportunities are analyzed in the same way as risks. 
Among the decisions there is that of accepting or not a risk. We face a 

psychological difficulty here. This risk can come from a project proposed by a team. 
The team may be frustrated by a negative decision. But accepting too many risks is 
also dangerous. We are in a situation called moral hazard. Insurance companies 
know this problem very well. People who insure their house may make less efforts 
to protect it. Drivers may become more adventurous if they feel safe by wearing a 
safety belt. 

Performing a risk analysis and a risk management study remains a difficult 
task. There are objective reasons: we need to obtain data. Measuring risks requires 
expertise which may be rare. The information system may be complex. There are 
also objective reasons. There is resistance to change, lack of support of the hierarchy, 
power struggles, and discomfort with uncertainties. 

If we perform such a study, the results must be correct. Wrong figures are worse 
than no figures. Finally, not everything is quantifiable. This is the case for political 
risks. 

To conclude we emphasize the three pillars of Risk Management

• Quantitative techniques
• Psychological aspects
• Organizational aspects. 

Omitting one pillar will have catastrophic consequences, whatever the attention 
given to others. 

3.10 Case Studies 

To illustrate all the above ideas, and particularly the concept of three pillars, we 
will discuss two cases, which, interestingly enough, relate to highly technological 
industrial sectors, Nuclear Industry and Aeronautics, to world leaders of the domain, 
in two of the most advanced countries in the world. We want to emphasize the 
commonalities of these two cases from the point of view of Risk Management, so 
that a scientific approach becomes meaningful and useful. 

3.10.1 The Fukushima Accident 

On March 11, 2011, after an earthquake and a tsunami the tragedy of Fukushima 
broke out. Everyone keeps in mind that it is a nuclear accident, almost forgetting 
the earthquake and the tsunami, which are so common in Japan. The main message 
which spread out was that nuclear technology was very dangerous. Many countries,
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starting with Germany, decided to drop nuclear energy forever, or at least to reduce 
its use. Such a harsh decision, without a thorough analysis of the consequences, 
shows the lack of a basic understanding of Risk Management at the level of 
governments. But it is even more true at the level of the company TEPCO, in charge 
of the reactors. TEPCO is number one in Japan and one of the biggest companies in 
the world, in the nuclear industry. 

Here was a prosperous company, well managed, at least with respect to the 
classical rules of management, one of the world leaders, which became in quasi 
bankruptcy within a few days. It could not have survived, without the intervention 
of the Japanese government. What is the use of maximizing its profit if everything 
is lost so quickly? 

The obvious comment is that the company had no idea of what Risk Management 
is. Indeed, the accident was not a nuclear accident, but the consequence of failure in 
basic risk management. It is apparent, from looking at the chart of the company at 
the time of the accident, that no department or functional unit oversaw risk analysis 
or management. The closest was related to quality of the plants and of the energy 
produced. It means that TEPCO was concerned about the risks of its production 
process and about the quality of its products, in line with the concept of total quality, 
which characterizes Japanese industry, but nothing else. 

As we have seen, the first and essential component of Risk Management is to 
identify all risks, certainly not just those related to the technology and the production 
process. 

If one looks at figures, the misbehavior is obvious. The magnitude of the 
earthquake was 9, on the Richter scale. This is a very high figure, but the plants were 
designed to withstand a magnitude of 8.2 and thanks to the security margins did not 
collapse. So, the earthquake is not directly responsible. What is responsible is the 
tsunami which came afterwards. The tsunami wave was 14 m, which is high but not 
exceptional, and the protection wall was only 5.7 m high. Moreover, the plants are on 
the seashore and touching each other. Clearly, the nuclear plants had no protection 
against tsunamis. More troubling is the fact that many warnings about tsunami risks 
have been expressed, including from engineering staff inside the company itself. 

To complete the landscape, TEPCO has another installation, called FUKUSHIMA 
II, further from the sea, which resisted the wave. Similarly, a competitor of TEPCO, 
which is smaller, Tohoku Electric Power Company is operating at Onagawa, 
closer to the epicenter of the earthquake, and had no accident, simply because 
the protection wall was 14.8 m high and resisted. 

If the reasons for the accident have no ambiguity, one may wonder why the CEO 
and the Board of Directors were so unconscious of the tsunami risk. This looks like 
the blindness effect, described above. We also said that the CEO must be directly 
involved, otherwise there is no way that subordinates will compensate for the lack 
of leadership. 

We have also in this case the failure of the regulatory agency, which did not 
correctly play its role. It also focused on the state of the plants and was too 
lenient with the industry, showing a lack of independence, which is too common, 
unfortunately.
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3.10.2 The Boeing Case 

A second interesting case is the story of the BOEING 737 Max 8. It starts with 
the crashes of LION Air 610, on 10-29-2018, and ETHIOPIAN Airlines 302, on 
03-10-2019. 

They were not unpredictable accidents. They should not have occurred. We 
deplore the death of 346 innocent people. 

Why are those accidents very informative from a Risk Management point of 
view? 

This aircraft was new and very important for Boeing. It was the flagship plane, 
introduced in March 2017, and supposed to represent one-third of the revenue of the 
company for at least 5 years. 

Boeing is locked with Airbus in a race for the massively profitable market of 
middle-range planes. The issue is to offer airlines the cheapest airplane to operate. 
What is at stake is to reduce fuel consumption. Both companies have the same 
engine supplier, a consortium of GE and SAFRAN. The consortium maintains two 
lines of production, with no connection between them. We can assume that each 
company has some information on what the other one is preparing, but the decision 
to launch a new plane is a real secret. On December 1, 2010, Airbus stunned the 
aviation community by announcing the A320neo, which will burn 6% less fuel than 
the existing Boeing competitor, the 737 NG (Predecessor of 737 Max). 

This is the origin of all the risky decisions of Boeing. Its hubris could not stand 
that Airbus takes the leadership in such an important market. Boeing’s execs made 
up their minds in a matter of weeks. The company would launch a fourth-generation 
737, and it would do it in record time. Using the 737 platform would save billions of 
dollars in engineering costs. With this choice, the narrative would be that, although 
as efficient as the competition, it was not a new plane. “Not a new plane” was very 
important, because the certification could be fast, and only a light training would be 
necessary for the pilots. It was an obsession, but also a myth. 

They communicated a lot, without being sure to deliver. They announced that the 
Max will be 8% more efficient than the A320neo. Boeing is very trustworthy. They 
could sell a lot of planes and the FAA granted the max an amended type certification. 

Unfortunately, they overlooked a very serious system engineering issue. The new 
engine, called LEAP-1B, is much more efficient than its predecessor, but at the 
same time much heavier and larger. It could not be mounted on the same spot as the 
previous one, because there would be too little clearance from the ground during 
take-off. So, the new engines were placed further forward and slightly higher on the 
wing of the max. 

That solution created an aerodynamics problem. Due to their size and position, 
the engines on the max create lift when the airplane enters a steep climb (at high 
angles of attack). This extra lift causes the Max to behave differently than previous 
versions of the 737, supposedly only when it is climbing steeply.
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The reasonable solution would have been to modify the platform. But then, 
the new plane would look significantly different from its predecessor, denying the 
narrative that the changes were limited. 

So, they decided to solve a hardware difficulty by software. On paper, it was 
simple. A censor would detect when the airplane entered a steep climb, then the 
software would activate the airplane’s pitch trim system to stabilize it until it 
detected that the steep climb was ended. 

BOEING is not a software company. They use suppliers who do not have the 
responsibility to check how the software embedded in the plane behaves. 

The software was activated by a single censor. It always believes that the 
information is correct. 

Considering that the software will be needed rarely, they did not even mention it 
in the pilot’s manual. Even more serious, when activated the software overrides the 
actions of the pilot. 

Risks for embedded software are technical risks, which are known and require 
adapted methods. None of them were implemented. Yet warnings have been 
signaled by test pilots using a flight simulator. 

As mentioned, there were two crashes, with more than 6 months between the 
two. 

Instead of acknowledging the issue after the first crash, BOEING minimized 
it, even blaming the pilots, and promising an easy fix. In addition, like in the 
Fukushima accident, the regulatory agency, the FAA, failed in exerting its responsi-
bility. 

3.11 Conclusion 

The study of uncertainties and of decisions can be considered as a science, since 
there is a substantial number of concepts and methods with a broad range of 
applications. Risk Management is its engineering counterpart. New risks have 
introduced new challenges, because of their psychological aspects, which cannot 
just be addressed with technology and mathematics. Organization is needed. 
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Keywords Age-structured optimal control · McKendrick-von Foerster equation · 
Non-standard optimal control · Random switch · Optimal control with time-lag or 
delay 

4.1 Introduction 

In optimal control models (or dynamic optimization models, in general) the 
dynamics describe the evolution of a system along the direction of an independent 
variable, which typically is either time t , as, e.g., in macroeconomic planning 
problems, or age a, as in microeconomic life-cycle problems. The dynamics are 
modeled by a system of (first-order) ordinary differential equations (or difference 
equations). However, in applications that require in-depth models of the dynamics 
of a population—such as the modeling of social security, labor market, and health 
policies—as well as applications relating to epidemiology, harvesting, and the 
employment of capital vintages, age becomes a crucial variable in addition to and in 
distinction to time. The key equation that models the dynamics along time and age 
is a first-order partial differential equation, i.e., 

.yt (t, a) + ya(t, a) = f (·), y(0, a) = y0(a), y(t, 0) = ϕ(·), (4.1) 

known as the McKendrick-von Foerster equation (see, e.g., Keyfitz and Keyfitz, 
1997). Here, y(t, a). denotes the state variable at time t and age a. yt (t, a). and 
ya(t, a). denote the partial derivative of y(t, a). with respect to time and age, 
respectively. Thus, the left-hand side of (4.1) denotes the directional derivative 
of y(t, a). in direction (1, 1). since time and age evolve at the same pace. Details 
of the right-hand side of the equation, as well as of the initial and boundary 
conditions, will be discussed in the next section. In addition to (4.1) an age-
structured optimal control model allows the objective and salvage value functions to 
be age-structured, as well as aggregated state variables Q(t). to be included. These 
variables aggregate/integrate (system) effects across (all) age groups at any given 
point in time. 

The literature on age-structured optimal control theory evolved as a sequence of 
papers deriving a maximum principle (MP) for a specific problem. The first rigorous 
proof for a general setup with a nonlinear McKendrick-von Foerster equation was 
presented by Brokate (1985). Feichtinger et al. (2003) generalized the maximum 
principle by adding an age-dependent aggregated state variable. Veliov (2008) 
provided a MP for general heterogeneous systems. 

Applications of age-structured optimal control theory are broad and originally 
emerged in population dynamics and population economics; see Arthur and McNi-
coll (1977), Chan and Guo (1989, 1990), Gurtin and Murphy (1981a,b), Medhin 
(1992), Feichtinger et al. (2004), Prskawetz and Veliov (2007), Feichtinger et al. 
(2012), Prskawetz et al. (2012), or Feichtinger and Wrzaczek (2024a,b). In parallel 
the theory was also applied in the mathematical literature on epidemiology (see
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Greenhalgh, 1988; Hethcote, 1988) and economics (see Derzko et al., 1980; 
Feichtinger et al., 2006; Kuhn et al., 2011; Augeraud-Véron et al., 2019; Hartl et al., 
2023), among other fields. 

The contribution of this paper to the optimal control literature is twofold. First, 
we formulate the age-structured MP in a general abstract way and show how it 
is used in a toy model on air pollution. Within this model we also elaborate how 
the age structure enters the necessary conditions (of the MP), how it changes the 
solution in comparison to a standard (time-dependent) optimal control model, and 
how it can be understood in an intuitive way. In so doing, we seek to create an 
understanding of the relevance of the age-time dynamic in optimal control theory 
for addressing important policy questions. Second, apart from the importance of age 
structure as a dynamic dimension, we demonstrate how the age-structured MP can 
be used to handle advanced non-standard optimal control models that, otherwise, are 
difficult to deal with. The transformation uses age structure as auxiliary dimension 
but substantially improves (intuitive) insights and facilitates the solution of model 
classes that to date are applied to a limited extent only. 

The paper is organized as follows. Section 4.2 presents the age-structured MP, 
which is applied in Sect. 4.3 to a toy model on air pollution. Section 4.4 discusses 
how age structure can be used for non-standard (advanced) optimal control models. 
Section 4.5 concludes. 

4.2 The Age-Structured Maximum Principle 

Let us first state the general form of an age-structured optimal control problem. In 
the following problem (4.2a) denotes the objective function, (4.2b) and (4.2c) the  
model dynamics, and (4.2d) and (4.2e) the initial and boundary conditions: 

. max
u(t,a)∈U
v(t)∈V

∫ T

0

∫ ω

0
L (y(t, a),Q(t), u(t, a), v(t), t, a) dadt

+
∫ ω

0
S (y(T , a), T , a) da. (4.2a) 

s.t. yt (t, a) + ya(t, a) = f (y(t, a), Q(t), u(t, a), v(t), t, a). (4.2b) 

Q(t) =
∫ ω 

0 
h (y(t, a), Q(t), u(t, a), v(t), t, a) da. (4.2c) 

y(0,  a)  = y0(a). (4.2d) 

y(t, 0) = yb (Q(t), v(t), t). (4.2e) 

Here, t and a denote time and age, respectively, with time horizon T and maximal
attainable age ω .. y(t, a) ∈ R

m
. and Q(t) ∈ R

n
. are distributed and aggregated
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state variables.1 ,
. 2 The corresponding functions f and h depend on time, age, state 

variables, and the control variables denoted by u(t, a) ∈ U ⊆ R
p
. (distributed) 

and v(t) ∈ V ⊆ R
q
. (concentrated). While y0(a). denotes the exogenous3 initial 

distribution of y(t, a). across age at time t = 0., yb(Q(t), v(t), t). denotes the 
boundary condition which can depend on the aggregated state as well as on the 
concentrated control variables. In contrast to y(t, a)., an initial or boundary condition 
is not required for Q(t)., as it is derived from the aggregation of h(·). at every t . 
The decision maker chooses u(t, a). and v(t). in order to maximize the sum of the 
aggregated objective L(·). and salvage value function S(·). (see (4.2a)). 

The Lexis diagram shown in Fig. 4.1 illustrates how variables in the general 
model (4.2) relate to the time and age dimension in the model. Time and age are 
plotted on the horizontal and vertical axes, respectively. The characteristic lines ( 45◦

. 

lines in blue) show that time and age evolve at the same pace; hence, t − a . denotes 
the time at which a specific characteristic line emerges. y(t, a). and u(t, a). are time-
and age-specific variables. They evolve along characteristic lines and emerge either 
at the vertical axes according to the initial condition y0(a). or at the horizontal 
axes according to the boundary condition yb(Q(t), v(t), t).. Q(t). results from an 
aggregation across the age domain at t and influences the dynamics (4.2b)–(4.2c), 
the boundary condition (4.2e), and the objective function (4.2a). Thus, the Lexis 
diagram highlights the asynchrony of the variables with respect to the time and age 
domain, which is the intuitive reason for a separate MP for these problems. 

The length of the time horizon T and the maximal attainable age ω . are both 
finite and define the intervals DT := [0, T ]., DA := [0, ω]., as well as the domain 
D := DT × DA

. within which the distributed state and control variables are 
defined. Note that this is in line with most theoretical and applied works based 
on age-structured optimal control models. In contrast to time-dependent optimal 
control models, the formulation of general limiting transversality conditions for the 
adjoint variables is difficult for age-structured optimal control models and, therefore, 
implies the absence of a general MP for problem (4.2) with infinite time horizon.4 

1 Note that the MP presented in Feichtinger et al. (2003) also allows for distributed aggregate state 
variables. For an application see, e.g., Almeder et al. (2004). 
2 Note that problem (4.2) can easily be extended to include a concentrated state variable x(t)., 
whose dynamic is described by an ordinary differential equation (ODE). This is important in a 
number of applications such as the employment of age structure in multi-stage optimal control 
models with stochastic switches and optimal control models with time-lag as discussed in Sect. 4.4. 
For the extended necessary conditions and a sketch of a proof, we refer to Feichtinger and 
Wrzaczek (2024a). 
3 Note that the MP of Feichtinger et al. (2003) also allows the control of the initial condition y0(a). 
by a purely age-dependent control variable. This is similar to a control of the initial condition in a 
standard optimal control model. Due to its infrequent usage, a control variable of this type is not 
presented here. 
4 For a discussion on a MP for infinite time horizon for the specific case of the PDE being linear in 
y(t, a)., see, e.g., Skritek and Veliov (2015) or Buratto et al. (2020).
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Fig. 4.1 Lexis diagram: showing variables and conditions along time and age dimension 

Table 4.1 Variables, functions, and conditions of an age-structured optimal control model (4.2) 

Independent variables Time t ∈ DT . 

Age a ∈ DA . 

Control variables Distributed u(t, a) : D �→ U . 

Concentrated v(t) : DT �→ V . 

State variables Distributed y(t, a) : D �→ R
m . 

Aggregated Q(t) : DT �→ R
n . 

Functions Objective functional L : Rm × R
n × U × V × D �→ R. 

Salvage value S : Rm × D �→ R. 

Distributed system dynamic f : Rm × R
n × U × V × D �→ R

m . 

Aggregation h : Rm × R
n × U × V × D �→ R

n . 

Initial and boundary 
conditions 

Initial distribution of y(0, a). y0 : DA �→ R
m . 

Boundary condition of y(t, 0). yb : Rn × V × DT �→ R
m . 

Table 4.1 summarizes the variables and functions that define (4.2). We assume 
the admissible control sets to be compact and convex, and the involved functions to 
be twice continuously differentiable.5 

The age-structured MP formulates necessary optimality conditions for prob-
lem (4.2).

5 Note that these assumptions are stronger than necessary. We refer to Brokate (1985) or  
Feichtinger et al. (2003) for weaker assumptions that are sufficient to prove the MP. 
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Theorem 4.1 Let (y∗(t),Q∗(t), u∗(t, a), v∗(t)). be an optimal solution of (4.2). 
Then there exist unique solutions ξ(t, a). and η(t). of the adjoint system 

.ξt (t, a) + ξa(t, a) = −Hy(·), ξ(t, ω) = 0, ξ(T , a) = ∂S(·)
∂y

, a ∈ DA, t ∈ DT
. 

(4.3a) 

η(t) = ξ(t, 0) 
∂yb (·) 
∂Q 

+
∫ ω 

0 

∂H(·)
∂Q

da (4.3b) 

and the control variables satisfy 

. H
(
y∗,Q∗, u∗, v∗, ξ, η, t, a

) ≥ H
(
y∗,Q∗, u, v∗, ξ, η, t, a

)
,

∀u ∈ U . (4.4a)
(

ξ(t, 0) 
∂yb 

∂v 
(Q∗,  v∗,  t) +

∫ ω 

0 

∂H 
∂v

(
y∗,  Q∗,  u∗,  v∗,  ξ,  η  , t, a

)
da

) (
v∗ − v

) ≥ 0,

∀v ∈ V (4.4b) 

for a.e. t ∈ DT
. and (t, a) ∈ D ., where the Hamiltonian is defined by 

. H
(
y∗,Q∗, u∗, v∗, ξ, η, t, a

) := L (y(t, a),Q(t), u(t, a), v(t), t, a)

+ ξ(t, a)f (y(t, a),Q(t), u(t, a), v(t), t, a)+
+ η(t)h (y(t, a),Q(t), u(t, a), v(t)) . (4.5) 

Here ξ(t, a). and η(t). denote the adjoint variables corresponding to the state 
variables y(t, a). and Q(t)., respectively. They share the dimension and the same 
dependencies with their corresponding state variables.6 A strict proof of Theo-
rem 4.1 can be found in Brokate (1985), Feichtinger et al. (2003) (including a 
distributed aggregated state variable), or Veliov (2008) (for the case of more general 
heterogeneous systems). Feichtinger and Wrzaczek (2024a) explicitly formulate the 
optimality conditions with an additional concentrated state variable (which is a 
special case of the previous papers) and provide a sketch of the proof. Wang (1964) 
and Brogan (1968) derive the MP by using a dynamic programming approach, 
which allows interpreting the adjoint variables as a shadow price. 

The MP in Theorem 4.1 is formulated in a general way. For an interior solution 
of the control variables Equation (4.4) reduces to

6 Note that the multidimensional adjoint variables should be read as row vectors, while the state 
and control variables are column vectors by definition. 
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.
∂H(·)
∂u

= 0. (4.6a) 

ξ(t, 0) 
∂yb (·) 

∂v 
+

∫ ω 

0 

∂H(·) 
∂v

da = 0. (4.6b) 

To obtain the maximum of the Hamiltonian (where (4.2) is formulated as a 
maximization problem), the (static) second-order condition, not explicitly formu-
lated here, has to be fulfilled as well. Note that (4.6a) has to hold for every 
(t, a)., whereas (4.6b) corresponds to t alone, implying that the derivative of the 
Hamiltonian with respect to v(t). is aggregated across the age domain. 

Analogous to the MP for time-dependent optimal control models, the age-
structured MP provides a set of conditions that are necessary for optimality. General 
sufficiency conditions akin to the Arrow, the Mangasarian, or the Leitmann-Stalford 
conditions (cf. Seierstad and Sydsaeter, 1977 and Leitmann and Stalford, 1971) are  
not available so far and have to be derived in relation to the specific problem. 

Compared to time-dependent optimal control models, the numerical treatment 
of age-structured optimal control problems is substantially more involved. As 
presented above, the necessary optimality conditions consist of a set of partial 
differential equations (PDEs) combined with boundary conditions for state and co-
state variables as well as algebraic equations for all (t, a).. In general, the solution 
process for a set of PDEs is highly complex already. However, t − a =.const for the 
PDEs in an age-structured optimal control model allows the use of the methods 
of characteristics (see Zachmanoglou and Thoe, 1986). This solution technique 
reduces each PDE to a set of ordinary differential equations (ODEs). Each ODE 
represents a cohort and it can be solved numerically with a wide range of established 
solution techniques, significantly reducing the degree of difficulty/complexity of the 
numerical problem. 

Nevertheless, the difficulties resulting from the mixed boundary conditions 
(initial conditions for the state variables/end conditions for the co-state variables) 
and the algebraic optimality conditions remain. We will now briefly discuss two 
potential iterative approaches to solve these issues: (i) shooting algorithms and (ii) 
gradient-based algorithms. 

Shooting algorithms7 start with a guess for the initial values of the co-state 
variables. The state and co-state variables are then solved forward in time with the 
algebraic equations being solved (analytically or numerically) at each point in time 
to obtain values for the control variables. According to the discrepancy between the 
end values of the co-state variables and the target values according to the boundary 
conditions, the initial values for the co-state variables are adjusted iteratively until 
the end conditions for the co-state variables are fulfilled (within a given margin of 
error).

7 See Bonnans (2013) for an overview of shooting algorithms for optimal control problem. 
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Conversely, gradient-based algorithms8 start with an initial guess for the control 
variables over the whole domain. Using this guess the state variables are calculated 
iterating forward in time. Given the state profiles the end constraints for the state 
variables can be evaluated and co-state dynamics are solved backward in time 
(starting at t = T . and ending at t = 0.). Given this solution for states, co-states, and 
controls, the gradient of the Hamiltonian is evaluated and the controls are adjusted 
in the direction of the gradient to find an improvement in the objective function. 
These steps are iterated until no further improvement in the objective function is 
found. 

Each approach has its own advantages and disadvantages with respect to 
computation times or stability and range of convergence, but both can provide a 
solution of the full system. 

4.3 Toy Model on Air Pollution 

We take inspiration from recent work on the pathways and welfare impacts of 
consumption-based air pollution (e.g., Zhao et al., 2019; Almetwally et al., 2020; 
Rao et al., 2021; Peszko et al., 2023) for the purpose of illustrating the advantages 
of considering an age-structured population within an optimal control model. 
Specifically, we employ the model to derive the welfare-maximizing allocation of 
consumption across a population and over time when taking into account negative 
impacts of consumption-driven pollution on health and productivity. 

The economy consists of an age-structured population N(t, a)., the dynamics of 
which are driven by an age-specific mortality rate μ(·). and fertility rate ν(·)., both 
of which depend on pollution P(t).. In line with the above-cited literature, pollution 
is assumed to increase mortality for all age groups; fertility is negatively affected 
by pollution (e.g., Conforti et al., 2018 and Jurewicz et al., 2018 on biomedical 
channels (fecundity) and Gao et al., 2022 on socioeconomic channels). The initial 
population structure at time t = 0. is exogenously given by N0(a).; the number 
of births B(t). defines the population of age a = 0. at every t and results from 
the total fertility of the population. These population dynamics are summarized in 
Eqs. (4.7b), (4.7c), and (4.7f). 

The cohort of age a at time t holds a total value of A(t, a). in assets. These 
assets generate interest at the rate r and are adjusted at every point in time t by the 
difference between age-specific (per capita) earnings w(a, P (t))., also assumed to 
depend negatively on pollution (e.g., Aguilar-Gomez et al., 2022; Neidell, 2023), 
and consumption c(t, a).. Individuals start their lives with zero assets (A(t, 0) =

8 See Veliov (2003) for the theoretical proof of convergence of the Newton’s method for age-
structured optimal control problems. 
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0.) and have to possess zero assets at their maximum age of survival ω ..9 For the 
dynamic and boundary equations for cohort assets, see Eqs. (4.7d) and (4.7e). 

Air pollution is assumed to be a flow variable in our toy model and results from 
the total consumption across all cohorts (see (4.7g)). 

The planner’s objective is to maximize social welfare, which is defined by the 
total utility aggregated across time and cohorts. The per capita period utility function 
u(c(t, a), P (t)). increases with per capita consumption c(t, a). and decreases with 
the total pollution in the economy, the latter reflecting direct negative effects on 
physical or mental health (e.g., Almetwally et al., 2020; Shi and Yu, 2020). The 
objective function in (4.7a) is of the Benthamite type and counts the utility of every 
individual at t .10 The model can be summarized as follows: 

. max
c(t,a)

∫ T

0

∫ ω

0
e−ρtN(t, a)u(c(t, a), P (t))dadt . (4.7a) 

s.t. Na(t, a) + Nt(t, a) = −μ(a, P(t))N(t, a), . (4.7b) 

N(0,  a)  = N0(a), N(t, 0) = B(t). (4.7c) 

Aa(t, a) + At(t, a) = rA(t, a) + (w(a, P(t)) − c(t, a))N(t, a), . 

(4.7d) 

A(0,  a)  = A0(a), A(t, 0) = 0,  A(T , a) = A(t, ω) = 0. (4.7e) 

B(t) =
∫ ω 

0 
ν(a, P(t))N(t, a)da. (4.7f) 

P(t)  =
∫ ω 

0 
c(t, a)N(t, a)da. (4.7g) 

9 Note that defining A(t, a). as cohort assets (rather than per capita assets) allows us to easily 
incorporate the redistribution of assets that are held by deceased individuals. In our toy model the 
assets automatically get redistributed between the surviving individuals of the same cohort. This 
fact becomes obvious when examining the differential equation for per capita assets S(t, a) :=
A(t, a)/N(t, a).. 

. St (t, a) + Sa(t, a) = (r + μ(a, P (t)) · S(t, a) + w(a, P (t)) − c(t, a).

This equation shows that assets get redistributed equivalently to an annuity market that covers the 
mortality risk.
10 While in the Benthamite setting, per capita utility is scaled with the cohort size N(t, a)., the  
Millian social welfare function is based on the average utility across the whole population (see, e.g., 
Kuhn et al., 2010) and can straightforwardly be obtained by dividing utility by the total population 
size at time t . 
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4.3.1 Analysis and Economic Insight 

We now demonstrate the age-structured MP by following Theorem 4.1. The current 
value Hamiltonian (Eq. (4.5)) reads (ignoring t and a for simplicity)

. H = Nu(c, P ) + ξN (−μ(P )N) + ξA (rA + (w(P ) − c)N)

+ ηBν(P )N + ηP cN, (4.8) 

where ξN(t, a). and ξA(t, a). denote the adjoint variables of the (distributed) 
population and asset states, and where ηB(t). and ηP (t). denote the adjoint variables 
of the (aggregated) births and pollution states, respectively. As an implication 
the necessary first-order conditions for age-structured consumption follow from 
Eqs. (4.4a) and (4.6a), i.e., 

. Hc = Nuc − ξAN + ηP N = 0


⇒ uc = ξA − ηP , (t, a) ∈ D. (4.9) 

Equations (4.4b) and (4.6b) are not used, since the toy model does not include a 
concentrated control variable. Equation (4.9) reflects the standard marginal utility 

=. marginal costs criterion in economics. The left-hand side (lhs) equals the 
marginal utility of an individual (aged a at t). The right-hand side (rhs) comprises 
the value of assets, reflecting alternative future consumption possibilities, and the 
shadow cost of air pollution, embracing an immediate effect on instantaneous utility 
and an intertemporal effect on mortality and fertility. Note here that typically ξA

. 

is positive and ηP
. is negative. Here, the rhs also illustrates the interaction of the 

independent dimensions age and time. Whereas ξA
. (depending on age and time) 

depicts the intertemporal effect along the life-course of a cohort, ηP
. evaluates the 

cost of pollution across all cohorts at t and intertemporally. The social optimum, 
thus, includes cross-cohort pollution damages to the optimization nexus of the age-
structured consumption decision. This feature cannot be obtained in a standard (i.e., 
concentrated parameter) optimal control model that is simplified by neglecting the 
age dimension.

The adjoint equations and transversality conditions are derived straightforwardly 
(Eqs. (4.3)). We obtain 

.ξN
t + ξN

a = (ρ + μ) ξN − u − ξA (w − c) − ηBν − ηP c. (4.10a) 

ξA 
t + ξA 

a = (ρ − r) ξA
. (4.10b) 

ηB = ξN (t, 0). (4.10c) 

ηP =
∫ ω 

0

(
NuP − ξN μP N + ξA wP N + ηBνP N

)
da, (4.10d)
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with 

.ξN(T , a) = 0, a ∈ DA
. (4.11a) 

ξN (t, ω) = 0, t ∈ DT . (4.11b) 

Regarding the adjoint variables for the aggregated state variables (4.10c)–(4.10d), 
we would like to emphasize the structural difference between ηB

. on the one hand 
and ηP

. on the other hand, although all of these are derived from the general 
expression (4.3b). Births B(t). do not enter the objective function and the system 
dynamics, but only the boundary condition of the population. This means that B(t). is 
affecting N(t, a). only once (i.e., at a = 0.) and is covered by the first term of (4.3b). 
Pollution P(t)., on the other hand, enters the objective function and/or the system 
dynamics but not the boundary condition of the population. Therefore, (4.10d) 
draws on the second term of (4.3b) covering the effect across all cohorts at t and 
intertemporally .

To explore the dynamics of an optimal allocation, the derivative of the control 
variable (starting from the first-order condition), in economics referred to as Euler 
equation, can be used. In the case of an age-structured control variable, the 
derivative has to be taken along time and age. Using (4.9) and (4.10) we obtain 
the following general expression: 

.
ct + ca

c
= − uc

ucc · c

(
(r − ρ) + (r − ρ) ηP + ηP

t

uc

+ Pt

ucP

uc

)
. (4.12) 

The equation determines whether it is better to postpone or advance consumption. 
The first term on the rhs outside the parenthesis shows the social planner’s 
absolute risk aversion or, equivalently, the inverse of the elasticity of intertemporal 
substitution. A more risk-averse social planner is less responsive to changes in the 
economy and less willing to shift consumption over time. The first term inside the 
parenthesis shows the difference between the current valuation of savings by the 
market (r) and the social planner ( ρ .). If the market values savings more (or less) 
than the social planner, i.e., r > ρ . (or r < ρ .), the social planner has an incentive to 
defer (or advance) consumption, implying an increase (decline) in consumption over 
time. The second term inside the parenthesis depicts how the social planner values 
the evolution of pollution. Noting that pollution typically carries a negative value, 
i.e., that ηP < 0., a further decrease (increase) toward a more (less) negative value, 
i.e., (r − ρ)ηP + ηP

t < (>)0., implies that the social planner chooses to advance 
(postpone) consumption and reduce (or increase) savings. This is to reduce future 
(present) pollution damage. The third term inside the parenthesis accounts for the 
negative impact on the utility from consumption of increasing pollution. Assuming 
a negative impact ucP < 0., an increase (decrease) in the pollution flow over time 
implies an advancement (deferral) of consumption. 

As the shadow price of pollution ηP . itself is partially determined by the shadow 
price of the population, it is helpful to consider the analytic expression of ξN(t, a).
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obtained by backward integration of (4.10a). Using (4.11b) we obtain the following 
expression for an individual that dies before T (i.e., t − a ≤ T − ω.):11 

. ξN(t, a) =
∫ ω

a

e− ∫ s
a (ρ+μ)ds′

⎛
⎜⎜⎝ u︸︷︷︸

(i)

+
(
uc + ηP

)
(w − c)︸ ︷︷ ︸

(ii)

+ ξN(t, 0)ν︸ ︷︷ ︸
(iii)

+ ηP c︸︷︷︸
(iv)

⎞
⎟⎟⎠ ds.

(4.13) 

The integral (4.13) aggregates the marginal effects on social welfare over the 
remaining lifespan of an individual aged a at time t discounted by ρ . and the 
conditional survival probability.12 Therefore, the closed-form (4.13) can also be 
referred to as the expected present value of a consumer aged a at time t akin to 
similar expressions derived in Kuhn et al. (2010, 2011). 

The present value of an additional consumer aged a can be decomposed into four 
substantive parts (each discounted and weighed by the respective survival function). 
(i) denotes the increase in utility associated with this consumer. (ii) depicts 
the marginal effect (positive for utility, negative for pollution) of redistributing 
income over the consumer’s remaining lifetime. This “cohort redistribution” effect 
obviously cannot be obtained in a dynamic model without age structure and includes 
the consumption path (along the life-cycle) as well as age-structured mortality and 
fertility. Term (iii) is a population dynamic effect that again can only be derived 
for an age-structured population. It captures the value of the expected progeny (as 
consumers) born to an individual born at t − a . over its own remaining life-cycle 
(including the effect of a newborn cohort on their offspring). This is a generalization 
of the demographic reproductive value and can be proven to appear in all age-
structured optimal control models that model population via the McKendrick-von 
Foerster equation with endogenous births (see Kuhn et al., 2010; Wrzaczek et al., 
2010; and Feichtinger et al., 2011). (iv) assigns to the individual the (negative) value 
of the pollution it causes over its remaining life-course. In this way the decision 
maker is able to internalize the cross-cohort pollution externality within and across 
cohorts (and over time). 

4.3.2 Numerical Solution 

For the numerical solution of the toy model, we use specific functional forms for 
the utility, the mortality rate, and the wage rate. The fertility rate is assumed not

11 For an individual that is alive at T (i.e., t − a > T − ω.) the expression is analogous, only 
with the upper bound of the interval now defined by the individual age at T instead of ω. and the 
employment of (4.11a) instead of (4.11b). 
12 Note that e− ∫ s

a (ρ+μ)ds′
. can also be written in terms of state variables N(t−a+s,s)

N(t,a)
.. 
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to depend on pollution and to be equal to a standard baseline rate. In the following 
we briefly discuss the functional choices. The specific parameters can be found in 
Table 4.2. 

For the utility we use a standard constant relative risk aversion (CRRA) function, 
which is multiplicatively reduced according to e−κ1(a)P γ

.. The non-negativity of the 
exponential function guarantees a non-negative utility. The mortality rate is the 
baseline mortality rate, which follows a Gompertz law with a modal age at death 
of 80 years and a senescence rate of 0.10 (see Horiuchi et al., 2014), augmented by 
the effect of pollution. For the illustration purpose of the toy model, a linear form is 
sufficient. The wage rate is structured analogously, i.e., a baseline rate is reduced by 
a linear effect of pollution. 

The initial population distribution is determined by stable population theory (see 
Coale, 1957), using the population growth rate as the ratio of the logarithm of the 
net reproduction rate to the average childbearing age. The wage rate is modeled by 
a standard Mincerian equation. 

Although an age pattern of the pollution effects would be realistic and one reason 
for age dependence of the consumption profile, we assume age independence, i.e., 
∂κi (a)

∂a
= 0., i = 1, 2, 3.. Already in this simplified setup a nontrivial dynamic 

consumption path is optimal due to the interaction of the time and age domains 
within the problem. This observation would potentially be overlaid by an age 
dependence. 

The model is calculated for 250 years with a maximal lifetime of 100 years. The 
remaining model parameters and the complete set of specific functional forms are 
listed in Table 4.2. 

Table 4.2 Summary of functions and parameters for numerical solution 

Function Form Parameters Value 

Base parameters Discount rate ρ . 0.02. 

Market interest rate r 0.02. 

Time horizon T 250 

Maximal age ω. 100 

Utility
u(c, P ) =

(
b + c1−σ

1−σ

)
e−κ1(a)P γ

. b 3 
σ . 1.0 

γ . 1.1 

κ1(a). 1.5 · 10−5 . 

Mortality rate μ(a, P ) = μ̃(a)(1 + κ2(a)P ). κ2(a). 1.5 · 10−5 . 

μ̃(a). Calibrated 

Fertility rate ν(a) = ν̃(a). ν̃(a). Calibrated 

Wage rate w(t, a) = w̃(t, a) · (1 − κ3(a)P ). κ3(a). 2.0 · 10−4 . 

g 1.5 · 10−3 . 

β0 . −6.66 · 10−1 . 

w̃(t, a) = eβ0+gt+β1a+β2a2
. β1 . 6.02 · 10−2 . 

β2 . −9.0 · 10−4 .
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Fig. 4.2 Population along a cohort (red line) and across cohorts (blue dashed line) for a fixed t 

Figure 4.2 shows the age distribution of the population N(t, a).. The red line 
refers to the density of the cohort born at t = 50.. The shape naturally follows 
the survival profile of an individual, which in our model corresponds to the base 
mortality rate augmented by negative pollution effects. The blue dashed line shows 
the population density across ages at the time of birth of the cohort shown with the 
red line, i.e., t = 50.. As we assume a stable increasing population, the dashed blue 
line lies below the red one. The figure illustrates the possibility of modeling state 
(and control) variables in the two independent directions time and age, along which 
they develop differently. Whereas the red line corresponds to the 45◦

. line in the 
Lexis diagram (Fig. 4.1), the blue dashed line resembles a vertical line in the Lexis 
diagram. Both of them start at the same time and age specific value (t, a) = (50, 0).. 

Figure 4.3 plots the optimal consumption profile along the same dimensions as in 
Fig. 4.2, i.e., along the lifetime of one cohort (red line) and across cohorts for fixed 
t (blue dashed line).

To discuss the shape of the red line, we refer back to the Euler equation (4.12). As 
the market interest rate and the social planner’s time discount rate coincide (r = ρ .), 
Eq. (4.12) simplifies to 

.
ct + ca

c
= 1

σ
·
(

ηP
t

uc

− κ1(a) · γ · P γ−1 · Pt

)
. (4.14) 

Equation (4.14) shows that the consumption profile would be flat, if pollution 
had none of the three externality effects, i.e., if it did not affect the utility, wage,
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Fig. 4.3 Optimal consumption along a cohort (red line) and across cohorts (blue dashed line) for 
a fixed t 

and vitality rates of individuals.13 This allows us to directly identify the impact 
of pollution on the timing of consumption. As pollution increases over time (see 
Fig. 4.5), the negative effects through all channels become stronger, which is 
reflected by a decrease in the corresponding negative shadow price ηP

.. Moreover, 
the marginal utility w.r.t. consumption decreases in pollution, as implied by the 
specific functional form shown in the second term in (4.14). Both effects give an 
incentive to shift consumption to younger ages and to decrease it continuously over 
the life-cycle. For the consumption profile across cohorts the explanation is similar, 
but the profile here combines the consumption values of different cohorts. Earlier-
born and thus older cohorts in the cross-section face a lower productivity (lower 
wage profile) and a higher shadow price ξN(t, a)., which enters in the definition of 
ηP

. and is based on a longer remaining time horizon. Therefore, the consumption 
profile along the time dimension decreases more steeply in the cross-section as 
compared to the consumption profile along the life-cycle. 

As the shadow price of the population plays a decisive role for the development 
of ηP

. and consequently the optimal consumption allocation, Fig. 4.4 provides more 
insights into the development of ξN(t, a). across time and age. The shadow price is 
illustrated in two different ways. The left panel shows several cross-sectional age 
schedules (i.e., vertical lines in the Lexis diagram, Fig. 4.1) of the shadow price 
for different time periods t . These schedules correspond to cross-sectional slices in

13 No impact of pollution would imply κ(a) = 0., eliminating the second term in (4.14) as well  
as μP = wP = νp = 0.. Following Eq. (4.10d) this directly leads to ηP = 0. and consequently 
ηP

t = 0.. 
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the figure of the three-dimensional shadow price plotted in the right panel. In the 
following we offer a more detailed intuition about the hump-shaped pattern of the 
cross-sectional age distribution and the decrease in the level of the shadow price. 

First, to understand the shape we use the explicit solution (4.13), which is an 
aggregation of immediate and indirect effects. Since the remaining lifetime of a 
cohort becomes shorter as time evolves, the overall shape is decreasing until it 
reaches zero at the maximal age ω .. The initial increase until age ≈25. is due to 
the inclusion of the value of the cohort’s expected offspring as already discussed 
above. Second, the left panel shows a noticeable decrease over time, which is again 
a result of the moving time. Shadow prices always include the aggregation of future 
effects of a state variable. Therefore, a shorter remaining time horizon implies less 
effects and an overall decrease in the toy model. Finally, note that the value at the 
end of the time horizon (i.e., at the maximal age ω . and at the end of the planning 
period T ) equals zero, which is due to the absence of a salvage value function. 
Important to notice in this respect is an anticipative behavior of the control variables 
implied by the overall decrease of the shadow prices. For a fairly long time horizon 
that means that the system stabilizes after some transitional initial period before the 
nearing end of the time horizon leads to a deviation which, in some cases, can be 
quite counterintuitive. To avoid those effects and caveats, solutions are often plotted 
on a truncated time horizon.

Note that the right-hand side of Fig. 4.4 also demonstrates that all control, state, 
and corresponding adjoint variables are derived in the full time-age spectrum, as a 
PDE. Paths along a cohort or cross cohort (as in Figs. 4.2 and 4.3 or in the left panel 
of Fig. 4.4) are only slices of the variable in the full time-age domain, but often more 
suitable to highlight specific effects. 

In the discussion of the consumption profile we already mentioned that pollution 
increases over time. Figures 4.5 and 4.6 present a sensitivity analysis of the pollution 
effect and compare a high, low, and zero pollution impact. The left panel of Fig. 4.5 
shows the pollution over time for the three cases. The gradual increase of pollution 
over most of the time horizon is due to the increasing population (i.e., more people 
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Fig. 4.6 Impact of pollution on optimal consumption along a cohort (red lines) and cross cohort 
for a fixed t (blue l ines)

with the same wage profile consume more products) and productivity (i.e., higher 
income)14 . Thus, these cohorts can only consume less, which also means less air 
pollution. A comparison between the different schedules in the left panel of Fig. 
4.6 shows that a higher impact of pollution on productivity and the vital rates is 
associated with less aggregate pollution. This reflects the (stronger) effort by the 
planner towards mitigating pollution by way of reallocating consumption as shown 
in the right panel of Fig. 4.6.

14 The decrease at the end of the time horizon is due to the end condition for assets A(T , a) = 0.. 
This implies that late-born individuals earn a lower life-cycle income as their most productive age 
is reached byond the end of the planning period. 
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The right panel of Fig. 4.6 compares the optimal consumption profiles over the 
life-cycle (red) and across cohorts (blue) for the scenarios in which pollution has 
a high, low and zero impact. If pollution has no impact (solid lines), complete 
consumption smoothing along the life-cycle is optimal (red solid line). Taking into 
account an impact of pollution then implies a shift of consumption to younger ages, 
i.e., a decreasing consumption path as discussed before. Generally, the optimal 
response to pollution impacts implies that consumption is reduced to below the 
benchmark for most ages, reflecting the lower lifetime income. The one excpetion 
is the case of low pollution impacts, where consumption is slightly increased above 
the benchmark for young ages (between 0 and 20). The arguments carry over to the 
cross-cohort consumption paths (blue lines) where the consumption for cohorts with 
a younger age is also higher if pollution has an impact. The decrease across the age 
groups for fixed t again goes along with the productivity growth over time.

4.4 Age Structure as a Toolkit for Non-standard Optimal 
Control Models 

Apart from modeling age structure in the classical sense as in the previous section, 
age-structured optimal control models can also be used to handle advanced types of 
optimal control problems. In the following we consider two of them: optimal control 
models with random switches (Sect. 4.4.1) and optimal control models including 
a delay (Sect. 4.4.2). For both types respective MPs are available, but these are 
notoriously involved and difficult to use. The transformation to an age-structured 
optimal control model presents a promising option. 

4.4.1 Optimal Control Models with Random Switches 

Optimal control models with multiple stages (referred to as multi-stage optimal con-
trol models) are well developed if the stage switches are endogenously determined 
by the decision maker. At the switching point the so-called switching conditions 
(see Tomiyama, 1985; Tomiyama and Rossana, 1989 or Makris, 2001) have to hold 
in addition to the standard MP, and a solution can be found by a standard numerical 
approach. 

For stochastic switches the conditions are different and the analysis is more 
involved. There is no unique second stage, but infinitely many, starting at all possible 
instants of time. Consequently, the decision maker has to consider all possible 
switching times (with corresponding stages) and anticipate them in the optimization 
nexus. She thereby has to consider the effects of her decisions on (i) the level 
of preparedness for the impacts of a switch and (ii) the likelihood of the switch 
occurring (as is described by the hazard rate of the switch).
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The literature of optimal control models with stochastic switches emerged in 
the 1970s in environmental economics (see Cropper, 1976; Reed, 1987) and spilled 
over to economics (Guo et al., 2005), epidemiology (Brock and Xepapadeas, 2020), 
and other fields. Most of these models use the so-called backward approach, i.e., 
the deterministic reformulation of the stochastic optimal control model (Boukas 
et al., 1990), where the value function for the second stage after the switch is 
derived either analytically or numerically. In the following we introduce the general 
formulation of an optimal control model with random switching time and present 
the transformation to an age-structured optimal control model (see Wrzaczek et al., 
2020). 

Let x(t). and u(t) ∈ U . denote the state and control vectors at t in a standard 
optimal control model where F(x(t), u(t), t). and f (x(t), u(t), t). are the objective 
functional and system dynamics. The time horizon is separated into two stages by 
the switching time τ . (random variable out of the sample space � = [0,∞)., with 
probability space (�,�,P).), which is stochastic according to the hazard rate η . that 
depends on the state and control vectors at t , i.e., 

.η(x(t), u(t), t) = F ′(t)
1 − F(t)

, F(t) = P(τ ≤ t). (4.15) 

At the switch, the model changes disruptively according to three possibilities: (i) 
change of the objective functional, (ii) change of the system dynamics (including 
the addition of further or removal of existing state variables), and/or (iii) jump in 
a state variable. Combining these three possibilities makes it possible to model a 
broad variety of different effects associated with disruptive regime shifts. 

We denote (i) and (ii) by adding subscripts to the corresponding functions; (iii) is 
modeled via a function ϕ(x(t), u(t), t). that embraces a possible jump. In the case of 
a switch at τ ., the limit of ϕ . from the left defines the initial state value of the second 
stage at τ . (see Eq. (4.17b)). 

We adopt the standard notation and introduce the value function of the second 
stage problem as the salvage value of the first stage and arrive at the following 
general model15 

. max
u(t)∈U

Eτ∈[0,∞)

[∫ τ

0
e−ρtF1(x(t), u(t), t)dt + e−ρτ S(x(τ ), τ )

]
.(4.16a) 

s.t. ẋ(t) = f1(x(t), u(t), t), x(0) = x0. (4.16b) 

η(t) = η(x(t), u(t), t), (4.16c)

15 Note the difference in notation in comparison to multi-stage optimal control models (with 
endogenous switch): In these models the objective function of both stages can be written together 
as only one switch occurs. In the case of a random switch the control of the second stage will 
differ for every single switch and therefore depend on the realization of τ .. The control variable 
u(t). cannot therefore be put within one maximization operator. 
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where 

.S(x(τ), τ ) := max
u(t)∈U

∫ ∞

τ

e−ρtF2(x(t), u(t), t)dt . (4.17a) 

s.t. ẋ(t) = f2(x(t), u(t), t), x(τ) = lim 
t ′↗τ 

ϕ(x(t ′), u(t ′), t ′).

(4.17b) 

In general, (4.16) is a stochastic optimal control problem w.r.t. the time horizon. 
However, by introducing an auxiliary state variable z1(t). (see Boukas et al., 1990) 
that evolves according to 

.ż1(t) = −η(x(t), u(t), t)z1(t), z1(0) = 1, (4.18) 

it is possible to formulate (4.16) as a deterministic optimal control model. z1(t). 

can be interpreted as the probability that the switch has not set in during the 
interval [0, t). (analogously to a survival probability). Exploiting this deterministic 
formulation of (4.16) and the auxiliary state variable, Wrzaczek et al. (2020) propose 
the transformation into an age-structured optimal control problem by considering 
every possible switching time to generate a new “cohort” and by denoting the 
corresponding state and control variables (for a second stage initiated by a switch at 
t − a .) by  y(t, a). and v(t, a).. 

The full model in age-structured form reads: 

. max
u(t)∈U,v(t,a)∈V

∫ ∞

0
e−ρt [z1(t)F1(x(t), u(t), t) + Q(t)] dt . (4.19a) 

s.t. ẋ(t) = f1(x(t), u(t), t), x(0) = x0. (4.19b) 

ż1(t) = −η(x(t), u(t), t)z1(t), z1(0) = 1. (4.19c)(
∂ 
∂t 

+ 
∂ 
∂a

)
y(t, a) = f2(y(t, a), v(t, a), t), 

y(t, 0) = ϕ(x(t), u(t), t). (4.19d)(
∂ 
∂t 

+ 
∂ 
∂a

)
z2(t, a) = 0,  z2(t, 0) = z1(t)η(x(t), u(t), t). 

(4.19e) 

y(0,  a)  = z2(0,  a) = 0, a ≥ 0. (4.19f) 

Q(t) =
∫ ∞ 

0 
z2(t, a)F2(y(t, a), v(t, a), t)da. (4.19g) 

Here, (4.19a) denotes the deterministic formulation of the objective func-
tion, (4.19b) and (4.19c) the system dynamics (state variable and probability that the 
switch has not set in at t) during stage 1 (before the switch), and (4.19c) and (4.19d)
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the system dynamics16 (state variable and auxiliary state variable z2(t, a). which 
is the probability density that the switch happened at t − a . 17 ). The aggregated 
state Q(t). covers the objective functionals of all possible switches that may have 
happened before t weighted by the corresponding density .18 

The advantages of our age-structured formulation in comparison to the backward 
approach are twofold. Firstly, problem (4.19) can be treated with established 
numerical solution methods (as briefly discussed in Sect. 4.2) offering a structured 
(while not always easy) way to solve concrete models. Freiberger (2023) provides a 
specialized toolbox for the numerical solution of this type of problems implemented 
in the Julia programming language. In contrast to the age-structured transformation 
approach the backward approach is often plagued by the curse of dimensionality. As 
the number of state variables increases, the dimension of the slice manifold along 
which the value function of stage 2 has to be evaluated increases, too. Consequently, 
the number of grid points (for which the value function has to be calculated) 
increases exponentially with the number of state variables. 

Secondly, analytical and structural insights are limited in the case of the 
backward approach, because (and in analogy to a dynamic programming approach) 
the second stage has to be solved first in order to subsequently obtain a solution for 
stage 1. In contrast, the age-structured formulation allows to solve stage 1 and stage 
2 simultaneously within a single set of optimality conditions and by way of a single 
(numerical) optimization routine. The solution then reveals the links between the 
two stages explicitly and allows to characterize the mechanisms of the model in a 
natural and intuitive way. 

The idea of considering optimal control models with a random switch as age-
structured optimal control models is still rather new, but has already been used 
in a number of applications. Kuhn and Wrzaczek (2021) consider a model of 
rational experimentation with an addictive good where the switch to addiction 
is modeled as a stochastic shock (that embraces a Skiba point in the second 
stage). Wrzaczek (2021) includes the risk of catastrophic climate change in an 
overlapping generations (OLG) model on pollution control. Buratto et al. (2022) 
consider the development of a vaccine protecting against COVID-19 as a positive 
stochastic shock and analyze anticipative behavior in the stage without vaccination 
and the optimal adaptation of pandemic countermeasures shortly after the start of 
the vaccination rollout. Freiberger et al. (2023) analyze the optimal patterns of 
consumption and health-care utilization over the individual life-cycle in view of

16 Note that the limit can be neglected in (4.19d) as the notation of the state variable changes from 
x(τ). to y(τ, 0). at the switch at τ .. 
17 As argued in Wrzaczek et al. (2020), the auxiliary state z2(t, a). avoids having to deal with a 
time-lag in (4.19g). 
18 Note that the time horizon here is infinite although we introduced the MP only for age-structured 
optimal control problems in finite time in Theorem 4.1. However, the present model (4.19) is a  
special case as the different “cohorts” do not interact with each other and their aggregation only 
enters the objective function. It can be shown for this case that the MP also holds for problems 
with infinite time horizon. 
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large shocks to health. This paper exploits the advantages of the age-structured 
approach and carefully disentangles different channels of the optimal allocation of 
preventive, acute, and chronic care. Buratto et al. (2024) consider an advertising 
model with an abrupt change of the production costs, where the random switch 
depends positively on demand. 

4.4.2 Optimal Control Models with Time-Lags or Delays 

Optimal control models with time-lags or delays are other advanced extensions of 
standard optimal control theory. These models can be divided into two classes: 
(i) Models with continuous time-lags correspond to a class of models where the 
system dynamics and/or the objective function at t depends on the previous path— 
or a part of it—of the control or state variable. (ii) Models with delay include the 
dependence of the system dynamics and/or the objective function on the state and 
control variables at one specific past point in time t − τ ., where τ > 0. denotes the 
delay. 

Formal proofs for (i) can be found in Bate (1969) or Vinokurov (1969), suffi-
ciency conditions have been shown by Sethi (1974). For a textbook representation 
we refer to Feichtinger and Hartl (1988) and applications can be found, e.g., in 
Sethi and McGuire (1977), Arthur and McNicoll (1977), Hartl and Sethi (1984), 
Caulkins et al. (2010), or Boucekkine et al. (2004). The first proof for (ii) goes back 
to Kharatishvili (1961), which has been extended by Halanay (1968) to the case 
of multiple delays (equal for state and control). Göllmann et al. (2009) add mixed 
control-state constraints to the problem. 

The literature on applications of optimal control models with time-lags is still 
relatively scarce in spite of the many new developments, extensions, and applica-
tions of optimal control theory over the past decades. The reason appears to be 
twofold: First, although the theoretical contributions provide necessary optimality 
conditions, the theory is advanced, and it is more difficult to obtain analytical as 
well as numerical results. Second, a time-lag in state and control variables is often 
modeled as an aggregated state variable that approximates a certain effect at t . Given  
the complex nature of optimal control problems in general, the second argument 
then usually implies the use of an approximation to guarantee tractability of the 
model. This is striking, given the importance of applications in which the time-lag 
is crucial, e.g., the construction of a dam, which requires several years of planning 
and construction, followed by multiple years of rising water levels until the benefits 
of the investment can be realized (hydropower, flood control, etc.). 

Although models with a continuous time-lag and models with delay are treated 
separately in the literature, we will work with a continuous time-lag and argue why 
it can also be used for a delay, at least as an arbitrarily close approximation. Let us 
thus consider the following optimal control model with continuous delay:
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. max
u(t)∈U

∫ T

0
e−ρtF (x(t), u(t), φ(t), t)dt + e−ρT S(x(T ), φ(T ), T ) .(4.20a) 

s.t. ẋ(t) = f  (x(t),  u(t),  φ(t),  t),  x(0) = x0. (4.20b) 

φ(t)  =
∫ t 

−∞ 
g(x(s), u(s), s, t)ds. (4.20c) 

x(t) =  ̃x(t), u(t) =  ̃u(t), for t < 0, (4.20d) 

where control and state variables and functions are denoted in the same way as 
above. The function φ(t). is now governing the continuous time-lag by aggregating 
the density of the effects of all past (i.e., in general for s ∈ (−∞, t).) control and 
state variables. Thus, φ(t).enters the objective functional, the salvage value function, 
and the system dynamics. To capture past effects reaching back before the start of 
the planning period (i.e., t < 0.), condition (4.20d) adds the part of the trajectory 
before the planning horizon. 

In case the time-lag is a fixed delay, φ(t). does not depend on the entire history 
of the control and state variables, but on a specific time alone. This dependence is 
described by the function g̃ .: 

. φ(t) = g̃(x(t − τ), u(t − τ), t − τ, t), x(t) = x̃(t), u(t) = ũ(t), for t ∈ [−τ, 0).

(4.21) 

This definition can be extended straightforwardly to cover the case of multiple 
fixed delays. Note that (4.21) can be transformed to fit into framework (4.20) by  
employing the Dirac delta function δ(t)., 

. φ(t) = g̃(x(t − τ), u(t − τ), t − τ, t)

=
∫ ∞

0
δ(τ − s′)g̃(x(t − s′), u(t − s′), t − s′, t)ds′

=
∫ t

−∞
δ(s − (t − τ))g̃(x(s), u(s), s, t)︸ ︷︷ ︸

=:g(x(s),u(s),s,t)

ds

such that state and control enter φ(t). only by the delay.19 

In order to formulate (4.20) as an age-structured optimal control problem, we 
consider two new auxiliary (age-structured) state variables emerging at every t

19 Note that this argument is not entirely correct in mathematical terms as the delta distribution is 
not integrable in a Riemann and Lebesgue sense. However, the delta function can be defined as the 
limit of a series of probability density functions (δk)k∈N . (imagine a series of normal distributions 
with mean 0 and a variance converging to 0). Each function in the series is integrable and can be 
used to approximate the Dirac function to an arbitrary degree of freedom, which translates to an 
arbitrarily close approximation of the case of fixed delay, based on a probability density function. 
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with zero dynamics at the corresponding boundary condition. One of the “cohorts” 
accounts for the control and the other for the state variable at t . The initial 
distributions for these auxiliary states cover the state and control trajectories before 
the planning horizon (denoted by x̃(t). and ũ(t). in (4.20)). The function φ(t). in turn 
is represented by an aggregate state variable, as standard in the general model (4.2). 

The full model in age-structured form then reads: 

. max
u(t)∈U

∫ T

0
e−ρtF (x(t), u(t), φ(t), t)dt + e−ρT S(x(T ), φ(T ), T ) .(4.22a) 

s.t. ẋ(t) = f  (x(t),  u(t),  φ(t),  t),  x(0) = x0. (4.22b)(
∂ 
∂t 

+ 
∂ 
∂a

)
y1(t, a) = 0, y1(t, 0) = x(t). (4.22c)

(
∂ 
∂t 

+ 
∂ 
∂a

)
y2(t, a) = 0, y2(t, 0) = u(t). (4.22d) 

φ(t)  =
∫ ∞ 

0 
g(y1(t, a), y2(t, a), t − a, t)da. (4.22e) 

y1(0,  a)  =  ̃x(a), for a ≥ 0. (4.22f) 

y2(0,  a)  =  ̃u(a), for a ≥ 0. (4.22g) 

To the best of our knowledge, this transformation has not been investigated (at 
least) explicitly in the literature. However, as discussed above, the analytical treat-
ment and the numerical methods are developed for such a model. The advantages of 
these approaches are similar to the ones of the age-structured formulation of optimal 
control models with random switches. 

4.5 Discussion and Conclusions 

Age-structured optimal control models are important frameworks to take into 
account the interplay between cohort and period effects in many applications 
in economics, environmental science, epidemiology, and many more disciplines. 
Setting up a generic age-structured optimal control model, we have shown how such 
models allow for aggregated and distributed state variables as well as concentrated 
and age- and time-dependent control variables. We introduced the analytical results 
of the age-structured maximum principle and sketched the numerical solutions of 
these models. 

Based on a toy model of a social planner aiming to reduce aggregate pollution 
generated by consumption when maximizing the discounted stream of future utility 
for a society, we demonstrate the application of the age-structured optimal control 
model. Within our toy model we can show how inter- and intra-cohort pollution
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effects interact and how the social planner can internalize these effects. Considering 
the present value of an additional consumer, i.e., the shadow value of an individual, 
we show how cohort redistribution effects and population dynamic effects are 
intertwined with optimal redistributions across the life-cycle. 

We end our review by showing two examples where age-structured optimal 
control models can be applied to solve non-standard optimal control models. First, 
we introduce control models with random switches. By defining every possible 
switching time to generate a new cohort, the toolkit of age-structured optimal 
control models allows to apply established numerical solution methods. Second, we 
introduce a rather novel transformation of an optimal control model with time-lags 
or delays into an age-structured optimal control model. 
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Chapter 5 
A Vindication of Open-Loop Equilibria 
in Differential Games 

Luca Lambertini 

Abstract This chapter assesses the properties of open-loop equilibria to clarify 
their relevance. To this aim, it illustrates the classes of differential games which yield 
degenerate feedback strategies and equilibria under open-loop information. Then, it 
discusses the nature of the open-loop solutions of games in which such solutions 
are strongly time consistent, accounting also for the normative prescriptions one 
can draw on their basis. 

Keywords Open-loop equilibrium · Feedback equilibrium · Strong time 
consistency · Perfect games 

JEL Codes C61, C73 

5.1 Introduction 

How should we interpret the open-loop solution of a differential game? Or, what are 
exactly the implications of adopting open-loop information, instead of a closed-loop 
or feedback one, taking into account that, in general, “closed-loop” and “feedback” 
are not interchangeable attributes? 

Quite often, open-loop solutions are perceived and labelled as quasi-static, if not 
literally static. This is a prelude to a view according to which open-loop information 
adds very little (if anything at all) to what one may learn from the solution of the 
static version of the same game. Moreover, a frequent additional critique is that 
open-loop equilibria are usually not feedback ones as they are determined on the 
basis of initial and transversality conditions and time, disregarding the impact of 
states on control. At first glance, one could be tempted to share these considerations. 
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Yet, my intent is to show that it would not be a sound choice in many relevant cases, 
and why. Indeed, the main aims of the ensuing analysis are to offer the essential 
elements which are necessary to fully appreciate the nature of open-loop strategies 
and equilibria, to motivate the search for degenerate feedback equilibria attained 
under open-loop information and, finally, to illustrate in explicit terms the value 
thereof. 

The point of departure concerns the illustration of the concept of perfect game, 
which is the label of a quite large class of games whose open-loop solutions are 
degenerate feedback ones. The second step is the brief summary of the properties 
of open-loop and feedback solutions of a famous oligopoly game which, being fully 
solvable, allows one to characterise analytically any equilibrium engendered under 
any information structure. In particular, there clearly emerges that, in general, open-
loop equilibria replicate static ones only in correspondence of specific limits on 
key parameters (typically, the discount rate). This exercise is needed to appreciate 
what follows, namely, a short survey of several perfect games delivering feedback 
equilibria under open-loop information. This serves the purpose of illustrating the 
desirability and ductility of such games along both the positive and the normative 
dimensions. Last but not least—and without spoiling the essence of it—the bottom 
line of the whole discussion will be that one should welcome the arising of feedback 
strategies in open-loop games, as these are the only ones validating systematically 
their counterparts, arising from the analogous static games. 

5.2 On Strongly Time Consistent Open-Loop Equilibria 

To begin with, a few words about terminology. A feedback strategy (and the 
resulting equilibrium) can be equivalently defined as strongly time consistent, 
Markov-perfect, or subgame perfect (although one should better resort to this last 
definition in the domain of static multistage games). The second step consists of a 
few short considerations about the nature of closed-loop games and their solutions, 
which I won’t dwell upon any more in the remainder. Every feedback strategy is a 
closed-loop one by construction, while the opposite is not true: in general, a closed-
loop strategy is Markovian, but not necessarily perfectly so. To grasp the essence of 
this fact, it suffices to think of the memoryless closed-loop solution of a differential 
game defined in Hamiltonian form, with state-control loops appearing in the system 
of costate equations. If the resulting strategies do not coincide with those delivered 
by the solution of the corresponding Hamilton-Jacobi-Bellman (HJB) equation, then 
the nature of the closed-loop solution is Markovian insofar as it features the loops, 
but not Markov-perfect or strongly time consistent. 

Now I may focus specifically upon the open-loop solution, which, in most cases, 
is evidently not Markov-perfect. However, the possibility for degenerate feedback 
strategies to arise under open-loop information is one of the cornerstones of the 
long-lasting debate about the attainment of strong time consistency (or subgame 
perfectness) in differential games (cf. Dockner et al. 2000, ch. 7). Indeed, any
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differential game exhibiting this property belongs to the class of the so-called perfect 
games (Mehlmann, 1988; Cellini et al., 2005), and the stream of research aimed at 
identifying perfect games and the properties delivering subgame perfectness is a 
long-standing one. 

The first class that has been identified is that of trilinear games (Clemhout and 
Wan, 1974, 1979): a game is trilinear if and only if the state variables do not enter the 
set of costate equations and optimal controls are independent of states. The second 
class is that gathering linear state games, i.e., those linear in all of the state variables 
involved (it is worth stressing that this implies that also linear-quadratic games can 
be state-linear).1 The third class includes exponential games, which can be shown to 
correspond to linear state ones through a transformation of variables (Reinganum, 
1982a,b). 

Later contributions have focused on specific properties of the first order condi-
tions on controls, rather than the structure of the game or the objective functionals. 
To illustrate the matter, consider a differential game involving N = 1, 2, . . . n. 

players and define the state, costate and control vectors as x = (
x1,x2, . . . xn

)
., 

λ = (
λ11,λ12, . . . λnn

)
. and u = (

x1,x2, . . . xn

)
.. Then let πi (x, u). and Hi (x, u). 

be, respectively, the instantaneous payoff and Hamiltonian function of player i. 
Dockner et al. (1985) have shown that an additional class of perfect games is that 

in which the following conditions hold: 

.
∂2Hi

∂ui∂xj

∣∣∣
∣

∂Hi
∂ui

=0
= ∂2Hi

∂ui∂xj

∣∣∣
∣
u∗

i

= 0 (5.1) 

.
∂2Hi

∂x2
j

= 0 (5.2) 

for all i and j . This class gathers the so-called state-separable games. The first 
condition requires that the maximised Hamiltonian be independent of any state 
variable; the second condition requires the Hamiltonian to be state-linear. Hence, 
one may appreciate that any trilinear or linear state game is necessarily a state-
separable one as well, while the opposite is not true.

To complete the picture, one has to add the class of state-redundant games 
(Fershtman, 1987). To save upon notation, think for a moment to the case of a single 
state x, whereby the vector of costates is λ = (

λ1,λ2, . . . λn

)
.. A state-redundant 

game is identified by 

.
∂2Hi

∂ui∂x

∣∣∣∣
λi=λ∗

i

= 0 (5.3)

1 A well-known example of a differential game whose structure is simultaneously linear-quadratic 
and state-linear is the unregulated version of the Cournot game with polluting emissions in 
Benchekroun and Long (1998). 
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which amounts to requiring the first order condition on ui . to be independent of the 
state in correspondence of the optimal value of the costate variable. In this case, 
λ∗

i . is indeed a proper shadow price, as it coincides with the partial derivative of 
the value function w.r.t. x in the corresponding HJB equation. We also know from 
Mehlmann and Willing (1983) that any perfect game is or can be reformulated as a 
state-redundant game. 

From a purely technical standpoint, the most relevant implication of the above 
discussion is the following: any perfect game admits a representation in the form 
of a HJB equation delivering a set of Riccati equations whose solutions include 
the open-loop strategy yielded by the corresponding Hamiltonian representation of 
the same game. The value added of games featuring this property is assessed in 
the remainder of the paper, together with an appraisal of the open-loop solution in 
itself, even when—as it happens in the vast majority of cases—it does not deliver a 
degenerate feedback control. 

5.3 Open-Loop vs Feedback Solutions 

As a point of departure, I will discuss the difference between open-loop and 
feedback strategies in a well-known game in which open-loop ones are not Markov-
perfect. This is the sticky price game dating back to Simaan and Takayama (1976, 
1978), subsequently developed by Fershtman and Kamien (1987) and Tsutsui and 
Mino (1990), among others. 

The game takes place in continuous time over an infinite horizon, with firms 1 
and 2 selling a homogeneous good and competing à la Cournot. The common state 
equation describes the dynamics of price: 

.
·
p = s [p̂ − p (t)] (5.4) 

where p̂ = a − q1 (t) − q2 . is the notional demand function and parameter s ∈
[0,∞). measures the time-invariant speed of adjustment of the sticky price p (t) .. 

At any time t,. firms use the same technology, summarised by the cost function 
Ci (t) = cqi (t) + qi (t) /2., so that the individual instantaneous profit function is 
πi (t) = [p (t) − c − qi (t) /2] qi (t) .. Assuming a common and constant discount 
rate ρ ∈ [0,∞)., firm  i has to solve the following problem:

. max
qi (t)

∫ ∞

0
πi (t) e−ρtdt

s.t. (5.4) and the initial condition p (0) = p0 > 0..
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5.3.1 The Open-Loop Game 

The Hamiltonian function of firm i is 

. Hi (p(t), qi(t), λ (t)) = e−ρt

{[
p (t) − c − qi (t)

2

]
qi (t) + λi(t)s [p̂ − p (t)]

}

(5.5) 

in which λi(t). is the capitalised costate variable. The necessary conditions are 

.
∂Hi (·)
∂qi(t)

= p (t) − c − qi (t) − λi(t)s = 0 (5.6) 

and 

. − ∂Hi (·)
∂p(t)

= ·
λi(t) − ρλi (t) ⇒ ·

λi(t) = λi(t) (s + ρ) − qi (t) (5.7) 

while the transversality condition is limt→∞ e−ρtλ (t) p (t) = 0 .. I will omit most 
of the details, which can be found in Fershtman and Kamien (1987), Dockner et al. 
(2000), Cellini and Lambertini (2004) and Lambertini (2018). What matters is that 
the resulting control equation is2 

.
·
q = s (a − c − 2p) − ρ (p − c − q) (5.8) 

which, imposing stationarity, delivers the equilibrium strategy under open-loop 
information: 

.qOL (p) = p (2s + ρ) − as − c (s + ρ)

ρ
(5.9) 

which is monotonically increasing in the current price in the entire admissible 
parameter space. It is the case of adding that looking at (5.9) or any open-loop 
strategy being a function of the state variable(s)—which holds whenever the strategy 
at hand is not a degenerate feedback control—one could say that the open-loop 
strategy has a quasi-closed-loop nature (while the opposite is not true).3 Plugging 
qOL (p). into (5.4) and imposing stationarity, one obtains the steady-state price 
pOL = [a (2s + ρ) + 2c (s + ρ)] / (4s + 3ρ) > c,. whereby the steady-state output 
is qOL = (a − c) (s + ρ) / (4s + 3ρ)..

2 In the remainder of the exposition of the sticky price game, I will omit the explicit indication of 
the time argument to save upon notation. Likewise, for the same reason, I will also leave aside the 
discussion of the conditions ensuring the positivity of optimal output strategies. 
3 The closed-loop memoryless equilibrium is illustrated in Cellini and Lambertini (2004) with 
homogeneous goods, and in Cellini and Lambertini (2007) with differentiated goods. 
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Considering the aims of the present analysis, the most relevant properties of the 
open-loop solution are to be identified in the following limits: 

. lim
ρ→0

qOL = lim
s→∞ qOL = a − c

4
= qCN (5.10) 

. lim
ρ→∞ qOL = lim

s→0
qOL = a − c

3
= qpc (5.11) 

That is, according to (5.10), if either the adjustment speed of market price is 
infinitely high or firms do not discount at all future profits, then the open-loop 
equilibrium reproduces the static Cournot-Nash one. In particular, the first case 
means that firms are playing along the ‘notional’ market demand from the very 
beginning and remain there forever. Otherwise, for all s, ρ ∈ (0,∞) ,. the solution 
yielded by open-loop information is such that firms produce systematically more 
than in the static game, as qOL > qCN

.. 
On the other hand, the limits appearing in (5.11) reveal the emergence of 

the perfectly competitive equilibrium if either firms infinitely discount future 
magnitudes or market price is infinitely sticky (thereby preventing firms from 
reaching the notional demand at all times). 

Summing up, specific limits taken upon the equilibrium magnitudes (typically, 
but not exclusively, controls) show that the open-loop equilibrium reproduces the 
equilibrium of the corresponding static game, this being due to the complete 
absence of state-control loops in the solution method, and independently of the 
exact formulation of such loops. Yet, this does not imply that the open-loop solution 
can be deemed as static or quasi-static, due to the presence of at least one state 
equation which, by definition and construction, cannot appear in the static game, 
and automatically raises the question concerning the trajectory to and the stability 
of the open-loop solution, the latter being a relevant issue also in the limit, where 
the static Nash equilibrium pops up. 

Additionally, in this setup it clearly emerges that the open-loop solution is only 
weakly time consistent, and why. The reason is that the open-loop strategy is a 
function of the state variable but—as we are about to see—cannot replicate any of 
the infinitely many proper feedback ones, only two of them being linear. The most 
important implication of this finding, including the properties of the limits appearing 
in (5.10–5.11), is that the open-loop strategy almost never coincides with the static 
Nash strategy, the latter holding only in the limit, but, in general, not at any time 
during the game. 

5.3.2 The Feedback Game 

Firm i’s HJB equation is
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.ρVi (p) = max
qi

{(
p − c − qi

2

)
qi + V ′

i (p)s (p̂ − p)
}

(5.12) 

Here, Vi (p). is the value function and V ′
i (p) = ∂Vi(p)/∂p . is its partial derivative 

w.r.t. the price. Solving the first order condition p−c−qi −sV ′
i (p) = 0. delivers the 

optimal output qF (p) = p−c− sV ′
i (p) > 0. provided p > c+ sV ′

i (p).. If the latter 
condition is satisfied, one may impose symmetry on outputs and substitute qF (p). 

into (5.12). Then, defining V (p) = ε1p
2 + ε2p + ε3 . implies V ′(p) = 2ε1p + ε2,. 

and solving the related system of Riccati equations, one obtains 

.ε3 = c (c + 4ε2s) + ε2s (2a + 3ε2s)

2ρ
(5.13) 

.ε2 = 2ε1s (a + 2c) − c

ρ + 3s (1 − 2ε1s)
(5.14) 

.ε±
1 = 6s + ρ ±

√
(6s + ρ)2 − 12s2

12s
(5.15) 

with ε±
1 ∈ R. for all s, ρ > 0.. The pair ε±

1 . delivers the pair of linear feedback 
strategies identified by qF± = p − c − s

(
2ε±

1 p + ε2
)
.. A quick look at the phase 

diagram appearing in Fig. 5.1 suffices to learn that qF− . is stable, while qF+ . is unstable. 
Points F−, OL. and F+ . identify the three steady states. The graph portrays 

also the non-invertibility line q∞ . and nonlinear feedback solutions. Concerning 
the latter, it must be stressed that the open-loop steady-state equilibrium can be 

Fig. 5.1 The phase diagram of the sticky price game
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reproduced through a unique nonlinear feedback strategy which never corresponds 
to qOL

. except in the steady state. This, by the way, reiterates the conclusion that the 
open-loop solution of this game is not subgame perfect. In apparently different but 
formally equivalent terms, one may say that the optimal costate λ,. characterising 
the optimal open-loop solution at every instant, never coincides with the partial 
derivative of the value function, V ′

., across the continuum of linear and nonlinear 
strategies solving the feedback game. 

This is very often the case, and can be easily verified in most of LQ games (see 
Reynolds 1987, 1991; Kobayashi 2015, inter alia), but does not hold in general. And 
indeed, spotting a game where the optimal costate variable coincides with the partial 
derivative of the value function (and therefore properly qualifies itself as a shadow 
price) is a precious finding, as it indicates that the game at hand is in fact a perfect 
game. 

Accordingly, the final step consists in taking a close look at this class of 
games, in some of which the open-loop strategy may indeed be independent of 
state(s) and therefore may permanently replicate the static Nash equilibrium one, 
to fully appreciate (i) the inherent advantages of degenerate feedback solutions and, 
perhaps more importantly, the drawbacks of static analyses “blackboxing” dynamic 
processes which remain behind the curtains. 

5.4 Perfect Games 

A sensible approach to the exposition of perfect games in many areas of economics 
and management consists in taking into consideration the two areas in which their 
emergence has probably delivered the most important and persistent results, namely, 
(i) advertising and (ii) environmental and resource economics. 

5.4.1 Advertising 

To the best of my knowledge, the kickoff took place in the late 1970s, with a duopoly 
game of advertising in which the price (or the profit margin per unit) is exogenous 
(Leitmann and Schmitendorf, 1978; Feichtinger, 1983). Here, the individual firm’s 
market share ςi (t) = qi (t) /

[
qi (t) +j (t)

]
. evolves according to the following state 

equation: 

.
·
ςi = ki (t) − bk2

i (t)

2
− ckj (t) ςi (t) − δςi (t) (5.16) 

which features positive parameters {b, c, δ}. and both firms’ advertising efforts, 
ki (t). and ki (t).. The instantaneous individual profit function is πi (t) = βςi (t) −
ki (t) ,. with parameter β . scaling revenues (so that the model does not feature
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a downward sloping market demand). This version of the game turns out to be 
state-redundant under open-loop information as it satisfies ( 5.3), and can be easily 
extended to the oligopoly case (Dragone et al., 2010; Jørgensen et al., 2010). 

Note that the model is not defined in LQ form, because of the shape of the 
state equation. In general, a structure like this would exclude the fully analytical 
characterisation of the feedback game based upon the solution of the HJB equation, 
including of course the continuum of nonlinear strategies. Yet, the open-loop 
solution being subgame perfect and stable, the game delivers a reliable interpretation 
of what one may expect to see along the saddle path and at the steady-state 
equilibrium, including the picture of the static Nash equilibrium in the limit. 

Moreover, this setup is also extraordinarily versatile. Changing the interpretation 
of variables to adapt it to other contexts, equally relevant, it may describe an 
alternative version of Reynolds’ (1987; 1991) game of capacity accumulation, 
where the public authority regulates the price level, or electoral competition for 
a public office among parties’ candidates, in which β . measures the candidate’s 
appraisal of electoral consensus (Lambertini, 2014). Additionally, the model can 
be quickly turned into a proper linear state LQ game by rewriting the payoff as 
πi (t) = βςi (t) − k2

i (t). and the state equation as 

.
·
ςi = ki (t) − ckj (t) − δςi (t) (5.17) 

thereby also preserving most of the qualitative properties of the resulting solution, 
as well as its intuitive interpretation. 

An alternative approach to advertising games granting strong time consistency 
under open-loop rules dates back to a modified version of the Lanchester-Case 
model (Lanchester, 1956; Case, 1979) appearing in Sethi and Thompson (1981), 
Sethi (1983) and Sorger (1989). Once again, the mark-up is constant over the whole 
horizon, and firm i’s market share follows 

.
·
ς = ki (t)

√
1 − ς (t) − kj (t)

√
ς (t) (5.18) 

while the instantaneous profit function is πi (t) = βς (t) − bk2
i (t).. It turns out that 

the HJB equation 

. ρVi (ς (t))

= max
ki (t)

{
βς (t) − bk2

i (t) + V ′
i (ς (t))

[
ki (t)

√
1 − ς (t) − kj (t)

√
ς (t)

]}

(5.19) 

can be solved to reproduce the open-loop equilibrium of the corresponding Hamil-
tonian by adopting a value function specified as Vi (σ (t)) = εi1σ (t)+εi2,. although 
the game is neither state-linear nor linear-quadratic. 

Another approach exhibiting the same property is an oligopoly game of goodwill 
in the vein of Fershtman (1984), among many others, appearing in Lambertini and
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Zaccour (2015). The demand structure is borrowed from Singh and Vives (1984), 
with n symmetric single-product firms in prices or quantities. Under Cournot 
behaviour, individual market demands are pi (t) = a−qi (t)−γQ−i (t)., Q−i (t) =∑

j �=i qj (t).being the aggregate output of the n−1. rivals, while parameter γ ∈ [0, 1]. 
measures the degree of substitutability. The individual profit function is 

.πi (t) = Gi (t) qi (t) − bk2
i (t) (5.20) 

in which Ri (t) = pi (t) qi (t). is the revenue and Gi (t). is the brand equity of variety 
i,. which evolves according to 

.
·
Gi ≡ dGi (t)

dt
= ki (t) − σK−i (t) − δGi (t) (5.21) 

Parameter σ ∈ [0, 1/ (n − 1)]. scales the intensity of the pressure posed by the 
rivals’ collective advertising effort. However, the instantaneous payoff is the product 
of the state times a quadratic function of the outputs or prices, depending on the 
nature of market competition. Since the market game can be solved quasi-statically 
and the Hamiltonian is additively separable w.r.t. states and advertising controls, the 
open-loop solution is also a degenerate feedback one and can be replicated solving 
the HJB equation. 

The latter model and its interpretation offer an ideal ground to test and appreciate 
the relevance of subgame perfect open-loop solution. The static version of the game 
is indeed a toy version of the dynamic one (the same is not true for the other 
advertising games discussed above) and lends itself to be used as a test-bed of 
many of the considerations formulated across this chapter, in particular the relevance 
of manageable open-loop analyses being also illuminating and convincing, well 
beyond the fact that in the limit they deliver the static outcome. Confining ourselves 
to this specific detail would amount to disregarding the full-fledged range of 
informations contained in the dynamics of the game along the path to the long-run 
equilibrium. And we would also miss the ultimate implication of this discussion, 
which neatly emerges from the analysis carried out in the next section. 

5.4.2 Environment and Natural Resources 

Let’s consider a differential game unravelling over t ∈ [0,∞)., in which n ≥ 1. 

firms play à la Cournot along the demand function p (t) = a − ∑n
i=1 qi (t). using a 

common cost function Ci (t) = cqi (t) + bq2
i (t) ,. and facing a single state equation 

.
·
X = α

n∑

i=1

qi (t) − δX (t) (5.22)
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If parameters α . and δ . are both positive, the model captures the environmental 
consequences of firms’ strategic behaviour, and ( 5.22) describes the motion of the 
stock of GHGs, X (t)., net of the absorption rate of the planet’s natural carbon 
sinks, δ .. In the opposite case, if α . and δ . are both negative, (5.22) is a linear 
approximation of the pseudo-exponential growth of a living stock being extracted to 
become a final good on consumer markets (as in Fujiwara 2008; and Lambertini and 
Mantovani (2014, 2016), inter alia). In the latter case, the proper formulation of the 
stock’s dynamics should include the downward sloping part of the full piecewise 
approximation of the instantaneous growth rate, as in Benchekroun (2003, 2008) 
and Colombo and Labrecciosa (2015) and several others. For the moment, we may 
leave this aspect aside, as it will be taken explicitly into consideration below. 

The individual firm’s profit function can be defined as 

.πi (t) = [p (t) − c − τ − bqi (t)] qi (t) (5.23) 

in which τ > 0. is a tax (on GHG emissions) or a tariff (on extraction), and the lack 
of indication of the time argument means that this policy instrument can be seen 
as a constant, increasing marginal costs by the same amount at all times. This is 
functional to the aim of the present discussion, but of course the extant literature has 
endogenised it (see Benchekroun and Long 1998).4 More on this aspect below. 

Without delving explicitly into analytical details, we may grasp the essential 
elements of the nature of the game by noting the formal properties of the HJB, 
and those of the equilibrium outcomes by looking at the resulting phase diagram. 

To begin with, the relevant HJB equation is 

. ρVi (X) = max
qi

{

[p (t) − c − τ − bqi (t)] qi (t) + V ′
i (X)

[

α

n∑

i=1

qi (t) − δX (t)

]}

(5.24) 

and the expression appearing on the r.h.s. is evidently linear in the state variable. 
Moreover, the instantaneous profit function is defined in the space of controls 
only. Taken together, these features of (5.24) immediately imply that (i) the open-
loop strategy is independent of the state variable and (ii) it is indeed a degenerate 
feedback one. 

Solving the game to identify the continuum of feedback strategies (see Lamber-
tini, 2018, pp. 189–94), one obtains the phase diagram appearing in Fig. 5.2. The  
dynamic properties have been intentionally omitted, except for the indication of 

the sign of 
·
X,. which determines the portion of stable equilibria along the segment 

(A,B).: if α, δ > 0,. any steady state in (T , B]. (resp., [A, T ).) is stable (unstable),

4 A reconstruction of the wide stream of research in environmental and natural resource economics 
based on dynamic models using these structures can be found in Long (2011) and Lambertini 
(2013, 2018). 
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Fig. 5.2 The phase diagram of the dual-purpose game 

while the opposite holds for all α, δ > 0.. In both cases, the tangency point at T is 
semi-stable.

Accordingly, the ‘flat’ open-loop strategy is stable and strongly time consistent 
if the game deals with GHG emissions, while being unstable when the matter is the 
economic exploitation of a living stock. This fact tells us another relevant piece of 
information, which can be formulated as follows: in itself, finding out that the open-
loop strategy coincides with the static one at all times does not suffice to conclude 
that the static game may reproduce the essence of its dynamic version, for two 
equally relevant reasons. The first is that the static solution may at most identify 
one of the infinitely many feedback equilibrium strategies; the second is that it may 
reproduce an unstable feedback strategy, as is the case if the model discusses natural 
resource extraction. Be that as it may—that is, even when the open-loop solution 
is stable—it remains true that a static game approach in an inherently dynamic 
problem is literally incapable of collecting an arbitrarily large amount of information 
concerning the possible equilibrium configurations of the dynamic system being 
blackboxed, the property thereof, and the detailed description of the path to any of 
its infinitely many equilibria. 

What if the tax/tariff is endogenised? This poses another intriguing problem 
concerning the time consistency of any such policy. This issue is brilliantly solved 
by Benchekroun and Long (1998) specifying the emission tax as a linear function 
of the state variable (GHG emissions). Yet, this additional feature causes the open-
loop solution to be no longer Markov-perfect, as the resulting objective functional 
is not additively separable in state and controls, which, by the way, means that in
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general the welfare-maximising tax engendered in static oligopoly games does not 
coincide with the strongly time consistent tax identified by Benchekroun and Long 
(1998). Another route, preserving the subgame perfectness of open-loop rules, is 
taken in Feichtinger et al. (2016), stipulating that the tax (i) is accompanied by 
a regulated price and (ii) is used to maximise welfare at the steady state. This 
approach is used to include R&D for abatement technologies and to show that the 
aggregate R&D effort is concave and single-peaked in the number of firms. This 
is an example—by no means the only one—of models in which the presence of 
an appropriate regulatory toolkit transforms the game into a perfect one, while its 
original formulation wouldn’t be so. 

The last step brings us to Ramsey-Lotka-Volterra games (Lotka, 1925; Ramsey,  
1928; Volterra, 1931), which include both capacity accumulation games (Cellini and 
Lambertini, 1998, 2008) and resource extraction games (Lambertini and Leitmann, 
2019; Feichtinger et al., 2022). Irrespective of the specific nature of the game, 
this model features a properly concave and single-peaked growth rate of the 
stock, continuously twice differentiable, instead of a linear or piecewise linear 
approximation of it, with a kink. 

Since we are treating renewables, we may suppose firms exploit a living stock, 
say, à la Cournot, whereby the relevant state equation is 

.
·
X = δX (t) [1 − βX (t)] − γQ (t) (5.25) 

in which parameter β . is the inverse of the habitat’s carrying capacity. Demand is 
the same as above, and the profit function is πi (t) = p (t) qi (t) − Ci (t).. Now, it is  
pretty obvious that the Hamiltonian function 

. Hi (X(t)) = e−ρt {p (t) qi (t) − Ci (t) + λi(t) [δX (t) (1 − βX (t)) − γQ (t)]}
(5.26) 

does not feature a linear state game. Indeed, the solution of the game reached on 
the basis of Pontryagin’s maximum principle delivers the picture in Fig. 5.3, where 
the vertical line corresponding to the Ramsey rule falls systematically short of the 
maximum sustainable yield, i.e., the peak of the resource’s growth rate. The Cournot 

Fig. 5.3 The full phase 
diagram including the 
Ramsey rule
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Fig. 5.4 The degenerate 
feedback harvest with 
regulated access 

harvest delivers the saddle point equilibrium at E1 . if, as in the situation appearing 
in Fig. 5.3, it is lower than the Ramsey harvest at point E2 . (unstable, while E3 . is 
stable). 

However, as we know since Leitmann (1973) and Goh et al. (1974), the costate 
equation of this game is differential equation in separable variables admitting the 
solution λi(t) = 0. at all times for all players, as can be easily verified on the 
basis of (5.26). This implies that the Ramsey rule fades away completely, making 
room for a regulated access to the common pool which consists in limiting entry 
in correspondence of the number of firms driving the industry harvest as close as 
possible to the maximum sustainable yield. The number being perforce an integer, 
the public authority may use complementary instruments (interest rates, taxes, 
subsidies) to achieve its goal. This solution delivers the phase diagram in Fig. 5.4, 
where harvesting at the maximum sustainable yield happens in correspondence of 
the semi-stable tangency point. 

This setup illustrates that a whole class of games governed by nonlinear state 
equations may reveal its state-redundant nature and yield a reliable solution of 
a relevant and long-lasting problem—as the preservation of biological stocks— 
through the fruitful exploitation of firms’ myopic behaviour. All of this holds in 
spite of the fact that the setup, by construction, does not facilitate the formulation of 
an appropriate guess about the shape of the value function. 

5.5 Concluding Remarks 

The foregoing considerations substantiate the warning appearing in the introduction. 
Namely, that any subgame perfect equilibrium deriving from a possibly multistage 
game is not robust to a check carried out through a properly dynamic formulation 
of the same problem, unless it coincides with a degenerate feedback equilibrium (at 
least in the limit). 

Since, in general, this is not true because feedback equilibria rarely include the 
open-loop one, the dismal implication one can draw is that most of the equilibria we 
are accustomed with from the analysis of static games are not snapshots containing 
the essential elements of an untold dynamic analysis, with obvious undesirable 
implications in terms of policy prescription.
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Hence, the search for relevant and insightful games delivering strongly time 
consistent solutions under open-loop information should remain at the top of 
the agenda and should also inform any further developments of applied research 
relying on static games in the whole range of social sciences, the latter becoming 
permanently aware of the need of looking for confirmations from the ‘dynamic side’. 
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Chapter 6 
A Linear State Game of Advertising à la  
Vidale-Wolfe 

Luca Lambertini and Andrea Mantovani 

Abstract We revisit the tradition of advertising models stemming from Vidale and 
Wolfe (Oper Res 5:370–381;1957) to illustrate the possibility of building up a game 
delivering a (degenerate) feedback equilibrium under open-loop rules. To this aim, 
we reformulate the state equation of the generic firm in such a way that its own 
advertising effort and the rivals’ reaction to it enter the state dynamics additively. 
This approach amounts to envisaging situations where advertising has an essentially 
predatory/defensive nature, as it is not designed to modify the natural growth rate 
of a firm’s sales or market share. This modeling strategy gives the game a state-
linear structure, which also delivers an Arrovian result concerning the relationship 
between the aggregate advertising effort and industry structure. 

Keywords Advertising · Oligopoly · Differential games · Strong time 
consistency 

JEL Codes C73, L13, M37 

6.1 Introduction 

Given its inherently dynamic nature, advertising stands out as one of the most 
debated topics within the realm of optimal control and differential game theory 
since seminal works of Friedman (1958), Clemhout et al. (1971), and Leitmann 
and Schmitendorf (1978), among others. Notably, advertising efforts are typically 
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categorized into three main types: informative, persuasive, and complementary, as 
outlined by Stigler and Becker (1977) and Becker and Murphy (1993). The latter 
category suggests that advertising plays a role in defining the overall features of a 
product, thus complementing it. In the applications of dynamic techniques, the focus 
has often been directed toward the specific state variable affected by advertising 
efforts or on examining the impact of advertising throughout the product life cycle. 

Dynamic models addressing demand (or output) expansion are often associated 
with the concept of persuasive advertising. These models typically involve firms 
investing to increase choke prices, which become the relevant state variable, as 
in Cellini and Lambertini (2003a,b) and Cellini et al. (2008). Alternatively, other 
models consider output (or sales) levels as the relevant state variables reacting to 
firms’ advertising efforts, as exemplified by Vidale and Wolfe ( 1957) and its many 
follow-ups. 

Another scenario is that in which advertising aimed at enhancing goodwill, 
as in Nerlove and Arrow (1962), Gould (1970), Fershtman (1984), and many 
others, where the individual firm’s profit is augmented by a state variable inflating 
revenues or gross profits. Additionally, in market growth or product diffusion 
models, such as those pioneered by Bass (1969), the relevant state variable is a 
firm’s cumulative volume of sales. Notably, models belonging to this latter class 
are often characterized by a finite time horizon, as further product diffusion is 
inevitably constrained by the availability of competing goods from existing rivals 
or new entrants. 

The wide literature concerning the dynamic analysis of advertising in competitive 
markets features several examples of games generating open-loop solutions which 
are Markov-perfect. This is the case, for instance, in Leitmann and Schmitendorf 
(1978), Feichtinger (1983), and other contributions sharing the property of state 
redundancy although not being state-linear, including some formulations of games 
with advertising for goodwill, as in Lambertini and Zaccour (2015).1 

In this paper, we revisit the tradition of advertising models originating from 
Vidale and Wolfe (1957) to show that it is possible to build a game that achieves 
a (degenerate) feedback equilibrium under open-loop rules. In line with Vidale 
and Wolfe (1957), previous formalizations of the cross-effects of firms’ advertising 
efforts and sales across the set of state variables were characterized by the lack of 
additive separability between states and controls, as in the competitive version of the 
model appearing in Deal (1979). Consequently, a fully analytical characterization 
of feedback equilibria through the solution of the relevant set of Hamilton-Jacobi-
Bellman equations remains out of reach as one cannot formulate a plausible guess 
about the shape of the relevant value function. This limitation also yields an open-
loop solution which is weakly time consistent.

1 It must also be stressed that there exists a class of advertising games based upon Lanchester 
(1956) and Case (1979) whose formulation is neither state-linear nor linear-quadratic, which 
nonetheless can be analytically solved in feedback strategies using linear value functions. See 
Sethi and Thompson (1981), Sethi (1983) and Sorger (1989), inter alia. 



6 A Linear State Game of Advertising à la Vidale-Wolfe 83

We reformulate the state equation of the generic firm in such a way that its own 
advertising effort and the rivals’ best replies to it enter the state dynamics additively. 
We preserve the role of the carrying capacity while obtaining an open-loop solution 
which is indeed a degenerate feedback one. This approach enables us to characterize 
situations where advertising has an essentially dual role, being both predatory and 
defensive at the same time, as it is not designed to directly modify the natural growth 
rate of a firm’s sales or market share. This modeling strategy gives the game a state-
linear structure, which also yields an Arrovian result concerning the relationship 
between the aggregate advertising effort and industry structure. 

There remain to add a few relevant elements about a crucial aspect of the 
model and the nature of its equilibrium outcome. The results attained through the 
solution of this advertising game have some interesting implications concerning the 
potential, too often overlooked, of the open-loop equilibrium concept and the very 
fact that open-loop information be assumed, the common objection being that doing 
so leads to the replication of static equilibria. Indeed, this is not the case in general, 
a fortiori in games sharing the property we are referring here. More explicitly, the 
ensuing analysis hinges upon the possibility of specifying the setup (in this case, 
belonging to a well-established tradition which is relevant for industrial economics 
and business and management alike) so as to capture a plausible and relevant 
real-world scenario and enjoying the property of state linearity, yielding strong 
time consistency under open-loop rules. This makes room for a properly dynamic 
characterization of firms’ behavior as well as the aggregate performance of a whole 
industry, through feedback rules emerging from the Hamiltonian formulation of the 
game itself, thereby validating the adoption of the open-loop approach. 

The remainder of the chapter is structured as follows. Section 6.2 contains the 
motivation and layout of the game. The Markov-perfect open-loop solution and the 
analysis of its stability properties is in Sect. 6.3. A few concluding remarks are in 
Sect. 6.4. 

6.2 Setup 

The differential game describes a sales-response model à la  Vidale and Wolfe 
(1957), which has in common with Bass (1969) and the ensuing literature of the 
presence of state equations mimicking a logistic growth curve, although we look 
at the case of non-durables.2 In particular, we propose a modified version of Deal’s 
(1979), in terms of the formalization of the cross-effects of firms’ advertising efforts 
and sales across the set of the state variables. 

Consider a population of firms N = {1, 2, 3, . . . n}. endowed with the same 
technology, summarized by a constant marginal production cost c > 0.. Firms sell

2 For overviews of the related literature, see Dockner et al. (2000), Erickson (2003), Jørgensen and 
Zaccour (2004), and Lambertini (2018). 
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a homogeneous good over continuous time t ∈ [0,∞).. The individual volume 
of instantaneous sales is xi (t) ≥ 0, i = 1, 2, . . . n., and the unit margin is 
P = p − c > 0.. Here, we posit that either the sector is perfectly competitive (so 
that firms permanently face an infinitely elastic demand function at p) or price is  
regulated (and time-invariant, as is the case of marginal cost). At every instant, each 
firm may boost its sales volume through an advertising effort ki (t) ,. which entails 
an instantaneous cost �i (t) = bk2

i (t) ,. where b is a positive constant. Therefore, the 
individual firm’s instantaneous profit function i s πi (t) = (p − c)xi (t) − �i (t) =
Pxi (t) − bk2

i (t).. 
Before defining the state dynamics, it is useful to briefly discuss how it has been 

specified in the extant literature and what implications this has engendered. In Deal 
(1979), originally formulated as a duopoly model, the individual state equation is 

.
·
xi (t) = ζki (t)

[
1 − xi (t) + X−i (t)

Xmax

]
− δxi (t) , (6.1) 

which can be extended to include the negative effect exerted by the n − 1. rivals, 
K−i (t) = ∑

i �=j kj (t) :. 

.
·
xi (t) = ζ [ki (t) − βK−i (t)]

[
1 − xi (t) + X−i (t)

Xmax

]
− δxi (t) , (6.2) 

where Xmax ≥ ∑n
i=1 xi (t). is the maximum volume of output consumers may 

absorb from this industry3 and {β, δ, ζ }. are positive constants. In particular, ζ . is 
the “natural” growth rate of firm i’s share. In (6.1) and (6.2), states appear at the 
first degree, and therefore the instantaneous growth rate is not implying a logistic 
growth, just because the element that would imply it is replaced by a function of 
advertising controls, either ki (t). or ki (t) − βK−i (t).. 

A few additional words are in order, concerning the intensity of the nega-
tive effect of the rivals’s advertising campaigns. In line with the parallel liter-
ature on R&D for process innovation with technological spillovers, stemming 
from d’Aspremont and Jacquemin (1988), it seems appropriate to assume β ∈
[0, 1/ (n − 1)] ,. in such a way that the instantaneous impact of K−i (t). is at most as 
large as that of firm i’s own effort. And indeed, after solving the game, we will see 
that there exists a solid reason—not directly related to firms’ interplay in the R&D 
space—to adopt 

Assumption A β ∈ [0, 1/ (n − 1)] .. 

Moreover, we also introduce

3 Borrowing from the jargon of the parallel literature on biological natural resources, Xmax . is the 
industry’s carrying capacity (see, among many others, Clark 1990). 
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Assumption B Xmax ∈
(
0, Xmax

)
,. with 

. Xmax ≡ nP [1 − β (n − 1)] − 2bnζ (δ + ρ) + √
�

4b (δ + ρ)2 ∈ R
+,

. � ≡ n[8bP (1 + β) (1 − β (n − 1)) (n − 1) ζ (δ + ρ) +
n(P (1 − β (n − 1)) + 2bζ (δ + ρ)2].

The role of Assumption B is to ensure
∑n

i=1 xi (t) /Xmax < 1. throughout the 
game as well as at the steady-state equilibrium, thereby excluding the arising of a 
corner solution with demand saturation at all times. 

Now we may focus on the difference between (6.1) and (6.2). While in the former 
the presence of rivals is signaled by their sales levels only, in the latter it also takes 
the form of the countervailing effect associated to advertising efforts (which may 
have, e.g., comparative nature). However, both specifications of the state equation(s) 
have a fundamental implication as far as the solvability of the game under feedback 
rules is concerned. This is due to the lack of additive separability between states and 
controls in both (6.1) and (6.2), which are clearly nonlinear and therefore do not 
allow for either an intuitive conjecture of the value function or, consequently, for a 
fully analytical characterization of feedback equilibria through the solution of the 
relevant set of Hamilton-Jacobi-Bellman equations. And, of course, the specification 
of state equations as in either (6.1) or (6.2) makes the open-loop solution weakly 
time consistent. 

This has triggered several efforts aimed at delivering models with largely 
although not entirely equivalent economic interpretations, but producing strongly 
time consistent equilibria, possibly in the form of degenerate feedback strategies 
designed under open-loop information (see, e.g., Leitmann and Schmitendorf 1978; 
Feichtinger 1983; Dragone et al. 2010; and Jørgensen et al. 2010), by formulating 
state equations in such a way that the game becomes state-redundant, at least in its 
open-loop form. 

Yet, another avenue—which, to the best of our knowledge, has been overlooked 
thus far—is open for interesting extensions. This consists in constructing additively 
separable state equations in which the role of carrying capacity is preserved and, 
nonetheless, the open-loop solution is indeed a degenerate feedback one. To this 
purpose, we specify the state dynamics as follows: 

.
·
xi (t) = ζ

[
1 − xi (t) + X−i (t)

Xmax

]
+ ki (t) − βK−i (t) − δxi (t) . (6.3) 

Here, the whole net advertising effort adds up to the “natural” growth rate of the 
individual firm’s sales, in the same way as the harvest rate of firms in a renewable 
resource extraction game (Lambertini and Leitmann, 2019). Since the control used 
in this game is not a harvest rate, the interpretation of (6.3) is the following. The n−1.
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rivals are aware that their advertising efforts may exert a business stealing effect by 
shifting downward firm i sales, all else equal (specifically, for any givenδ . and ζ .), 
and therefore firm i reacts to diminish the impact of the negative spillover associated 
with K−i (t).. Naturally, firm i also knows that, by doing so, it is impacting each of 
the rivals’ sales in an analogous way. In a sense, this formulation has some features 
in common with the concept of conformance quality dating back to Garvin (1988), 
which appears in an additively separable way in analogous extensions of the Vidale-
Wolfe model (see, e.g., El Ouardighi et al. 2013). 

Accordingly, the Hamiltonian function of firm i is 

. 

Hi

(
xi(t), X−i (t) , ki(t),K−i (t) , λij (t)

) = e−ρt
{
Pxi (t) − bk2

i (t)+

λii (t)

[
ζ

(
1 − xi (t) + X−i (t)

Xmax

)
+ ki (t) − βK−i (t) − δxi (t)

]
+

∑
j �=i λij (t)

[
ζ

(
1 − xj (t) + X−j (t)

Xmax

)
+ kj (t) − βK−j (t) − δxj (t)

]}
,

(6.4) 

where λij (t). is the relevant capitalized costate variable, for all i and j . We are now  
ready to illustrate the solution of the game under open-loop information and its key 
properties.

6.3 Solving the Game 

The individual firm’s first-order condition (FOC) w.r.t. ki(t). is 

.λii (t) − 2bki (t) − β
∑
j �=i

λij (t) = 0, (6.5) 

which is accompanied by the following set of costate equations: 

.

−∂Hi (·)
∂xi(t)

= ·
λii(t) − ρλii (t) ⇒

·
λii(t) =

[λi(t) (δ + ρ) − P ] Xmax + ζ
[
λii (t) + ∑

j �=i λij (t)
]

Xmax

(6.6) 

.

−∂Hi (·)
∂xj (t)

= ·
λij (t) − ρλij (t) ⇒

·
λij (t) =

λij (t) (δ + ρ) Xmax + ζ
[
λii (t) + ∑

j �=i λij (t)
]

Xmax
,

(6.7)
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while the set of transversality conditions is summarized by 

. lim
t→∞ e−ρtλij (t) xj (t) = 0 ∀ j = 1, 2, 3, . . . n. (6.8) 

We are now in a position to assess some essential properties of the open-loop 
solution by looking at the system (6.5–6.7). To begin with, (6.5) does not explicitly 
feature any state variable, and this is true also for all costate equations (6.6–6.7). 
Intuitively, this is due to the fact that the present game is linear in states, thanks to 
its additively separable reformulation. These elements prove the following: 

Lemma 6.1 Since the game has a state-linear structure, its open-loop solution is a 
degenerate feedback one. 

There remains to analytically characterize it. To this aim, we may (i) drop the 
time argument for the sake of brevity and (ii) impose symmetry upon all variables 
not pertaining to firm i and solve (6.5) to find the expression of the optimal λii (t). 

at a generic instant, 

.λii = 2bki + β (n − 1) λij , (6.9) 

and then solve the same equation again w.r.t. ki,. to get 

.ki = λii − β (n − 1) λij

2b
. (6.10) 

The above expression can be differentiated w.r.t. time to deliver the following 
control equation: 

.
·
ki =

·
λii − β (n − 1)

·
λij

2b
, (6.11) 

which, using (6.6–6.9), simplifies as follows: 

. 
·
ki = (2bki − P) Xmax − ξ [1 − β (n − 1)] [2bki + (1 + β) (n − 1)] λij

2bXmax
.

(6.12) 
Then, we may solve the system (6.7-6.12) to find the expressions of the optimal 
ki . and λij . at any point in time. This is done by posing equal to zero the related 
integration constants, thus obtaining 

.

k∗
i = P [(δ + ρ) Xmax + ζ (1 + β) (n − 1)]

2b (δ + ρ) [(δ + ρ) Xmax + nζ ]

λ∗
ij = − Pζ

(δ + ρ) [(δ + ρ) Xmax + nζ ]
,

(6.13)
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with k∗
i > 0 > λ∗

ij . everywhere. The state linearity of the game also implies that 

k∗
i . and λ∗

ij . also solve
·
ki = 0. and

·
λij = 0., and the same holds for λ∗

ii . (originating 
from (6.9)) and (6.6). 

At this point, we may impose symmetry upon all variables, thereby dropping 
indexes. It is evident that the optimal advertising effort is linearly increasing in β ., 
as intuition would suggest a priori: 

.
∂k∗

∂β
= Pβ (n − 1)

2b (δ + ρ) [(δ + ρ) Xmax + nζ ]
> 0. (6.14) 

Less obvious is the interpretation of the following partial derivatives: 

.

∂k∗

∂ζ
= − P [1 − β (n − 1)] Xmax

2b [(δ + ρ) Xmax + nζ ]2 < 0

∂2k∗

∂ζ 2
= nP [1 − β (n − 1)] Xmax

b [(δ + ρ) Xmax + nζ ]3
> 0,

(6.15) 

which have opposite signs. This tells that the equilibrium individual effort is 
decreasing and convex in ζ . for all β ∈ [0, 1/ (n − 1))., becoming insensitive to the 
natural growth rate in correspondence of the upper bound of the parameter scaling 
the negative advertising spillover. 

Remark 6.2 The individually optimal advertising effort increases in β . while being 
monotonically decreasing in ζ .. 

The above remark prompts for the analysis of the marginal rate of substitution 
between β . and ζ,. by looking at the total differential of k∗

. in the space (β, ζ ) ,. 

whereby k∗
. is constant provided that 

.
∂k∗

∂β
dβ + ∂k∗

∂ζ
dζ = 0. (6.16) 

Its solution, 

.
∂k∗/∂β
∂k∗/∂ζ

= (δ + ρ) [1 + β (n − 1)] Xmax

(n − 1) ζ [(δ + ρ) Xmax + nζ ]
(6.17) 

is positive everywhere. This yields 

Corollary 6.3 Parameters β . and ζ . are complements along any isoquant along 
which k∗

. is constant. 

We are also interested in evaluating the impact of firms’ number on individual 
and aggregate advertising efforts. To evaluate this aspect, we may define K∗ = nk∗

. 

and look at
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.

∂k∗

∂n
= Pζ [β (δ + ρ) Xmax + ζ (1 + β)]

2b (δ + ρ) [(δ + ρ) Xmax + nζ ]2
> 0

∂2k∗

∂n2 = −nζ 2 [β (δ + ρ) Xmax + ζ (1 + β)]

b (δ + ρ) [(δ + ρ) Xmax + nζ ]3 < 0

(6.18) 

and 

.

∂K∗

∂n
= k∗ + n · ∂k∗

∂n
> 0

∂2K∗

∂n2
= PζXmax [β (δ + ρ) Xmax + ζ (1 + β)]

b [(δ + ρ) Xmax + nζ ]3
> 0,

(6.19) 

which can be summarized in 

Remark 6.4 All else equal, any increase in the number of firms induces an increase 
in individual and aggregate advertising efforts. 

This result has a neatly Arrovian flavor (Arrow, 1962), as increasing market 
fragmentation increases aggregate investment. Here, we are dealing with advertising 
campaigns, while in the diachronic debate between Arrow 1962 and Schumpeter 
1942 the subject was technological innovation, with Schumpeter claiming that the 
industry structure endowed with the highest innovation incentives should be pure 
monopoly, and Arrow advocating exactly the opposite.4 Of course, this finding 
shall not be taken literally, as efforts and therefore costs shooting up to infinity are 
inadmissible as they would drive profits below zero well before that. 

Before addressing this issue, we must characterize the steady-state solution, by 
inserting k∗

. into (6.3), which under symmetry becomes 

.
·
x = ζ

(
1 − nx

Xmax

)
+ k∗ [1 − β (n − 1)] − δx, (6.20) 

and impose stationarity to obtain the following expression, measuring steady-state 
individual sales: 

.x∗ =
[
ζ + k∗ (1 − β (n − 1))

]
Xmax

(δ + ρ) Xmax + nζ
, (6.21) 

which is always positive under Assumption A. Moreover, it can be easily checked 
that Assumption B ensures that nx∗/Xmax < 1..

4 For exhaustive overviews of the ensuing literature, still very lively, see Tirole (1988), Reinganum 
(1989), Martin (1993), Gilbert (2006), and Aghion et al. (2015), among others. 
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Fig. 6.1 The phase diagram 

It is now time to deal with the phase diagram and the associated stability 

properties in the state-control space. The equation of the steady-state locus
·
x = 0. is 

.kss = xss (nζ + δXmax) − ζXmax

(1 − β (n − 1)) Xmax
, (6.22) 

which appears in Fig. 6.1, together with the flat line identifying the optimal 
advertising control k∗

. at any point in time and for any admissible state. 
The steady-state locus departs from x|k=0 = ζX/ (nζ + δXmax)., i.e., the level 

dictated by the intrinsic properties of sales dynamics, neither boosted nor diminished 
by any advertising campaigns. 

The sign of 
·
x,. which is explicitly indicated and summarized by the arrows along 

the flat optimal control, reveals that the steady state is stable. Indeed, the inspection 
of the Jacobian matrix and its determinant reveals that the open-loop equilibrium is 
a saddle point. The Jacobian matrix is 

.J =

⎡
⎢⎢⎢⎢⎢⎣

∂
·
x

∂x
= −nζ + δXmax

ζXmax

∂
·
x

∂k
= 1 − β (n − 1)

∂
·
k

∂x
= 0

∂
·
k

∂k
= δ + ρ + [1 − β (n − 1)] ξ

Xmax

⎤
⎥⎥⎥⎥⎥⎦

. (6.23)



6 A Linear State Game of Advertising à la Vidale-Wolfe 91

Since the optimal control is independent of the state at all times, then obviously 

∂
·
k/∂x = 0., which in turn implies that the determinant of the Jacobian matrix 

collapses to the product along the main diagonal: 

.�(J ) = ∂
·
x

∂x
· ∂

·
k

∂k
= −nζ + δXmax

ζXmax

[
δ + ρ + (1 − β (n − 1)) ξ

Xmax

]
. (6.24) 

The expression on the r.h.s. of (6.24) is negative in view of Assumption A. This 
suffices to claim 

Proposition 6.5 The steady-state point (x∗, k∗). is a saddle point equilibrium. 

6.4 Concluding Remarks 

As already stressed in the foregoing discussion, there have been frequent and 
relevant intersections between the search for strongly time consistent open-loop 
equilibria and the formulation of the multiple strands of the literature discussing 
differential games of advertising. 

The frequent presence of an explicit non-separability between controls and states 
in dynamic games of advertising has implied, more often than not, the impossibility 
of characterizing feedback equilibria, confining attention to open-loop or closed-
loop memoryless ones. Therefore, any such games paving the way to a (possibly 
degenerate) feedback solution under open-loop information have been intensively 
sought after. 

With this in mind, we have proposed a plausible reformulation of the sales expan-
sion model à la Vidale and Wolfe (1957) appearing in Deal (1979), transforming the 
original multiplicative interplay between controls and states into an additive one, so 
as to make the resulting optimal control delivered by the open-loop solution strongly 
time consistent without overturning the essential economic features of the model. In 
addition to preserving the saddle point stability of the resulting equilibrium, this 
approach has also allowed us to identify a well-defined Arrovian nature of the 
optimal industry investment in advertising campaigns under an admittedly simple 
and yet robust feedback rule. 
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Chapter 7 
The Cost of Myopia with Respect to a 
Switching Time in an Advertising Model 

Alessandra Buratto, Luca Grosset, Maddalena Muttoni, and Bruno Viscolani 

Abstract The ability to react to abrupt changes constitutes a fundamental skill 
for decision makers, especially in dynamic contexts where problem structures can 
change over time. However, there are situations in which planners are myopic, i.e., 
unaware of the impending changeover. The latter context inevitably results in a loss 
of profit. 

This paper aims to assess the cost of adopting a myopic approach toward system 
changes. We consider a marketing problem modeled à la Nerlove and Arrow, where 
the demand for a product is influenced by the goodwill of the firm that produces, 
advertises, and sells it. Moreover, we assume that production costs may change 
abruptly with a hazard rate that depends on the demand for the product. 

To address this situation, we formulate and solve an optimal control problem with 
stochastic switching time. We compare the optimal profit of a planner who is aware 
of the possibility of a switch to the one of a planner who is myopic with respect to 
such an event. 

Keywords Optimal control · Stochastic switching · Myopic decision-making · 
Dynamic advertising model · Abrupt system changes 

7.1 Introduction 

Advertising is one of the most effective marketing tools that can influence consumer 
behavior, leading to changes in demand for a product or a service. There are two 
primary models in the literature on optimal control applications to advertising, 
both proposed around the same time. The first model, by Vidale and Wolfe 
(1957), describes the response of sales to advertising and aims to represent typical 
behaviors observed in real data. The second model, by Nerlove and Arrow (1962), 
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assumes that the demand and sale intensity of a product depend on a state variable 
called goodwill, which represents the effects of a firm’s investment in advertising. 
The Nerlove-Arrow model has become an essential reference for advertising and 
marketing research, as seen in the review articles Sethi (1977), Feichtinger et al. 
(1994), and Huang et al. (2012). From this seminal model, we analyze how the 
optimal advertising campaign adapts in anticipation of a regime shift. In more detail, 
we consider an advertising problem for a firm assuming that its production costs 
can disruptively change during the programming interval and affect its (marginal) 
profits. We assume that the time at which the switch occurs is affected by the 
demand due to the concept of economies or diseconomies of scale. While it’s 
commonly expected that production costs will decrease as production volume 
increases (economies of scale), there are situations where the opposite occurs due 
to various challenges that arise with growth and increased demand. For example, 
increased demand can lead to raw material shortages, and therefore suppliers might 
struggle to meet the higher demand. Additionally, a growing demand could lead 
to labor shortages, particularly if specialized skills are required. This can result in 
companies needing to offer higher wages or overtime pay to attract workers. In both 
cases, as a result, production costs can increase abruptly. 

The stochastic time corresponding to an increase in production costs can be 
modeled as a random variable, named the switching time, whose distribution is 
influenced by the state variable of the system. 

Reacting to sudden changes is an important skill for decision makers. Strategic 
planning and a farsighted perspective are crucial to managing the potential risks 
associated with irreversible changes in production costs. 

In this paper, we compare two different types of behavior, assuming that in 
any case, the entire advertising campaign must be planned at the beginning of 
the programming interval. In the first case, we assume that the firm has complete 
information about the switching time and can plan how to adjust its advertising 
campaign for any occurrence of the switching time if such a switch occurs during 
the programming interval. 

In the second case, we analyze a firm that has no information on the time of the 
switch and plans its advertising strategy as if nothing would change at all. 

We denote the latter firm as myopic with respect to the switching time (in short, 
myopic). In the literature, the former type of behavior is called anticipative (Buratto 
et al., 2022); nevertheless, for a more immediate distinction between the two types 
of planners, in this paper we shall refer to it as non-myopic. 

Within the attitude of the myopic firm’s with respect to the switching time, we 
further distinguish two scenarios. First, the decision maker is unable to update its 
control if the switching time is realized. Due to initial agreements, its advertising 
campaign will remain as fixed at the initial time. Alternatively, in a second scenario, 
the decision maker, although myopic, can adapt their strategy to the situation that 
arises after the switching time. 

With our model, we want to analyze the following three research questions:
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• How do optimal advertising policies and expected profits vary for the two types 
of decision maker? 

• What is the cost of myopia? It can be quantified by examining the decrease in 
expected profit, which is directly related to the decrease in the level of knowledge 
of the decision maker about the time of the switch. 

• While the expected profit of the myopic planner is lower than that of the non-
myopic planner, there are certain instances where, due to the specific realization 
of the switching time (e.g., in our model, if the change occurs later on), the actual 
profit of the myopic planner may be higher than that of the farsighted planner. 
Therefore, our third research question is: With what probability does the myopic 
decision maker achieve a higher profit? 

This work is organized as follows. In Sect. 7.2, we present a marketing scenario 
based on the Nerlove-Arrow framework and model its fundamental features, 
particularly focusing on switching time, to describe a disruptive change in the firm’s 
production costs. In Sect. 7.3, using the necessary conditions for optimal control 
of heterogeneous systems (Veliov, 2008), we present the necessary conditions for 
a non-myopic decision maker and find the optimal advertising campaign up to 
integration of the state-adjoint system of ODEs that is fully nonlinear. In Sect. 7.4, 
we present the necessary conditions for a myopic decision maker and we find the 
optimal advertising campaign. In Sect. 7.5, we numerically compare the optimal 
advertising campaign and the optimal expected profits. In the Conclusions, we 
describe some open questions connected with this advertising model. 

7.2 Model 

We consider a finite-time marketing problem in which a company invests in 
advertising at a rate a(t) ≥ 0. to increase the demand for its product. The time 
horizon [0, T ]. is finite (with T > 0.), allowing us to set a constant selling price 
for the product. In fact, we are assuming that during the programming interval, 
the price remains constant and cannot be modified by the firm. Following the 
Nerlove and Arrow model, we assume that the goodwill summarizes the effect 
of advertising investment; hence, G(t). is a state variable which increases with the 
firm’s advertising intensity a(t)., and it decays exponentially at a constant rate δ > 0. 

if not sustained by the advertising: 

.

{
Ġ(t) = a(t) − δG(t) for t ∈ [0, T ]
G(0) = G0 > 0

(7.1) 

The firm’s objective is to maximize its payoff, which is composed of an intertempo-
ral term and a salvage value. The intertemporal term captures the trade-off between 
the profit from selling the product and the cost of promoting it, whereas the salvage 
value captures the interest of the firm in sustaining the brand value. The unit
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Table 7.1 Variables and 
parameters 

a(t) ≥ 0. Advertising investment at time t (control f unction)

G(t). Goodwill level at time t (state function)

α, β . Demand parameters, α, β > 0. 

c > 0. Unit production cost 

p > c. Unit selling price 

κ > 0. Parameter for quadratic advertising cost 

σ > 0. Marginal weight of the final goodwill 

δ > 0. Goodwill’s depreciation rate 

production cost c > 0. is constant. As mentioned above, we also assume that the unit 
selling price p > c. is constant throughout the programming interval. Let us assume 
that instantaneous demand depends linearly on the goodwill’s value, according to 
the following formula (α, β > 0.): 

.D(G) = α + βG (7.2) 

Hence, the instantaneous firm’s profit from selling the product is (p − c)D(G(t)) =
(p − c)(α + βG(t)).. The advertising cost is assumed to be quadratic, which is a 
standard hypothesis in the related literature, and we denote by κ > 0. the advertising 
cost parameter. The salvage value is assumed to be proportional to the final goodwill 
G(T )., with weight σ > 0.. This parameter allows the firm to maximize its brand 
value even at the end of the programming interval. Summarizing, the firm wants to 
solve the following optimal control problem: 

. maximize
a(t)≥0

∫ T

0

[
(p − c)(α + βG(t)) − κ

2
a2(t)

]
dt + σG(T ) (7.3) 

subject to (7.1): 

. 

{
Ġ(t) = a(t) − δG(t)

G(0) = G0

A summary of all notations used in the chapter is included in Table 7.1 

7.2.1 Stochastic Switching Time: Rise in Production Costs 

A stochastic switching time in a dynamic system is an unpredictable event that 
occurs at a stochastic time τ . that abruptly changes the nature of the problem. The 
instant τ . can be modeled as an absolutely continuous random variable with support 
[0,+∞).. Denoting by Stage 1 the period before the switch (i.e., all t ≤ τ .) and 
Stage 2 the period after the switch (i.e., all t > τ)., we have  c1 < p . as a unit 
production cost in Stage 1, while c2 < p . in Stage 2, with the assumption that 
c1 < c2 ..
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In our model, we assume such a change to be also irreversible and the instant τ . 

represents a sudden rise in the production cost, which in turn can be formalized as 
follows: 

.c =
{

c1 in Stage 1

c2 in Stage 2
(7.4) 

The literature on problems related to switching time is wide and many articles 
tackle the problem of reacting to abrupt changes. A well-established and widely 
used method to solve this kind of optimal control problems is given by the backward 
approach, a particular case of the more general theory of piecewise deterministic 
optimal control problems (see Dockner et al., 2000, Ch. 8.1), where the system 
switches between “modes” at stochastic times, but the dynamics and running payoff 
in each mode are deterministic. In the backward approach, see, e.g., Boukas et al. 
(1990), the Stage 2 value function acts as a salvage value for the Stage 1 problem, 
and the random switching time constitutes a random endpoint for Stage 1. 

A different example on an infinite horizon, in Tsur and Zemel (2017), assumes 
the existence of multiple (although with identical hazard rates and effects) catas-
trophic threats with state-dependent hazards. The authors, Tsur and Zemel, are 
very prolific in the stream of literature on two-stage optimal control with stochastic 
switching time, mostly with an infinite horizon, with a state-dependent hazard rate, 
and with a backward approach. 

A parallel literature substream, shared by this paper, concerns the same type of 
problem, tackled with a new solution method, here called heterogeneous approach. 
This method entails formulating an equivalent deterministic optimal control prob-
lem, distributed along an additional variable that represents the occurrence of the 
switching time. Wang (1964) and Brogan (1968) employ a dynamic programming 
approach to derive the MP, enabling the interpretation of adjoint variables as shadow 
prices. Feichtinger et al. in Feichtinger et al. (2003) obtain a global maximum 
principle to tackle this kind of problem, while Veliov in Veliov (2008) provides 
the necessary conditions for the solution of a more general heterogeneous optimal 
control problem, which can be applied to this particular case. 

More recently, in Wrzaczek et al. (2020), Wrzaczek et al. describe the transfor-
mation of the two-stage problem into a heterogeneous one, discuss the advantages of 
this approach compared to the standard backward approach, and provide a simple 
example on a macroeconomic shock with state-dependent hazard rate in infinite 
horizon. The same approach is used by Kuhn and Wrzaczek in Kuhn and Wrzaczek 
(2021), for an infinite-time, two-stage rational addiction model that explicitly 
incorporates a pre-addiction phase and a stochastic transition into addiction with 
a state-dependent hazard. In the same substream, Buratto et al. (2022) features an 
infinite-time, two-stage SIR model with lockdown measures and R&D, where the 
stochastic switch represents the discovery of an effective vaccine. To this day, this is 
the only published work in which the hazard rate is directly controllable (depending 
on time and R&D effort). A recent comprehensive overview of dynamic economic
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problems with regime switches can be found in Haunschmied et al. (2021). Finally, 
in Freiberger (2023), the author provides a Julia package for solving two-stage 
optimal control problems with random switching times. This work applies necessary 
optimality conditions for age-structured optimal control models to a case study on 
the health impacts of air pollution. 

Our work fits into the latter heterogeneous approach substream; however, 
differently from all the works discussed above, we consider a model in a finite time 
horizon. 

A classical way to tackle optimal control problems with stochastic switching time 
is to introduce a function called hazard rate, or switching rate, which describes the 
probability of the occurrence of such a switch. The hazard rate may be exogenous 
or endogenous and in the latter case it may depend both on the state variable and the 
control variable (as, e.g., in Sorger, 1991 and in Dawid et al., 2015). In this model, 
we assume the hazard rate to be endogenous and dependent on the demand of the 
product D(G)., in  (7.2); therefore, it only depends on the state G(·). of the system. 

We assume that the absolutely continuous random variable τ . is defined by the 
following equation: 

. lim
h→0+

P(τ ≤ t + h
∣∣ τ > t)

h
= η

(
D(G(t))

)
(7.5) 

where η : (0,+∞) → (0,+∞). is the hazard rate function. The distribution of 
τ . can be derived from the definition of η .; however, since the goodwill function 
G(t). is not defined after T , we can determine the distribution o f τ . only within the 
programming interval. Nevertheless, we are not interested in the distribution of τ . 

after T : It suffices to know that it can be extended in any way so that the total 
integral of τ .’s probability density equals 1 in [0,+∞).. 

In the following, we assume that the hazard rate is a linear and increasing 
function of the demand 

.η(D) = εD = ε(α + βG), ε > 0, (7.6) 

where ε . represents the marginal hazard with respect to the demand. 
Since we consider a finite time horizon, τ . could occur during the programming 

interval or later. If it occurs before the final time T , it splits the planning horizon 
into a Stage 1 and a Stage 2, respectively, before and after τ .; if it occurs after T , 
the entire planning horizon is covered by Stage 1. The latter case implies that, with 
positive probability, the unit production price can be equal to c1 . throughout the 
whole programming interval. 

7.2.2 Switching Time: Information and Adaptability 

In this work, we study the key role that information plays in planning the optimal 
strategy under the uncertainty of a pending switching time. Our aim is to analyze
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how the ability to adapt strategies based on the available level of information allows 
to increase profits, emphasizing the importance of dynamic methods for accurate 
managerial prescriptions. We do so by considering two types of decision makers. 

The first type of decision maker is familiar with both the goodwill’s dynamics 
and the influence of their control on the evolution of the probability distribution of 
the switching time. In addition, they anticipate the effects that the switch will have 
on the system. This leads them to define, for Stage 1, a control that covers the entire 
programming interval, because they do not know, a priori, when the switch will 
occur. This control will be truncated as soon as the switch occurs and Stage 2 starts. 
Hereafter, we will denote by non-myopic a decision maker belonging to this first 
type. 

Concerning Stage 2, non-myopic decision makers plan, at the beginning of 
the programming interval, a strategy that adapts to the realization of the random 
variable, so that they determine a family of controls, parameterized by the realization 
of the switching time, each of them defined in the time interval after the switch. In 
other words, the Stage 2 control for τ = s . is defined in the Stage 2 interval [s, T ].. 

Let us delve into the details, trying to establish the mathematical framework that 
allows us to describe this problem. 

• Stage 1: the planner is expecting τ . to occur at any time and knows its hazard 
rate function η(D(G(t))). and the effect it will have on the system, that is, the 
future production cost c2 .. Therefore, they will have to balance the increase in 
goodwill and consequently in demand with the probability of sudden increases 
in production costs. Since the planner does not know exactly when τ . will occur, 
their Stage 1 advertising strategy needs to cover the whole programming interval 
[0, T ].; the Stage 1 process will be described by the following couple of functions: 

. (a1(t), G1(t)) for t ∈ [0, T ]

• Stage 2: the planner notices when τ . occurs and can update their strategy 
according to the new regime in the interval [τ, T ].. We assume that the decision 
maker establishes a parametric control function at the beginning of the process. 
Since different realizations of τ . may lead to different optimal Stage 2 strategies, 
the Stage 2 process will actually be parametrized by the realization s of the 
switching time τ . during the planning horizon: 

. (a2(s, t), G2(s, t)), for (s, t) ∈ 
 := {
(s, t)

∣∣ s ∈ [0, T ], t ∈ [s, T ]}
The firm plans their strategy ahead for both stages and for every possible occurrence 
of τ .: before the programming interval starts, they will have decided both a1(t). and 
a2(s, t).. If  τ . occurs at time s, the firm will implement the strategy a1(t). for t ∈
[0, s]., and then the strategy a2(s, ·) : [s, T ] → [0,+∞).. 

Remark 7.1 We emphasize that throughout the remainder of this paper we will 
use this notation for the state and control functions of Stage 2: the first variable s
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represents the realization of the switching time, while the second variable t ∈ [s, T ]. 
represents the time. 

A second type of decision maker is familiar with the goodwill’s dynamics but 
ignores the possibility of a switching time. They choose an advertising strategy that 
covers the entire programming interval [0, T ].. This strategy is fixed at the beginning 
of the programming interval. The control and state functions are then represented 
by 

. (a(t),G(t)), for t ∈ [0, T ].

In what follows, we will denote myopic this second type of decision maker. 
It is worth observing that even though myopic decision makers do not consider 

the switching time, such an event can indeed occur. Therefore, recalling that our 
model is based on the assumption that the hazard rate depends on the demand for 
the product, myopic decision makers determine their strategies without knowing 
that their controls influence the distribution of the random variable τ.. To properly 
compare the two types of decision makers, we will calculate the expected profit both 
for non-myopic and myopic decision makers, although taking into account that the 
latter are unaware of the randomness of the system. Indeed, the non-myopic planners 
have all the information about the system’s stochasticity, so they are able to compute 
the optimal strategy to maximize the expected payoff over all possible realizations 
of the switching time. On the other hand, myopic planners maximize their profit as 
if no switch were to occur; however, even if they do not consider it, their actions 
do influence the switch’s hazard rate, and their production cost will indeed increase 
at some point. Knowing this, we can evaluate the actual expected profit of myopic 
planners, which will necessarily differ from their objective value. 

For simplicity, it is convenient to perform the computation of the profit first for 
the non-myopic decision maker. We will see that it is possible to treat the myopic 
case as a formal instance of the non-myopic case. 

7.3 Non-myopic Decision Maker 

Starting with the benchmark model (7.3), in order to formalize the switching time 
optimal control problem for the non-myopic decision maker, we need to introduce 
some notation. Planners who are aware that a change in marginal costs can occur 
aim to maximize their expected profit, in the set of feasible control paths a(·)., so  
that the density probability Ea(·) . is needed. More precisely, since it is the control 
used in Stage 1 that modifies the state variable and, in turn, the distribution function 
of the random variable τ ., this dependence must be indicated on the expected value 
operator. The formulation of the problem has to take into account both the possibility 
that the switch occurs before the final time T of the programming period or after it. 
With such an attempt, let us introduce the indicator functions 1{τ<T } . and 1{τ≥T } .,
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respectively. In the first case, there will be a Stage 1, with a payoff equal to (7.3) 
and a Stage 2 with a payoff with a new marginal cost c2 .. On the other hand, in the 
latter case, i.e., if the switch occurs after the end of the programming period, nothing 
will change, and the problem essentially remains equal to the one in (7.3) with the 
original marginal cost c1 .. Finally, the problem of the non-myopic decision maker 
can be stated as follows: 

. maximize
a1(t),a2(s,t)≥0

Ea1(t)

[
1{τ<T }

{ ∫ τ

0

[
(p − c1)D(G1(t)) − κ

2
a1(t)

2] dt

+
∫ T

τ

[
(p − c2)D(G2(τ, t)) − κ

2
a2(τ, t)

2] dt + σG2(τ, T )
}

+ 1{τ≥T }
{ ∫ T

0

[
(p − c1)D(G1(t)) − κ

2
a1(t)

2] dt + σG1(T )
}]

(7.7) 

subject to: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ġ1(t) = a1(t) − δG1(t), for t ∈ [0, τ )

G1(0) = G0

Ġ2(τ, t) = a2(τ, t) − δG2(τ, t), for t ∈ [τ, T ]
G2(τ, τ ) = G1(τ )

(7.8) 

where the hazard rate of τ . is defined in (7.5) and, with a common abuse of notation, 
see, e.g., Wrzaczek et al. (2020), we have written Ġ2(s, t) = ∂tG2(s, t).. 

We emphasize that the probability law that governs the process also depends 
on the chosen control a(t)., and henceforth, in accordance with Sorger (1991) and 
(Dockner et al., 2000, p.204), we write Ea(t) . to denote the expectations computed 
with respect to that law. 

To study this problem, we need to compute the expectation through the proba-
bility density of τ .. For this purpose, it is convenient to introduce an auxiliary state 
variable z1(t) = P(τ > t). for Stage 1. It represents the probability of still being 
in Stage 1 at time t . This definition allows us to write the probability density of τ ., 
which is the derivative of P(τ ≤ t) = 1 − P(τ > t)., as:  

.fτ (t) = −ż1(t). (7.9) 

Following the same computation performed in Wrzaczek et al. (2020), we can prove 
that z1(t). is the solution of the following Cauchy problem: 

.

{
ż1(t) = −η(D(G1(t))z1(t), for t ∈ [0, T ],
z1(0) = 1

(7.10)
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These two results allow us to write explicitly the expected value introduced in 
the objective functional. After basic integral manipulation, the firm’s objective 
functional becomes: 

. 

∫ T

0
z1(t)

[
(p − c1)D(G1(t)) − κ

2
a1(t)

2] dt + z1(T )σG1(T )

+
∫ T

0
η
(
G1(s)

)
z1(s)

{ ∫ T

s

[
(p − c2)D(G2(s, t))

− κ

2
a2(s, t)

2] dt + σG2(s, T )
}

ds

It is worth observing how the auxiliary state variable z1(t). acts as a discount factor 
for the Stage 1 payoff. In order to be able to treat this maximization problem with 
the theory provided in Veliov (2008), we first need to separate the payoff into 
two additive terms containing Stage 1 and Stage 2 variables. The problem with 
the above formulation is that the Stage 2 payoff (starting from s) is multiplied by 
η
(
G1(s)

)
z1(s)., which depends on the Stage 1 variables G1 . and z1 .. We work around 

this as in Wrzaczek et al. (2020), by introducing the auxiliary Stage 2 variable 
z2(s, t) = η

(
G1(s)

)
z1(s)., i.e., 

.

{
ż2(s, t) = 0

z2(s, s) = η
(
D(G1(s))

)
z1(s)

(7.11) 

The variable z2(s, t). depends on the switching time s and it is constant in time t . It  
represents the probability density of τ . at time s. After substituting z2 . in the objective 
functional, we obtain 

. 

∫ T

0
z1(t)

[
(p − c1)D(G1(t)) − κ

2
a1(t)

2] dt + z1(T )σG1(T )

+
∫ T

0

{ ∫ T

s

z2(s, t)
[
(p − c2)D(G2(s, t)) − κ

2
a2(s, t)

2] dt

+ z2(s, T )σG2(s, T )
}

ds

Problem (7.7) can be reformulated as a deterministic, heterogeneous one: 

. 

maximize
a1(t),a2(s,t)≥0

[ ∫ T

0
z1(t)

[
(p − c1)D(G1(t)) − κ

2
a1(t)

2] dt + z1(T )σG1(T )

+
∫ T

0

{ ∫ T

s

z2(s, t)
[
(p − c2)D(G2(s, t)) − κ

2
a2(s, t)

2] dt

+ z2(s, T )σG2(s, T )
}

ds

]
(7.12)
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subject to: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ġ1(t) = a1(t) − δG1(t), G1(0) = G0,

ż1(t) = −η
(
D(G1(t))

)
z1(t), z1(0) = 1,

Ġ2(s, t) = a2(s, t) − δG2(s, t), G2(s, s) = G1(s),

ż2(s, t) = 0, z2(s, s) = η
(
D(G1(s))

)
z1(s)

(7.13) 

We have transformed the optimal control problem with stochastic switching time 
described at the beginning of this section into a heterogeneous deterministic optimal 
control problem. The idea now is to characterize its optimal solutions with necessary 
conditions. 

Theorem 7.1 Let
(
a∗

1(t),G∗
1(t), z

∗
1(t), a

∗
2(s, t),G∗

2(s, t), z
∗
2(s, t)

)
. be the optimal 

solution of the heterogeneous problem (7.12) and (7.13) for the non-myopic decision 
maker, then the optimal advertising efforts a∗

1(t), a∗
2(s, t). in Stage 1 and Stage 2 

respectively are: 

.a∗
1(t) = [

λG(t)/κ
]+

, a∗
2(s, t) = ξG(s, t)/κ, (7.14) 

where 

.ξG(s, t) = (p − c2)β

δ
(1 − e−δ(T −t)) + σe−δ(T −t), t ≥ s (7.15) 

and the following co-state system holds: 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇G(t) = −(p − c1)β + δλG(t) − ε(α + βG∗
1(t))

[
ξG(t, t) − λG(t)

]−
−εβ

[
ξz(t, t) − λz(t)

]
λG(T ) = σ

λ̇z(t) = −(
(p − c1)D(G∗

1(t)) − κ
2 a∗

1(t)2
) − ε(α + βG∗

1(t))
[
ξz(t, t) − λz(t)

]
λz(T ) = σG∗

1(T )

ξ̇z(s, t) = −(
(p − c2)D(G∗

2(s, t)) − κ
2 a∗

2(s, t)2
)

ξz(s, T ) = σG∗
2(s, T )

(7.16) 

Proof Let us denote by λG . and λz . the Stage 1 co-state variables, and by ξG . and 
ξz . the Stage 2 ones, as in Buratto et al. (2023).1 By Veliov (2008), the maximality 
condition for the Stage 2 control is:

1 For simplicity, we omit the superscript “c” for the current-value co-state functions that correspond 
to the state variable G. 
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. a∗
2(s, t) ∈ arg max

a≥0

{
(p − c2)D

(
G∗

2(s, t)
) − κ

2
a2 + ξG(s, t)

[
a− δG∗

2(s, t)
]}

,

yielding 

. a∗
2(s, t) = [

ξG(s, t)/κ
]+

Concerning Stage 1, since the initial condition of the Stage 2 state variables and 
the hazard rate function do not depend on the control, the necessary condition for 
the control is a maximality condition of the following form (see also Buratto et al. 
(2023)): 

. a∗
1(t) ∈ arg max

a≥0

{
(p − c1)D

(
G∗

1(t)
) − κ

2
a2 + λG(t)

[
a− δG∗

1(t)
]}

,

yielding 

. a∗
1(t) = [

λG(t)/κ
]+

We obtain the co-state system from the more general formulation in Buratto 
et al. (2023), with φ(t,G, a) = G., due to the continuity of the goodwill upon 
the switch, and hence ∂Gφ(t,G, a) = 1.. The co-state functions, recalling that the 
motion equation is the same in the two stages, satisfy the following system: 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇G(t) = −(p − c1)D
′(G∗

1(t)) + δλG(t) − η
(
D(G∗

1(t))
)[

ξG(t, t) − λG(t)
]−

− d
dG

[
η(D(G∗

1(t)))
][

ξz(t, t) − λz(t)
]

λG(T ) = σ

λ̇z(t) = −(
(p − c1)D(G∗

1(t)) − κ
2 a∗

1(t)2
) − η

(
D(G∗

1(t))
)[

ξz(t, t) − λz(t)
]

λz(T ) = σG∗
1(T )

ξ̇G(s, t) = −(p − c2)D
′(G∗

2(s, t)) + δξG(s, t)

ξG(s, T ) = σ

ξ̇z(s, t) = −(
(p − c2)D(G∗

2(s, t)) − κ
2 a∗

2(s, t)2
)

ξz(s, T ) = σG∗
2(s, T )

Observe that the Cauchy problem for ξG . can be solved independently from the 
other ones, obtaining equation (7.15). The remaining equations, recalling from (7.2) 
and (7.6) that D′(G∗

1) = β . and d
dG

[
η(D(G∗

1))
] = εβ ., constitute the co-state 

system (7.16). 
It can be easily proved that ξG(s, t) > 0. being σ > 0., thus guaranteeing the 

positivity of the Stage 2 advertising effort a∗
2(s, t). in (7.14). 	


Since, in both stages, the optimal control depends solely on the co-state 
corresponding to the goodwill, it is of interest to analyze the evolution of such co-
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states λG . and ξG . (see system (7.3)) and the role played by the anticipation of the 
switch in shaping such evolution. 

Regarding ξG ., we observe that its adjoint equation (for any fixed s) is the same  
as it would be in the case of a single-stage problem with production cost equal 
to c2 .. Indeed, after the switch has occurred, there is no uncertainty about future 
disruptions, and therefore the planner may equivalently be facing a new simple 
single-stage optimal control problem on the interval [s, T ].. 

As for λG ., if we compare its adjoint equation with that in the case of a single stage 
problem with production cost equal to c1 ., we notice the presence of two additional 
terms: 

. − η
(
D(G∗

1(t))
)[

ξG(t, t) − λG(t)
]

and − εβ
[
ξz(t, t) − λz(t)

]
(7.17) 

These terms represent the anticipating effect on the Stage 1 shadow value of the 
goodwill. Let us illustrate their meaning, starting from the latter term. 

By integrating the equation for ξz ., we obtain that ξz(s, t). equals the optimal value 
of the Stage 2 problem starting from t (with t ≥ s .), given that the switch occurred 
at time s: 

.ξz(s, t) =
∫ T

t

[
(p − c2)D(G∗

2(s, θ)) − κ

2
a∗

2(s, θ)2] dθ + σG∗
2(s, T ) (7.18) 

By integrating the equation for λz ., we obtain that λz(t). equals the optimal expected 
value of the two-stage problem starting from t , given that the switch has not occurred 
yet at time t : 

.λz(t) = 1

z∗
1(t)

{ ∫ T

t

z∗
1(θ)

[
(p − c1)D(G∗

1(θ)) − κ

2
a∗

1(θ)2

+ η
(
D(G∗

1(θ))
)
ξz(θ, θ)

]
dθ + z∗

1(T )σG∗
1(T )

}

= 1

z∗
1(t)

{ ∫ T

t

z∗
1(θ)

[
(p − c1)D(G∗

1(θ)) − κ

2
a∗

1(θ)2

+ η
(
D(G∗

1(θ))
)( ∫ T

θ

[
(p − c2)D(G∗

2(θ, u)) − κ

2
a∗

2(θ, u)2] du

+ σG∗
2(θ, T )

)]
dθ + z∗

1(T )σG∗
1(T )

}

= E

[
χτ<T

( ∫ τ

t

[
(p − c1)D(G∗

1(θ)) − κ

2
a∗

1(θ)2] dθ

+
∫ T

τ

[
(p − c2)D(G∗

2(τ, θ)) − κ

2
a∗

2(τ, θ)2] dθ + σG∗
2(τ, T )

)
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+ χτ≥T

( ∫ T 

t

[
(p − c1)D(G∗

1(θ)) − 
κ 
2 
a∗

1(θ)2] dt + σG∗
1(T ) 

) ∣∣∣ τ > t
]

To write this in terms of value functions, we denote (as in Buratto et al., 2023) 
V2(s, t,G). for Stage 2 and V (t,G). for Stage 12 and obtain 

.ξz(s, t) = V2(s, t,G
∗
2(s, t)), λz(t) = V (t,G∗

1(t)) (7.19) 

Having observed this, we can interpret the difference
[
ξz(t, t) − λz(t)

]
., which 

occurs frequently in the co-state system, as the “desirability” of the switch at time 
t . Let us denote it by λτ (t). (recall that G∗

2(t, t) = G∗
1(t).): 

. λτ (t) : = ξz(t, t) − λz(t)

= V2(t, t,G
∗
1(t)) − V (t,G∗

1(t)) (7.20) 

The reasoning behind this interpretation is that λτ (t). measures the expected gain in 
profit if the switch were to occur at time t , given that it has not occurred up to t . So, 
for example, λτ (t) < 0. means that the profit that would be realized if the switch 
were to occur at time t is lower than the expected profit, given that the system is 
still in Stage 1 at time t . This can be intuitively translated as “at time t , the switch is 
undesirable.” Vice versa, if λτ (t) > 0., the switch is desirable because the realized 
profit if τ = t . is higher than the expected profit conditional on τ > t . (i.e., the 
system is still in Stage 1 at time t). 

In light of this, an undesirable (resp., desirable) switch has a backloading (resp., 
frontloading) effect on the Stage 1 goodwill’s shadow value λG . (and therefore on 
a1 .) that is proportional to the marginal hazard with respect to G and the desirability 
of the switch. Intuitively, a farsighted planner will postpone (resp., advance) his 
advertising effort compared to a myopic planner, knowing that the switch will have 
a negative (resp., positive) effect on their optimal payoff. In this model, w here c2 >

c1,. the switch turns out to be undesirable, 
By comparing the ODEs for ξG . and λG ., with the PDEs for the value functions 

V2 . and V , one can prove that

.ξG(s, t) = ∂GV2(s, t,G
∗
2(s, t)), λG(t) = ∂GV (t,G∗

1(t)) (7.21) 

and therefore (recalling that G∗
2(t, t) = G∗

1(t).)

2 In the cited paper, the Stage 1 problem which originates from plugging V2 . into the Stage 1 
objective value (backward approach) is not solved, as it is a simple single-stage problem that 
the reader can solve with either dynamic programming or Pontryagin’s maximum principle. With 
dynamic programming, one obtains a value function of the form V (t,G, z) = zV c(t,G).. With the 
same abuse of notation as we employed for the co-state variables, we denote V (t,G). the current 
value function V c(t,G).. 
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.ξG(t, t) − λG(t) = ∂G

[
V2(t, t,G

∗
1(t)) − V (t,G∗

1(t))
]

(7.22) 

which is the expected marginal gain in profit from switching at time t (given that 
the switch has not occurred yet) for a unit increment in the goodwill G at time 
t . A negative expected marginal gain (i.e., ξG(t, t) − λG(t) < 0.) means that, on 
average, at time t , a (slightly) higher goodwill than G∗

1(t). would make switching at 
time t (slightly) less convenient. For example, in the case that switching at time t 
is undesirable for a given value of G∗

1(t). (see previous paragraph), it may become 
even more undesirable if the goodwill were greater than G∗

1(t).. 
From a different perspective, the same conclusion can be reached by observing 

that ξG(t, t)−λG(t) = κ
[
a∗

2(t, t)−a∗
1(t)

]
. If ξG(t, t)−λG(t) < 0. (resp., >.), then the 

anticipation of the switch has a backloading (resp., frontloading) effect on λG . (and 
therefore on a1 .). Intuitively, a non-myopic planner will postpone (resp., hasten) his 
advertising compared to a myopic planner, knowing that a higher goodwill would 
make the switch less (resp., more) convenient. 

Remark 7.2 It is worth highlighting how the special structure of this model sim-
plifies the necessary conditions and, as a consequence, the solution of the switching 
time problem. Indeed, the adjoint equation for ξG . does not depend explicitly on s 
because the problem is autonomous. Additionally, due to the linear state structure 
of the model, G∗

2(s, t). (which would introduce an implicit, nontrivial dependence 
on s) does not factor into the equation either. Consequently, the dependence of the 
solution ξG(s, t). on s is trivial, as is that of the strategy a∗

2(s, t).. 

In order to characterize the optimal advertising efforts, we need to solve the 
forward-backward system of the state and co-state dynamics constituted by (7.13) 
and (7.16). Observe that such a system is nonlinear, due, for example, to the presence 
of the multiplicative term between η . (depending on G) and λG .; therefore, we resort 
to a numerical solution. In Sect. 7.5 we report some graphics with the optimal 
controls, states, co-states, and payoffs obtained with the numerical simulations. 

The problem we have discussed so far relates to a planner who has all the 
information about the upcoming τ . (hazard rate function and effects on the system) 
and has the ability to update his strategy upon the occurrence of τ .. In what follows, 
we will discuss planners with no information about τ . or without the ability to 
update their strategy to the new regime after τ .. We will see how each of them 
has a specific functional objective, leading to different optimal strategies. This, of 
course, entails different expected payoffs, which, intuitively, are increasing with the 
planner’s knowledge/ability. 

7.4 Myopic Decision Makers 

A planner is considered myopic if it does not take into account the possibility of 
a switch. Technically, myopic decision makers consider only the first equation of
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the system (7.13), and this definition is consistent with the game-theoretical one, 
by which a myopic player ignores the dynamics of a certain state variable; see, 
e.g., Taboubi and Zaccour (2002). Formally, their problem corresponds to (7.12) 
and (7.13) in which the hazard rate is identically 0; hence, the two auxiliary state 
variables z1 . and z2 . are constant and equal to 1 and 0, respectively. 

Now, the question moves to the potential behavior of a myopic planner after the 
switch has occurred during the programming period. In light of these considerations, 
in the following definitions, we introduce two additional features that a myopic 
planner can have. 

Definition 7.1 A decision maker is myopic with respect to a switching time and 
is unable to update their strategy if, at the initial time, they compute their optimal 
advertising strategy by solving the single-stage problem (7.3) and cannot modify 
their strategy after the possible realization of the switching time. 

In Definition 7.1, we are assuming that the myopic planner, once realized that 
τ . has occurred and observed a sudden increase in production costs, may not be 
able to re-evaluate and update the advertising strategy according to the new regime. 
There may be several reasons for the impossibility to update the strategy to the 
abrupt event: They may have committed to a long-term advertising campaign or 
have contractual obligations with advertising agencies. Ultimately, the decision to 
continue to advertise a product at the same intensity, despite higher production costs, 
depends on several factors, including market conditions, competitive landscape, 
brand strategy, and long-term business goals. 

Theorem 7.2 Let
(
a∗(t),G∗(t)

)
. be the optimal path in the optimal control prob-

lem (7.3) for decision makers who are myopic regarding switching time and are 
unable to update their strategy, then the optimal control function is 

.a∗(t) = 1

κ

( (p − c1)εβ

δ
(1 − e−δ(T −t)) + σe−δ(T −t)

)
, t ∈ [0, T ] (7.23) 

Proof Let us solve (7.3) using the necessary standard conditions (Grass et al., 2008, 
Th.3.4, p.109). Let us introduce the Hamiltonian function: 

. H(G, a, λG) =
[
(p − c1) ε(α + βG) − κa2/2

]
+ λG(a − δG)

Maximizing with respect to a ≥ 0. we obtain 

. a(t) = [
λG(t)/κ

]+
with co-state equation satisfying 

.

{
λ̇G(t) = −(p − c1)εβ + δλG(t)

λG(T ) = σ



7 The Cost of Myopia with Respect to a Switching Time in an Advertising Model 111

By a direct integration we get 

. λG(t) = (p − c1)εβ

δ
(1 − e−δ(T −t)) + σe−δ(T −t) > 0

Since λG(t) > 0. for all t , the optimal control turns out to be (7.23). 	

Note that while for the non-myopic decision maker the optimal controls are 

characterized by numerically solving a system of ODEs, the optimal control of the 
myopic decision maker can be calculated explicitly. 

Once the optimal solutions for both non-myopic and myopic planners are 
obtained, to evaluate the cost of myopia, we need to compare their expected profits. 
It is worth observing that even though the decision maker is myopic with respect 
to the switching time, such a random event can still occur, and therefore, the profit 
that we need to consider in the comparison is in any case an expected value. To 
be precise, we need to use the optimal control a∗(t). to calculate its associated 
optimal state G∗(t). and then determine the probability distribution of the switching 
time τ .. The differential equation governing the evolution of goodwill is linear, and 
therefore, it is possible to calculate the optimal state function explicitly. Recall that 
the optimal control for myopic decision makers who do not adapt to the new regime 
remains the same before and after the switching time. Furthermore, the dynamics 
does not change upon the switch, so the corresponding objective functional can be 
deduced by (7.7) where the denomination of the optimal control function a∗(t). and 
its corresponding optimal state G∗(t). do not change in the two stages. 

. J ∗
Myopic = Ea∗(t)

[
1{τ<T }

{ ∫ τ

0

[
(p − c1)D(G∗(t)) − κ

2
a∗(t)2] dt

+
∫ T

τ

[
(p − c2)D(G∗(t)) − κ

2
a∗(t)2] dt

}

+ 1{τ≥T }
{ ∫ T

0

[
(p − c1)D(G∗(t)) − κ

2
a∗(t)2] dt

}]
+ σG∗(T )

Denoting by f ∗
τ (t). the density function of the random variable τ ., and by F ∗

τ (t). its 
cumulative distribution function, we can explicitly calculate the expected value of 
the profit for the myopic decision maker who cannot adapt after the switch. Using 
the previous notation, we get 

.J ∗
Myopic =

∫ T

0
f ∗

τ (s)
{ ∫ s

0

[
(p − c1)D(G∗(t)) − κ

2
a∗(t)2] dt

+
∫ T

s

[
(p − c2)D(G∗(t)) − κ

2
a∗(t)2] dt

}
ds

+ (1 − F ∗
τ (T ))

{ ∫ T

0

[
(p − c1)D(G∗(t)) − κ

2
a∗(t)2] dt

}]
+ σG∗(T )
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After integrating by parts the first line in the expression above we obtain the 
following: 

. 

J ∗
Myopic =

∫ T

0
P(τ > t)

[
(p − c1)D(G∗(t)) − κ

2
a∗(t)2] dt

+
∫ T

0

∫ T

s

fτ (s)
[
(p − c2)D(G∗(t)) − κ

2
a∗(t)2] dt ds + σG∗(T )

So far, we have assumed that the decision maker is unable to adjust its control 
in response to a change in production cost. Let us now provide a further definition 
that describes a different feature for a myopic decision maker who can update his 
control after the occurrence of the switch time. 

Definition 7.2 A decision maker is myopic with respect to a switching time, but 
is able to update their strategy if, at the initial time, he computes his optimal 
advertising strategy by solving the single-stage problem (7.3) and uses this strategy 
until the possible occurrence of the switching time. After the possible realization of 
the switching time, he updates his strategy by solving a new optimal control starting 
from the state level that is achieved at the realization of the switching time. 

For this kind of decision maker, we need to provide two controls: one to be used 
before the realization of the switching time and the other afterward. It is useful to 
express these two controls in a way that depends on the random variable τ .. 

Theorem 7.3 Let a�(t). be the optimal strategy for a decision maker who is myopic 
with respect to a switching time, but is able to update his strategy, then the optimal 
control is 

.a�(t) =
⎧⎨
⎩a∗(t) t ∈ [0, τ )

1
κ

(
(p−c2)εβ

δ
(1 − e−δ(T −t)) + σe−δ(T −t)

)
t ∈ [τ, T ] (7.24) 

Proof This results come straightforward from Theorem 7.2. A crucial point is in the 
form of the necessary conditions for the problem (7.3). The optimal control depends 
only on the co-state variable, which in turns is decoupled from the motion equation 
and can therefore be independently solved backward. 	

Using the same notation and the same calculations described in this section, we 
can find the expected value for the decision maker who is myopic with respect to a 
switching time but who can update his strategy. 

.J
�
Myopic =

∫ T

0
f ∗

τ (s)
{ ∫ s

0

[
(p − c1)D(G∗(t)) − κ

2
a∗(t)2] dt

+
∫ T

s

[
(p − c2)D(G�(s, t)) − κ

2
a�(t)2] dt + σG

�
2(s, T )

}
ds
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+ (1 − F ∗
τ (T ))

{ ∫ T 

0

[
(p − c1)D(G∗(t)) − 

κ 
2 
a∗(t)2 ] dt + σG∗(T )

}]

After integrating by parts the first line in the expression above, we obtain the 
following: 

. 

J
�
Myopic =

∫ T

0
P(τ > t)

[
(p − c1)D(G∗(t)) − κ

2
a∗(t)2] dt + P(τ > T )σG∗(T )

+
∫ T

0

[ ∫ T

s

fτ (s)
[
(p − c2)D(G�(s, t)) − κ

2
a�(t)2] dt

+ fτ (s)σG�(s, T )
]
ds

In this section, we have characterized optimal solutions for a myopic decision maker 
in a closed form. However, to perform the comparison with respect to the non-
myopic planner, numerical simulations will be necessary. 

It is interesting to observe that in the single-stage optimal control problem solved 
by the myopic planners in Stage 1, their goodwill co-state functions satisfy the same 
Cauchy problem (7.16) of the non-myopic planner except for the value of epsilon 
which is ε = 0.. The co-state equations for λG(t). become 

.

{
λ̇G(t) = −(p − c1)π + δλG(t)

λG(T ) = σ
(7.25) 

7.5 The Cost of Myopia 

In this section, our objective is to draw a comparison between a myopic approach 
and a non-myopic one, addressing the research questions outlined in the Introduc-
tion. Specifically, we aim to quantify the cost of adopting a myopic perspective 
with respect to the switching time. With this attempt, we proceed numerically by 
assigning fixed values to some parameters and letting the marginal hazard with 
respect to the demand ( ε .) take values in {0.005, 0.01, 0.04}.. The higher ε . the 
higher the hazard risk η . and therefore the more likely is the switch, which in our 
model corresponds to an increase in the production cost. The simulations have been 
produced with an algorithm based on Freiberger (2023). Figure 7.2 collects the 
parameters that are kept constant in all numerical simulations (Table 7.2). 

Table 7.2 Parameter values p c1 . c2 . α . β . κ . σ . δ . 

1 0.5 0.8 1 0.5 0.3 1 0.05
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Fig. 7.1 Optimal advertising efforts, ε = 0.005., ε = 0.01., ε = 0.04. 

In the following figures, the horizontal axes denote time (in months). 
In the figures presented below, the myopic trajectories are represented by gray 

lines. The myopic planner who does not adapt will follow these trajectories even in 
the event of a regime shift. Conversely, the myopic planner who adapts will interrupt 
such strategies upon occurrence of the switching time. The non-myopic trajectories 
are depicted by black lines. Just like the myopic planner who adapts to the regime 
shift, the non-myopic planner will follow these lines throughout Stage 1, until the 
switching time occurs. Finally, the colored lines represent the Stage 2 behavior for 
different realizations of τ .. In the case of the myopic planner who adapts, these lines 
are slightly transparent, whereas for the non-myopic planner, they are presented 
in solid color. It is important to note that the Stage 2 advertising aligns in both 
scenarios. So, assuming that the switch occurs at a given τ ., the optimal trajectory 
can be observed following the black line until the instant τ . and then “jumping” to 
the colored line from τ . on. 

At a glance, we can observe that in both Figs. 7.1 and 7.2, the black lines are 
lower than the gray lines, regardless of ε .. This is because a non-myopic planner 
knows that higher demand increases the likelihood of a switch, leading to increased 
costs. Consequently, the optimal advertising efforts of the non-myopic planner in 
Stage 1 turn are less intensive compared to those of the myopic planner. A similar 
pattern is observed in the goodwill trajectories in Fig. 7.2. 

Moreover, in Fig. 7.1 it is worth noting that the myopic trajectories remain 
constant with changes in ε ., while the non-myopic trajectories decrease as ε . 

increases. This indicates that the higher the marginal hazard with respect to the 
demand, the lower the advertising effort of the non-myopic planner. Again, the 
goodwill trajectories in Fig. 7.2 exhibit the same pattern. 

In Fig. 7.2 each colored line starts at a given switch instant; therefore, the optimal 
goodwill trajectory can be seen following the black line from the initial time zero 
until the instant of the switch, while upon that instant, the associated colored line has 
to be considered. Each figure shows that the later the switch, the higher the optimal 
goodwill, while comparing the three figures it appears that the higher the marginal 
risk, the lower the optimal goodwill, as expected. 

In Fig. 7.3 the objective values related to all the different types of behavior are 
plotted, with the further specific features the myopic planner can have, referring to 
Definitions 7.1 and 7.2: Gray  =.myopic +.can update; Light gray =.myopic +.cannot
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Fig. 7.2 Optimal goodwill trajectories, ε = 0.005., ε = 0.01., ε = 0.04. 

Fig. 7.3 Profits; ε = 0.005 (τ̃ ≈ 9.5)., ε = 0.01. (τ̃ ≈ 8.5)., ε = 0.04. (τ̃ ≈ 7.5). 

update. Expected profits (represented by the solid constant lines) and realized profits 
(represented by the dotted lines) are shown as functions of the realization of the 
switch time. As before, the black color stands for non-myopic. Naturally, expected 
payoffs do not depend on the realization of τ . and are therefore represented by 
constant lines. 

The task of our analysis is to assess the cost of being myopic with respect to an 
abrupt switch. Indeed, we found that the expected profit for the non-myopic planner 
is greater than the ones of the myopic ones. Moreover, among myopic decision 
planners, the one who is able to update obtains higher profit because they can 
adapt to the new situation by reacting to the increase in production costs through 
a decrease in their advertising investment. 

However, regarding realized payoffs, for sufficiently small realizations of τ . non-
myopic payoff lays over the myopic ones; nevertheless, it is a well-known result 
that there may be late realizations of τ . where myopic planners achieve a higher 
payoff than their non-myopic counterparts. The dotted lines effectively intersect 
as τ . approaches T , and, after such an intersection (let us call i t τ̃ .), the black 
dotted lines lay below the gray ones. In any case, this situation occurs with a 
very low probability, as clearly represented in Fig. 7.4, where the probability ( z1 .) 
of still being in Stage 1 is represented as a function of time. In all graphs, this 
probability decreases with t , consistent with its definition. Moreover, as the hazard 
risk increases, then the probability of arriving at late realizations of τ . that provide 
a higher profit for the myopic decision planner is very small. For example, from 
the third graph of Fig. 7.3 (ε = 0.04.) we can observe that the dark gray dotted line 
(myopic who can update) intersects the black one in τ̃ ≈ 7.1. which in Fig. 7.4
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Fig. 7.4 z1(t)., ε = 0.005., ε = 0.01., ε = 0.04. 

(using the myopic gray strategy) leads to z1(7.1) ≈ 0.02..3 In other words, the 
probability that a myopic decision planner makes a profit greater than the non-
myopic one is statistically not significant (less than 0.05.). As a final comment on 
Fig. 7.4, we observe that the black lines are higher than the gray because the non-
myopic planner takes action to postpone the switch time. 

7.6 Conclusions 

This research offers a compelling analysis of the implications of myopia in decision 
making, particularly in the context of dynamic marketing problems. Our study 
centers on assessing the cost of a myopic approach when faced with potential abrupt 
changes in production costs, a scenario increasingly relevant in today’s fast-paced 
and unpredictable market environments. 

Through the formulation and solution of an optimal control problem with 
stochastic switching time, we were able to quantitatively compare the outcomes 
of a myopic planner with those of a planner who anticipates potential changes. 

Referring to the first two research questions, our analysis shows how different 
decision-making approaches (myopic vs. non-myopic) affect advertising strategies 
and the resulting profits. 

Second, we examine the impact of short-term thinking on expected profits. We 
evaluated the cost of myopia by assessing how a decrease in knowledge about 
crucial time-sensitive decisions affects profitability. 

Our findings revealed a significant divergence in the profit outcomes between 
these two approaches. The myopic planner, constrained by a lack of foresight into 
possible system changes, invariably encountered a reduction in profit when the 
switch in production costs occurred. This reduction is directly attributable to the 
planner’s inability to adjust strategies preemptively, highlighting the cost of myopia 
in decision making. 

On the contrary, the non-myopic planner, equipped with the awareness of 
potential changes, demonstrated a more adaptable and resilient approach. This

3 The value of z1 . evaluated in the  ̃τ . corresponding to the intersection of the myopic who cannot 
update (light gray dotted line) is even smaller. 
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planner’s ability to anticipate and plan for potential disruptions not only minimized 
losses but often led to more optimized use of resources, thereby maximizing profits. 
These results underscore the importance of strategic foresight in management and 
planning. 

Our third research question: “With what probability does the myopic decision 
maker achieve a higher profit?” is intriguing, as it challenges the assumption that 
non-myopic (farsighted) planners always yield higher profits. The first answer can 
be found by observing that among myopic planners, there are those who can 
update their strategies after the switch and can indeed aim at achieving higher 
profits. However, in the cases of late switch realizations, myopic planners can 
occasionally outperform non-myopic ones. However, this scenario can occur with 
a low probability. In fact, our simulations prove that when the hazard rate is 
increased, the probability of myopic planners gaining higher profits in late switch 
realizations becomes statistically insignificant (less than 0.05 probability). This 
finding underscores that non-myopic planners, who proactively adapt to delay the 
switching time, generally yield better outcomes. 

In conclusion, this paper highlights the tangible benefits of strategic anticipation 
and adaptability in dynamic decision-making contexts. It serves as a call to action 
for planners and managers to cultivate a forward-looking perspective, integrating 
predictive analytics and scenario planning into their strategic toolkit. By doing so, 
they can significantly reduce the risks associated with myopia and harness the full 
potential of their decision-making capabilities in an ever-evolving market landscape. 
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Chapter 8 
The Limits of Static Decision Rules 
in Supply Chain Games 

Fouad El Ouardighi, Suresh P. Sethi, and Christian Van Delft 

Abstract It is well known that static supply chain models ignore the future 
consequences of current actions. This shortsighted behavior can result either from 
the omission of the dynamics of important stock variables or from the use of 
extreme discounting. This chapter shows that the use of static supply chain models 
based on the omission of the evolution of important stock variables can lead to 
wrong decisions. To this end, we successively consider a series of simple issues 
representative of supply chain management. For each issue, two versions of a 
supply chain game are defined, one static and the other dynamic. For both versions, 
cooperative and non-cooperative scenarios are considered. For the static version, we 
do not use a naïve formulation but instead adopt an anticipatory perspective wherein 
the repetition of the static game over a given time horizon accounts for the update 
of the considered performance of the current period based on the previous period. 
Regarding the dynamic version, we use the framework of differential game theory. 
We then compare the decision rules and outcomes, respectively, inferred from the 
static and dynamic versions of the supply chain game considered. For each issue 
of interest, we show that the static decision rules provide distorted outcomes and 
misleading managerial prescriptions. 
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8.1 Introduction 

Supply chain management poses a unique challenge due to the continuous inter-
actions among different actors (e.g., El Ouardighi & Erickson, 2015; El Ouardighi 
& Schnaiderman, 2019; Han et al., 2024), i.e., suppliers vs. manufacturers and/or 
retailers, as well as among different management functions (e.g., El Ouardighi et al., 
2008, 2013, 2016; Kennedy et al., 2021), i.e., operations management vs. marketing 
and/or finance, etc. These continuous interactions shape dynamical processes where 
any decision made at a specific instance reverberates through the overall system’s 
future states. 

Examples of supply chain management-related issues that require reliance on 
dynamic processes include marketing management, operational efficiency, inven-
tory management, quality improvement, environmental sustainability, transactional 
conditions, and coordination among supply chain members. Though essential, these 
dynamical processes have been disregarded by a wide stream of the supply chain 
management literature for quite some time (e.g., Cachon & Fischer, 2000; Cachon, 
2001; Corbett & Karmarkar, 2001; Chen, 2003). 

Two widely cited articles may have reinforced this trend. The first paper surveyed 
the literature on supply chain coordination with contracts (Cachon, 2003). It does 
not refer to dynamic supply chain models; rather, the main objective is to minimize 
the instantaneous cost of non-cooperative behaviors of supply chain members. The 
second publication (Cachon & Netessine, 2004) provides an extensive review of 
the literature related to game theory in supply chain management. The emphasis is 
on static equilibrium strategies, and the reference to dynamic games is deferred 
to the very last pages of the paper, where the mathematical difficulty inherent 
to their analysis is mentioned repeatedly. To some extent, these reviews have, 
deliberately or not, contributed to forge the marked preference of the supply chain 
management literature for static models, thus contributing to the sidelining of 
seminal contributions by Jørgensen (1986), Eliashberg and Steinberg (1987), and 
Desai (1992). 

This trend has certainly contributed to slowing the progress of dynamic analysis 
of supply chain management. In fact, although static supply chain games have 
remained prevalent in the literature (e.g., Nagarajan & Sošić, 2008, Zhao et al., 
2010; Agi et al., 2021), an important stream of the supply chain literature promoting 
the use of dynamic games has emerged, almost against the grain of the dominant 
current. An early account of this research stream is provided in the studies by He et 
al. (2007) and Kogan and Tapiero (2007). 

An intuitive reason for such unexpected success of dynamic supply chain games 
is because ignoring the role of dynamic processes in a supply chain (SC) leads one 
to infer misleading policies. An interesting illustration of such misleading policies 
is provided by Zaccour (2008), who showed that the implementation of a two-part 
tariff scheme in a static game model always generates an overconfident outcome 
in terms of the coordination of a marketing channel (see also Lambertini, 2014). 
Another intuitive reason for the development of dynamic SC games is that it allows
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one to more accurately articulate the continuous interactions between different 
management functions or activities within the SC, e.g., between operations and 
marketing activities (e.g., Desai, 1996) or between operations and environmental 
activities (e.g., El Ouardighi et al., 2016). 

It is well known that static SC models ignore the future consequences of 
current actions. This shortsighted behavior, called myopia, can result either from 
the omission of the dynamics of important stock variables or from the use of 
extreme discounting. This chapter shows that the use of static SC models based 
on the omission of the evolution of important stock variables provides distorted 
outcomes and misleading managerial prescriptions. To this end, we successively 
consider a series of simple issues representative of supply chain management. For 
each issue, two deterministic versions of a SC game are defined, one static and the 
other dynamic. For both versions, we consider a cooperative and a non-cooperative 
scenario. Regarding the static version, we do not use a naïve formulation but instead 
adopt an anticipatory perspective wherein the repetition of the static game over a 
given time horizon accounts for the update of the considered performance of the 
current period based on the previous period. Regarding the dynamic version, we 
use the framework of differential game theory (Başar & Olsder, 1982; Dockner et 
al., 2000). We then compare the decision rules and outcomes, respectively, inferred 
from the static and dynamic versions of the SC game considered for the cooperative 
and non-cooperative scenarios, respectively. Our results show that static decision 
rules in an SC game: 

• are not optimal, 
• are not steady state compatible, and 
• do not account for the information structure. 

The chapter is structured as follows. In Sects. 8.2, 8.3, and 8.4, diverse SC 
dynamic game models, each associated with specific scenarios involving one sup-
plier, one manufacturer, and/or one retailer, are thoroughly analyzed. We consider 
both shortsighted and farsighted decision rules. Within these examples, our analysis 
exposes the underlying mechanisms contributing to the discrepancy of static policies 
compared to their dynamic counterparts. Section 8.5 provides concluding remarks. 
In-depth technical developments are presented in the appendices. 

8.2 Static Decision Rules in a Finite Time Horizon Supply 
Chain Game Are Not Optimal 

The double marginalization effect in an SC under experience accumulation illus-
trates this point.
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8.2.1 Model Formulation 

We consider a build-to-order SC composed of a single manufacturer and a single 
supplier. The issue is: How can SC members’ benefit be maximized in the presence 
of autonomous learning (i.e., experience effect) in the manufacturing process? 

The supplier sells an intermediate good to the manufacturer, who uses it to 
produce a finished product. The manufacturer can reduce its unit operating cost 
over time thanks to its experience in production. The SC members can play either 
cooperatively or non-cooperatively. In the case of a non-cooperative game, they opt 
for a wholesale price contract (WPC), under which the supplier sets the transfer 
price. The WPC is supposed to be time-independent throughout the game horizon 
(El Ouardighi, 2014; El Ouardighi & Shnaiderman, 2019). 

The state variable X(t) ≥ 0, which represents the stock level of experience in 
production, evolves a s:

.Ẋ(t) = S(t), X(0) = 0 (8.1) 

where S(t) ≥ 0 is the consumer demand. We assume that consumer demand 
decreases linearly in the manufacturer’s price pm(t) ≥ 0. That is,

.S(t) = α − βpm(t) (8.2) 

where the subscript m stands for the manufacturer. The parameter a denotes the 
potential market and is supposed to be large, α � 0. The parameter β > 0 is the 
marginal sensitivity of demand to consumer price. The experience is not subject to 
forgetting. The experience level reduces the manufacturer’s production cost over 
time as follows (e.g., El Ouardighi et al., 2014): 

.Cm(t) = ωm − θX(t) (8.3) 

where ωm > 0 is the initial production cost and θ > 0 denotes the marginal efficiency 
gain from autonomous learning.

We assume that ωm is sufficiently large although lower than α/β, both to prevent 
a negative operating cost and to serve as an incentive to develop experience. Finally, 
the supplier’s transfer price is denoted by ps(t) = ps, ∀0 ≤ t ≤ T, where s stands 
for supplier, and the supplier’s (constant) operating cost is ωs ≥ 0. To get further 
insights, we normalize the supplier’s cost to zero, i.e., ωs = 0.

Next, we define a profit function for each firm. We assume a fixed and finite 
planning horizon, T < ∞, and omit the discounting of future profits. Each firm aims 
to maximize its cumulative profits over the planning period. 

Using (8.3), we write the manufacturer’s instantaneous profit as: 

. [pm(t) − (ps(t) + ωm − θX(t))] (α − βpm(t)) (8.4)
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and the supplier’s instantaneous gross profit as: 

.ps(t) (α − βpm(t)) (8.5) 

Each SC member aims to maximize its profit in a dynamic non-cooperative game 
setting, that is: 

. Max
pm(t)≥0

�d
m =

∫ T

0
[pm(t) − (ps(t) + ωm − θX(t))] S(t)dt (8.6) 

. Max
ps(t)≥0

�d
s =

∫ T

0
ps(t)S(t)dt (8.7) 

subject to the experience dynamics in (8.1), where the superscript d stands for 
dynamic. 

Let us consider a static version of this non-cooperative game where the manu-
facturer sets a constant price over the whole planning horizon while anticipating 
the efficiency gain resulting from the production experience, as reflected in the 
cumulative sales from one period to the next. We assume that the efficiency gains 
are obtained with a one-period time lag. Given a finite time horizon T < ∞, the  
manufacturer’s cumulative sales revenue is pm(α − βpm)T, while the manufacturer’s 
cumulative payment to the supplier and cumulative gross production cost are, 
respectively, ps(α − βpm)T and ωm(α − βpm)T. Regarding the instantaneous 
efficiency gains from autonomous learning, accounting for the time lag, they are 
defined as Xs(t) = (α − βpm)t, where t ∈ [0, T − 1] and the superscript s stands 
for static. At the end of the planning horizon, the cumulative e fficiency gain from

autonomous learning is (α − βpm)
∫ T −1

0 tdt = (α − βpm)
(T −1)2

2 .. However, if we 
calculate the cumulative efficiency gains from autonomous learning as a sum of 
successive natural integers, that is, (α − βpm)

∑T −1
0 t ., we get (α − βpm)

(T −1)T
2 ., 

which is larger than (α − βpm)
(T −1)2

2 .. We choose this larger value for our analysis 
of the static game. 

Therefore, the cumulative profit of the SC members in the static game is: 

.Max
pm≥0

�s
m =

{
[pm − (ps + ωm)] + θ (α − βp)

(T − 1)

2

}
(α − βpm) T (8.8) 

.Max
ps≥0

�s
s = ps (α − βpm) T (8.9) 

To determine a benchmark for the performance of the decentralized SC, we 
formulate the centralized problem, respectively, for the static and dynamic versions 
of the game. Because it is supposed to reflect the performance of a perfectly 
coordinated SC, the centralized problem requires that the SC members align their 
respective interests and jointly maximize the overall cumulative profits. For the
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dynamic setting, the centralized problem is: 

. Max
p(t)≥0

�d
c =

∫ T

0
[p(t) − (ωm − θX(t))] Ẋ(t)dt (8.10) 

subject to (8.1), where the subscript c stands for cooperative. 
For the static setting, the centralized problem is: 

.Max
p≥0

�s
c =

[
(p − ωm) + θ (α − βp)

(T − 1)

2

]
(α − βp) T (8.11) 

8.2.2 Analysis 

8.2.2.1 The Cooperative Supply Chain 

To ensure the solutions’ feasibility and compare performances, we must have the 
same planning horizon for the four cases considered. This is why we choose the 
shorter of the dynamic cooperative setting time horizons (T < 1

βθ
.) and that of the 

dynamic non-cooperative setting (T < 1 + 3
2βθ

.). Thus, we set T < 1
βθ

., for which  
we assume βθ � 1. 

Lemma 1 The optimal static cooperative price is given by: 

.ps
c = [1 − βθ (T − 1)] α + βωm

β [2 − βθ (T − 1)]
> 0 (8.12) 

with the corresponding cooperative sales: 

.Ss
c = α − βωm

2 − βθ (T − 1)
> 0 (8.13) 

and the maximized cooperative profit: 

.�s
c = (α − βωm)2T

2β [2 − βθ (T − 1)]
> 0 (8.14) 

Proof. A.1.1 
We get the following results by turning to the dynamic cooperative setting and 
skipping the time index for convenience. 

Lemma 2 The optimal farsighted cooperative price is given by: 

.pd
c = (1 − βθT ) α + βωm

β (2 − βθT )
> 0 (8.15)
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with the corresponding cooperative sales: 

.Sd
c = α − βωm

2 − βθT
> 0 (8.16) 

and the maximized cumulative cooperative profit: 

.�d
c = (α − βωm)2T

2β (2 − βθT )
> 0 (8.17) 

Proof. A.1.2 
Note that pd

c . in (8.15) is time-independent, implying that the farsighted approach 
accounting for experience accumulation is compatible with a constant sales price. To 
ensure the non-negativity of the manufacturer’s operating cost, i.e., ωm − θX(t) ≥ 0, 
for t ∈ [0, T], we require ωm ≥ θ

(α−βωm)T
2−βθT

. at t = T. To avoid unnecessary 

technicalities, we assume a short enough planning horizon T ≤ 2ωm

θα
< 1

βθ
⇐⇒

α > 2βωm .. In this case, it is reasonable to use no discounting. 
Comparing the farsighted cooperative pricing rule in (8.15) with the static 

cooperative one in (8.12), we get: 

.pd
c − ps

c = (1 − βθT ) α + βωm

β (2 − βθT )
− [1 − βθ (T − 1)] α + βωm

β [2 − βθ (T − 1)]
< 0 (8.18) 

Thus, the time-independent farsighted pricing policy results in a larger consumer 
surplus than the static policy under SC cooperation. That is, the static pricing policy, 
on account of anticipating the impact of future experience on the profit function, 
is inefficient for the cooperative SC because it results in overpricing and, thus, 
underselling, as confirmed by the difference between (8.16) and (8.13). 

In contrast, comparing (8.17) with the static cooperative cumulative profit in 
(8.14), we get: 

.�d
c − �s

c = (α − βωm)2T

2β (2 − βθT )
− (α − βωm)2T

2β [2 − βθ (T − 1)]
> 0 (8.19) 

A farsighted policy does not require time-varying control, but is more profitable 
than the static policy under SC cooperation. Conversely, although it anticipates the 
impact of future experience on the pricing policy, the static decision rule is profit-
ineffective for a cooperative SC. 

8.2.2.2 Non-cooperative Supply Chain 

We now consider the case where the SC members agree on a wholesale price 
contract (WPC). Because the supplier sets the wholesale price, it is the Stackelberg 
leader.
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We first handle the static non-cooperative setting. 

Lemma 3 The manufacturer’s static non-cooperative price is given by: 

.ps
m = [3 − 2βθ (T − 1)] α + βωm

2β [2 − βθ (T − 1)]
> 0 (8.20) 

while the supplier’s non-cooperative wholesale price is: 

.ps
s = α − βωm

2β
> 0 (8.21) 

The corresponding non-cooperative sales are: 

.Ss
m = α − βωm

2 [2 − βθ (T − 1)]
> 0 (8.22) 

and the maximized non-cooperative static profits are, respectively, 

.�s
m = (α − βωm)2T

8β [2 − βθ (T − 1)]
> 0 (8.23) 

.�s
s = (α − βωm)2T

4β [2 − βθ (T − 1)]
> 0. (8.24) 

Proof. A.1.3 
Notably, the supplier gets twice as much profit as the manufacturer. We can now 
assess each SC member’s incentive to cooperate in the static setting. 

Lemma 4 The manufacturer’s and supplier’s static cooperative profits are, respec-
tively, 

.�sc
m = 3(α − βωm)2T

16β [2 − βθ (T − 1)]
(8.25) 

.�sc
s = 5(α − βωm)2T

16β [2 − βθ (T − 1)]
(8.26) 

where the superscript c denotes cooperative. 

Proof. A.1.4 
Comparing (8.25) and (8.26), we observe that the supplier has a greater incentive 
for SC cooperation than does the manufacturer. 

We now turn to the dynamic non-cooperative setting. In practice, a contract is 
often agreed on from the outset of the game to make the SC members’ contractual 
relations as predictable as possible throughout a finite planning horizon. Because the
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autonomous learning is supposed to reduce the manufacturer’s operating cost only, it 
is plausible to assume that the supplier ignores its intertemporal evolution, if not its 
existence, and thus behaves myopically with respect to the manufacturing learning 
effect. In this setup, the supplier sets a time-independent transfer price ps(t) = ps, 
∀0 ≤ t ≤ T. 

Given that the supplier acts as a Stackelberg leader, a two-stage game is 
formulated in which the supplier chooses the transfer price at the first stage to 
maximize its profit. The manufacturer can then either accept the optimally set 
transfer price or not. In this setup, the game’s second stage is played dynamically, 
and the two-stage game is solved backwardly (e.g., El Ouardighi & Shnaiderman,
2019). We restrict our attention to subgame perfect non-cooperative equilibrium and 
thus use dynamic programming to determine the manufacturer’s non-cooperative 
strategy. 

Lemma 5 Under a time-independent wholesale price contract, the farsighted non-
cooperative manufacturer’s equilibrium sales price is given by: 

.pd
m = (3 − 2βθT ) α + βωm

2β (2 − βθT )
> 0 (8.27) 

and the supplier’s equilibrium wholesale price by: 

.pd
s = α − βωm

2β
> 0 (8.28) 

The corresponding non-cooperative sales are: 

.Sd
m = α − βωm

2 (2 − βθT )
> 0 (8.29) 

and the maximized non-cooperative profits are, respectively, 

.�d
m = (α − βωm)2T

8β (2 − βθT )
> 0 (8.30) 

.�d
s = (α − βωm)2T

4β (2 − βθT )
> 0 (8.31) 

Proof. A.1.5 
Note that the manufacturer’s farsighted non-cooperative policy also results in a time-
independent pricing control and thus constant sales over time. As shown in (A.2.2), 
the manufacturer’s experience increases linearly. Finally, the supplier’s profit is 
twice that of the manufacturer. 

Lemma 6 The manufacturer’s and supplier’s cooperative profits under a time-
independent wholesale price contract are, respectively,
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.�dc
m = 3(α − βωm)2T

16β (2 − βθT )
(8.32) 

.�dc
s = 5(α − βωm)2T

16β (2 − βθT )
(8.33) 

where the superscript c denotes cooperative. 

Proof. A.1.6 

8.2.2.3 Comparisons 

Using (8.18) and (8.19), we conclude: 

Proposition 1 The social welfare gained from a centralized SC is more significant 
in the dynamic than in the static setting. 

This result is driven by overpricing, as shown in (8.18), which weakens 
autonomous learning and lowers the benefits, as reported in (8.19). Consequently, 
the static decision rule cannot lead to optimal social welfare in SC cooperation. 
It will produce misleading managerial prescriptions for the best way to exploit 
autonomous learning. 

Comparing (8.21) and (8.28), on the one hand, and (8.20) and (8.27), on the other 
hand, we get: 

.ps
s = pd

s (8.34) 

.pd
m < ps

m (8.35) 

That is, the supplier’s transfer price is the same in the static and dynamic settings. 
In addition, the farsighted non-cooperative manufacturer’s price is lower than the 
static one. It implies a greater consumer surplus and sales in the dynamic non-
cooperative case than in the static one. 

Be it a static or dynamic game, it is not clear whether the supplier’s transfer price 
is greater or lower than the cooperative sales price. 

Comparing (8.27) and (8.15), on the one hand, and (8.20) and (8.12), on the other 
hand, we obtain: 

.pd
m − pd

c = α − βωm

2β (2 − βθT )
> ps

m − ps
c = α − βωm

2β [2 − βθ (T − 2)]
(8.36) 

Despite an equal transfer price in the dynamic and the static setting, the difference 
between the manufacturer’s and the cooperative price is greater in a dynamic setting 
than in a static setting.
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Comparing (8.100), (8.107), (8.109), and (8.124) from Appendix 1 gives: 

.Xs
m(T ) < Xd

m(T ) < Xs
c(T ) < Xd

c (T ) (8.37) 

Therefore, we conclude: 

Proposition 2 The double marginalization effect is more potent in a dynamic than 
in a static SC. Nevertheless, autonomous learning is more effective under dynamic 
than static conditions. 

The results in Proposition 2 are illustrated in Fig. 8.1. 
Comparing (8.23) with (8.30), on the one hand, and (8.24) with (8.31), on the 

other hand, we get the following ranking: 

.�d
m > �s

m (8.38) 

.�d
s > �s

s (8.39) 

Both SC members get a greater non-cooperative profit under a dynamic than in a 
static setting. 

Therefore, using (8.35), (8.38), and (8.39), we conclude: 

Proposition 3 The social welfare drawn from a non-cooperative SC is greater in 
the dynamic than in the static setting. 

Fig. 8.1 Compared time paths of wholesale price, sales price, and stock of experience. (a) Sales 
price, (b) autonomous learning
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Finally, in a decentralized SC, static decision-making models also give rise to 
misleading managerial prescriptions on how to exploit the best autonomous learning 
by doing. 

Comparing (8.25) with (8.32), on the one hand, and (8.26) with (8.33), on the 
other hand, we get: 

.�dc
m > �sc

m (8.40) 

.�dc
s > �sc

s (8.41) 

In (8.40) and (8.41), the cooperative profits are greater in a dynamic than in a 
static setting. 

Hence the following proposition: 

Proposition 4 The incentive for SC cooperation is greater for both players in a 
dynamic than in a static setting. 

In other words, the static decision-making model in an SC underestimates the 
benefit that could be drawn from cooperation by the SC members, thus distorting 
their incentive to cooperate. The reason for this is the undervaluation of the double 
marginalization effect in a static setting, which reduces the SC members’ motivation 
to mitigate the related inefficiency through cooperation. 

8.3 Static Decision Rules in a Supply Chain Are Not Steady 
State Compatible 

To demonstrate this point, we consider a simple SC with one manufacturer and 
supplier seeking to maximize their benefits in the presence of autonomous learning 
(i.e., experience effect) in the manufacturing process. The manufacturer controls its 
output, and the supplier sets the transfer price to the manufacturer. The issue is the 
following: do the actions and profits of a static decision rule coincide with those of 
the steady state of a dynamic game? 

8.3.1 Model Formulation 

We first formulate the dynamic version of the SC game. Time t is continuous, and 
the game starts at time t = 0. The state variable corresponds to the stock of the 
manufacturer’s experience, denoted by X(t), that evolves a s:

.Ẋ(t) = q(t) − δX(t), X(0) = 0 (8.42)
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where q(t) ≥ 0 is the manufacturer’s output and δ > 0 is a forgetting parameter .
Let us now define a payoff function for each firm. The experience level is 

supposed to reduce the manufacturer’s initial operating cost linearly, ωm > 0, that is 
(e.g., El Ouardighi et al., 2014): 

.Cm(t) = ωm − θX(t) (8.43) 

where θ > 0 denotes the marginal efficiency gain from autonomous learning, and the 
subscript m stands for the manufacturer. We assume that the manufacturer’s initial 
operating cost is sufficiently large, ωm � 0 to both prevent a negative operating cost 
and to serve as an incentive to benefit from e xperience.

The SC members agree to a wholesale price contract where the transfer price, 
ps(t) ≥ 0, the subscript s denoting the supplier, is paid by the manufacturer to 
the supplier for each unit of input purchased, for an instantaneous volume of 
inputs purchased equivalent to the manufacturer’s instantaneous output, q(t). Here 
also, the supplier in the dynamic game is supposed to ignore the intertemporal 
evolution of autonomous learning, that is, to behave myopically with respect to the 
manufacturer’s experience effect. Therefore, the supplier sets the transfer price once 
and for all at the initial period of the game, i.e., ps(t) = ps, for  t ≥ 0. Finally, the 
supplier’s (constant) operating cost is ωs ≥ 0. To get further insights, it is normalized 
to zero, i.e., ω s = 0.

Let the sales price be p(t) = a − q(t), where the parameter a > 0 denotes the 
maximum potential price. Using (8.43), the manufacturer’s instantaneous profit is: 

. [a − q(t) − (ps + ωm − θX(t))] q(t)

and the supplier’s instantaneous gross profit is: 

. psq(t)

To characterize the long-run equilibrium, i.e., the steady state, if it exists, of 
the SC, the planning horizon of the dynamic version of the game is supposed 
to be infinite, that is, t ∈ [0, ∞[. Assuming that both firms employ a symmetric 
discounting rate, r > 0, the maximization of the cumulative profit of the SC members 
in the dynamic game problem is then given a s:

. Max
q(t)≥0

�d
m =

∫ ∞

0
e−rt [a − q(t) − (ps + ωm − θX(t))] q(t)dt (8.44) 

. Max
ps(t)≥0

�d
s =

∫ ∞

0
e−rtpsq(t)dt (8.45) 

under the constraint (8.42), where the superscript d stands for dynamic.
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In contrast with the dynamic setting above, we assume that the static decision 
rules are implemented at a given time period t where 1 < t ≤ T < ∞. At  t = T, the  
maximum instantaneous efficiency gains are drawn from autonomous learning, that 
is, as X(t) = (T − 1)q. For the sake of simplicity, discounting can be omitted in the 
static version of t he model.

The respective instantaneous profits of the SC members in the static game setting 
are: 

.Max
q≥0

πs
m = [a − q − ps − ωm + θq (t − 1)] q (8.46) 

.Max
ps≥0

πs
s = psq (8.47) 

where the superscript s stands for static. 
Finally, the centralized decision-making problem for the dynamic setting writes: 

. Max
q(t)≥0

�d
c =

∫ ∞

0
e−rt [a − q(t) − (ωm − θX(t))] q(t)dt (8.48) 

under the constraint (8.42), where the subscript c stands for cooperative. 
For the static setting, the centralized instantaneous profit is: 

.Max
q≥0

πs
c = [a − q − ωm + θq (t − 1)] q (8.49) 

8.3.2 Analysis 

8.3.2.1 Cooperative Supply Chain 

Lemma 7 For T < 1+ 1
θ
., the optimal static cooperative production and experience 

level are given by: 

.qs
c = a − ωm

2 [1 − θ (T − 1)]
(8.50) 

.Xs
c = (a − ωm) (T − 1)

2 [1 − θ (T − 1)]
(8.51) 

with the corresponding cooperative profit: 

.πs
c = (a − ωm)2

4 [1 − θ (T − 1)]
(8.52)
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Fig. 8.2 Phase-portrait diagram in the state-control space 

Proof. A 2.1 
We get the following results by turning to the dynamic cooperative setting and 
skipping the time index for convenience. 

Lemma 8 If the marginal benefit from the experience accumulated is sufficiently 
low, i.e., θ <

2δ(r+δ)
r+2δ

., there exists a locally stable steady state given by the following 
cooperative production rate, experience level, and profit: 

.qss
c = δ (r + δ) (a − ωm)

2δ (r + δ) − θ (r + 2δ)
(8.53) 

.Xss
c = (r + δ) (a − ωm)

2δ (r + δ) − θ (r + 2δ)
(8.54) 

.πss
c = δ2 (r + δ) (r + δ − θ) (a − ωm)2

[2δ (r + δ) − θ (r + 2δ)]2
(8.55) 

where the superscript ss stands for steady state. Otherwise, there is no feasible 
steady state. 

Proof. A.2.2 
The stability of convergence is contingent upon the magnitude of the marginal 
benefit from the experience effect, which is more in line with mature than emerging 
industries. The phase diagram in Fig. 8.2 depicts the qualitative properties of the 
solution obtained in the state-costate space. Starting with a relatively low (high) 

initial experience level, i.e., X0 < Xss
c . (X0 > Xss

c

)
., the optimal policy consists 

of setting an initially low (high) and increasing (decreasing) production rate to 
converge to the locally stable steady state. 

Note that the static decision rules do not involve any condition for convergence 
toward the long-run cooperative state. By comparing (8.50) with (8.53), provided



134 F. El Ouardighi et al.

T < 1 + 1
θ
. for the static version and θ <

2δ(r+δ)
r+2δ

. for the dynamic version of the 

game, if T < 1 + (r+2δ)
2δ(r+δ)

., given that 1 + (r+2δ)
2δ(r+δ)

< 1 + 1
θ
., we can conclude that the 

steady state output exceeds the static output. This condition is similar to imposing 
θ ≈ 2δ(r+δ)

r+2δ
− ε ., ε → 0+, that is, the marginal efficiency gain from autonomous 

learning in manufacturing is not excessively small. Comparing (8.51) and (8.54), it 
can be shown that the steady state experience is greater than the static one under 
similar condition. As a consequence of the underproduction policy, the steady state 
profit is greater than the static one because the efficiency level at the steady state 
reflect a mature supply chain. 

Hence the following proposition: 

Proposition 5 If the marginal efficiency gain from autonomous learning in manu-
facturing is not excessively small, static decision rules underestimate the long-run 
benefit from cooperative supply chain management. 

8.3.2.2 Non-cooperative Supply Chain 

We now consider the case where the SC members play non-cooperatively. 
We start with the static setting. 

Lemma 9 For T < 1 + 1
θ
., the optimal static non-cooperative transfer price and 

output are given by: 

.ps
s = a − ωm

2
(8.56) 

.qs
nc = a − ωm

4 [1 − θ (T − 1)]
(8.57) 

with the corresponding SC members’ profit: 

.πs
s = (a − ωm)2

8 [1 − θ (T − 1)]
(8.58) 

.πs
m = (a − ωm)2

16 [1 − θ (T − 1)]
(8.59) 

Proof. A.2.3 
Considering the dynamic version of the decentralized game model, because of a 
myopic supplier, the SC members agree upon a WPC with a constant transfer 
price. Therefore, as the Stackelberg leader, the supplier initially sets the transfer 
price. Then, the manufacturer decides its production strategy over time. We use 
the Bellman principle to derive the manufacturer’s (linear) feedback equilibrium 
strategy.
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Lemma 10 Under θ <
2δ(r+δ)
r+2δ

., the non-cooperative dynamic game has one glob-
ally asymptotically stable steady state, that is given by the following equilibrium 
transfer price, production rate, experience level, and steady state profits, that is: 

.pss
s = a − ωm

2
(8.60) 

.qss
s = δ (r + δ) (a − ωm)

4δ (r + δ) − 2θ (r + 2δ)
(8.61) 

.Xss
nc = (r + δ) (a − ωm)

4δ (r + δ) − 2θ (r + 2δ)
(8.62) 

.πss
s = δ (r + δ) (a − ωm)2

4 [2δ (r + δ) − θ (r + 2δ)]
(8.63) 

.πss
m = δ2 (r + δ) (r + δ − θ) (a − ωm)2

4[2δ (r + δ) − θ (r + 2δ)]2
(8.64) 

Proof. A.2.4 
Note that, in (8.64), the condition for a positive manufacturer’s steady state profit, 
that is, θ < r + δ, is fulfilled under θ <

2δ(r+δ)
r+2δ

.. Though (8.56) and (8.60) 
are equivalent, i.e., the supplier’s transfer price is the same for both myopic and 
farsighted manufacturer, (8.57) and (8.61) are different, that is, the myopic and 
steady state production rates are different. Here also, if θ ≈ 2δ(r+δ)

r+2δ
−ε ., ε → 0+, that 

is, the marginal efficiency gain from autonomous learning in manufacturing is not 
excessively small, the myopic decision rule involves underproduction policy. The 
reason for this lies in the fact that the static decision rules disregard the dynamic 
nature of the strategic interactions among the SC members throughout the game. 
This impact results in greater efficiency gains and thus, greater steady state profits 
than in the static g ame.

Proposition 6 If the marginal efficiency gain from autonomous learning in manu-
facturing is not excessively small, static decision rules underestimate the long-run 
efficiency gains of non-cooperative supply chain management. 

We conclude that static decision rules cannot serve to accurately approximate a 
steady state equilibrium in an SC, because they lead to a distortion of the long-run 
social welfare, regardless of the players’ mode of play.
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8.4 Static Decision Rules in a Supply Chain Do Not Account 
for Information Structure 

To provide evidence regarding this point, we again consider the case of a one 
manufacturer-one supplier SC. The issue is as follows: How to maximize the SC 
members’ individual benefits derived from the effect of induced learning on the 
manufacturer’s production cost? Here, the difference with the problem introduced in 
Sect. 8.2 is that efficiency is gained not through production experience accumulation 
(autonomous learning) but rather with quality improvement and/or R&D efforts, i.e., 
induced learning (e.g., Kogan & El Ouardighi, 2019). 

8.4.1 Model Formulation 

Let us consider the case of a simple SC with one manufacturer and one supplier. 
The SC members both invest in a cost-reducing R&D activity to decrease the 
manufacturer’s operating cost. The stock of R&D, X(t) ≥ 0, evolves according to:

.Ẋ(t) = u(t) + v(t), X(0) = X0 ≥ 0 (8.65) 

where u(t), v(t) ≥ 0, respectively, denote the supplier’s and the manufacturer’s 
cost-reducing R&D efforts. The SC members agree on a wholesale price contract 
with a time-independent wholesale price (e.g., El Ouardighi & Shnaiderman, 2019). 
Assuming that the final good is produced with a fixed-coefficient technology, i.e., 
one unit of the input for one unit of the final product, the consumer price, p(t) ≥ 0, 
is defined as the sum of the constant supplier’s transfer price, ps ≥ 0, and the 
manufacturer’s current operating cost, Cm(t) ≥ 0, and profit margin, πm(t) ≥ 0, 
that is:

. p(t) = ps + Cm(t) + πm(t)

The supplier’s profit margin, π s(t) ≥ 0, is given as the difference between the 
supplier’s transfer price and (constant) operating cost, ωs ≥ 0, that is:

.πs ≡ ps − ωs (8.66) 

To get further insights, we normalize the supplier’s cost to zero, i.e., ωs = 0, so 
that the supplier’s transfer price is equal to its unit profit margin, that is, π s ≡ ps .

In addition, the R&D stock is supposed to reduce the manufacturer’s initial 
operating cost, ωm ≥ 0, linearly so that: 

.Cm(t) = ωm − θX(t) (8.67)
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where θ > 0 denotes the marginal efficiency gain from induced learning.
Using the previous assumptions, we rewrite the consumer price as follows: 

.p(t) = πs + ωm − θX(t) + πm(t) (8.68) 

The consumer demand is supposed to be a linear negative function of price, that 
is: 

.S(t) = α − β (πs + ωm − θX(t) + πm(t)) (8.69) 

Next, we define a profit function for each firm. We assume a fixed and finite 
planning horizon, T < ∞, and omit the discounting of future profits. Each firm aims 
to maximize its cumulative profits over the planning period. 

Using (8.68)–(8.69), we write the manufacturer’s gross profit as: 

. (p(t) − ps + Cm(t)) S(t) ≡ πm(t) [α − β (πs + ωm − θX(t) + πm(t))]

and using (8.67)–(8.69), the supplier’s gross profit is: 

. psS(t) ≡ πs [α − β (πs + ωm − θX(t) + πm(t))]

Assuming that advertising investments are subject to diminishing returns, we 
suppose that the cost of effort in goodwill accumulation is an increasing quadratic 
function for both firms, that is, esu(t)2/2 and emv(t)2/2, with es, em > 0. Assuming 
that the SC members have comparable efficiency and/or access to funds to finance 
their respective R&D efforts and to keep the problem tractable, we let es = em = 1.

The differential game problem of the SC members is then rewritten as: 

. Max
πs,us(t)

Js =
∫ T

0

{
πs [α − β (πs + ωm − θX(t) + πm(t))] − u(t)2

2

}
dt (8.70) 

. Max
πm(t),um(t)

Jm =
∫ T

0

{
πm(t) [α − β (πs + ωm − θX(t) + πm(t))] − v(t)2

2

}
dt

(8.71) 

Considering the static version of the above SC game, as for the case of 
autonomous learning, the manufacturer anticipates the efficiency gains drawn from 
the induced learning engendered by the SC members’ R&D efforts at each time 
period. Here, we also assume that the efficiency gains are obtained with a one-period 
time lag. Given a time horizon T < ∞, the cumulative efficiency gains from induced 
learning are defined as Xs(t) = (u + v)t, where t ∈ [0, T − 1] and s stands for static. 
At the end of the planning horizon, the cumulative efficiency gains from induced 

learning are given by: (u + v)
∫ T −1

0 tdt = (u + v)
(T −1)2

2 .. However, if we calculate
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the cumulative efficiency gains from induced learning as a sum of successive natural 
integers, that is, (u + v)

∑T −1
0 t ., we get (u + v)

(T −1)T
2 ., which is an upper value 

for (u + v)
(T −1)2

2 .. Here, we also choose this upper value for our computations of 
the static game. 

Therefore, the cumulative profit of the SC members in the static setting is written 
as: 

. Max
πs,us≥0

�s
s = πs

[
α − β

(
πs + ωm − θ (u + v)

(T − 1)

2
+ πm

)
− u2

2

]
T

(8.72) 

. Max
πm,um≥0

�s
m = πm

[
α − β

(
πs + ωm − θ (u + v)

(T − 1)

2
+ πm − v2

2

)]
T

(8.73) 

where the superscript s stands for static. 
Both the static and dynamic versions of the game involve simultaneous moves. 

One main difference between the two versions of the game lies with the fact that, 
in the dynamic model, the supplier acts as a Stackelberg leader at the first stage 
of the game by choosing the transfer price to maximize its individual profit. If 
the manufacturer accepts the optimal WPC, the second stage of the game is then 
played à la Nash. Another essential difference lies with the underlying information 
structure. That is, the resolution of the static game proceeds from a unique decision 
pattern. In contrast, the dynamic version of the game may reflect a wide spectrum of 
decision patterns that emerge from the alternative decision rules that are available 
to the SC participants, that is, open-loop Nash equilibrium (OLNE), closed-loop 
Nash equilibrium (CLNE), and feedback Nash equilibrium (FBNE). Depending 
on the decision rule chosen by each firm, the overall performance of the SC can 
vary significantly. The three decision rules differ in terms of how they adjust for 
changing values of state variables (Başar & Olsder, 1999; Dockner et al., 2000; 
Long, 2010). In an OLNE, firms select their strategies at the beginning of the game 
and commit to them thereafter. That is, the strategic interaction between the players 
is circumscribed to the initial time period. Given state variables’ initial values, 
OLNE decisions depend only on time. In a CLNE, controls are functions of initial 
as well as current values of the state variables. In a FBNE, controls depend only 
on current values of the state variables. Since the other players’ strategies affect the 
current value of state variables, taking into account the current state vector in FBNE 
and, in general, in CLNE allows each player to react optimally to the other players’ 
behavior. This makes it possible for strategic interaction to take place throughout 
the game’s time horizon. Applying OLNE, CLNE, and FBNE in an SC depends 
on the extent to which chain members have and share state information. If a chain 
member cannot get such information, it cannot condition its actions on the state 
vector, and the firm must apply an open-loop strategy. In the context of an SC, an 
important difference between the decision rules is that feedback and closed-loop
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strategies both involve the observability of the state variable at any time period 
while open-loop strategies do not impose such a requirement (e.g., El Ouardighi 
& Erickson, 2015). In general, there exist differences between OLNE, CLNE, and 
FBNE strategies for the class of differential games to which our model belongs, that 
is, linear-quadratic games (Engwerda, 2005). Therefore, in theory, our problem may, 
in the case of finite time horizon game with symmetric players, such as ours, admit 
six scenarios: three with homogeneous (OLNE vs. OLNE, CLNE vs. CLNE, and 
FBNE vs. FBNE strategies) and three with heterogeneous decision patterns (OLNE 
vs. CLNE, OLNE vs. FBNE, and CLNE vs. FBNE strategies). It is obvious that the 
static version of our SC game cannot embrace such diversity of decision patterns. 
Our analysis hereafter will show the discrepancies between the outcomes obtained 
from the static version, on the one hand, and from two selected scenarios from the 
dynamic setting, that is, one with homogenous (OLNE vs. OLNE strategies) and 
one with heterogeneous decision patterns (OLNE vs. CLNE strategies), on the other 
hand. 

The cooperative objective function in a dynamic setting is formulated as: 

. 
Max

πs,πm(t),us (t),um(t)
�d

c = ∫ T

0 {(πm(t) + πs) [α − β (πs + ωm − θX(t) + πm(t))]

−u(t)2/2 − v(t)2/2
}

dt (8.74) 

under the constraint (8.65), where the subscript c stands for cooperative. 
For the static setting, the centralized problem is: 

. 
Max

πs,πm,us ,um

�s
c =

{
(πm + πs)

[
α − β

(
πs + ωm − θ (u + v)

(T −1)
2 + πm

)]

−u2

2 − v2

2

}
T (8.75) 

8.4.2 Analysis 

Again, to ensure the feasibility of the solutions and comparability between the 
results, we assume a similar game duration for the four cases considered, which 
corresponds here to the shortest time horizon that ranges between the dynamic 
cooperative setting (T < π

2
√

βθ
.) and the static non-cooperative setting ( T <

1 +
√

6
θ
√

β
.), that is, T < π

2
√

βθ
., which is granted for θ < 1  .

8.4.2.1 Cooperative Supply Chain 

We first consider the cooperative static solution. 

Lemma 11 The static cooperative profit margins and R&D efforts are given by:
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.πs
s,c = πs

m,c = α − βωm

β
[
4 − βθ2(T − 1)2] (8.76) 

.us
c = vs

c = θ (T − 1) (α − βωm)

4 − βθ2(T − 1)2 (8.77) 

with the corresponding cooperative sales: 

.Ss
c = 2 (α − βωm)

4 − βθ2(T − 1)2 (8.78) 

and the maximized cooperative profit: 

.�s
c = (α − βωm)2T

β
[
4 − βθ2(T − 1)2]2 (8.79) 

Proof. A.3.1 
We now consider the cooperative dynamic solution. 

Lemma 12 The dynamic cooperative profit margins and R&D efforts are given by: 

.πd
s,c = πd

m,c =
{

1 + θ

[
cos

[√
βθ (T − t)

]
cos

(
T

√
βθ

) − 1

]}
α − βωm

2β
(8.80) 

.ud
c = vd

c =
√

θ sin
[√

βθ (T − t)
]

2
√

β cos
(
T

√
βθ

) (α − βωm) (8.81) 

with the corresponding cooperative sales: 

.Sd
c =

{
1 + θ

[
cos

[√
βθ (T − t)

]
cos

(
T

√
βθ

) − 1

]}
α − βωm

2
(8.82) 

and the maximized cooperative profit: 

.

�d
c =

{[
2 cos2(T

√
βθ)(1−θ)2(2+θ)−θ

(
1−θ−θ2

)
cos2(T

√
βθ)

]
T

+
√

θ
(
9−2θ−3θ2

)
tan(T

√
βθ)√

β

}
(α−βωm)2

8β

(8.83) 

Proof. A.3.2 
From (8.80), we observe that the cooperative profit margins increase concavely over 
time and reach a maximum value at t = T. Comparing the cooperative profit margins 
in (8.76) and (8.80), it is easy to see that πd

m,nc(0) = πd
s,nc(0) > πs

s,c = πs
m,c . under
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T < π

2
√

βθ
., which, because of non-decreasing dynamic cooperative profit margins 

over time, implies that πd
s,c(t) = πd

m,c(t) > πs
s,c = πs

m,c . for any t ≤ T. 
Hence the following proposition: 

Proposition 7 Static decision rules result in lower profit margins than farsighted 
decision rules in a cooperative SC. 

From (8.154), the consumer price is initially equal to: 

.pd
c (0) = α + βωm

2β
(8.84) 

and then decreases convexly, while the consumer demand increases concavely. From 
(8.81), we observe that the SC members’ R&D efforts are initially: 

.ud
c (0) = vd

c (0) =
√

θ tan
(
T

√
βθ

)
2
√

β
(α − βωm) (8.85) 

and decreasing over time until they become zero at the end of the game horizon. 
Relatedly, from (8.153), the stock of induced learning increases concavely over time. 

8.4.2.2 Non-cooperative Supply Chain 

Lemma 13 The static Stackelberg equilibrium strategies for the SC members’ 
profit margins and R&D efforts are given by: 

.πs
s,nc =

[
8 − βθ2(T − 1)2] (α − βωm)

β
[
16 − 3βθ2(T − 1)2] (8.86) 

.πs
m,nc = 4 (α − βωm)

β
[
16 − 3βθ2(T − 1)2] (8.87) 

.us
nc = vs

nc = 2θ (T − 1) (α − βωm)

16 − 3βθ2(T − 1)2 (8.88) 

with the corresponding non-cooperative sales: 

.Ss
nc = 4 (α − βωm)

16 − 3βθ2(T − 1)2 (8.89) 

and the maximized non-cooperative profits: 

.�s
s,nc = 2(α − βωm)2T

β
[
16 − 3βθ2(T − 1)2] (8.90)
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.�s
m,nc = 2

[
8 − βθ2(T − 1)2] (α − βωm)2T

β
[
16 − 3βθ2(T − 1)2]2 (8.91) 

where the subscript nc stands for non-cooperative. 

Proof. A.3.3 
From (8.88), it appears that despite a hierarchical mode of play and different 
profit margins in (8.86)–(8.87), the SC members make equivalent R&D efforts. 
Finally, from (8.90) and (8.91), the supplier gets a greater overall profit than the 
manufacturer, which is intuitive. 

Considering the dynamic version of the decentralized game model, we assume 
the possibility of heterogeneous strategies where the manufacturer is committed 
to efficiency and plays an OLNE strategy, while the supplier may adopt either a 
contingent (i.e., non-committed) or a committed behavior, that is, either an OLNE 
or CLNE strategy. 

Lemma 14 The dynamic non-cooperative profit margins and R&D efforts are given 
by: 

. πd
s,nc = 6 tan

(
θT

√
β/2

)
(α − βωm)

β
{
(2 − h) θT

√
β/2

[
(2 − h) βθ2T 2 + 12

] − 12 (1 − h) tan
(
θT

√
β/2

)}
(8.92) 

.

πd
m,nc =cos

[
θ (T − t)

√
β/2

]
2β cos

(
θT

√
β/2

) (α − βωm)

− 1

2

{
1 − (1 − h)

[
cos

[
θ (T − t)

√
β/2

]
cos

(
θT

√
β/2

) − 1

]}
πd

s,nc

(8.93) 

.ud
nc(t) = (2 − h) βθ (T − t)

2
πd

s,nc (8.94) 

.

vd
nc(t) = sin

[
θ (T − t)

√
β/2

] {
α + β

[
(1 − h) πd

s,nc − ωm

]}
√

2β cos
(
θT

√
β/2

)

− (2 − h) βθ (T − t)

2
πd

s,nc

(8.95) 

with the corresponding non-cooperative sales:
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.

Sd
nc =cos

[
θ (T − t)

√
β/2

]
cos

(
θT

√
β/2

) (α − βωm)

+
{

(1 − h) cos
[
θ (T − t)

√
β/2

]
cos

(
θT

√
β/2

) − (2 − h)

2

}
βπd

s,nc

(8.96) 

and the non-cooperative profits: 

.�d
s,nc =

{
3
√

2 tan
(
θT

√
β/2

) [
α − β

[
ωm − (1 − h) πd

s,nc

]]

−πd
s,ncβ

√
βθT

[
3 (2 − h) + βθ2T 2

]}
πd

s,nc

6
√

βθ
(8.97) 

.�d
m,nc =

3
√

2 tan
(
θT

√
β/2

)
πd

m,nc

[
α − β

[
ωm − (1 − h) πd

s,nc

]]

− πd
s,ncβ

√
βθT

[
3 (2 − h) πd

m,nc + βθ2T 2πd
s,nc

]

6
√

βθ
(8.98) 

where h = 0 if the supplier is committed to efficiency, and h = 1 in the converse 
case.

Proof. A.3.4 
From (8.90), it can be shown that, depending on whether or not the supplier is 
committed to efficiency, its profit margin can differ significantly (e.g., El Ouardighi 
& Shnaiderman, 2019). Accordingly, we see from (8.94) that the supplier’s effort 
also differs depending on whether or not the supplier is committed to efficiency. 
From (8.93), the manufacturer’s profit margin is increasing over time and reaches 
a maximum value at t = T. Whereas πd

m,h=1(0) �= πd
m,h=0(0)., the evolution of the 

manufacturer’s profit margin over time depends on whether or not the supplier is 
committed to efficiency. Finally, from (8.96), the sales are greater if the supplier is 
committed to efficiency than in the converse case, so that Sd

nc,h=0 > Sd
nc,h=1 . ∀t > 0.  

This result leads to the following proposition: 

Proposition 8 The supplier’s commitment to efficiency contributes to mitigating 
the double marginalization effect more effectively than in the converse case. 

It is obvious that these differences in behaviors and their subtle implications are 
totally omitted in the static version of the SC game.
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8.5 Concluding Remarks 

A static, shortsighted policy involves decisions that remain constant and inde-
pendent of time and the evolving system state throughout a given period. It 
starkly contrasts dynamic policies that adapt to changing conditions and evolving 
strategies. From the viewpoint of dynamic game theory scenarios, the inefficacy of 
static models in dynamic game theory scenarios emanates from their inability to 
incorporate the temporal dimension of decision-making and grasp the far-reaching 
consequences these decisions can wield on an ever-shifting landscape. The objective 
here was to thoroughly explore the challenges and limitations associated with static, 
shortsighted policies within the dynamic game theory framework. 

To achieve optimal performance, supply chains require a strategic balance 
between short-term and long-term gains. Therefore, integrating long-term perspec-
tives into SC game models is crucial for ensuring both efficiency and effectiveness. 
Dynamic models, which adapt to evolving conditions, offer more realistic strategies. 
The analysis demonstrates that dynamic SC game models generally lead to greater 
cooperation incentives and more effective management of inefficiencies compared 
to static models. 

We expect that this chapter will encourage researchers in supply chain manage-
ment to opt for dynamic rather than static models, and motivate leading scientific 
journals in the area of supply chain management to consider publishing articles 
based on dynamic SC games. 

Appendices 

Appendix 1 

A.1.1. Via a direct optimization of the profit function (8.11) with respect 
to the decision variable p, one gets: 

.
∂�s

c

∂p
= 0 �⇒ ps

c = [1 − βθ (T − 2)] α + βωm

β [2 − βθ (T − 2)]
(8.99) 

where the superscript s stands for static and the subscript c for cooperative. From 
(8.99), ps

c . is strictly positive if T < 1 + 2
βθ

.. Plugging the expression of ps
c . in (8.11) 

gives (8.14). Then, it is straightforward to obtain (8.13). At the end of the planning 
horizon, the accumulated experience is given by: 

.Xs
c(T ) = (α − βωm) (T − 1)

2 [2 − βθ (T − 2)]
(8.100)

�
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A.1.2. Using (8.10), (8.1), and (8.2), the Hamiltonian writes (Sethi, 2021) 

.H = [p − (ωm − θX) + λ] (α − βp) (8.101) 

where λ ≡ λ(t) is a costate variable. 
The necessary condition for optimality is:

.Hp = 0 �⇒ pd
c = 1

2

(
α

β
+ ωm − θX − λ

)
(8.102) 

where the superscript d stands for dynamic and the subscript c for cooperative. From 
(8.102), we conclude that the model has the linear-quadratic property (Dockner 
et al., 1985). It can be easily seen that the Hamiltonian is concave in the control 
variable, Hpp < 0.. The fact that the state variable has a positive influence on 
the objective criterion suggests that its corresponding costate variable is positive 
(Léonard, 1981), i.e., λ(t) ≥ 0. Accordingly, λ(t) is interpreted as a marginal 
incentive to accumulate experience. If λ(t) ≥ 0, the control variable should take 
on non-negative values and the s ales are:

.Sd
c = 1

2
[α − β (ωm − θX − λ)] (8.103) 

Using (8.16), we derive the following two-point boundary value problem (Grass 
et al., 2008): 

.λ̇ = −θ

2
[α − β (ωm − θX − λ)] , λ(T ) = 0 (8.104) 

.Ẋ(t) = 1

2
[α − β (ωm − θX − λ)] , X(0) = 0 (8.105) 

which is solved as: 

.λ(t) = (α − βωm) θ (T − t)

2 − βθT
(8.106) 

.Xd
c (t) = (α − βωm) t

2 − βθT
(8.107) 

According to (8.105), the cooperative stock of experience starts from Xd
c (0) = 0. 

and increases linearly over time to end up at Xd
c (T ) = (α−βωm)T

2−βθT
.. However, the 

feasibility of the solution requires a sufficiently short planning horizon, that is, 
T < 2/βθ . Using (8.106)–(8.107) for the expression of pd

c . in (8.102) gives (8.15), 
which is then used in (2) to provide (8.16). Finally, plugging the expression of Xd

c .
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from (107) and the expression of pd
c . from (8.15) into (8.10) and resolving gives 

(17). �

A.1.3. From (8.8), it is straightforward to obtain the manufacturer’s static 
non-cooperative sales price, that is: 

.
�s

m

∂pm

= 0 �⇒ ps
m = [1 − βθ (T − 2)] α + β (ps + ωm)

β [2 − βθ (T − 2)]
(8.108) 

which is strictly positive if T < 1+ 1
βθ

.. Substituting (8.108) into (8.9) and resolving 
for the supplier’s transfer price gives (8.21), which finally results in the static non-
cooperative sales price (8.20). Using the sales price in (8.2) gives the static non-
cooperative sales in (8.22). Finally, plugging the expressions of ps

m . and ps
s . from 

(8.20) and (8.21), respectively, into (8.8) and (8.9) and resolving gives (8.23) and 
(8.24). At the end of the game, the manufacturer’s accumulated experience is given 
by: 

.Xs
m(T ) = (α − βωm) (T − 1)

4 [2 − βθ (T − 2)]
. (8.109)

�

A.1.4. From (8.14) and (8.23)–(8.24), we use the Nash bargaining scheme, that 
is: 

. �sc
m = �s

m + �s
c − �s

m − �s
s

2

. �sc
s = �s

s + �s
c − �s

m − �s
s

2

to obtain (8.25)–(8.26). �

A.1.5. Using (8.6), (8.1), and (8.2), the manufacturer’s 
Hamilton-Jacobi-Bellman (HJB) equation writes: 

. − V̇ =
[
pm − (ps + ωm − θX) + ∂V

∂X

]
(α − βpm) (8.110) 

where V(X) is the manufacturer’s value function.
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The manufacturer’s equilibrium condition is: 

.pd
m = 1

2

(
α

β
+ ps + ωm − θX − ∂V

∂X

)
(8.111) 

while the sales are given by: 

.Sd
m = 1

2

[
α − β

(
ωm + ps − θX − ∂V

∂X

)]
(8.112) 

Using (8.111) and (8.112), (8.110) rewrites: 

. − V̇ = 1

4β

[
α − β

(
ps + ωm − θX − ∂V

∂X

)]2

. (8.113) 

We make the following conjecture regarding the manufacturer’s value function, 
that is: 

.V (X) = A(t)

2
X2 + B(t)X + C(t) (8.114) 

where A(t), B(t), and C(t) are time-dependent coefficients. From (8.114), we get 
∂V
∂X

= AX + B .. Therefore, the manufacturer’s HJB equation in (8.113) becomes: 

.
1

4β
{α − β [ps + ωm − B − (θ + A) X]}2 + Ȧ

2
X2 + ḂX + Ċ = 0 (8.115) 

which, after elementary manipulations, gives the system of ordinary differential 
equations: 

.Ȧ = −β

2
(θ + A)2, A(T ) = 0 (8.116) 

.Ḃ = −1

2
(θ + A) [α − β (ωm + ps − B)] , B(T ) = 0 (8.117) 

.Ċ = − 1

4β
[α − β (ωm + ps − B)]2, C(T ) = 0 (8.118) 

The solution of (8.116)–(8.118) resolves the HJB Eq. (8.115), that is:
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. 

(A(t), B(t), C(t))

=
(

βθ2 (T −t)

2−βθ (T −t)
,
θ [α−β (ωm+ps)] (T −t)

2 − βθ (T −t)
,− [α−β (ωm+ps)]2 (T − t)

2β [2−βθ (T − t)]

)

(8.119) 

The manufacturer’s sales price then rewrites: 

.pd
m = [ 1 − βθ (T − t)] α + β (ωm + ps − θX)

β [2 − βθ (T − t)]
(8.120) 

while the sales are now given by: 

.Sd
m = α − β (ωm + ps − θX)

2 − βθ (T − t)
(8.121) 

Using (8.121), the stock of experience is thus resolved as: 

.Xd
m = [α − β (ωm + ps)] t

2 − βθT
(8.122) 

where the manufacturer’s experience accumulates linearly. 
This leads to a constant manufacturer’s sales price, that is: 

.pd
m = α (1 − βθT ) + β (ωm + ps)

β (2 − βθT )
(8.123) 

The supplier’s profit then writes: 

. �d
s = ps [α − β (ωm + ps)] T

2 − βθT

which is strictly concave in ps. Therefore, the supplier’s equilibrium wholesale price 
is derived to obtain (8.28). Plugging the expression of pd

s . from (8.28) into (8.123) 
gives (8.27) while the sales reduce to (8.29), which are positive if T < 2/βθ . Using  
(8.29) in (8.122), the non-cooperative stock of experience becomes: 

.Xd
m = (α − βωm) t

2 (2 − βθT )
(8.124) 

Finally, using (8.27), (8.28), (8.29), and (8.124), the manufacturer’s and the 
supplier’s profits are obtained in (8.30)–(8.31). �
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A.1.6. From (8.17) and (8.30)–(8.31), we use the Nash bargaining scheme, that 
is: 

. �dc
m = �d

m + �d
c − �d

m − �d
s

2

. �dc
s = �d

s + �d
c − �d

m − �d
s

2

to obtain (8.32)–(8.33). �

Appendix 2 

A.2.1. We derive the first-order conditions for the cooperative solution in the 
static setting: 

.
∂πs

c

∂q
= a − 2q − ωm + θq (t − 1) = 0 (8.125) 

which results in the static production rate in (8.9). Plugging the expressions of 
qs
c . into (8.2) and (8.8), respectively, gives (8.10) and (8.11). Note that the profit 

function (8.8) is strictly concave in the control variable q. �

A.2.2. Considering the dynamic setting and skipping the time index for 
convenience, the Hamiltonian writes 

.H = [a − q(t) − (ωm − θX(t))] q(t) + λ (q − δX) (8.126) 

where λ ≡ λ(t) is a costate variable, give n by:

.λ̇ = (r + δ) λ − θq (8.127) 

Necessary conditions for optimality are: 

.Hq = a − 2q − (ωm − θX) + λ = 0 (8.128) 

It is obvious that the Hamiltonian is jointly concave in the control q.
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From (8.128), the cooperative output is: 

.qd
c = a − (ωm − θX) + λ

2
(8.129) 

Using (8.129) in (8.127) and (8.1), we get the canonical system: 

.λ̇ =
(

r + δ − θ

2

)
λ − θ

2
(a − ωm + θX) (8.130) 

.Ẋ = 1

2
(a − ωm + λ) −

(
δ − θ

2

)
X (8.131) 

which is solved for the steady state as: 

.λss = δθ (a − ωm)

2δ (r + δ) − θ (r + 2δ)
(8.132) 

and (8.13), where the superscript ss stands for steady state. The steady state is 
feasible if the sufficient condition δ ≥ θ holds. Therefore, the steady state production 
rate is given by (8.12). Note that the transversality condition: 

. lim
t→∞e−rtλ(t)X(t) = 0 (8.133) 

holds. The stability of the steady state is characterized by the trace and the 
determinant of the Jacobian matrix of the canonical system: 

. J =
[

r + δ − θ
2 − θ2

2
1
2 −δ + θ

2

]

that is, 

. T r J = r > 0

. |J | = −1

2
[2δ (r + δ) − θ (r + 2δ)]

which is negative if (and only if) θ <
2δ(r+δ)
r+2δ

., with the eigenvalues: 

.
r

2
±

√
r2

4
+ 1

2
[2δ (r + δ) − θ (r + 2δ)]
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one being positive and one negative under the condition θ <
2δ(r+δ)
r+2δ

.. Therefore, the 

steady state has the saddle-point property. In the converse case where θ ≥ 2δ(r+δ)
r+2δ

., 
there is no feasible steady state. 

Finally, using (8.12)–(8.13) in (8.7), the cooperative steady state profit is 
computed in (8.14). �

A.2.3. Based on the manufacturer’s and supplier’s profit functions in (8.5) 
and (8.6), respectively, it is straightforward to obtain the manufacturer’s static 
non-cooperative equilibrium output, that is: 

.
πs

m

∂q
= (a − ps − ωm) − 2q [1 − θ (T − 1)] = 0 (8.134) 

and the supplier’s static non-cooperative transfer price, that is: 

.
πs

s

∂ps

= a − ωm

2 [1 − θ (T − 1)]
− 2ps

2 [1 − θ (T − 1)]
= 0 (8.135) 

Resolving for ps
s . and qs

nc ., we get (8.15), (8.16). The SC members’ profits are 
finally computed as (8.17) and (8.18). 

A.2.4. We now turn to the non-cooperative dynamic setting and confine our 
interest to equilibrium outcomes for which the objective integrals in (8.3) 
and (8.4) converge for all admissible states, controls, and parameter values 

Skipping the time index for convenience, the manufacturer’s HJB equation writes: 

.rV m = [a − q − ps − (ωm − θX)] q + ∂V m

∂X
(q − δX) (8.136) 

where Vm(X) is the manufacturer’s value functions. 
The manufacturer’s equilibrium condition is: 

.q = 1

2

[
a − ps − (ωm − θX) + ∂V m

∂X

]
(8.137) 

Plugging (8.137) into (8.136) gives:  

.rV m = 1

4

[
a − ps − (ωm − θX) + ∂V m

∂X

]2

− ∂V m

∂X
δX (8.138)
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Let us make the following conjecture: 

.V m(X) = A

2
X2 + BX + C (8.139) 

from which ∂V m

∂X
= AX + B .. After substitution in the HJB equation, we get: 

. 

1

4
(a − ps − ωm + B)2 − rC +

[
1

2
(a − ps − ωm + B) (θ + A) − (r + δ) B

]
X

+
[

1

4
(θ + A)2 −

( r

2
+ δ

)
A

]
X2 = 0

(8.140) 

Two solutions resolve (8.140), but only one ensures the condition of convergence 
of the state Eq. (8.1) under θ <

2δ(r+δ)
r+2δ

., that is, 

. 

(A,B,C)

=
(

r+2δ−θ−χ,
(r + 2δ−χ) (a−ps−ωm)

r+χ
,

(r+δ)2(a−ps−ωm)2

2r
{
(r+δ)2+δ2 − θ (r+2δ) +rχ

}
)

(8.141) 

where χ = √
(r + 2δ) (r + 2δ − 2θ).. 

Using (8.141) to resolve (8.1), and assuming X0 = 0 for simplicity, we get the 
globally asymptotically stable solution, that is, 

.Xd
nc(t) = (r + δ) (a − ps − ωm)

2δ (r + δ) − θ (r + 2δ)

[
1 − e

− [2δ(r+δ)−θ(r+2δ)]t
r+χ

]
(8.142) 

which results in the steady state value in (8.21). Note that the learning effect in 
(8.142) is increasing concavely over time. Using (8.141) and (8.142) to resolve 
(8.137) and using the resulting expression to resolve (8.4), we derive the optimal 
supplier’s transfer price in (8.19). Finally, the manufacturer’s and the supplier’s 
steady state profits are obtained in (8.22)–(8.23). �

Appendix 3 

A.3.1. From (8.11), letting π ≡ π s + πm, it is straightforward to obtain:

.
∂�s

c

∂π
= 0 �⇒ πs

c = 1

2β

{
α − β

[
ωm − θ (u + v)

(T − 1)

2

]}
(8.143)
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.
∂�s

c

∂u
= ∂�s

c

∂v
= 0 �⇒ us

c = vs
c = βθ

(T − 1)

2
π (8.144) 

where the subscript c stands for cooperative, which results in the static cooperative 
decision rules in (8.12)–(8.13). Note that (8.12)–(8.13) are strictly positive for any 
T < 1+ 2

θ
√

β
.. It can be easily shown that the profit function is jointly concave in the 

control vector
(
πs

c , us
c, v

s
c

)
. because the corresponding Hessian matrix is negative 

definite. 
Then, the corresponding sales and the optimal cooperative profit, which are 

strictly positive for any T < 1 + 2
θ
√

β
., are given in (8.14)–(8.15). �

A.3.2. Turning to the dynamic setting, and using π (t) ≡ π s + πm(t), 
the H amiltonian writes:

.H = π [α − β (ωm − θX + π)] − u2

2
− v2

2
+ λ (u + v) (8.145) 

where λ ≡ λ(t) is a costate variable and the time index is skipped for convenience. 
The costate equation is giv en by:

.λ̇ = −βθπ (8.146) 

with the transversality condition λ(T) = 0. 
Necessary conditions for optimality are:

.Hπ = 0 ⇒ πd
c = 1

2β
[α − β (ωm − θX)] (8.147) 

.Hu = Hv = 0 ⇒ ud
c = vd

c = λ (8.148) 

It can be easily seen that the Hamiltonian is jointly concave in the control vector 
(π , u, v) since the corresponding Hessian matrix is negative definite. 

Using (8.147), the cooperative consumer demand is: 

.Sd
c = 1

2
[α − β (ωm − θX)] (8.149) 

Plugging the expressions from (8.147) and (8.148), respectively, into (8.146) and 
(8.1), we get the TPBVP: 

.λ̇ = −θ

2
[α − β (ωm − θX)] λ(T ) = 0 (8.150)
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.Ẋ = 2λ, X0 ≥ 0 (8.151) 

which, for X0 = 0, is solved as:

.λ(t) =
√

θ sin
[√

βθ (T − t)
]

2
√

β cos
(
T

√
βθ

) (α − βωm) (8.152) 

.Xd
c (t) = 1

β

{
cos

[√
βθ (T − t)

]
cos

(
T

√
βθ

) − 1

}
(α − βωm) (8.153) 

where T < π

2
√

βθ
. is required for non-negative solutions. 

From (8.147) and (8.152), we get (8.17). The cooperative profit margins are then 
given by (8.16). From (8.16) and (8.153), the consumer price is: 

.pd
c =

{
(1 + θ) cos

(
T

√
βθ

)
− θ cos

[√
βθ (T − t)

]}
α

+
{
(1 − θ) cos

(
T

√
βθ

)
+ θ cos

[√
βθ (T − t)

]}
βωm

2β cos
(
T

√
βθ

) (8.154) 

from which the demand is given in (8.18). 
From (8.153), at the end of the planning horizon, the manufacturer’s operating 

cost is such that: 

. ωm−θXd
c (T ) = − 1

β

{
1

cos
(
T

√
βθ

)−1

}
[θα− (1+θ) βωm] > 0 | α

βωm

<
1+θ

θ

Finally, for T < π

2
√

βθ
., the cooperative cumulative profit is given in (8.19), which 

is clearly positive. �

A.3.3. In the static setting, the Nash equilibrium conditions are: 

. 
∂�s

s,nc

∂πs
s,nc

= 0 �⇒ πs
s,nc = 1

2β

{
α − β

[
ωm + πs

m,nc − θ (u + v)
(T − 1)

2

]}
T

(8.155) 

.
∂�s

s,nc

∂us
nc

= 0 �⇒ us
nc = βθ

(T − 1)

2
πs

m,nc (8.156)
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. 
∂�s

m,nc

∂πs
m,nc

= 0 �⇒ πs
m,nc = 1

2β

{
α − β

[
ωm + πs

s,nc − θ (u + v)
(T − 1)

2

]}

(8.157) 

.
∂�s

m,nc

∂vs
nc

= 0 �⇒ vs
nc = βθ

(T − 1)

2
πs

s,nc (8.158) 

where the subscript nc stands for non-cooperative, which results in the static 
cooperative decision rules in (8.12)–(8.13). Note that (8.12)–(8.14) are strictly 

positive for any T < 1 +
√

6
θ
√

β
.. Here also, it can be easily shown that each player’s 

profit function is jointly concave in the corresponding control vector, i.e.,
(
πs

s , us
nc

)
. 

for the supplier and
(
πs

m, vs
nc

)
. for the manufacturer. The corresponding sales and 

profits, which are strictly positive for any T < 1 +
√

6
θ
√

β
., are given in (8.15)–(8.16).

�

A.3.4. In the dynamic context, the SC members’ Hamiltonians write: 

.Hs = πs [α − β (πs + ωm − θX + πm)] − u2

2
+ λs (u + v) (8.159) 

.Hm = πm [α − β (πs + ωm − θX + πm)] − v2

2
+ λm (u + v) (8.160) 

where λs(t) and λm(t), respectively, denote the supplier’s and the manufacturer’s 
costate variable, which interprets as the marginal incentive for efficiency. In this 
setup, we solve a one-stage game. 

The SC members’ non-cooperative equilibrium conditions are: 

.Hm
πm

= 0 ⇒ πd
m = 1

2β
[α − β (πs + ωm − θX)] (8.161) 

.Hs
u = 0 ⇒ ud = λs (8.162) 

.Hm
v = 0 ⇒ vd = λm (8.163) 

It can be easily seen that each firm’s Hamiltonian is jointly concave in its 
corresponding control vector.
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The SC members’ respective costate equations are given by: 

.λ̇s = −Hs
X − h

(
Hs

πm

∂πd
m

∂X
+ Hs

v

∂vd

∂X

)
= −

(
2 − h

2

)
βθπs (8.164) 

.λ̇m = −Hm
X = −θ [α − β (πs + ωm − θX)]

2
(8.165) 

with the transversality conditions λs(T) = λm(T) = 0. In (8.164)–(8.165), h = 0 
if the supplier is committed to efficiency and h = 1 if the supplier behaves in a 
contingent wa y.

Using (8.162)–(8.163), the state equation rewrites: 

.Ẋ = λs + λm, (8.166) 

Solving the TPBVP composed of (8.164)–(8.166) for X0 = 0, we get:

.λs(t) =
(

2 − h

2

)
βθπs (T − t) (8.167) 

. λm(t) = sin
(
θ (T −t)

√
β/2

)
√

2β cos
(
θT

√
β/2

) {α − β [ωm+ (1−h) πs]} −
(

2−h

2

)
βθπs (T −t)

(8.168) 

.Xd
nc(t) = 1

βθ

{
cos

[
θ
√

β/2 (T − t)
]

cos
(
θT

√
β/2

) − 1

}
{α − β [ωm + (1 − h) πs]} (8.169) 

where T < π

2θ
√

β/2
. is required for non-negative solutions. Using (8.161), (8.169), 

and (8.168) in (8.6), we derive an optimal value of π s in (8.26) which gives 
the control time paths in (8.28)–(8.29). Using (8.26) and (8.161), we get (8.27). 
Using (8.26), (8.27), and (8.169), the non-cooperative consumer demand is obtained 
in (8.30). Finally, the SC members’ non-cooperative overall profits are given by 
(8.31)–(8.32). �
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Chapter 9 
On the Rebound Effect of Cleaner 
Technologies and Climate Change: 
Radical Technology Innovations Needed 

Hassan Benchekroun and Amrita Ray-Chaudhuri 

Abstract Technological innovations that reduce emissions per output can backfire 
and may result in countries increasing their emissions. In the case of climate change, 
assessing the size of this rebound effect requires a fully fledged dynamic analysis 
since the externality occurs across space and time. Indeed, greenhouse gas (GHGs) 
emissions are not only transboundary, their persistence in the atmosphere implies 
that today’s emissions adversely affect current and future generations. The welfare 
analysis needs to account for the sum of all generations’ welfare. In a dynamic game, 
the impact of a technological innovation on emissions is ambiguous and depends on 
the initial stock of pollution. Therefore, relying on a simplified static version of 
the game or focusing the analysis on the steady state only can be misleading. In 
the case of climate change, this rebound effect may be strong enough to result in a 
decrease of welfare. This perverse effect happens for an empirically relevant range 
of parameters. Our findings advocate for (i) the necessity of a global agreement 
on mitigating emissions to accompany the implementation of clean technologies 
and (ii) policies aimed at fostering research and development in innovative clean 
technologies to target R&D projects on radical technological innovations rather than 
targeting a wide range of projects with modest objectives. 

Keywords Differential games · Radical technological innovation · Climate 
change · Clean technologies · R&D and climate change 
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9.1 Introduction 

We examine the impact of implementing clean technologies on levels of emission 
and welfare in the presence of an accumulative transboundary pollutant. Investment 
in developing and implementing clean technologies by public and private sectors 
have steadily increased over the past decades. According to Bloomberg, global 
clean energy spending has surged by 17% to a record $1.8 trillion in 2023. 
These include investments to install renewable energy, buy electric vehicles, build 
hydrogen production systems, and deploy other technologies.1 In the United States 
(USA), during 2021–2022, the signing into law of the Investing in America agenda 
has resulted in the largest investment in reducing carbon emissions in American 
history (primarily through the Bipartisan Infrastructure Law and the Inflation 
Reduction Act).2 Private companies have announced over half a trillion dollars 
in new investment, including nearly $360 billion in clean energy manufacturing, 
electric vehicles (EVs) and batteries, and power generation. In the EU, since March 
2023, the Commission has approved member state schemes for a total budget of 
around e 6.9 billion for investment in clean technologies.3 China has emerged 
as the world leader with $890bn investment in clean energy sectors in 2023.4 

International organizations, such as the United Nations (UN) and G8, have also pro-
actively encouraged countries to fund the development of clean technologies. Under 
the UNFCCC, the development and transfer of climate technologies to developing 
countries is conducted by the Technology Mechanism which was established by 
Parties in 2010.5 

We use Benchekroun and RayChaudhuri (2014) to examine the impact of 
adopting cleaner technologies within a framework that considers transboundary 
pollution emissions and where pollution emissions accumulate into a stock and 
therefore inflict lasting damage on the environment,6 two features characterizing the 
climate change problem. Considering a world made of n countries or regions, we 
determine the non-cooperative emissions policies of each region and determine the 
impact of having all countries simultaneously adopt a cleaner technology (captured

1 See https://www.bloomberg.com/news/articles/2024-01-30/china-leads-global-clean-energy-
spending-which-record-1-8-trillion-in-2023. 
2 These include incentives for manufacturing across the clean energy supply chain, investments in 
demonstration projects, loans and loan guarantees for a variety of technologies, and production and 
investment tax credits for clean energy generation. 

See https://www.whitehouse.gov/briefing-room/blog/2023/12/19/building-a-thriving-clean-
energy-economy-in-2023-and-beyond/. 
3 See https://ec.europa.eu/commission/presscorner/detail/en/ip_23_5245. 
4 See https://www.carbonbrief.org/analysis-clean-energy-was-top-driver-of-chinas-economic-
growth-in-2023/. 
5 See https://unfccc.int/topics/adaptation-and-resilience/groups-committees/adaptation-committee/ 
joint-ac-and-leg-mandates/nap-support/technology-development-and-transfer. 
6 See Jørgensen et al. (2010) for a survey of dynamic game models used to analyze environmental 
problems. 
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by a decrease in their emission to output ratio). The main findings are illustrated 
using a numerical example based on updated parameter values that are relevant for 
climate change, and compared to the findings of Benchekroun and RayChaudhuri 
(2014). 

Since the adoption of a cleaner technology reduces the marginal cost of pro-
duction (measured in terms of pollution damages), it provides an incentive to each 
country to increase its production. We find that the increase in emissions associated 
with the increase in production can outweigh the positive environmental impact 
of adopting a “cleaner” technology. This is similar to the “rebound effect” found 
in the literature on energy efficiency whereby energy savings are mitigated when 
efficiency is improved (see, e.g., Greening et al. 2000; Sorrell & Dimitropoulos 
2008). Within a non-cooperative setting, the positive shock of implementing a 
cleaner technology results in more “aggressive” behavior of countries which 
ultimately exacerbates the tragedy of the commons. The existence of a rebound 
effect has also been established in a related contribution Chenavaz et al. (2021). 
While they do not explicitly consider a pollution problem, they examine the impact 
of an increase in eco-efficiency. In their model eco-efficiency is a state variable 
that captures the amount of resources used to produce an output. This impacts the 
cost of production of the output as well as the demand for the good. Consumers 
are assumed to have a preference for more eco-efficient products: consumers’ 
maximum willingness to pay is inversely related to the eco-efficiency. The good is 
supplied by a profit-maximizing monopolist whose optimal control problem consists 
of maximizing its discounted sum of profits, during an exogenous finite period of 
time, by controlling the paths of production and investment in eco-efficiency. The 
authors characterize conditions under which an increase in eco-efficiency can result 
not only in a decrease in the price charged by the monopolist but also an increase in 
the overall quantity of resources used; hence, what can be commonly perceived as 
a positive shock to the industry can backfire and end up in an increase of resource 
use. 

We apply the model presented in Benchekroun and RayChaudhuri (2014) which 
is based on the seminal transboundary pollution game model in Dockner and Long 
(1993) and van der Ploeg and de Zeeuw (1992). In contrast with van der Ploeg and de 
Zeeuw (1992) and Jørgensen and Zaccour (2001), Benchekroun and RayChaudhuri 
(2014) take the ratio of emissions to output as exogenously given. This captures 
situations where a cleaner technology is readily available in the more advanced 
country. van der Ploeg and de Zeeuw (1992) (section 8) and Jørgensen and Zaccour 
(2001) consider the case where the ratio of emissions to output is endogenous 
and is a decreasing function of the level of the stock of clean technology. While 
van der Ploeg and de Zeeuw (1992) assume that the stock of clean technology is 
public knowledge, Jørgensen and Zaccour (2001) consider the case where the stock 
of clean technology, also referred to as the stock of abatement capital, is country 
specific. Each country can invest in the abatement capital in addition to its control
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of emissions.7 In line with Benchekroun and RayChaudhuri (2014), we consider 
exogenously given levels of ratios of emissions to output in order to focus on the 
existence and implementation of a new technology only and abstract from the game 
of investment in technologies. While we present the case of exogenous changes in 
technology, the game we consider can be viewed as a second stage of a two-stage 
game where in an initial phase countries invest in their technologies. The cleaner 
technology can be interpreted as an exogenous perturbation of the equilibrium 
technology choice from the initial stage in investment in technologies. The fact 
that implementing a technology may have counterintuitive effects is even more 
striking in our setting, where the new technology is readily available and free.8 Our 
conclusions definitely suggest that incentives to invest in abatement technologies 
need to be reevaluated in the face of non-cooperative emission strategies being 
implemented by countries.9 

The main policy recommendation that can be taken from this analysis is that 
developing cleaner technologies cannot be a substitute for the difficult task of 
agreeing on and enforcing emission restraints internationally. Moreover, in general 
in a dynamic game, the impact of a technological innovation on emissions turns 
out to depend on the level of stock at the time the innovation occurs. The impact 
is ambiguous and the short-run impact of the technological improvement can be 
the opposite of its long-run impact. Therefore, to assess accurately the impact of a 
technological innovation, it is crucial to adopt a dynamic framework since a static 
model cannot capture such ambiguity. 

For completeness, we provide a description of the model used, the Markov 
perfect Nash equilibrium as well as the analytical analysis of the impact of the 
adoption of a cleaner technology established in Benchekroun and RayChaudhuri 
(2014) in respectively Sections 2, 3, and 4. We offer a numerical analysis based

7 van der Ploeg and de Zeeuw (1992) compare the outcome under international policy coordination 
and the open loop equilibrium when there is no coordination. They show that the level of production 
and the stock of clean technology are both higher under the non-cooperative equilibrium. 

Jørgensen and Zaccour (2001) consider an asymmetric game where there exist two regions 
facing a pure downstream problem. They design a transfer scheme that induces the cooperative 
levels of abatement and satisfies overall individual rationality for both regions. 

Other papers such as Langinier and RayChaudhuri (2020) focus on firm-level decisions 
regarding investment in clean innovation. 
8 Another paper to allow for exogenous technology changes within the context of a dynamic model 
of global warming is Dutta and Radner (2006). Their model differs from ours in the following 
ways. They model pollution damage as being linear in the stock of pollution, whereas we have a 
damage function that is strictly convex in the pollution stock. They model a cleaner technology 
as a reduction in the ratio of emission to input of energy into the production process, whereas 
we model a cleaner technology as a reduction in the ratio of emission to output. They find that a 
cleaner technology always increases equilibrium welfare, in contrast to our main result. 
9 We note that there exists a related literature on the “green paradox,” where green policies are 
shown to possibly result in an overshooting of the stock of pollution (see, e.g., Gerlagh 2011; Hoel  
2011; Quentin Grafton et al. 2012; van der Ploeg and Withagen 2012; Sinn 2012). In the “green 
paradox” literature, this result arises due to the impact of such policies on the timing of extraction 
of a polluting exhaustible resource. The intuition driving the main result in this paper is different 
since it analyzes a renewable resource. 
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on empirical evidence of the model parameters in Section 5. Section 6 offers 
concluding remarks. 

9.2 The Model 

Consider n countries indexed by i = 1, . . . , n.. The objective of country i is to 
maximize its discounted sum of welfa re

. max
Qi

∫ ∞

0
e−rt

(
Aφi (t) − B

2
φ2

i (t) − s

2
P (t)2

)
dt (9.1) 

subject to 

.Ṗ (t) = �n
i=1εi (t) − kP (t) (9.2) 

with 

.P (0) = P0 (9.3) 

and where r denotes the discount rate which is assumed to be constant and 
identical for all countries, and φi . denotes the rate of consumption of country i.. 
Also, εi . denotes country i’s instantaneous emissions of pollution generated by the 
production of its consumption and is given by 

.εi = θφi, (9.4) 

where θ . is an exogenous parameter that captures the ratio of emissions to output. 
Moreover, A, B,. and s are positive parameters. We note that, in (9.1), the term (
Aφi (t) − B

2 φ2
i (t)

)
.denotes country i .’s utility from consumption, whereas the term 

s
2P (t)2

. denotes pollution damage faced by each country from the accumulated 
stock of the pollutant at instant t , given by P (t) .. The stock of pollution, P (t) ,. is 
increasing in the aggregate emissions, �n

i=1εi (t) ,. and decreasing at the rate k > 0,. 

where k denotes the natural rate of decay of the stock, as reflected in (9.2). 
The set of strategies considered is the set of stationary Markovian strategies: 

emissions at each moment depend on the stock of pollution at the moment only. 
A Markov perfect Nash equilibrium in linear strategies can be characterized (see 
Dockner & Long 1993 and Dockner et al. 2000). 

Such a game admits a unique linear equilibrium and a continuum of equilibria 
with non-linear strategies (Dockner & Long 1993). 

Proposition 1 (Benchekroun and RayChaudhuri 2014) For P < P̄ (θ) ≡
1
θα

(A − θβ) ,. the vector (Q, ..,Q). 

.Q∗
i (P ; θ) = Q(P ; θ) ≡ 1

B
(A − βθ − αθP ), i = 1, . . . , n (9.5)
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constitutes a Markov perfect linear equilibrium and discounted net welfare is given 
by 

.Wi (P ; θ) = −1

2
αP 2 − βP − μ, i = 1, . . . , n (9.6) 

where 

. α =
√

B
(
B (2k + r)2 + (2n − 1) 4sθ2

) − (2k + r) B

2 (2n − 1) θ2

. β = Anαθ

B (k + r) + (2n − 1) αθ2

. μ = − (A − βθ) (A − (2n − 1) βθ)

2Br
.

The steady state level of pollution 

.P SS (θ) = nθ (A − θβ)

Bk + nαθ2 > 0 (9.7) 

is globally asymptotically stable. 

Proof We use the undetermined coefficient technique (see Dockner et al. 2000 
Chapter 4) to derive the linear Markov perfect equilibrium. The details are omitted 
(see Proposition 1 of Dockner and Long (1993) for the case where θ = 1.). 

We note that when the stock of pollution is beyond a certain threshold P̄ (θ). 

emissions are zero and that the steady state stock of pollution P SS (θ) < P̄ (θ). for 
all θ ≥ 0.. ��

9.3 Adoption of a Cleaner Technology 

The extent to which a production technology is clean is captured by the emissions 
to output ratio, θ .. The smaller is θ,. the cleaner the technology. We assume that as 
a cleaner technology becomes available, it is immediately adopted by all countries. 
This allows us to isolate the effect of the technology on the strategic behavior of 
countries in the mitigation game. We note that other types of strategic behavior may 
be examined by endogenizing the timing of adoption, which is beyond the scope of 
this analysis. 

It can be shown that the adoption of a cleaner technology has an ambiguous 
impact on the equilibrium emissions and on the equilibrium long-run stock of 
pollution (see Propositions 2 and 3 in Benchekroun & RayChaudhuri 2014). In 
particular, we can have
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. 
dP SS

dθ
< 0.

Moreover, we have 

. Eθ (P ; θ) ≤ (>)0 for all P ≥ (<)P̃ ,

where E (P ; θ). denotes the emissions that are associated with the equilibrium 
production strategy. That is, the adoption of a cleaner technology results in a 
decrease of emissions in the short run only when the stock of pollution is below 
a certain level P̃ .. 

This potential discrepancy between long-run and short-run impact of a techno-
logical innovation on countries’ emissions can only be captured within a dynamic 
framework. A static framework would provide misleading insights. 

The detrimental effect of implementing a cleaner technology on the environment 
occurs because the cleaner technology reduces the damage from pollution at the 
margin, providing countries with an incentive to emit more. Since this holds for all 
n ≥ 1,. it follows that a cleaner technology may result in a larger pollution stock for 
all n ≥ 1.. The greater the number of countries, the greater the free-riding incentive 
of each country within this transboundary pollution game. Therefore, when faced 
with the cleaner technology, each country increases its emissions more the larger is 
n.. 

This ambiguous impact of a cleaner technology on emissions leads to a follow-up 
analysis: does a cleaner technology result in an increase in welfare? Indeed, while 
it may result in larger emissions and damages from pollution, is it possible that the 
resulting increase in production generates enough gains in utility to compensate the 
increase in damages from pollution? Benchekroun and RayChaudhuri (2014) show  
that the answer to this question turns out to be ambiguous as well: a decrease in θ . 

may result in a decrease in Wi (P ; θ).. Using the Hamilton Jacobi Bellman equation 
associated with a player’s problem, 

. rW (P ; θ) = U (Q) − D (P ) + WP (P ; θ) (nθQ − kP ) ,

along with the envelop theorem, allows us to obtain the following: 

.rWθ (P ; θ) = (n − 1) θWP Qθ + WPθ (nθQ − kP ) + nQWP . (9.8) 

At P = P SS (θ) ,. one can show that 

.r Wθ |P=P SS(θ) = (n − 1) EθWP + QWP . (9.9) 

Benchekroun and RayChaudhuri (2014) establish that Wθ . may well be positive. 
This is first done analytically for the case of a marginal decrease in θ . and then 
numerically for a set of plausible values of the parameters of the model. Note that 
Wθ (P ; θ). gives the impact of a (small) change of θ . on welfare at a given stock of
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pollution. It captures the change in welfare throughout the transition phase from an 
initial stock P to the steady state. 

Main Proposition (Benchekroun and RayChaudhuri 2014) For any n > 1., there 
exists s̄ > 0. such that Wθ |P=P SS(θ) > 0. for all s > s̄.. 

Proof The formal proof is available in Benchekroun and RayChaudhuri (2014). 
Benchekroun and RayChaudhuri (2014) determine the conditions under which 

implementing a cleaner technology by decreasing θ . decreases welfare. The greater 
the damage parameter, s,. the greater the impact on countries’ emissions since a 
cleaner technology leads to greater decrease in pollution damage at the margin. 
Moreover, the greater is k or r,. the less important the link between current emissions 
and the stock of pollution. Hence, countries emit more when k > k̄ . or r > r̄ . under 
the cleaner technology. ��

9.4 Cleaner Technologies and Climate Change: Application 

In this section, we apply our analysis to the specific case of climate change. There 
is no consensus on the values of the different parameters within this context. 
Benchekroun and RayChaudhuri (2014) proceed by borrowing values from the 
existing literature and conduct a sensitivity analysis of the results. The benchmark 
case has the following parameter values summarized in Table 9.1. 

Where x denotes the percentage of world GDP lost due to a change in 
temperature if the stock of pollution doubles relative to the current level. That is,

. x(World GDP) = nD (P ) ,

where D (P ). refers to pollution damage and is given by s
2P (t)2 .. This allows us to 

obtain s = 2 x(World GDP)

nP 2 ..10 Taking into account market and non-market impacts, 
Heal (2009) estimates that the cost could be 10% of world income. The Stern 
Review uses 5% as an estimate of x. However, with the risk of catastrophe, the 95th 
percentile is estimated to be 35.2% loss in global per-capita GDP by 2200. Thus, 

Table 9.1 Parameter values Parameter Benchmark case 

x 0.025 

n 10 

k 0.005 

r 0.025

10 List and Mason (2001) and Karp and Zhang (2012) have used the same approach to derive 
the numerical value of the pollution damage parameter. We note that this numerical simulation 
determines the impact of a reduction in θ . on the present value of GDP net of damages. 
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2.5% in the benchmark case is a conservative estimate, and results for x = 5%. and 
x = 10%. are also presented. 

Let the relative change in welfare as θ . changes from θ0 . to θ . be given by 
G(P, θ, θ0) :. 

. G(P, θ, θ0) = W (P ; θ)|θ − W (P ; θ)|θ=θ0

W (P ; θ)|θ=θ0

.

In the following calculations, we update the values used in Benchekroun and 
RayChaudhuri (2014). In particular, by updating the values of emissions and GDP, 
we obtain updated values of θ0 . and s.. The value of the world GDP in 2022 is 
$100,880 billion,11 total CO 2 . emissions from fossil fuel combustion and land use 
change in 2022 is 11.045.GtC,12 and the short-term decay rate of emissions is 36% 
(Newell and Pizer (2003).13 This gives us the value of θ .in 2022, which we use as 
the value of θ0 . in the following discussion: 

. θ0 =
(
11.045 × 109

)
(3.67) (0.64)

100, 880 × 109
= 2.5716 × 10−4tCO2/$.

The updated value of s is given by:

. s = 2
x(100, 880 × 109)

10 (590 × 3.67)2
,

where the pre-industrial level of stock of CO 2 . is given by 590 GtC, and 3.67 
represents the conversion rate from units of carbon to units of CO 2.. 

Figure 9.1 shows emissions as a function of stock for two different values of θ.. 

We see that for sufficiently large stocks, emissions associated with the lower θ . are 
higher. 

Figure 9.2 gives a plot of G
(
P SS (θ0) , θ, θ0

)
. where θ0 . is set to 2.5716 ×

10−4tCO2/$. of GDP. The parameter B is set to θ2
0 . so that θ = θ0 . to retrieve 

the same specification as Dockner and Long (1993), van der Ploeg and de Zeeuw 
(1992), List and Mason (2001), and Hoel and Karp (2001). Note that in Fig. 9.2, 
we have W (P ; θ)|θ=θ0

< 0,. and therefore, when G(P, θ, θ0) > 0. we have 
W (P ; θ)|θ − W (P ; θ)|θ=θ0

< 0.. 
A reduction in emissions per output may result in a decrease in welfare. For a 

cleaner technology to result in an increase in welfare with respect to the benchmark 
case θ0 ., it has to be “substantially” cleaner than the existing technology. We observe

11 See https://data.worldbank.org/indicator/NY.GDP.MKTP.CD. 
12 See https://www.carbonbrief.org/analysis-global-co2-emissions-from-fossil-fuels-hit-record-
high-in-2022/. 
13 i.e. 64% of emissions adds to the stock in any given year). Also, 3.67 represents the conversion 
rate from units of carbon to units of CO 2.. 
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Fig. 9.1 Emissions as a function of P as θ . changes 

that θ . must fall below θ̃0 = 0.6478 × 10−4tCO2/$. or 74.8%. drop in θ .. The  
“required” drop in θ . to start observing an increase in welfare is even larger for larger 
values of the damage from pollution: the threshold θ̃0 . falls to 0.381 × 10−4tCO2/$. 

(i.e., a decrease of 85.2 %.) when we use x = 5%,. and to 0.2338 × 10−5tCO2/$. 

(i.e., a decrease of 90.9 %.) when x = 10%.. 
Benchekroun and RayChaudhuri (2014) present a similar analysis with similar 

qualitative findings to that illustrated in Fig. 9.2. While Fig. 9.2 shows that scenario 
for 2022, Benchekroun and RayChaudhuri (2014) show the scenario for 2008. 
Compared to 2008, we note that θ0 . is lower ( θ0 . was set to 3.8315×10−4tCO2/$. for 
2008 as compared to 2.5716 × 10−4tCO2/$. for 2022). However, as is clear from 
Fig. 9.2 and from the ensuing discussion, the problem still persists such that small 
or intermediate decreases in θ . starting from the 2022 level of θ0 . are expected to lead 
to decreases in welfare. 

Figure 9.3 gives a plot of Wθ |P=P SS(θ0)
. as a function of x. 

For the benchmark case, for x > 0.6%. we have Wθ |P=P SS(θ0)
> 0.. A  

marginal decrease in emissions per output ratio reduces welfare. The relationship of 
Wθ |P=P SS(θ0)

. with respect to x (which is a proxy for s) mirrors the result obtained 
analytically for the behavior of Wθ |P=P SS(θ) . in the limit case where s → ∞.. The  
larger the damage parameter, the more likely a decrease of the emissions per output 
ratio will be welfare reducing. 

Let Z ≡ P0
P SS(θ0)

. .That is, Z is a parameter that sets the initial level of the stock 
of pollution relative to the steady state stock of pollution. Figure 9.4 shows that the 
graph of Wθ |P=Z∗P SS(θ0)

. is a strictly increasing function of Z..
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Fig. 9.2 G at P = P SS(θ0). as a function of θ . 

Fig. 9.3 Wθ |P=P SS(θ0) . as a function of x 

Figure 9.4 shows that Wθ |P=Z∗P SS(θ0)
. is positive for Z > Z̃ = 0.549.. The larger 

the stock of pollution at which we introduce a cleaner technology, the more likely 
this will result in a welfare loss. The value of Z̃ . decreases to 0.325. when x = 10%.. 

In a world where countries continue to set their emission levels non-
cooperatively, incremental innovations that result in small reductions in the emission 
per output ratio can actually be harmful instead of helpful. In fact, they are most 
likely to reduce welfare in the most dire circumstances, i.e., when the damage is 
important and/or the stock of pollution is large enough, and nature is least able to 
absorb pollution.
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Fig. 9.4 Wθ |P=Z∗P SS(θ0) . as a function of Z 

The perverse effect of implementing a cleaner technology within the context of 
climate change persists even for updating model parameter to their 2022 levels: it is 
strong for a significant and empirically relevant range of parameters. It is when the 
damage is relatively large and/or the initial stock of pollution is relatively large and 
when the natural rate of decay of pollution is relatively “small,” i.e., precisely the 
situations where the tragedy of the commons is at its worse, that the perverse effect 
prevails. 

A direct implication of our analysis is that a more rigorous pricing of carbon is 
all the more important so that drastically cleaner technologies are developed, rather 
than settling for marginal reductions in the emission per output ratio which would 
only exacerbate the climate change problem. A higher carbon price would provide 
the incentives to initiate R&D race and the technology “revolution” necessary to 
control greenhouse gas emissions, as argued, for instance, in Barrett (2009) and 
Galiana and Green (2009). 

9.5 Concluding Remarks 

Technological innovations that result in a cleaner production process can have an 
ambiguous impact on emissions; the short-run impact on emissions depends on 
the initial stock pollution and can be inversely related to the long-run impact. This 
underscores the necessity of using a fully fledged dynamic framework to assess the 
impact of a technological innovation since a static framework would not be able 
capture this ambiguity.
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Innovations that marginally reduce the emission per output ratio can backfire and 
result in an increase of pollution and even welfare. This occurs for “realistic” values 
of the parameters of the model. Our finding that emissions per output ratio and 
world emissions can evolve in opposite directions is supported by recent anecdotal 
evidence within the context of climate change. While the world’s emissions per 
output ratio decreased from 3.8315×10−4tCO2/$. in 2008 to 2.5716×10−4tCO2/$. 

in 2022, world’s emissions of CO2 . have continued to steadily increase. 
This is because technological innovations that marginally reduce the emission 

per output ration have two effects. First, the direct effect is to decrease emissions if 
the quantity produced by each player remains unchanged. Second, the indirect effect 
is to increase emissions since quantity produced increases as emissions become less 
damaging at the margin. The latter effect can outweigh the former. 

There are two main policy recommendations that can be drawn from our analysis. 
First, investments in technological innovations should not be seen as substitutes 
to the urgent need to an ambitious multilateral effort to mitigate emissions: these 
two objectives should be pursued jointly. Second, policies aimed at fostering 
research and development and innovations to tackle climate change should focus 
on very ambitious innovations and research and development (R&D) projects 
instead of supporting a wider range of potential projects but with relatively smaller 
improvement over existing technologies (see e.g., Matos et al. (2022) and Pooler, 
2021). These policies include providing substantial subsidies and tax credits for 
R&D. 

A promising line of future research that would contribute to gain insights into 
the last policy recommendation is to enrich our model to allow for an endogenous 
technological innovation that reduces the emission per output ratio: a model that 
embeds this framework and where investment in R&D to reduce emissions per 
output is taken into account. The adverse impact of clean technologies would not 
take place in the presence of a well-designed international limit over emissions. 
Although this is intuitive, the impact of quotas in dynamic games is complex 
(see, e.g., Dockner & Haug 1990, 1991), as is the impact of cleaner technologies 
on the size of stable international environmental agreements and the level of 
emissions control that can be self-enforced in such agreements (see Benchekroun 
& RayChaudhuri 2015). These issues warrant a closer examination. 
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Chapter 10 
On the Effects of an Increase in the 
Number of Abaters in Pollution 
Abatement Games 

Luca Colombo and Paola Labrecciosa 

Abstract We study the effects of an increase in the number of abaters in pollution 
abatement games, first in a static, then in a dynamic (continuous-time) game. In 
both games, we assume that m countries/agents agree on taking action to reduce 
the stock of pollution, which is a public bad, whereas n − m. countries free ride on 
the abatement levels of the abaters. Moreover, we assume that abaters can either 
coordinate on their contributions or not. In the static game, both in the coordination 
and the non-coordination scenario, an increase in m leads to a decrease in the stock 
of pollution and to an increase in social welfare. In the dynamic game, instead, both 
in the coordination and the non-coordination scenario, an increase in m may result 
in a higher steady-state stock of pollution and a lower social welfare, depending on 
the “business-as-usual” level of output. 
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10.1 Introduction 

Many global public goods such as widespread peace, financial stability, public 
health, and climate change mitigation are funded predominantly through voluntary 
contributions.1 As argued in Colombo et al. (2022), the attainment of an efficient 
outcome in the presence of global public goods requires international cooperation. 
However, experience from climate change policy indicates that full cooperation 
among all countries is difficult to achieve. Partial cooperation seems to be a 
more realistic prospect due to conflicting national interests, disagreements on what 
constitutes a fair burden, and a general distrust among countries. 

In this chapter, we focus on climate change mitigation and consider two modes 
of cooperation, which we refer to as tight and loose cooperation (see Colombo et al., 
2019). The former corresponds to the traditional case of full cooperation in which 
participating countries choose their abatement levels with the aim of maximizing the 
sum of payoffs of all coalition members and the latter to the perhaps more realistic 
case in which participating countries agree to contribute to the abatement of the 
stock of pollution but choose their abatement levels with the aim of maximizing 
their own payoff exclusively. In the tight mode of cooperation, countries coordinate 
on their emission levels, while in the loose mode of cooperation, they do not. In this 
respect, the tight mode of cooperation can be thought of as a centralized, top-down 
approach (e.g., the Kyoto Protocol), while the loose mode of cooperation can be 
thought of as a decentralized, bottom-up approach (e.g., the Paris Agreement). In 
our theoretical investigations, irrespective of the mode of cooperation, we assume 
that the population of countries/agents is divided into two groups: a group of 
participating countries, each making a positive contribution toward the abatement of 
the stock of pollution, and a group of nonparticipating countries, whose contribution 
is nil. Given the public good nature of climate change mitigation, these countries 
free ride on the contributions made by the participating countries. Unlike Colombo 
et al. (2022) and many other papers in which the contribution stage is preceded by 
a participation stage (see, e.g., Carraro & Siniscalco, 1993; Barrett, 1994; Rubio & 
Ulph, 2006; Eichner & Pethig, 2013), we restrict attention to the contribution stage 
and assume that the size of the two groups is exogenously given.2 Another important 
difference with respect to Colombo et al. (2022) is that instead of assuming linear 
benefits and costs, we use quadratic functions for both benefits and costs, with

1 Classical references on the voluntary provision of public goods include Chamberlin (1974), 
Bergstrom et al. (1986), Bergstrom et al. (1986), Cornes and Sandler (1986), and Andreoni (1988). 
On the voluntary provision of public goods in dynamic settings, see Fershtman and Nitzan (1991), 
Varian (1994), Wirl (1996), Marx and Matthews (2000), Itaya and Shimomura (2001), Yanase 
(2006), Long and Shimomura (2007), Benchekroun and Long (2008), Fujiwara and Matsueda 
(2009), Battaglini et al. (2014), Georgiadis (2015, 2017), and Bowen et al. (2019), inter alia. 
2 For the participation stage, the usual stability concept is that dating back to d’Aspremont et al. 
(1983). On the stability of coalitions see, e.g., Rubio and Ulph (2007) and de Zeeuw (2008), who 
build on earlier works by Carraro and Siniscalco (1993) and Barrett (1994). 
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benefits derived in terms of the difference between the “business-as-usual” level 
of output and the abatement level. 

There are many examples of successful loose cooperation in world history. 
As to climate change policy, consider the Paris International COP21 Conference 
on Climate Change. Countries have agreed on an overall objective of limiting 
global warming to 2 degrees C relative to the pre-industrial temperature, but no 
country is required to set a specific target by a specific date. Signatories are free to 
determine their own target, and there is no penalty if a target is not met. Outside 
the domain of environmental economics, of note is the Hanseatic League, a Central 
European loose confederation of merchant guilds and market cities that came to 
dominate Baltic maritime trade for over 300 years, reaching its peak in the fifteenth 
century, with over 100 member cities (see Atatüre, 2008). A more recent example 
is the Association of Southeast Asian Nations (ASEAN) which promote free trade 
among member countries without requiring them to abide by strict rules. In modern 
democracies, political parties are notable instances of loose cooperation. In the 
USA, for example, Republicans and Democrats can move in and out of their parties 
without penalties, and while political donations are encouraged, party members are 
not asked to commit to specific donations. As argued in Colombo et al. (2019), an 
important feature of loose cooperation is that it allows individual countries/agents 
the flexibility to respond to idiosyncratic shocks. Many of these shocks are related 
to political economy considerations, such as discontents from a powerful segment 
of the electorate. Shocks of this nature are quite often private information (i.e., not 
verifiable by third parties) and therefore state-contingent transfer payments are not 
feasible (Bagwell & Staiger, 2005; Amador & Bagwell, 2013). These are important 
considerations. However, for simplicity, as a first step, we do not model idiosyncratic 
shocks and asymmetry among countries/agents (apart from the distinction between 
abaters and free riders). 

The main purpose of our analysis is to study the impact of an increase in the 
number of abaters, either coordinating or not, on the stock of pollution and social 
welfare. First, we consider a static model in which, by definition, time does not 
play any role. Second, we extend the analysis to an infinite-horizon model where 
time is continuous. Both in the static and the dynamic model, abaters act either 
non-cooperatively or cooperatively, while free riders remain passive players. In 
most of the analysis, for analytical tractability, we assume that there are only two 
countries/agents, and focus on the effects of an increase in the number of abaters 
from 1 to 2. While in the static model (both in the non-coordinating and the 
coordinating scenario) an increase in the number of abaters unambiguously leads 
to a decrease in the stock of pollution and to an increase in social welfare, in 
the dynamic model (both in the non-coordination and the coordination scenario) 
whether the traditional static result arises crucially depends on the “business-as-
usual” level of output. Counterintuitively, conditions exist under which increasing 
the number of abaters is detrimental to the environment and social welfare. The main 
implication of this finding for climate change policy is that increased participation in 
international environmental agreements (IEAs) is not necessarily socially desirable, 
irrespective of the mode of cooperation. While it is typically argued in the static
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literature on IEAs that larger coalitions are welfare-superior to smaller ones, 
our analysis suggests that this might not be the case in a dynamic setting. The 
price of not adequately considering the time dimension might be a wrong policy 
recommendation. 

The remainder of this paper is organized as follows. The static model is specified 
in Sect. 10.2, which also contains the analysis of the non-coordination and the 
coordination scenarios. The dynamic model and the analysis of the two modes 
of cooperation are provided in Sect. 10.3. Section 10.4 evaluates the impact of an 
increase in the number of contributors on the stock of pollution and social welfare. 
Section 10.5 concludes. 

10.2 The Static Game 

Consider an economy populated by n ≥ 2. countries/agents divided into two groups: 
a group GC

. consisting of m contributors to the abatement of a public bad, and a 
group GN

. consisting of n − m. free riders whose contribution is nil. Contributors 
are denoted by the index i = 1, ..., m., where m ≤ n., and free riders by the index 
j . The size of the groups is exogenously given. Each agent’s maximum productive 
capacity of the final consumption good is a positive number a, which we refer to as 
their “business-as-usual” level of output. Each unit of output generates one unit of 
emission of a pollutant. The stock of pollution is a public bad. Individuals realize 
that if they produce the consumption good at their maximum productive capacity, 
they will each add a units of pollutant to the stock of pollution. Cutting output below 
the maximum capacity is referred to as “abatement.” If an individual i chooses the 
abatement level xi ., where xi ∈ [0, a]., she/he will have only a −xi . units of output to 
consume. We assume that the direct utility derived from consumption is quadratic: 

.U(a − xi) ≡ (a − xi) − (a − xi)
2 , (10.1) 

where a < 1/2. so that any xi ∈ [0, a]. constitutes a sacrifice of direct utility. The 
ex-ante stock of pollution is k0 ≥ 0.. The ex-post stock of pollution is defined as 

.k ≡ k0 + na − X, (10.2) 

where X ∈ [0,ma]. denotes the sum of contributions. The ex-post stock of pollution 
inflicts a damage bk2

. to each agent, where b > 0.. From (10.1) and (10.2), the (net) 
utility function of a contributor is given by3 

3 We will impose parameter restrictions which guarantee that ui . is decreasing in k and increasing 
in a and that consumption net of the abatement, a − xi ., is nonnegative.
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. ui(k0, xi) ≡ U(a − xi)−bk2 ≡ (a − xi)−(a − xi)
2 − b (k0 + na − X−i − xi)

2 ,
(10.3) 

where X−i ∈ [0, (m − 1)a]. denotes the sum of contributions by all contributors 
except i. 

For future reference, we provide the definition of social welfare: 

.W ≡ mui(k0, xi) + (n − m)uj (k0), (10.4) 

where the utility function of a free rider is given by 

. uj (k0) ≡ a − a2 − b (k0 + na − X)2 .

10.2.1 Non-coordination Scenario 

In the non-coordination scenario, participating countries agree to contribute to 
the abatement of the stock of pollution but are left free to choose their levels 
of contribution. Contributor i ∈ GC

. chooses xi . independently with the aim of 
maximizing ui(k0, xi). given in (10.3). The first-order necessary and sufficient 
condition for utility maximization is given by 

. − 1 + 2(a − xi) + 2b(k0 + na − X−i − xi) = 0,

from which we can derive the best-response function of a generic contributor: 

. xi (X−i ) = 2 [a + b (k0 + an − X−i )] − 1

2 (1 + b)
.

Clearly, contributions are strategic substitutes: an increase in X−i . leads to a decrease 
in xi (X−i ).. Let  x∗

i . denote the symmetric Nash equilibrium level of individual 
contributions. It follows that 

. − 1 + 2(a − x∗
i ) + 2b(k0 + na − mx∗

i ) = 0.

Proposition 10.1 The Nash equilibrium level of individual contributions is equal 
to 

. x∗
i = 2b(k0 + na) + 2a − 1

2 (1 + bm)
,

which is positive if a > ã ., with 

.̃a = 1 − 2bk0

2 (1 + bn)
.
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10.2.2 Coordination Scenario 

In the coordination scenario, the level of contribution by country/agent i ∈ GC
. 

is chosen by the coalition with the aim of maximizing the sum of utilities of 
all participating countries, i.e.,

∑m
i=1 ui(k0, xi).. The first-order necessary and 

sufficient condition for joint utility maximization is given by 

. − 1 + 2(a − x∗∗
i ) + 2bm(k0 + na − mx∗∗

i ) = 0,

where x∗∗
i . denotes the level of individual contributions under coordination. 

Proposition 10.2 The level of individual contributions under coordination is equal 
to 

. x∗∗
i = 2 [bk0m + a (1 + bmn)] − 1

2
(

1 + bm2
) ,

which is positive if a > ã C
., with 

. ̃a C = 1 − 2bk0m

2 (1 + bmn)
≤ ã.

10.3 The Dynamic Game 

We extend the analysis of the previous section to a dynamic setting. Time is 
continuous and denoted by t ∈ [0,∞).. There are n ≥ 2. infinitely lived agents. 
As in the previous section, agents are divided into two groups, namely, a group GC

. 

consisting of m active players (each contributing to the abatement of a public bad) 
and a group GN

. consisting of n−m. free riders, whose contribution is nil. The size of 
each group is exogenously given and constant over time. Contributors are denoted 
by the index i = 1, ..., m., where m ≤ n., and free riders are denoted by the index j . 
The instantaneous direct utility derived from consumption is quadratic: 

.U(a − xi(t)) ≡ [a − xi (t)] − [a − xi (t)]2 , (10.5) 

where a < 1/2.. (10.5) is the dynamic counterpart of (10.1). The stock of pollution 
at t is denoted by k(t) ≥ 0.. At any  t ≥ 0., the stock k(t). inflicts a damage flow
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bk(t)2
. to each agent, where b > 0.. The instantaneous (net) utility function of a 

contributor is defined as4 

. ui(k(t), xi(t)) ≡ U(a − xi(t)) − b [k (t)]2

≡ [a − xi (t)] − [a − xi (t)]2 − b [k (t)]2 , (10.6) 

where xi(t) ∈ [0, a].. (10.6) is the dynamic counterpart of (10.3). 
The stock of pollution k (t). is assumed to evolve over time according to the 

following differential equation: 

.
dk (t)

dt
= na −

m
∑

i=1

xi (t) − δk (t) , (10.7) 

where δ . is the natural decay rate of the stock of pollution, with δ > 0.. By (10.7), 
the addition to the stock of pollution is increasing in na and decreasing in the sum 
of abatement levels (

∑m
i=1 xi (t).). 

Let r be the positive rate at which future payoffs are discounted. As in 
the previous section, before analyzing the non-coordination and the coordination 
scenarios, we provide the definition of social welf are:

.w (t) ≡ mui(k(t), xi(t)) + (n − m)uj (k(t)), (10.8) 

where 

. uj (k(t)) ≡ a − a2 − b [k(t)]2 .

10.3.1 Non-coordination Scenario 

The objective functional of contributor i ∈ GC
. is given by 

. Ji ≡
∞

∫

0

e−rt
{

−b [k (t)]2 + a − xi (t) − [a − xi (t)]2
}

dt .

We assume that contributors use (stationary) feedback strategies, i.e., they condition 
their contributions at time t on the current level of the stock of pollution, exclusively. 
Each contributor i takes the strategies of other contributors as given. We must then

4 As in the previous section, we will impose parameter restrictions which guarantee that ui . is 
decreasing in k and increasing in a, and that consumption net of the abatement, a − xi ., is  
nonnegative. 
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solve for a non-cooperative feedback equilibrium of the dynamic game. Given a 
number of contributors m ≥ 1., non-cooperative feedback equilibrium strategies 
of a generic contributor must satisfy the following Hamiltonian-Jacobian-Bellman 
(HJB) equations, where Vi(k;m). denotes the value function of a contributor, given 
that there are m contribu tors:

. rVi(k;m) = max
xi∈[0,a]

{

−bk2 + a − xi − (a − xi)
2

+dVi(k;m)

dk
(na − xi − X−i (k) − δk)

}

, (10.9) 

where X−i (k) = ∑m
h �=i xh(k).. Maximization of the right-hand side of (10.9) gives  

(for an interior solution):5 

.x∗
i (k) = a − 1

2

[

1 + dVi(k;m)

dk

]

. (10.10) 

By inserting (10.10) into (10.9) and imposing symmetry we obtain 

. rVi(k;m) = 1

4

{

1 − 4bk2 −
[

dVi(k;m)

dk

]2
}

+dVi(k;m)

dk

{

an + m

2

[

1 − 2a + dVi(k;m)

dk

]

− δk

}

.(10.11) 

Given the linear quadratic structure of the game at hand we guess a value function 
of the form 

.Vi(k;m) = A
k2

2
+ Bk + C, (10.12) 

where A, B, and C are constants to be determined. Let �(m) =
√

4b (2m − 1) + (2δ + r)2
.. It can be checked that (10.12) with 

.A = 2δ + r − �(m)

2m − 1
< 0, (10.13) 

.B = A (2a (n − m) + m)

A(1 − 2m) + 2 (δ + r)
< 0, (10.14)

5 For an interior solution x∗
i (k) ∈ (0, a). it must be that dV C

i (k)/dk ∈ (−1, 2a − 1).. We will  
verify later that conditions on the parameters of the model exist such that dV C

i (k)/dk ∈ (−1, 2a −
1). at any point in time, implying that the equilibrium trajectory of x∗

i . remains between 0 and a 
throughout the entire planning horizon.
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and 

. C = B [2m(1 − 2a) + 4an + B(2m − 1)] + 1

4r
,

satisfies (10.11) for any k ∈ (k, k)., with k = (2a − 1 −B)/A. and k = −(1 +B)/A.. 
For k /∈ (k, k). we have a corner solution, either x∗

i = 0. or x∗
i = a .. Specifically, 

x∗
i = 0. for k < k . and x∗

i = a . for k > k .. Note that k ≤ 0. if a is sufficiently close t o
1/2.; in that case x∗

i (k) > 0. for all k > 0.. 
The above discussion leads to the following proposition. 

Proposition 10.3 The feedback equilibrium strategy of a contributor is given by 
(i = 1, 2, ..., m.) 

. x∗
i (k) = a − 1 + Ak + B

2

for k such that x∗
i (k) ∈ (0, a)., where A and B are constants given in (10.13) and 

(10.14), respectively. 

Two remarks are in order. First, the equilibrium strategy given in Proposition 10.2 
is for an interior solution, x∗

i (k) ∈ (0, a).. Given the purpose of our analysis, 
corner solutions are not interesting: when x∗

i (k) = 0. the distinction between 
contributors and free riders vanishes; when x∗

i (k) = a . abatement levels become 
state-independent and private consumption becomes nil. Second, the equilibrium 
strategy given in Proposition 10.2 is linear in k, with a positive slope equal to 
− A/2 > 0.. Thus, x∗

i (k). is increasing in k .: the higher the stock of pollution, the 
higher the contribution to the abatement by agent i = 1, 2, ..., m., for any given 
m ≥ 1..6 The fact that x∗

i (k). is increasing in k implies that there exists intertemporal 
strategic substitutability: an increase in X−i . leads to a decrease in k which in turn 
leads to a decrease in xi .. 

The equilibrium trajectory of the stock of pollution, k∗(t)., is the solution to the 
following first-order differential equation: 

. 
dk(t)

dt
= an − mx∗

i (k(t)) − δk(t),

with x∗
i (k). given in Proposition 10.2. It can be checked that

6 As is well-known in the differential game literature, the linear feedback strategy is only one 
of the infinitely many feedback strategies that satisfy the differential equation resulting from 
differentiating the maximized HJB equation w.r.t. the state variable. However, value functions 
associated with nonlinear feedback strategies can be obtained only implicitly, whereas value 
functions associated with linear feedback strategies are polynomials of degree two and can be 
easily used for the derivation of the equilibrium strategies. 
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. k∗(t) = k∗
ss + e−φt (k0 − k∗

ss),

where 

.φ = 2δ (1 − m) − m [�(m) − r]

2 (1 − 2m)
> 0 (10.15) 

is the speed of convergence to k∗
ss ., with 

.k∗
ss = m (1 + B) + 2a (n − m)

2δ − Am
. (10.16) 

It is immediate to verify that limt→∞ k∗(t) = k∗
ss .. The following corollary can then 

be established. 

Corollary 10.1 The vector of strategies (x∗
1 (k), x∗

2 (k), ..., x∗
m(k).) induces a trajec-

tory of k given by

. k∗(t) = k∗
ss + e−φt (k0 − k∗

ss)

where φ > 0. is the speed of convergence given in (10.15) and k∗
ss . is the (stable) 

steady state of k given in (10.16). 

10.3.2 Coordination Scenario 

We now turn our attention to the coordination scenario. We need to derive 
V C

i (k0;m). under the assumption that those who contribute act cooperatively, i.e., 
they must coordinate on their contributions. Under cooperation among contributors, 
the objective functional of contributor i is given b y

. JC
i ≡

∞
∫

0

e−rt

{

−b [k (t)]2 +
[

a − X (t)

m

]

−
[

a − X (t)

m

]2
}

dt ,

where X (t) /m. denotes the coordinated contribution of the representative contrib-
utor i. Given a number of contributors m ≥ 1., equilibrium strategies of a generic 
contributor under cooperative behavior must satisfy the following HJB equations: 

. rV C
i (k;m) = max

X∈[0,na]

{

−bk2 + a − X

m
−

(

a − X

m

)2

+dV C
i (k;m)

dk
(na − X − δk)

}

. (10.17)
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Maximization of the right-hand side of (10.17) gives (for an interior solution):7 

.X = m

[

a − 1

2

(

1 + m
dV C

i (k;m)

dk

)]

. (10.18) 

Inserting (10.18) into (10.17) yields 

. rV C
i (k;m) = 1

4

{

1 − 4bk2 + dV C
i (k;m)

dk

×
[

2m (1 − 2a) − 4kδ + 4an + m2 dV C
i (k;m)

dk

]}

. (10.19) 

As in the non-coordination case, we guess a value function of the form 

.V C
i (k;m) = AC k2

2
+ BCk + CC , (10.20) 

where AC
., BC

., and CC
. are constants to be determined. Let �(m) =

√

4bm2 + (2δ + r)2
.. It can be checked that (10.20) with 

.AC = 2δ + r − �(m)

m2
< 0, (10.21) 

.BC = α [2a(m − n) − m]

αm2 − 2 (δ + r)
< 0, (10.22) 

and 

. CC = 1 + BCm
(

2 − 4a + BCm
) + 4aBCn

4r

satisfies (10.19) for any k ∈ (k, k)., with k = ((2a − 1)/m − BC)/AC
. and k =

−(1/m + BC)/AC
.. For k /∈ (k, k). we have a corner solution, either x∗∗

i = 0. or 

x∗∗
i = a .. Specifically, x∗∗

i = 0. for k < k . and x∗∗
i = a . for k > k .. Note that k ≤ 0. 

if a . is sufficiently close to 1/2.; in that case x∗∗
i (k) > 0. for all k > 0.. The above 

discussion leads to the following proposition.

7 For an interior solution x∗∗
i (k) ∈ (0, a). it must be that dV C

i (k; m|coop)/dk ∈ (−1/m, (2a −
1)/m).. We will verify later that conditions on the parameters of the model exist such that 
dV C

i (k; m|coop)/dk ∈ (−1/m, (2a − 1)/m). at any point in time implying that the equilibrium 
trajectory of x∗∗

i . remains between 0 and a throughout the entire planning horizon.
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Proposition 10.4 The feedback strategy of a contributor under coordination is 
given by (i = 1, 2, ..., m.) 

. x∗∗
i (k) = a − 1 + m

(

ACk + BC
)

2

for k such that x∗∗
i (k) ∈ (0, a)., where AC,BC < 0. are constants given in (10.21) 

and (10.22), respectively. 

Since AC < 0., clearly x∗∗
i (k). is increasing in k: the higher the stock of public 

bad, the higher the contribution to the abatement. This is the same as under non-
cooperation. It can be verified that x∗∗

i (k). is steeper than x∗
i (k).. As the stock of 

pollution increases, the response of contributors in the coordination scenario is 
stronger than that of their counterparts in the non-coordination scenario. 

The equilibrium trajectory of the stock of pollution under coordination, k∗∗(t)., 
is the solution to the following first-order differential equation: 

. 
dk(t)

dt
= an − mx∗∗

i (k(t)) − δk(t),

with x∗∗
i (k). given in Proposition 10.4. It can be checked that 

. k∗∗(t) = k∗∗
ss + e−σ t (k0 − k∗∗

ss ),

where 

.σ = �(m) − r

2
> 0 (10.23) 

is the speed of convergence to k∗∗
ss ., with 

.k∗∗
ss = m

(

1 + BC
) + 2a (n − m)

2δ − ACm
. (10.24) 

It is immediate to verify that limt→∞ k∗∗(t) = k∗∗
ss .. The following corollary can 

then be established. 

Corollary 10.2 The vector of strategies (x∗∗
1 (k), x∗∗

2 (k), ..., x∗∗
m (k).) induces a tra-

jectory of k given by

. k∗∗(t) = k∗∗
ss + e−σ t (k0 − k∗∗

ss )

where σ . is the speed of convergence given in (10.23) and k∗∗
ss . is the (stable) steady 

state of k under cooperative behavior given in (10.24).
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10.4 The Effects of an Increase in the Number of Abaters 

In this section, we evaluate the impact of an increase in m (keeping n fixed) on total 
abatement, pollution, and social welfare in the static versus the dynamic g ame.

10.4.1 Static Effects 

10.4.1.1 Non-coordination Scenario 

From x∗
i . given in Proposition 10.1, the Nash equilibrium level of total contributions 

is equal to 

. X∗ (m) = 2b(k0 + na) + 2a − 1

2
(

b + 1
m

) .

In the static non-cooperative scenario, total abatement is clearly increasing in m. 
Hence, the ex-post stock of pollution 

. k∗ (m) = m + 2 [k0 + a (n − m)]

2 (bm + 1)

is decreasing in m. As a result of an increase in m, each contributor abates less, 
but the sum of abatement levels in the enlarged set of contributors turns out to be 
higher, which implies a lower pollution. The above discussion leads to the following 
proposition. 

Proposition 10.5 k∗ (

m′) <  k∗ ( m). with m′ > m.. 

As to social welfare, for analytical tractability, we set n = 2., k0 = 0., and b = 1.. 
From (10.4), we obtain the following expression: 

. W ∗ (m) = m + 4a (m − 2) [a (5 + 2m) − 1]

4 (1 + m)2 .

We have 

. W ∗ (2) = 1

18
,

and 

.W ∗ (1) = 1 + 4a (1 − 7a)

16
.
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It follows that 

. W ∗ (2) − W ∗ (1) = (6a − 1) (1 + 42a)

144
.

The above expression is positive for a > ã = 1/6., which is required for x∗
i > 0. 

(see Proposition 10.1). We can then state the following proposition. 

Proposition 10.6 W ∗ (2) >  W ∗ (1).. 

In the static non-coordination scenario, an increase in the number of contributors 
from 1 to 2 is then welfare enhancing. 

10.4.1.2 Coordination Scenario 

From x∗∗
i . given in Proposition 10.2, the level of total contributions under coordina-

tion is equal to 

. X∗∗ (m) = 2m [bk0m + a (1 + bmn)] − m

2
(

1 + bm2
) .

It can be easily verified that in the static coordination scenario, total abatement is 
increasing in m. Hence, the ex-post stock of pollution 

. k∗∗ (m) = m + 2 [k0 + a (n − m)]

2
(

bm2 + 1
)

is decreasing in m. As a result of an increase in m, each contributor abates less, but 
the sum of abatement levels in the enlarged set of contributors turns out to be higher, 
which implies a lower pollution. This is the same as under the non-cooperative 
scenario. We can then state the following proposition. 

Proposition 10.7 k∗∗ (

m′) <  k∗∗ ( m). with m′ > m.. 

As to social welfare, for analytical tractability, as done in the analysis of the non-
coordination scenario, we set n = 2., k0 = 0., and b = 1.. From (10.4), we obtain the 
following expression: 

. W ∗∗ (m) = 1

4
(

1 + m2
)2

{

m + 2m2 (m − 1) + 4a {2 + m [−5 − 2m (m − 3)]}

+ 4a2 (m − 2)
[

5 + 2m
(

m2 + m − 1
)]}

.

We have 

.W ∗∗ (2) = 1

10
,
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and 

. W ∗∗ (1) = W ∗ (1) = 1 + 4a (1 − 7a)

16
.

It follows that 

. W ∗∗ (2) − W ∗∗ (1) = 3 − 20a + 140a2

80
.

The above expression is clearly positive for all a. We can then state the following 
proposition. 

Proposition 10.8 W ∗∗ (2) >  W ∗∗ (1).. 

In the static coordination scenario, similarly to what we observed in the non-
coordination scenario, an increase in the number of contributors from 1 to 2 is then 
welfare enhancing. 

10.4.2 Dynamic Effects 

10.4.2.1 Non-coordination Scenario 

As in the static welfare analysis, for analytical tractability, we are going to consider 
the two cases m = 1. and m = n = 2., with b = 1.. Let  k∗

ss (m). denote the steady-
state stock of pollution with m contributors. From (10.16), the steady-state stocks 
of pollution with m = 1. and m = n = 2. are given by 

. k∗
ss (1) = (1 + 2a) (r + δ)

2 [1 + δ (r + δ)]

and 

. k∗
ss (2) = 5r + 4δ + √

�(2)

12 + δ
(

5r + 4δ + √
�(2)

) ,

respectively. It can be easily verified that k∗
ss (2) − k∗

ss (1). is decreasing in a. Call  ̂a . 

the value of a such that k∗
ss (2) = k∗

ss (1).. Hence, k∗
ss (2) > k∗

ss (1). for a < â .. The  
steady-state levels of contributions are given by 

. x∗
ss (1) = 2a [2 + δ (r + δ)] − δ (r + δ)

2 [1 + δ (r + δ)]
,

and
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. x∗
ss (2) = 2a

[

12 + δ
(

5r + 4δ + √
�(2)

)] − δ
(

5r + 4δ + √
�(2)

)

24 + 2δ
(

5r + 4δ + √
�(2)

) .

Observe that both x∗
ss (1). and x∗

ss (2). are increasing in a. Call  a1 . and a2 . the values 
of a such that x∗

ss (1) = 0. and x∗
ss (2) = 0., respectively. Clearly, we need a >

max{a1, a2}. for x∗
ss (1) , x∗

ss (2) > 0.. It can be checked that â > a2 > a1 ., with 
â < 1/2. for δ > 1/

√
5.. Hence, ̂a . is admissible. A sufficiently large δ .also guarantees 

that x∗
ss (1) , x∗

ss (2) < a .. The following proposition can then be established. 

Proposition 10.9 There exists ̂a . such that k∗
ss (2) ≥. (resp. <.) k∗

ss (1). for a ≤. (resp. 
>.) ̂a .. 

If a is below a certain threshold, â ., an increase in the number of contributors 
from 1 to 2 leads to an increase in the steady-state stock of pollution. The intuition 
is as follows. Observe that the smaller a, the greater the marginal loss of direct 
utility caused by a given abatement level xi . (because, for any given xi ., the marginal 
utility of consuming a − xi . is higher when a is lower). Therefore, when a is small, 
a contributor’s best reply to an increase in the sum of contributions by others tends 
to be a big reduction in her/his own contribution. This can lead to the result that 
an increase in the number of contributors induces a decrease in total abatement and 
hence an increase in k∗

ss .. One may ask why there is no static counterpart to the result 
established in Proposition 10.5. The key for the answer is that in a dynamic model, 
each agent expects that if she/he increases her/his emission today, the pollution 
stock will be bigger tomorrow, which would in turn induce other agents to emit 
somewhat less tomorrow than otherwise; this dynamic strategic consideration may 
give her/him an incentive to undertake less abatement today when she/he learns 
that the number of contributors has increased. In a static model, by definition, such 
dynamic strategic considerations do not exist. 

From (10.8), the steady-state level of social welfare is given by 

. w∗
ss (m) = a

(

n + 2mx∗
ss

) − na2 − bn
(

k∗
ss

)2 − mx∗
ss

(

1 + x∗
ss

)

.

In the two cases under consideration, i.e., m = 1. and m = n = 2., letting b = 1. we 
have 

. w∗
ss (1) = (r+δ)

[

δ3+r
(

δ2−2
)]

(1+4a) −4a2
{

2+ (r+δ)
[

4δ+δ3+r
(

2+δ2
)]}

4 [1 + δ (r + δ)]2 ,

and 

.w∗
ss (2) =

13r2
(

δ2 − 4
)

− 20r
√

� + 2
(

δ2 − 1
) (

12 + 5δ2 + 2δ
√

�
)

+ rδ
(

22δ2 − 28 + 5δ
√

�
)

[

12 + δ
(

5r + 4δ + √
�

)]2
.
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Clearly, w∗
ss (2) − w∗

ss (1). is convex in a. Call  ̃a1 . and ̃a2 . with ã1 > ã2 . the two roots 
of w∗

ss (2) − w∗
ss (1).. It can be checked that ã1 ∈ (0, 1/2)., whereas ̃a2 . can be either 

positive or negative (or nil). Hence, one can always find an a ∈ (max{0, ã2}, ã1). 

such that w∗
ss (2) < w∗

ss (1).. Take for instance δ = 2. and r = 0.1.. For these 
parameter values, we have ã1 = 0.362887., ã2 = 0.104286., and â = 0.364189.. 
With a = 0.35 ∈ (max{0, ã2}, ã1). we expect w∗

ss (2) < w∗
ss (1).. Indeed, 

. w∗
ss (2) = 0.210796 < w∗

ss (1) = 0.215113.

Moreover, since a < â ., 

. k∗
ss (2) = 0.349 > k∗

ss (1) = 0.343269,

and 

. 2x∗
ss (2) = 0.00200083 < x∗

ss (1) = 0.0134615.

At the steady state, total abatement is higher and the stock of pollution is lower with 
one abater rather than two abaters. Interestingly, in the non-coordination scenario, 
in contrast with the static analysis, an increase in the number of abaters can worsen 
social welfare. We now take a = 0.37 /∈ (max{0, ã2}, ã1).. We have  

. w∗
ss (2) = 0.210796 > w∗

ss (1) = 0.20822.

Moreover, since a > â ., 

. k∗
ss (2) = 0.349 < k∗

ss (1) = 0.351346,

and 

. 2x∗
ss (2) = 0.0420008 > x∗

ss (1) = 0.0373077.

The above discussion leads to the following proposition. 

Proposition 10.10 There exist ̃a1 . and ̃a2 . such that w∗
ss (2) ≤. (resp. >.) w∗

ss (1). for 
a ∈. (resp. /∈.) [max{0, ã2}, ã1].. 

10.4.2.2 Coordination Scenario 

From (10.16), the steady-state stocks of pollution with m = 1. and m = n = 2. are 
given by 

.k∗∗
ss (1) = k∗

ss (1) = (1 + 2a) (r + δ)

2 [1 + δ (r + δ)]
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and 

. k∗∗
ss (2) = 8 − r2 + rδ + 2δ2 + (r + δ)

√
�(2)

(

4 + rδ + δ2
) (

2δ − r + √
�(2)

) ,

respectively. It can be easily verified that k∗
ss (2) − k∗

ss (1). is decreasing in a. Call  
â C

. the value of a such that k∗∗
ss (2) = k∗∗

ss (1).. Hence, k∗∗
ss (2) > k∗∗

ss (1). for a < â C
.. 

The steady-state levels of contributions are given by 

. x∗∗
ss (1) = x∗

ss (1) = 2a [2 + δ (r + δ)] − δ (r + δ)

2 [1 + δ (r + δ)]
,

and 

. x∗∗
ss (2) = 8 + 2a (2 + rδ) [4 + δ (r + δ)] − δ

{

δ [r (r + δ) − 2] + 2
√

�(2)
}

2 (2 + rδ) [4 + δ (r + δ)]
.

Observe that both x∗∗
ss (1). and x∗∗

ss (2). are increasing in a. Call  aC
1 . and aC

2 . the values 
of a such that x∗∗

ss (1) = 0. and x∗∗
ss (2) = 0., respectively. Clearly, we need a >

max{aC
1 , aC

2 }. for x∗∗
ss (1) , x∗∗

ss (2) > 0.. It can be checked that â C > aC
1 > aC

2 ., 
with â C < 1/2. for δ > 1/

√
2.. Hence, â C

. is admissible. A sufficiently large δ . 

also guarantees that x∗∗
ss (1) , x∗∗

ss (2) < a .. The following proposition can then be 
established. 

Proposition 10.11 There exists â C
. such that k∗∗

ss (2) ≥. (resp. <.) k∗∗
ss (1). for a ≤. 

(resp. >.) â C
.. 

As in the non-coordination scenario, conditions exist under which an increase in 
the number of contributors from 1 to 2 leads to an increase in the steady-state stock 
of pollution. 

From (10.8), the steady-state levels of social welfare with m = 1,m = n = 2. 

and b = 1. are given by 

. w∗∗
ss (1) = (r+δ)

[

δ3+r
(

δ2−2
)]

(1+4a) −4a2
{

2+ (r+δ)
[

4δ+δ3+r
(

2+δ2
)]}

4 [1 + δ (r + δ)]2 ,

and 

.w∗∗
ss (2) = 1

2 (2 + rδ)2 [4 + δ (r + δ)]2

{

r4δ2
(

δ2 − 4
)

+4
(

−16 + 4δ
√

� (2) − 7δ2
) (

4 + δ2
)

+2r3δ
(

−12 + 2δ2 + δ4
)

+ r2
(

−40 − 8δ
√

� (2) − 12δ2 + 12δ4 + δ6
)

+ 4r
[
√

� (2)
(

4δ2 − 6
)

+ δ
(

−28 − 6δ2 + δ4
)]}

.
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Clearly, w∗∗
ss (2) − w∗∗

ss (1). is convex in a. Call  ̃a C
1 . and ã C

2 . with ã C
1 > ã C

2 . the 
two roots of w∗∗

ss (2) − w∗∗
ss (1).. It can be checked that ã C

1 > 0. and ã C
2 < 1/2.. 

For the parameter values previously considered, i.e., δ = 2. and r = 0.1., we  
have ã C

1 = 0.567192., ã C
2 = −0.100019., and â C = 0.38506.. With a = 0.35 ∈

(max{0, ã C
2 }, min{̃a C

1 , 1/2}). we then expect w∗∗
ss (2) < w∗∗

ss (1).. Indeed, 

. w∗∗
ss (2) = 0.0818763 < w∗∗

ss (1) = 0.215113.

Moreover, since a < â C
., 

. k∗∗
ss (2) = 0.357428 > k∗∗

ss (1) = 0.343269,

and 

. 2x∗∗
ss (2) = 0.270288 > x∗∗

ss (1) = 0.0134615.

At the steady state, both total abatement and the stock of pollution are lower with 
one abater rather than two abaters. Interestingly, in the coordination scenario, in 
contrast with the static analysis, an increase in the number of abaters can worsen 
social welfare. The above discussion leads to the following proposition. 

Proposition 10.12 There exist ã C
1 . and ã C

2 . such that w∗
ss (2) ≤. (resp. >.) w∗

ss (1). 

for a ∈. (resp. /∈.) [max{0, ã C
2 }, min{̃a C

1 , 1/2}].. 

10.5 Concluding Remarks 

We have analyzed both a static and a dynamic game of voluntary abatement of 
a public bad. In each game, an exogenously given coalition of abaters coexists 
with a group of free riders. Countries/agents in the coalition agree on the need for 
taking action to reduce the public bad. However, the level of individual contributions 
depends on the mode of cooperation. Under tight cooperation, each abating coun-
try/agent contributes so as to maximize the sum of payoffs of all the participating 
countries/agents in the coalition. Under loose cooperation, instead, the individual 
level of contributions is determined in a decentralized fashion with contributors 
considering only their own payoffs and taking as given the contributions of the other 
coalition members. One of the striking results of our analysis is that an increase in 
the size of the coalition can increase the stock of pollution and worsen social welfare 
in the dynamic game, whereas, in the static game, more contributors are always 
associated with lower pollution and higher social welfare. A policy implication of 
this finding is that conditions exist under which smaller coalitions turn out to be 
more efficient than bigger ones. Specifically, we have shown that an increase in the 
size of the coalition from 1 to 2 leads to an increase in the steady-state stock of 
pollution and to a decrease in social welfare provided that the “business-as-usual”
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level of output belongs to a certain range. In the context of IEAs, our dynamic 
analysis suggests that evaluating the success or the failure of an agreement based on 
the number of participating countries alone can lead to erroneous conclusions. 

Possible extensions of our framework include (i) relaxing the assumption of 
full cooperation by considering a coefficient of cooperation ranging from zero 
to one (see, for instance, Vives, 2008; Colombo & Labrecciosa, 2018; Colombo 
et al., 2022), (ii) allowing for agents’ heterogeneity (see McGinty, 2007; Pavlova  
& de Zeeuw, 2013), (iii) allowing for asymmetric information about agents’ 
characteristics (see Bagwell & Staiger, 2005; Amador & Bagwell, 2013), and (iv) 
accounting for uncertainty and ambiguity about the evolution of the stock of public 
bad (see, for instance, Lemoine & Traeger, 2014, 2016). 
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Chapter 11 
Agroecology and Biodiversity: 
A Benchmark Dynamic Model 

Emmanuelle Augeraud-Véron, Raouf Boucekkine, and Rodolphe Desbordes 

Abstract Conventional agriculture not only neglects but also harms the ecosystem 
services provided by biodiversity, inducing a negative feedback loop. In a theoretical 
inspired by agroforestry (“agriculture with trees”), a common agroecological 
practice in developing countries, we highlight how the choice between expanding 
agricultural land and retaining forest land is shaped by the bidirectional relationship 
between agriculture and biodiversity as well as the utility derived from biodiversity 
consumption. The static case shows that a high stock of biodiversity may be 
deliberately maintained as long as the agroecological productivity effect is important 
enough. This result holds in the dynamic case. However, in the latter case, a large 
intertemporal discount rate can lead to total biodiversity loss along with the full 
collapse of the economy. Another key implication of our model, among other 
results, is that the effect of a shift of consumer preferences toward agricultural goods 
(instead of biodiversity goods) on the biodiversity stock is much more ambiguous 
in the dynamic case than in the static case, depending on the strength on the 
agroecological productivity effect. These results have profound implications for 
biodiversity conservation. 
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11.1 Introduction 

Over the period 1960–2019, land use change has affected almost a third of global 
land area and has involved substantial expansion of agricultural land (Winkler 
et al., 2021; Potapov et al., 2022a,b). These land transformations have considerably 
harmed biodiversity. Newbold et al. (2015) estimate that, in 2005, species richness 
and abundance have globally declined by 11–14%, with much stronger local 
impacts (40–50%) for intensively exploited agricultural land characterized by 
monocultures, heavy use of synthetic fertilizers and pesticides, and mechanization. 
This biodiversity loss implies both the neglect and degradation of key benefits 
provided by ecosystems to agriculture (Zhang et al., 2007), notably in terms of 
supporting services (e.g., soil structure and fertility) and regulating services (e.g., 
pollination and pest control). Negative feedback loops may thus emerge between 
conventional agricultural practices and ecosystem services, progressively harming 
agricultural output, especially if any negative effects cannot be compensated by 
external inputs (Foley et al., 2005; Ortiz et al., 2021). 

In response to this trade-off between short-run gains and long-run losses as 
well as the large environmental and human costs (e.g., water pollution, freshwa-
ter scarcity, emerging infectious diseases, climate change) associated with food 
production, more sustainable farming approaches have been proposed (Tscharntke 
et al., 2012; Bommarco et al., 2013; Nair,  2014; Tittonell et al., 2016; Garibaldi 
et al., 2017). This “biodiversity”-based agriculture aims at harnessing, rather than 
substituting, the ecosystem services provided by biodiversity. It aims at optimally 
integrating the biological and ecological processes within the agroecosystem while 
minimizing the use of external non-renewable inputs that cause environmental or 
human harm (Pretty, 2008; Kremen et al., 2012; Wezel et al., 2014; Duru et al., 
2015). Among the various ESR (efficiency/substitution/redesign) agroecological 
practices, related to crop or landscape management, which may be adopted (Wezel 
et al., 2014), agroforestry (“agriculture with trees”) is relatively widespread in 
tropical and developing countries. Defined as “the purposeful growing or deliberate 
retention of trees with crops and/or animals in interacting combinations for multiple 
products or benefits from the same management unit” (Nair et al., 2021), agro-
forestry is estimated to involve 43% of all agricultural land (at least 10% tree cover) 
and may provide direct subsistence to about a billion people (Zomer et al., 2014, 
2016). Several meta-analyses have highlighted that agroforestry, in comparison to 
a less diverse agrosystem and even to other crop diversification strategies, tends 
to increase associated biodiversity, raise soil quality and fertility, improve pest and 
diseases control as well as pollinator abundance, and generate yield improvements 
(Pumariño et al., 2015; Torralba et al., 2016; Dainese et al., 2019; Kuyah et al., 
2019; Staton et al., 2019; Udawatta et al., 2019; Beillouin et al., 2021; Baier et al., 
2023; Centeno-Alvarado et al., 2023).1 These benefits have induced various authors

1 The biodiversity improvements do not necessarily mean that the environment is not affected 
by agroforestry. For example, Chaudhary et al. (2016) find that agroforestry, while the least
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and international organizations, such as the IPCC (The Intergovernmental Panel on 
Climate Change), to advocate greater use of agroforestry to meet a large number 
of key sustainable development goals (Waldron et al., 2017; van Noordwijk et al., 
2018; Shukla et al., 2019).

Our paper contributes to the field of agroforestry, and more broadly agroecology, 
by theoretically highlighting the relatively ignored negative “feedback loop” exist-
ing between agricultural expansion and ecosystem services. Indeed, in their review, 
(Ortiz et al., 2021) consider that the bidirectional relationship between agricultural 
production and biodiversity is not sufficiently considered and understood. We 
build up a benchmark non-spatial dynamic model incorporating this bidirectional 
relationship allowing to assess in depth the potential long-term implications of a 
well-defined feedback effect of biodiversity on the productivity of the agricultural 
sector in accordance with the empirical literature surveyed above. We call this effect 
the agroecological productivity effect. Other potentially important ingredients are 
also incorporated. 

The model runs as follows. An agricultural economy produces an agricultural 
good with a simple Cobb-Douglas technology with land as a principal input (labor 
is normalized to 1). No storage of this good is possible, so it’s consumed entirely 
at every period of time. The key addition to this otherwise standard agricultural 
economy model is a feedback effect of the biodiversity stock on the productivity of 
the agricultural sector: the larger this stock, the more productive is the agricultural 
land (agroecological productivity effect or boost). Biodiversity dynamics are driven 
by a simple accumulation law of motion depending on the initial stock of biodiver-
sity, the remaining forest (non-agricultural) land, and harvesting of this biodiversity 
by the population. We identify harvesting with bush (or wild) food consumption. 
The representative farmer maximizes an intertemporal discounted flow of utility 
derived from consuming both the agricultural and wild good subject to biodiversity 
dynamics. It turns out by construction that the farmer has two independent controls, 
the land use variable (precisely, the size of the agricultural vs. forest areas) and the 
consumption of bush food. 

In order to have a first idea on the qualitative implications of the agroecological 
productivity effect, we study a preliminary static optimization counterpart. We high-
light the main effects at work in the general case (that is under general functional 
specifications for the feedback effect and the instantaneous utility). However, to 
derive analytical results, we specialize in Cobb-Douglas utility functions and linear 
feedback effects. We solve the corresponding optimization problem and highlight 
the main qualitative properties of the optimal controls, notably through comparative 
statics with respect to three key parameters: the regeneration rate of biodiversity, 
the elasticity of instantaneous utility with respect to the agricultural good (which 
allows to capture to which extent the farmer “prefers” the agricultural good with 
respect to the wild one), and a direct indicator of the agroecological productivity 

detrimental non-timber-producing management regimes, still reduces on average species richness 
found in nearby natural forests by 32%.
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effect. We essentially enhance the role of the feedback effects in this static case. 
We then move to the optimal control problem and perform the typical mathematical 
treatment, establishing the sufficiency of the first-order Pontryagin conditions, the 
existence and uniqueness of the steady state, and its local (saddle point) stability. 
We end our analysis with a careful analysis of the comparative statics resulting at 
the optimal steady state with respect to the three key parameters listed above. 

Besides the methodological value-added deriving from the comparison between 
the static and dynamic frames, several highly interesting economic results have 
been identified. We mention two in this Introduction. First of all, we highlight 
the importance of the time discounting rate in the presence of the agroecological 
productivity effect. Remarkably enough, with our canonical specifications, we show 
that the stock of biodiversity converges to 0 when the discount rate becomes 
infinitely large. Due to the agroecological feedback effect, the whole economy goes 
to extinction as the vanishing stock of biodiversity also leads to the collapse of 
the agricultural sector in this case. Second, we establish several properties at the 
steady state of the dynamic model, which are quite interesting from the policy point 
of view. For example, we prove that as the agricultural society preferences move 
away from bush food consumption (may be following government campaigning), 
the stock of biodiversity is raised only if the agroecological productivity effect is 
strong enough, further leading to a virtuous circle. This implies that campaigning 
with a biodiversity conservation policy is doomed to failure. 

The paper is organized as follows. Section 11.2 presents the model and the 
associated optimal control problem. Section 11.3 constructs a static counterpart 
and studies its qualitative properties at the optimum. Section 11.4 solves the 
optimal control problem and derives its qualitative properties at the steady state, 
with comparison to the static case counterpart, enhancing the interaction between 
the feedback effects inherent in the model and the intertemporal mechanisms. 
Section 11.5 concludes. 

11.2 The Model 

We consider a one-sector agricultural economy where the agricultural good is 
produced according to the following general technology: 

. Y = F (A, T (B)L) ,

where A is the size of the agricultural land, L is the available labor force, and T (B). 

is labor-saving technology which depends on the amount of biodiversity available. 
This specification fits several contexts: in the case of agroecology, nature services 
increase the productivity of agriculture; in such a case, T (.). is a non-decreasing 
function of biodiversity. 

Moreover, we normalize initial labor resources and forest land surface to 1. We 
do not model space explicitly. Denoting by f the fraction of forest land preserved
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such that A = 1 − f ., we assume a Cobb-Douglas agricultural production function: 

.Y = (T (B))1−α (1 − f )α, (11.1) 

with 0 < α < 1.. The agricultural production is entirely consumed at any date, that 
is: 

.Y = CA, (11.2) 

where CA . is consumption of the agricultural good or domestic food. The individual 
(or the economy) can also directly consume comestible biodiversity (animals or 
vegetables) or bush food, denoted CB ., which may or may not lead to further 
deforestation. Both cases may be considered. In this simple model, we assume 
that consumption of bush food does not involve any significant cost in terms of 
deforestation or in terms of labor.2 

Biodiversity Dynamics We now come to the link between agricultural activity and 
the evolution of biodiversity over time. We set the following law of motion: 

. Ḃ = R (f,B) B − CB,

where R(f,B). is the natural regeneration rate of biodiversity, which is here assumed 
to depend on the extent of forests and the existing stock of biodiversity. B(0) > 0. is 
given. In this paper, we shall choose the following specification: 

.Ḃ = β B1−θf θ − CB, (11.3) 

with 0 < θ < 1.. The latter equation can be rewritten in the more meaningful way: 

. 
Ḃ

B
= β

(
f

B

)θ

− CB

B
.

The Optimal Control Problem The decision maker chooses the trajectories of 
{f,CA,CB}. from t = 0. aimed at maximizing the following intertemporal utility 
function: 

.

∫ ∞

0
U (CA,CB) e−δ t dt (11.4)

2 One could legitimately argue that hunting, for example, is time-consuming and diverts labor from 
agriculture. Adding labor allocation between agriculture and consumption of biodiversity will not 
alter the main correlations between land use, biodiversity, and zoonoses we target in this paper. 
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subject to Eqs. (11.1), (11.2), and (11.3), with B(0). given. δ > 0. is the time 
discounting rate. We shall consider standard utility functions, namely, strictly 
increasing in each of the arguments, concave in (CA,CB)., and checking the Inada 
conditions for each argument of the function. Using Eqs. (11.1)–(11.2), one can 
substitute for CA . in the objective function, leading to an optimal control problem 
with two controls {f,CB}. and one state B .. More precisely, the optimal control 
problem can be finally rewritten as: 

. max
f,cB

∫ ∞

0
U

(
[T (B)]1−α (1 − f )α, CB

)
e−δ t dt

subject to 

. Ḃ = β B1−θf θ − CB,

with B(0) = B0 . given and the usual positivity conditions (plus f ≤ 1.). 

11.3 A Static Counterpart Model 

11.3.1 The Counterpart Static Optimization Problem 

Consider the same problem within a single period, starting with a biodiversity level, 
B0 . normalized to 1 for simplicity. Then the biodiversity level within the period is 
given by (modulo constants inherent in the discretization step, irrelevant for the 
qualitative properties of the optimal solutions if any): 

. B = β f θ − CB,

leading to the following one-period optimization problem: 

. max
f,cB

U
([

T
{
β f θ − CB

}]1−α
(1 − f )α, CB

)
. (11.5) 

The static optimization problem (11.5) is highly nontrivial for general functions 
T (.). and U(., .).. The first-order necessary optimality conditions write as follows 
(with Ui(., .). the partial derivative of U with respect to its ith argument, i = 1, 2.): 

. U2(., .) = (1 − α)U1(., .)T
′(.) [T (.)]−α (1 − f )α,

and 

.(1 − α)βθU1(., .)T
′−α(1 − f )αf θ−1 = αU1(., .)T

1−α(1 − f )α−1,
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where U1 . and U2 . are evaluated at
([

T
{
β f θ − CB

}]1−α
(1 − f )α, CB

)
. and T 

and T ′
. are evaluated at β f θ − CB .. The first equation is the necessary optimality 

condition with respect to CB .: it equalizes the marginal benefit from harvesting 
biodiversity ( U2 .) to the corresponding marginal cost (the right-hand side of the 
equation) reflecting the marginal loss in biodiversity impacting productivity in the 
agricultural sector, which in turn affects negatively consumption of the agricultural 
good. The second equation is the necessary optimality condition with respect to f : 
again it equalizes the marginal benefit from increasing the forest surface through 
increasing biodiversity (thus productivity and ultimately the consumption of the 
agricultural good) to the corresponding marginal cost, which is simply the one 
decreasing the latter consumption as the resulting agricultural land shrinks. Both 
conditions make perfect sense as they accurately reflect the economic trade-offs at 
work in our model. The two equations are quite intricate algebraically in the general 
case; even after simplification of the second equation, we shall refer to these final 
formulations below: 

.U2(., .) = (1 − α)U1(., .)T
′(.) [T (.)]−α (1 − f )α (11.6) 

and 

.
T ′(.)
T (.)

= α

(1 − α)βθ

f 1−θ

1 − f
. (11.7) 

Equation (11.7) is interesting: it gives the growth rate of agricultural productivity 
as a highly nonlinear increasing function of forest land in the agroecological context 
we are studying. 

Given the objectives of this paper, we shall concentrate on functional specifica-
tions which deliver closed-form solutions for the static problem and the dynamic 
extension (at the steady state). The analytical case specifications given below will 
therefore also serve for the latter in Sect. 11.4. 

An Analytically Tractable Case A full analytical solution to the static problem is 
obtained with the following specifications: 

1. U(x, y) = xγ y1−γ
., with 0 < γ < 1.. 

2. T  (x) = x .. 

Clearly the two specifications are highly “stylized”: the agricultural and non-
agricultural goods may show in some practical cases a strong form of complemen-
tarity, and the relationship between productivity and the amount of biodiversity is 
probably nonlinear. In our model, the amount of biodiversity will remain bounded 
over optimal trajectories, so the postulated linearity of productivity is not so 
problematic. With these specifications, the problem ( 11.5) becomes
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. max
f,CB

[
β f θ − CB

]γ (1−α)
(1 − f )γα C

1−γ

B . (11.8) 

Using the first-order optimality conditions ( 11.6)–(11.7) with the specifications 
above yields: 

.CB = (1 − γ )

γ (1 − α)

(
βf θ − CB

)
, (11.9) 

and 

.
1

βf θ − CB

= α

(1 − α)βθ

f 1−θ

1 − f
. (11.10) 

The following proposition summarizes the main results. 

Proposition 11.1 The maximization problem (11.8) admits a unique solution (
f ∗, C∗

B

)
. such that:

• f ∗ = (1−αγ )θ 
γ  α+θ(1−αγ )

. (so f ∗ < 1.).

• C∗
B = (1−γ  )β  

1−αγ
(f ∗)θ ..

• Consequently, one gets: B∗ = β
γ (1−α)
1−αγ

(f ∗)θ ., and C∗
A = (B∗)1−α (1 − f ∗)α .. 

Proof To prove this latter point, first-order derivatives are given as follows. 

. 
∂U

∂CB

= (−γ (1 − α) CB + (1 − γ )
[
β f θ − CB

] )

(1 − f )γα
[
β f θ − CB

]γ (1−α)−1
C

−γ

B

∂U

∂f
=

(
(1 − α)βθf θ−1 (1 − f ) − α

[
β f θ − CB

])
γ

[
β f θ − CB

]γ (1−α)−1

(1 − f )γα−1 C
1−γ

B .

Consistently the optimum yields: 

. CB = (1 − γ )

γ (1 − α)

[
β f θ − CB

]

1

β f θ − CB

= αf 1−θ

(1 − α)βθ (1 − f )

. CB = 1 − γ

1 − αγ
β f θ
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(1 − αγ ) θ 
γ  α  + θ (1 − αγ )

= f.

Let us denote πc = (1 − f ∗)γα
[
β f

∗θ − C∗
B

]γ (1−α)−1
C

∗−γ

B , πf =. 

γ
[
β f ∗θ − C∗

B

]γ (1−α)−1
(1 − f ∗)γα−1 C

∗1−γ

B .. The evaluation of the Hessian 
at steady state is given as follows: 

. 

⎡
⎢⎣ (αγ − 1) πc −βθ

( −θ(αγ−1)
αγ−θ(αγ−1)

)(θ−1)

(γ − 1) πc

απf −βθ
( −θ(αγ−1)

αγ−θ(αγ−1)

)θ−2
α2γ θ−α2γ−2αγ θ+αγ+θ

αγ−θ(αγ−1)
πf

⎤
⎥⎦

. 	 =
[
(αγ − 1)

(
−βθ

( −θ (αγ − 1)

αγ − θ (αγ − 1)

)θ−2
α2γ θ − α2γ − 2αγ θ + αγ + θ

αγ − θ (αγ − 1)

)

+βθ

( −θ (αγ − 1)

αγ − θ (αγ − 1)

)(θ−1)

(γ − 1) α

] (
πcπf

)2

=
[
(αγ − 1)

(
−

(
α2γ θ − α2γ − 2αγ θ + αγ + θ

))

+ (−θ (αγ − 1)) (γ − 1) α]

( −θ (αγ − 1)

αγ − θ (αγ − 1)

)θ−2
βθ

αγ − θ (αγ − 1)

(
πcπf

)2
.

	. has the same sign as d,. given by: 

. d =
[
(αγ − 1)

(
−

(
α2γ θ − α2γ − 2αγ θ + αγ + θ

))

+ (−θ (αγ − 1)) (γ − 1) α]

= (1 − α) (1 − αγ ) (θ (1 − αγ ) + αγ ) .

Thus, 	 > 0.. Moreover, (αγ − 1) < 0.; thus, the optimum is a maximum. �
We study the economic implications of Proposition 11.1 just below. 

11.3.2 Economic Properties 

To explore the economic properties of the optimal static solution, we will concen-
trate on three key parameters: the regeneration rate of biodiversity, β .; the elasticity 
of instantaneous utility with respect to the agricultural good, γ .; and a direct indicator 
of the agroecological productivity effect, 1 − α .. Indeed, 1 − α . is the elasticity 
of the agricultural output with respect to biodiversity. The three parameters above
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“quantify” the three important ingredients of the paper: the biodiversity growth rate, 
the agroecological engine of agricultural production, and the arbitrage between the 
agricultural good and bush food (inherent in the preferences of the consumers). 

The proposition below gives the comparative statics of the optimal solution for 
three key variables: the agricultural land, the biodiversity stock, and the amount 
of biodiversity harvested (to be consumed). The three variables show up in the 
biodiversity equation (static and dynamic), which is the central one for the purpose 
of our analysis as outlined above. We get the following economic picture. 

Proposition 11.2 The following comparative statics hold:

• ∂f ∗ 

∂β
= 0., ∂f ∗

∂α
< 0., and ∂f ∗

∂γ
< 0..

•
∂C∗

B 
∂β > 0.,

∂C∗
B

∂γ
< 0., and

∂C∗
B

∂α
> 0..

• It follows that ∂B∗
∂β

> 0., ∂B∗
∂α

< 0. and ∂B∗
∂γ

> 0.. 

The computations deliver indeed the following results for the partial derivatives 
needed and the resulting signs. For forest land surface, one gets the following direct 
results: 

. 
∂f ∗

∂α
= − γ θ

(γ α + θ (1 − αγ ))2 < 0,

∂f ∗

∂γ
= − αθ

(γ α + θ (1 − αγ ))2
< 0.

Things are more involved for the stock of biodiversity, in particular for parameter 
γ .: 

. 
∂B∗

B∗∂α
= − (1 − γ )

(1 − α) (1 − αγ )
− γ

(1 − αγ ) (γ α + θ (1 − αγ ))
< 0,

∂B∗

B∗∂β
= 1

β
> 0,

∂B∗

B∗∂γ
= 1

γ (1 − αγ )
− αθ

(1 − αγ ) (γ α + θ (1 − αγ ))

= (γ α + θ (1 − αγ ) − γαθ)
1

γ (1 − αγ ) (γ α + θ (1 − αγ ))

= (γ α + θ (1 − 2αγ ))
1

γ (1 − αγ ) (γ α + θ (1 − αγ ))
.

However, it can be seen that γα + θ (1 − 2αγ ) > 0.. Thus, ∂B∗
B∗∂γ

> 0.. 

The comparative statics of wild goods consumption is more straightforward:
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. 
∂C∗

C∗∂α
= γ 2α (1 − θ)

(1 − αγ ) (γ α + θ (1 − αγ ))
> 0

∂C∗

C∗∂β
= 1

β
> 0,

∂C∗

C∗∂γ
= 1

(1 − αγ )

(−(1 − α)

(1 − γ )
− α

(γ α + θ (1 − αγ ))

)
< 0.

The proposition yields a number of nontrivial results given the feedback loops 
involved in our model. Let’s start with optimal land use, namely, with the forest 
land surface, f ∗

.. A bigger regeneration rate β . raises the level of biodiversity as a 
direct effect but it does also induce an original second-round effect. Indeed through 
the agroecological productivity upward shift, it increases the agricultural output for 
a given agricultural land, 1 − f ∗

.. This may either lead to increase agricultural land 
(that to decrease f ∗

.) to take advantage of this higher productivity or to decrease it 
(if the productivity increment is large enough) to rise the forest land, which would 
generate more biodiversity without penalizing consumption of the agricultural good. 
Subsequent posterior round effects could occur according to the same opposite 
mechanisms. A third possibility is that optimal agricultural land remains overall 
unchanged by the shock on the regeneration rate β . as the direct and indirect effects 
may cancel out. Due to our functional specifications (linearity of the agroecological 
productivity effect and Cobb-Douglas utility function mainly), this is what happens 
here. Things are different when either α . or γ . goes up. An increase in γ . increases the 
weight of the agricultural good in the instantaneous utility function leading to more 
priority to the consumption of this good, which tends to increase agricultural land 
(or decrease f ∗

.). This is the principal mechanism generating the decline of forest 
surface: as the elasticity parameter γ . rises, it eventually dominates indirect effects 
originating in the subsequent biodiversity decline and the posterior weakening of the 
agroecological productivity effect. A similar picture occurs with α .: if this parameter 
is augmented, the strength of the agroecological productivity boost drops, which 
reduces the incentives to preserve and/or increase biodiversity, leading to the erosion 
of forest land. Again in this case, feedback loop effects arise that mitigate the latter 
effect but they end up dominated. 

As to biodiversity consumption, CB ., the comparative statics obtained, while 
quite intuitive, are indeed far from trivial except for β .. A larger regeneration 
rate of biodiversity, β ., leaves room for more harvesting as it makes biodiversity 
more abundant. This seems natural and indeed it is so in our analytical frame: by 
Proposition 11.1, one gets C∗

B = (1−γ )β
1−αγ

(f ∗)θ .; the comparative static derives 
automatically from the fact that the optimal forest land f ∗

. is independent of β ., 
which is, as argued above, due to our chosen functional specifications. This need not 
be the case in general if the optimal forest land surface does depend on β .. A larger β . 

indeed also favors the agroecological productivity effect since this increases directly 
the biodiversity amount and may further lead to less land for agricultural production 
if the productivity boost is big enough. Therefore, everything can happen in the
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general case depending on the function specifications adopted. Equally intuitive is 
the comparative static with respect to γ .: the larger the elasticity of instantaneous 
utility with respect to this parameter, more weight is given to the consumption of 
the agricultural good, which eventually leads to a drop in biodiversity harvesting. 
More intricate, as the elasticity of the agricultural good production with respect to 
agricultural land, α ., goes up, more land will be devoted to agriculture (and more 
agricultural goods will be consumed). This in turn leads to less biodiversity and 
subsequent wild good consumption drop. However, as α . increases, the fraction 
of biodiversity produced by Nature and going to optimal bush food consumption, 
that is, 1−γ

1−αγ
.,3 goes up. The latter effect dominates the former, and bush food 

consumption goes actually up when α . rises, which is far from trivial. Again as 
for comparative statics above, these are the dominant effects which reflect the 
qualitative results obtained in Proposition 11.2. Feedback effects may mitigate the 
latter but end up dominated. 

Let us finish this section with the comparative statics of the biodiversity stock, 
which is the central variable of our model being the unique dynamic variable, that’s 
the one which drives all the dynamics of the model (given decisions/controls) in the 
canonical intertemporal problem. Recall that: 

. B∗ = β
(
f ∗)θ − C∗

B = β
γ (1 − α)

1 − αγ

(
f ∗)θ

.

An increase in β . naturally increases the stock of biodiversity despite it also 
raising wild good consumption. This property is very likely to be robust to 
changes in the functional specifications of the utility function and the agroecological 
productivity effect. Another easy property can be found using the results of some 
of the comparative statics characterized above: since an increase in α . decreases 
the surface of the forest land and raises wild food consumption, this leads to a 
non-ambiguous fall in the biodiversity stock. Inversely, if the strength of the agroe-
cological productivity boost is raised as 1 − α . increases, the stock of biodiversity 
increases unambiguously pushed by the two latter mechanisms (operated in opposite 
direction). The comparative statics of B∗

. with respect to γ . is a bit more involved. 
Indeed, a larger elasticity of utility to the agricultural good decreases both the 
optimal forest land and consumption of the bush goods, resulting in an ambiguous 
effect on B∗

.. Proposition 11.2 states that whatever the parameter values ( θ ., α ., β . 

and γ .), the magnitude of the decrease in bush goods consumption is larger than the 
reduction in biodiversity originating in optimal forest land shrinking. We shall see 
that such a property cannot hold in the dynamic counterpart of the model, at least 
not in the long term.

3 This results from C∗
B = (1−γ )β

1−αγ
(f ∗)θ . in Proposition 11.1. 



11 Agroecology and Biodiversity: A Benchmark Dynamic Model 207

11.4 Exploring the Dynamics 

We now come back to our optimal control problem, reformulated with the functional 
specification choices made in the static problem in the previous section: 

. max
f,cB

∫ ∞

0
B(1−α)γ (1 − f )αγ C

1−γ

B e−δ t dt (11.11) 

subject to 

. Ḃ = β B1−θf θ − CB,

with B(0) = B0 > 0. given. 

11.4.1 Solving the Optimal Control Problem 

The current value Hamiltonian writes as follows: 

. H̃ = B(1−α)γ (1 − f )αγ C
1−γ

B + μ
(
β B1−θf θ − CB

)
,

where μ. is the current-valued shadow price of the biodiversity stock, B. The  
corresponding first-order Pontryagin conditions are (with U ≡ B(1−α)γ (1 −
f )αγ C

1−γ

B . is the instantaneous utility): 

.(1 − γ )
U

CB

= μ, (11.12) 

.αγ
U

1 − f
= μθβB1−θf θ−1 (11.13) 

.(1 − α)γ
U

B
+ μ(1 − θ)βB−θf θ = −μ̇ + δμ, (11.14) 

with the transversality condition: lim
t→+∞ e−ρtμB = 0.. Equation (11.12) gives  

the necessary optimality condition for CB .: it equalizes the marginal utility from 
one additional unit of biodiversity harvesting to biodiversity shadow price, μ.. 
Equation (11.13) is the necessary optimality condition for f : the marginal disutility 
from a one additional unit of forest land (left-hand side of the equation) should be 
equal to the marginal benefit in terms of biodiversity increment evaluated at the
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biodiversity shadow price. Equation (11.14) is the co-state equation, which delivers 
the time variation of the (current-valued) shadow price of biodiversity resulting 
from time discounting (term δμ. in the right-hand side), the marginal utility gained 
from one additional unit of biodiversity (through the agroecological productivity 
effect leading to more consumption of the agricultural good), and the benefit from 
increasing the biodiversity stock evaluated at the corresponding shadow price. The 
transversality condition is standard; it stated that the marginal discounted value 
of biodiversity evaluated at the current-valued shadow price should be exhausted 
asymptotically. The second-order (sufficiency) optimality conditions, being quite 
intricate, are proved and reported in the Appendix. 

Before we study the existence of stationary states for the system of necessary 
optimality conditions uncovered above, we first define a stationary state accurately. 

Definition 11.1 The 4-uple{f s, Cs
B, Bs, μs} ∈ R

4+ . with f s < 1. is a stationary 
state of the optimal control problem (11.11) if it solves the system of Eqs. (11.3), 
(11.12), (11.13), and (11.14), plus the transversality condition, under the stationarity 
conditions: Ḃ = μ̇ = 0.. 

The corresponding system of equations solving for stationary states is therefore 
given by Eqs. (11.12)–(11.13) plus the stationarized state and co-state equations: 

.Cs
B = β

(
Bs

)1−θ (
f s

)θ (11.15) 

.(1 − α)γ
Us

Bs
+ μs(1 − θ)β

(
Bs

)−θ (
f s

)θ = δμs, (11.16) 

where Us
. stands for instantaneous utility evaluated at the steady state. Notice that if 

such a state exists, the transversality conditions is automatically checked. The next 
proposition proves existence and uniqueness of such a stationary state and explores 
local stability. 

Proposition 11.3 For the 4-uple {f s, Cs
B, Bs, μs}., check the following proper-

ties:

• It exists and is unique. It’s given by: 

. f s = (1 − γ )θ

αγ + (1 − γ )θ
,

. Bs =
[
β(1 − θ + γ (θ − α))

δ (1 − γ )

] 1
θ

f s,

. Cs
B = β

(
Bs

)1−θ (
f s

)θ
,

and
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.μs = (1 − α)
Us

Cs
B

.

• The stationary state is saddle point stable. 

We skip the algebraic details of the computation of the steady state; it’s easy. 
A remarkable property of the dynamic problem at steady state with respect to 
the static counterpart is the role of the time discounting parameter (that’s the so-
called impatience rate), δ ., which of course does not show up in static settings. 
Remarkably enough, with our canonical specifications, the stock of biodiversity 
converges to 0 when δ . becomes infinitely large. Indeed, the whole economy goes 
to extinction as the vanishing stock of biodiversity also leads to the collapse of 
the agricultural sector in our case. That’s what also makes this model useful as a 
benchmark frame. 

We develop now the analysis of the stationary state local stability before moving 
to the economic exploration. To study the local stability, we need to write the 
dynamics. Using that μ. appears in both Eqs. 11.12 and 11.13, 

.CB = χβB1−θ (1 − f ) f θ−1, (11.17) 

where χ = (1−γ )θ
αγ

.. As a consequence, the state dynamics is given as follows. 

.Ḃ = β B1−θf θ

(
1 − χ

1 − f

f

)
. (11.18) 

Moreover, using Eq. 11.12 in Eq. 11.14 yields 

. (1 − α)γ
χβB−θ (1 − f ) f θ−1

(1 − γ )
+ (1 − θ)βB−θf θ = − μ̇

μ
+ δ,

which can be written as 

. 
μ̇

μ
= δ − βB−θf θ

(
(1 − α)

θ

α

1 − f

f
+ (1 − θ)

)
.

As, according to Eq. 11.12 it can be obtained 

. (1 − γ ) (χβ)−γ B(θ−α)γ (1 − f )(α−1)γ f (1−θ)γ = μ.

As a consequence, 

. (θ − α) γ
Ḃ

B
− (α − 1) γ

ḟ

1 − f
+ (1 − θ) γ

ḟ

f
= μ̇

μ
,
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from which we can write the dynamics of f.. 

. 

(
− (α − 1)

1

1 − f
+ (1 − θ)

1

f

)
γ ḟ

= δ − βB−θf θ

(
θ
α

((1 − α) − (θ − α) (1 − γ ))
1−f
f

+(1 − θ) + (θ − α) γ

)
. (11.19) 

= δ − βB−θ f θ ((1 − θ)  + (θ − α) γ )
(

θ

α

1 − f

f
+ 1

)
. (11.20) 

It can be noticed that (1−θ)
f

− (α−1)
1−f

	= 0,. as f 	= θ−1
θ−α

.. 

The Jacobian matrix of system 11.18–11.20 at steady state is given as follows: 

. J =
⎡
⎢⎣ 0 βη

1−θ
θ χ

f s

βη−(1/θ)δf s

αγ
(

(1−θ)
f

− (α−1)
1−f

) δ((α−θ)γ+θ(1−α))

αf sγ
(

(1−θ)
f

− (α−1)
1−f

)

⎤
⎥⎦

where β(1−θ+γ (θ−α))
δ(1−γ )

= η.. The eigenvalues are the solution of 	(λ) = 0., where 
the characteristic polynomial is given by: 

. 	(λ) = λ2 − tr (J ) λ + det (J ) ,

where det (J ) > 0. and tr (J ) > 0. are respectively determinant and trace of J.. As 
a consequence, eigenvalues are real, with opposite sign. So the stationary state is 
saddle point stable. After validating the optimality and (local) stability of the steady 
state, we explore here below its economic outcomes and compare them with those 
of the static counterpart. 

11.4.2 Economic Properties 

Before getting to the comparison task, we start with the comparative statics of 
the stationary state. As we shall see, they are more involved than in the static 
counterpart. 

Proposition 11.4 The following comparative statics hold: 

1. ∂f ∗ 

∂β
= 0., ∂f ∗

∂α
< 0., ∂f ∗

∂γ
< 0., and ∂f ∗

∂δ
= 0.. 

2. It follows that ∂B∗
∂β

> 0., ∂B∗
∂α

< 0., and ∂B∗
∂δ

< 0.. 

3. The sign of ∂B∗
∂γ

. is ambiguous; it depends on the parameters’ values. Ceteris 
paribus, B∗

. increases with γ . if the strength of the agroecological productivity
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effect is strong enough (i.e., α . is small enough), and it’s a decreasing function of 
γ . when the latter productivity effect is weak enough (i.e., α . is large enough). 

4. 
∂C∗

B 
∂β > 0.,

∂C∗
B

∂α
< 0., and

∂C∗
B

∂δ
< 0.. 

5. 
∂C∗

B 
∂γ . is ambiguous; it depends on the parameters’ values. Similarly to B∗

., C∗
B . 

increases with γ . if α . is small enough, and it’s a decreasing function of γ . when α . 

is large enough. 

A few observations are worth doing before discussing the economic mechanisms 
involved in these comparative statics. First of all, and as mentioned above, the 
stationary states of dynamic systems do depend on the way the optimizer/planner 
values future utility flows compared to the current ones, that’s on the time 
discounting rate, δ .. A very large time discounting brings the whole economy close 
to extinction asymptotically as demonstrated in the previous section. A larger time 
discounting reduces the stock of biodiversity and the consumption of the bush food.4 

Second, some comparative results are reversed with respect to the static counterpart. 
This is clear in the fourth comparative static: bush food consumption is a decreasing 
function of the strength of the agroecological productivity effect in the optimal static 
solution (see Proposition 11.1), and it’s increasing the dynamic case at the stationary 
equilibrium. Third, and more frequently, a new type of results with respect to the 
static case may emerge as the dynamic interaction of direct and feedback effects 
may lead to much more complex pictures in the dynamic settings, even at the steady 
state, yielding non-monotonic relationships and the like. In our case, as featured 
in comparative statics 3 and 5, here we enhance the role of the parameter (that’s α .) 
which somehow measures, as repeatedly invoked above, the strength of the feedback 
mechanism from the amount of biodiversity to the productivity of the agricultural 
sector. 

We shall concentrate on the comparative statics 3 to 5, those which differ from 
those of the static case, precisely those with respect to the key parameters α . and 
γ .. We skip most of the algebraic details. Let’s start with the stock variable, Bs

. 

(comparative static 3) Recall that it’s given by 

. Bs =
[
β(1 − θ + γ (θ − α))

δ (1 − γ )

] 1
θ

f s .

It follows that 

.
∂Bs

∂α
=

[
β(1 − θ + γ (θ − α))

δ (1 − γ )

] 1
θ
−1

4 It could be also shown that the same property holds for the consumption of the agricultural good 
due to the agricultural sector productivity feedback effect of falling biodiversity similarly to the 
extinction story told in the previous section. We skip computations for lack of space. 
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(
∂f s 

∂α

[
β(1 − θ + γ (θ − α)) 

δ (1 − γ )

]
− f s 

βγ

θδ (1 − γ )

)
< 0,

and 

. 

∂Bs

∂γ

Bs
= 1

θ

β(1−α)

δ(1−γ )2

β(1−θ+γ (θ−α))
δ(1−γ )

+
∂f s

∂γ

f s

= 1

(1 − γ )

(
1

θ

(1 − α)

1 − θ + γ (θ − α)
− α

(α − θ) γ + θ

)
.

Let z = (α − θ) γ + θ . 

. 

∂Bs

∂γ

Bs
= 1

θ(1 − γ )

(
z (1 − α) − αθ (1 − z)

(1 − z) z

)
.

The sign of  ∂Bs

∂γ
. is the same as the sign of z (1 − α) − αθ (1 − z) ,. which is 

ambiguous. For α = 0.9, θ = 0.5, γ = 0.1, ∂Bs

∂γ
< 0,. whereas for α = 0.1, θ =

0.5, γ = 0.1, ∂Bs

∂γ
> 0.. It’s easy to show that the derivative ∂Bs

∂γ
. is decreasing with 

respect to α ., given the magnitude of α . and γ ., both strictly lower than 1. An even 
more direct way to see this property is to study the limit cases of ∂Bs

∂γ
. when α . goes 

respectively to 1 and 0. 
We finally turn to Cs

B.. As Cs
B = β (Bs)1−θ (f s)θ ,. we get 

. 
∂Cs

B/∂α

Cs
B

= (1 − θ)

(
∂Bs/∂α

Bs

)
+ θ

(
∂f s/∂α

f s

)
< 0

∂Cs
B/∂β

Cs
B

= (1 − θ)

(
∂Bs/∂β

Bs

)
> 0

∂Cs
B/∂γ

Cs
B

= (1 − θ)

(
∂Bs/∂γ

Bs

)
+ θ

(
∂f s/∂γ

f s

)

= (1 − θ)

(
∂Bs/∂γ

Bs

)
− αθ

(1 − γ ) ((α − θ) γ + θ)
.

We can observe that: 

.
∂Cs

B/∂γ

Cs
B

= 1

(1 − γ )z

[
(1 − θ)

θ

(
z (1 − α) − αθ (1 − z)

(1 − z)

)
− αθ

]

= 1

θ (1 − z) (1 − γ )z
((1 − θ) z (1 − α) − αθ (1 − z)) .
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However, the sign of (1 − θ) z (1 − α) − αθ (1 − z). is ambiguous. Indeed, α =
0.9, θ = 0.5, γ = 0.9,. then a < 0. but for α = 0.1,. then a > 0.. Similarly to the 
comparative static of Bs

., we obtain property 5 in Proposition 5. 
Let us now comment on the economic mechanisms involved and compare with 

the static counterpart outcomes. First of all, we note that the property that the 
biodiversity stock increases with the strength of the agroecological productivity 
effect (or decreases with α .) also holds in the dynamic case at the stationary 
equilibrium. In the static case, this relationship is clear-cut: a drop in α . raises the 
surface of the forest land and decreases wild food consumption, which eventually 
yields a non-ambiguous (and potentially strong) increment in the biodiversity stock. 
While we get the same corresponding qualitative relationship in the dynamic 
case (which is indeed an indicator of the well-posedness of our problem), the 
mechanisms are not the same. As stated in property 4 of Proposition 11.4, the  
impact of a decrease in α . on the biodiversity stock is much more involved in the 
dynamic case: while the positive forest land effect is still present, consumption of 
bush meat goes in the opposite direction—it increases when α . drops. However, the 
former positive effect dominates for any values of the parameters of the model. The 
fact that the comparative static for Cs

B . with respect to α . is reversed in the dynamic 
case at the stationary equilibrium is not surprising per se considering the richness of 
feedback effects in our model, not speaking about the forces governing convergence 
to the steady state (including time discounting): while a rising stock of biodiversity 
will push upward its harvesting in first place, it also rises the incentives to produce 
the agricultural good due to the agroecological productivity effect, which goes in 
opposite direction relatively to the first effect, not speaking about the dynamics of 
convergence to the steady state which in all cases alter the size of the different 
involved effects over time, especially in the medium and long run. 

Let’s move now to the comparative static of Bs
. with respect to γ .; that’s 

comparative static 3..: it’s similar to the comparative static 5 concerning Cs
B . with 

respect to the same parameter. We shall concentrate on the Bs
.; similar arguments 

can be used for Cs
B . using the relationship relating both variables and f s

. given in 
Proposition 11.3. As explained in Sect. 11.3.2, the comparative statics of B∗

. with 
respect to γ .are a priori intricate even in the static case: in such a case, an agricultural 
economy which exhibits a larger elasticity of utility to the agricultural good, that’s 
with a stronger preference to the latter good, would initially decrease both the 
optimal forest land and consumption of the bush goods, resulting in an ambiguous 
direct effect on B∗

.. However in the static case, we have found that whatever the 
parameter values ( θ ., α ., β . and γ .), the magnitude of the decrease in bush goods 
consumption is larger than the reduction in biodiversity originating in optimal forest 
land shrinking, accounting for all the feedback effects generated. In the dynamic 
case at the stationary equilibrium, everything depends on the parameters’ values. To 
simplify our discussion, we focus on the key parameter in the genesis of feedback 
effects, α .. Proposition 11.4 shows that when the agroecological productivity effect is 
strong enough ( α . small enough), we get the static picture, and we get the reverse in 
the opposite case. This is rather intuitive: in a dynamic model, the feedback effects 
play longer over time (though constrained by the convergence to steady state forces
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as time advances); this leads to a bigger role for the forest land surface effect, which 
is inherent in the agroecological effect, compared to the one channeled through 
bush food consumption. This yields in particular to the (long-term) property that 
as the agricultural society preferences move away from bush food consumption ( γ . 

increases), the stock of biodiversity is raised only if the agroecological productivity 
effect is strong enough, which is a quite interesting result. 

11.5 Concluding Remarks 

We have shown both in the static and dynamic cases how the feedback effect 
generated by the agroecological productivity boost shapes the qualitative properties 
within a canonical agricultural model with land use control and consumption 
(optimal) arbitrage between agricultural and wild goods. The interaction between 
the feedback effect and the mechanisms inherent in intertemporal optimization 
has been shown to deliver several highly interesting results (for the long-term 
equilibrium), with some policy relevance. Several methodological lessons have been 
drawn along the way. 

We believe that this model is a useful benchmark, and we have explained why 
in several places in the main text. The fact remains that it’s a benchmark. Several 
extensions are worth doing starting with the analysis (possibly numerical) of the 
general model with nonlinear feedback effects, for example. Also, more general 
consumption preferences are interesting to incorporate, possibly with endogenous 
cultural dynamics moving societies away from wild food. Last but not least, more 
convincing specifications of biodiversity dynamics are needed starting with the 
endogenization of the regeneration rate. 

Appendix: Sufficiency Analysis of the Optimal Control 
Problem 

We now study the sufficient optimality conditions. We consider H̃ . as a function of 
B and f.. Indeed, H̃ = B(1−α)γ (1−f )αγ C

1−γ

B +μ
(
β B1−θf θ − CB

)
.. According 

to Eq. 11.17, 

. H̃ = B(1−α)γ+(1−θ)(1−γ ) (1 − f )αγ+1−γ (χβ)1−γ f (θ−1)(1−γ )

+ μβ B1−θf θ−1 (f − χ (1 − f )) .

Moreover, according to Eq. 11.12 

.(1 − γ ) B(1−α)γ (1 − f )αγ C
−γ

B = μ.
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Using 11.17, it can be written as 

. (χβ)−γ (1 − γ ) B(1−α)γ−γ (1−θ) (1 − f )(α−1)γ f γ (1−θ) = μ,

. H̃ = 1

θ
(χβ)1−γ B(1−α)γ+(1−γ )(1−θ)f (θ−1)(1−γ )(1 − f )(α−1)γ γ [θ + (α − θ) f ] .

As θ + (α − θ) f = θ (1 − f ) + αf > 0,. letting h = γ
θ

(χβ)1−γ ,. 

. H̃ = hB1−θ+γ (θ−α)f (θ−1)(1−γ )(1 − f )(α−1)γ (θ + f (α − θ)) > 0.

In order to compute the Hessian Matrix of H̃ ., let us notice that 

. 
∂H̃

∂B
= (1 − θ + γ (θ − α))

H̃

B

∂2H̃

∂B2 = (1 − θ + γ (θ − α)) (−θ + γ (θ − α))
H̃

B2

= − (1 − θ + γ (θ − α)) ((1 − γ ) θ + αγ )
H̃

B2 .

As 1−θ +γ (θ − α) = (1−α)γ +(1 − θ) (1 − γ ) ,. then 1−θ +γ (θ − α) > 0.. 

Thus, as a consequence, 

. 
∂2H̃

∂B2
< 0.

Moreover, 

. 
∂H̃

∂B∂f
= (1 − θ + γ (θ − α))

∂H̃/∂f

B

.and 

. 
∂H̃

H̃ ∂f
= (θ − 1) (1 − γ )

f
+ (1 − α) γ

1 − f
+ α − θ

θ + f (α − θ)

= − (1 − θ + f (θ − α)) (− (1 − f ) θ (1 − γ ) + f αγ )

f (1 − f ) (θ + f (α − θ))
.

Let g (f ) = −(1−θ+f (θ−α))(−(1−f )θ(1−γ )+f αγ )
f (1−f )(θ+f (α−θ))

. 

.
∂2H̃

∂f 2
=

(
∂H̃

∂f

)
g (f ) + H̃

(
(1 − θ) (1 − γ )

f 2
+ (1 − α) γ

(1 − f )2
− (α − θ)2

(θ + f (α − θ))2

)
.
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The Hessian matrix of H̃ . as a function of B and μ. is given as follows: 

. H (B, f )

=
⎡
⎣− (1 − θ + γ (θ − α)) ((1 − γ ) θ + αγ ) H̃

B2 (1 − θ + γ (θ − α))
∂H̃/∂f

B

(1 − θ + γ (θ − α))
∂H̃/∂f

B
∂2H̃
∂f 2

⎤
⎦

. det (H (B, f )) = (1 − θ + γ (θ − α))
H̃ 2

B2

[
− ((1 − γ ) θ + αγ ) g′ (f ) − g2 (f )

]
.

Moreover, in the neighborhood of the steady state f s = (1−γ )θ
αγ+(1−γ )θ

, g (f ) 
 0. 

and g′ (f ) < 0.. As (1 − θ + γ (θ − α)) > 0,. then det (H (B, f )) > 0.. Moreover, 

as ∂2H̃
∂B2 < 0,. then the optimum is a maximum. 
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Chapter 12 
Open-Loop Control-Based 
Linear-Quadratic Stochastic Game 
with Application to Counter Terror: 
Farsighted Versus Myopic Policies 

Konstantin Kogan and Dmitry Tsadikovich 

Abstract Stochastic linear-quadratic problems are frequently found in optimal 
control and differential game applications. The typical solution to these problems 
is based on feedback control, which implies that the state dynamics are observable 
despite their stochastic nature. In real life, however, this is rarely the case. In 
this chapter, we overcome this unobservability drawback by deriving an open-
loop equilibrium control for a linear-quadratic dynamic game with applications to 
counter-terror activities characterized by stochastic terrorist resource stocks. We 
derive an open-loop Nash equilibrium solution and its time-dependent feedback 
representation, which is based on expected terrorist resources rather than on the 
true state of the resource stock. We contrast the found equilibrium control with 
myopic behavior in response to resource dynamics by one or both parties and 
show that a farsighted party always has an advantage over a myopic party (i) under 
simultaneous commitments and (ii) when a farsighted party’s leader openly commits 
to actions and the myopic party is a follower responding to the farsighted leader’s 
actions. Furthermore, uncertainty improves the position of the farsighted party in 
terms of resource goals. In particular, the greater the resource-related uncertainty, 
the stronger the resource accumulation when terrorists are farsighted and the 
government is myopic. Uncertainty is detrimental to the government; it increases 
the economic damage inflicted by the terrorist organization and thus decreases the 
cost efficiency of the government’s counter-terror efforts. 

Stochastic linear-quadratic problems are frequently found in optimal control and 
differential game applications. The typical solution to these problems is based on 
feedback control, which implies that the state dynamics are observable despite 
their stochastic nature. In real life, however, this is rarely the case. In this chapter, 

K. Kogan (�) · D. Tsadikovich  
Department of Management, Bar-Ilan University, Ramat-Gan, Israel 
e-mail: Konstantin.Kogan@biu.ac.il 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
F. El Ouardighi, G. Feichtinger (eds.), The Unaffordable Price of Static 
Decision-making Models, International Series in Operations Research 
& Management Science 365, https://doi.org/10.1007/978-3-031-88638-6_12

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88638-6protect T1	extunderscore 12&domain=pdf

 885 55738 a 885 55738 a
 
mailto:Konstantin.Kogan@biu.ac.il
mailto:Konstantin.Kogan@biu.ac.il
mailto:Konstantin.Kogan@biu.ac.il
mailto:Konstantin.Kogan@biu.ac.il


220 K. Kogan and D. Tsadikovich

we overcome this unobservability drawback by deriving an open-loop equilibrium 
control for a linear-quadratic dynamic game with applications to counter-terror 
activities characterized by stochastic terrorist resource stocks. We derive an open-
loop Nash equilibrium solution and its time-dependent feedback representation, 
which is based on expected terrorist resources rather than on the true state 
of the resource stock. We contrast the found equilibrium control with myopic 
behavior in response to resource dynamics by one or both parties and show 
that a farsighted party always has an advantage over a myopic party (i) under 
simultaneous commitments and (ii) when a farsighted party’s leader openly commits 
to actions and the myopic party is a follower responding to the farsighted leader’s 
actions. Furthermore, uncertainty improves the position of the farsighted party in 
terms of resource goals. In particular, the greater the resource-related uncertainty, 
the stronger the resource accumulation when terrorists are farsighted and the 
government is myopic. Uncertainty is detrimental to the government; it increases 
the economic damage inflicted by the terrorist organization and thus decreases the 
cost efficiency of the government’s counter-terror efforts. 

12.1 Introduction 

Stochastic linear-quadratic problems characterized by expected quadratic cost 
functional and linear stochastic state dynamics have been extensively studied and 
are used in various applications (e.g., Bismut (1976), Chen and Yong (2001), 
Tang (2020), Li et al. (2022)). The typical approach used to solve these problems 
assumes that the system states are observable despite their stochastic nature. 
Dynamic programming can then be applied that, in the case of a continuous-
time formulation, results in the Hamilton-Jacobi-Bellman (HJB) equation or in 
a system of HJB equations when the problem is reduced to a differential game 
(e.g., Yong and Zhou (1999), Sun and Yong (2020)). Often, however, the system 
states are not observable, especially when the environment is stochastic. In those 
cases, an open-loop approach is more realistic and more practical. Open-loop 
solvability is not a given in linear-quadratic optimal-control problems. For example, 
Wei et al. (2019) characterize an open-loop solution of linear-quadratic optimal-
control problems with operator coefficients by means of a system of linear coupled 
forward-backward stochastic differential equations. Kogan and Chernonog (2019) 
present a numerical approach for a linear-quadratic type of stochastic differential 
game involving industry-stock-driven competition and contrast the outcome with 
outcomes from a feedback solution. 

The present study derives an analytical, open-loop Nash solution for a linear-
quadratic stochastic control formulation with application to a counter-terror game. 
Differential games have been widely used to model interactions between terrorist 
and government organizations (e.g., Behrens et al. (2007), Feichtinger and Novak 
(2008), Zhuang et al. (2010), Crettez and Hayek (2014)). The common approach 
to tackling these games is to assume observability of the terrorist’s resource stocks
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to derive a feedback policy for the stochastic change in the stock level. In real life, 
however, the terrorist’s resources are not observable. The government does not have 
accurate information about their resources, and even the terrorist organization can 
only guess about its total resource stock because of the multiple sources of financing 
typically involved, its multiple activities, and related uncertainty. This disadvantage 
has motivated various models intended to estimate the likely number of terrorist 
threats using queuing theory (e.g., Kaplan (2010, 2015), Seidl et al. (2016)). 

In this work, we consider the stochastic counter-terror differential game formu-
lated in Sun et al. (2018) and Li et al. (2021) to determine an open-loop equilibrium 
instead of attempting to estimate the non-observable level of terrorist threat in a 
two-party system composed of a government and a terrorist organization. We pay 
special attention to the effect of different types of myopic behavior on equilibrium 
policies. We show that an open-loop equilibrium control for the two conflicting 
parties is characterized by a non-linear function of time and identifies a feedback 
representation of the equilibrium control that is based on the expected stock of the 
terrorist resources rather than on the true stock of resources. Furthermore, when one 
party myopically disregards the resource dynamics and the other is farsighted (does 
not disregard the resource dynamics), the farsighted party has a strong advantage 
over the myopic one. We also find the same outcome when the farsighted party 
leads operations by openly stating the course of its actions and the myopic party is 
a follower that responds to the leader party’s actions. 

12.2 The Problem 

The available resource stock of a terrorist organization at time t, X(t), arises from 
the operations of the two counteracting parties – the terrorists and the government: 

.dX(t) = εX(t) + u1(t) − u2(t) + σX(t)dW(t), X(0) = x0, (12.1) 

where u1(t) ≥ 0 and u2(t) ≥ 0 represent the attack intensity of the terrorist 
and governmental counter-terror efforts, respectively; W(t) is the standard Wiener 
process representing uncertainty associated with the resource stock, σ represents 
the volatility of the resource stock, and ε represents the resource natural growth rate 
(accumulation) in absence of actions.

Economic losses caused by terror attacks are measured as the quadratic cost of 
the terrorist resource stock X2(t) at each time t along with the stock salvage value 
aX2(T) and the difference between the quadratic costs of the government and the 
terrorist actions u2

2(t) − u2
1(t). over planned time horizon T: 

.J = E

[∫ T

0

(
X2(t) + u2

2(t) − u2
1(t)

)
dt + aX2(T )

]
. (12.2) 

The terrorists aim to maximize expected damage (12.2), and the government aims 
to minimize it.
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We assume that the terrorists’ resource is not observable. The government 
does not have accurate information about the resources, and even the terrorist 
organization can only guess about its total resource stock. Therefore, we next 
assume that X(t) is known only at t = 0 and cannot be observed until at least 
t = T while the parties still plan to act. That is, the government and the terrorists 
apply deterministic commitment strategies {u2(t) ≥ 0�X(0) = x0, 0  ≤ t ≤ T} and 
{u1(t) ≥ 0�X(0) = x0, 0  ≤ t ≤ T} to deter/inflict the damage across all possible 
stochastic scenarios. Consequently, by denoting E[X(t)] = x (t), we obtain the
following from (12.1):

.
dx(t)

dt
= εx(t) + u1(t) − u2(t). (12.3) 

Using the Ito lemma, d[X2(t)] = 2[X(t)](εX(t) + u1(t) − u2(t) + σX(t)dW(t))dt + 
σ 2X2(t), dE[X2(t)] = 2E[[X(t)](εX(t) + u1(t) − u2(t))]dt + σ 2E[X2(t)]dt. Next, we  
introduce a new state variable, y(t) = E[X2( t)], and obtain its dynamics:

.
dy

dt
= 2 (u1(t) − u2(t)) x(t) +

(
2ε + σ 2

)
y(t), (12.4) 

where y(0) = E
[
X2(0)

] = x2
0 .. Consequently, the stochastic differential game 

(12.1), (12.2) is reduced to the objective 

.J =
∫ T

0

(
y(t) + u2

2(t) − u2
1(t)

)
dt + ay(T )

]
, (12.5) 

which the terrorist organization maximizes with the admissible control 
{u1(t) ≥ 0�X(0) = x0, 0 ≤ t ≤ T} and the government minimizes with the admissible 
control {u2(t) ≥ 0�X(0) = x0, 0 ≤ t ≤ T} subject to the dynamics of (12.3) and (12.4). 

12.3 Equilibrium Conditions and Properties 

The terrorist Hamiltonian H1 and the government Hamiltonian H2 are given by 

.

H1 =y(t) + u2
2(t) − u2

1(t) + λ1(t) (εx(t) + u1(t) − u2(t))

+ ψ1(t)
(

2 (u1(t) − u2(t)) x(t) +
(

2ε + σ 2
)

y(t)
)

,
(12.6) 

.

H2 = − y(t) − u2
2(t) + u2

1(t) + λ2(t), (εx(t) + u1(t) − u2(t))

+ ψ2(t)
(

2 (u1(t) − u2(t)) x(t) +
(

2ε + σ 2
)

y(t)
)

,
(12.7)
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in which terrorist- and government-related co-states (ψ1(t)λ1(t)) and (ψ2(t)λ2(t)), 
respectively, are determined by co-state differential equations: 

.
λ̇1(t) = − ελ1(t) − 2ψ1(t) (u1(t) − u2(t)) ; λ̇2(t)

= − ελ2(t) − 2ψ2(t) (u1(t) − u2(t)) ; λ1(T ) = λ2(T ) = 0; (12.8) 

. ψ̇1(t)=−1 −
(

2ε+σ 2
)

ψ1(t); ψ̇2(t)=1 −
(

2ε+σ 2
)

ψ2(t);ψ1(T )=−ψ2(T )=a.

(12.9) 

From (12.9), we observe that. 
ψ̇1(t) + ψ̇2(t) = − (

2ε + σ 2 )( ψ1(t) + ψ2(t)
)

and ψ1(T ) + ψ2(T ) = 0.. 

That is, 

.ψ1(t) + ψ2(t) = 0 and ψ̇1(t) + ψ̇2(t) = 0 . (12.10) 

We next omit the independent variable t whenever dependence on time is 
obvious. Note that the explicit solution for (12.9) is  

.

ψ1 = 1

2ε + σ 2

(
e
(
2ε+σ 2

)
(T −t)

(
1 + a

(
2ε + σ 2

))
− 1

)
and

ψ2 = 1

2ε + σ 2

(
1 − e

(
2ε+σ 2

)
(T −t)

(
1 + a

(
2ε + σ 2

)))
.

(12.11) 

From (12.10) and (12.11), we readily conclude: 

Lemma 12.1 ψ1 > 0,  ψ2 < 0 and ψ̇1 < 0., ψ̇2 > 0. always hold. �
An optimal response by each party is given by the first-order optimality 

conditions, which result in 

. u1 =
{

λ1+2ψ1x
2 , if λ1 ≥ −2ψ1x

0, if otherwise
, and u2 =

{ −λ2−2ψ2x
2 , if λ2 ≤ −2ψ2x

0, if otherwise
(12.12) 

Let an equilibrium solution exist over the time horizon such that 

. − 2ψ1 ≤ λ1

2x
and

λ2

2x
≤ −2ψ2. (12.13) 

We next show the following property: 

Lemma 12.2 Let (12.12) hold. Consider a symmetric equilibrium, then 
λ1 = λ2 = 0.

Proof We start from an interior solution, 2(u1 − u2) = λ1 + 2ψ1x + λ2 + 2 ψ2x
(see 12.12). Substituting the interior solution from (12.12) into (12.8) leads to
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.
λ̇1 = − ελ1 − ψ1 (λ1 + 2ψ1x + λ2 + 2ψ2x) ; λ̇2

= − ελ2 − ψ2 (λ1 + 2ψ1x + λ2 + 2ψ2x) ,
(12.14) 

which, with respect to (12.10), results in 

.λ̇1 = −ελ1 − ψ1 (λ1 + λ2) ; λ̇2 = −ελ2 − ψ2 (λ1 + λ2) . (12.15) 

Recalling that ψ1 + ψ2 = 0 (see (12.10)), we obtain: 

.λ̇1 + λ̇2 = −ε (λ1 + λ2) . (12.16) 

By accounting for the transversality conditions from (12.8), we find that the only 
solution for (12.16) is λ1 + λ2 = 0 and, therefore, that

.λ̇1 + λ̇2 = 0. (12.17) 

Consequently, λ1 + 2ψ1x + λ2 + 2ψ2x = 0 and, from (12.14), λ̇1 = −ελ1 . and 
λ̇2 = −ελ2 ., which, with respect to the transversality conditions from (12.8), results 
in λ1 = λ2 = 0.

Now consider a boundary solution u1 = u2 = 0. In that case, (12.8) again  
transforms into λ̇1 = −ελ1; λ̇2 = −ελ2 ., and, therefore, (12.17) holds and 
λ1 = λ2 = 0. �

Note that the found co-state property ensures that the optimality conditions 
in (12.12) are always met for an interior solution and are not met for boundary 
equilibrium solution u1 = u2 = 0.

We next verify that a non-symmetric equilibrium does not exist. 

Lemma 12.3 Let u1 > 0 and u2 = 0 or let  u2 > 0 and u1 = 0. Then, the optimality 
conditions in (12.12) do not hold. 

Proof The proof is by contradiction. Assume, for example, that the equilibrium 
solution is u1 > 0 and u2 = 0. Then, λ2

2x
≥ −2ψ2 . must hold. Co-state Eq. (12.8) 

takes the following form: 

.

λ̇1 = − ελ1 − ψ1 (λ1 + 2ψ1x) , λ1(T ) = 0 and

λ̇2 = − ελ2 − ψ2 (λ1 + 2ψ1x) , λ2(T ) = 0
(12.18) 

and we observe that (12.17) once again holds. From u1 > 0, λ1 + 2ψ1x > 0, and 
from (12.18) and the transversality conditions, λ1 > 0. Since λ1 =  −  λ2, we find that 
λ2 < 0. And since ψ2 < 0, we readily observe that λ2

2x
≥ −2ψ2 . cannot hold, which 

contradicts our assumption that u1 > 0 and u2 = 0 meets the optimality conditions 
(12.12). Similarly, it is readily verified that u1 = 0 and u2 > 0 does not meet (12.12).
�
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From Lemmas 1 through 3, we conclude: 

Theorem 12.1 The differential game specified in ( 12.3) through (12.5) between a 
farsighted government and a terrorist organization has only an interior open-loop 
Nesh equilibrium that is always unique and symmetric and is given by. 

.u1 = u2 = 1

2ε + σ 2

(
e
(
2ε+σ 2

)
(T −t)

(
1 + a

(
2ε + σ 2

))
− 1

)
x.� (12.19) 

Note that Eq. (12.19) is a feedback representation of the open-loop Nash 
equilibrium solution, which is based on the expected terrorist resource stock rather 
than on the true resource stock. Furthermore, the greater the expected resource stock 
x, the greater the actions undertaken by the parties, leading to exponential growth in 
the resource stock. Specifically, since the equilibrium is symmetric, 

.x = x(0)eεt , (12.20) 

which transforms (12.19) into the explicit open-loop equilibrium solution: 

.u1 = u2 = 1

2ε + σ 2

(
e
(
2ε+σ 2

)
(T −t)

(
1 + a

(
2ε + σ 2

))
− 1

)
x(0)eεt . (12.21) 

From (12.21), we observe that 

. 
u1(0) =u2(0) = 1

2ε + σ 2

(
e
(
2ε+σ 2

)
T

(
1 + a

(
2ε + σ 2

))
− 1

)
x(0) and

u1(T ) =u2(T ) = ax(0)eεT .

(12.22) 

That is, given fixed planning horizon T, the greater the value of the initial resource 
stock ax(0) and/or the associated rate of growth ε per stock and time unit, the 
stronger the actions undertaken by the parties by the end of the planned period. 
The effect of uncertainty σ is of special interest and is discussed in the numerical
analysis.

12.4 Myopic Policies 

12.4.1 Ignoring Dynamics in Variation of Resources by both 
Parties 

Since y = E[X2] = Var[X] + E[X]2, ignoring the dynamics of y is associated 
with ignoring the variance of the resource stock. This myopic behavior implies 
that ψ1 = ψ2 = 0. Then, from (12.14), we have λ̇1 = −ελ1, λ̇2 = −ελ2 .; that
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is, λ1 = λ2 = 0, u1 = 0, u2 = 0 (see (12.13)), and ẋ > 0.. Neither the terrorist 
organization nor the government does anything to change the current situation, 
which indicates that the terrorist’s resources will increase. 

Proposition 12.1 If both parties ignore variation in the resource dynamics (behave 
myopically), there will be no terror acts and no government anti-terrorist activities, 
and expected terrorist resources will increase the same amount as under farsighted 
conditions (according to (12.20) when dynamics are not ignored). �. 

Since the parties take no actions while the resource stock evolves the same as 
under farsighted conditions, this myopic behavior enables both parties to improve 
their objective functions (payoffs). 

12.4.2 One Party Ignores Variation in Resource Dynamics 

Equation (12.11) describes the case in which one party is myopic while the other is 
farsighted. When the government is myopic in terms of variation in resource stock 
dynamics while the terrorists are farsighted, ψ1 is given by (12.11) and ψ2 = 0. 
Then, according to (12.8), λ̇2 = −ελ2 ., which again results in λ2 = 0 and u2 = 0. 
Consequently, λ̇1 = −ελ1 − 2ψ1u1 .. When taking (12.12) and (12.3) into account, 
ẋ = εx + u1 . leads to a system of two differential equations with two unknowns: 

. ̇λ1= − ελ1−ψ1 (λ1+2ψ1x) where ψ1 is given by (12.9) and ẋ=εx+λ1+2ψ1x

2
.

(12.23) 

The solution of this two-point boundary-value problem, (X(0) = x0 and 
λ1(T) = 0), determines x and λ1; therefore, equilibrium control u1 = λ1+2ψ1x

2 .. 
Though we solve this system only numerically, insights can be obtained analytically 
by comparing two games, one characterized by farsighted parties (upper index 
f distinguishes between the games) and the other by one farsighted party (index 
fm) and one myopic party (index m). Specifically, we consider the difference in 
behaviors of the farsighted parties in two games: 

.2u
f m

1 − 2u
f

1 = λ
f m

1 + 2ψ1

(
xf m − xf

)
(12.24) 

where ψ1 = ψ
f m

1 = ψ
f

1 . and 

.ẋf m = εxf m + u
f m

1 , um
2 = 0 and ẋf = εxf , u

f

1 = u
f

2 . (12.25) 

Given that X(0) = x0 in both games, we straightforwardly conclude from (12.24) 
and (12.25) that xf m = xf + ∫ T

0 u
f m

1 dt .. Since λm
1 (T ) = 0. when ψ1 = a and given
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that λ
f m

1 (0). > 0, then, from (12.18), we readily find that λ̇
f m

1 < 0. over the entire 
time horizon and, thus, that λm

1 . > 0, um
1 > 0.. Consequently, a sufficiently small 

λ
f m

1 (0) > 0. always exists, ensuring that λ
f m

1 (T ) = 0. is met regardless of how 

short time horizon is. That is, there is always a feasible solution when λ
f m

1 . >0 and, 

therefore, 2u
f m

1 − 2u
f

1 = λ
f m

1 + 2ψ1
(
xf m − xf

) = λ
f m

1 + 2ψ1
∫ T

0 u
f m

1 dt > 0.. 
If the terrorist organization is myopic and the government is farsighted, then, 

using similar arguments, we find that ψ1 = 0 and ψ2 is given by (12.11), which 
results in λ1 = 0 and u1 = 0. Next, comparing these results to results when both 
parties are farsighted, we find that 2u

mf

2 − 2u
f

2 = −λ
mf

2 − 2ψ2
(
xmf − xf

)
., ẋmf =

εxmf − u
mf

2 ,.and xmf = xf − ∫ T

0 u
mf

2 dt .. Therefore, from ψ2 < 0 and λm
2 > 0., 

we obtain 2u
mf

2 − 2u
f

2 = −λ
mf

2 + 2ψ2
∫ T

0 u
mf

2 dt < 0. using the same arguments. 
Summarizing our findings: 

Proposition 12.2 When one party is myopic and the other is farsighted, the 
myopic party does not take action (anti-terror or terror); the farsighted party acts, 
engaging in more terror/less anti-terrorism than it conducts when both parties are 
either farsighted or myopic. Furthermore, myopic terrorist resources can decrease 
in response to a farsighted government. If the resource salvage value a is large 
relative to the resource accumulation rate, ε, farsighted terrorist resources increase 
more quickly under the myopic/farsighted split than when both parties are either 
farsighted or myopic. �

Figure 12.1 illustrates Proposition 2 for the three games: (a) f when both parties 
farsighted, (b) fm when the terrorists are farsighted and the government is myopic, 
and (c) mf when the terrorists are myopic and the government is farsighted. 

From Fig. 12.1, we observe that, when both parties are farsighted, uf m

1 (t) >

u
f

1 (t) > u
mf

2 (t). for t ∈ [0, T] (panel 1a), activities of both parties decrease 
monotonically over time. A myopic government leads to the greatest activity and

Fig. 12.1 Control and state dynamics when ε =0.3, σ = 0.05, x(0) = x0 = 2, and T = 0.325. 
(a) u(t) both farsighted, (b) x(t) for  a = 1 farsighted terrorist, (c) x(t) for a = 0.01 farsighted
government



228 K. Kogan and D. Tsadikovich

the greatest accumulation of resources by farsighted terrorists (panel 1b). Myopic 
terrorists lead to less action by the farsighted government so the myopic terrorist 
resource decreases when a is high (a = 1, panel 1b) and decreases only initially 
when a is low (a = 0.01, panel 1c).

We next assume leader-follower relationships between the parties. 

12.4.3 Farsighted Leader and Myopic Follower Ignore 
Dynamics in Resource Variation 

Assume that one party is myopic (e.g., the government) in terms of variation in 
resource dynamics. That implies that ψ2 = 0 when the other party is farsighted 
and leading (openly stating its planned actions). The follower’s solution is u2 = 0 
because we once again observe that λ2 = 0, and the Stackelberg leader’s solution 
once again leads to λ̇1 = −ελ1 − ψ1 (λ1 + 2ψ1x). in which ψ1 is determined by 
(12.11). We therefore conclude: 

Proposition 12.3 Assume one party is farsighted (e.g., the terrorist organization) 
and is leading the interaction by openly stating the course of its actions for the entire 
time horizon at t = 0 while the other party is myopic (e.g., the government) and 
responds to the leader’s actions. Then, the Stackelberg solution is identical to the 
Nash solution defined by (12.23) when the same parties are farsighted and myopic.
�

12.4.4 Myopic Parties that Ignore Stochastics of the Resources 

In this case, we assume that the existence of variance is simply ignored by the two 
myopic parties as a factor affecting their objective functions. This is accomplished 
by replacing the stochastic state of resource stock X with its expected value, 
x = E[X], in the original objective function (12.3). Consequently, the overall 
expected cost over the time horizon is transformed into 

.J =
∫ T

0

(
x2(t) + u2

2(t) − u2
1(t)

)
dt + ax2(T ), (12.26) 

which is subject to (12.3). Then, the Hamiltonian-based dual formulation is. 

.λ̇1(t) = −2x − ελ1(t), λ̇2(t) = 2x − ελ2(t), λ1(T ) = −λ2(T ) = 2a; (12.27) 

.u1 =
{

λ1
2 , if λ1 ≥ 0

0, if otherwise
, u2 =

{ −λ2
2 , if λ2 ≤ 0

0, if otherwise
. (12.28)
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It then is straightforward to see that we again have u1 = u2, x = x(0)eεt , and
λ̇1(t) = −2x(0)eεt − ελ1(t).; that is, λ1 = x(0)

ε
eεt

(
e2ε(T −t) − 1

) + 2aeε(T −t) . = 
−λ2. Consequently, the equilibrium control is given by

.u1 = u2 = x(0)

2ε
eεt

(
e2ε(T −t) − 1

)
+ aeε(T −t). (12.29) 

Note that, by Theorem 1, the commitment Nash equilibrium is characterized 
by the shadow price of the expected resource state dynamic being zero while 
equilibrium control (12.29) is characterized by the shadow price of the expected 
resource state dynamic not being ignored (non-zero). And unlike in the original 
stochastic game, ignoring the state dynamics of one of the parties (defined by setting 
the co-state at zero in (12.27)) does not affect the behavior of the other party. 
We again find, as in the previous results, that the farsighted party always has an 
advantage over the myopic party. 

Recalling (12.21), we conclude that: 

Proposition 12.4 When 1
2ε+σ 2

(
e
(
2ε+σ 2

)
(T −t)

(
1 + a

(
2ε + σ 2

)) − 1
)

x(0)eεt >

x(0)
2ε

eεt
(
e2ε(T −t) − 1

) + aeε(T −t) ., the equilibrium actions determined by Theorem 
1 for both parties exceed the actions they take when their objective functions are as 
in (12.26). Otherwise, the parties take less action. �

Proposition 4 is illustrated in Fig. 12.2 for the original data (panel a) and for a new 
set of data (panel b). Panel b of the figure shows that intersection between actions of 
farsighted parties, uf

1 ., and actions by parties ignoring variability (stochastic nature), 

Fig. 12.2 Dynamics of (a) u
f m

1 . and um
1 . farsighted terrorist and ignoring variation under the 

original data set and (b) Difference between u
f m

1 . and um
1 . from new data: σ = 0.09, ε = 0.3, 

a = 0.01, x0 = 0.9, T = 0.325
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um
1 ., is possible, but the differences between the controls are tiny, indicating that the 

actions remain nearly the same over the planning horizon. From the original data 
used to illustrate Proposition 1 (panel a), we find that farsighted parties are always 
more active than myopic parties. 

12.5 Numerical Analysis 

The numerical analysis compares the actions of the terrorists and the government 
when one party is myopic and the other is farsighted for various data. In addition, we 
determine the effect of the problem parameters on each party’s objective function, 
J (maximization of terrorist economic damage/anti-terrorism efforts that reduce 
terrorist economic damage (12.5)). The basic (initial) data used for the analysis 
is presented in Table 12.1. Recall that we use u

f m

1 . and u
mf

2 . to indicate actions 
taken when the terrorists and the government, respectively, are farsighted and the 
other party is myopic and that u

f m

1 . and u
mf

2 . are determined by (12.12) and (12.23), 

respectively. In turn, uf

1 . reflects the actions taken when both sides are farsighted and 
is calculated according to (12.21). 

Note that parameter a in Table 12.1 reflects economic damage potentially 
suffered by the government from each unit remaining in the terrorists’ stock at 
the end of the planning horizon while ε indicates the natural accumulation of 
the terrorists’ resource stock. Uncertainty associated with the terrorist resource is 
measured by the resource’s volatility, σ . The parameters in Table 12.1, x0 and T, 
denote the initial resource stock and the planning horizon, respectively. 

Panels a, b, and c in Fig. 12.3 show the effect of a, σ , and ε on the terminal stock 
of terrorist resources. In accord with Proposition 2, panel a shows that the most 
resources are accumulated with the greatest salvage value when the government is 
myopic and the terrorists are farsighted. Under symmetric conditions in which both 
parties are myopic, the salvage value has no effect on accumulation of resources. 

As shown in panel b for symmetric conditions in which both parties are 
farsighted, uncertainty similarly has no effect on resource accumulation. However, 
resource-related uncertainty increases resource accumulation by farsighted terrorists 
when the government is myopic, and the opposite is observed (resource reduction) 
for a farsighted government and myopic terrorists (panel b). Naturally, the greater 
the resource natural growth parameter ε, the greater the quantity of resource 
naturally accumulated (panel c). 

The control efforts arising from the effects observed in Fig. 12.3 are presented in 
Figs. 12.4. through 12.6. As shown in Figs. 12.4. and 12.5, increases in the resource 
salvage value and accumulation rate increase the parties’ activities in all cases. 

Table 12.1 Dataset a ε σ x0 T 

1 0.3 0.05 2 0.325
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Fig. 12.3 Effects of resource salvage value, resource uncertainty, and natural resource accumula-
tion on the terminal level of the resource x(T). (a) a economic damage, (b) σ resource uncertainty, 
(c) ε natural r esource accumulation

Fig. 12.4 Control efforts arising from variation in resource salvage value a. (a) u
f m

1 . farsighted 

terrorist, (b) u
mf

2 . farsighted government, (c) uf

1 . both farsighted 

Fig. 12.5 Control efforts arising from variation in natural resource accumulation ε. (a) u
f m

1 . 

farsighted terrorist, (b) u
mf

2 . farsighted government, (c) uf

1 . both farsighted
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Fig. 12.6 Control efforts arising from variation in resource stock uncertainty σ . (a) u
f m

1 . farsighted 

terrorist, (b) u
mf

2 . farsighted government, (c) uf

1 . both farsighted 

The effects of uncertainty, as shown in Fig. 12.6, are not so straightforward. 
Increasing volatility in the parties’ uncertainty about the resource stock initially 
increases the efforts by both parties in all instances. Over time, however, the increase 
in effort diminishes. Moreover, xmf (T) decreases with increases in σ . This outcome 
is associated with (12.12) at  t = T (that is, u

mf

2 (T ) = axmf (T ).), which implies that 

u
mf

2 (T ). decreases when σ increases (see panel b of F ig. 12.6). 
Finally, Fig. 12.7 shows the impacts of the parameters on the parties’ objective 

functions (J). Recall that the terrorists are interested in maximizing terrorist damage 
(J) while the government is interested in minimizing terrorist damage (J). From 
Fig. 12.7, we observe that a farsighted terrorist organization and a farsighted 
government are always better off regardless of the farsighted/myopic policy chosen 
by the other party. Moreover, as the values of the problem parameters increase, the 
economic damage inflicted by the terrorist organization increases, thus decreasing 
the government’s objective. Thus, we find that uncertainty improves the terrorists’ 
objective unless both parties ignore the stochastic nature of the resource stock by 
replacing the expected costs in their objective with the cost of expected resources. 

12.6 Conclusions 

In this chapter, we consider a linear-quadratic differential game characterized 
by stochastic dynamics. We assume that the state of the dynamic system is not 
observable and derive an open-loop (commitment) equilibrium illustrated for a 
counter-terrorism application. We show that, for this game, only a symmetric 
open-loop equilibrium exists, and its feedback representation is based on expected 
terrorist resources rather than on the true unobservable state of those resources. 
The greater the expected stock of the resource, the greater the actions the parties 
undertake, and the resource stock grows exponentially.
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Fig. 12.7 Influence of variation in the parameters on the parties’ objective functions J. (a) a 
resource salvage value, (b) ε natural resource accumulation, (c) σ resource uncertainty, (d) T time
horizon

We find that both parties are better off in terms of their objective functions when 
they are myopic and ignore variations in the resource. This occurs because the 
resource stock in that case evolves in exactly the same way as when both parties 
are farsighted. No actions are exerted so no control-related costs are incurred. 

We further find that a farsighted party always has the advantage over a myopic 
party. For example, with a myopic government and a farsighted terrorist organi-
zation, the terrorists act but the government does not. Consequently, the greatest 
terrorist activity and accumulation of resources occurs in this case.
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When the terrorist organization is myopic, a farsighted government invests less 
counter-terrorism effort compared with the case when both parties are farsighted. 
The myopic terrorists’ resource decreases unless the salvage value of the terminal 
resource stock is sufficiently small. Hence, the terrorists’ resource decreases when 
the damage they inflict is high and decreases only initially when the damage they 
inflict is low and can begin to increase at some point. This outcome also holds when 
one of the parties is the Stackelberg leader. The sequential Stackelberg equilibrium 
solution is identical to the simultaneous Nash equilibrium solution when the leader 
is farsighted and the follower is myopic. We also find that any increase in a model 
parameter increases the objective function, thus increasing the economic damage 
inflicted by the terrorists and decreasing the government’s cost efficiency of anti-
terrorism activities. 

In terms of resource uncertainty, we find that symmetric conditions in which 
both parties are either farsighted or myopic do not influence accumulation of 
the resource. On the other hand, the greater the resource-related uncertainty, the 
greater the resource accumulation under a farsighted terrorist organization and 
a myopic government. The opposite effect occurs with a farsighted government 
and myopic terrorists. That is, uncertainty improves the position of the farsighted 
party in terms of its resource goal. This outcome arises because resource volatility 
always increases the initial effort of both parties but does not affect the resulting 
resource stock under symmetric conditions. Furthermore, unless both parties ignore 
the stochastic nature of the resource, uncertainty is detrimental to the government 
because it increases the economic damage inflicted by the terrorist organization and 
thus decreases the cost efficiency of the government’s counter-terror efforts. 
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