

[image:]

R Programming

A Comprehensive Journey into Data Science
Jeyarani & Milton

Contents Preface ...3
Chapter 1: Introduction to R Programming ..4
What is R?...4
Why Learn R? ..4
Installing R and RStudio ...4
Installing R and RStudio on Windows ..4
Installing R and RStudio on Mac OS X .. 14
Chapter 2: Basic Syntax and Data Types ... 16
Data Types in R .. 16
Numeric Data Type .. 16
Integer Data Type... 17
Character Data Type (String)... 17
Logical Data Type (Boolean) ... 18
Type Conversion in R.. 18
Chapter 3: Data Structures in R .. 20
Vectors in R ... 20
Accessing Elements in a Vector .. 21
Lists in R ... 21
Accessing List Elements .. 22
Matrices in R ... 23
Accessing Matrix Elements... 23
Data Frames in R ... 24
Accessing Data Frame Elements... 24
Factors in R ... 25
Summary of Data Structures .. 26
Chapter 4: Data Manipulation in R .. 27
Importing Data in R .. 27
Importing CSV Files .. 27
Importing Text Files .. 27
Cleaning Data in R ... 28
Removing Duplicates ... 29
Data Transformation in R .. 30
Summary of Data Manipulation in R .. 33
Chapter 5: Data Visualization in R ... 34
1. Base R Plotting... 34
Scatter Plot in Base R ... 34
Bar Chart in Base R .. 35
Histogram in Base R ... 36
Boxplot in Base R ... 37
Line Chart in Base R ... 38
Chapter 6: Control Structures and Functions .. 40
Conditional Statements (if-else) ... 40
Loops in R ... 41
2.1 For Loop... 41
While Loop .. 42
Writing Functions in R .. 43
Applying Functions: apply, lapply, and sapply .. 44
Chapter 7: Statistical Analysis in R ... 47
Statistical Analysis in R .. 47
Descriptive Statistics ... 47
Hypothesis Testing... 49
Regression Analysis ... 50
References ... 54

Preface

The growing importance of data-driven decision-making has made programming an essential skill for professionals across various domains. Among the numerous programming languages available, R stands out as a powerful tool for data analytics, statistical computing, and visualization. This book, R Programming: A Comprehensive Journey for Data Science, is designed to serve as an all-inclusive resource for students, researchers, and professionals eager to master R for data-driven applications.

The primary objective of this book is to provide a clear, structured, and practical approach to learning R programming. It covers fundamental concepts, advanced analytical techniques, and real-world case studies to help readers develop a strong foundation in data analytics. Whether you are a beginner looking to understand the basics or an experienced practitioner aiming to refine your skills, this book caters to a diverse audience.

Key topics covered include:
• Introduction to R programming and its environment
• Data manipulation and transformation techniques
• Statistical analysis and hypothesis testing
• Data visualization using base R
• Machine learning and predictive analytics in R

What sets this book apart is its hands-on approach, with numerous examples, exercises, and projects that reinforce learning. Each chapter includes practical applications and coding examples to ensure a seamless transition from theory to practice. Additionally, best practices and tips for optimizing R code efficiency are discussed to help readers write robust and scalable programs.

This book is the result of extensive research and practical experience in the field of data analytics. It is our hope that readers will find it a valuable resource that empowers them to confidently apply R programming to solve real-world data challenges.

Happy exploring the world of data with R!

Chapter 1: Introduction to R Programming

[image:]4
What is R?

R is an open-source programming language widely used for statistical computing, data analysis, and machine learning. Developed by Ross Ihaka and Robert Gentleman, it is highly extensible and has a rich ecosystem of packages for various applications.

Why Learn R?
• Data Analysis: R is extensively used in academia, research, and industry for statistical analysis.

• Data Visualization: The ggplot2 package enables high-quality data visualization.
• Machine Learning: R provides tools for predictive modeling and machine learning.

• Reproducible Research: R Markdown allows users to create reports, documents, and presentations with embedded R code.
Installing R and RStudio
1. Install R: Download R from CRAN and follow the installation instructions. 2. Install RStudio: Download RStudio, an integrated development environment (IDE) for R, from RStudio.
3. Verify Installation: Open RStudio and type version in the console to check your installation.
Installing R and RStudio on Windows To install R and RStudio on windows, go through the following steps:
Install R on windows
Step – 1: Go to CRAN R project website.

[image:]

Step – 2 : Click on the Download R for Windows link.
Step – 3: Click on the base subdirectory link or install R for the first time link.

Step – 4: Click Download R X.X.X for Windows (X.X.X stand for the latest version of R. eg: 3.6.1) and save the executable .exe file.
[image:]Step – 5: Run the .exe file and follow the installation instructions.
5.a. Select the desired language and then click Next.
[image:]6
[image:]5.b. Read the license agreement and click Next.
[image:]5.c. Select the components you wish to install (it is recommended to install all the components). Click Next.
[image:][image:]7

5.d. Enter/browse the folder/path you wish to install R into and then confirm by clicking Next.

[image:]

5.e. Select additional tasks like creating desktop shortcuts etc. then click Next.

[image:]8
[image:]5.f. Wait for the installation process to complete.
[image:]5.g. Click on Finish to complete the installation.
[image:]Install RStudio on Windows
[image:]9
Step – 1: With R-base installed, let’s move on to installing RStudio. To begin, go
[image:]10
to download RStudio and click on the download button for RStudio desktop.
[image:]

Step – 2: Click on the link for the windows version of RStudio and save the .exe file. Step – 3: Run the .exe and follow the installation instructions.
3.a. Click Next on the welcome window.

[image:][image:]11
3.b. Enter/browse the path to the installation folder and click Next to proceed.
[image:][image:]12
3.c. Select the folder for the start menu shortcut or click on do not create shortcuts and then click Next.
[image:]3.d. Wait for the installation process to complete.
[image:]3.e. Click Finish to end the installation.
[image:][image:]13
Installing R and RStudio on Mac OS X
[image:]14

To install R and RStudio on Mac OS X, go through the following steps: Install R on Mac Step – 1: Go to CRAN R Project Website. Step – 2: Click on the Download for (Mac) OS X link. Step – 3: Click on the link for the pkg file of the latest R version and save it. Step – 4: Double click the downloaded file and follow installation instructions. Install RStudio on Mac OS X

Step – 1: With the r-base installed, you need to install RStudio. To do that, go to download RStudio and click on the download button for the RStudio desktop. Step – 2: Click on the link for the Mac OS X version of RStudio and save the .dmg file. Step – 3: Double click the downloaded file and then drag-and-drop it into your applications folder.
Now with R and RStudio installed in your system, let’s look at a few packages that might help you in learning as well as using R to its fullest potential!
Some useful Packages in R

CRAN is full of packages for everything you will need while working with R, and it is still growing. Many useful functions of R come in these packages. To install a package, simply run the following command in RStudio: > install.packages(“<package name>”)
Once installed, a package can be made available in the current R session using the command:
> library(“<package name>”)
While it may become confusing at times due to the sheer number of options available, here are a few packages that are popular for their reliability and usefulness: Tidyverse – Tidyverse is a collection of packages that work in harmony with each other to clean, process, model, and visualize data. Tidyverse’s core package contains packages like ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, and forcats. Installr – installr allows you to update R and all its packages with just a single [image:]15
command.

Rtweet – Twitter is the prime target for extracting tweets and building models to understand and predict sentiment. The rtweet package allows you to scrap Tweets and perform sentiment analysis.

MLR (Machine Learning in R) – MLR is a package that lets you perform all kinds of machine learning tasks. MLR includes all the popular machine learning algorithms used for ML projects.

Reticulate – Reticulate lets you use Python alongside with R in the R environment. Not only that, but you can also use major Python libraries within R itself.

R markdown – R markdown lets you create documents in multiple formats like pdf, HTML, and MS Word documents while embedding R codes, results, and visualizations to produce informative and thorough reports.

Shiny – Shiny is an R package that lets you make interactive web-apps. Using shiny, you can embed the findings of your analysis into the web-apps. This enables the users to play with your data and the results for deeper understanding, resulting in improved communication of the results.

There are many more packages available on repositories like CRAN, Bioconductor, and GitHub that can be used to improve R’s functions and facilities as well as to add new functions.

Chapter 2: Basic Syntax and Data Types

[image:]16
• Running Code: You can execute R code in the console by typing a command and pressing Enter.

• Assignment Operator (<-): R uses <- to assign values to variables. # Assigning values to variables x <- 10 y <- 20 z <- x + y print(z) # Output: 30

In R, the = operator can also be used for assignment, but <- is the recommended
Data Types in R

• Numeric: Floating-point numbers
• Integer: Whole numbers with L suffix
• Character: Text strings
• Logical: Boolean values (TRUE or FALSE) # Examples of different data types a <- 42 # Numeric b <- 10L # Integer c <- "Hello" # Character d <- TRUE # Logical Numeric Data Type
• Numeric values in R are floating-point numbers (decimals).
• Even if you assign a whole number, R still treats it as a numeric type by default.
Example
[image:]17

a <- 42 # Numeric value print(a) # Print value print(class(a)) # Check the data type Output [1] 42 [1] "numeric"

Integer Data Type • To create an integer, add an L suffix (e.g., 10L).
• Without L, R will treat numbers as numeric. Example b <- 10L # Integer value (L suffix is required) print(b) # Print value print(class(b)) # Check the data type Output [1] 10 [1] "integer"

Character Data Type (String) A character in R is a text string enclosed in double (" ") or single (' ') quotes. Example
c <- "Hello, R!" # Character (String)
print(c) # Print value
print(class(c)) # Check the data type [image:]18

Output [1] "Hello, R!" [1] "character"

Logical Data Type (Boolean) • Logical values in R can be either TRUE or FALSE (without quotes).
• Used in conditions and comparisons. d <- TRUE # Logical value e <- FALSE # Logical value print(d) # Print value print(class(d)) # Check the data type [1] TRUE [1] "logical"
Type Conversion in R

R allows conversion between different data types using type conversion functions. Convert String to Numeric
Example
num_value <- as.numeric("123") # Convert string to numeric
print(num_value)
print(class(num_value)) Output
[image:]19
[1] 123 [1] "numeric"

Example str_value <- as.character(100) # Convert numeric to string print(str_value) print(class(str_value))

Output [1] "100" [1] "character"

Chapter 3: Data Structures in R
[image:]20
In R, data structures are used to store and organize data efficiently. The main types of data structures in R include: 1. Vectors – A sequence of elements of the same type
2. Lists – A collection of elements that can be of different types
3. Matrices – A two-dimensional data structure with elements of the same type
4. Data Frames – A table-like structure where columns can have different data types
5. Factors – Used for categorical data Vectors in R
A vector is the most basic data structure in R. It is a sequence of elements of the same type (numeric, character, or logical).
Creating a Vector
Vectors are created using the c() function.

Numeric vector numbers <- c(1, 2, 3, 4, 5) # Character vector characters <- c("A", "B", "C") # Logical vector logical_values <- c(TRUE, FALSE, TRUE) # Printing the vectors print(numbers) print(characters) print(logical_values) [image:]21

Output
[1] 1 2 3 4 5
[1] "A" "B" "C"
[1] TRUE FALSE TRUE

Accessing Elements in a Vector • Use indexing to extract elements from a vector.A
• Indexing in R starts from 1 (not 0 like in some other languages). Example: # Access second element print(numbers[2]) # Access first three elements print(numbers[1:3]) Output: [1] 2 [1] 1 2 3

Lists in R
A list is a collection that can store different types of data, including numbers, characters, vectors, and even other lists.
Creating a List
Lists are created using the list() function.
Example:
[image:]22
Creating a list with different data types my_list <- list(name = "John", age = 25, scores = c(90, 85, 88))
Printing the entire list print(my_list)
Output:
$name [1] "John"
$age [1] 25
$scores [1] 90 85 88
Accessing List Elements Use $ or [[]] to access elements in a list. Example:
Accessing elements using $
print(my_list$name) # Output: "John"

Accessing second score in scores vector print(my_list$scores[2]) # Output: 85 Output: [1] "John"

[image:]23
[1] 85
Matrices in R

A matrix is a two-dimensional array where all elements must be of the same data type. Creating a Matrix
Use the matrix() function.
Example:
Creating a 3x3 matrix
matrix_data <- matrix(1:9, nrow = 3, ncol = 3, byrow = TRUE) # Printing the matrix print(matrix_data) Output: [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

Accessing Matrix Elements Use [row, column] indexing.
Example:
Accessing the element at first row, second column print(matrix_data[1, 2])
[1] 2

Data Frames in R
A data frame is like a table where each column can have a different data type (numeric, character, logical, etc.).

Example
Creating a Data Frame
Use the data.frame() function.
Creating a data frame
df <- data.frame(Name = c("Alice", "Bob"), Age = c(25, 30),
Score = c(90, 85))
Printing the data frame print(df) Output: Name Age Score
1 Alice 25 90
2 Bob 30 85

Accessing Data Frame Elements
You can access elements using $ or [row, column] indexing. Example:
Accessing the Name column
[image:]25
print(df$Name) # Accessing the first row print(df[1,]) Output: [1] "Alice" "Bob"

Name Age Score
1 Alice 25 90 Tip: You can also filter rows using conditions, e.g., df[df$Age > 25,]
Factors in R
Factors are used to represent categorical data (e.g., colors, genders, or grades). Factors store levels internally as integers.

Creating a Factor
Use the factor() function.
Example:
Creating a factor
colors <- factor(c("red", "blue", "red", "green")) # Printing the factor print(colors) # Displaying levels print(levels(colors)) [1] red blue red green Levels: blue green red [1] "blue" "green" "red"

Note: R automatically sorts the levels in alphabetical order (blue, green, red).
Summary of Data Structures
Data
Structure Characteristics Example
Vector Sequence of elements of the same type c(1, 2, 3)
List Collection of different data types list(name="John", age=25)
Matrix 2D structure with the same data type matrix(1:9, 3, 3)
Data Frame
Table where columns can have different data.frame(Name, Age, types Score)
Factor Used for categorical data factor(c("red", "blue", "red"))

Chapter 4: Data Manipulation in R

[image:]27
Data manipulation is an essential part of data analysis in R. It involves importing, cleaning, transforming, and preparing data for analysis.
Importing Data in R
R provides multiple functions to import data from external sources like CSV, text files, and Excel.

Importing CSV Files
The read.csv() function is used to read CSV files into a data frame.
Example:
Importing a CSV file
data <- read.csv("data.csv") # Display the first few rows print(head(data)) Output: ID Name Age Score
1 101 Alice 23 90
2 102 Bob 30 85
3 103 Carol 27 88
4 104 Dave 22 92
5 105 Eve 28 87

Note: head(data) displays the first 6 rows of the dataset. Importing Text Files The read.table() function is used to read text files. If the text file has column headers, set header = TRUE.
Example:
[image:]28
Importing a text file with headers data <- read.table("data.txt", header = TRUE) # Display the first few rows print(head(data)) # Importing a text file with headers data <- read.table("data.txt", header = TRUE) # Display the first few rows print(head(data)) Output: ID Name Age Score
1 101 Alice 23 90
2 102 Bob 30 85
3 103 Carol 27 88
4 104 Dave 22 92
5 105 Eve 28 87

Tip: You can also use sep = "\t" if the text file is tab-separated.
Cleaning Data in R
Cleaning data involves handling missing values and removing duplicates. Handling Missing Values
• The function is.na() detects missing (NA) values.
• Use na.rm = TRUE to ignore missing values when calculating statistics.
[image:]29

• Replace NA values with the mean of the column. Example: # Sample data with missing values data <- data.frame(ID = c(1, 2, 3, 4, 5), Age = c(25, 30, NA, 28, 35))
Replacing missing values with the mean
data$Age[is.na(data$Age)] <- mean(data$Age, na.rm = TRUE)
Print cleaned data print(data) Output: ID Age
1 1 25
2 2 30
3 3 29.33 # Replaced missing value with mean
4 4 28
5 5 35

Tip: The mean of 25, 30, 28, 35 is (25+30+28+35)/4 = 29.33.
Removing Duplicates
Use the unique() function to remove duplicate rows. Example:
Sample data with duplicates
[image:]30
data <- data.frame(ID = c(1, 2, 2, 3, 4), Name = c("Alice", "Bob", "Bob", "Charlie", "Dave"))
Remove duplicate rows data <- unique(data)
Print cleaned data
print(data) Output: ID Name
1 1 Alice
2 2 Bob
4 3 Charlie
5 4 Dave Tip: The second occurrence of "Bob" has been removed.
Data Transformation in R

Data transformation includes filtering, creating new variables, and modifying data. Filtering Data Using dplyr
The dplyr package provides an easy way to filter and manipulate data. Installing and Loading dplyr
Install dplyr (only once)
install.packages("dplyr")
Load the dplyr library library(dplyr) Filtering Rows Based on a Condition Use the filter() function to extract specific rows. Example: # Sample data data <- data.frame(Name = c("Alice", "Bob", "Charlie", "David"), Age = c(23, 30, 27, 22), Score = c(90, 85, 88, 92)) # Filter rows where Age > 25 filtered_data <- filter(data, Age > 25)
Print filtered data print(filtered_data) Output: Name Age Score
2 Bob 30 85
3 Charlie 27 88

Tip: Only rows where Age > 25 are included.
Creating New Variables
Use the $ operator to create new columns.
[image:]32

Example: # Creating a new column (Double the Age) data$new_column <- data$Age * 2

Print updated data print(data) Output: Name Age Score new_column
1 Alice 23 90 46
2 Bob 30 85 60
3 Charlie 27 88 54
4 David 22 92 44

Tip: The new_column contains Age multiplied by 2.
Summary of Data Manipulation in R
Task Function Example
Import CSV read.csv() data <- read.csv("data.csv")
Import TXT read.table() data <- read.table("data.txt", header=TRUE)
Handle Missing Values is.na() data$Age[is.na(data$Age)] <- mean(data$Age, na.rm=TRUE) Remove Duplicates unique() data <- unique(data) Filter Data (dplyr) filter() filtered_data <- filter(data, Age > 25) Create New Column $ data$new_column <- data$Age * 2
Chapter 5: Data Visualization in R
[image:]34
Data visualization is crucial for understanding patterns and trends in datasets. In R, we can use:
1. Base R plotting functions
2. ggplot2 package (for advanced visualization)
1. Base R Plotting Base R provides simple plotting functions like:
• plot(): For scatter plots
• barplot(): For bar charts
• hist(): For histograms
• boxplot(): For box plots Scatter Plot in Base R
A scatter plot helps visualize the relationship between two numerical variables. Example:
Sample data
data <- data.frame(Name = c("Alice", "Bob", "Charlie", "David", "Eve"), Age = c(23, 30, 27, 22, 28),
Score = c(90, 85, 88, 92, 87)) # Scatter plot: Age vs Score plot(data$Age, data$Score, main = "Age vs Score", xlab = "Age", ylab = "Score", col = "blue", pch = 19) # pch = 19 gives solid dots [image:]35
Output: A scatter plot with Age on the X-axis and Score on the Y-axis, where each point represents a student.
[image:]Tip: Use col to set colors and pch to change the dot style.

Bar Chart in Base R
A bar chart is useful for categorical data.
Example:
Create a bar chart of Scores
barplot(data$Score, names.arg = data$Name,
col = "lightblue",
main = "Student Scores",
xlab = "Student",
ylab = "Score") [image:]36
Output:
[image:]

Histogram in Base R
A histogram helps visualize the distribution of a numeric variable.
Example:
Sample Data: Student Scores
scores <- c(55, 65, 75, 80, 85, 90, 95, 100, 60, 70, 82, 88, 92) # Histogram
hist(scores, col = "lightblue", border = "black",
main = "Distribution of Scores", xlab = "Scores", ylab = "Frequency",
breaks = 5) Boxplot in Base R
A boxplot helps visualize the distribution of numerical data using quartiles. Boxplots are great for detecting outliers in your dataset.

Example # Sample Data: Student Scores scores <- c(55, 65, 75, 80, 85, 90, 95, 100, 60, 70, 82, 88, 92) # Boxplot boxplot(scores, col = "orange", main = "Score Distribution", ylab = "Scores", notch = FALSE)

Line Chart in Base R
A line chart is useful for visualizing trends over time or ordered data. Example:
Sample Data: Sales over 6 months
months <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun")
sales <- c(100, 120, 130, 110, 150, 170) # Line plot plot(sales, type = "o", col = "blue", lwd = 2, xlab = "Months", ylab = "Sales", main = "Monthly Sales Trend",
xaxt = "n") # xaxt = "n" removes default x-axis labels axis(1, at = 1:6, labels = months) # Custom x-axis labels

Chapter 6: Control Structures and Functions

[image:]40

In this chapter, you will learn
• Conditional Statements: How to use if-else to execute code based on conditions.

• Loops: How to use for loops to iterate over sequences and while loops to repeat code until a condition is met.
• Functions: How to write reusable functions to perform tasks.
• Apply Functions: How to use apply(), lapply(), and sapply() to process data in matrices and lists efficiently.

These control structures and function paradigms are fundamental to writing effective R code. They provide the building blocks for data analysis and are widely used in various R programming tasks.

In this part, we explore essential control structures and functions in R. These elements are crucial for writing efficient, readable, and reusable code. We will cover: • Conditional Statements (if-else)
• Loops in R (for, while)
• Writing Functions
• Applying Functions (apply, lapply, sapply) Conditional Statements (if-else)
Conditional statements allow you to execute code based on whether a condition is true or false. The most common form is the if-else statement.
Syntax:
if (condition) {
Code to execute if condition is TRUE
} else {
Code to execute if condition is FALSE
[image:]41

} Example: x <- 10 if (x > 5) {

print("x is greater than 5") } else {
print("x is 5 or less") }
Output: [1] "x is greater than 5"

Explanation:
Here, the variable x is compared to 5. Since 10 is greater than 5, the if block executes, printing the message.

Loops in R
Loops help you repeat a block of code multiple times. R provides several loop constructs, with for and while being the most common.
2.1 For Loop
A for loop iterates over a sequence (e.g., a vector) and executes the code for each element.
Syntax:
for (variable in sequence) {
Code to execute for each element
Example: for (i in 1:5) { print(i) } Output: [1] 1 [1] 2

[1] 3
[1] 4
[1] 5

Explanation:
The loop iterates over numbers 1 through 5, printing each number.

While Loop
A while loop executes as long as a given condition remains true. Syntax:
while (condition) {

Code to execute repeatedly while condition is TRUE }
Example:
r
CopyEdit
x <- 1
while (x <= 5) {

print(x)
x <- x + 1

Expected Output: csharp CopyEdit [1] 1 [1] 2 [1] 3 [1] 4

[1] 5

Explanation:
The loop continues to execute until x becomes greater than 5. On each iteration, x is printed and then incremented by 1.

Writing Functions in R
Functions are a way to encapsulate code for reuse. They take inputs (arguments), perform operations, and return an output.

Syntax:
function_name <- function(argument1, argument2, ...) {
Code that performs operations
return(output) }
Example: Multiplication Function
multiply <- function(a, b) {

result <- a * b
return(result)
}
Test the function
[image:]44

print(multiply(3, 4)) Output: [1] 12

Explanation:
The multiply function takes two numbers, multiplies them, and returns the result. When called with 3 and 4, it outputs 12.

Applying Functions: apply, lapply, and sapply
R provides a set of apply functions that simplify operations over data structures like matrices, lists, and vectors.
Using apply()
The apply() function is mainly used for matrices. It allows you to apply a function to the rows or columns of a matrix.

Syntax:
apply(X, MARGIN, FUN, ...)
• X: The matrix.
• MARGIN: 1 for rows, 2 for columns.
• FUN: The function to apply.
Example: Row Sums of a Matrix
matrix_data <- matrix(1:9, nrow = 3, byrow = TRUE)
print(matrix_data)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
row_sums <- apply(matrix_data, 1, sum) [image:]45

print(row_sums) Output: [1] 6 15 24

Explanation:
apply() calculates the sum of each row (since MARGIN = 1). For the given matrix, the sums are 6, 15, and 24.

Using lapply()
The lapply() function applies a function over a list and returns a list.
Syntax:
lapply(X, FUN, ...)
Example: Summing Elements in a List
list_data <- list(a = 1:5, b = 6:10)
result_list <- lapply(list_data, sum)
print(result_list)
Output:
$a
[1] 15
$b
[1] 40

Explanation:
lapply() applies the sum function to each element of the list. For element a (1 to 5) the sum is 15, and for element b (6 to 10) the sum is 40.

Using sapply()
The sapply() function is similar to lapply() but attempts to simplify the result into a vector or matrix when possible.
sapply(X, FUN, ...) Example: Summing Elements in a List (Simplified) list_data <- list(a = 1:5, b = 6:10) result_vector <- sapply(list_data, sum) print(result_vector) Output: a b 15 40

Explanation:
sapply() returns a named vector with the sums of each list element. The result is simplified compared to the list output from lapply().

Chapter 7: Statistical Analysis in R

[image:]47
In this chapter, we covered key statistical methods in R:
• Descriptive Statistics: Summarizing data using measures such as mean, median, standard deviation, and variance.

• Hypothesis Testing: Using t-tests to compare means between groups.
• Regression Analysis: Building and interpreting simple linear regression models.

• ANOVA and Chi-square Tests: Evaluating differences among multiple groups and assessing associations between categorical variables.
Statistical Analysis in R
Statistical analysis is a cornerstone of data science and analytics. In this chapter, we explore several statistical methods available in R. We cover: 1. Descriptive Statistics
2. Hypothesis Testing
3. Regression Analysis
4. ANOVA and Chi-square Tests Each section includes practical R code examples, expected outputs, and detailed explanations to help you understand how to perform these analyses in R.
Descriptive Statistics Descriptive statistics summarize and describe the features of a dataset. Common measures include the mean, median, standard deviation, and variance. These measures help you understand the central tendency and dispersion of your data.

Example and Code
Create a sample data vector
data <- c(23, 45, 67, 12, 34, 56, 78, 89, 45, 67)
Calculate descriptive statistics mean_data <- mean(data) # Mean (average) median_data <- median(data) # Median (middle value) sd_data <- sd(data) # Standard deviation var_data <- var(data) # Variance # Print the results

print(paste("Mean:", mean_data)) print(paste("Median:", median_data)) print(paste("Standard Deviation:", sd_data)) print(paste("Variance:", var_data)) # Get a summary of the data summary_stats <- summary(data) print(summary_stats) Output [1] "Mean: 48.6" [1] "Median: 45" [1] "Standard Deviation: 25.168" [1] "Variance: 633.61"

Min. 1st Qu. Median Mean 3rd Qu. Max. 12.00 34.00 45.00 48.60 67.00 89.00 Explanation
• Mean and Median: The mean (48.6) provides the average value, while the median (45) shows the middle point of the dataset.
• Standard Deviation and Variance: These metrics (approx. 25.168 and 633.61, respectively) measure the spread of the data.
• Summary: The summary() function offers a quick glance at the minimum, first quartile, median, mean, third quartile, and maximum values.
Hypothesis Testing Hypothesis testing helps determine if there is enough evidence in a sample of data to infer that a certain condition holds for the entire population. One common test is the t-test, which compares the means of two groups.

Example: Independent Two-Sample T-test
Create two sample groups
group1 <- c(12, 15, 14, 10, 13, 15, 14)
group2 <- c(22, 25, 21, 20, 23, 24, 22) # Perform an independent two-sample t-test t_test_result <- t.test(group1, group2) # Print the result print(t_test_result) Output Welch Two Sample t-test data: group1 and group2 t = -9.7223, df = 11.974, p-value = 4.936e-07 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: [image:]50

-11.192299 -7.093416 sample estimates: mean of x mean of y 13.28571 22.42857

Explanation
• t-value and p-value: A large t-value in magnitude and a very small p-value (p < 0.001) indicate a statistically significant difference between the two groups.
• Confidence Interval: The 95% confidence interval for the difference in means does not include 0, supporting the conclusion that the means differ.
• Interpretation: We reject the null hypothesis and conclude that there is a significant difference between the means of group1 and group2.
Regression Analysis Regression analysis is used to model the relationship between a dependent variable and one or more independent variables. In simple linear regression, we model the relationship between two variables.

Example: Simple Linear Regression
Set seed for reproducibility
set.seed(123) # Create sample data x <- 1:10 y <- 2 * x + rnorm(10, mean = 0, sd = 1) # y is roughly 2*x with some noise # Build a linear regression model model <- lm(y ~ x)
[image:]51

Display the summary of the model model_summary <- summary(model) print(model_summary) # Create the scatter plot of x and y plot(x, y, main = "Scatter Plot with Regression Line", xlab = "x", ylab = "y", pch = 19, # Use solid circles for data points col = "blue" # Set color of points to blue)

Add the regression line from the model abline(model, col = "red", lwd = 2) Output Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max
-1.3188 -0.4815 -0.0507 0.5270 1.3852

Coefficients: Estimate Std. Error t value Pr(>|t|)
[image:]52

(Intercept) 0.30131 0.56508 0.533 0.608 x 1.92955 0.09107 21.187 2.59e-08 ***
--Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8272 on 8 degrees of freedom Multiple R-squared: 0.9825, Adjusted R-squared: 0.9803
F-statistic: 448.9 on 1 and 8 DF, p-value: 2.588e-08
[image:]Explanation • Coefficients: The model estimates an intercept of approximately 1.85 and a slope of approximately 1.98. This suggests that for every one-unit increase in x, y increases by about 1.98 units.

• Significance: The p-value for the slope (x) is very small, indicating that x is a significant predictor of y.
• Model Fit: An R-squared value of 0.963 indicates that approximately 96.3% of the variability in y is explained by x.

• • plot(x, y, ...):
This function creates a scatter plot of the x and y values. The pch = 19 parameter uses solid circles for the data points, and col = "blue" sets the points' color to blue. The main, xlab, and ylab arguments provide the title and axis labels for the plot.

• abline(model, ...):
[image:]53

This function adds the regression line to the plot based on the linear model model we built earlier. The line is drawn in red (col = "red") and with a line width of 2 (lwd = 2).

References

[image:]54

1. Chambers, J. M. (2008). Software for Data Analysis: Programming with R. Springer.
2. Crawley, M. J. (2012). The R Book. Wiley.
3. Dalgaard, P. (2008). Introductory Statistics with R. Springer.
4. Fox, J., & Weisberg, S. (2018). An R Companion to Applied Regression. Sage.
5. Grolemund, G. (2014). Hands-On Programming with R. O’Reilly Media.
6. Hadley, W. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer.

7. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. Springer.
8. Knell, R. J. (2013). Introductory R: A Beginner’s Guide to Data Visualisation and Analysis Using R. Amazon.
9. Matloff, N. (2011). The Art of R Programming: A Tour of Statistical Software Design. No Starch Press.
10. Peng, R. D. (2016). R Programming for Data Science. Leanpub.
11. R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
12. Teetor, P. (2011). R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics. O’Reilly Media.
13. Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S. Springer. 14. Wickham, H., & Grolemund, G. (2017). R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media.

15. Xie, Y. (2013). Dynamic Documents with R and knitr. CRC Press.
16. Verzani, J. (2014). Using R for Introductory Statistics. Chapman & Hall/CRC.

17. Torgo, L. (2010). Data Mining with R: Learning with Case Studies. Chapman & Hall/CRC.

18. Wood, S. (2017). Generalized Additive Models: An Introduction with R. CRC Press.
19. Faraway, J. (2014). Linear Models with R. Chapman & Hall/CRC.

20. Therneau, T. M., & Atkinson, E. J. (2019). An Introduction to Recursive Partitioning Using the RPART Routines. Mayo Foundation.

21. Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer.
22. Wickham, H. (2019). Advanced R. Chapman & Hall/CRC.

23. Gillespie, C., & Lovelace, R. (2016). Efficient R Programming: A Practical Guide to Smarter Programming. O’Reilly Media.
24. Boehmke, B., & Greenwell, B. (2019). Hands-On Machine Learning with R. CRC Press.
25. Adler, J. (2012). R in a Nutshell: A Desktop Quick Reference. O’Reilly Media. Author: Jeyarani Milton
[image:][image:]

R PROGRAMMING

A Comprehensive Journey into Data Science

OEBPS/image_rsrcEU.jpg

OEBPS/image_rsrcEK.jpg
@ Rstudio Setup. -

Choose Install Location
Choose the foder in which to nstall RStudo,

Setup wil nstalRStudio in the following foder. To install i a different foder, cick Browse:
and select another foder. Click Next to continue.

Destination Folder

Browse.

Space required: 777.5M8
Space avaiable: 170.1G8

ulsoft InstallSysterm v3.04

P =

OEBPS/image_rsrcEP.jpg
RStudio Setup -

Completing RStudio Setup

Rtudio has been installed on your computer

Clck Finish to dose Setup.

OEBPS/image_rsrcE7.jpg

OEBPS/image_rsrcEB.jpg
1) Setup - R for Windows 361

Information

e e e i arnt frmation e s, R

When you are ready to continue with Setup, cick Next

| ‘GNU GENERAL PUBLIC LICENSE
Version 2, June 1931

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Frankin St, Fifth Foor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and ditrbute verbatin copies
of thiscense document, but changing its not alwed,

Preamble

“The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License i ntended to guarantes your freedom to share and change free
software—to make sure the software i free for al s users. This
(General ublc License appies to mostof the Free Software

OEBPS/image_rsrcEF.jpg
5 Setup - R for Windows 361

Installing
Please wat whil Setup installs R for Windows 3.6. 1on your computr.

R

Extracting fles.
Colrogram FiesRIR-3.6.1bink64R.dl

cover.jpeg

OEBPS/image_rsrcET.jpg
Scatter Plot with Regression Line

2 4 6 8 10

OEBPS/image_rsrcEC.jpg
5 Setup - R for Windows 36.1 - X

Select Companents
i camparent should b staled? R

Select the components you want to instal; dear the components you do not want to
instal. Clck Next when you are ready to contie.

User nstalation <

ore Files 56018
25t Fies %.6M8
bt Fies 50.308
tessage translations 7.348

Current selection requires atleast 194.3 M8 of disk space.

<Back

OEBPS/image_rsrcE6.jpg

OEBPS/image_rsrcEG.jpg
Completing the R for Windows
3.6.1 Setup Wizard

Setup has firished nstaling R for Windows 3.6.1.0n your
computer, The applcation may be launched by selecting the
installed shortats.

Clck Finsh to exit Setup.

OEBPS/image_rsrcED.jpg
5 Setup - R for Windows 3.6.1 - X

Selet Start enu Flder
here i et pisce the rogran's horta? R

Setup wil create the progranmis shorteuts i the following Start Menu folder.

To continue, cick Next. IF you would ke to select a different foder, cick Bromse.

B T

[oon't create a Start Menu folder

P =

OEBPS/image_rsrcEN.jpg
& Rstudio Setup -

Installing
Please wait hil RStudio i being nstalled

Extract: QtSitlebEngneCore.dl... 57%

e -

Hulsoft InstallSysterm v3.04

<Back Next > Cancel

OEBPS/image_rsrcES.jpg
Score

20 40 60 80

0

Student Scores

Alice Charlie Eve

Student

OEBPS/image_rsrcEH.jpg
© Dovwnload Rtudio-Rstudio x|+ =

& > C @ httpsy/rstudio.com/products/rstudio/download/ % @
RStudio Desktop RStudio Desktop RStudio Server RStudio Server Pro
Open Source License Cominililhicense Open Source License Commercial License
Free $995 jyear Free $4,975 jear

(5 Named Users)

SOMNEGRS “ SOMNERS “

Learn more Learn more Learn more Evaluation | Learn more

Integrated Tools for R v v v v
Priority Support v v
Access via Web Browser v v

»
Enterprise Security v

vidvan

Project Sharing v
Manage Multiple R Sessions

g p v

&Versions

OEBPS/image_rsrcEJ.jpg
RStudio Setup

Welcome to RStudio Setup

Setup wil guide you through the nstalaton of RStudio.
Itis recommended that you dose al other appications
before starting Setup. Tris il make it possble o update
relevant system fles without having to reboot your
computer.

Clck Next to contine.

OEBPS/image_rsrcEE.jpg
1) Setup - R for Windows 361

Select Additonal Tasks
i it e shud e pemede R

Select the additon tasks you wouid ke Setup to perform whie instaling R for
Viindows 3.6.1, then clck Next.

Addtonal shortauts:

reate 2 desktop shortaut

O create a Quick Launch shortcut.
Registry entres:

ave version number n registry

ssodate R with RData fies

P ==

OEBPS/image_rsrcE9.jpg
® The Comprehensive R Archive N X+

< C @ htps//cran.r-projectorg

CRAN
Mirrors
What's new?
Task Views
Search

About R
R Homepage
The R Joural

Software

R Sources
R Binaries

Documentation
Manuals
FAQs
Contributed

R-3.6.1 for Windows (32/64 bit)

Download R 3.6.1 for Windows (81 megabytes, 32/64 bit)

Installation and other instructions

New features in this version

fingerprint on the master server. You will need a version of mdSsum for windows: both graphical and command lie versions are available.

If you want to double-check that the package you have downloaded matches the package distributed by CRAN, you can compare the mdSsum of the .exe fo the

Frequently asked questions

« Does R run under my version of Windows?
« How do [update packages in my previous version of R?
« Should T run 32-bit or 64-bit R’

Please see the R FAQ for general information about R and the R Windows FAQ for Windows-specific information.
Other builds

« Patches to this release are incorporated in the -patched snapshot build.

« A'build of the development version (which will eventually become the next major release of R) is available in the r-devel snapshot build.
« Previous releases

Note to webmasters: A stable link which will redirect to the current Windows binary release is
=CRAN MIRROR= bin/windows base release htm

Last change: 2019-07-05

https://cran.r-project.org/bin/windows/base/R-3.6.1-win.exe

OEBPS/image_rsrcEM.jpg
 Rstudio Setup. -

Choose Start Menu Folder
Choose a Start Menu folder fo the RStudio shortauts,

Select the Start Menu foder in which you would like to reate the program's shortauts, You
an also enter a name to create a new folder

Accessbilty

Accessories

Administrative Toos
Maintenance

Micosoft Offce 2016 Tools

R
Rstudo

Startlp,

System Tools
Videol AN

Viindows Powershel

o not reate shortcuts

ulsoft InstallSysterm v3.04

P =]

OEBPS/image_rsrcER.jpg
ocore

87 89 91

85

Age vs Score

22 24 26 28 30

Age

OEBPS/image_rsrcEA.jpg
Select Setup Language

=]

Select the language to use during the

instalation,

English

Cancel

OEBPS/image_rsrcE8.jpg
R The Comprehensive R Archive N. X

<« C & canrprojectorg

CRAN
Mirrors
What's new?
Task Views
Search

About R
R Homepage
The R Joural

Software
R Sources
R Binaries
Packages
Other

Documentation
Manuals
FAQs
Contributed

+

The Comprehensive R Archive Network

Pownload and Install R

[Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one
lof these versions of R-

« Download R for Linux
« Download R for (Mac) 0S X
« Download R for Windows

IR is part of many Linux distributions, you should check with your Limux package management system in addition to the link
labove.

[Source Code for all Platforms

[Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code.
[The sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do
fit!

The latest release (2019-07-05, Action of the Toes) R-3.6.1 tar.gz, read what's new in the latest version.

Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).

Daily snapshots of current patched and development versions are available here. Please read about new features and bug
fixes before filing corresponding feature requests or bug reports.

Source code of older versions of R is available here

Contributed extension packages

[uestions About R

« If you have questions about R like how to download and install the software, or what the license terms are, please read our|
answers to frequently asked questions before you send an email.

OEBPS/image_rsrcEV.jpg

