
https://brandoncole.net

Taking Video Out of the Game
This book aims to provide information and in‑routes to one of the most
complex forms of video game accessibility. It promises to explain how a
developer might make their game accessible to the totally blind. It will
break down what that means and provide plenty of examples and ideas for
how developers might achieve total blind accessibility, even in the largest,
most complex games. As an experienced accessibility consultant who has
worked on multiple AAA titles, the author brings a wealth of practical
experience to the reader.

Brandon Cole was a totally blind, award‑winning accessibility con‑
sultant working primarily in the video game industry. His notable work
includes such titles as The Last of Us Part I and The Last of Us Part II,
among others. He also used his social media, blog, and streaming plat‑
forms to advocate for accessibility whenever possible. Tragically, he passed
away in June 2024 after a brief fight with Melanoma. You can still find his
website, YouTube, and social media at brandoncole.net.

https://brandoncole.net

https://taylorandfrancis.com

Taking Video
Out of the Game

A Game Developer’s Guide to Total
Blind Accessibility

Brandon Cole

Designed cover image: Bret Cole

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Brandon Cole

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences
of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978‑750‑8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

ISBN: 9781032560762 (hbk)
ISBN: 9781032557397 (pbk)
ISBN: 9781003433750 (ebk)

DOI: 10.1201/9781003433750

Typeset in Minion
by codeMantra

https://www.copyright.com
https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003433750

Dedicated in memory of Brandon Cole (1986–2024)

Dedication by Jackie Rudenick

Brandon has always been a remarkably intelligent child.
As a single mother raising four children, I was often

overwhelmed with responsibilities, but Brandon absorbed
so much just by listening. He taught himself to play
the piano and master video games at a young age.

Although I never fully grasped the intricacies of video
gaming, Brandon’s passion and talent in the field became

evident as he grew older. He carved out a name for himself
in the industry, showcasing his creativity and extensive

knowledge. Despite my lack of understanding, I was always
immensely proud of the recognition he received from friends

and colleagues. Brandon’s sense of humor and love for
voice acting and school plays endeared him to many.

Late at night, Brandon and his stepdad, Mike, would often
play video games together. When they heard the dog’s
bell, they would quickly jump into bed, thinking I was

coming to scold them for staying up too late. It was only
the dog, and we all shared a good laugh about it.

Brandon’s friends were often baffled by his ability to beat
them in video games despite being blind. Their frustration was

endearing, and it highlighted Brandon’s exceptional skills.

You will forever be in my heart.

– Love, Mom

vi    ◾   ﻿ Dedication

IN MEMORY OF BRANDON COLE
For those who may not know, Brandon passed away before this book was
published. I write this foreword to pay tribute to him and offer a glimpse
into his life, aspirations, and achievements from a father’s perspective.
I was consistently in awe of his abilities, even at a young age—whether it
was mastering the latest level of a video game, flawlessly imitating Sean
Connery or Stewie Griffin from Family Guy, or simply being his amusing
and quirky self. Brandon embraced his passion for video games when he
received his first computer, a gift from Make‑A‑Wish that could engage
with him, and he never looked back. He carried with him the dream of
establishing a blog to assist the blind community in navigating video games
and their accessibility as he moved from his home in Minneapolis to Ohio
to be with his fiancée, Misty. He remained steadfast in this pursuit, taking
on various jobs along the way, including providing customer service for
tech support and lending his voice to characters in video games. His blog
began to flourish, becoming a cornerstone for the blind community, and
soon, game developers recognized his valuable insights, inviting him to
speak at conventions. This led to his role as a consultant for games like The
Last of Us Part II, Forza Motorsport, and several other major titles. This
remarkable journey of passionately chasing his dreams enabled Brandon
to forge a unique place within both the blind community and the video
game industry, ultimately resulting in the honor of writing this book. Two
poignant memories stand out to me: before he passed, he learned someone
wished to meet him as their Make‑A‑Wish request, and I cherish the hours
we spent as a child, playing Diablo and dreaming of him writing books
while I illustrated the covers. One final dream realized. I am immensely
proud of you, my son, and the man you have become. You will be deeply
missed by many, and may your legacy endure.
Bret Cole

TO THE DEVS: A NOTE BY MISTY RAYBURN
Brandon loved his work, and he ultimately felt it was his path in life.
Accessibility work was his element, and you’d never find someone more
confident than he was when he was championing total blind accessibility.
We saw it in his interviews, talks, and speeches. It was there in his live
streams and his written work as well.

Dedication﻿    ◾    vii

When asked, he’d give me credit for his start. He’d tell you that it was
my idea for him to blog and that he showed doubt about it at first. While
that’s true, I witnessed his contagious excitement spread among develop‑
ers in meeting rooms. I saw him grow from a gamer with ideas to a profes‑
sional consultant who considered all options and all types of players, from
the visually impaired to the totally new blind gamer who thought gaming
wasn’t an option for them. He even showed me that I wasn’t just there for
support, that I had an active role, and that my input as a consultant myself,
with my own experience, was just as important.

Regardless, I still felt heaviness when Brandon told me if something
should happen to him, and he lost his fight against cancer that he wanted
me to continue his work. I said the same thing when he almost lost me to
pulmonary embolism in 2017. We both knew this work was important. I
still feel I have very big shoes to fill, but I hang on to him, telling me I was
very important to the process.

He tells the reader a few times in this book that consultant input is
important. I’m going to echo that. Needs change, technology changes, and
it’s hard enough to keep up with it all, let alone keep up with it and try
to develop quality games. It takes a village to create accessibility. We’re
a network of accessibility leads at companies, champions, consultants,
and players who love video games. We are all here at your fingertips and
excited to help.

“The blind community is ready to work with you, and yeah that’s basi‑
cally it. We just want to play your games. We love you guys and uh I think
that’s the moral of my story.”—Brandon Cole – GAconf 2017.

https://taylorandfrancis.com

ix

Contents

Acknowledgments, xi

Introduction, xiii

Part 1  �The Story of Accessibility

Chapter 1    ◾   � Defining Accessibility/Inaccessibility	 3

Chapter 2    ◾   � Accidental Accessibility: The Tenacity of the
Blind Gamer	 5

Chapter 3    ◾   � Blind Accessibility Specifics: What It Means
to Make Something Blind Accessible	 10

Chapter 4    ◾   � Accessible Beginnings: MUDs, Text
Adventures, and So On	 13

Chapter 5    ◾   � Audio Games	 16

Chapter 6    ◾   � Blind Accessibility’s Mainstream Beginnings	 22

Chapter 7    ◾   � AAA Accessibility Reaches the Totally Blind	 28

Chapter 8    ◾   � The State of Blind Accessibility	 33

x    ◾    Contents

Part 2  �Guidelines for Blind Accessibility in Games

Chapter 9    ◾   � Basic Principles of Blind Accessibility	 41

Chapter 10    ◾   � Every Game Is Different	 46

Chapter 11    ◾   � Narration	 49

Chapter 12    ◾   � Navigation and Traversal	 57

Chapter 13    ◾   � Audio Cues	 65

Chapter 14    ◾   � The Power of Good Audio Design	 72

Chapter 15    ◾   � Audio Description and Scripted Events	 75

Chapter 16    ◾   � Combat and Kombat	 80
16.1  ACTION/SHOOTER COMBAT	 80

16.2  KOMBAT: FIGHTING GAMES	 85

Chapter 17    ◾   � Puzzles	 88

Chapter 18    ◾   � Racing and Driving	 92

Chapter 19    ◾   � Open Worlds	 95
19.1  NAVIGATION ON A WORLDLY SCALE	 95

19.2  KEEPING WONDER AND EXPLORATION ALIVE	 98

Chapter 20    ◾   � The Multiplayer Discussion	 100

Chapter 21    ◾   � Unexplored Territory	 104

Chapter 22    ◾   � Conclusion	 106

INDEX, 109

xi

Acknowledgments

This book would not exist without several people whom I want to
acknowledge here. Firstly, my fiancée Misty, who kicked off my entire

career with the words “You should blog,” and whose love and support keep
me going every day. She is the first pick on my team every time. And hey,
from a blog to a book. Look at me now.

Secondly, Ian Hamilton, who not only agreed to be my official reviewer
on this project but is responsible for plucking me from obscurity and plac‑
ing me in front of the right people. I can never repay you for that.

Third, I’d like to thank my friends who have lifted me up throughout
the years. Casey Kerian, who played so many games for me when I was
young, and even years later, so I could experience them in some way. He’s
not the only one who has done this, but he has probably done it the most.
Mike Breedlove, who continues to remind me of the power of my contri‑
bution to the world, and Victor Dima, who rallied behind me so strongly
that I learned what it was like to have a superfan. Victor, I’m still waiting
for that statue you promised. Also, Shay Baker, who made me start to feel
important by agreeing to be my social media manager and is still the best
one I’ve had. And to the many others who have sent me positive and uplift‑
ing messages and stories related to my work, I thank you all.

Of course, there’s my fellow advocates and consultants. Steve Saylor,
Morgan Baker, Paul Lane, James Rath, Carlos Vasquez, Josh Straub, Mila
Pavlin, Emelia Schatz, and so, so many more. Thank you for being a part
of this journey. All of us are working to make accessibility happen in our
own ways, and I couldn’t be more grateful.

I would also like to thank Danielle and my publishing team for taking a
chance on an unpublished writer, trusting that we could still make some‑
thing good and useful together. I appreciate that faith and hope, I have met
that standard.

xii    ◾    Acknowledgments

Lastly, a couple of nods to my own family. First, to my grandma Connie,
who was probably the first to see greatness in me, way before I saw it in
myself. Second, well, I have to thank my older brother Justin, whose prank
kicked off a need for me to figure out and understand video games, and
who therefore created the catalyst for what would become my career. And
to my dad, who also played video games with me when I was young, but
who, if all went according to plan, did some of the art for this very book.
Pretty cool stuff, eh Dad?

xiii

Introduction

If you’re reading this book, then you already know the awesome
power of video games. They are a temporary escape from this world,

gateways to places born from the deepest parts of our imaginations, and
even a chance to be someone else for a while, which can mean a lot of dif‑
ferent things to different people. For some, they’re even therapy. Video
games are an incredible medium offering a wide range of experiences.
They can be art, they can tell amazing stories, or they can just offer you a
way to pass the time. These experiences are extremely valuable, so when
the question of why games should be made more accessible comes up, my
first response is always “Why shouldn’t they?”

Almost every developer I’ve ever met makes games because they want
people to play them and to experience whatever it is their game offers to
players. There is, therefore, very little point in thinking about that in a
closed‑minded way. Don’t get me wrong, I don’t think many game devel‑
opers are actively doing this. Nobody’s thinking, “I want tons of people to
play my game, except for this group and that group.” I think the real hur‑
dle here is developers who haven’t yet opened their minds to the possibility
that the disabled COULD play their games if effort is given to accessibility.
I’ve met some who still aren’t aware that the disabled can play games at all,
or that they want to. Trust me, they can, and they want to.

Of course, to open yourself up to the question of “Why not?” is to push
aside all the arguments against the idea. Accessibility development might
cost too much, the market might be too small to make it worthwhile, and
so on. There are a lot of counterarguments to these, some of which we’ll
get into later, but here are a couple. While accessibility development will
cost money, it will cost significantly less if it is begun earlier in the devel‑
opment process. Building accessibility as a core idea of your game will
make it much easier for you to achieve. As for the market size, I daresay

xiv    ◾    Introduction

there are far more disabled gamers out there than you realize. According
to the World Health Organization, an estimated 1.3 billion people experi‑
ence significant disabilities. Making your game as accessible as you can to
as many of them as you can will likely increase the game’s market, possibly
quite significantly. Plus, we’re very, very loyal. That’s a fact. Make your
game accessible to the disabled, and we will stick by you just about forever.
This is due to the fact that we don’t have many options. We have games to
play, but if you compare our availability of games to that of abled folks, the
ratio is staggering.

The overall point here is that accessibility is the right answer. That is
why I am writing this book. My hope is to reach those who want to imple‑
ment blind accessibility into their games but aren’t sure how. This book is
your resource and should give you a solid starting point.

With that, let’s get into it. There’s a lot to cover here, and I sincerely
hope you enjoy the ride. See you on the other side, and remember, the end
of this book is only the beginning.

PART 1
The Story of Accessibility

https://taylorandfrancis.com

3

C h a p t e r 1

Defining Accessibility/
Inaccessibility

Accessibility is a far broader term than you might think. Part of the
 reason for this relates to perception. For example, many nondisabled

folks think of the word accessibility as a synonym of approachability,
which is a differentiation I often wish was clearer. The need to differentiate
between those two things is actually the reason this chapter exists. I want
to ensure that you head into the subsequent sections of this book with a
clear understanding of what I mean when I talk about accessibility. To
help us define what accessibility is, we’re going to start with what it isn’t.

When we say something is approachable, we often mean that it is easy
to use or user‑friendly in some way. The gaming industry typically refers
to approachability as “pick up and play,” which is fairly clear in its mean‑
ing despite the fact that it isn’t a literal truth for some. If you are somewhat
new to gaming, starting with something people consider approachable, or
“pick up and play,” may be the way to go for you. That, however, is a sepa‑
rate issue from accessibility.

So, then, what is inaccessibility? Well, the easiest way to answer is to
say that inaccessibility is a lack of access, but what does that mean? To
say something is inaccessible indicates that there is a barrier preventing
access in some way. Something that prevents a person from using that
app playing that game, getting up those stairs, reading that document,
following that presentation, and a thousand more examples I could give is

DOI: 10.1201/9781003433750-2

https://doi.org/10.1201/9781003433750-2

4 ◾ Taking Video Out of the Game

an accessibility barrier. As a result, those things, the app, the game, those
stairs, the document, and that presentation are all inaccessible to some‑
one. And to be clear, when I say someone, I mean a whole group of people
who share the same disability. The existence of even one of these barriers
might mean the exclusion of a large number of people, which is of course
what we are here to avoid.

This leads us to accessibility. To make something accessible is to smash
those barriers. It’s the wheelchair ramp that allows those with motor
impairments to get up those stairs, the barrier is then smashed. It’s the
closed captioning that allows deaf people to enjoy that presentation, then
that barrier is smashed. It’s the full suite of blind accessibility features
(navigational assist, traversal assist, narration, audio cues, aim assist, and
so on) that allow the totally blind all over the world to complete The Last
of Us Part I and Part II, barrier absolutely smashed. You get the idea. To
make something truly accessible is to smash as many of those barriers as
you possibly can. I’ll be the first to tell you that it is difficult to make some‑
thing that is accessible to absolutely everyone, but I encourage you to take
it as far as you can and keep expanding on it in future projects. Trust me,
those for whom your product is accessible will appreciate it immensely,
and those for whom it isn’t yet will appreciate knowing you’re working on
it. We’ll talk more about this later. Consider that an early spoiler.

5DOI: 10.1201/9781003433750-3

C h a p t e r 2

Accidental Accessibility
The Tenacity of the Blind Gamer

Blind gamers have existed for many years, long before the recent,
more blind‑accessible games. In subsequent chapters, we will dis‑

cuss some of the things that were made specifically for blind gamers back
in the day, but first, I want to talk about the blind gamers who always
wanted more. Those of us who just tried things, struggled mightily, fig‑
ured things out, and sometimes succeeded at games that nobody thought
we could, often including us. The passion with which we gamers pursue
this hobby, the efforts we are willing to make in order to play a game we
love. These are the things I’m going to show you in this chapter. It is a
phenomenon I call blind gamer tenacity. I’m going to begin with a bit of
personal history.

My entry into gaming came from a practical joke played upon me by
my older brother. He convinced a 5 or 6‑year‑old version of me that we
should go play Super Mario Brothers on our Nintendo, but handed me
an unplugged controller while he played through the entire game. I was
pressing buttons, but they were having no effect, and I had no idea until he
delivered the punchline at the end. I was crushed at the time, to be sure,
but I remember vowing that one day, I would beat one game without his
help. Yes, at the time, it was only one.

So, I started trying games. The one thing the Super Mario experience
taught me was that games had sounds that meant specific things, so the

https://doi.org/10.1201/9781003433750-3

6 ◾ Taking Video Out of the Game

experiment for me was to see whether I could use that information. Turns
out, I could. I had limited success with many games, including Double
Dragon, the WrestleMania game, Punch‑Out, and more. I completely
failed at other games, such as RoboCop, because there just wasn’t enough
audio information there for me to succeed. This was still an important
step in the learning process, though, because each failure gave me an idea
of what it was that these games were missing.

One fine day, I finally did beat a game without my brother’s help. The
game I beat was Killer Instinct for the Super Nintendo. This game had
fantastic audio for the time. Each character has their own individual voice,
which helped a ton. Also, the moves each character used were almost
always unique in their audio composition. Sometimes, this was only
because they were combined with the character’s unique voice, but still,
there was enough separation there that I could often identify which move
was being used. This was important as I slowly learned the game’s moves
and combos, and finally beat it with Cinder, a fiery character with, admit‑
tedly, somewhat easy combos. Still, I never looked back. After the thrill of
beating that one game, fulfilling that vow, I needed more.

So, I pushed forward, my gamer life having at last begun. I had a couple
of other major successes, such as one particularly notable one with Metal
Gear Solid for the Playstation 1. This was in a room that was crisscrossed
with infrared beams. If broken, the doors slam, and the room is filled with
poisonous gas that kills your character almost instantly. My stepfather was
having trouble with this room, and on a hunch, I asked to give it a shot.
He left the room, and I spent the next couple of hours, yes, hours, figuring
out this one room. Through a combination of trial and error, and step‑
counting using the game’s audio, I was able to determine when to move,
how far to move at any one time, and when I should stand versus when I
should crawl. All this data got me through the room. It took patience, but
it was doable.

Another example I’ll give here is Final Fantasy X. I played this game
in its entirety, almost completely without any sighted assistance, save for
two elements. The first was the Sphere Grid, Final Fantasy X’s method of
leveling up your characters. It used a series of nodes that you would have
to move each character to in order to learn abilities or gain stats. All this
was represented visually, and there was no narration for things like this
back then, so I turned to the sighted and asked for help. The second ele‑
ment I needed assistance with was the game’s required puzzles, known

Accidental Accessibility: The Tenacity of the Blind Gamer ◾ 7

as the Cloister of Trials. These were puzzles that involved finding specific
spheres and putting each in its correct slot. Other elements were often
included, such as moving a pedestal into position, touching glyphs on
walls, and in one case, utilizing a moving platform system. In short, with
no navigational assistance of any kind, and no differentiation in the audio
of each sphere, these puzzles were nearly impossible challenges without
sight. Besides those two elements, though, I managed the game entirely
on my own. There are environmental audio differences between areas, ter‑
rain differences for footsteps, reverb in some spots, different music, and so
on, which helped with navigation somewhat. More importantly, though,
navigation in Final Fantasy X is flat. I never had to worry about jump‑
ing onto a platform I couldn’t see. I just had to be patient, and I’d always
eventually find where I was supposed to go. All important dialog was also
voiced, so I could use major characters as landmarks because they all said
something if you clicked on them. Combat and inventory management
were all menus, and menu memorization was a key component of blind
accessibility back then, so I wasn’t even intimidated by that. It felt natural
to figure out each character’s combat menu and even to relearn it again
every time they got a new ability.

I wasn’t the only one trying extremely hard to play video games, though.
Others worked out methods for different games. As proud as I am of my
Metal Gear Solid accomplishment (and I do still consider it a high point),
I learned later that a blind person had managed to play the entire game.
Some blind people would publish guides explaining what they figured
out in certain games in order to help other blind people play them. This
still happens today. I remember working on my own guide for a silly little
game called Lifeline for the PlayStation 2. It was a game you controlled
with your voice, and I had just enough help getting through it that I fig‑
ured if people knew what to say at any given time, they could too. I never
finished that guide.

The tale of blind gamer tenacity goes on and on. There are blind gamers
who have done incredible things that even I cannot fathom. One regularly
plays Call of Duty and has even reached a rather high rank. Keep in mind,
though, that later Call of Duty games have incorporated some accessibility
features; there are almost none for the blind. But that’s not stopping this
guy. Another has beaten the entire campaign of Diablo IV only days ago
as of this writing, and though that game does possess some blind acces‑
sibility features, I can assure you this would still be no easy feat. Again, all

8 ◾ Taking Video Out of the Game

of this has been to establish that we blind gamers love games like all other
gamers do, and that we really, really want to play them.

Now, though, let’s lean a bit further into accidental accessibility. I’ve
already touched on it in some of the examples above, but essentially, acci‑
dental accessibility is when a game ends up being kind of accessible to us,
even if it’s not designed to be. Fighting games are the easiest examples of
this, as they are the most accessible out‑of‑the‑box genre. Most of them
are 2D, meaning you never have to wonder about where your opponent
is. They’re always right across from you. In most modern fighting games,
sound is positional, so we can use the stereo field to determine our posi‑
tion as well as our opponent’s position on the screen. If our audio comes
from the far left while our opponent’s audio is on the far right, then it’s safe
to assume they’re all the way across the screen, and we can start flinging
fireballs.

There are other really great examples, though, such as the tremendous
game 13 Sentinels: Aegis Rim. This game is part visual novel, part mech
combat, and it’s accessible for two reasons. First, it’s simplistic naviga‑
tion during the story bits of the game. Each area is laid out kind of like
a side‑scroller, with only occasional variation up or down, so we almost
never get stuck moving around. Second, its use of small audio cues to
indicate interactable objects or conversations, combat targets, and so on.
These audio cues were likely just designed as little bits of UI flair, but they
are absolutely an accessibility feature. Other things help too, such as the
fact that all dialog is voiced, all audio during story moments is positional,
and even your character’s thoughts, which you can browse via a menu, are
voiced by that character as you move over them. It’s all pretty incredible,
and 13 Sentinels is really a fantastic game.

The last example I’ll give is one that inspired some of my own work
later on. While Resident Evil 6 wasn’t very well received by the Resident
Evil community, it was very well received by the blind community due
to its accidental accessibility features. The standout here is the PDA but‑
ton. Pressing this button visually brings up the map on your character’s
PDA, with an arrow pointing at your next objective. More importantly,
though, it also turns the camera to face that objective. The blind figured
out that character movement followed the camera, and that you could just
hold the PDA button while moving. The camera, and thus the character,
would just keep on turning toward the objective as you moved this way,
so using this feature, we could make our way (though much more slowly)

Accidental Accessibility: The Tenacity of the Blind Gamer ◾ 9

to our next objective. The same principle worked when playing coopera‑
tively, as holding down the co‑op button keeps the camera locked on your
partner, making it easy to follow them. These ideas later helped me, and
the Naughty Dog team, brew up Nav Assist, which has now appeared in
multiple games.

10 DOI: 10.1201/9781003433750-4

C h a p t e r 3

Blind Accessibility
Specifics
What It Means to Make
Something Blind Accessible

It’s time to focus on total blind accessibility specifically. While all
 accessibility is important, moving forward, we will strictly be discuss‑

ing total blind accessibility. First, let’s discuss its most basic idea.
Blind accessibility, when broken down, is all about information. Tons

of information in a game, or any piece of content, is processed by the
eyes, and that information is, of course, what we lack. So, when you first
begin to consider making something blind accessible, you must consider
that information and how to either provide it to us, or to work around its
absence. Here are a couple of quick examples.

In film, TV, and now some video games, audio description provides
us with some of those important visual aspects we would otherwise miss
via a narration track overlaid onto the content. If you’re unfamiliar with
the way audio description works, then you should know there’s an art to
it. Audio description does not provide all visual information in an end‑
less and constantly flowing stream. Instead, it is very carefully crafted to
describe what needs to be understood in the moment and written in such a
way that it doesn’t step on any dialog or important sound effects. It is really

https://doi.org/10.1201/9781003433750-4

Blind Accessibility Specifics ◾ 11

impressive to behold once you understand that. Anyway, this is all impor‑
tant to note because of things like context. While it’s mostly obvious what
information we’re lacking because we cannot see it, we may be getting that
information in some other way. Telling us a gunshot occurred after having
told us a person aims their gun may not be necessary, depending on the
circumstances. We know they fired, but it may still be important to tell
us what was fired at. In any case, audio description is interesting because
it is both a method of providing us with missing information and also a
workaround because it cannot possibly tell us every single thing without
much extraneous pausing.

On the gaming side, your basic visual novel can be made blind‑
accessible simply by adding screen narration features. The information
we’re missing in that case is just the text. Make that text read to us, and
suddenly, the game is fully accessible. This only applies to a very basic
visual novel, though, as many nowadays come with additional issues like
the need to move a character around, even if briefly, or click on objects to
locate something, or even play a mini‑game of some kind to accomplish
some task. But at its base level, a visual novel can be made fully acces‑
sible to the totally blind simply by narrating its text. We’ll talk more about
making specific genres blind accessible in part 2.

Let’s go back to another non‑gaming example and talk about images
online. In their default form, they aren’t accessible to us by their very
nature, but that can be remedied with alternative text, also known as Alt
Tagging, with descriptions of the image. Screen readers are built to detect
and read these when they exist, so just providing those written descrip‑
tions can make image content accessible to us. It’s also worth mentioning
that even though some sites like Facebook attempt to generate an alt tag
if one isn’t present, they usually aren’t particularly good. Some aren’t ter‑
rible, but one written by you, since you know what information you’re
trying to convey, is always preferred.

I’ll give two more examples, both of which are from The Last of Us.
First, navigational assist, which is most definitely a workaround for miss‑
ing information, as we are unable to see the environment around us.
I deeply respect the art teams in the industry for the time and effort they
put into their work, but no matter how much that is, that isn’t likely to
change for us. We’ll just never see the environment around us. Some sim‑
pler games, and some audio games (more on those later too), have opted
for navigational assistance in the form of sound cues that indicate walls,

12 ◾ Taking Video Out of the Game

turns, objects, and so on, but making this work in a large 3D space may
not be ideal, which is why the workaround here is the pathing The Last of
Us uses both for navigating toward your objective or moving to scanned
items or enemies in the area.

The next and last example I’ll give here is the invisibility mode in The
Last of Us. This mode is a huge workaround, and a bit of a concession.
I fully admit I would’ve preferred to work on an accessible cover system.
However, given the time and resources we had at the time, this was the
best way to provide the blind with the stealth option, since we couldn’t see
areas where we could take cover. We worked hard to keep the challenge
level customizable by providing a limited invisibility mode that scaled
based on your stealth difficulty, but still, it is a great example of a work‑
around for missing visual information.

And so, like I said at the top of this chapter, information is the key.
If you can figure out how to provide missing visual information, or give
us the means to work around that missing information, you can and will
make your game fully accessible to the totally blind.

C h a p t e r 4

Accessible Beginnings
MUDs, Text Adventures, and So On

One of the fun facts about blind game accessibility is that in the
early days, we were playing many of the same games as everyone else.

After all, starting in the late 1970s and lasting into the late 1980s and even
early 1990s, one of the most popular types of game was entirely text‑based.
Even in the early 1970s, about 1971 in fact, there was a camera system
developed by Opticon that allowed the blind to identify colors via a system
of refreshable pins. This alone allowed them to play text‑based games that
utilized color to differentiate things, such as Lunar Lander.

It wasn’t until the late 1970s, though, where text‑based games were
really kicked into high gear for the blind. Text‑to‑Speech systems began
to be developed, such as a system called Votrax, which could be used on
computers like the Vic‑20. Thanks to pioneers of the text adventure genre
like Scott Adams, who wrote Bespoke support for the Votrax system into
many of his games, we could enjoy them on an equal playing field with the
sighted.

Here’s another little fun fact. While the Votrax system was an admit‑
tedly primitive speech synthesizer, it was actually used by the blind all
the way through the 1990s, and even in the early 2000s. A device called
the Braille ‘N Speak, developed by Blazie Engineering, used the Votrax
synthesizer presumably because of its low processing cost, and contin‑
ued to do so through many, many iterations. The Braille ‘N Speak and

13DOI: 10.1201/9781003433750-5

https://doi.org/10.1201/9781003433750-5

14 ◾ Taking Video Out of the Game

devices like it were a specialized classification of device the blind referred
to as a notetaker. These were essentially like palm pilots or PDA’s for the
blind. They used a six‑dot braille keyboard, had a basic file system, and a
few tools like a calendar and calculator. Eventually, there were games for
this device too, though these were mostly very simple, short games as the
device’s capacity was very small. Still, back in my day, these were the go‑to
devices for schoolwork and leisure writing.

Let’s rewind a bit from my school days back to the late 1980s, when
more complex screen reader systems were built, such as Outspoken for the
Mac, Vocalizer, and Jaws, which was developed in 1989 and is still going
strong today. There were now more ways to access text adventures, and so
we did. Then, the internet started becoming mainstream, and that intro‑
duced us to a brand‑new type of text adventure: MUDs, which stands for
Multi‑user Dungeons.

MUDs were a kind of revolution for the blind. Now, not only could
we type “open door,” or “go north,” and witness that action take place,
we could do so with our friends online. Remember, for a time, MUDs
were popular among many gamers, not just the blind, meaning that some
of those friends were sighted. Eventually, though, many sighted gamers
would move on from MUDs to more graphical interfaces for their multi‑
player experiences. Those who once played MUDs would later play MMOs
like EverQuest and Ultima Online. But for a long, long time, MUDs were
the only answer to MMORPGs for the blind, as those more animated, less
text‑based games were quite inaccessible to us.

Believe it or not, there are still MUDs that persist in popularity today,
such as Miriani, Alter Aeon, and the Discworld MUD. There are even
modern apps that we can use to enjoy them, such as VIP MUD, which was
created by a game developer known as GMA Games (more on them later),
and MUDRammer, which is a mud client for IOS built with blind acces‑
sibility in mind. Some gamers even augment their MUD experience with
sound packs, which, for the blind, is sort of the best of both worlds. Sound
packs can be fairly complex in their construction, and so we can have both
an interface that is easy for us to interact with, complete with descriptions
of each room and zone that we can read, but also a seemingly full suite of
sound effects and music. Footsteps, laser fire, individual combat sounds,
and so on. There’s nothing quite like a space battle in Miriani with a sound
pack, let me tell you. It may not be as complex or work the same way as
the big cinematic masterpieces of today, but there’s something there to be

Accessible Beginnings: MUDs, Text Adventures, and So On ◾ 15

sure! These were, and are, experiences that could achieve the same kind
of intensity others were getting from games we couldn’t enjoy, and I think
that’s why a few are still popular today.

I think now is as good a time as any to start talking about the Audyssey
magazine. Started in 1996, the Audyssey magazine was an online publi‑
cation distributed to interested blind gamers. It provided articles about
accessible gaming and reviews of existing games that the blind could enjoy,
some of which we will be discussing in future chapters. I truly believe the
Audyssey magazine was responsible for many blind gamers expanding
their horizons. While text‑based games and MUDs were often discussed,
Audyssey magazine also shed light on other types of games, including
accidentally accessible games that existed back then, such as the original
You Don’t Know Jack and an interactive movie game called Silent Steel,
and audio games. It made the blind interested and curious, made them
want to branch out into different avenues for their gaming needs, and
showed them that they could do so. Though it is no longer running, hav‑
ing been supplanted by other resources that now exist, I believe its impact
on blind gamers cannot be understated. It certainly had an impact on me.

16 DOI: 10.1201/9781003433750-6

C h a p t e r 5

Audio Games

Games for the blind naturally progressed as blind gamers began
to want more than text prompts. In the late 1990s and early 2000s,

the age of audio games dawned. What is an audio game? It’s a game in
which the primary, and most of the time, the only channel of information
was audio. This created some unique challenges, the resolutions to which
inspired many of the blind accessibility features that exist in games today.
Though many of these games were developed by the blind, we need to take
a step back to get the full picture.

In 1974, Atari released a game called Touch Me. This was a simple audio
pattern recognition game which was later imitated in other electronic
games called Simon. For those unfamiliar, Simon was a game with four
buttons, each of which played a note when pressed. The game would auto‑
matically play one note, then two, then three, and your job was to repeat
the pattern using the buttons. While it was simple in mechanics, I promise
you it could become quite challenging once you were trying to replicate
patterns of ten or eleven notes. In any case, this was essentially the first
audio game.

In 1997, while the audio games era was just beginning, a wonderful
Japanese game developer named Kenji Ino decided to develop a game for
the blind called Real Sound: Kaze No Regret. The game was originally
developed for the Sega Saturn and was later released on the Dreamcast as
well. This game was primarily a visual novel‑style game, except with exclu‑
sively audio, wherein the player got to make choices that would determine
how the story would proceed. It even came with a manual in braille. Even

https://doi.org/10.1201/9781003433750-6

Audio Games ◾ 17

more interesting, Kenji Ino convinced Sega to donate thousands of Sega
Saturn consoles to blind people, along with the game, to ensure it would
reach a market that may not have otherwise purchased the Saturn system
anyway. It was a bold move, but it got the game in the hands of those it was
intended for.

Now let’s talk about some of the audio games the blind created them‑
selves. There were many, many of these, so instead of mentioning them
all, I will focus on a few innovative ones that set the bar and helped out‑
line what a blind person would need in order to get experiences similar to
those the sighted were getting from their games.

Super Liam was a game created entirely by an individual named Liam
Erven, and is, as far as I know, the first ever side scroller for the blind.
This was achieved through clever use of stereo panning. As you moved
right through each stage, sounds indicating your next obstacle would
fade in, whether that’s an enemy, a hazard, or a powerup of some kind.
First it would increase in volume, but then it would begin moving from
right to center, the center position being your character’s position. If it
was an enemy, you could shoot it with your laser, and part of the chal‑
lenge would be figuring out the laser’s range and how much damage it
did to each enemy. You could also just jump over it if you chose, though
enemies would chase you a certain distance. Hazards, such as pits or the
occasional ball of fire, would have to be jumped over. The edges of pits
would be denoted by a couple of warning tiles before the drop, meaning
your footstep sounds would change to be very specific footsteps denot‑
ing the oncoming danger. There were cut scenes, bosses, a scoring system,
extra lives, multiple level types, and even secrets! It was a truly innovative
game for its time.

Games like Alien Outback and Troopanum provided us with a Space
Invaders‑style experience wherein different types of ships would appear at
different points of your stereo field, and you would move left or right, cen‑
ter them, then shoot them down. The positioning of each appearance was
random, and this became quite challenging during later levels when ships
were appearing nonstop. Some of them also had special properties, such as
the ability to take multiple hits instead of one. These games were intense,
wonderful, and very replayable experiences in some cases.

Shades of Doom is, very unashamedly, a Doom knockoff, but trust me,
we were very OK with that at the time. Shades of Doom gave us the full
shooter experience. We could navigate its levels using a compass key that

18 ◾ Taking Video Out of the Game

told us the direction we were facing, turn indications in the form of audio
cues for open spaces, audio cues for nearby doors and collectable objects,
and a “visited” key, which would tell us, if pressed, if we had been in our
exact position before, which was our equivalent of looking at the minimap
to see which areas were filled in. It helped us not to get lost in some of the
more sizable levels. Combat was handled with an audio targeting system.
A constant beeping would indicate the system was active. When a target
was nearby, the beep would increase in volume. Then, pitch would help
you determine when you were facing your enemy dead on, and an addi‑
tional sound added to the beep would indicate when the creature was in
range and locked on for firing. The enemies were quite varied, and some
were fairly interesting as well, such as one that would teleport you to a
random spot on the map if it hit you. I hated that one.

A little game called Top Speed came up with an interesting idea for
racing games for the blind which we will absolutely be discussing more in
the second half of this book. The idea was a system using stereo panning
to indicate the direction and steepness of the turn as it happened. There
was a verbal cue as you approached each turn, but this allowed for greater
immersion during the turn itself. The engine would pan in the opposite
direction of the turn you were taking, as if retreating from you. Your goal
was to pull your car back toward the center of your stereo field by turning
in the correct way. It was an interesting and very effective approach, mak‑
ing races feel intense and dangerous at high speeds.

Monkey Business was a game that introduced us to the idea of true 3D
movement, giving us the ability to turn in 360‑degrees in a more open
environment that wasn’t primarily corridors. Shades of Doom allowed for
360 turning as well, it was just unnecessary except when precisely aiming.
These were wider levels, like a beach or, in one case, an entire old west
town. The story was fairly simplistic (monkeys escaped, go catch them),
but it really was fun, and felt new at the time.

The same developer who brought us Monkey Business also gave us
our first audio‑only pinball game. The developer was ESP Softworks, and
the game was ESP Pinball. The tables were all loaded with various audio
sources, some of which were just points, but some gave you special bonuses
or led to some kind of level completion, like any other pinball table. The
concept that made the experience a bit more blind accessible revolved
around the flippers. In ESP Pinball, the flippers were “sticky.” When the
pinball came in contact with them, it would stick there, and time would

Audio Games ◾ 19

stop as an audio scan began. The scan would move over the table from the
flipper to approximately 180 degrees away from it. As the scan proceeded,
each point you could shoot for played a sound. Empty space was indicated
by beeps, but individual audio cues were given to specific items on the
table you might want to hit. If you were doing this scan on the Pac‑Man
table, for instance, you would hear a crunching sound as the scan passed
over fruit. If you wanted to take a shot for one of these, you would press the
appropriate flipper button when the scan was aiming at what you wanted,
and the ball would shoot off the flipper in that direction. However, this was
done in a semirealistic way. We quickly learned that it wasn’t always wise
to shoot straight for what you wanted. Sometimes there was a drain right
in the way of the thing you wanted to hit, but we figured out that you could
sometimes ricochet off of something else to hit your desired item. This, as
I understand it, is a concept in regular pinball as well, the ability to learn
tables over time and perfect your method of play on each one. ESP Pinball
and its sequel, which was developed by a company now called Draconis
Entertainment, were wonderfully fun games. Checkout Draconis, by the
way. They’re developing some fantastic things for the blind in the mobile
and Mac spaces as of this writing.

Audio games today have come a long way. I suspect part of the rea‑
son for this is the ever‑expanding accessibility conversation, but whatever
the reason, more and more developers have become interested in making
audio games. It’s a genre that now goes well beyond blind developers, as
several small indie teams have jumped on board, creating some incredible
firsts. For example, a team called Somethin Else, which unfortunately has
been disbanded, gave us the first audio‑only games featuring well‑known
actors. Their game Nightjar, a short adventure about something gone
wrong in a space station, featured the voice of Benedict Cumberbatch as
someone trying to help your character make it through alive. Their game,
Papa Sangre 2, about ghosts and spirits and the lord of the dead, featured
Sean Bean as your primary antagonist, and he did an absolutely brilliant
job. Both games were wonderful and of an extremely high quality, and it’s
a true shame we won’t be getting more from this developer.

As is true with many games, some audio games inspired others.
Games like Super Liam lead to the (among the blind), famous Bokurano
Debouken series of incredible, lengthy, Japanese side‑scrolling adventures.
The specific bit of inspiration I want to talk about now, though, starts with
a game called A Blind Legend. In this game, you either follow your guide

20 ◾ Taking Video Out of the Game

(your character’s daughter in most cases), using sound by turning to face
her and moving forward, following her as she turns, or you fight. In combat,
each arrow key or swipe, if you were playing the mobile version, would
perform an action. Left would attack left, up would attack forward, right
would attack right, and down would be your shield. The challenge was in
the attack patterns of your enemy. Each enemy would attack in a different
way, at different speeds, and so on. If they weren’t attacking, though, they
would be blocking, so you had to strike when there was an opening, put‑
ting yourself at risk based on your own knowledge of their patterns. If you
wanted to play defensively, you could block them and strike immediately
after a successful block, but if you didn’t anticipate they would be using a
combo attack, you could be headed for traded blows at best. It was a lot of
fun when it originally arrived on the scene, and inspired what I think may
be one of the best audio games to date.

The Vale: Shadow of the Crown is a tremendous audio‑only adventure
created by Falling Squirrel. In it, you are Alex, the blind daughter of a king
who, due to tragic circumstances, must make your way over 500 dangerous
miles to reach your home. Along the way, you meet several other charac‑
ters, some of whom will help you and some who will not, you take on side
quests, and you relive flashbacks of your younger years in your home king‑
dom. It’s a really wonderful game with a great story, great sound design,
and top‑notch voice acting featuring several actors who have appeared in
AAA titles.

Where am I going with this? Well, as it happens, The Vale’s combat
system is actually just a more refined version of that in A Blind Legend.
The basic idea remains the same. Each enemy has its specific attack pat‑
tern and must be observed to be fought well. You strike when there’s an
opening but before you get hit, you can block and parry. Now, though, you
can use a controller. The left thumbstick is your sword, the right is your
shield because you can now block in different directions since you will
also occasionally be facing multiple opponents at once, and whereas in A
Blind Legend you blocked by holding the down arrow or swiping down,
doing so in The Vale now charges up a power attack for bigger damage.
However, now there’s also stamina, which is a new factor you have to con‑
sider, and is communicated by the heaviness of your character’s breathing.
Oh, and there’s also magic. Oh, and multiple weapon and armor types that
affect all sorts of stats including your attack speed, how much damage you
take when blocking, your ability to break an opponent’s guard, and so on.

Audio Games ◾ 21

There are even multiple boss fights, each with its own mechanics. The
whole thing is a blast, and I’ve played through it multiple times. Suddenly,
I feel like playing it again!

As much as I personally love basically everything about The Vale, I
think its biggest triumph is its marketing. If you’re a completely sighted
game developer sitting there reading this book, I would be willing to
bet that you have at least heard of The Vale, even if by name only. This is
because they did a tremendous job getting their game out there. They went
to conventions, they developed an Xbox version, and have since been fea‑
tured on Xbox’s Games with Gold. For an audio game, that is tremendous
exposure. The Vale is by far the audio game I have heard the most sighted
people trying needs to stay the same because he is talking about people
with vision trying a game that is pretty much audio only. I guess what I’m
trying to say here is, “Hey, you should play The Vale.”

There are a lot of great audio games out there nowadays. Enough that I
could probably go on with this topic for some time. For now, though, I’ll
just mention a few more in the hopes you’ll check them out. Blind Drive,
(an arcade driving game), Alt‑Frequencies, (a game wherein you can influ‑
ence story events by interfering with radio broadcasts), Evidence #111,
 (an interactive audio drama where you can make choices that change the
story outcome), and Stories of Blossom, (a point and click adventure game
made for a younger audience, but played by older folks too because it is
ridiculously adorable). Those are just a few suggestions, but I think they’re
good ones. Check out resources like audiogames.net for more, and enjoy
what may be for you, the newfound world of audio games.

https://audiogames.net

22 DOI: 10.1201/9781003433750-7

C h a p t e r 6

Blind Accessibility’s
Mainstream Beginnings

In earlier chapters, we discussed the rise of text adventures and how
the blind played as equals in that era. We also discussed Real Sound,

Kaze No Regret, a Japanese game released for the blind on the Sega Saturn.
Both of these are very early examples of the blind playing games in what
you might call the mainstream, but now I want to discuss the beginnings
of mainstream blind accessibility in the modern age. We’ll still be going
back a little, but not quite as far.

In 2008, a tiny little audio game called In the Pit, developed by R Hunter
Gough, made its way onto Xbox Live Arcade. This was quite a significant
event, much like The Vale penetrating the mainstream market was, as In
the Pit is an audio game. You play a monster who lives in a pit underneath
a king’s throne room. When he is displeased with someone, he presses his
secret button and sends them down through a trapdoor into the pit below,
where you’re waiting to greet them and eat them. The catch is that you, the
monster, are blind, so you have to track them via their breathing and occa‑
sional voice lines. Their breathing gets louder as you get closer, and their
heart beats through your controller at an increasing rate as you approach.
Then, once you’re close enough, you gobble them up with a press of the
A button. The whole thing is played for laughs. There are no gruesome
sounds here. Still, aside from a few victims with abilities that help them
while in the pit and give the game a little bit of challenge, that’s essentially

https://doi.org/10.1201/9781003433750-7

Blind Accessibility’s Mainstream Beginnings ◾ 23

it. It’s a simple game, but had a great impact on me, and probably many of
the blind gaming community at the time.

I had an Xbox 360 when In the Pit was released because, well, of course
I did. I was a gamer through and through, and I utilized accidental acces‑
sibility to the fullest, and wouldn’t hesitate to just mess around with stuff
either. But this was a first. A game essentially made for me and others like
me was available on the same online store as all these other games people
were playing. That meant a lot to me, and I still think of In the Pit to this
day.

I want to provide some additional perspective here. While research‑
ing for this book, I came across a video review for In the Pit done by a
Youtuber who goes by @CGRUndertow. This reviewer made an interest‑
ing comment near the end of their review that, having read the previous
chapters in this book, will likely interest you more now than it would have.
They said that a few games had tried this “kind of blind gameplay,” but
“few if any have done so this successfully.” Think about that comment for
a second. Think about where that comes from. I do not judge the reviewer
in any way for making it, because it comes from their perspective as a
sighted gamer. This was 2008. Tons and tons and tons of audio games had
been created by this point, so for us blind gamers, the draw was just that
it was on Xbox, not that there were no other games providing us with this
kind of experience. But for CGRUndertow, this was something completely
new. Something that fell outside their understanding of what a game could
be. I can appreciate that, and I take no issue with that. I just think look‑
ing at things from new perspectives, especially after you’ve gained certain
knowledge, is interesting, and helps to bring it all together.

Let’s fast forward to 2009. This was the year VoiceOver launched for the
iPhone. VoiceOver is a screen reader that changes the way iPhone touch
gestures work in order to make touch screens accessible to the blind. The
most basic description of how this works is that we have two navigational
choices. With VoiceOver active, we can swipe left and right in order to
snap between on‑screen elements, and double tap with one finger when
we’re on the element we want. Swiping right will always move to the next
button, or link, or text area, and swiping left always moves to the previous.
Also, it doesn’t matter where we physically double tap, as the VoiceOver
cursor, (basically the memory of the last element we moved to), will remain
on that element unless we change it. Alternatively, we can place a finger on
screen, move it around, and hear elements as our finger is on top of them,

24 ◾ Taking Video Out of the Game

then lift it when we find the one we want the VoiceOver cursor to land on,
and double tap anywhere to select. This latter method gives us a better
understanding of where elements are physically located on screen.

I’m telling you all this because I want you to have a basic understand‑
ing of how this worked in order to understand the impact it had on us.
VoiceOver launching on the iPhone, and Apple supporting VoiceOver
within all their apps, and in such a way that many other apps didn’t even
have to be modified to support it, flung the floodgates wide open. Suddenly,
we were as connected as our sighted counterparts were. Suddenly, we could
use many of the same apps as they could. Before this, our cell phones may
have had something resembling a screen reader, but usually they could
only do a couple select things, like make calls and send texts, with very,
very occasional support for some other apps. Now, there was an almost
overwhelming number of things we could access, and yes, this included
games.

The earliest games we could access were those that already used standard
iOS coding conventions. These were natively supported by VoiceOver, and
so didn’t have to be modified in order to be enjoyed by us. I remember play‑
ing a lot of the Storm8 games back then. The kinds of games where you had
a certain level of energy you could spend in a given hour, and they were
mostly all the same with slight differences between each. I remember playing
Hanging with Friends, which the developer was apparently shocked to learn
was blind accessible. Those are just a couple of examples. But things really
picked up when mobile developers got wind that we wanted to play their
games and started working to intentionally implement blind accessibility.

I’ve already mentioned the developer Somethin Else in the audio games
chapter, but their efforts were a direct result of the huge adoption of
iPhones by the blind. Remember how the iPhone got VoiceOver in 2009?
Well, their first game, Papa Sangre, came out in 2010. They were quick,
and we loved them for it. I remember feeling surprised at the quality of
some of the early mobile games like Papa Sangre and Soul Trapper. Their
audio design was fantastic, their voice acting was top notch. I felt almost
welcome in the mobile gaming space, even though the ratio of games we
could play to games we could not was and is still massive.

In 2013, we saw mobile developers not only adding blind accessibility
to their games but tracking usage data of blind accessibility features. One
game, called Solara, was able to determine that, following the addition of
VoiceOver support, the blind community became their most loyal players,

Blind Accessibility’s Mainstream Beginnings ◾ 25

and spent the most money on the game. Another developer, who made
a mobile MUD client called MUDRammer and later added accessibility
support in a single day, quickly found that 10% of his user base were using
screen readers, and that figure rose to 16% shortly after. The moral of this
story, game devs, is that accessibility breeds loyalty. Remember that one.
Make the effort for accessibility, and we will reward you with our undying
gratitude.

As more and more games and apps flowed onto the IOS app store, the
blind community cooked up a site called AppleVis to discuss which apps
were and were not accessible and review various apps and games to point
the blind to those they could effectively use. It is still an invaluable tool
today, and here’s an even cooler fun fact. As of this writing, AppleVis data
shows over 400 blind accessible iOS games. I definitely recommend them
as a resource to mobile game developers, as their reviews are broken down
by specific accessibility needs. An example of this is whether or not all but‑
tons in an app are labeled properly. A game in which this is not true might
still be playable, but we appreciate the removal of that extra frustration of
figuring out what an unlabeled button does.

Going back again to 2009, Stevie Wonder made some waves, as he was
asked to present the best music game at the Grammy Awards and took the
opportunity to use that platform to promote accessibility. His speech got
huge cheers, and while some of those cheers may have been because, well,
it’s Stevie Wonder, I believe that somebody somewhere was influenced that
day. It was one of the biggest calls for accessibility on one of the biggest
televised platforms. Millions would have seen it. I think it’s more than
deserving of a mention here.

Jumping forward again to 2010, we have the signing of the Twenty‑First
Century Communications and Video Accessibility Act (CVAA) by U.S.
President Obama which, in short, made it law that devices that supported
any kind of communication had to be made accessible enough that a dis‑
abled person could use its communication functionality. At the time, a
waver was given to the gaming industry, but as of 2019, that waver no lon‑
ger applies. Still, the significance of this moment can be seen even before
2019. The existence of the CVAA prompted console makers to act. Text to
speech was introduced to PS4 for the first time ever, supporting only basic
functionality at first but improving drastically over time, and eventually
leading to the PS5’s system‑wide screen reader. Nintendo has notably not
followed this trend just yet, but they have at least started down the road

26 ◾ Taking Video Out of the Game

of considering some accessibility features, so there is still a little hope for
the future.

Now we get to 2013, where one blind man’s skill resulted in an acces‑
sibility shift. Carlos H Vasquez, a totally blind gamer who happens to
be extremely skilled at fighting games like Mortal Kombat, managed to
make it to Evo, an annual world‑wide fighting game tournament, as a par‑
ticipant. There, he got to show off his skills, and NetherRealm Studios,
the creators of games like Mortal Kombat and Injustice, took note. They
approached him and asked him what he would need for their games to be
more accessible. Carlos explained the idea of audio cues to them, and they
were interested. Off they went, and before long, a feature was added to
Injustice: Gods Among Us. Suddenly, you could turn on an audio notifica‑
tion for when your character, or your opponent’s character, was in range
to interact with an environmental interactable. These were objects in
each stage that could be used for doing damage or sometimes just getting
quickly across the screen. They were significant enough that they could
turn the tide of a match and were thus very important. The addition of this
audio cue, which gave blind players information they were missing before,
simply made us better at Injustice and, since NetherRealm chose to bring
the environmental interactables forward, their future games as well.

In 2014, a developer working on another fighting game called Skullgirls
decided he wanted to help out its blind players as well. With minimal con‑
sultation, and a couple days work using a library called Tolk, he was able to
add full screen reader support to the game. This meant that the game did
not have native narration, but if the user was running a screen reader, this
would be detected, and all text output would be sent to it. This was mas‑
sively successful, as it opened up parts of the game that were previously
difficult to work through, such as tutorials and, at the time, the text of the
game’s story mode. We could also read menus, including character move
lists, enabling us to do a lot more practice within the game instead of hav‑
ing to look up lists others had posted online. So much functionality was
created for us just because screen reader support was added. Remember
that fighting games are generally fairly accessible out of the box, and this
was no exception. This was the last piece we needed to fully enjoy this
great game.

In 2017, a developer called PopCap Games noticed how inaccessible
games made in Unity were for blind people. This is because Unity typically
uses nonstandard controls, sending everything to your screen as a video

Blind Accessibility’s Mainstream Beginnings ◾ 27

image that can be interacted with. However, since even in‑game text was
part of these images, screen readers like VoiceOver could detect nothing
at all in a Unity Game. To us, games made in Unity were blank, noninter‑
actable screens. PopCap Games decided to do something about this and
designed an incredible Unity accessibility plugin that mimics the behavior
of VoiceOver within Unity. VoiceOver still technically wasn’t functioning
when playing a game with this plugin, but their version of it was, and it
worked just about as well. The first use of this plugin was in PopCap’s own
game, called Crafting Kingdom, which is still played by many blind people
today. It has since been used by multiple other developers to create acces‑
sible experiences in Unity and now even works on PC games.

28 DOI: 10.1201/9781003433750-8

C h a p t e r 7

AAA Accessibility
Reaches the
Totally Blind

I won’t lie to you. This chapter is going to be pretty unashamedly
about The Last of Us Part II, the first fully blind accessible AAA game,

released in June of 2020. The Last of Us Part II was a turning point in the
understanding of blind accessibility and game accessibility in general, and
I was honored to have been a part of making that happen. In this chapter,
we’ll discuss how this was achieved and break down some of the features
that made TLOU2 stand out for the blind.

Accessibility was a part of the thought process from the beginning for
Naughty Dog, the developer of The Last of Us Part II. They wanted to
go all in with it, too, which is exactly what they did. Early on, they set
a very good precedent by hiring not just one or two, but a total of seven
accessibility consultants with different specialties in order to help them
make TLOU2 as accessible as possible. I was hired on as the blindness
accessibility consultant, Steve Saylor and James Rath were the low vision
consultants, Morgan Baker was the deaf/hard of hearing consultant, Paul
Lane and Josh Straub consulted on motor‑impairment accessibility, and
Ian Hamilton was brought in as a general accessibility authority. Pro tip,
game devs, follow all of these people. All of them can provide incredible
insights which could help you achieve multiple kinds of accessibility on

https://doi.org/10.1201/9781003433750-8

AAA Accessibility Reaches the Totally Blind ◾ 29

your projects. Ian Hamilton was a major source for this very book, as he is
a master of collecting accessibility‑related data, among other things. Trust
me, you won’t regret it.

The idea of how blind accessibility would be achieved was, in my opin‑
ion, based on the reactions I observed, a scary one for the folks at the
studio. However, one of the key factors is that each and every one of those
folks was willing to listen and take in the information that would eventu‑
ally lead us down the right path. Some of my favorite moments during
this process happened in our brainstorming sessions, where we were just
throwing out big ideas and discussing what was possible. I learned a lot
during this project, and much of it happened there. We had our doubters,
though, which is understandable, considering nothing on this scale had
been attempted before. A few folks weren’t sure if what we were propos‑
ing could be done at all. To be honest, it was those stories that ultimately
made me the happiest coming out of that studio. The moment when they
not only realized that we could do this, but that we should do it, and they
fully committed. I loved that.

Another aspect of this that should be discussed is that everyone in the
studio got involved. I was told near the end of the project that there wasn’t
one person who hadn’t touched accessibility in some way. Of course, this
would include all types of accessibility, not just blind accessibility, but it’s
something I loved to hear. This was a studio‑wide effort, and yes, to guar‑
antee the best experience, that’s how accessibility should be approached. It
should be viewed as a part of development just as important as any other.
I loved just how many groups of people wanted my input. I had plenty of
meetings about gameplay, of course, but I also had meetings with audio,
design, and even UI. My input on the layout of the accessibility menu in
the options screen was considered important, and that felt pretty good. To
make something truly accessible, it had to be equally accessible across the
entire experience, which is something Naughty Dog understands.

Let’s break down some of the individual features that made TLOU the
experience it was for the blind. We’ll talk about this kind of thing more in
the second half of this book, but for now, we’ll discuss them as they spe‑
cifically relate to this game. First is narration. While The Last of Us Part II
does not use a Text to Speech (TTS) engine for its narration, opting instead
to use individually recorded files to achieve the same result, it stands out
because every single thing is narrated. All of the remappable controls,
every menu item and its associated tooltip, every in‑game tutorial message

30 ◾ Taking Video Out of the Game

and tooltip, the crafting and upgrade menus, photo mode, and, of course,
all the little in‑game lore notes you can find along the way. Everything
presented to a sighted player as text is narrated by this game if the feature
is enabled. Believe it or not, that was fairly uncommon back then. There
are more and more examples of this these days, but in 2020, this was revo‑
lutionary. On top of that, narration was available in every supported game
language as well. We tried our best to leave nobody behind.

The next thing that really set the bar was the navigational assist fea‑
tures, which included both the navigational assistance and the Enhanced
Listen Mode. Based on a bit of accidental accessibility from Resident Evil
6, which allowed you to walk to your objective simply by holding the map
button, our nav assist cast out a ray in the direction you needed to go on
the press of a button and turned the camera that way as well. Once you
reached the point where that ray was cast to, you would be notified via
an audio cue and press the button again to cast the next ray. The markup
for each of these tiny waypoints was done by hand, which is something
I truly admire. The point is this would eventually lead you toward your
objective. The second half of this, the Enhanced Listen Mode, would allow
you to scan for nearby items or enemies and path find toward one or the
other if you chose. This would allow the blind to move in on their enemies,
either to get in range for a shot or for a stealth takedown, and scanning for
items allowed them to loot the many, many items hidden throughout the
game. Together, these features were what made it possible for the blind to
successfully traverse the 30‑hour story of the game, a truly monumental
accomplishment.

Next up, the many audio cues we used to convey information in the
game, as well as the audio glossary, an idea taken from audio games that
had been doing it for years. The audio glossary provided a comprehensive
list of all the audio cues a player might hear during gameplay, as well as a
way to play them and thus get an example, and tooltips that describe the
situations in which you might hear that particular sound. Best of all, this
audio glossary can be accessed at any time, either before you start play‑
ing, or at any point during the game via the pause menu. With the sheer
number of audio cues that exist in the game, cues for when to jump, when
to crouch, when to interact, when to dodge an attack, when to use a melee
attack and many, many more, this glossary was an essential feature, and
needed to be easily accessible, since blind players would need to be able to
familiarize themselves with them as much as they wanted. These audio

AAA Accessibility Reaches the Totally Blind ◾ 31

cues are a critical source of information, as well as a method of provid‑
ing different information through different channels, rather than trying
to funnel everything through TTS (text to speech).

Next up, I want to discuss The Last of Us Part II’s Invisibility while
prone feature. This is a feature that does exactly as advertised. It makes
you invisible to enemies while your character is prone. This feature is
important to this discussion because it highlights the difficult balance
between preserving the sighted user’s experience and providing function‑
ality for the blind. It is a feature I wrestled with, as I wanted to ensure we
weren’t simply making the game too easy, as that is never my goal. One of
the toughest concepts you’ll have to work through in this book, however,
is this. While a feature like invisible while prone, or many of the other
accessibility features, might make the game easier for you, it merely levels
the playing field for someone who is disabled. That is why this balance is
difficult, and one of the reasons consultants will forever be an important
step in this process. I do want to break this down a bit further though.

First, the concession. We built this feature because we wanted to ensure
the blind had access to stealth gameplay. The sighted would constantly get
the choice of whether to approach encounters quietly or go in guns blaz‑
ing. That choice should be available to the blind as well. However, even
I didn’t think that being invisible while prone was the perfect solution.
Ideally, I would’ve wanted to be able to utilize cover that already exists in
the game to avoid being spotted. There are ways this could’ve been done,
such as audio cues to denote possible cover points or a point‑to‑point sys‑
tem such as the one in Gears of War. However, given all the other features
that were being worked on, some of which like narration and nav assist
being particularly complex, not to mention the sheer number of features
being added for accessibility, we didn’t have the resources necessary to
build that kind of system. So, this was a concession, but one that was care‑
fully thought through.

Second, the confession. When I first tested the invisible while prone fea‑
ture, I thought it was too easy. I acknowledged its usefulness in providing
stealth gameplay to the blind, but it felt like a bit too much. Those discus‑
sions led to a couple of changes. First, we decided that, should an enemy
do the equivalent of stepping directly on your prone character, that would
count as detection, and you would be spotted. Second, the absolutely bril‑
liant “Limited Mode” was introduced. When activated, your invisibility
was limited by time, and how much time you had was determined by the

32 ◾ Taking Video Out of the Game

stealth difficulty you had chosen. At the highest stealth difficulty level,
your invisibility lasted for only 6 seconds or so. I thought this was a fan‑
tastic workaround because it fit in with the game’s entire philosophy of
customizable difficulty.

There are more accessibility features I didn’t cover here, such as tra‑
versal assistance, dynamic aim assist, and more. I could probably discuss
The Last of Us Part II for pages and pages, but I think the points have
been made. The Last of Us Part II was an absolutely huge turning point in
blind‑accessible gaming. It rocketed us into the AAA space and welcomed
us there. It created hope in some blind gamers where little to no hope
had existed. It even sold consoles, as some purchased PS4’s JUST to play
this one revolutionary game. The stories I’ve heard of blind people who
thought gaming just wasn’t an option for them until they found this game
still warms my heart, and I still occasionally receive new thank you mes‑
sages for my work on this game. What we did on The Last of Us Part II is
something I will carry with me forever.

33DOI: 10.1201/9781003433750-9

C h a p t e r 8

The State of Blind
Accessibility

If you’re just getting started with all this blind accessibility talk, if
this book has been your gateway to it, you may be pleased to hear that

blind gaming accessibility is in a pretty good place right now. Make no
mistake, we have a long way to go. We are far from my ideal world, where
most games are accessible to us, but things are headed in a generally posi‑
tive direction. In this chapter, we’ll outline some of the things that are
happening and some recent innovations to give you some idea of where
we currently stand.

In the previous chapter, we talked a lot about The Last of Us Part II. That
game inspired accessibility features in many others. In the AAA space, it
inspired many of the blind accessibility features that appeared in God of
War: Ragnarok. Nav assist was there, though it worked quite differently
from The Last of Us Part II’s version. Narration was present, and it worked
the same way The Last of Us Part II’s narration worked, though it was
not as complete, missing in a few important areas such as the shop and
upgrade screens. Audio cues were also present and, because both games
were made by Sony studios, resources were shared. The audio cues were
actually the same, familiar audio cues players were already used to hear‑
ing from their time with The Last of Us Part II, with the exception of new
audio cues that were created to fill gaps for things The Last of Us Part
II didn’t have. TLOU2 didn’t need, for instance, an audio cue indicating

https://doi.org/10.1201/9781003433750-9

34 ◾ Taking Video Out of the Game

when to throw your axe, or fire a particular type of magic arrow at a target.
These things would’ve been interesting in that game for sure, but no, we’ll
leave the ice axes and sonic arrows to God of War.

The Last of Us Part II also inspired accessibility in the indie gaming
space. A game called 1428, Shadows Over Silesia contains features that are
heavily inspired by those in TLOU2. In some cases, such as navigational
assist, these features are improved upon, allowing you to be specific about
what you’re navigating to, rather than just letting you choose the closest
item, the closest enemy, or the golden path. There’s even a feature that
gives you a description of the current screen you’re on. Puzzles have also
been modified in a way I approve of, meaning they’re still puzzles, but
modified just enough to be accessible to the blind if certain accessibil‑
ity features are enabled. It’s a challenging and lengthy action adventure
that did some wonderful, innovative things with accessibility, building on
what had come before it.

Naughty Dog also built on what they had made when they released The
Last of Us Part I, a remake of the original game. This remake incorporated
all the accessibility features from The Last of Us Part II and went on to
make them better. One small but powerful improvement was with nav
assist, which now brought you to a safe if you found it, didn’t crack it, then
found its combination. Perhaps I should explain this a little more.

Firstly, in TLOU2, there’s a system in place which you can use to crack a
locked safe using audio. It’s one of the most awesome accessible by design
features I’ve encountered. Just by listening for slightly different clicks as
you turn the combination dial, you can get into those locked safes without
having to find the note or the sign that gives you the combination. This
feature became sort of essential for the blind because of a flaw in the way
enhanced listen mode worked with nav assist. As I mentioned, the way it
was implemented, you can only path find to the nearest item to you based
on your enhanced listen mode scan. Once you find that item, it disap‑
pears from the scan, which makes sense in most cases. This includes safes,
though, because if it didn’t, you’d just be stuck there until you opened it,
and couldn’t get any other items without some fiddling to make some‑
thing else closer to you than the safe is. So, safes and workbenches disap‑
pear from the scan as soon as you find them, regardless of whether you
finish with them. The problem is that, if you then left, thinking “OK, gotta
find the combination,” and then found it, you couldn’t get back to the safe,
because as far as the scan was concerned, it’s gone. The remake fixed this

The State of Blind Accessibility ◾ 35

issue for TLOU1, as it temporarily rerouted the golden path to a safe if you
found the combination and it wasn’t yet unlocked. To be clear, this was
still a band‑aid solution, as I would’ve preferred nav assist allow for some
player selection, but it solved a long‑existing problem, so I was OK with it.

TLOU1 was innovative in another way, too. It also contained audio
description for its cinematics and was the first game to do so. It definitely
wouldn’t be the last, though. Anyway, to give you the basics here, audio
description is a narration track that describes visually conveyed informa‑
tion to a blind person. It is widely used in movies and TV these days, and
many streaming service providers have adopted it. Those who write audio
descriptions are professionally trained to be concise, yet informative,
focusing on not stepping on any dialog or important sound effects while
describing a scene. Including this feature in TLOU1 opened up a lot more
information to the blind. They now knew things they never had before,
though this wasn’t quite as complete as I would’ve liked. The restriction
to the game’s cinematics was heftier than it might sound, since so many
of the game’s cut scenes are done in‑engine. Whole swaths of noninterac‑
tive moments are undescribed, such as the car trip at the beginning of
the game. Still, this was the first implementation of audio description in a
game, and for what was done, I am still quite happy with it.

Now, while still not common, audio description is becoming much
more widely used in games. Games like Stories of Blossom, an adorable
point‑and‑click adventure game which is audio described the whole way
through, Mortal Kombat 1, Stray Gods, Forza Motorsport, and more fea‑
ture brand new innovations in the area of in‑game audio description. For
example, Forza has dynamic, in‑game audio description based on time of
day, weather, and so on, and description happens even in certain gameplay
moments, such as driving into the pit. Audio Description is just another
way to help immerse the blind in your game’s world, and if it’s not already
part of your plans, I would recommend making it one. When you do,
check out a professional audio description company called Descriptive
Video Works, and tell them I sent you.

Lots of other games have been getting attention in the blind accessibility
space for other reasons as well. Games like As Dusk Falls, which was fully
blind accessible at launch thanks to some incredible narration work (basi‑
cally all it needed as an interactive cinematic experience), gave us a tense
and wonderful story about family and how it can be impacted by stressful
situations. Sequence Storm, which had blind accessibility patched in over

36 ◾ Taking Video Out of the Game

the course of a summer and is now fully blind accessible, gave us a fasci‑
nating and fun rhythm and racing hybrid. Speaking of hybrids, Brok the
InvestiGator, which also patched in blind accessibility post‑launch, gave
us an extremely long, extremely fun point and click adventure/Beat ‘em up
hybrid. Games like Blind Drive, Alt Frequencies, The Vale, Apotheorasiss,
Evidence #111, and more continue to give us ideas of what an audio game
can be. There are many, many more games out now that we can play, and
it’s not nearly as infrequent as it used to be to see a new one emerge. I’ll
reiterate that our list is still small compared to the amount of games that
come out nearly every day, but it’s wonderful to watch it get larger.

I also want to give a nod to the studios that are making steady progress
toward blind accessibility. Studios like Ubisoft, for example, whose games
have year over year reached steadily toward that goal. They’re still not
blind accessible, but something new is typically added with each release.
They’ve reached a level now where their screen narration is pretty solid
and nearly complete in their games, and Assassin’s Creed: Valhalla even
had audio cues to help locate items. It’s a long process, but they’re getting
there. It is quite difficult to dive all the way in the way Naughty Dog did,
and I appreciate that.

Ubisoft aren’t the only one, though. Studios like Insomniac Games
have begun perfecting their accessibility craft. Many of their newer
games feature tons of accessibility features, some of which do help the
blind, but none of which yet make their games fully accessible to us. I
like to talk about the Spiderman 2018 remaster and Miles Morales when
I talk about Insomniac, because in my opinion, those two games are so
close to accessible that it hurts. They do lack screen narration, but they
have a nav assist that is semi‑functional. The problem is that it’s a simple
implementation that uses only the camera position rather than smart
scripting, but it almost, almost works in those games because most of
the time you’re swinging through the city, so navigating as the crow
f lies is legitimately a decent way of doing things. It all breaks down,
though, when you’re on the ground and are expected to find your way
through some building or warehouse or huge enemy compound. You
get the idea. Since there is no scripting to guide us around things, it
attempts to send us into walls constantly while saying “Yeah, seriously
just go that way. The thing you want is right through there!” But let me
tell you, completing the intro to Marvel’s Spiderman: Miles Morales,
which takes place in the open city, thrilled me intensely, which is why

The State of Blind Accessibility ◾ 37

I say that it hurts. The feeling of being brought down by the realization
of what was happening, why the few things that worked were working
for a while. That is painful. The realization that I would not be play‑
ing that game to completion, despite my soaring hopes that I might be.
That is painful. Insomniac is so close, it hurts. But maybe, just maybe,
by the time this book is in your hands, this will have already changed.

Several studios started with narration when approaching the idea
of blind accessibility, and that is OK as long as improvements are
made afterward. A couple of great examples here are Gotham Knights,
which, from what I can tell, has basically perfect narration but just
about nothing else in terms of total blind accessibility, and Hogwarts
Legacy, which also has incredible narration despite not having much
else for us. I do often refer to narration as step one, as it is the blind
accessibility feature that will universally be needed for almost every
game, so I’m glad these studios are beginning to bring it in. Still, of
course, I always want more.

All these accessible games are of course wonderful, but the state of
blind accessibility goes beyond the games themselves. At last, we’re begin‑
ning to see true engine support for blind accessibility features. While
Unreal began experimenting with accessibility some time ago, adding
color blindness features in 2014, they have more recently added screen
reader support to their engine. The earliest example of this is 2019’s Halo:
The Master Chief Collection, but it has since expanded into the mobile
space. Games like Mortal Kombat Mobile and Injustice Mobile, both
support IOS’s VoiceOver thanks to the work Unreal did. Apple has also
announced their very own accessibility plugin for the Unity engine, mak‑
ing blind accessibility far easier by allowing you to add VoiceOver labels
to those custom Unity elements. These are two of the biggest engines
in use for game development today, so this can only mean good things
for us. Not to mention those studios that have already done tremendous
accessibility work are making accessibility a part of their custom engines,
so their process for making a game blind accessible will be even easier
going forward. All this means is that I need more games, and I’m very
OK with that.

This is where we currently stand with blind game accessibility. I
think you’ll agree that we’re in a pretty good spot, but like I keep
saying, there’s always room for more. There is still so much uncov‑
ered ground, but now it’s time to start covering it. So far in this book

38 ◾ Taking Video Out of the Game

I’ve attempted to help you understand the basics of blind accessibility,
how it has been done before, what is happening now, and through all
that, why you should pursue it. Now, at last, it’s time to get into the
question of how. Now, it’s time for me to help you take your first steps
toward blind accessibility in your upcoming projects, whatever they
may be. Read on because we’re just getting started.

PART 2
Guidelines for Blind

Accessibility in Games

https://taylorandfrancis.com

41DOI: 10.1201/9781003433750-11

C h a p t e r 9

Basic Principles of
Blind Accessibility

Alright, it’s time to really, truly break down exactly how you can
make your games accessible to the blind. You will have read some

of this information already if you’ve read the first part of this book, as I
occasionally used these bits of advice in order to help illustrate a point,
but this is where you can find them all collected for your convenience.
We’re going to start with some basic principles, as the title of this chap‑
ter states, but then we’ll break it down into specific genres and types of
games. Hopefully, we cover the game you’re thinking about or working
on. Maybe reading about how you could do this inspires you to make a
brand‑new game. Hey, I can dream, can’t I? I want to play more games!
Anyway, enough introduction. Let’s get to it.

The first and most basic principle of blind accessibility is that it’s all
about information. When you can’t see, and you’re trying to play a video
game that doesn’t contain blind accessibility‑specific features, you are
probably missing quite a bit of information that is conveyed visually to
the player. That is the consideration you should start with when think‑
ing about making your game accessible to the totally blind. Don’t start
with the how, because we’re not there yet. We’ll get to that. Start with this
consideration of information. Ask yourself what information the blind are
missing in your game or will miss in the game you want to make. Really
think about this, as the smallest barrier could prevent us from playing your

https://doi.org/10.1201/9781003433750-11

42 ◾ Taking Video Out of the Game

game entirely. I gave up on the fighting game MultiVersus, not because of
the gameplay, but because I couldn’t get past the license agreement. That is
not a joke. In VR games, the biggest blocker for blind play, in my opinion,
is the non‑universal way in which VR games are configured. Uncertainty
about how to configure individual VR games on first launch almost always
leads to unplayability right off the bat. This is Also not a joke. Consider
everything you can. You will likely miss something along the way, but
doing your best to take everything into consideration as early as possible
makes it more likely that you can fix something you missed later.

As a side note, that’s a good principle for general accessibility. Start
thinking about it as early as possible. Building accessibility, any kind of
accessibility, into your design from the ground up not only makes the
overall process easier, but usually results in a better experience for every‑
one, not just the disabled. Remember that accessible design is good design.
Here’s the thing, though. This isn’t an argument against patching in acces‑
sibility. I’m not trying to tell you not to patch accessibility into an exist‑
ing game. I think you absolutely should if you have the resources to do
so. However, I am saying that it will be more difficult, as you may have
to rewrite some systems to accommodate new features. It can be done,
though. There are examples I’ve already given in this book (Sequence
Storm, Brok the InvestiGator), that have done an absolutely stellar job of
this. So, if you have a game that’s already out there, I would still say con‑
sider it if it makes sense for you to do so. But if you’re about to start a new
project, maybe focus on making that project as accessible as it can be.

Alright, back to total blind accessibility. The second basic principle of
blind accessibility is narration, narration, narration. Almost every game
these days has some sort of text element, even if it’s just the main menu,
and we should have access to all of them. Sure, there are exceptions here,
as there are exceptions to every rule. Journey, for instance, would prob‑
ably require little to no narration at all to be fully blind accessible, because
the game itself doesn’t possess much text. But for the most part, a good
step one in the building process should be to ensure that any text ele‑
ment you have is going to be narrated to us in some form. This can be
achieved in many ways, from human‑voiced narration, (expensive but
awesome depending on the game), to adding screen reader support for a
user’s existing screen reader (easiest on PC but possible for Xbox and PS5),
to prerecording text to speech files as we did in TLOU2 (not ideal for every
game since it doesn’t account for anything that might come from outside

Basic Principles of Blind Accessibility ◾ 43

the game world like player names in a multiplayer game), to adding in
your own, hand‑crafted text to speech solution, (potentially difficult, but
worth looking into on a game for, say, the Nintendo Switch). One of these
things, or even a combination of them, can lead you to full access to these
elements. Diablo IV, for instance, has a robust narration system, including
screen reader support, but certain journals and notes you pick up are still
voiced by human voice actors, as they always have been throughout the
series. This still counts as access. Think carefully about your solution for
this, as it isn’t likely to change once you’ve adopted something.

Sticking on this narration point for a moment, I’d also like to advise
you not to over‑narrate. There are some games with great narration
overall, but over‑narration slows things down. For example, one of my
early criticisms of As Dusk Falls was a particular bit of narration in its
options menu. Every time you moved over an option, narration would
start off by saying “setting,” followed by the option’s name. This actually
hurt more than it helped, as it made it nearly impossible to go through
menus quickly to find what we were looking for. We always had to wait
through “setting” before we could know for certain which option we
were highlighting.

It’s also worth considering the narration order. The order in which the
narrated text is spoken does matter, so when narrating any given screen,
make sure you consider what information is the most important, and nar‑
rate that first. This again allows the blind player to move quickly through
screens, especially once they get a handle on them. Then, if you have less
important information narrated after the important stuff, it feels a lot
more like a choice the blind player makes to hear that information, should
they want to, or not hear it and move on since they heard the most impor‑
tant information already. Of course, narration order applies to all aspects
of narration, including that which happens during gameplay, but I’m not
going to get too deep into that just yet since that can be very game‑specific.

Next up in our basic principles list is input. Remember, especially if
you’re making a game on PC, that a blind person likely doesn’t use a
mouse. Many blind people don’t even have one. They control their comput‑
ers entirely with their keyboard. Therefore, to help guarantee blind acces‑
sibility, your game should have keyboard or controller support. These are
interfaces that can be understood by a blind person much more easily than
a mouse, and if done right, can give us the kind of interface to your game
that we need. This brings me to my next point.

44 ◾ Taking Video Out of the Game

This isn’t so much as a principle as it is a bit of unashamed begging.
Please, please do not require cursor movement with a controller. By this, I
mean that we should not, at any point, have to use the thumbsticks to move
an actual cursor around in a nonlinear fashion, desperately hoping that we
eventually land on the thing we’re looking for. That’s the whole reason we
don’t use mice. It’s not fun. Instead, moving through items should snap to
each one as it did in the old days of video games before anyone thought to
put a cursor on consoles. If we go down, it should jump to the next item
in that direction. Same for left or right. You get the idea. If you must have
some cursor movement, such as a map you want a player to be able to
move around freely, then I recommend using the D‑pad on controller, or
alternate keys on a keyboard to allow for snap movement on that screen,
while a sighted player is still free to use the mouse or thumbsticks to get
the freedom they desire. Although in the specific case of a map, especially
a large one, I am going to recommend a different system entirely, but we’ll
get to that later.

The next principle is navigation. A blind player must be able to navigate
your world, whatever that means for you. I’m not going to get too deeply
into this one here, as it depends very, very much on the game, but it is
something I will be focusing heavily on in future chapters. Just keep that
in mind as a general rule. You’re going to have to find a way for a blind
person to get through your world, large or small, and you can do that, but
how you do it is going to depend on what kind of game you’re building.

Lastly, I offer you a principle that applies to accessibility in general.
Remember that every game is different. If you’re designing a game, even
one that fits into a specific well‑established genre, you probably still want
to be innovative on some level with your creation. Whatever that inno‑
vation is, it will make your game stand out, but it will also mean a new
accessibility consideration or two. So, this one is also a reminder that this
book is intended to be a guideline, but not to be a replacement for working
with accessibility consultants. I encourage you to get creative, and to be
innovative, because that’s how progress is made in this industry. However,
let us help you. We want your game to be accessible to us, and we can help
ensure that happens. Take all you can from this book, because that’s what
it’s here for, but also involve the disabled in consulting on and testing for
your game. I promise it’s worth it.

That covers the basics. I hope by this point you have built a foundation
of understanding regarding blind accessibility and the types of things we

Basic Principles of Blind Accessibility ◾ 45

need in order to play your game. Now, though, it’s time to start breaking
it down. It’s time to get specific. Not all of the upcoming chapters will be
relevant to you, but still, they might be worth reading just to get an idea of
the different approaches each game type requires. First, we’ll take a deeper
look into one of the principles we just talked about. Let’s go!

46 DOI: 10.1201/9781003433750-12

C h a p t e r 10

Every Game Is Different

In case you’re starting here, I’ll go over this main point once again.
Every game is different. When you make a game, even if it fits into a

particular genre, you want it to be different in some way. You want it to
stand out, and so you want to be innovative. This is why I continue to
stress the need to still work with the disabled when designing accessibility
features. This book is a guideline for blind accessibility, and I hope it’s a
good one, but it isn’t intended as a substitute for working with us to help
optimize your accessibility efforts. OK, now that’s out of the way, let’s dive
into this idea a bit more.

Before we get to the subject of individual game innovation, we can talk
a bit more about the general idea of every game being different. Each type
of game requires different approaches to accessibility. You’ll note that all
the subsequent chapters really break down these ideas, but here are a few
examples.

Visual novels are potentially some of the easiest games to make blind
accessible. Most of the time, all you really need is narration support. After
all, a visual novel is primarily text, so there’s no need for any kind of navi‑
gational assist or aim assist or anything of that nature. However, I say most
of the time because some visual novels do go an extra step or two. Some
have mini‑games that you must complete in order to progress the story,
and depending on the nature of the mini‑game, some accessibility may
need to be considered. But that’s where your innovation comes in, right?

Fighting games are a pretty good next step on the ladder, as they tend
to need very little. Using Mortal Kombat 1 as an example, we’ve got audio

https://doi.org/10.1201/9781003433750-12

Every Game Is Different ◾ 47

cues for different types of attacks, for distance to the opponent, for block‑
ing, for being in the corner, and so on, we’ve got narration, of course, and
we’ve got audio description. That is several features for sure, but it’s not
nearly as many as The Last of Us, for example. Fighting games have a
certain level of natural accessibility due to their very closed nature. Most
fighting games are 2D fighters, meaning you’re only ever moving in two
dimensions. You’re always right across from your opponent, no matter
where they happen to be, so the blind are never left wondering where they
are. Sometimes there’s a question of which side an opponent is on, but
that is often solved with correct stereo panning. If your character audio
is individualized, all attacks, grunts, movement sounds and so on being
unique to each character, then we can just use stereo panning to deter‑
mine which side our opponent is on and even how far away they are. Then,
just having this good sound design means we can easily learn the sounds
a character and their attacks make. We have considered this to be OK for
quite a while, but of course, all the additional features I mentioned above
take things to the next level. Imagine not being able to browse a charac‑
ter’s move list, right there in the pause menu, in your favorite fighting
game. That’s the difference. The difference between learning moves via
tons of online sources, some of which just take down moves incorrectly,
and being able to use the same in‑game list everyone else is using.

Now, let’s talk about how an open world game is different from an
action‑adventure title like TLOU2. They share many of the same needs
and features, but navigational needs vary a great deal between the two
of them. The nav assist system we have in TLOU2 and TLOU1 works
because those games are mostly linear, some levels being what we call
Wide Linear, where you have some choice of where to go, but not much.
But in an open‑world game, additional considerations must be made. How
do we navigate a world where a sighted player would have complete free‑
dom? How do we deal with the monstrous scale and scope of the open
world? Don’t worry, the answers to these questions are coming. For now,
the question illustrates the example. You couldn’t just slap TLOU2 nav
assist into an open‑world game and call it good. It wouldn’t be enough.

Approaches to specific elements can also require you to look harder at
their accessibility. I spoke of the Invisible While Prone feature earlier in
this book, so I won’t go into great detail again here, but I will say that part
of the reason that feature was decided upon was simply that you COULD
go prone. The other aspects aside, it made sense. The act of going prone

48 ◾ Taking Video Out of the Game

indicates stealth, so why not attach the method of going stealth as a blind
player to that? It’s something a player can follow. When TLOU1 came
around, featuring a character that couldn’t go prone, it just continued to
make sense from a button perspective to leave it as it was. But all of this
was very specific to this game. That’s what I mean when I say every game
is different.

Accessibility shouldn’t just exist. It should fold into the game as seam‑
lessly as possible. Obviously, that won’t always be perfectly seamless, but
things should make as much sense as they can. That helps to create immer‑
sion in your world. When you think about accessibility, think about your
implementation choices and how they relate to your game overall. Maybe
sometimes a different approach to the same feature makes sense for you,
because it fits better in your game’s world. It’s a lot to think about, which
is, again, why this book is merely a guideline. Now, though, let’s start get‑
ting specific. Now it’s time to talk about individual mechanics and how to
make them blind accessible. I will drill down into each, and even provide
a little example, but remember that it is just an example, and it does not
mean you should implement things the same way in your game. Alright,
enough of all that. Let’s drill down!

49DOI: 10.1201/9781003433750-13

C h a p t e r 11

Narration

We’ve talked a lot about narration in this book so far. It is, after
all, one of the basic principles of blind accessibility in games. Some

of the information in this chapter has been dispersed throughout other
sections, so some of it may be familiar, but there should be enough here to
take something more from. Let’s talk narration!

Narration is a great first step in making your game accessible. Some
games may only need narration to become fully blind accessible, such as
some visual novels. Either way, the rule of thumb here is pretty simple.
Every text element should be narrated. If something is communicated to
a sighted player with text, the blind should have access to it in some way.
Sometimes this means having a specialized button for something (check‑
ing your stats, for example), and sometimes narration should just be auto‑
matic, such as when the player navigates into a new zone or level. There are
exceptions to this, believe it or not, but those are defined in very specific
situations. But as much as possible, narrate everything.

Narration can also mean multiple things. Some developers have cho‑
sen to rely entirely on human‑voiced narration. This is most common
in audio‑only games. Games like Evidence #111, an interactive audio
drama, don’t actually support VoiceOver (the iPhone’s screen reader), at
all, because they don’t need to. They built custom gestures for interaction,
and all narration is handled by a human voice. When making a choice,
the choices are laid out to you by the characters, with an early‑game tuto‑
rial on how to make a choice when one comes up. This is still narration.
In choice‑based games like this, a sighted player might see two or three

https://doi.org/10.1201/9781003433750-13

50 ◾ Taking Video Out of the Game

choices pop up on screen and click on one to select it. Having a character
tell us what our choices are is still giving us that information, and still
counts.

Of course, narration using human voices gets more and more expensive
the bigger the game is, and it also has certain disadvantages. For example,
if your game has any kind of dynamic element, such as messages of the
day, or constantly updating content, or if it uses a user‑entered name, be it
a gamer tag or a character name, human narration just may not work as a
solution. It may not even be advisable if your character has a large number
of modifiable stats, just because recording all the permutations of those
things alone may be horrendously expensive. Of course, you could do a bit
of both, as the Diablo series does. Diablo IV has synthesized narration for
a ton of game elements, but as has been true for the entire Diablo series,
the collectable lore books you can find throughout the game are narrated
by human voice acting. This is fine, and I would say it even helps add to
the immersion. It also helps separate the lore from the narration you’re
also hearing, which is important in that game because lore like that will
continue playing even during combat.

So now we get to synthesized narration, or narration using text to
speech. This is a less expensive, but more complex form of narration, as
you must find a text‑to‑speech solution that fits your players and your
game. There are multiple factors to consider here, such as how many plat‑
forms your game will be on, and which platforms, because text‑to‑speech
development can get more difficult the more platforms you have to make it
work on. If a game is platform‑exclusive, you could just focus your efforts
on that platform’s available screen reader solutions. Xbox, for instance, has
a built‑in screen reading solution called Narrator. Since Xbox runs a ver‑
sion of Windows, building something with Narrator support may cover
your PC bases as well. The PS5 also has a built‑in screen reader, which,
although I’m not completely clear on this, seems to now be accessible to
developers via an API, as I have encountered a couple of games that use it
(Diablo IV, and Gotham Knights). So, if a game is PS5 exclusive, that may
be the easiest way to go. If your game is exclusive to PC, the best way to
support narration may just be to support existing PC screen readers like
NVDA and Jaws. There is a library called Tolk that will make doing this
very easy in most cases, but we’re also now seeing some in‑engine support.
Unreal, for instance, has screen reader support as something you can set
up within the engine, and has already been demonstrated in Halo: The

Narration ◾ 51

Master Chief Collection. Unity is working on the same kind of support,
but even now, there are multiple plugins that have been created for Unity
to add screen reader functionality to them. One was created by Apple,
allowing Unity developers to support VoiceOver on iPhones, but one was
created by PopCap Games, and seems to be a more universal plugin for
multiple platforms, as it has been used for games on mobile as well as
PC and console. A good example of the use of this latter plugin is Alt
Frequencies. There aren’t any good examples of the Apple plugin as of this
writing, as it has only been demonstrated and is not used in any game I
am aware of.

Another option that exists is the use of a service called ReadSpeaker,
which can be found at readspeaker.com. This service offers a couple of
different solutions that would work for narration in games. First, you can
have ReadSpeaker produce audio files for each string that requires nar‑
ration. This is effectively The Last of Us method, and can work in a lot
of cases, but again, you must consider how much dynamic content your
game contains. Will your game use character or player names, or have
content that changes throughout its life cycle? Then narration done this
way may not be advisable for you. You could always get new audio files for
the new strings for updating content, but those user‑generated bits of text
will get you every time. Still, if your game does not contain these things,
this is a perfectly acceptable form of narration and has the advantage of
working on all platforms.

ReadSpeaker’s second option is a plugin that can hook right into your
game and produce text to speech in real time. As I understand it, should
you choose to work with them, they will help ensure their plugin can
work with your game and help with implementation if necessary. The idea
here would be that their plugin would fold directly into your game’s code,
meaning that once again it could theoretically work on all platforms, and
with none of the disadvantages of narration via audio files. Let me also just
say that this isn’t an intentional advertisement for ReadSpeaker, they are
just one of the only companies offering a service like this in the gaming
space. Definitely worth looking into, though.

Lastly, there is the difficult, but doable method of building your own
narration solution into your game. There are some text to speech synthe‑
sizers that can be licensed for fairly cheap, and you could choose to hook
them up to code you simply write yourself. This is probably the most dif‑
ficult approach, but again, like some other solutions, it would theoretically

https://readspeaker.com

52 ◾ Taking Video Out of the Game

work on all platforms your game is to be released on. Some studios like
Ubisoft have taken this approach, and many of their games now have fairly
good narration, such as Assassin’s Creed: Valhalla and Watchdogs: Legion.

All the methods of narration I’ve listed above are valid, depending on
the type of game being built. Choose whichever works for you, but no mat‑
ter which you choose, follow that golden rule of blind accessibility—nar‑
rate everything.

Now that we’ve established pretty solidly that everything should be
narrated, let’s talk about other narration considerations. The first is cus‑
tomizability. If your narration method is simply supporting other screen
readers, you don’t have to worry much about this. The player can simply
configure their screen reader with the settings they like, and those settings
should carry over to your game. But if you’re using text to speech of some
other kind, you may want to consider allowing people to adjust the rate
of speed, the volume, or even the pitch. When multiple voice options are
available, you may want to allow players to configure that, too. This isn’t
always possible (if you’re using prerecorded audio files, for example), but
when it is, it should at least be a consideration. Allowing a user to custom‑
ize their experience to best fit them is a key component of accessible game
development, and you’ll quickly learn that most blind people set narration
speeds much faster than their typical defaults.

The ultimate convergence of these things is probably the Microsoft
Narrator API, which allows you to not only check a user’s existing nar‑
rator settings, but also to establish different settings on a per‑game basis.
For this reason, we were able to make Forza Motorsport’s narration suite
extremely comprehensive. Players have access to narrator settings like
speed and volume within the game itself and can even select from every
available Microsoft Speech API voice in their region. Doing this within
the game will only modify the settings of the game and won’t affect their
Narrator system settings on Xbox or PC. It’s pretty neat to allow users to
create that kind of separation, though of course, that can’t apply to every
game.

OK, so everything should be narrated, and narration should be cus‑
tomizable where possible. Great. Now you must tackle the shockingly dif‑
ficult question of HOW everything should be narrated. Keep in mind that
the blind player does not get a constant view of the screen like a sighted
player does. So, what do you narrate on each screen, and when? These
are very important questions, and it is possible to do this in a way that is

Narration ◾ 53

not necessarily wrong, but a worse experience for the player. And no, the
answer is not that you just reread the entire screen every time the player
makes a move. We’re going to get into this now so you can ensure your
screens are narrated in the most user‑friendly, blind‑friendly way possible.

First, you need to figure out what is the most important thing is to nar‑
rate in the current moment. A basic example of this is when the player’s
focus enters a new screen. Let’s take a game’s main menu. The game loads,
and the main menu appears. What does narration say? Maybe it says the
game’s title, “Super Epic RPG 3: Doughnuts to Dollars”), and maybe not.
This is a developer preference. The way I see it, if your game opens with a
splash screen showing the title as you transition into the main menu, then
yeah, you should narrate it. Once that’s done, you might say something
like “Main menu,” to indicate which screen the player has arrived on.
Every screen the player might need narration to navigate through should
have a title like this, but it only needs to be announced upon entering that
screen. Then what do you do? Do you narrate the entire menu? No. Focus
on the moment. Narrate the option the player is on currently to establish
for them exactly where their focus is. Let them move through and explore
the menu themselves and learn it, allowing them to navigate it much faster
in future sessions.

Now let’s switch from the main menu to a more complex menu, the
options menu. Some of these things can apply to a main menu as well, but
I think the concept of an options menu will demonstrate this point best.
We’re still talking about narration order here, but in a menu like options
or settings, things get a lot more complex. Before you read on, stop and
consider how you currently think a menu like this should be narrated.
Have you considered? Good. Let’s see how right you were. I’ll leave it to
you to keep a score card.

When the player enters this menu, first, you want to tell them where
they are. “Options,” or “Options Menu,” or “Settings.” You get the idea.
The next item depends on how you’ve split the options menu screen. In
menus with fewer options, there may be no need to categorize them,
but if there is, make sure the player knows next which category they
are currently in. Then, you read the option they are currently highlight‑
ing. Follow that up with its value, because that is the next item of direct
importance to a player who might later do this quickly. After the value,
then you read the option’s tool tip, if it has one. Here’s an example of how
this should sound.

54 ◾ Taking Video Out of the Game

“Settings menu. Appearance. Doughnut detail: High. Adjusting this
setting adjusts the visual detail applied to all in‑game doughnuts. At a low
setting, only their shape will be visible. When set to ultra, it will be pos‑
sible to detect every individual sprinkle.”

Ordering things this way allows the player to skip the tooltip if they don’t
need to hear it (if they’re already familiar with what the option does and just
want to change it, for example), and move onto the next option. Of course,
this is a hint that, if the player presses anything, narration should be appro‑
priately interrupted, and the new relevant information should be narrated.
If they pressed the down arrow, they’d probably hear the next option in the
menu. If they pressed right, though, they would only need to hear what this
option was changed to, which in this case is “ultra.” Don’t think you have to
reread the entire option if its value is changed. Let the interruption of narra‑
tion be the player’s doing. It’s their choice, and they will have their reasons for
cutting narration off. Also, as they move down through options in the same
category, don’t feel the need to read that category over and over. Categories
only need to be read when they change. So, if a player moves down to the
next option (which is Chocoholic Filter in my imaginary game in case you’re
curious), there isn’t a need for narration to say “appearance’ again, because
we’re still in that category. Just narrate that option, its value, and its tooltip.

Another key thing here is not to over‑narrate. This is harder to avoid
than it might seem if you use the Microsoft Narrator API, which has a
smart default system that tries to figure out how to narrate things for
you. In my opinion, this system’s defaults over narrate significantly. For
instance, the same settings menu example we gave earlier would sound a
bit more like this if you were using that API on its default levels.

“Settings menu. Group: Appearance. Option: Doughnut Detail: option
1 of 6. Value selector. Current value: high. Adjusting this setting adjusts
the visual detail applied to all in‑game doughnuts. At a low setting, only
their shape will be visible. When set to ultra, it will be possible to detect
every individual sprinkle.”

Whoa, right? That is a lot. In my opinion, it’s far too much. The excep‑
tion here could be the number of options in the menu, which some play‑
ers may want. Me, I never minded not having that piece of information.
I want menu narration to be quick and concise. As I work more and
more with each menu, I’ll figure it out. But that’s just me, and one of the
greatest things I’ve learned in this career is that you cannot design for
the super user.

Narration ◾ 55

I’m going to use As Dusk Falls to demonstrate a point about over nar‑
ration. As Dusk Falls has some of the best in‑game narration ever, (more
on that in a bit), but its menus, specifically its settings menu, leave some‑
thing to be desired. It’s not narrated badly, but it does have one particularly
glaring problem. As you browse through it, the first thing you hear upon
highlighting each setting is the word “setting.” Why is this problematic?
Because ultimately, you want your players to become familiar with your
menus, so they might browse them quickly. The first time they go through a
menu with narration, they will likely listen to all the information provided
for them. You don’t want them to have to do that every time, however.
Narrating “setting” before each item makes it highly likely that a blind user
will stay on options longer than they need to because they must wait until
that word finishes to get confirmation of which option they’re highlighting.
It becomes impossible to skim the menu this way to find the thing you’re
looking for. That is over narration.

One thing to keep in mind going forward is that the concepts of nar‑
ration ordering we went over a bit ago apply to every narrated screen in
your game. This will be a lot of work with a big, complex game, but I can
assure you it is important work. To put this in perspective, I was asked
during development to approve the way each and every screen in Forza
Motorsport was narrated, because we had systems in place to change it all
around if necessary. This even applied to narration that took place during
gameplay, which is a wonderful segway into my next topic—prioritization.

Narration during gameplay can be challenging but is still very neces‑
sary when following the golden rule that is “narrate everything.” How you
pick your narration priority, though, will depend on the game and the
specific experience you want players to have during gameplay. In Forza
Motorsport, we have a queueing system in place. Our narration is sent
through the game’s VO system, allowing us to treat it like other VO, and
letting us decide when it should and shouldn’t play. For instance, when in
the early stages of the game, those times when tutorial messages, which
are VO lines delivered by your race coach, are still playing, those lines are
prioritized over narration, because they need to play at specific times or
risk becoming irrelevant. So, they play first, and any narration that would
play at the same time queues up behind them. However, as you get further
on, passing beyond tutorial time, narration gets prioritized over some VO
because it might contain information the blind player might want more in

56 ◾ Taking Video Out of the Game

the moment, such as their lap time upon completing a lap, or acknowledg‑
ment of the XP they just gained for taking a corner well.

In The Last of Us Part II, and then subsequently part 1, we took a dif‑
ferent approach. We prioritize via audio ducking. If the player is not in
combat, and screen narration and character VO are set to be played at the
same time, the narration is ducked in favor of the character voices because
The Last of Us is extremely narrative‑driven, and we don’t want the player
to miss that character dialog. However, if the blind player is in a combat
encounter when narration and VO would play at the same time, we do the
opposite, ducking all voices in favor of narration, because now the impor‑
tant details are the player’s health, ammo count, and so on.

As you can see, prioritization can be important, but as with most
things, it depends very much on the game. Remember when I said that As
Dusk Falls has some of the best in‑game narration ever? Part of the reason
for that is that they don’t really have to worry about prioritization, since
their game is essentially an interactive movie with occasional choices and
quicktime events. Still, that doesn’t diminish the impact their narration
has on the game. If something needs to be narrated, it just is. Title cards as
you move into new scenes, button presses for those quicktime events, and
even text messages sent and received by each character. All of these things
are narrated exactly when they should be, which is of course immediately
when they happen. It’s fantastic and really helps immerse us in the game.

One more thing for you, visual novel creators out there. While all the
ways listed above for adding narration to your game can apply to you, I
want you to know that, if you use the Ren’Py engine for the creation of
your visual novel, you will have access to an in‑engine self‑voicing mode.
Many games support this already, such as Arcade Spirits and Blake: A
Visual Novel, so I recommend looking to them for inspiration. Of course,
that doesn’t mean you have to use that engine for your game, it’s just a way
you can make blind accessibility a bit easier. You can even label any click‑
able segment of the screen, so those moments where the blind have to look
around at objects in a room are even easier.

That’s narration. Follow the golden rule, figure out your narration solu‑
tion, your ordering, your prioritization, and you are well on your way to
making your game blind accessible. Still, we’ve got a long way to go. Let’s
keep going, shall we?

57DOI: 10.1201/9781003433750-14

C h a p t e r 12

Navigation and Traversal

Lots of games today are built in worlds players can explore, some‑
times to their heart’s content. Some worlds are enormous constructs

of epic proportions, known as open worlds. They are going to have their
very own chapter later. For now, we’re going to cover the basics of helping
a blind person navigate your world, as, once again, there are multiple ways
to approach this. No matter what, though, unless your game contains no
navigation at all, such as an interactive experience like As Dusk Falls or
Stray Gods, the blind player is going to need help with this. Let’s discuss
how you can make this happen.

The style of navigation you use depends on the types of navigation
required and, in some cases, the complexity of your game. The larger and
more complex your game world, the more complex it will be to provide
true navigation assistance. Of course, even a small but complex world
presents its own challenges, such as a platformer. We’re going to talk about
all these things, don’t worry.

I’m going to start with a fairly complex example because it’s one that
exists right now, and thus it’s something you can reference for yourself.
I’m going to start with, you guessed it, The Last of Us Parts 1 and 2. How
do we navigate through this game’s world? Allow me to explain.

The navigation assist system of The Last of Us was an enormous and
complex effort. The short version is that when you press L3, an audio
cue plays in the direction of your objective, and the camera turns to
face it. So, pressing L3 while pushing forward will get you where you’re
going, the audio cue helping to signify when you’ve taken a turn just

https://doi.org/10.1201/9781003433750-14

58 ◾ Taking Video Out of the Game

so you, the player, know when that happens. However, under the hood,
it is much, much more complex than that. Every single time the player
presses L3, a ray is cast from the player to the next hand‑crafted point,
whether that’s a wall, or a doorway, or even just a reasonable distance
from the player. Yes, you read that right. The maps for The Last of
Us Part II, and then the Part I remake, were marked up for naviga‑
tional assistance by hand. This is because there’s an inherent problem
with only using the camera method. That problem is that your objec‑
tive may be, and in fact almost always is, on the other side of at least
one wall or barrier of some kind. Using a method that only turns the
camera and points toward your objective is almost assuredly going to
inevitably guide your player into a bunch of walls sooner or later, even
though it might appear to work for a little bit.

Let me give you a painful example of this. Marvel’s Spiderman: Miles
Morales on PS5 has a navigational assistance feature. Pretty cool, right?
In fact, I was able to complete the entire introduction to the game on my
own without sighted assistance. After the intro was over, though, I quickly
learned why I was able to complete it, and it was the same reason I was
able to complete SOME of the intro of Spiderman 2018 Remastered, which
also has the same nav assist feature. The reason is… You’re Spiderman.
Because you’re Spiderman, an as‑the‑crow‑flies navigation style works…
when you’re out in the open. Swinging through the city is fine because
nothing is going to stop you. You’re Spiderman. But once you move into
buildings, or once you have to do any kind of ground navigation at all,
really, you quickly fall victim to the fact that this nav assist wasn’t scripted
out and marked up by hand. It is only using the camera method, meaning
you’re going to hit a lot of walls if you’re not swinging. This is what I mean
by painful. To start things off by succeeding, especially in Miles Morales
where I completed the entire intro, then to literally hit a wall, multiple
times, just when I was starting to have hope that maybe, maybe I could
work my way through this game. It hurt.

Puzzles are a thing we’ll talk about in more detail later, but I should
note that the nav assist in The Last of Us also covers puzzles via the use
of careful scripting. In order to get blind players through, you are guided
to each point of interaction in order to complete a puzzle. Again, we’ll go
into this later as it’s not the only possibility for puzzles, but for now, it’s
worth noting that that is an option for nav assist if you feel it makes sense
for your game.

Navigation and Traversal ◾ 59

The next bit of The Last of Us’ navigational assistance is actually a
separate feature called traversal assistance. On the surface, this feature
will automatically vault over certain objects to assist you with getting
to your objectives faster. However, it does more than that. For instance,
if your character isn’t quite lined up with a jump point when you get
the prompt, traversal assistance will take control for just a second, turn
your character to properly face the jump, then execute it. This helps
with things like jumping through windows. It also helps with the com‑
pletion of sprint jumps, and certain puzzles where specific movement
is required. It’s a feature that couple with navigational assistance well
because we still cannot see the world around us, and don’t know how
you want us to get to these places. Helping us in this way, or with audio
cues (which we’ll also get to later), is definitely advised for games with
all sorts of navigational challenges.

The last part of navigational assistance in The Last of Us is our enhanced
listen mode. This allows you to scan the area for items or enemies, and then
press a button combination, R1 plus L3, to pathfind to those instead of
your primary objective. This allows the blind player to explore their envi‑
ronment, with certain limitations, in order to find the loot they need to
survive, as well as the game’s many collectable items. The pathfinding still
uses the mapping system marked up by hand but plots a course through
the appropriate points to get you to the item or enemy you scanned. I men‑
tioned limitations, though, because the system is limited by two major
things. First, the maximum 30‑meter scan radius. Some of the maps, espe‑
cially in The Last of Us Part II, are absolutely gigantic, and there is a sig‑
nificant distance between potentially interactable or collectable items. It is
quite easy, therefore, to miss many things through your journey. Secondly,
it’s limited by the fact that the pathfinding always guides you to the closest
thing in the scan. If that happens to be a story interactable that advances
the story in such a way as to prevent you from collecting the other things
in the area, then so be it. Also, if you’re surrounded by items, one of
which happens to be a collectable you really want, you cannot prioritize
the collectable. It is then possible that, once you’ve collected closest item
after closest item again and again and again, you may now be more than
30 meters away from the collectable you really wanted in the first place. I
still think the system is great for being one of the first of its kind, don’t get
me wrong, but I would highly suggest finding ways around such limita‑
tions for your players if you design a system like this.

60 ◾ Taking Video Out of the Game

One potential example you could look to for an improved navigational
assist system is a game called 1428: Shadows Over Silesia. On the surface,
their navigational assist works similarly to The Last of Us. You press a key,
a sound plays, and you are turned to face your objective. The difference
here is that you can change what that objective is in several ways. You can
press keys to cycle between your active quests and side quests, and still
other keys to cycle through interactable targets, including collectable loot
and items, as well as conversations and story progression. When cycling,
each target is announced, so we know what we’ll be pathing toward if we
begin pressing that key. The freedom of choice here is huge, as it allows us
to decide at all times what we are heading toward, even if we still need a
little help getting there.

1428: Shadows Over Silesia also uses another kind of navigational assist,
specifically to allow us to just explore our environment without automati‑
cally turning toward everything. It uses specific audio cues to indicate
walls near you. When active, a clicking sound plays in the direction of
each wall in your immediate area. The further away the wall is, the slower
and lower‑pitched that clicking is. Because of this, we can walk along cor‑
ridors and find turns and sometimes even hidden passages. Basically, if
there is no clicking on one side, you’re completely unblocked. If there is
clicking, but it’s low and slow, it might be a little side corridor that has
a more hidden turn at its end, which you will only find if you head that
way. Clicks like this can definitely be used in some games, but I wouldn’t
recommend it as the only navigational method if you do use them. It’s a
method that works very, very well inside buildings but doesn’t work at all
as soon as the player is in a wide‑open environment. You could have a sys‑
tem like this monitor certain other things that aren’t walls, of course. For
example, a game that takes place in an urban environment could choose
to identify roads or paths this way, monitoring the edges of the path rather
than individual walls, but this is up to you, and what kinds of navigational
assistance you think would work for your game. Creativity is encouraged,
as long as you can help us get there.

Let’s go through a couple of scenarios that do not exist as of this writ‑
ing. These are ideas I’ve had for existing games and are good examples of
how you could be creative with your nav assist. First, we’re going back to
Spiderman, the web‑swinging sensation himself. Here’s what I envision,
going from basic to the coolest idea ever.

Navigation and Traversal ◾ 61

On the ground, you have a navigation system that is essentially an
upgraded version of The Last of Us’ nav assist. Something that allows
you to scan an area and choose what you’re navigating toward, or to head
toward your objective if that is your desire. Once you’ve chosen your goal,
you are helped to get there by both nav assist and traversal assist, as well
as helpful audio cues that tell you if you need to hop over this thing, or
climb this wall, and so on. Even if you need to do a little swinging to get to
your objective, there is audio cue and traversal assistance for that. When
you reach your objective, you are notified via audio, or maybe a little nar‑
ration, depending on what your objective is. If it’s an interactable object,
we’d be given a prompt to interact with it. Pretty basic stuff based on what
we’ve discussed so far, am I right? Now for the coolest idea ever. This is an
idea I actually presented to Insomniac in the form of a very long‑winded
feedback email after trying to play Miles Morales, but as of this writing, it
doesn’t exist. Here goes.

Currently, in both Spiderman games that contain a nav assist fea‑
ture, you activate it by pressing a key which turns the camera toward
your objective, even while swinging. This often means a tight grip on
your controller as you’re trying to swing, do point to point web zips,
and so on while also pressing this button over and over. But… What
if it didn’t have to be like that? What if you could swing, care‑free and
easy, and really feel like Spiderman, instead of having to be stressed out
by a need to press your nav button over and over, and hoping you don’t
over shoot your target, and hoping desperately that it’s actually work‑
ing in the first place because how would you really know until you get
there? Well, boy, do I have the solution for you. What if you somehow
chose the point you intended to swing to (more on ideas for that in the
open world section), and the game did some quick calculations for how
you could get there, then generated a kind of drone. The drone could
be invisible to save on graphical memory, but it would just need to exist
as an object in the world, and more importantly, a sound source. This
sound source would then become something you literally chase using
positional audio. Now, I don’t mean chase as in you’ll lose it if you stop
moving, I mean that it will always stay carefully ahead of you as you
make your way toward your objective, remaining close enough to stay
audible but far enough that you’re always following it. You then swing
through the city, chasing it down using positional audio and never hav‑
ing to press a button to reorient. When you were close enough to your

62 ◾ Taking Video Out of the Game

objective, it would hover over it, and stay there, so you know exactly
where you had to drop, and you’d know if you went past it. If this did
somehow happen, you could still press a button to reorient toward it if
needed (mostly just if you swung too fast and ended up too far away),
but the fact that you would mostly not be relying on a button in this
scenario would be so, so freeing. Then, once you landed on your objec‑
tive point, (or once a cut scene triggered because you swung into the
right spot), the objective drone would just be deleted, to be summoned
during your next navigational need, which may be automatic as soon
as the cut scene is over if your objective started a story sequence. You
just wouldn’t want the drone sound to be playing during a cut scene, so
anyone who tries this, please delete it and recreate it when necessary.
So, there it is, the coolest idea ever. Personally, I love it, but of course
I would.

Navigational assistance methods like the ones described above may not
always work. For instance, in a top‑down game like Diablo IV, you don’t
really turn your character or the camera in the same way as happens in
games like The Last of Us. So, how would a navigational assist work in a
game like that? Well, you could always try the wall audio cue method, but
of course, that ceases to work in open areas. My recommendation is to
treat this like a ground version of my Spiderman idea, though the chase
doesn’t have to be exactly like a chase. Just play a sound in the direction
the character has to go next in order to path their way to their current
objective (this should be a constant, but nonintrusive sound so it can be
followed but doesn’t annoy the player) and have that sound change direc‑
tion immediately when the player also should. Make sure the waypoint
system underpinning all this is smart. Remember, you cannot hope to
guide the player as the crow flies. The system must know where they have
to go in order to eventually get where they need to go. If that involves find‑
ing a place to climb up first, your system should take them there first. This
may require custom scripting in more complex areas, but that applies to
any of these navigation methods.

Let’s talk about a couple more scenarios. These are the kinds of things
where a traversal assistance feature becomes handy. In many games, it is
very possible for the player to fall to their death if they should, say, jump off
the rooftop they find themselves on. We have to provide enough informa‑
tion and ways to avoid this if possible. There are a couple of options here
as well. First, of course, I’ll reference The Last of Us and talk about our

Navigation and Traversal ◾ 63

ledge guard system. This system did two things. As the player approached
a ledge, they could fall off safely if they so choose, they would hear an
audio cue indicating a safe fall but would be prevented from falling for just
a couple seconds unless they continued to hold forward, which the sys‑
tem would take as acknowledgment that they wanted to fall off that ledge.
After all, there might be something down there. However, if the player
approached a fall that would lead to death, another, more ominous and
lower‑pitched audio cue would play, and the player would be prevented
from falling entirely unless they voluntarily pressed the jump button…
for some reason. This was an effort to protect players from accidentally
falling, not just to their death, but also if they weren’t ready yet. Since the
player in this case cannot see the ledges, they need to know if the path
they’re currently walking on is taking them toward one and be given the
opportunity to change that if it’s not something they wish to pursue. This
system does that quite nicely.

There is another option, however, which I might recommend for a game
that is intended to be more difficult. Audio games that have things like
ledges and pits will use audio to indicate where those edges are, but not
in the same way. Examples of this are Super Liam, Bokurano Debouken
2 and 3, and Monkey Business. As the player takes each step, additional
audio will be applied if they are within a certain number of steps of an
edge of some kind. The audio can differ depending on terrain, or severity
of the fall, possibly even both. The point of this method, though, is that
you’re warning the player of an approaching edge, but you’re not slowing
them down in any way. What happens next is up to them, and their reac‑
tion time. This is perfectly viable, but again it may be a decision you make
based on the experience you want players to have when playing your game.

Other types of traversals, climbing things, vaulting over things, ziplin‑
ing from this rooftop to that one and so on, can be handled in a number
of ways. You could simply provide appropriate audio cues to identify those
spots, (more on those in the audio cues chapter), you could do it automati‑
cally based on the path the player is taking (though if you do this I suggest
giving the player an option not to), or you could do a mix of both, such as
we did with The Last of Us. TLOU will automatically vault you over small
things, and jump up onto small things, but any jump that requires a major
commitment, you will be prompted to complete with an audio cue. To be
clear, though, you are prompted for every jump, but traversal assistance
will take care of the little ones, usually before you can even press anything.

64 ◾ Taking Video Out of the Game

And that, folks, is navigational assistance. Just like with other acces‑
sibility features, consider your game, consider what the player needs, and
create the best solution that fits both of those things best. Of course, audio
cues can be their own kind of navigational assistance, among other things,
which is why this is a perfect segway into our next chapter!

65DOI: 10.1201/9781003433750-15

C h a p t e r 13

Audio Cues

The best way to communicate something to a blind player in a game
isn’t always with narration. Narration is great, and much can be com‑

municated that way, but sometimes you need something more. That’s
where audio cues come in. There are lots of reasons you would use an
audio cue instead of, or to compliment, narration. First, positionality. The
nice thing about audio cues is that, since they can be sound sources in
your game world, the player will hear the audio cue positionally where
they were meant to hear it. If an audio cue is telling a player to jump onto
a ledge that is to their right while also being slightly in front of them,
that’s something you can communicate by attaching the cue to the ledge,
and of course by using positional audio in your game to begin with. Side
note, while you should include mono audio as a feature for the deaf/hard
of hearing community, please avoid making your game entirely mono as a
general rule. The audio is the closest thing the blind have to graphics, and
positionality matters.

Second, audio cues can be used in places where narration might be speak‑
ing at the same time, thus communicating information more quickly. Let’s say
your player is walking along in your game world and decides to check their
health status while continuing to walk toward their goal. As they listen to the
readout, they will still get any navigational cues they need, since they’re audio
cues. Let’s say that, while doing this, they approach an interactable object.
Narration is still going on about their health, buff, and debuff status (perhaps
they currently have the Stale debuff applied, which requires a ton of extra
explanation). If the presence of this interactable object was communicated by

https://doi.org/10.1201/9781003433750-15

66 ◾ Taking Video Out of the Game

narration, it would either have to queue up behind the currently active nar‑
ration, meaning the player would have to wait in order to hear it, or it would
have to interrupt narration, which is almost never advisable unless the player
makes a choice they know will interrupt it, such as choosing to go to the next
item in a menu. See the previous chapter on narration for more on this. Either
way, this doesn’t make sense for the player. That is why you communicate that
they’ve reached this object with an audio cue.

A third reason to use audio cues is in situations where information
must be communicated more quickly than it could be with narration.
This is especially true when you allow a player to adjust the speed of
in‑game narration (which you should), as players using slower speeds
will have to wait longer for any information communicated that way.
We’re going to talk more about racing games in a later chapter, but
there’s a great example from Forza I want to use for this. In Forza, we
give the players an audio cue to tell them at any given point how close
they are to either edge of the track. You must react quickly in racing
games, so just imagine if this were communicated by narration. “You’re
nearing the left edge of the track. Getting closer now. Boy oh boy, you
are RIGHT on it!”

I’m exaggerating, but no matter what narration said, it would be too slow
to communicate information like this, given how rapidly it can change. So
instead, we use an audio cue that increases in speed and pitch the closer
you get to the edge, becomes solid when you’re right on the edge, and plays
an additional sound if you go over. This is, believe me, very effective.

So, we’ve talked about the reasons to use audio cues. Now let’s talk about
what kinds of audio cues you might want to use. I’ve touched on some
of these before in previous chapters, such as the navigational assistance
chapter, but we’ll go over them again here and provide more examples. In
fact, let’s start with navigation!

There are lots of ways audio cues can be used for navigational purposes.
With The Last of Us, we used an audio cue when the player pressed the
nav assist button so they could at least have an idea of which direction
their objective was in compared to them. The audio cue was positional
and would play in the direction the ray was cast, so it would also react as
the camera turned in that direction. The idea was to give the player some
indication of the world around them by auditorily describing the turns
they were making. This is certainly not required to make a nav assist sys‑
tem work, as the system will be guiding the player anyway, but it’s a nice

Audio Cues ◾ 67

gesture. Of course, anything the blind player activates should have some
sort of audio cue so they can be sure it’s working as intended.

Audio cues are also used in The Last of Us for traversal. Whenever the
player must jump, crouch, use a melee attack to break a window, or climb a
ladder, and so on and so on, this is indicated by an audio cue. This enables
the player to maintain full interactivity while moving through a world
they cannot see. Even when the player is using something like a naviga‑
tional assistance feature, we still want them to have as much agency as we
can give them. Giving them this information and letting them interact
rather than simply doing everything for them is the better solution, and
you can do that with appropriate audio cues.

Another game I’ve mentioned earlier, a game called 1428: Shadows
Over Silesia, uses audio cues for identifying walls or barriers. This enables
the blind to explore more freely rather than relying entirely on a nav assist
to get around. In corridors, they can identify the walls on either side
and know when there’s an available turn based on when one of the wall
cues fades or disappears. Even when outside, while exploring a town, for
instance, they could identify the outer walls of buildings. You’ll have to
decide whether this kind of navigational audio can work for your game,
though, as it wouldn’t work in very open areas. Of course, you could com‑
bine this and a full nav assist to allow for exploration in some areas while
also allowing for exploration in areas where it would work.

Audio cues could also be used as sound sources for a different kind
of navigation. Oftentimes in audio games, every interactable thing in the
game world is just a sound source, and we just track things by positional‑
ity. A door might be represented by a constant sound that just means door,
and we just track it once we can hear it. This also applies to objects on the
ground we can pick up. That being said, most audio games are not true 3D
experiences, so again, using only this method may not always work, but it
could be combined with other things as well.

I would like to approach the idea of using this kind of thing for some‑
thing like a platformer. As fast‑paced as some platformers are, something
like this might be required to make one fully blind accessible. This hasn’t
yet been attempted with a video game platformer, hence my speculation,
but it is the approach I would recommend starting with. Make the clos‑
est platforms, objects, and enemies sound sources with varying pitches to
indicate height, allow the player to do some sort of scan around them so
they can look further into the area, and you’re on your way to making an

68 ◾ Taking Video Out of the Game

accessible platformer. There would likely be a few more requirements, but
that’d be a great start.

Let’s talk a bit more about using audio cues for identification. I men‑
tioned that audio cues were often attached to many things, turning
them into sound sources, but how do you do that in a way to make
sense? Well, for example, I will return once more to The Last of Us Parts
I and II. In those games, we used something called sweeteners to iden‑
tify specific things. In The Last of Us, you use the triangle button to
interact with objects and pick up items, so the sound that indicated a
triangle prompt was the baseline. Then, we would attach other sounds
to that sound to get more specific. If you were being prompted to inter‑
act with a door, the triangle sound (a high‑pitched ding) would play
first, followed immediately by a separate short sound reminiscent of a
door being pulled on. If you were interacting with a generator, the tri‑
angle prompt would play, followed immediately by a short version of a
generator starter sound.

This also applies to collecting items. We had additional sweeteners
for every item type you could collect, so you would know what you’d be
picking up before you did so (unless of course you had auto‑pickup on, in
which case you’d be grabbing it all up anyway). Still, the sweeteners were
there and would still be valuable if you had the maximum amount of an
item you could hold, so you knew what you would need to use in order to
collect the item you were standing in front of. The sweeteners we used for
collecting items not only included different ammo types (arrows, bullets,
fuel, and so on), but also every crafting material in the game, and even
those rare cases where you were given a craftable item for free. It’s all there.
If a blind player must press the triangle, they will almost always know
exactly why.

We can tie this back to navigation as well, as sweeteners were also used
there. The button to climb a ladder was the same as the jump button (X),
and so we applied a sweetener to the X or jump prompt that sounds a
bit like a ladder being shaken a little bit to indicate there was a ladder to
climb. Same with ropes, a mechanic that only appears in The Last of Us
Part II, as well as gaps you need to squeeze through, which also require
the same button press. Still more sweeteners are applied to puzzle‑related
notifications, such as when to place a ladder or plank. In short, sweeteners
are powerful tools you can use to vastly increase the usage you can get out
of your audio cues.

Audio Cues ◾ 69

Next, I want to bring up the idea of audio cues for status. Sure, it’s nice
to be able to check one’s health with narration to get an exact representa‑
tion of where your health is, 73%, for instance, but sometimes you just
want to know that your health is getting a bit low. This can be achieved via
an audio cue, such as a heartbeat that increases in speed, which is a popu‑
lar choice even for games that aren’t blind accessible. But your character’s
health isn’t the only status you might consider.

Games like Destiny 2 and Deadpool, both of which are also not blind
accessible, use audio cues to help with your current ammunition count.
Deadpool adds a couple of little beeps that play when you’re firing the
last few bullets in a clip, and Destiny 2 increases the clicks of your trigger
when you are low on ammo. Both things are very useful ways of providing
this information even to sighted people, as it prevents them from having
to constantly watch their ammo count, but something like this could just
as easily serve the blind as well. Audio cues like these are just more proof
that accessible design is good design.

This idea goes even further, though. The Diablo series has, for the last
couple of games, had subtle audio for many of its buffs. Be a sorcerer in
Diablo III and cast frost armor, and you may notice a constant sound play‑
ing around your character while it’s active. Diablo IV does this all over the
place, including buffs created by shrines you find as you wander the world.
It’s just another way to communicate the information on a screen that
shows when a buff is active. You could also do the same to indicate when a
buff or debuff expires as well. And to expand upon this a bit further, why
not throw an audio cue on cooldowns for things that have them? If your
game has a lot of cooldowns, you could make a sound for each one so the
player would always know when it wore off. Of course, each cooldown
sound should be auditorily related to its buff sound so they would be easily
identifiable and learnable.

Remember when I mentioned Destiny 2 and Deadpool above, talking
about how they had useful audio cues even though they themselves are
not blind accessible? I want to be clear that that happens a lot. We will use
whatever audio you create. Accessible design is good design, and the more
you try to fold your game’s existing audio into that philosophy, creating
natural audio cues, the better. If you read the first half of this book, you
know that this is basically how we used to play all video games. Analyzing
the sound, picking out what we could use to help us… The individual
character voices the first Killer Instinct had, and now basically all fighting

70 ◾ Taking Video Out of the Game

games have, is technically a helpful audio cue. It cues us into which char‑
acter is which and, in the moment, just who is taking that massive punch
to the face. Audio is important, folks. It’s just as important as graphics.

Let me give you another example. Kingdom Hearts is one of my favorite
games that isn’t accessible. Well, combat is accessible thanks to its lock‑on
system, but that’s another story. The thing I want to talk about is a subtle
audio cue Square Enix decided to use in this game that wasn’t something
they had to do, but the fact that they did is pretty awesome. In Kingdom
Hearts, your main character Sora wields a weapon called a Keyblade. As
you progress through the game, you get several different versions of the
Keyblade, often related to certain characters or worlds. The cool thing
here, though, is that each individual Keyblade you get has a completely
different sound set attached to it. Every swing with each one sounds dif‑
ferent. Every successful strike sounds different. And craziest of all, the
key blade has a sort of jouncing along sound that plays while you walk,
you know, as if your weapon was juttering a little each time you took a
step. Well, that sound is ALSO different for every single Keyblade. It’s an
incredible bit of attention to auditory detail that I absolutely love. We did
this in The Last of Us as well, as the sounds your character makes while
walking or crawling can be slightly different depending on the weapon
you’re holding at the time.

One more note about what your audio cues should sound like. Honestly,
it’s up to you, just as long as you’re willing to teach blind players what your
audio cues mean. This could be done with an audio glossary containing
each audio cue along with a description of its meaning, as in The Last of
Us, but it can also be placed in the appropriate tutorial messages in‑game,
and/or played when the player adjusts options related to each sound as in
Forza Motorsport. The point is, as long as you teach players somehow, it’s
up to you what audio cues sound like. They don’t necessarily have to be
sounds that sound connected to your game world, though if you can pull
that off, great. But sometimes, it is helpful to have a sound that kind of falls
outside your usual soundscape just to make it stand out more. Again, it is
up to you.

With The Last of Us, we went with a melodic approach. Most audio
cues are in the same key and are different types of reverberating dinging
sounds, which separates them a bit from the game world but gives them
their own kind of theme that players can follow. This turned out to be
both a good thing and a bad thing because I did witness multiple players

Audio Cues ◾ 71

confusing the higher‑pitched version of the jump cue, the version that
plays when your jump target is above you, for some other cue they hadn’t
heard yet. Their confusion made sense because all the cues were in the
same key, and our higher versions just shot the cue an octave up. I provide
this example just as an additional thing to consider, but I stress one more
time that this is up to you. Provide us with the information that makes
sense to provide with audio, and we won’t care much about what sounds
you use as long as you teach them to us.

Basically, it all comes down to this. Just like haptics, just like narra‑
tion, audio cues are another channel through which you could provide
information to your blind players. We’ve discussed the different types, the
reasons why you would do this, and provided examples of ways in which
implementation could be achieved. Now it’s up to you. Fill your game with
audio, teach your blind players, and set them loose. Whatever you do with
audio, I promise you they’ll be the ones who notice the most.

72 DOI: 10.1201/9781003433750-16

C h a p t e r 14

The Power of Good
Audio Design

We spent a long time talking about audio cues, and some of this
 chapter is going to expand on some of the things we talked about

there, but this time, we’re focusing on the power of generally good audio
design that goes beyond cues created specifically for accessibility. These
are the things some audio designers are already doing, and if you’re not,
these things are worth your consideration, not just for accessibility but
to improve the overall quality of your game’s audio. I said it in the last
chapter, and I will say it again to start this one. Audio is just as impor‑
tant as graphics. Audio designers, I’m on your side. Let’s talk about how
you can maximize the effectiveness of your audio while also promoting
accessibility.

I think if we break down this idea, we can conclude that it’s mostly
about the little things. Really, truly great audio design seeks to add
as much detail to a game’s audio as the artists and animators do for its
graphics. Taking an example, I brought up in the previous chapter, where
Sora’s Keyblade audio in Kingdom Hearts changes depending on which
Keyblade is equipped, right down to the walking sound as it jutters with
him, you can see what I mean. The inclusion of these extra‑specific details
served as an alternate channel of information for the blind. Suddenly, I
could tell what key blade someone playing Kingdom Hearts was using at
any given time.

https://doi.org/10.1201/9781003433750-16

The Power of Good Audio Design ◾ 73

Let’s go for another, more recent example. Hades, the rogue lite action
game, has really good audio design in several ways. So good, in fact, that
after a few minutes of listening to Hades being played by someone else for
the first time, I knew I would be able to figure out how to play it, and I did,
even before the accessibility mods were created. Let’s get into the specifics
of why that is.

The very first thing I noticed when I started listening to Hades was the
sound that played when any creature spawned into the room you cur‑
rently occupied. The hiss followed by a pop is not only distinctive but also
positional, meaning that I knew exactly where enemies were spawning in
while it was happening, something that basically no other game can say. It
allowed me later, while playing the game for myself, to prepare for the next
wave in a way I felt I had never been able to before. That is just one sound,
and it completely shifted my perspective on the game.

It goes further than that with Hades, though. Different sounds are
applied to a multitude of different things, kind of like the sweeteners
we use in some audio cues. For instance, I can listen to someone play‑
ing Hades and determine what blessing they have on their dash, and even
their attack and special abilities as well in some cases. I could also tell you
which aspect most weapons in the game were currently using.. All this
is because every single one of these little details is given its own individ‑
ual sound that is layered upon the attack or dash or special move. When
you dash with Athena’s Divine Dash blessing, for instance, each dash is
accompanied by a short, bright little sound. It’s subtle, but it’s enough to
differentiate it from the other versions of dash, buffed or unbuffed. This
attention to detail also applies to curses put upon your enemies from other
boons. I can always tell when an enemy has been weakened, or afflicted
with the Hangover curse, and so on.

There’s more to truly accessible audio design than differentiating attacks
or weapons. Sometimes it’s about just including extra detail. Remember,
audio designers, you are creating the version of your game world that we
blind gamers will get immersed in. So, every single extra detail does mat‑
ter. The sounds of your character sliding into tall grass, the sound of a
fire we’re supposed to escape from, and the new footstep sounds that play
when we begin walking on unstable terrain. All this and a million other
things matter to us. Let me give you a couple of examples.

I’m going to go back to old faithful here, The Last of Us. There is audio
detail here that, if it hadn’t been there, many probably wouldn’t have

74 ◾ Taking Video Out of the Game

noticed, but I sure noticed it existed. For example, did you know that,
when looking through all the items in your backpack, each one plays a
different sound as you pull it out and put it away? Notes make papery rus‑
tling sounds, Joel’s watch in TLOU2 sounds like, well, a watch, the firefly
pendants make little clinking sounds as you swap them. The list goes on.

Of course, swapping every weapon feels different, but what about put‑
ting them away? I was shocked when I noticed that, when you put away the
flamethrower, you can hear the fuel canister clinking against either the
flamethrower or the other items in your pack. It doesn’t matter. It just mat‑
ters that it’s there. Our imaginations take care of the rest. Each weapon has
a put away sound, of course, but the flame thrower is the most noticeable.

Then there’s the detail I referenced in the previous chapter, where walk‑
ing and crawling sounds also change depending on which weapon you’re
carrying. Crawling while holding onto a huge rifle is particularly loud.
These details are truly fantastic, but it gets even better.

In The Last of Us, you can check the current status of your silenced
pistol, but I almost never need to. I might check to make sure the silencer
is equipped when I first pull out the pistol, but after that, I’ll never check
again because there is a distinct audio when your silencer pops off, becom‑
ing useless. But it gets better than that. The can uses as part of your silencer
and then becomes an object in the world. One that you might accidentally
kick aside as you keep moving. That little detail is so fantastic. That little
canister would be the easiest thing to just delete, but that’s not what hap‑
pens, and it still stands out to me as an audio detail I appreciate immensely.

I think I’ve made my point here. In summary, fill your games with
audio. I know there are already some incredible audio designers out there
doing a great job now, but I even want them to take a listen to their work
and look for those extra details they might be able to add. Surround us
with different environmental audio. Get reverb and echoes as accurately
as you can. Concentrate on making sure the audio position of every object
is as accurate as possible. And then just start adding details. The smallest
little things could spark imagination or provide a little bit of extra knowl‑
edge. Be as vigilant as the graphical artists, because again, it is you who
makes our game world for us.

75DOI: 10.1201/9781003433750-17

C h a p t e r 15

Audio Description
and Scripted Events

On the heels of our lengthy discussions on the power of audio and
audio cues, we now move into yet another way to help immerse your

players in your game world—audio description. In case you haven’t heard
of it before, audio description is an audio track overlayed over media that
describes the visual elements of that media. It is often used in TV shows
and is supported by the bigger streaming services today such as Netflix,
Max, and Disney Plus. There is even live audio description, where a nar‑
rator often sits in a separate booth, watching the action, and broadcasting
their descriptive narration to those in the crowd wearing headsets config‑
ured for that purpose. You might find this kind of description at a sporting
event, a concert, a play, or lately, even a video game show like the Game
Awards.

More recently than all these things, however, you will even find some
audio description in video games. What am I going to mention next? That’s
right, you guessed it, The Last of Us. When we were working on TLOU1,
the remake of the 2013 game, we worked with a well‑known audio descrip‑
tion company called Descriptive Video Works to add audio description to
the cinematic moments in the game. This meant that, when you reached a
cinematic scene, it would be accompanied by a narrator describing events
in a succinct way. One of the goals of audio description is to not step on
dialog or important sound effects, and this was done in the cinematics for

https://doi.org/10.1201/9781003433750-17

76 ◾ Taking Video Out of the Game

The Last of Us Part I as well, making them feel like the blind, like all the
other media they consume with audio description. This was universally
well‑received, but there was a pretty significant drawback as well.

There is a reason I emphasized the fact that the audio description in
TLOU1 was for the cinematic moments. It only applied to the prerendered
cutscenes, but not to any scripted event that happened in‑engine. As you
may know, The Last of Us has a TON of these. The best example is part of
the introductory sequence, where you’re playing as the character Sarah,
and are a passenger in your uncle’s car for several minutes. Because of
this implementation, this entire sequence is undescribed, up to the point
where the running sequence that comes after it ends, at which point the
game cuts to a prerendered cinematic. Still, as this was the first instance
of audio description implementation of this type, the blind generally felt
good about it.

There are a couple of games that took things a bit further. Forza
Motorsport, for instance, has audio description that applies both to its
pure cinematics and to some specific gameplay moments. As you start a
race or practice, for example, you’ll hear a bit of dynamic audio descrip‑
tion that describes the weather and track condition while also telling you
what’s happening. As you enter the pit during a race, you’ll hear a descrip‑
tion of that, and if you make changes there, you’ll hear a description of the
swift actions your crew takes to make that change. This implementation of
audio description brings us a little closer to the idea of what audio descrip‑
tion in games could be in the future.

But it’s not the only example. Mortal Kombat 1 contains audio descrip‑
tion for its entire cinematic story but also includes it for its biggest moves,
Fatal Blows and Fatalities. As these moves are triggered, audio description
kicks in, describing the over‑the‑top violence of these moves. This is espe‑
cially impressive during Fatal Blows, which are now double team moves
between you and your assist character, or Kameo, as they are known in
the game. The moves are split in half, and therefore so is the audio descrip‑
tion. One character’s action is described first, transitioning smoothly after
into the actions of the second character. Even certain extra cinematic
moments, such as the moment that plays when you defeat the final boss
in the game’s arcade mode, are audio described, giving those moments a
little extra flare for the blind.

Audio Description and Scripted Events ◾ 77

Mortal Kombat 1 does something else with its audio description too.
During the story mode, there are specific moments where the player
must complete a mini game to proceed. If you don’t succeed at these mini
games, the characters you’re controlling at the time will die, often horri‑
bly, and you are forced to retry until you succeed. However, the important
thing here is that audio description works in both scenarios. Yes, even the
failure states are described, bringing a little bit of the dynamic into MK1’s
cinematic story description.

Another example of audio description in a game is Stories of Blossom,
which has arguably the fullest and most in‑depth audio description so
far. However, this is largely because implementation in a game like this (a
point‑and‑click adventure) is relatively simple, since the entire game is com‑
posed of selecting objects and then watching as an animation plays. Still, it
was well done, describing rooms as you entered them, characters as you inter‑
acted with them, and events as they unfolded. Developer Softleaf Studios
also took the interesting approach of pausing everything else in the game
while audio description was playing, thus removing the time restriction
that usually surrounds audio description. This may not always be the best
approach, mind you, as you don’t want to pull players out of an action‑heavy
sequence for too long, but for this game, it worked wonderfully.

There’s another type of audio description used in 1428: Shadows Over
Silesia. While it, too, describes its cinematic moments, it also has an
on‑demand audio description feature. Press a specific key, and the cur‑
rent room you’re in will be audio‑described. This is a great idea and may
be ideal for some games where describing a room the second it is entered
doesn’t make sense. Consider whether events occur as rooms are entered,
or if a room is entered during a cut scene, after which the player is given
back control there. These might be situations where you should consider
having a dedicated command to describe the player’s environment.

So, what is the future of audio description, and how can you make it
a part of your project? I’m so glad you asked. The way I see it, the future
of audio description is dynamic. Every moment the user isn’t in control
could, and should be described, and I think that some moments where
they are in control could also be described. For instance, if your game
is one of those interactive movies like the Dark Pictures Anthology
from Super Massive Games, why couldn’t those running sequences be
audio‑described just like everything else? You’re made to make decisions

78 ◾ Taking Video Out of the Game

quickly in those, but as long as the quick time events themselves were also
accessible, you could either audio describe each little split segment or, if
necessary, due to incredibly small time windows, do a bit of a time slow‑
down or pause while the description of events was occurring. The descrip‑
tion that played could be based on the game’s preexisting knowledge of
what would happen based on the player’s choices so far, and if more time
was needed to describe something than was available in the scene, you
could insert something to make it clear time is being slowed or paused
for this, (those bass‑filled sounds for slow motion that movies have made
popular for instance), and get your describing done before ramping back
up into the action. If done right, you won’t even lose the intensity of the
moment because good audio description narrators keep up the tone of the
action taking place. This would be complicated to code, but it would be
worth it.

And speaking of worth it, if you do pursue audio description in your
project, I highly encourage you to utilize an existing audio description
company, such as the previously mentioned Descriptive Video Works, to
handle the writing and recording of audio description for you. There are
several reasons for this. Firstly, they are willing to negotiate. As much as
I’ve seen the concerns about audio description being too expensive, I’ve
heard from high‑ranking folks in these companies directly that they are
often willing to work out something fair. Second, they are professionals.
The writers who write audio descriptions are specially trained to do so in
such a way that they don’t step on dialog yet still manage to communicate
all the important visual elements of a scene. The narrators who do this
professionally have mostly been doing it for years, and they know how
to apply the proper tone to each scene. On top of that, many of them are
recognizable.

This might come as a surprise to you, but the blind community rec‑
ognizes their favorite audio description narrators in the same way that
anyone who consumes movies, TV, or games might recognize their favor‑
ite actors. I have literally given certain shows a chance because one of my
favorite narrators was narrating the audio description. A game that has
one of our favorite narrators on it doing its audio description might just
mean more than you know.

Just one more audio description tip. When you hire these companies,
listen to them. I’m not saying you, the developer, shouldn’t have some say
in how things go or who the narrator is, but make it a conversation rather

Audio Description and Scripted Events ◾ 79

than a demand. Much like accessibility consultants, these audio descrip‑
tion folks know what they’re doing and are in the positions they’re in
for a reason as well. I think true collaboration is how you create the best
product.

Also, I suppose I should address the elephant in the room, which is
audio description done by text‑to‑speech instead of a human narrator.
To that, I say this. If you can, please avoid the TTS audio description. A
human narrator is far preferred for audio description, as they can inflect
and create the proper amount of nuance and emphasis that makes audio
description stand out. TTS just cannot do that. However, if there is some
reason you cannot do a human‑narrated description, be it for budgetary
reasons or implementation issues or whatever, if the choice is to do a TTS
audio description or have no description at all, then go ahead and do an
audio description with TTS. We would much rather it exist than not. And
the good news is professional audio description companies can still be
utilized in this circumstance, as you can specifically hire their writers to
write the description you will then use TTS to implement. Just know that,
if you can spring for it, human narration is where it’s at.

Audio description is yet another powerful tool in your arsenal that can
help you make your game accessible to the blind. Describe your cinemat‑
ics and in‑engine cut scenes, give players a way to describe their envi‑
ronment, and even describe some interactive and scripted events, even if
that starts with just describing both the success and failure states of an
important quick‑time event. You have examples of almost all these things
in this chapter to refer to. Study them, and then help to craft the future of
accessible gaming with audio description.

80 DOI: 10.1201/9781003433750-18

C h a p t e r 16

Combat and Kombat

Let’s be real here, lots and lots of games feature some sort of combat.
Certainly not all games, in fact there is a lovely showcase dedicated

exclusively to nonviolent games called the Wholesome Showcase, but still,
many, many games feature some sort of combat. During this chapter,
we’re going to discuss how you could make those different types of combat
accessible. There’s so much to say on this subject, in fact, that this chapter
is split into sections! NOW we’re writing a book. Anyway, let’s choose vio‑
lence and begin walking the path to its accessibility.

16.1 ACTION/SHOOTER COMBAT
This first section is intended to cover the wider varieties of combat. I will
do my best to cover as many types of combat as I can because there is a lot
of ground to cover here. This section is called Action/Shooter combat, and
I do realize that is underselling it, but just know this is what you want for
MOST of your combat needs. Here we go.

Let’s start with shooters. Shooters, especially very fast‑paced, high‑
intensity ones like Call of Duty, are complicated, but they can work,
 possibly even in a multiplayer setting, though we’ll discuss that in a later
chapter. For now, let’s focus on single‑player, and what it would take to get
a blind player through the combat in a Call of Duty‑like story. To be clear,
these ideas could apply to any shooter, be it Doom or Borderlands.

There are a couple of options when approaching the shooting in a game
like this. The first is just pure, very raw aim assist. Snap to targets the sec‑
ond the player holds or presses the aim button, play some kind of cue to let

https://doi.org/10.1201/9781003433750-18

Combat and Kombat ◾ 81

them know they have a target locked, and let them have at it. Now I know
what some of you might be thinking, and I urge you to calm the shouting
of your sighted person brain. You’re thinking that’s too easy, that it won’t
achieve what you want to achieve with the story. Well, if we were talk‑
ing about multiplayer, I would agree. This method is too easy to be valid
in multiplayer. However, games at their core should be fun, and I prom‑
ise you, the blind are, in their heads, living that dream of being amazing
shooters destroying their enemies, no matter how much the game is help‑
ing them do that. To put it in perspective, I’m going to do what I always do,
and go back to The Last of Us, because yes, this IS the method we used for
that game, and I promise you tons of blind people love it.

However, there is another method I’ve been cooking up for a while, and
I would like to see this one applied to multiplayer, because I think it would
be a good option. I would like to hold the aim button, and if there is a tar‑
get in range, get a reticle sound that lets me know that it is played in the
horizontal position of that target. Then, it is my responsibility to line up
the sound so it’s in the center, which will confirm I’m aiming at that target.
If 3D audio gets better, I would suggest we could do this for the vertical
targeting as well, but aiming at the horizontal spot, and having the game
then help us with the vertical would be a good starting point, I think. Sea
of Thieves did try something like this with its aim assist, using pitch to
indicate the vertical position, and while I absolutely admit that technically
works, it also seems too slow for a higher‑paced game. To have it click in
one spot but still have to find another would be difficult. Plus, the game
may have to slightly account for distance as well. Still, I think this sort of
system could work with enough tuning and testing.

Now, let’s talk about taking cover. Having a player go invisible, like The
Last of Us, is a potential solution but not an ideal one. The goal here is
to preserve as much of the experience as possible while making a game
accessible. The real cover system I envision would work like Gears of War’s
pretty brilliant system, which will run to a cover spot for you just by hold‑
ing A and a direction. Of course, this would need to be accompanied by
some additional audio cues to provide the player with some necessary
information. For example, if no cover existed in the direction the player
pressed, an audio cue should quickly alert them to that fact. Next, when
cover is successfully found, and the character dashed to it, a cue should
play to indicate the level of cover that has been achieved, be it half cover,
full cover, and so on. If that cover is destructible, this cue should play

82 ◾ Taking Video Out of the Game

again whenever the state of the cover changes, as it is getting destroyed.
This will allow the player to decide as to when to leave that cover and dash
to another one.

There are other things to consider when making the full experience of
a shooter accessible, but we’re specifically focused on combat here, so let’s
move on for now. What about action combat that may not involve guns?
The quick sword‑slashing of Diablo, or the free‑flowing combat of Arkham
City or Marvel’s Spiderman? The first key to close‑quarters stuff is to have
some sort of enemy lock‑on system. It is the lock‑on system, along with a
couple of other things, that makes the combat in Kingdom Hearts its only
blind accessible feature. Locking onto a target influenced your movement,
so locking on, then rolling forward, or executing a move that pushed you
forward would send you toward your chosen target. This was an extremely
helpful aspect of design, as it allowed me to locate enemies and bosses with
ease. There is even one boss that must be hit by a thrown object before he
can be damaged, and it was no problem to target the object, move toward
it, pick it up, lock onto the boss, and just press the same button to throw
it right at him. Whether intentional or not, Kingdom Hearts did it right.

Second, some helpful audio cues would be nice. You can use the enemy’s
existing audio for this, for the most part. Hearing a character obviously
wind up an attack as a signal to dodge is fine, but there are a few questions
to be considered here. Do your enemies execute each of their attacks with
the same timing? Is the dodge window smaller than the windup window,
and can the beginning of the actual swing be detected by audio? Also, are
you planning on adding the ability to adjust dodge windows as an acces‑
sibility feature? Are there big, huge boss attacks that can be dodged but
whose audio is very long and not obvious with its tells? Definitely a lot
of questions here, but they’re worth asking, because they might help you
decide if you might want to add a dodge sound cue to your game. Just a
sound that plays during the exact dodge window for each attack, allowing
players to get the timing down.

The Last of Us went with both obvious audio tells for incoming attacks,
and a dodge audio cue, and the bloater is a large part of the reason why.
A bloater is big and slow, and its windups are long, so pressing the dodge
button as soon as the windup starts isn’t wise. You will probably dodge too
early and get crushed for it. The dodge cue is a teaching tool that shows us
at what point during that long windup to actually dodge. It’s the kind of
thing some might even turn off after a while, but it’s very useful.

Combat and Kombat ◾ 83

If your game has other things tied to its combat, such as a good reason
to build a combo meter, or abilities that have cooldowns, it is important to
identify these things as well with either narration or audio cues. Let play‑
ers know when they can pull off that big super move, or when an ability
they might want to use is ready. Giving each individual ability a different
cooldown sound would be helpful as well, since a blind player who has
learned the sounds of their abilities will instantly know which one is ready.

Let’s move onto turn‑based combat, which is probably the simplest
thing to get working. If you’re making a fairly conventional JRPG, all you
need to do for combat is narrate the menus and provide status informa‑
tion such as health and effects applied or removed from each character as
it happens. As long as we have all this information and can examine our
party and our enemies so we can learn all there is to learn about them,
we can succeed. And to be clear, we wouldn’t ask for an unfair advantage
either. Say your game is like Final Fantasy in that you don’t see an enemy’s
health unless you use some sort of sensor or scan ability. Fine. Hide it from
us as well until then.

If your combat is turn‑based but incorporates things like movement,
we will need ways to get significantly more information. We need some
kind of free‑moving look‑around mode where, without affecting any char‑
acter positions, we can examine the battlefield and receive cues for appro‑
priate things depending on which exists in your game. Cover, or objectives
that must be reached, or enemies, or hostages, whatever elements might
exist on the battlefield need to be identifiable to us. We also need to be
made aware of how enemies are moving on their turn so we can effec‑
tively move to counter them (again, keeping in mind that we aren’t asking
for more information than a sighted player would get at any given point),
and any relevant updates to the battlefield. When making combat‑related
decisions, we need all relevant information. Chance of success of a shot in
a game like XCOM, for example. Anything a sighted player would know,
we need to know as well so we can make those same decisions. Also, situ‑
ations where an action may affect multiple targets (even the little targeting
click you hear in 13 Sentinels is helpful), information about those targets,
and so on. This is the kind of system that would likely require much test‑
ing and iteration to get right, but I see no reason why it couldn’t be done.

Speaking of strategy, let’s briefly talk about RTS (Real‑Time Strategy)
combat, if only to say that the combat itself in an RTS game isn’t usually
the concern. We would need to receive regular information in regard to

84 ◾ Taking Video Out of the Game

the combat, (integrity of our structures, life of our units, and so on), but
playing an RTS for us is more about being able to quickly examine infor‑
mation and react to it, as well as have an accessible way to select and move
units. Not much combat concern there.

What about a game that works something like Space Invaders? We
can do that too. There are already audio‑only examples of this, such as a
game called Judgement Day, which is made by L‑Works and is, unfortu‑
nately, abandonware, but to my knowledge, still works as of this writing.
Essentially, every approaching enemy or ship is a positional sound source,
and it becomes our job to move toward them until they are in the center
of our stereo field. So, if our enemy is on the far left, we move left until
they are centered, and blast them. This could be done in a similar video
game too, I believe, though it may be necessary to incorporate game speed
options as well. I’m not able to confirm this, but based on my experience, it
seems to me that visual processing is still faster than auditory processing.
Maybe I’m wrong. I would definitely love to hook up with a developer who
is willing to try this experiment.

What about full‑on air combat? I’m talking full 3D movement, swoop‑
ing by to make a pass at your foes, that kind of thing? Well, it’s compli‑
cated, and again, we’re just talking single‑player for now, but I think it
can be done. Of course, we need some kind of lock on system so we can
locate and approach our enemies. Much like Kingdom Hearts, our lock on
should tie into navigation somewhat, helping us get within range of our
targets if necessary. Incoming fire from our enemies could also have audio
cues attached to them while traveling, enabling us to better attempt a
dodge. Something similar could also apply when our enemy is locked onto
us, allowing us to try to break it. It would have to be a carefully designed
combination of sound and assistance, but it could work.

Let’s head back to the ground for vehicle combat, like you’d find in
Mario Kart. In cases like this, we would need to be much more aware of
our environment, whether that was a track or a city street. For this reason,
you might want to apply some of the principles from the racing chapter,
which is later in this book. Other than that, the same ideas apply for vehi‑
cle combat as in air combat. Some kind of targeting system, which also ties
into racing assistance navigation, might be needed, unless it is specifically
a race that also includes vehicle combat, in which case we would just need
to know enemies near us and focus on racing assistance to navigate the

Combat and Kombat ◾ 85

track. All weapon selections would need to be narrated, as well as pow‑
erups collected. And of course, the powerups themselves would need to
be positional sound sources so we could locate and collect them. All the
better to start blasting away at our friend.

16.2 KOMBAT: FIGHTING GAMES
Fighting games are an interesting breed. There is both a whole lot and very
little to consider when approaching the blind accessibility of a fighting
game. Out of the box, they are the most accessible genre, without a doubt.
With very few exceptions (Marvel Nemesis being one of them), most fight‑
ing games always place you directly across from your opponent. There is,
therefore, never any real question of where your opponent is. You always
know that if you throw a fireball, it’ll go toward your opponent. If you
jump forward, assuming you know which direction forward currently
is, you’ll jump toward your opponent. Navigation isn’t the issue here; it’s
everything else you have to worry about. Let’s talk about how to make
accessibility happen in a fighting game.

Fighting game accessibility starts with the things you may already be
doing as a fighting game developer. When designing your audio, focus
on uniqueness. Make every attack sound stand out as different from
every other. Give every character a unique voice, so every grunt is easily
identifiable. The Nickelodeon All‑Star Brawl game didn’t do this, giving
 characters no voices whatsoever, making it infamously impossible for a
blind player to follow. Even attempting to listen to the game on a stream
was a no go.

While you’re over there making everything sound amazing, do con‑
sider the stereo field. It is a nice way to communicate player position. The
way it should work is, if a player’s audio is playing all the way off to the
left, then they are on the far left. The same goes for the right. The listener’s
point should be approximately the center of the screen, so if both players
are duking it out in the middle, their audio will be approximately cen‑
tered. As one drives the other into the corner, both of their audios should
move that way. You get the idea, but it’s amazing to me that some fight‑
ing games today still do not do this. I’m looking at you, Tekken 8, with
your thin stereo field that seems to only communicate vaguely which side
a player is on, but nothing else. Most fighting games (Mortal Kombat 1,
Street Fighter 6) are doing this right.

86 ◾ Taking Video Out of the Game

Those are the basics of the natural accessibility that fighting games
 possess. How do you take that further? Well, Mortal Kombat 1 and Street
Fighter 6 will both tell you how. Those games have additional audio cues
that provide even more information to a blind player, such as a cue that
gives you the distance between opponents. This one may not be essential
for experienced players, as they will become used to using the natural ste‑
reo field, but it is very useful for new players just learning the game, and
for players working out the ranges of each attack. There are also cues that
indicate the type of each hit, as in low, mid, high, and overhead. This is
extremely useful for learning and adapting to your opponents, as well as
studying your own characters so you know how to avoid or block each
incoming attack and know where your own attacks will connect so you
can create mix‑ups.

Mortal Kombat 1 has even more audio cues for ducking and blocking,
so you can tell when your opponent is doing one or both of these things
and act accordingly. This levels the playing field further, as the sighted
could see the block or duck animations.

Other audio cues might indicate the status of each player’s health meter
or super meter or break gauge or any gauges your game may have. These
sounds usually play from that player’s HUD side. So, if player one’s health
dropped to 20%, for instance, their health meter sound would play from
the left. These things might seem hard to keep track of, but I promise you
they’re extremely useful in the moment.

Other than that, try applying narration to things that, in the past, the
blind never had access to. Move lists, tutorial messages, anything a player
could use to “lab” a character, should be narrated. All the practice menus,
frame data, all that. Of course, this goes back to the narration chapter’s
philosophy of narrating everything. Every text element of any kind should
be accessible to the blind in some way. This is just a specific example of
giving the blind access to information they never used to have. I refer you
again to Mortal Kombat 1, as though its narration isn’t complete as of this
writing, it does have these specific elements, prioritized for narration first
because of their necessity.

And lastly, why not add some audio description in there where possible?
Again, I refer you to Mortal Kombat 1, as nearly every cinematic moment
is audio‑described, from the opening cut scene to the entire story mode
to all fatalities and the super moves known as Fatal Blows. There is a lot

Combat and Kombat ◾ 87

of potential for high‑intensity audio description in fighting games. I even
think Mortal Kombat 1 should add more. Who knows, maybe they have
by the time you’re reading this.

And that is combat accessibility. We’ve approached combat from quite
a few angles, and I hope this has given you some idea of how to welcome
the blind into the fight. Don’t be surprised when we win.

88 DOI: 10.1201/9781003433750-19

C h a p t e r 17

Puzzles

Sometimes you need a good puzzle. Something to keep the player’s
 attention and make them think a little bit. Something that they feel

good about completing when it’s done. Puzzles can be a nice change of
pace and create gameplay opportunities that wouldn’t otherwise exist, but
how do you make those puzzles accessible to the totally blind? That is what
we’re about to discuss in this chapter.

The first game that wasn’t an audio game to really approach this ques‑
tion was The Last of Us Part II. Throughout that game, there were several
moments that had you trying to figure out how to reach a certain area
or provide power to a certain generator. All careful moments that were
meant to be studied and solved. However, the approach taken for The Last
of Us Part II and subsequently Part I for its puzzles was to specifically
script the navigational assist to guide you through each one. If you entered
a puzzle area in which you had to pick up a ladder, you would first be taken
to the ladder and prompted to pick it up. Then you’d be taken to the spot
to place it and prompted to put it down. After that, you’d be prompted to
climb it. Then you’d be prompted to grab the rope on top, hold the aim
button, and aim assist would automatically aim across the gap at the spot
you were supposed to throw the rope. I’m sure you get it; I’m just making
the point that the puzzles are entirely scripted. They aren’t even puzzles for
us; they are simply things we must do in order to proceed.

Believe it or not, though, I am not entirely against this method. I do
think it isn’t the ideal choice, but I understand the reasons any developer
may choose to use it. If time, costs, or other factors prevent you from using

https://doi.org/10.1201/9781003433750-19

Puzzles ◾ 89

the other methods of puzzle accessibility I’m going to suggest below, then
use this scripted method. Ultimately, when it comes down to it, the blind
player just wants to experience the story you’ve created through gameplay.
If puzzles must be handled this way to ensure a blind player can make it
through that story, then so be it. I guarantee you we will forgive the use of
this method if it means we get to enjoy your game fully. That said, let’s dis‑
cuss some other approaches you could take with blind‑accessible puzzles.

A quick note on the skip puzzle option:
I recognize the necessity of making puzzles skippable to ensure the

game is accessible for as many players as possible. There are several rea‑
sons to include a puzzle skip option, from accessibility for the cognitively
impaired, to generally accounting for those folks who might only have
time for a short gameplay session and need to get to a save point rather
than figure out that puzzle. That said, my solutions will focus on creat‑
ing accessible means by which to complete a puzzle, rather than skipping
them. Speaking strictly for blind accessibility, I do not like puzzle skips.
Missing out on a chunk of gameplay because that’s the only way I could get
through an area feels wrong to me. Plus, these days, puzzles are so heavily
tied into the narrative of games that you might miss more than gameplay.
I’m the kind of person who likes to hear every second of character banter,
and if that is happening during a puzzle, I would hate to miss it. So yes,
you should have a skip puzzle option for those who need it, but also, if you
could, try to implement one of these methods so that we might complete
these puzzles as well. Thanks!

The first method is the simplified puzzle method. This won’t work in
every game, but a couple of good examples are Brok the InvestiGator and
1428: Shadows Over Silesia. In Broke, a blind player can select all hotspots
from a menu. However, a sighted player would also have to worry about
moving to the correct areas first in some cases. Sometimes, for instance,
you have to jump onto a platform or drop down into a different area to
select something. This game’s version of simplified puzzles made it so this
was done automatically or wasn’t required at all. It literally provided a
simpler version of puzzles, but one that still required some puzzle solving.
This way, the player would still get that sense of accomplishment for hav‑
ing figured something out, but wouldn’t have to worry about some of the
more complex aspects of making the solution work. You still must provide
the player with all the information they need in order to solve the puzzle,

90 ◾ Taking Video Out of the Game

which we’ll talk about more in a second, but adding in some simplification
may help make the puzzle a bit more accessible too.

All this applied in Shadows Over Silesia too, except that game required
the player to move manually, and would present unique menus on inter‑
acting with puzzle items. For instance, one puzzle required you to jump
and climb in a specific way, but if Simplified Puzzles was on, you would be
prompted to select which way you’d like to climb from a menu, and that
would be handled for you. You still had to figure out the correct order to
climb properly, but the process would be made easier to accomplish for the
blind this way.

The second method is to just go all out on giving the blind player as
much information, and as many ways to interact with the puzzle area as
possible. This takes a lot of thought about the puzzle you’re creating, and a
ton of consideration of what your blind players may be missing. I’m talk‑
ing detailed audio descriptions for the entire puzzle area. Depending on
the puzzle, these audio descriptions may have to be dynamic as aspects of
the puzzle are changed by the player’s actions. There may need to be audio
cues specific to that puzzle to help the blind understand its state. And most
of all, the blind will need a method to select, and interact with, every rel‑
evant puzzle item as they please. This means not taking them from item
to item automatically as in the scripting method, it means providing them
a way to choose which item they’d like to interact with and, if the puzzle
area is particularly large, helping them navigate to their item of choice.
Basically, each puzzle would have to be its own accessibility subproject
as you gave the blind player as much information, and as many tools, as
you could. This would, without question, be the toughest approach, but it
would also be the most rewarding, as it implies the fewest actual changes
to your puzzle.

The final method is to change the nature of the puzzle for your blind
players, allowing them to solve a puzzle that still fits, but is made for them.
This would be difficult to apply to puzzles that involve the level itself, such
as moving objects onto panels to open a door in the level, (though again
specific audio cues could be made to help with that), but could be applied
to puzzles where the player interacts with one specific object to make
something occur once that interaction is complete. Imagine the hacking
puzzles in some games, or the science puzzles in all the Spiderman games.
These are the kinds of puzzles that could benefit from this kind of treat‑
ment. Maybe for the blind, puzzles like this are audio puzzles that require

Puzzles ◾ 91

you to, for example, make every note match, or achieve harmony with the
adjustable notes you’ve been given. These are very basic examples, but I
believe you get the idea. We’re not going to be able to rewire circuits we
can’t see, but give us a puzzle based on what we can hear, and we’ve got
this.

And those are my suggestions for making your puzzles accessible. Any
one of them is OK, and it’s possible that your game may require more
than one. Honestly, I would love to see a game that classifies itself as a
puzzle game, one that is essentially ALL puzzles, made fully blind acces‑
sible using these methods. One playable by both blind and sighted alike.
But now, though, it’s time to switch gears, and I mean that literally.

92 DOI: 10.1201/9781003433750-20

C h a p t e r 18

Racing and Driving

A game that involves driving brings with it a whole new set of
challenges for blind accessibility, but certainly nothing we can’t

tackle. After all, this book is coming to you after I’ve helped launch Forza
Motorsport, which is a simulation circuit racer with full blind accessibil‑
ity. It can be done. Let’s talk about how.

For a circuit racer like Forza, we focused on providing the blind with
the information necessary to get around the track. Therefore, we added
audio cues to give them an idea of where the edges of the track were, when
they were heading into a turn, the sharpness and direction of that turn
presented as racing coach voiceover, a deceleration cue to give them an
idea of when they should slow down to start turning, turn gate cues to
let them know when they were at the beginning, the apex, and the end of
each turn, and a steering guide that panned their engine audio left or right
to help them get the turn angles correct in real time. These features were
backed up by a lookahead system, which was essentially there to account
for player reaction time. Lookahead would literally lookahead of the
player on the track, and the steering guide and deceleration cues would
be connected to that, so the player could react to the sounds they were
hearing. Moving the lookahead further meant you had more time to react,
but did risk you reacting too early and thus turning too early, which can
cause its own problems. Decreasing the number brought lookahead closer
to your car, meaning you had less reaction time, which could ultimately
improve lap times, but risked you reacting too late. The key was to find the

https://doi.org/10.1201/9781003433750-20

Racing and Driving ◾ 93

lookahead setting that worked for you, so you could react at the speed you
needed to.

Of course, in introducing these features to blind players, we had to
keep in mind that most have never driven a car before and may not even
understand how actual car physics works. It was therefore important to
provide as much onboarding as possible to teach players these basic con‑
cepts, since they were headed into a simulation game. Audio racing games
did and do exist, (Top Speed 3, Rail Racer), but those games don’t use real
car and track physics the way Forza does, so it was important that players
get a basic understanding of these concepts. For instance, in audio racing
games, you typically don’t have to slow down when you’re making a turn.
It’s all about going at top speed and making your turns at the right time.
Now, we had to learn to judge turns and figure out how much we had to
slow down for each. Of course, the audio cues helped with this, but it’s still
a difficult concept to take in when you’re not used to it. I had to learn it
myself while working on the project, which I believe benefited our ability
to present this, and other concepts to newer players.

But of course, there are other things to consider besides circuit racing.
What about driving in a game that isn’t a racing game? How does one
approach that? Well, there are a couple of ways. First, there is the Watch
Dogs’ method. Allow the player to accessibly select a waypoint, then
activate an auto drive mode which takes them directly to it. It is a viable
solution and, depending on the game, may be accepted by the blind com‑
munity. Of course, I will always advocate for full control, so let’s talk about
how that might be achieved.

First, let’s talk about driving when there is a path for the player, be that
a specific driving mission, or a situation where a blind player has selected
a waypoint and has a set destination. In this case, you could choose to take
some cues from Forza’s blind driving assistance. If the player is driving
on roads, you could call out upcoming turns along their path and provide
them with steering guide assistance by panning their engine left or right
to help them turn the correct amount. If they’re not driving on roads, you
may still be able to call out turns, though it will likely have to be more
generalized and nonspecific. While on roads, you might be able to include
turn sharpness in a similar way to what we did in Forza, this may be more
difficult when driving to a destination out in the open. Still, even if you’re
sticking to “turn left” and “turn right” as ways to prepare the blind player
for the upcoming turn, you can use engine panning to help them take the

94 ◾ Taking Video Out of the Game

turn, the sharpness of that turn then indicated by the amount the audio
pans, and how severely it does so. There will also have to be an indicator
of when the blind player has driven past their turn (if they didn’t turn
enough, for example, and are now going the wrong way), as well as a way
for them to relocate their path. This could be done with audio cues or with
a dynamically updating steering guide system that will put them back on
the path.

But what about when there’s no path? What if the blind player chose to
drive out in the open without setting a destination? Well then, your focus
becomes object awareness, as well as awareness of potential hot spots of
any kind. Some of these things, of course, can be used while driving with
a destination in mind, such as traffic awareness while the player drives,
where other vehicles might also be present. But when a player is truly
out in the open, you may want to have audio cues for things they might
encounter so they might drive around them. Trees, for instance. You may
also want to indicate elevation changes, so they know if they’re driving up
a hill or mountain or descending a steep slope. And, if they are driving
with no destination, you may want to have a specific audio cue that indi‑
cates where a road is if they’re not currently on one. This way, if they feel
like finding out what lies ahead that way, they can make the choice to drive
onto the road while still having no set destination. Then, you use narra‑
tion to indicate nearby points of interest, so if the player gets close enough
to, say, a basecamp they can take over, they are informed and given the
opportunity to make that their destination, at which point you revert to
the previous rule set for getting them to that destination.

It wouldn’t surprise me if the thought now in your head is that that’s a
lot of audio to process. I’ve just spoken about applying audio cues to a lot
of things, and doing so in such a way that it can all be heard at speed. I
promise, it doesn’t have to be overwhelming at all, and probably won’t be.
The blind are capable of parsing quite a lot of audio. If you don’t believe
me, I recommend checking out the blind Forza community, because they
are doing exactly that, and they are awesome at it.

95DOI: 10.1201/9781003433750-21

C h a p t e r 19

Open Worlds

Open worlds are popular in games these days. Giving players the
freedom to go wherever they like, do whatever they can imagine

within your game’s universe, is a powerful thing, and quite a draw for
some. Breath of the Wild’s notion that you really can just go straight to
the final boss if you can find a way there is an intriguing idea. Not a rec‑
ommended one, to be sure, but intriguing. But how do you give freedom
like this to blind players? How do you make a massive open world, yet still
manage to let them navigate and explore it? Can the sense of wonder still
be preserved when the blind cannot see the incredible world you’ve cre‑
ated? We’re going to discuss all those things in this chapter. Let’s get to it.

19.1 NAVIGATION ON A WORLDLY SCALE
When talking about open‑world navigation, we must break navigation
down into two different categories. The first is the macro navigation cat‑
egory, where we’re getting the player around the open world. For starters,
this means a very smart navigational assist system. When the player has a
destination, this system needs to get them there by not simply taking them
as the crow flies, but by understanding the ways in which they can get
there and helping them do so. If this kind of system were applied to, say,
The Old Republic MMO, and my quest destination was on the other side of
a planet, I would expect the navigational assist system to help me get there
in one of two ways. If I activate my personal mount, then assume I want to
use that and guide me on a path that will get me there. If I don’t activate
my mount, then guide me first to one of the in‑game taxi services and help

https://doi.org/10.1201/9781003433750-21

96 ◾ Taking Video Out of the Game

me choose the appropriate destination that gets me closer to my ultimate
goal by either placing an audio cue on the correct one or simply making
the correct one the first to be highlighted in the destination menu. Once
the ride is complete, keep guiding me until I’ve reached that destination.

And this leads me to my next point. Ideally, take control away from
the player as little as possible. Nav assist should be done in a way that
allows the player to make their own movements. The Last of Us’ method,
for instance, where they press a button to focus on their objective, but for‑
ward movement is still controlled entirely by them, is an acceptable solu‑
tion here, even for long‑distance navigation. It may be worth making nav
assist a toggle, though, so the player isn’t left pressing a button repeatedly
for a very long time. And of course, in situations where the player wouldn’t
need to move their character, such as the taxy example we’ve just used, it’s
fine that control is lost. I specifically mean that any moment that a sighted
player could control should be influenceable by the player.

I couldn’t talk about this without mentioning Red Dead Redemption 2.
They sort of got this concept half right. The cinematic camera approach,
wherein you can press a button that activates a cinematic camera but also
auto‑navigates you to your set destination, is an interesting one. It only
works while on a horse and is technically player‑controlled as it has to be
activated, but I don’t like it’s all or nothing approach. I understand this
feature wasn’t specifically designed for the blind, but if it was, why not let
the player ride their horse but still guide them toward their destination? I
don’t like the idea of turning something you can control into a taxi, even if
it gets you there. If I were to consider that approach for a project, it would
absolutely be a last resort.

Let’s step back a bit and talk about how the blind would set those desti‑
nations in the first place. The good news here is that the framework for the
answer to this question is already built into most open‑world games. You
know that giant map with all those icons covering it, each one represent‑
ing a different mission or activity of some kind? Yeah, that’s the one. That
is the framework you would use to get the blind to their chosen destina‑
tion. The idea here is that we must make the map accessible to the blind
in a way that makes sense, then attach the ability to set a waypoint on the
map to the navigational assist path. So, how do we handle the map?

There is actually a very good reference for how to do a map correctly
for the blind, and it’s in a game that is otherwise inaccessible. Grand Theft
Auto V, believe it or not, nailed the right idea here. In GTA V, you can

Open Worlds ◾ 97

press a button on the map screen, and it becomes a list instead, sorted by
category of activity. This is how you do it. Don’t ask the blind to move a
free cursor around the actual map, even if it’s narrated. It’s still cumber‑
some, and inconvenient as, since we can’t see the map, we’re still likely to
miss things available to us. Instead, allow the map to become a catego‑
rized, sortable, and of course narrated list, so we can choose the types of
activities we want to do at any given time. If we want to do a side mission,
let us sort by available side missions. If we want to take over a base, let
us do that. If we want to go bowling because that’s a thing you can do in
this hypothetical accessible game, let us sort by bowling alleys. Then, once
we’ve selected our chosen activity, drop a waypoint there and let naviga‑
tional assistance help us get there.

Depending on the game, just doing these two things, making your map
accessible and combining that with a smart navigational assist, could make
your open‑world navigation 90% accessible to the totally blind. Some partic‑
ularly dense open‑world games whose maps are just absolutely jam‑packed
with icons may be even closer to full navigational accessibility than that. But
how do we make that 100%? We’ll talk about that in the next section, but
first, I want to go over just a couple more principles to keep in mind.

First, when making the map accessible, it’s still OK to hide things from
us. That might seem like an unnecessary statement to make, but I want to
stress that I’m trying to help create parody of experience here. So, if your
open world game only shows you some of the map at a time, the rest need‑
ing to be unlocked by, say, climbing to the top of a very high tower and
looking out at the view, then only put what a sighted player would see on
their map in our destination list. We want to feel the thrill of unlocking
more activities and things to do as the game progresses, so hide what is
meant to be hidden.

Second, it may be worth also considering allowing the list to be sorted
and filtered in other ways besides activity as well. For example, distance.
Maybe we’re unsure of what we want to do, but we know we want to do
something that’s close to where we are now. Give us a way to show what
is in our immediate area, and, when narrating the listed name for any
activity, it might just be worth including the distance to it from our cur‑
rent position just so we have some idea of how long it’ll take to get there,
wherever it is. You could even include general cardinal direction in this
narration as well, so if we wanted to, say, make our way toward a story
mission that was far south of us, but also want to tackle a couple other

98 ◾ Taking Video Out of the Game

side activities along the way that were also south of us, we could almost
plot out a path from where we are now to each activity and finally to the
mission. As I have said many times, it’s all about information. Give us this
information and ways to access all of it, and we’ve got this.

19.2 KEEPING WONDER AND EXPLORATION ALIVE
So, we’ve covered how to bring blind accessibility into about 90% of the
open world. Now it’s time to discuss how we get the rest to be accessible
as well. Fortunately, I have some ideas for this. When exploring the real
world, some people talk about how they just pick a direction and go. My
idea for how one should start these exploration journeys is based on this
concept. We’re still going to need a little help, but there is a way we can
pretty much do exactly this.

It all starts with an option to pathfind to the nearest unexplored area.
You can base this on the direction the player is currently facing, so when
this option is selected, the nearest unexplored area to them in that gen‑
eral direction will be selected. Then, they can use navigational assistance
until they reach it. This should, of course, also present them with an error
if there is nothing unexplored generally within that direction or if there
might be, but it’s currently unreachable. Again, it’s OK to prevent blind
players from reaching areas the sighted could not. This will effectively
allow the blind player to pick a direction and go.

To be clear, the reason I am still advocating for the use of pathfinding in
this situation (Why couldn’t they just literally start moving in a direction
to find new things?), is because being blind, we still do not know what is
between us and the new area we’re trying to reach. Navigating as the crow
flies may not work in a world filled with stuff. I could just pick a direction
and start moving, but what if I fell off a ledge, or hit a wall? Even if I found
a way past the wall, maybe I’m now facing a different direction because it’s
difficult to track where you are at any given time in games like this. Even
if the game supported audio cue‑based navigational assistance, that may
not account for the vast open space between where we are and where we
want to be. And so, I believe pathfinding is still the best approach, even for
reaching a generally new area.

Once we reach the new area, we’ll still need to do the blind equivalent
of looking around. This is why you will still need some kind of local scan,
so we can get some lists or notifications, via audio cues or narration, of
what’s around us that we might be interested in looking at. Consider it

Open Worlds ◾ 99

a sort of mini map for the blind. We should then be able to select some‑
thing nearby, and again, navigate to it with whatever assistance exists in
the game. That will bring our ability to move through an open world game
to probably about 95%. So no, we’re still not done just yet.

To cover the last little bits of navigating an open world, we need some
kind of informational notification when something that might be interest‑
ing is nearby. This could come with vague descriptions as well. Take Red
Dead Redemption 2, for example. That game was very good at showing
you interesting side quests while you were on the way from one place to
another. You’d be riding somewhere and suddenly “Oh, what’s that house
doing all the way out here?” or “Who is that person just writhing on the
ground like that, seemingly in pain?” Making this kind of moment acces‑
sible is the last piece of the puzzle. This is also the primary reason we
always need to be in control of any kind of navigation, so that we might
stop and choose to track this new thing we just found.

Of course, how much information you give to the player is entirely up to
you. If you want them to have a shot at finding something neat when they
get close enough, but don’t want to tell them what it is until they find it,
then don’t. It would be very intriguing to sometimes get detailed descrip‑
tions of something we might want to go look at, but other times just be told
that there’s “something interesting” nearby, possibly with a mysterious audio
cue accompanying that notification. Imagine traveling over land, then being
notified there’s something interesting nearby. Deciding we don’t have to head
to our story mission just yet, we choose to investigate and track it. After some
movement, we find ourselves jumping into the water. “Whoa! I wonder what
this is!” We end up diving, and then perhaps some audio description triggers,
informing us that we have proceeded into an ancient shipwreck. We then
proceed to explore using local scanning methods and possibly find some
amazing new magical item or something. And all because we were told, at
first in vague terms, that there was something interesting. I think that idea is
very powerful. The notification intrigues us, then the ways in which the audio
changes as we proceed give us that sense of wonder and finding something
secret, and then the big reveal using audio description would seal the deal.

So that’s it. That’s how you make it so that even the blind can navigate
a huge open‑world game. I personally love the idea behind open worlds,
so I find myself hoping that more developers will read this chapter than
almost any other, but that’s just me. Next up, one of the most difficult but
necessary discussions in all accessible gaming—multiplayer.

100 DOI: 10.1201/9781003433750-22

C h a p t e r 20

The Multiplayer
Discussion

What follows is one of the most difficult discussions in accessible
gaming—the question of how to handle multiplayer in video games,

but maintain accessibility for the disabled. This discussion is especially
difficult for the blind, whose needs are often many to make a game acces‑
sible in the first place. In this chapter, I’ll attempt to tackle all facets of this
discussion. The goal here isn’t necessarily to provide a definitive answer
(I believe this discussion will remain ongoing even after blind accessibility
is more widely implemented), but hopefully it gets people thinking about
all this, and maybe starts us down the right path toward working this out.

First, I want to address the most common arguments surrounding mul‑
tiplayer accessibility, starting with the classic “Why should we do it at all?”
Say a game has a single‑player component, like a full campaign, and that
campaign has been made fully accessible to the blind. Shouldn’t that be
enough? Why waste time trying to delve into this very difficult problem
when we made single‑player work beautifully? There is of course a lot I
could say to answer that, starting with the obvious “Why not?” The most
basic of questions regarding accessibility, since accessibility is absolutely
the right thing to do. Why not include the disabled in every mode of your
game? And that brings me to my next point.

The second answer would be because you cannot call your accessibil‑
ity efforts complete until all modes of your game are accessible. A game

https://doi.org/10.1201/9781003433750-22

The Multiplayer Discussion ◾ 101

that claims something like, “Well everything works except for this,” isn’t
a fully accessible game, and attempting to market it as such will just make
disabled gamers angry. That, to me, is enough of a reason to consider try‑
ing to solve the multiplayer problem for your game. Being able to put the
stamp of total accessibility on your game is going to feel good for you and
look good for everyone else.

Next, I want to talk about another idea that has come up during this
discussion. The developer who says “OK, we’ll do it, but we’ll put our
accessibility features behind a specific flag and separate those with that
flag from those who don’t have it.” I cannot dismiss this idea outright,
much as I would like to. I would like to officially discourage you from
doing this, simply because the blind or disabled may want to play with
their abled friends, or even abled randoms. Putting them in separate lob‑
bies will absolutely thin the pool of eligible randos, potentially leaving lob‑
bies unfilled in certain high‑capacity games. There are most likely more
disabled people out there than some developers think, but still, the ratio
of disabled players to abled is much smaller. It might be difficult to fill a
Battle Royale lobby, for instance, with a segregated player base.

However, as I said, I can’t completely dismiss the idea. Multiplayer
accessibility is absolutely a difficult problem to solve, and I have enough
respect for developers to acknowledge that. There are ways in which one
might approach making multiplayer fully accessible and maintaining
access for the sighted, which we’ll discuss later, but if some of these things
aren’t possible in your game, or if you still don’t feel the playing field is
leveled and there is just no other way, then I would rather have a way to
play multiplayer than not have one at all. Still, I strongly encourage you to
consider this a last resort.

So, let’s talk about implementation. How do we make multiplayer acces‑
sible without angering those who think adding accessibility features will
just make things too easy, or having the abled use these features them‑
selves to give them an even bigger advantage? This is where things get
really complicated. The answer depends very much on the game, much as
all accessibility does, but I’ll give you a couple of scenarios that I’ve either
talked about before or considered, the hope being that in doing so, you can
start considering how to balance your game to make this work.

We’ll start by going from extreme to extreme. Games like Mortal
Kombat, for instance, don’t really need any special modification to bal‑
ance out multiplayer. As I’ve said in a previous chapter, fighting games are

102 ◾ Taking Video Out of the Game

the most naturally accessible genre out of the box, and in general haven’t
required much accessibility modification, aside from narration and some
informational audio cues, as demonstrated in Mortal Kombat 1. Because of
this, the blind already have more than enough information to play Mortal
Kombat online, and many have been quite successful at this. Blind play‑
ers have even represented the community at major fighting game tourna‑
ments like Evo, leaving no doubt that we are on a level playing field there.
Street Fighter VI, as well, has proven to be just as accessible, as a blind
player, who recently competed on a professional level in that game as well.

But what about the other extreme? I have spoken to at least one developer
about the idea that, if blind accessibility features are enabled, graphics are
essentially turned off. That way, if the sighted turn on blind accessibility
features, thinking they will just give themselves even more of an advan‑
tage, they will have to use them in the same way as we do, thus leveling
the playing field in the reverse way. Again, I will say that I don’t hate this
idea. I think it’s an interesting solution to the problem and wouldn’t be
surprised if someone tried this at some point. The problem, though, is that
blindness is a spectrum, and those who have low vision may wish to use
some of the accessibility features that would be in the list of features that
disable graphics. Low vision users use narration, navigational assistance,
aim assistance, and so on, all the time in games because, though they can
see some, using these features allows them to work their eyes less, making
the game less stressful and allowing them to act more quickly. So, it is a bit
of a rocky road, which would likely get some pushback either way. Still, it’s
interesting enough that I want to acknowledge it as an option.

In terms of existing implementation, I want to talk a little bit more
about Forza. The Forza team would be the first to tell you that, at least as
of this writing, we don’t feel our blind driving assist systems are well‑opti‑
mized for the blind, and we want to do more. For instance, we don’t feel
our traffic awareness is up to par, which is a necessity when dealing with
the unpredictability of actual players instead of AI opponents. However,
we do still have a lot of confidence in our systems, confidence which I
am happy to say has been rewarded, and so we simply chose to be honest
about this. We informed the blind community of the potential struggles
they might face in multiplayer but also reassured them that we wouldn’t
lock them out of it, which we haven’t. Given that much of what we do in
Forza is informational (narration and audio guidance around the track),
it is still technically possible for a blind person to succeed in a multiplayer

The Multiplayer Discussion ◾ 103

event despite these struggles, and some have. All our assists are allowed
in multiplayer, with the single exception of events specifically set up not
to allow them. Event settings can be previewed when joining, though, so
that enables the blind to not participate in events that don’t allow the set‑
tings they need. Also, we’ve committed to not disallowing these assists in
any of the studio‑created events, allowing the blind to try their hand at all
the featured multiplayer events we can come up with. This appears to be
a workable solution, and one that only gets better as our systems do, but
it is also specific to our situation. Our audio cues and steering guide are
enough of a navigational assist for the blind player, and they simply follow
the same racing line that the sighted would be following. Again, different
games may need different considerations.

In the chapter about combat, I discussed an aiming mode for shooters
wherein the blind are required to manually center their target in their stereo
field before any kind of aim assist would kick in, possibly helping them with
vertical aiming if needed. This system could use a targeting indicator audio
cue as well, using pitch to inform the player when they have a lock. When
I spoke of that aiming system, I was thinking of multiplayer shooters. The
sighted will never accept the blind having the same levels of aim assist we
use in single‑player games that have shooting elements like The Last of Us.
It’s too good. Too perfect, even. So, to make shooters more fair, a system that
requires the blind to do some of the work is needed. There must also be a
full cover system that uses audio indicators for cover and navigational assis‑
tance, specifically to allies or important items. All of these features will need
to be carefully balanced of course, and tons of testing would be required,
but I think the key here is to find ways to prompt the blind to do a bit more
of the work than they may have to in single player (or just design all of your
systems around these ideas so the difficulty is the same across the board),
and try to balance that for everyone. Designing the game with accessibility
in mind from the beginning is a must here, as it will better enable you to
iterate, test, and balance for both blind and sighted players.

And so, as I said at the beginning of this chapter, there is no definitive
final answer here. The approach to making multiplayer fair and balanced
to all will have to be discussed at length for every multiplayer game, but
one last time, I urge you to try. The blind don’t want to be left out. They
don’t want to be told they can play one mode, but not the rest. They want
to be a part of the game, and the conversation, just like everyone else. So,
discuss it, and maybe give multiplayer accessibility a shot.

104 DOI: 10.1201/9781003433750-23

C h a p t e r 21

Unexplored Territory

On one hand, there’s no denying that accessibility in games has
come a long way. On the other, there’s a much longer way to go. The

number of games that aren’t specifically audio games and can truly be
called totally blind accessible is still very small. Games like The Last of
Us, Forza Motorsport, Sequence Storm, and As Dusk Falls are incredible,
but there is still so much territory that is yet unexplored when it comes to
blind accessibility.

What about platformers, for instance? What about Mario or Sonic?
That’s the territory we should explore. I think it would be such fun to
truly be able to experience the star‑collecting, level‑completing, and even
secret‑finding of a Mario game. To do this, you might combine some of the
principles we’ve discussed here. Navigational assist so we know which way
we’re supposed to go, but less traversal assistance, and more reliance on
audio cues and perhaps haptics to communicate the information we need
to know about the obstacles in our way. Give us a sort of camera mode
that allows us to look around without committing to movement as well,
so we could better learn about our environment. We may begin by going
through levels very slowly so we can feel how the systems and cues work,
but eventually, I believe we could take some levels at speed, and when we
did, it would be a blast.

But what about giant 300‑hour RPGs like The Witcher 3 and Skyrim?
Yeah, we don’t have one of those yet either. Imagine using some of the
techniques I described in the Open World chapter to build something like
that. A fully accessible, fully explorable world that we can just get lost in

https://doi.org/10.1201/9781003433750-23

Unexplored Territory ◾ 105

for weeks. If a developer ever did that, they would be making many dreams
come true, not just mine. Narrated quest logs, hundreds of pages of lore all
narrated, an accessible map that we can sort by active quests or incomplete
quests or known places, and so on. The possibilities are there; someone
just needs to execute them. It’s probably clear that this one’s pretty high on
my personal bucket list. I love deep narratives.

And speaking of deep narratives, how about walking simulators? Some
of those games have compelling stories that have moved me, and yet I can’t
play any of them. Some light movement, some light puzzles, and some
deep story sounds like a blast to me, and it would be relatively simple to
enfold in the ideas I have presented here. Nav assist, puzzle modifica‑
tions for audio, audio cues for different types of interactions, and narrated
menus and text elements (notes, diary entries, and so on), and you’d prob‑
ably be done. This is a genre I feel could work extremely well for the blind
community.

There are unexplored aspects of the interactive movie genre as well. I’m
thinking of companies like Super Massive Games when I say this. While
As Dusk Falls was made accessible relatively easily since their scope was
specifically limited to choices and quick time events, the Super Massive
Games, such as the Quarry, have a bit larger of a scope. But in order to
make it work, you simply combine the things that make As Dusk Falls
work, (narrated menus and in‑game text elements such as text messages,
narrated quick time event commands, narrated conversational choices),
with what you would need to make a walking simulator work, (naviga‑
tional assistance, narrated browsable text elements such as collected
clues), and then maybe you include some audio description as well to fully
immerse the blind player. At last, we could make the choices that lead to
the survival, or lack thereof, of these characters.

There are, of course, many other examples. I basically covered the puz‑
zle games genre, another genre we don’t yet have access to, in the chapter
about puzzles. The multiplayer chapter is almost entirely about uncovered
ground, hence the reason for all the uncertainty in that discussion. There
is a lot of experimentation to do, and a lot of genres to open, and as this
chapter demonstrates, you can often use combined examples from pre‑
existing games or ideas for how other genres could be made accessible in
creative ways on your own projects. Don’t be afraid to innovate and iterate
on these ideas to make them work for you, but also don’t forget to work
with consultants. I promise it’ll be worth it.

106 DOI: 10.1201/9781003433750-24

C h a p t e r 22

Conclusion

That’s it, you’ve done it. You’ve finished the book. Either you read
the entire thing, which I really, really appreciate, or you stuck specifi‑

cally to the parts of the book that pertain to the project you’re working
on or have planned, which is fine too. No matter how you approached it,
I truly hope you learned a lot about gaming from a total blindness per‑
spective, and of course, how to approach blind game accessibility in your
own work. We’ve covered a lot of ground here, so now I want to take a
second to go over some final takeaways.

First, the usual suspects. Start thinking about accessibility early, design
with accessibility in mind from the beginning, and of course, hire con‑
sultants. While it is my hope that this book was a great resource for you,
there’s nothing like having a consultant for each disability you’re making
your game accessible for to provide you with the perspective and insight,
and later testing, you need to make it the best it can be. Also, accessibil‑
ity is important, and there’s no real reason not to do it. You want players
to play your games, and making them accessible just means that more of
them can.

Then, the takeaways for blind accessibility. First, when you break it
down, it’s all about information. Consider your game, consider what infor‑
mation your eyes provide you when you look at it, and consider that that’s
the information every blind player is missing. Then, find a way to either
give them that information, or work around the fact that they don’t have
it, such as in the case of navigational assistance. And remember, ideas like
the ones presented in this book might work for multiple genres or game

https://doi.org/10.1201/9781003433750-24

Conclusion ◾ 107

types, so don’t be afraid to be innovative and combine them if that works
for you. While you’re doing that, though, preserve your own vision. As a
consultant, I am not out to change the vision of the developer, I am out to
make the specific experience they’re trying to create more accessible. If a
game is difficult, then the game should remain difficult. If a game relies
on a certain moment feeling a certain way, one should try to preserve that
feeling. (See my idea for how swinging through New York as Spiderman
accessibly should work). Remember, we’re going for as close to parody of
experience as possible, just an accessible version of that.

And lastly, remember that we are gamers too, and we want to play your
games. Look back at the history of gaming for blind gamers. Look at all the
tenacity involved, the struggles we voluntarily went through to play games
that weren’t designed for us. The audio games were made to directly par‑
ody other games because those games weren’t accessible. We are passion‑
ate about games, and we will reward your efforts to make them accessible
with our loyalty, and our gratitude. We want to be a part of what you cre‑
ate. We want to join the game, and the conversation, right along with our
sighted and otherwise able friends and our disabled ones too. Whether
that’s figuring out multiplayer or presenting us with an unforgettable nar‑
rative experience, we want in. Thank you for all of your work, but thank
you most of all for reading this book and taking its contents seriously.

https://taylorandfrancis.com

109

Index

AAA game, accessibility 28–32
accessibility; see also blind accessibility

accidental 5–9
beginnings 13–15
blind, basic principles of 41–45
defined 3–4
state of blind 33–38

accidental accessibility 5–9
action/shooter combat 80–85
Alien Outback 17
Alt Tagging 11
AppleVis 25
As Dusk Falls 35–36, 43, 55, 56
audio cues 30–31

Destiny 2 and Deadpool 69
Diablo series 69
1428: Shadows Over Silesia 67
identification 68
Kingdom Hearts 70
The Last of Us 67
navigational purposes 66
places 65–66
positionality 65
situations 66
sound sources 67
status 69

audio description 35, 75–79
audio design 72–74
audio games 16–21, 107
audio glossary 30

blind accessibility 10–12, 106
information 41–42
input 43–44
mainstream beginnings 22–27

narration 42–43, 49–56
navigation 44–45, 57–64

blind gamer, tenacity of 5–9
A Blind Legend 19–20

Call of Duty 7
choice‑based games 49–50
combat, action/shooter 80–85
Crafting Kingdom 27

Deadpool 69
Descriptive Video Works 35, 75, 78
Destiny 2 69
Diablo IV 7, 43, 50, 62, 69
driving 92–94

Enhanced Listen Mode 30
Evidence #111 21, 49

fighting games 8, 26, 46–47, 85–87
Final Fantasy X 6–7
Forza Motorsport 35, 76, 93
1428, Shadows Over Silesia 34, 60,

67, 77

Gotham Knights 37
Grand Theft Auto V (GTA V) 96–97

inaccessibility, defined 3–4
Injustice: Gods Among Us 26
In the Pit 22, 23
invisibility, prone feature 31–32

Judgement Day 84

Kingdom Hearts 70

110    ◾    Index

The Last of Us 11–12, 29, 32–34, 57, 59, 74,
81, 82

Limited Mode 31

Marvel’s Spiderman: Miles Morales 36, 58
Microsoft Narrator API 52, 54
Monkey Business 18
Mortal Kombat 1 (MK1) 26, 46–47, 76–77,

86–87
MUDRammer 14, 25
the multiplayer discussion 100–103
Multi‑user Dungeons (MUDs) 14–15, 25
MultiVersus 42

narration 42–43, 49–56
narrator 50, 52, 78, 79
Naughty Dog 9, 28, 29, 34, 36
navigation 11, 44–45, 57–64, 95–98
navigational assistance methods 62
Nightjar 19

Old Republic MMO 95
open worlds 57

keeping wonder and exploration alive
98–99

navigation 95–98

Playstation 1 (PS1) 6
Playstation 2 (PS2) 7
Playstation 4 (PS4) 25, 32
Playstation 5 (PS5) 25, 50, 58
PopCap Games 26–27
puzzles 88–91

racing 92–94
ReadSpeaker 51–52
Real Sound: Kaze No Regret 16–17
Real‑Time Strategy (RTS) 83–84

Resident Evil 6 8–9
role-playing games (RPGs) 104

Sequence Storm 35–36
Shades of Doom 17–18
Silent Steel 15
Simon 16
Skullgirls 26
Solara 24–25
Somethin Else 19
Stray Gods 57
Street Fighter VI 102
Super Liam 17, 19
Super Massive Games 77, 105

tale of blind gamer tenacity 7
Text to Speech (TTS) 13, 29, 79
13 Sentinels: Aegis Rim 8
TLOU1/TLOU2 34,

35, 47
Tolk 26, 50
Top Speed 18
Touch Me 16
traversals 63–64
Troopanum 17

Ubisoft 36, 52
unexplored territory 104–105
Unity 26–27, 37, 51

The Vale: Shadow of the
Crown 20–21

visual novel 11, 46, 56
VoiceOver 23–24, 27, 37
Votrax 13
VR games 42

Xbox 23, 50

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Acknowledgments
	Introduction
	Part 1 The Story of Accessibility
	Chapter 1 Defining Accessibility/Inaccessibility
	Chapter 2 Accidental Accessibility: The Tenacity of the Blind Gamer
	Chapter 3 Blind Accessibility Specifics: What it Means to Make Something Blind Accessible
	Chapter 4 Accessible Beginnings: MUDs, Text Adventures, and So On
	Chapter 5 Audio Games
	Chapter 6 Blind Accessibility’s Mainstream Beginnings
	Chapter 7 AAA Accessibility Reaches the Totally Blind
	Chapter 8 The State of Blind Accessibility

	Part 2 Guidelines for Blind Accessibility in Games
	Chapter 9 Basic Principles of Blind Accessibility
	Chapter 10 Every Game Is Different
	Chapter 11 Narration
	Chapter 12 Navigation and Traversal
	Chapter 13 Audio Cues
	Chapter 14 The Power of Good Audio Design
	Chapter 15 Audio Description and Scripted Events
	Chapter 16 Combat and Kombat
	16.1 Action/Shooter Combat
	16.2 Kombat: Fighting Games

	Chapter 17 Puzzles
	Chapter 18 Racing and Driving
	Chapter 19 Open Worlds
	19.1 Navigation on a Worldly Scale
	19.2 Keeping Wonder and Exploration Alive

	Chapter 20 The Multiplayer Discussion
	Chapter 21 Unexplored Territory
	Chapter 22 Conclusion

	Index

