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 welcome




Thank you for purchasing the MEAP for Reinforcement Learning for Business. I’m excited to have you on this journey to explore how we can use one of the most powerful areas of AI to solve meaningful, real-world challenges.




To get the most from this book, you should have a basic knowledge of Python programming. While not strictly required, a general understanding of machine learning concepts will be beneficial.




I decided to write this book because I saw a major gap in the available resources on Reinforcement Learning. Most books focus on theory or use examples from the world of games, which can feel abstract. This book takes a different approach. We use practical problems inspired by business—like optimizing supply chains or setting prices—to make the core ideas of RL intuitive and easy to grasp.




And while we use business optimization as our theme, this book is for anyone seeking a practical, hands-on path to mastering Reinforcement Learning. The challenges of resource allocation, scheduling, and dynamic response are universal in software and data science. By grounding the concepts in tangible examples, you'll gain a deep, intuitive understanding of RL that you can apply anywhere, far beyond the specific case studies in the book. You'll learn how to frame a problem, design a custom environment to simulate it, and apply a range of powerful RL algorithms to find optimal solutions.




Your feedback during this MEAP process is invaluable. It will help me create the clearest, most practical, and most effective book possible. Please be sure to post any questions, comments, or suggestions you have in the liveBook discussion forum.




Thanks again for your interest and for joining the MEAP!




—Hadi Aghazadeh
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1 Reinforcement learning and business optimization: core concepts




This chapter covers


	What is reinforcement learning for business optimization?

	What are business optimization problems?

	Challenges in business optimization problems and limitations in the classical solutions

	How reinforcement learning can help to overcome solution limitations







   God, grant me the serenity to accept the things 
  I cannot change, courage to change the things I can, and wisdom to know the difference 





Reinhold Niebuhr, Reformed theologian




Even the most powerful businesses have limited resources. In this way, the simple yet important wisdom of a good manager is to understand the strengths and weaknesses of what a business can control, as well as to recognize the opportunities and threats in the environment that surrounds it. And just like the creatures that have lasted millions of years through evolution‚Äînot by being the strongest, but by being the most adaptable‚Äîa key for a business to survive the brutal competition filled with uncertainties is how well it understands those uncertainties and acts accordingly, based on the limited resources it has.




Making decisions when things are uncertain is probably the most important thing a business has to do‚Äîagain and again, every single day. And the quality of those decisions depends not just on understanding what‚Äôs happening right now, but also on remembering how we got here. Today‚Äôs situation isn‚Äôt just shaped by today‚Äôs problems‚Äîit‚Äôs also the result of yesterday‚Äôs choices. If a business can make the right decisions‚Äîright enough, given what it knows and the resources it has‚Äîit can not only stay in the game, but actually earn the right to keep playing. Because in a world full of moving parts, good decision-making isn‚Äôt just a one-time win‚Äîit‚Äôs a habit that pays off over time.




As a result, making sequential decisions under uncertainty is something every business should aim for. You might get the impression from this next sentence that the author is in love with what he does, and that the only tool he has is a hammer‚Äîso everything looks like a nail to him, and he wants to prescribe a single solution for all the complexities of business‚Äîbut I must admit that making sequential decisions under uncertainty is exactly what reinforcement learning does. Let‚Äôs get the picture first.




1.1 What reinforcement learning really enables?




Before we talk about business, let‚Äôs talk about war. Not actual war‚ÄîStarCraft II. In 2019, DeepMind‚Äôs AlphaStar quietly climbed the ranks of professional players in this wildly complex real-time strategy game. For those unfamiliar, StarCraft isn‚Äôt your average board game‚Äîit‚Äôs chaotic, dynamic, and multi-agent. You‚Äôre managing resources, building infrastructure, countering your opponents, all while being bombarded with incomplete information. In other words, it‚Äôs a perfect metaphor for running a real business in a competitive market.




But what‚Äôs fascinating isn‚Äôt the game‚Äîit‚Äôs how AlphaStar learned to play it. It wasn‚Äôt taught rules in the traditional sense. It wasn‚Äôt trained on a labeled dataset. It didn‚Äôt memorize expert strategies. Instead, it learned by doing. It played millions of matches against itself, continuously trying new things, making mistakes, observing the outcomes, and gradually refining its strategies‚Äînot unlike how a startup iterates to find product-market fit.




This is reinforcement learning in action: an agent learns how to act in an environment by trying, failing, adjusting, and trying again. Over time, the agent doesn‚Äôt just copy what worked before‚Äîit develops policies for making good decisions, even in new and unseen situations.




If we think about what makes reinforcement learning unique compared to other types of machine learning, a visual like the one below becomes quite helpful. Let‚Äôs walk through figure 1.1 illustration to clarify where reinforcement learning fits in and how it stands apart.




Figure 1.1 Reinforcement learning in the context of machine learning.





	Unsupervised Learning is like walking into a room full of people and trying to figure out who belongs to which group, without anyone telling you what those groups are. The task here is to extract patterns from raw data‚Äîclustering customers by behavior, for example‚Äîbut there's no reward or correct answer to guide you.

	Supervised Learning, on the other hand, gives you a cheat sheet. It says, ‚ÄúHere are a bunch of past situations, and here‚Äôs what the correct outcome was.‚Äù The model's job is to learn the mapping between inputs and outputs‚Äîlike predicting whether a customer will churn or whether a transaction is fraudulent. It learns from labeled data and is evaluated based on how well it predicts unseen cases.

	Reinforcement Learning, as depicted in the third panel is about learning how to act, not just predict. The agent makes decisions (like moving from one node to another), receives rewards or penalties based on the outcome, and learns from these consequences. The key challenge is credit assignment‚Äîfiguring out which of the past decisions led to success or failure.




In reinforcement learning panel, the agent chooses different paths and gets different amounts of reward (100, 200, 30, 50), but it doesn't know in advance which path is best. It must explore, experiment, and learn what leads to higher cumulative outcomes. And that "How?" at the bottom? That‚Äôs the heart of reinforcement learning: how to act to maximize long-term value.




This distinction is crucial for what follows in this book. Supervised learning might tell you which product a customer is likely to buy. But reinforcement learning can learn how to sequence a series of actions‚Äîlike promotions, inventory allocation, or truck dispatching‚Äîto maximize sales, reduce cost, or improve customer satisfaction over time.




In that sense, running a business is much more like playing StarCraft than it is like identifying cats in photos.




And that‚Äôs exactly what this book is about: how to take the core concepts behind reinforcement learning and apply them to real-world business optimization problems. But before we dive in, we‚Äôll first look at the types of questions businesses need to answer, the structure of business problems, and the kinds of decisions that matter most.




1.2 Different types of business analysis




As a small dose of reality, although all problems that reinforcement learning tries to solve can be framed as sequential decision-making under uncertainty, not all sequential decision-making problems can be solved using reinforcement learning. So, when it comes to helping businesses with analytical tools, we need to understand what kinds of questions we are asking, and which tools are capable of answering what.




We can broadly divide the variables and complexities that businesses face into two main categories: external and internal factors. External factors are those beyond the business‚Äôs control‚Äîshaped by macroeconomic trends, social dynamics, the moves of competitors, and shifts in customer behavior. These are the unpredictable forces that come from the outside world. In contrast, internal factors refer to elements a business can control, either fully or to some extent. These include decisions related to hiring, marketing strategies, pricing, operational planning, and overall organizational efficiency. Understanding how these internal and external forces interact is key to navigating uncertainty and making informed decisions.




With this division, we can also divide the types of questions we ask. Let‚Äôs first deal with external factors. Figure 1.2 provides an overview of the types of questions related to external factors. Just like any other system, a business can be understood across three time frames: past, present, and future.




Figure 1.2 two types of questions and analytical approaches for analyzing external factors.





From our current point in time, if we are interested in analyzing the past, the question we ask is ‚ÄúWhat happened?‚Äù This type of analysis is called Descriptive Analysis. For example, if you ask, ‚ÄúWhat has been the inflation trend over the last ten years?‚Äù, you‚Äôre asking a descriptive question.




On the other hand, if we‚Äôre interested in the future status of external factors‚Äîbased on the implicit assumption that future trends will resemble past patterns‚Äîthe question we ask becomes ‚ÄúWhat will happen?‚Äù This type of analysis is known as Prediction or Forecasting. For instance, asking ‚ÄúHow much will raw material prices be in the next quarter?‚Äù is a prediction-type question.




Now let‚Äôs move to analyzing internal factors, which a business has control over‚Äîeither fully or at least partially. We can look at them using the same lens we used for external factors, as shown in figure 1.3.




Figure 1.3 two types of questions and analytical approaches for analyzing internal factors.





Again, from our current position, if we are looking into the past of internal factors, the question becomes ‚ÄúWhy did it happen?‚Äù and the corresponding analysis is called Explanatory Analysis. The ‚Äúwhy‚Äù matters here because the business itself has been a major part of what happened. For example, asking ‚ÄúWhy did sales shrink by 20% compared to last quarter?‚Äù is an explanatory question.




Last but not least, if you‚Äôre interested in the future of internal factors‚Äîand since you have some control over them‚Äîyou might ask, ‚ÄúWhat should we do?‚Äù. Here, you‚Äôre aiming to optimize your part in shaping the future of that internal variable that we call Optimization. For example, if you ask ‚ÄúWhat is the best schedule for dispatching 20 trucks to cover all customer orders while minimizing costs?‚Äù, you‚Äôre asking an optimization-type question. Table 1.1 summarize these key definitions which are central in machine learning.




Table 1.1 Summary of business analysis types.




	


        Factor Type 
      


 
	


        Time Frame 
      


 
	


        Key Question 
      


 
	


        Type of Analysis 
      


 
	


        Example 
      


 



	

       External 
     
 
	

       Past 
     
 
	

       What happened? 
     
 
	

Descriptive Analysis




 
	

       What has been the inflation trend over the last ten years? 
     
 



	

       External 
     
 
	

       Future 
     
 
	

       What will happen? 
     
 
	

Predictive Analysis

 
	

       How much will raw material prices be in the next quarter? 
     
 



	

       Internal 
     
 
	

       Past 
     
 
	

       Why did it happen? 
     
 
	

Explanatory Analysis

 
	

       Why did sales shrink by 20% compared to last quarter? 
     
 



	

       Internal 
     
 
	

       Future 
     
 
	

       What should we do? 
     
 
	

Optimization Analysis

 
	

       What is the best schedule for dispatching 20 trucks to minimize costs? 
     
 








There are a few important points to mention here: since internal factors can also be influenced by external ones‚Äîin other words, a business might not have full control over a variable but still have partial control‚Äîit can still be considered an internal factor. What matters is having some level of control, which allows you to ask internal-type questions. Because of this partiality in internal factors, you may‚Äîand often should‚Äîask external-type questions for internal factors too.




This is why, in almost all types of business analysis approaches, the first step is usually to start with descriptive analysis, and then study how much of the current situation is shaped by external factors.




Although this division between external and internal may be controversial‚Äîespecially in edge cases‚Äîbased on the idea that ‚Äúall models are wrong, but some are useful‚Äù, our purpose here is to distinguish between different analytical frameworks as clearly as possible, so we can understand which approach should be used and when.




Although asking the right questions is a critical step in solving a problem, the way we answer each of these questions can also significantly impact the outcomes in reality. One may ask a priest for insights on the next moves of their competitors, or they may use game theory to model the dynamics of value exchange in a marketplace. In the end, it is the decision maker‚Äôs mindset‚Äîor mental model‚Äîthat determines the chosen approach to solving the problem.




As for the focus of this book, we are primarily interested in understanding and optimizing the future status of a business. To analyze and influence that future, two main solution approaches are commonly used: Model-based and Data-driven methods. Model-based approaches rely on carefully designed assumptions, parameters, and expert knowledge to construct a representation of how the problem is believed to work. In contrast, data-driven approaches learn directly from historical data, identifying patterns and relationships that can then be applied to predict or guide future outcomes in unseen scenarios. These approaches automatically learn the model from the data itself, without the need for manually specifying rules or assumptions. Both approaches have their strengths, and in many cases, a hybrid of the two offers the most practical results.




Depending on the type of factor‚Äîinternal or external‚Äîwe might choose different approaches. However, the main focus of this book is business optimization, and in particular, how reinforcement learning can help in solving business optimization problems. But before we dive into that, we need to go a bit deeper into what business optimization actually means.




1.3 Business optimization definition




When it comes to business optimization, we should first talk about when we should do business optimization, and this usually falls into four main aspects:




	Decision Level: Whether the decision is strategic, tactical, or operational.

	Decision Cycle: Whether the decision is periodic, one-time, or occasional.

	Decision Dimensions: Whether a decision is going to be made for single entity or multiple entities.

	Decision Quantifiability: Whether the decision can be quantified and measured (even in binary form) or whether it is more qualitative and based on intuition.




From the different combinations that can be made using these categories, business optimization usually (but not always) applies to problems that are at the operational level, occur periodically, involve many decisions, and can be quantified in some way. Needless to say, as we move toward the strategic level, the number of decisions and their frequency decrease, while their nature becomes more qualitative. In those cases, the ‚Äúoptimal‚Äù answer is more subjective and depends heavily on the preferences and opinions of managers. For these other combinations, there are plenty of alternative approaches‚Äîconceptual models in strategic management like Michael Porter‚Äôs Five Forces, McKinsey‚Äôs 7S Framework, Blue Ocean Strategy, and other tactical-level models such as those for designing supply chain networks.




Now that we‚Äôve drawn a rough boundary around the types of problems we want to solve, it‚Äôs time to look at what characteristics a typical business problem usually has. Figure 1.4 shows a framework for this purpose.




Figure 1.4 Framework for business optimization models.





According to figure 1.4, any business optimization model should include these key elements in its framework. First, it should take two types of inputs. The first is external factors, which are usually passed into the model as parameters. For example, if the model is for managing a stock portfolio, one external factor could be the price of raw materials, which can be provided based on descriptive analysis or relevant historical data. Once the model is solved, we can run sensitivity analysis on these parameters to see how changes in their values affect the objective function.




The second‚Äîand most important‚Äîinput is actions, or decision variables. These are the things we want to make decisions about. Questions like ‚ÄúHow much money should a company invest in a product?‚Äù or ‚ÄúWhat should the product price be?‚Äù fall into this category and represent the core of the decision-making process.




Once the inputs are set, the next step is to define the structure of the problem. Every business optimization model should include a framework to define the objective(s)‚Äîwhat we want to optimize, either by minimizing or maximizing, depending on the nature of the problem. The objective function could be a single one, such as minimizing total cost or makespan ‚Äîthe total time required to complete all tasks from start to finish‚Äî but in more realistic scenarios, there are often multiple objectives‚Äîlike minimizing cost while also balancing workload, maximizing efficiency while maintaining customer satisfaction, and so on.




But perhaps the most important aspect of any business optimization model is the constraints. This is what makes life difficult‚Äîfor both the modeler and the model itself. Businesses are surrounded by all kinds of limitations: physical constraints, regulatory requirements, customer expectations, employee satisfaction, environmental considerations, and more. The way a framework or model handles these constraints‚Äîbalancing realism while keeping things simple enough to be solvable‚Äîdetermines how powerful and useful that model really is. We‚Äôll be talking a lot more about constraints in the upcoming chapters, so stay tuned.




Once the inputs, objective function, and constraints are defined, the model can be run, and it should give at least two types of outputs. Metrics, to show the value of the objective function and values for each decision variable, showing what actions should be taken. For instance, once a vehicle routing problem is solved, the model should tell us the total distance traveled (if that‚Äôs the only objective), and it should also tell us which vehicle should visit which location‚Äîand in what order.




We will return to this framework when we discuss how reinforcement learning can help us (and yes, I know how impatient you are to finally see reinforcement learning show up!). Please bear with me for a few more pages as we look at some real-world examples of business optimization problems. This will help us better understand the challenges involved and give us a clearer idea of when and how reinforcement learning can be useful.




1.4 Examples of business optimization problems




Now that we‚Äôve drawn a rough boundary around the kinds of decisions business optimization is best suited for‚Äîtypically operational, recurring, involving multiple entities, and quantifiable to some extent‚Äîlet‚Äôs walk through some real-world examples. These are the types of problems where a formal optimization framework can shine. They‚Äôre not just abstract concepts‚Äîthey‚Äôre common in many industries with different details but similar structure and form the backbone of day-to-day operational decision-making.




	Inventory Replenishment in Retail Chains: Retailers deal with hundreds or thousands of products across dozens (or even hundreds) of locations. Figuring out how much to reorder, and when, is a classic business optimization problem. The external inputs here are demand forecasts and supplier lead times, and the decision variables are order quantities per product per store. The objective is usually to minimize total cost‚Äîincluding ordering, holding, and stockout costs‚Äîwhile satisfying service level requirements. A service level agreement (SLA) defines the desired availability of products‚Äîtypically as the percentage of demand that should be fulfilled immediately without backorders‚Äîand contributes to the objective function by acting as a constraint that balances customer satisfaction against cost efficiency. This problem is inherently operational, happens periodically (daily, weekly, or monthly), spans multiple entities (products, stores), and is highly quantifiable.

	Vehicle Routing for Delivery Fleets: Any business that delivers goods‚Äîwhether it‚Äôs groceries, parcels, or construction materials‚Äîfaces the question: which vehicle should go where, and in what order? External factors like customer locations and traffic patterns feed into the model, while the decisions involve sequencing visits across a fleet. The objective might be minimizing total distance, delivery time, or fuel consumption. This problem repeats frequently (often daily), involves many vehicles and customers, and can be clearly measured‚Äîmaking it a textbook case for optimization.

	Production Scheduling in Manufacturing: Factories are constantly making decisions about what to produce, when to produce it, and in what quantity. These decisions are driven by order demand, machine availability, and production rates. The goal might be to minimize production and inventory costs or maximize throughput. The decision variables are production quantities or job sequences on machines. In many real-world scenarios, the number of production tasks exceeds the available machine capacity, requiring the system to prioritize jobs based on urgency, value, or deadlines‚Äîa classic example of managing oversubscribed tasks. This is an operational, recurring problem that deals with multiple production lines or products, and its metrics are usually cost or time-based‚Äîagain, highly measurable.

	Workforce Shift Scheduling: In service-heavy industries like healthcare (Nurse rostering), hospitality, or customer support, scheduling staff efficiently is crucial. Here, the model takes into account employee availability, forecasted workload, and legal requirements (like rest time or maximum hours). The decisions revolve around assigning employees to shifts. The objective might be to minimize understaffing, workload balancing or labor cost while ensuring coverage. This problem occurs regularly (weekly or biweekly), affects multiple teams or departments, and has clear constraints and outputs.

	Rebalancing Bike-Sharing Stations: Cities with bike-sharing systems often face the problem of some stations being empty while others are full. Rebalancing bikes between stations is a logistical task done daily. Inputs include real-time demand, current bike counts, and traffic conditions. Decisions involve routing vehicles to pick up or drop off bikes. The objective is usually to minimize total imbalance across the network while reducing routing cost. It‚Äôs periodic, multi-entity (vehicles, stations), and can be fully quantified.

	Dynamic Pricing for Perishable Goods: In industries like airlines, hospitality, or food retail, pricing decisions need to be made frequently as inventory perishes or loses value over time. These prices depend on demand forecasts, time until expiration, and competitor pricing. The decision variables are price points at different times. The objective is revenue maximization. Although strategic pricing can be qualitative, operational-level dynamic pricing‚Äîlike daily markdowns in grocery stores‚Äîis periodic, affects multiple products, and is measurable in terms of sales and profit.




These examples aren‚Äôt just theoretical‚Äîthey‚Äôre the kinds of problems businesses deal with every single day. What makes them a good fit for business optimization is that they‚Äôre systematic, repeated, and data-driven. They‚Äôre also complex enough to benefit from automation, yet structured enough to be modeled using math. That‚Äôs the sweet spot where business optimization lives.




We could easily keep expanding this list, but that‚Äôs not the point here. The goal was just to dip our toe in the water before diving in headfirst‚Äîbecause jumping in without first appreciating how tricky and resource-consuming these problems can be to model and solve is a great way to waste effort, energy, and perhaps the most precious resource of all: time. After all, we‚Äôre talking about optimization‚Äîso it only makes sense to optimize how we approach the reading and writing journey ahead too.




1.5 Challenges in business optimization problems




What do you think makes a product feel like a ‚Äúhigh-quality‚Äù one? The answer can be controversial and often depends on personal perspective. But if we refer to Edwards Deming‚Äîone of the pioneers of the quality improvement movement in Japan and the USA during the late 1980s‚Äîhe famously said that a product is the outcome of a process. That means the product you hold in your hand might be great, while the same product in mine could be disappointing. As a result the process of producing that product matters not the product itself.




This brings us to a very important concept‚Äîone that applies not only to business operations but also to how we build models in machine learning and business optimization. According to Dr.Deming and others in his field, a process is considered high-quality when it has low variance and low bias. In other words, a good process is one that can consistently do the right things, the right way, most of the time. This concept is illustrated in figure 1.5.




Figure 1.5 Variance and bias trade off in business optimization models.





According to figure 1.5, the quality of a model‚Äîor any process‚Äîshould be evaluated across time, meaning we have to test it in a variety of different situations. Variance refers to how scattered or inconsistent the results are across those situations. Bias, on the other hand, is about how far the results are from the actual goal or target.




Now, back in the world of business optimization, the ultimate goal for any model is to keep both variance and bias as low as possible. But here‚Äôs the catch: these two aren‚Äôt independent. In fact, as they call it ‚Äúthere is no free lunch‚Äù, we usually have to make a trade-off between them. Reducing one often increases the other, and finding the right balance is where things get tricky.




Both variance and bias come with their own set of metrics and performance indicators, each telling us something about the model from a different angle. At the end of the day, it‚Äôs up to the business‚Äîand more specifically, the managers‚Äîto decide how to handle this ongoing trade-off. As a matter of fact, in table 1.2, we‚Äôll walk through some of the most common criteria that can help us better understand the challenges business optimization models can face.




Table 1.2 Practical evaluation criteria for business optimization models.




	


        Dimension 
      


 
	


        Definition 
      


 
	


        Why it matters 
      


 
	


        Risk if ignored 
      


 





	

Robustness 
       


 
	

       Handles noisy or imperfect inputs without breaking. 
      



 
	

       Keeps the model reliable in messy, real-world conditions. 
     
 
	

       Model collapses when small assumptions change. 
      



 



	

Resilience 
       


 
	

       Can recover and keep working after a disruption 
     
 
	

       Business environments shift‚Äîresilient models continue delivering value. 
     
 
	

       Model fails entirely after a shock or error. 
     
 



	

Real-time Respons




 
	

       Produces decisions quickly enough to act on them. 
     
 
	

       Many business contexts (e.g., pricing, routing) require fast actions. 
     
 
	

       Slow responses make the model irrelevant. 
     
 



	

Adaptability 
       


 
	

       Learns or adjusts as conditions change. 
     
 
	

       Maintains effectiveness over time as customer needs or markets shift. 
     
 
	

       Becomes obsolete when faced with new patterns. 
     
 



	

Flexibility 
       


 
	

       Can be extended or modified without major rework. 
     
 
	

       Saves time and cost when adding new constraints or features. 
     
 
	

       Requires rebuilding the entire system to make small changes. 
     
 



	

Generalizability 
       


 
	

       Works well across different use cases or teams. 
     
 
	

       Avoids reinventing the wheel for every new scenario. 
     
 
	

       Performs well only in one narrow use case. 
     
 



	

Customizability 
       


 
	

       Easily adjusted to meet specific stakeholder needs. 
      



 
	

       Different teams need different reports, KPIs, or configurations. 
      



 
	

       Users feel disconnected or underserved by a one-size-fits-all model. 
      



 



	

Effort to Build




 
	

       Time, data prep, and expertise needed to create the model. 
      



 
	

       High upfront costs can block progress or delay results. 
      



 
	

       Teams underestimate the time and effort required to launch. 
      



 



	

Effort to Operationalize

 
	

       Difficulty in deploying and using the model in real workflows. 
      



 
	

       Models must fit into systems and be usable by non-technical staff. 
      



 
	

       Great model on paper never makes it into production. 
      



 



	

Lifecycle Cost 
       


 
	

       Total cost of maintaining and updating the model over time. 
      



 
	

       Ongoing retraining, updates, and monitoring can drain resources. 
      



 
	

       Model becomes a burden due to high maintenance costs. 
      



 



	

Interpretability 
       


 
	

       Outputs and logic are understandable to humans. 
      



 
	

       Increases trust, enables better decision-making, and supports auditing or compliance. 
      



 
	

       Stakeholders won‚Äôt trust or adopt a model they don‚Äôt understand. 
     
 








These metrics are just a few among many we could discuss. The important thing to keep in mind is that, just like the business world itself‚Äîfull of constraints and limitations‚Äîbuilding a model to solve business problems means we not only have to respect those real-world constraints, but also the ones that come with the modeling approach itself. In the next section, we‚Äôll walk through some of the well-known modeling methods that have been used in practice.




1.6 Classical business optimization models




Now that we‚Äôve explored the types of problems business optimization can handle‚Äîand some of the challenges we need to watch out for‚Äîit‚Äôs time to take a closer look at the classical modeling methods. These are the tools that have been around for decades, forming the foundation of most business decision-making systems. Each of them has its own strengths, assumptions, and areas where it performs best. Let‚Äôs walk through some of them.




1.6.1 Operations research




Operations research is one of the oldest and most widely used tools in business optimization. You can think of operations research as the art and science of turning real-world problems into mathematical ones. At its core, operations research tries to help decision-makers make better choices using models, logic, and mathematical optimization techniques.




Operations research problem formulation consists of defining decision variables, an objective function, and a set of constraints that reflect the limitations or rules of the problem. Imagine a bakery that wants to make two types of cakes: chocolate and vanilla. Each chocolate cake needs 2 hours of labor and 3 kg of flour. Each vanilla cake needs 1 hour of labor and 2 kg of flour. The bakery has 100 hours of labor and 150 kg of flour. Each chocolate cake earns $5 and each vanilla cake earns $4. How many of each should they make to maximize profit?







2 Formulate business problems with Markov decision process




This chapter covers


	How Markov Decision Process offers a framework to tackle complex business problems?

	The key components of a Markov Decision Processes.

	Hands-on case for formulating real-world business problems as Markov Decision Process

	Strategies for reward engineering and constraint handling







   There is only one basic way of dealing with complexity: divide and conquer. 
 




Bjarne Stroustrup, creator of C++




They say the best way to eat an elephant is one bite at a time. As odd as that sounds, it‚Äôs a popular metaphor for tackling big problems: break them down into manageable pieces. But here‚Äôs the catch: imagine you actually did cut an elephant into parts. Could you ever put it back together and call it alive again? Not likely.




That‚Äôs the problem with how we often approach complex business challenges. Yes, dividing a problem helps us understand it ‚Äî but if we don‚Äôt have a way to reassemble the pieces meaningfully, we risk ending up with a puzzle we can‚Äôt solve, or worse, a lifeless mess.




This is where systems thinking comes in. It tells us that analysis ‚Äî the art of taking things apart ‚Äî must be paired with synthesis ‚Äî the ability to see the whole forest, not just the individual trees. Solving real-world problems isn‚Äôt just about breaking them down. It‚Äôs also about knowing how to bring the parts back together in a smart, coherent way.




And that‚Äôs where this chapter begins. We'll explore the powerful framework of Markov Decision Processes ‚Äî not just as a method to chop big problems into smaller steps, but as a structure that also helps us connect those steps, making the whole thing computationally tractable and strategically meaningful. Because in the end, it's not just about eating the elephant. It's about knowing how to make it walk again.




In business optimization, we‚Äôre often faced with massive, tangled problems: routing fleets, managing supply chains, balancing inventory, allocating resources. These are our elephants. And while breaking them down is a crucial first step, the real magic happens when we can reconnect the parts ‚Äî not randomly, but in a way that respects their dependencies, constraints, and flow.




That‚Äôs what makes frameworks like Markov decision processes so powerful. They don‚Äôt just help you slice the problem into smaller pieces ‚Äî they teach you how to sequence, connect, and optimize those pieces over time. Markov decision processes offer a structured way to handle uncertainty, dynamics, and decision-making. In this chapter, we‚Äôll explore how Markov decision processes can be used to formulate real-world business optimization problems.




2.1 State: Anatomy of sequential decision making




State ‚Äî a word you're going to hear a lot in this book and especially in the context of reinforcement learning. A state is the building block of sequential decision-making. It‚Äôs that precise slice of the elephant we‚Äôre dissecting. It represents the current snapshot of the entire problem we‚Äôre about to act on. It's how we break down a complex system into manageable pieces ‚Äî and it defines what the agent knows about the world at a given point in time.




Let‚Äôs set aside the concept of actions for a moment and zoom in on how systems evolve when we split their flow into discrete chunks called states. Imagine we want to model how customers behave when interacting with a software service. By dividing this large behavioral flow into distinct states, we can identify three major types of transitions, or crossovers between these states ‚Äî illustrated in figure 2.1.




Figure 2.1 Three different types on how a system can evolve moving from one state to another.





In our example software, a user can be in one of three states: installing the app and using the basic plan, purchasing the pro version and accessing premium features, or canceling the service altogether. With this setup, we can imagine three types of state transitions ‚Äî each reflecting a different kind of system behavior.




First, consider a deterministic transition system, where the future is laid out with certainty. Being in a given state tells us exactly what will happen next. In our case, we might assume that all users first install the app, then upgrade to pro after one month, and then cancel after another month. Needless to say, this feels grossly unrealistic ‚Äî overly clean, highly scripted, and nowhere close to how real users behave.




In the second case, we enter the world of stochastic systems with known transitions. Here, we acknowledge that users act differently over time, but we still have some sense of what to expect ‚Äî and expectation, in this context, translates into probability. That means we can model how likely a user is to move from one state to another. With data in hand, we can estimate these transition probabilities through exploratory data analysis ‚Äî either individually for each user to obtain a unique transition probabilities for every one of them or more broadly for the whole users with a single transition probabilities.




The third case reflects the most realistic scenario: stochastic systems with unknown transitions. We know what the possible states are, and we may even understand some characteristics of each state ‚Äî but we don‚Äôt know exactly how or why transitions happen. Even a single user might behave unpredictably over time, let alone attempting to model all users with the same set of transition probabilities. And even if we do manage to calculate these probabilities and store them in some expensive database, they won‚Äôt hold for long ‚Äî users change, contexts shift, and nearly everything evolves.




It‚Äôs clear that our ultimate goal is to tackle this last kind of problem ‚Äî systems with unknown transitions ‚Äî but to do that effectively, we first need to understand the second kind: stochastic systems with known transitions. These systems teach us crucial lessons about how to model and reason about complexity. And to analyze these systems with clarity, we need to put on a new kind of lens ‚Äî one that gives us structure without ignoring uncertainty. That lens is called the Markov Chain.




2.2 Markov chain and Markov property







3 Design custom environments for reinforcement learning algorithms




This chapter covers


	Essential Concepts for designing custom reinforcement learning environments

	Conceptual framework for designing any business optimization environment

	Design a 2D environment for robot navigation in warehouse

	Design a 2D environment for dynamic pricing for perishable products

	Design a 3D environment for trailer/container loading and packing optimization







If you can’t describe what you are doing as a process, you don’t know what you are doing.





W. Edwards Deming, Quality & Process Improvement Guru




Reinforcement learning agents learn from experiences, and trial and error. Training them is like raising a child—they explore, make mistakes, get feedback, and slowly shape better behaviors. But just like children, they often produce a lot of mess in the process. Before learning to walk, a child stumbles countless times. Similarly, a reinforcement learning agent can take thousands—even millions—of wrong actions before discovering an effective policy.




That’s why directly deploying a reinforcement learning agent in a real-world business setting is usually impractical and risky. You wouldn’t let a child manage your warehouse or set product prices on day one—and neither should a reinforcement learning agent jump straight into real-world testing. Reinforcement learning agents don’t begin with perfect knowledge or strategies. They might crash into walls, assign high rewards to poor actions, or repeat inefficient decisions thousands of times. The cost of errors, inefficiencies, or unsafe decisions is too high in a real application. Instead, we must provide a safe, simulated environment where agents can explore freely, fail fast safely, and learn effectively.




A well-designed environment becomes the sandbox where agents can build their understanding of the task, simulate outcomes, and improve over time. It mirrors the essential components of the real world—state dynamics, constraints, and feedback—while allowing controlled experimentation and faster learning.




In this chapter, we’ll explore the art and science of designing such environments—from simple 2D simulations for warehouse robots, and dynamic pricing with sophisticated transition dynamics to 3D trailer loading and packing scenarios. You’ll learn how to turn practical business challenges into interactive worlds where reinforcement learning agents can thrive.




3.1 Conceptual framework for designing business environment




Most reinforcement learning environments out there are either game-based or simplified versions of real-world problems. Two well-known examples are the OpenAI Gym, and PettingZoo libraries. While they’re great for learning the basics—like how agents get rewards and improve over time—they’re not built for solving real-world challenges. That’s why it’s important to learn how to design custom environments ourselves. Figure 3.1 shows a conceptual framework on how to design environments for business optimization problems.




Figure 3.1 Conceptual framework for designing business optimization environments





Let’s walk through the key components of this framework, step by step, starting from the Business Abstract Layer. We begin with the simple but crucial realization that we can’t—and shouldn’t—try to optimize an entire enterprise in one shot. Businesses are complex systems made up of interrelated processes, decisions, and human behaviors. That’s why the first step is to identify a meaningful and solvable problem and describe it clearly. This means framing the problem not as a vague goal like “make delivery faster” or “reduce cost”, but instead defining it as a bounded process that can be modeled.




Let’s say you’re working in urban logistics and want to improve last-mile delivery (final step of the delivery process where a product is transported from a distribution center to the customer's doorstep). It might be tempting to train one powerful reinforcement learning agent to solve everything—routing, driver shift planning, trailer pool allocation, traffic-aware re-routing, and even package loading. In theory, it’s doable. In practice, it’s a nightmare. That’s why modularity is key. Break the system into smaller, manageable components. For example, you might focus first on optimizing the route that each delivery driver takes in a given time window, assuming everything else is fixed or given. This way, you can design, train, and deploy solutions faster, and later build on top of previous modules.




Once the problem is scoped, you identify all the relevant entities involved—vehicles, customers, depots, traffic zones, delivery time windows, etc. Next, you define your assumptions, like “each driver starts the day with a full load” or “customers are always available during business hours”. These assumptions don’t just simplify the model—they shape the way your environment behaves. You then conduct stakeholder analysis, dig into exploratory data (e.g., GPS traces of past deliveries, time logs, customer satisfaction scores), and build an “as-is” diagram that visually maps out how the process currently works. From this part, you extract key metrics like average delivery time, failure rate, and service cost—your key performance indicators (KPIs)—which will later guide how you reward your reinforcement learning agent.




Now you’ve got the foundation. What comes next is the Simulation Design Layer. This is where your conceptual understanding turns into a functioning environment that mimics your business system. Let’s keep using the last-mile delivery example. First, you need to define what the reinforcement learning agent sees, or in technical terms, its state space. That might include the driver’s current location, the list of remaining deliveries, how much time is left in the shift, and real-time traffic information. Every detail that matters to decision-making should be represented in the state to make the state space follow Markov property.




Then comes the action space—the set of choices the agent can make at each step. For routing, that might be choosing the next customer to visit. In a different context, like inventory restocking in retail, the action space might include how many units to order and when. The action space can be discrete (e.g., choose next location to visit) or continuous (adjust quantity, time, speed), and the design must align with real-world constraints.




Now comes the heart of any reinforcement learning setup—reward design. This is how you teach the agent what good behavior looks like. We have already discussed in detail some practical strategies on designing effective reward function in chapter 2. In essence, this is where your business KPIs are translated into the language the reinforcement learning agent can understand.




After that, you define how the system responds to the agent’s actions, known as the transition logic. In the parcel delivery case, if the agent chooses to go to Customer 5, the location updates, the package is marked as delivered, and the time advances based on distance and speed. If the agent ignores traffic or time windows, the consequences are reflected here. Based on what has been said so far, we can propose a template for custom reinforcement learning environment which has been shown in listing 3.1.




Listing 3.1 Template for any reinforcement learning environment


class CustomEnv:
    def __init__(self): #A
 
        self.current_step = 0 #A
        self.done = False #A
        self.state = None #A
        self.action_space = [0,1] #B
        self.observation_space = np.zeros(3, dtype=np.float32) #B
 
    def reset(self): #C
 
        self.current_step = 0 #C
        self.done = False #C
        self.state = self._get_initial_state() #C
        return self.state #C
 
    def step(self, action):
 
        if self.done: #D
            raise Exception("Environment is done. Call reset().") #D
        next_state = self._transition(self.state, action) #E
        reward = self._compute_reward(self.state, action, next_state) #F
        self.state = next_state #G
        self.current_step += 1 #G
        self.done = True #G
        return next_state, reward, self.done, {} #H
 
    def _get_initial_state(self): #I
        raise NotImplementedError #I
 
    def _transition(self, state, action): #J
        raise NotImplementedError #J
 
    def _compute_reward(self, state, action, next_state): #K
        raise NotImplementedError #K








This blueprint code defines essential elements of a custom environment for reinforcement learning, similar in structure to what you’d find in OpenAI Gym library. Every environment should start with some basic setup: a step counter, a done flag to signal the end of an episode, a placeholder for the current state, and definitions for what actions the agent can take and what kind of information it observes. When training begins, the reset() function is called to initialize the environment and provide the agent with the first state. Then, during each step, the agent picks an action and calls step. This triggers a transition to a new state, calculates a reward to let the agent know how well it did, and moves the simulation forward by one time step. After that, the environment checks if it should end the episode.




We will use this blueprint to build business optimization environments. Needless to say, simulation design layer is the most important part of conceptual framework where the actual design and implementation gets done. Think of this layer as constructing a simplified but faithful sandbox version of your business problem that an agent can play in, learn from.




Once your environment is built, you don’t jump directly to training powerful reinforcement learning models. Instead, you enter the Evaluate and Test Layer where you perform debugging and sanity-tests—a critical step that often gets underestimated. This is where you test if your environment behaves logically and whether it’s even ready for training.




Start by running a random agent in the environment. It just makes arbitrary choices—no intelligence, no learning. The purpose here isn't performance but sanity checking. Are the states updating correctly after each action? Is the agent allowed to take actions it shouldn’t, like visiting a customer that’s already been served or driving beyond the time limit?




This brings us to transition and constraint checking. It means inspecting how the environment moves from one state to another and whether it respects the business rules you've defined. For instance, suppose you’re modeling a vehicle routing problem with time windows and capacity limits. After delivering a package, does the vehicle’s remaining capacity correctly update? Does the clock advance properly? If the vehicle tries to deliver to a customer outside the allowed time window, is that action blocked—or at least penalized? Are customer visits being recorded correctly in the state?




You can think of this like testing a simulator for a flight pilot—you’re making sure that pressing buttons and pulling levers lead to the right effects, and that all constraints (fuel limits, altitude rules, weather restrictions) are being handled realistically.




Then comes the reward sanity check. This is a crucial but subtle step. Your reward function is the only way the agent understands your goals. If it’s flawed, the agent might learn the wrong behavior—or nothing at all. So you test your reward logic using strategies we have discussed in previous chapter with very simple agents. You might use a greedy heuristic, like always going to the closest delivery point, or always restocking to full in an inventory model. You then check: are these reasonable actions being appropriately rewarded?




Take, for example, an inventory replenishment environment. If the agent always restocks and never goes out of stock, is it earning a consistently high reward? If it lets the shelves run empty and loses customers, does the reward drop sharply? If not, then your reward function might be too shallow or misaligned with your goals.




Another example: in a delivery environment, suppose the agent finishes all deliveries quickly but skips over time window constraints. If it's still getting a perfect reward, something is broken. You might need to adjust your reward function to punish early or late deliveries more clearly, or to recognize idle time as a cost.




You may also visualize reward over time or per episode. If your reward remains flat regardless of what the agent does, that’s a red flag—it means the agent isn't getting meaningful feedback and won’t learn anything. If rewards spike unrealistically, you may have reward leaks or bugs in your logic. This layer is not optional. It’s where you test whether your environment behaves like your business system and whether the signals (rewards and state transitions) are clean, logical, and trustworthy.




In the upcoming sections, we’ll bring this conceptual framework to life by designing custom reinforcement learning environments grounded in real-world business challenges.




3.2 Warehouse order picking environment




Alright, let’s make our hands dirty and apply our conceptual framework to a common logistics challenge: warehouse order picking. Imagine a warehouse where a robot is tasked with collecting a set of items for a customer order. The robot must navigate the warehouse floor, which might have obstacles like shelves or support columns, pick up all the items on its list, and then return to a depot station for packing and shipping. The goal is to complete this task as quickly and efficiently as possible.




This is a classic sequential decision-making problem, making it a perfect fit for reinforcement learning. The robot needs to learn an optimal path—a policy—that minimizes the total steps taken. Let's break this down using our framework.




First, the Business Abstract Layer.




	Problem Definition: The core process is “order fulfillment”. We are scoping it down to the picking sub-process for a single robot and a single order.

	Entities: We have a robot, items to be picked, a depot (the start and end point), and a warehouse layout (a grid) with obstacles.

	Assumptions: To make the problem tractable, we'll assume a 2D grid world, the robot can move one cell at a time (up, down, left, or right), item and obstacle locations are fixed for a given order, and the robot must pick up all items before returning to the depot.

	KPIs: The primary KPI is efficiency, which we can measure by the total number of steps taken. A lower step count means a faster, more cost-effective picking process. This KPI will directly inform our reward design.




Before diving into the code and dissecting how this environment is built line by line, it’s helpful to first get a feel for how it actually looks and behaves. Think of it like taking a quick test drive before popping the hood. Figure 3.2 gives you a snapshot of the rendered environment during a test run—just enough to see what kind of world your agent will be interacting with. You will see animation of this visualization once your run environment file.




Figure 3.2 A visual rendering of the warehouse environment.





We will build different components of this environment step by step. Let’s get started. We defined the problem and now we move to the Simulation Design Layer. Here, we translate our business problem into a functioning environment using the template from listing 3.1. We'll build an OrderPickingEnv class.




Let's start with the initialization. The environment needs to be configurable, allowing us to define the size of the warehouse, the locations of items and obstacles, and where the depot is. Listing 3.2 shows how we set this up.




Listing 3.2 Initializing the Warehouse Environment


class OrderPickingEnv:
    def __init__(self, grid_size=(7, 7), depot_pos=(0, 0), 
                 item_locations=None, obstacle_locations=None,
                 max_steps_per_episode=75):
        self.grid_rows, self.grid_cols = grid_size #A
        self.depot_pos = np.array(depot_pos) #A
 
        self.obstacle_locations = [np.array(loc) for loc in obstacle_locations] if obstacle_locations else [] #B
        
        default_items = [ #C
            np.array([1, 3]),
            np.array([max(0,min(self.grid_rows-1, self.grid_rows // 2 + 1)), max(0,min(self.grid_cols-1, self.grid_cols - 2))]),
            np.array([max(0,min(self.grid_rows-1, self.grid_rows - 2)), max(0,min(self.grid_cols-1, self.grid_cols // 2 -1))])
        ]
 
        self.item_locations = [np.array(loc) for loc in item_locations] if item_locations else default_items #C
        self.num_items = len(self.item_locations) #C
 
        for obs_loc in self.obstacle_locations: #D
            if np.array_equal(self.depot_pos, obs_loc):
                raise ValueError(f"Depot position {self.depot_pos} cannot be on an obstacle {obs_loc}.")
 
            for item_loc in self.item_locations:
                if np.array_equal(item_loc, obs_loc):
                    raise ValueError(f"Item location {item_loc} cannot be on an obstacle {obs_loc}.")
 
        self.action_space_size = 4  #E
        self.max_steps = max_steps_per_episode #F
        
        self.robot_pos = None #G
        self.items_picked_status = None #G
        self.all_items_collected_phase = False #G
        self.current_step = 0 #G
 
        self.reset()








Next, we define what the agent sees (the state space) and how we can reset the environment for a new episode. The state must contain all necessary information for the agent to make a good decision. For our robot, this includes its own position, which items it has already collected, and a crucial piece of information: whether it has finished collecting all items and should now be heading back to the depot. The reset() method simply puts everything back to its starting configuration. These definitions have been implemented in listing 3.3.




Listing 3.3 State Representation and Reset Logic


    def _get_state(self): #A
        return { #A
            "robot_pos": tuple(self.robot_pos), #A
            "items_picked": tuple(self.items_picked_status), #A
            "all_items_collected_phase": self.all_items_collected_phase 
        } #A
 
    def reset(self): #B
        self.robot_pos = np.array(self.depot_pos) #C
        self.items_picked_status = [False] * self.num_items #D
        self.all_items_collected_phase = False #E
        self.current_step = 0 #F
        return self._get_state() #G








Now we arrive at the core of the environment: the step() function. This function contains the transition logic and the reward design. It takes an action from the agent and computes the next state and the corresponding reward. The logic can be broken into three parts: calculating the robot’s new position, checking for item pickups, and determining the reward and whether the episode is finished. Listing 3.4 shows implementation of step function.




Listing 3.4 Environment Step Logic: Movement and Task Progression


def step(self, action_idx):
        self.current_step += 1
        
        move_deltas = [np.array([-1, 0]), np.array([1, 0]), np.array([0, -1]), np.array([0, 1])] #A
        delta = move_deltas[action_idx]
        potential_new_pos = self.robot_pos + delta #B
 
        is_obstacle_collision = any(np.array_equal(potential_new_pos, obs_loc) for obs_loc in self.obstacle_locations) #C
        
        if is_obstacle_collision: #C
             pass
 
        elif (0 <= potential_new_pos[0] < self.grid_rows) and (0 <= potential_new_pos[1] < self.grid_cols): #D
            self.robot_pos = potential_new_pos #D
        else: 
            pass
 
        if not self.all_items_collected_phase: #E
            for i, item_loc in enumerate(self.item_locations): #E
                if not self.items_picked_status[i] and #E
np.array_equal(self.robot_pos, item_loc): #E
                    self.items_picked_status[i] = True
                    if all(self.items_picked_status): #F
                        self.all_items_collected_phase = True #F
                    break 
 
        done = False
        if self.all_items_collected_phase and  #G
np.array_equal(self.robot_pos, self.depot_pos): #G
            done = True #G
        
        if self.current_step >= self.max_steps:
            done = True #H
 
        reward = self._compute_reward(is_obstacle_collision, potential_new_pos) # We'll look at this next
        next_state = self._get_state()
        info = {}
        
        return next_state, reward, done, info








The final piece of the simulation design is the reward function. This is how we translate our business KPI—efficiency—into a signal the agent can learn from. A well-designed reward function is critical. It must encourage desirable behaviors (picking items, finishing quickly) and penalize undesirable ones (wasting time, hitting obstacles) while trying to avoid mismatch scales using normalization as we discussed it in chapter 2. Table 3.1 shows penalty and reward steps for designing normalized reward function.




Table 3.1 Key reward signals used in warehouse order picking environment




	


        Agent behavior 
       





 
	


        Reward 
      


 
	


        Purpose 
      


 



	

       Move to a valid (empty) cell 
      



 
	

       –0.1 
     
 
	

       Small step penalty to encourage shorter, more efficient paths 
      



 



	

       Hit wall (outside grid) 
     
 
	

       –0.5 
     
 
	

       Penalize invalid moves outside the grid limits 
      



 



	

       Attempt to move into a blocked cell (hit obstacle) 
     
 
	

       –0.7 
     
 
	

       Stronger penalty to discourage unsafe or infeasible paths 
      



 



	

       Successfully pick up an item 
      



 
	

       +15.0 
     
 
	

       Significant reward for achieving one of the primary objectives 
      



 



	

       Return to the depot 
      after collecting all items 
      



 
	

       +100.0 
     
 
	

       Large terminal reward for completing the full task successfully 
      



 



	

       Episode ends without full completion (e.g., time limit reached) 
      



 
	

       –20.0 
      



 
	

       Penalty for failing to complete the task within the allowed steps 
     
 








This reward structure encourages the agent to: Navigate cautiously to avoid penalties from obstacles and boundaries, Plan optimal paths that minimize step cost, collect all items efficiently, and return to the depot promptly to receive the highest reward. Listing 3.5 implements this reward function.




Listing 3.5 Reward Design


def _compute_reward(self, is_obstacle_collision, potential_new_pos):
        
    if is_obstacle_collision: #A
        movement_reward = -0.7 #A
    elif (0 <= potential_new_pos[0] < self.grid_rows) and #B
            (0 <= potential_new_pos[1] < self.grid_cols): #B
        movement_reward = -0.1 #B
    else: #C
        movement_reward = -0.5 #C
 
 
    item_pickup_reward = 0.0 
    if not self.all_items_collected_phase: #D
        for i, item_loc in enumerate(self.item_locations): #D
            if not self.items_picked_status[i] and #D
np.array_equal(self.robot_pos, item_loc): #D
                item_pickup_reward = 15.0 #D
                break 
    
    completion_reward = 0.0
    if self.all_items_collected_phase and np.array_equal(self.robot_pos, self.depot_pos): #E
        completion_reward = 100.0 #E
    
    if self.current_step >= self.max_steps and not (self.all_items_collected_phase and np.array_equal(self.robot_pos, #F
self.depot_pos)): #F
            completion_reward = -20.0 #F
 
    total_reward = movement_reward + item_pickup_reward + completion_reward
    return total_reward








Finally, we enter the Evaluate and Test Layer. Before training a complex agent, we must verify that our environment works as expected, aligning with the third phase of our conceptual framework. A fundamental first step is to test the environment with a simple, non-learning agent. A random agent, which picks an action arbitrarily at each step, is perfect for this.




Watching a random agent operate is an excellent sanity check. Does the robot correctly stop at obstacles? Does its status update when it (randomly) lands on an item? Does the episode end correctly when the task is complete or time runs out? A visual render() function is invaluable here (available in book’s GitHub page), allowing us to see exactly what the agent is doing, which is far more intuitive than printing text to the console. Listing 3.6 shows the script for running a test with random actions.




Listing 3.6 Running a Random Agent for Sanity Checking


env = OrderPickingEnv(grid_size=(8, 10), 
                        depot_pos=(7, 0), 
                        item_locations=[(1, 1), (1, 8), (6, 6), (3, 2)],
                        obstacle_locations=[(2,2), (2,3), (2,4), (2,5), (2,6)],
                        max_steps_per_episode=100) #A
 
state = env.reset() #B
env.render(pause_duration=1.0) #C
 
done = False
total_reward_episode = 0
 
while not done: #D
    action = np.random.randint(0, env.action_space_size) #E
    next_state, reward, done, info = env.step(action)
    total_reward_episode += reward
    env.render() #F
 
print(f"Episode finished. Total reward: {total_reward_episode:.2f}")
env.close()








By running this random agent, we can also perform a quick reward sanity check. We'd expect the total reward to be low, likely negative, because the agent is acting inefficiently. However, if the agent happens to pick up an item, we should see a spike of +15 in the reward. If it completes the whole task by sheer luck, we should see the +100 reward. If these rewards don't appear when they should, or if the agent gets stuck in walls, we know there's a bug in our logic. This iterative process of building, testing, and refining is exactly what the conceptual framework prescribes.




Beyond basic sanity checks, we can and should run more advanced tests to make sure our environment behaves as expected under a wide range of conditions. This includes integration tests like physics validations—checking things like obstacle collisions and wall boundaries—as well as mission logic tests to verify mechanics like item collection, phase transitions, and proper reward assignments in both typical and edge-case scenarios. These aren’t just nice-to-haves; they’re essential. Think of it as stress-testing your environment from every angle before letting a learning agent loose in it. On the book’s GitHub page, you’ll find a comprehensive unit test suite we wrote specifically for this environment. It’s a great starting point and can guide you in building your own tests for custom environments.




We’ve also included an agent evolution notebook where you can tweak different settings and observe how agents behave under various configurations. We strongly encourage you to explore it—it comes with a detailed README and extensive comments to walk you through parts of the code not covered here. Figure 3.3 shows an example snapshot comparing two agents: a random agent and a simple nearest-neighbor seeker represented in notebook.




Figure 3.3 Different agents’ behaviors in the robot warehouse environment.





As it can be seen, heuristic agent requires fewer steps and is able to finish the task in 16 steps. You can use the notebook on the book’s GitHub to experiment with different settings (changing obstacles location, deport, etc.) or even build your own custom heuristic agent to explore how agents behave in the same environment.




With this environment now designed and sanity-checked, it becomes a robust digital sandbox for training an intelligent reinforcement learning agent to find the most efficient order-picking routes. Let’s build another cool environment to practice further.




3.3 Perishable product dynamic pricing environment




Now that we've seen how to model a physical navigation problem, let's turn our attention to a common business challenge in retail and hospitality: dynamic pricing. Imagine a business selling a product with a limited shelf life—like fresh bread at a bakery, tickets for a specific flight, hotel rooms for a particular night, or seasonal fashion items that lose value after the season ends. Once the deadline passes, the unsold inventory becomes worthless. we're focusing on the general case of perishable goods scenario which the goal is to adjust the price over a limited selling window to maximize total revenue without considering complexities of specific domain in detail. Key Challenges for these problems are:




	Perishability: Unsold items by the deadline result in lost value (or even disposal costs). A bakery must sell its fresh bread by the end of the day; otherwise, it goes stale and must be thrown away.

	Limited Selling Window: There's a fixed amount of time to sell the inventory. A retailer selling World Cup jerseys only has demand during the tournament period; after that, interest drops drastically.

	Price-Sensitive Demand: The quantity of items customers are willing to buy typically depends on the price. Higher prices might lead to fewer sales, while lower prices might attract more buyers but yield less revenue per item. A customer might buy more strawberries at $2 per box but hesitate or buy fewer at $5 per box.

	Uncertainty: Actual customer demand can be unpredictable and may fluctuate due to various factors. A bakery shop doesn't know exactly how many customers will walk in on a rainy Tuesday versus a sunny Friday.

	Inventory Constraints: The business starts with a finite number of items to sell. A food truck starts the day with only 100 tacos—once sold out, it can't serve more customers.




In general, setting the price too high might lead to low sales and lots of wasted inventory. Setting it too low might cause you to sell out too quickly, missing out on potential revenue from customers who would have paid more. This trade-off between price and demand over a fixed time horizon is a complex sequential decision problem, making it an excellent candidate for reinforcement learning. The agent must learn a pricing policy that adapts to the time remaining and the inventory on hand. Let's apply our framework to build an environment for this challenge. First let’s start with the Business Abstract Layer:




	Problem Definition: The central process is “revenue management for a perishable product”. We are scoping this down to dynamically setting the price for a single product with a fixed initial inventory over a discrete number of time periods.

	Entities: We have the product (with its inventory level), the selling window (divided into time periods), a set of possible price levels, and customer behavior (modeled by a demand function).

	Assumptions: We'll model this with discrete time periods and a discrete set of allowed prices. The customer demand will react to price—if the price goes up, fewer people will buy; if it goes down, more people might buy, but the revenue per item drops. On top of that, we’ll add an urgency factor from customer’s side: as we get closer to the deadline, people might rush to buy whatever is left. Also, we’re starting with a fixed amount of inventory, so once it’s gone, that’s it—no restocking. This is a basic but realistic model grounded in common consumer patterns like just-in-time buying, scarcity response, and loss aversion, and it aligns with how pricing is modeled in revenue management and retail pricing. Now, one thing to keep in mind is that if the agent keeps lowering prices near the end to clear inventory, customers could learn to wait and only buy last-minute—this is known as strategic consumer behavior. In our current model, we assume the urgency effect is natural, not learned, but this could become an issue if customers anticipate future discounts. That could be something we expand on later by adding agents that adapt or learn over time. For now, we’re keeping it simple to focus on how pricing interact in a limited-time, fixed-inventory setting.

	KPIs: The primary KPI is total revenue generated from sales. A secondary, inverse KPI is the value of unsold inventory at the end of the selling window, which we will treat as a penalty.




As before let’s see how the environment will look like before learning more about it. Figure 3.4 illustrates the kind of output this environment produces. This environment visualization contains four synchronized plots that update at each time step, providing a complete dashboard of the simulation.




Figure 3.4 Snapshot of visualization of perishable dynamic pricing environment mechanism.





With this business context, and a snapshot of environment, we can move to the Simulation Design Layer. Table 3.2 shows key elements of Markov decision process for this environment.




Table 3.2 Elements of Markov decision process for perishable dynamic pricing




	


        Markov decision process elements 
       





 
	


        Definitions 
       





 



	

       State 
      



 
	

       How many sales periods are left. 
     


       How many items are left to sell. 
      



 



	

       Action 
      



 
	

       The agent chooses a 
      price from a predefined list, e.g., [8, 10, 12, 15, 18]. 
      



 



	

       Reward 
      



 
	

       Calculated as the revenue from sales in that period. 
     


       Penalty if items remain unsold after the last period. 
      



 



	

Transition Dynamics 
       


 
	

       Demand drops as the price increases (price sensitivity). 
     


       Demand slightly increases over time due to 
      urgency (people rush to buy near the end). 
     


       Random noise is added to simulate uncertainty. 
     
 








Let’s linger a little further on transition dynamics. In dynamic pricing, the environment itself is a marketplace in motion—prices fluctuate, customer urgency rises, and uncertainty looms. We must first learn to model this motion with precision to capture real dynamic. This is where exploratory data analysis and other types of analysis get very important. A modeler should spend a lot of time studying historical patterns and even performing some proactive experiments such as A/B test to come up with the best dynamic possible. What we will present here is a general framework for perishable dynamic pricing with some of predefined coefficients taken into grant as a valis choice, but in real business battle, these choices should be proved based on facts. Alright, let’s see one way of modeling stochasticity in dynamic pricing.




For modeling transition dynamics, we should define how customer demand evolves over time based on the chosen price, the remaining time to sell, and the availability of items. The fundamental economic principle at play is this: As price goes up, demand goes down.




The demand formulation has been shown in figure 3.5.




Figure 3.5 Formulation of dynamic stochastic demand for dynamic pricing





In a dynamic pricing environment, demand for a product is influenced by three main factors: price, time, and uncertainty. As price increases, demand typically decreases because fewer customers are willing to buy at a higher cost. However, as time runs out—especially in the case of perishable or time-limited products—customers may feel a growing urgency to purchase, which can temporarily boost demand. On top of these trends, real-world randomness such as customer behavior fluctuations or external events introduces uncertainty, making demand slightly unpredictable even under the same conditions. Together, these elements create a complex but realistic pattern of shifting demand over time.




Alright, enough theory, right? Let’s build our DynamicPricingEnv. Let’s begin with initializing the environment. The __init__ function will set up all the core parameters of our simulation: the total selling time, the starting inventory, the available price points, and the parameters that define our demand model. Listing 3.7 shows this setup.




Listing 3.7 Initializing the Dynamic Pricing Environment


import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
 
class DynamicPricingEnv:
    def __init__(self, total_time_periods=10, initial_inventory=50,
                 price_levels=None, base_demand_per_period=10,
                 price_sensitivity=2, unsold_penalty_per_item=0.5):
        self.total_time_periods = total_time_periods #A
        self.initial_inventory = initial_inventory #A
        self.price_levels = 
             price_levels if price_levels is not 
             None else [5, 8, 10, 12] #B
        self.num_price_levels = len(self.price_levels) #B
 
        self.base_demand_per_period = base_demand_per_period #C
        self.price_sensitivity = price_sensitivity #C
        self.unsold_penalty_per_item = unsold_penalty_per_item #D
 
        self.action_space_size = self.num_price_levels #E
 
        self.fig = None #F
        self.axs = {}   #F
        self._initialize_plot_history() #G
 
        self.reset()








Next, we define the agent's observation (the state space) and the reset() method. For the agent to make an informed pricing decision, it needs to know two key things: how much time is left in the selling window and how much inventory it still has. This forms our state. The reset() method brings the environment back to its starting conditions for a new episode, ready for another run. Listing 3.8 shows this implementation.




Listing 3.8 State Representation and Reset Logic


def _initialize_plot_history(self): #A
 
    self.time_step_history = []
    self.inventory_history = []
    self.price_history = []
    self.sales_history = []
    self.revenue_history = []
    self.cumulative_revenue_history = []
 
def reset(self): #B
    self.current_time_period = 0 #C
    self.time_periods_left = self.total_time_periods #C
    self.current_inventory = self.initial_inventory #D
 
    self._initialize_plot_history() #E
    self._update_history(price_chosen_for_period=None, units_sold_this_period=0, revenue_this_period=0) #F
 
    return self._get_state()
 
def _get_state(self): #G
 
    return {
        "time_periods_left": self.time_periods_left,
        "current_inventory": self.current_inventory,
    }








Now we get to the engine of our simulation: the step() function, which contains the transition logic. This is where the agent’s chosen action (a price) interacts with the market. The function determines customer demand based on the price, calculates how many units are sold, updates the inventory and time, and computes the reward. Our demand model, shown in _calculate_demand, is designed to be realistic: it's sensitive to price but also includes an “urgency factor” that slightly increases demand as the deadline nears, plus some random noise to simulate market unpredictability. Listing 3.9 contains this core logic.




Listing 3.9 Environment Step Logic and Demand Model Function


def _calculate_demand(self, price_chosen): #A
    base_price_effect = max(0, self.base_demand_per_period - self.price_sensitivity * price_chosen) #B
    urgency_factor = 1.0 + (self.total_time_periods - self.time_periods_left) / (2.0 * self.total_time_periods) #C
 
    noise = np.random.uniform(-0.1, 0.1) * base_price_effect #D
    potential_demand = int(round(max(0, base_price_effect * urgency_factor + noise))) #D
    return potential_demand #D
 
def step(self, action_idx): #E
    price_chosen = self.price_levels[action_idx] #F
    units_sold_this_period = 0
    potential_demand = 0
 
    if self.current_inventory > 0:
        potential_demand = self._calculate_demand(price_chosen) #G
        units_sold_this_period = min(potential_demand, #H
self.current_inventory) #H
    
    self.current_inventory -= units_sold_this_period #I
    revenue_this_period = price_chosen * units_sold_this_period #I
    reward = revenue_this_period #I
    
    self.time_periods_left -= 1 #J
    self.current_time_period += 1 #J
    
    done = self.time_periods_left <= 0 or self.current_inventory <= 0 #K
    
    if done and self.time_periods_left <= 0: #L
        penalty_for_unsold = self.current_inventory *  self.unsold_penalty_per_item #L
        reward -= penalty_for_unsold #L
        
    info = {"price_chosen": price_chosen, "units_sold": units_sold_this_period} #M
    self._update_history(price_chosen, units_sold_this_period, revenue_this_period) #M
    
    return self._get_state(), reward, done, info








The final component of our simulation design is the reward function which the logic is embedded directly in our step() function. Reward function is what guides the agent toward our business goal. It must clearly signal what constitutes good and bad performance. One way of designing this signal for the dynamic pricing system would be like this: the agent receives a positive reward proportional to the revenue generated from sales within a given time period. This serves as the primary incentive, reinforcing behavior that leads to successful transactions. Conversely, if the episode ends with unsold inventory—typically because the time horizon expired—a terminal penalty is applied, scaled by the number of remaining items.




This negative signal discourages overpricing and promotes proactive inventory clearance. Together, these two signals strike a balance between maximizing short-term revenue and ensuring long-term inventory efficiency.




This reward structure is direct and aligns perfectly with our KPI. The agent is rewarded with the revenue it generates each step and is penalized at the end for any leftover stock. This encourages a balance between setting high prices for good margins and lowering prices when necessary to avoid the final penalty.




Finally, we move to the Evaluate and Test Layer. As before, we'll test our environment with a random agent to ensure the logic is sound. We need to verify that state transitions are correct (inventory and time decrease as expected), rewards are calculated properly, and the episode terminates under the right conditions. For this environment, a visual render() function is particularly insightful. Instead of a grid, it plots the key metrics over time: inventory, prices chosen, units sold, and revenue. This gives us an immediate, intuitive understanding of the agent's strategy and its consequences. The helper methods _update_history and close support this visualization. Listing 3.10 shows this implementation.




Listing 3.10 Visualization and Rendering Logic


def _update_history(self, price_chosen_for_period, units_sold_this_period, revenue_this_period): #A
    self.time_step_history.append(self.current_time_period) #A
    self.inventory_history.append(self.current_inventory) #A
    
    if price_chosen_for_period is not None: #A
        self.price_history.append(price_chosen_for_period) #A
        self.sales_history.append(units_sold_this_period) #A
        self.revenue_history.append(revenue_this_period) #A
        current_cumulative_revenue = (self.cumulative_revenue_history[-1] if self.cumulative_revenue_history else 0) + revenue_this_period
        self.cumulative_revenue_history.append(current_cumulative_revenue)
    elif not self.price_history: #A
            self.price_history.append(np.nan) #A
            self.sales_history.append(np.nan) #A
            self.revenue_history.append(np.nan) #A
            self.cumulative_revenue_history.append(0) #A
 
def render(self, mode='human', pause_duration=0.5): #B
    if self.fig is None:
        self.fig = plt.figure(figsize=(12, 7.5), constrained_layout=True)
        gs = gridspec.GridSpec(2, 2, figure=self.fig) #B 
        self.axs['inventory'] = self.fig.add_subplot(gs[0, 0]) #B
        self.axs['price'] = self.fig.add_subplot(gs[0, 1]) #B
        self.axs['sales'] = self.fig.add_subplot(gs[1, 0]) #B
        self.axs['revenue'] = self.fig.add_subplot(gs[1, 1]) #B
        plt.ion()
 
    plt.draw()
    plt.pause(pause_duration)
 
def close(self): #C
    if self.fig is not None:
        plt.ioff()
        plt.close(self.fig)
        self.fig = None
        self.axs = {}








To conduct our sanity check, we run a script that initializes the environment and then has a random agent interact with it step-by-step until the episode concludes. Listing 3.11 provides the script for running this test.




Listing 3.11 Running a Random Agent for Sanity Checking


TOTAL_PERIODS = 15 #A
INITIAL_STOCK = 100 #A
PRICE_OPTIONS = [8, 10, 12, 15, 18] #A
BASE_DEMAND = 20 #A
PRICE_SENSITIVITY_FACTOR = 1.5 #A
UNSOLD_PENALTY = 1.0 #A
 
env = DynamicPricingEnv( #B
    total_time_periods=TOTAL_PERIODS, #B
    initial_inventory=INITIAL_STOCK, #B
    price_levels=PRICE_OPTIONS, #B
    base_demand_per_period=BASE_DEMAND, #B
    price_sensitivity=PRICE_SENSITIVITY_FACTOR, #B
    unsold_penalty_per_item=UNSOLD_PENALTY #B
)
 
state = env.reset() #C
env.render(pause_duration=1.5)
 
total_reward_episode = 0
done = False
 
for period_num in range(1, TOTAL_PERIODS + 1): #D
    if done:
        break
 
    action = np.random.randint(0, env.action_space_size) #E
    next_state, reward, done, info = env.step(action) #F
    total_reward_episode += reward
    
    state = next_state
    env.render(pause_duration=0.7) #G
 
print(f"\nFinal Inventory: {env.current_inventory}")
print(f"Total Cumulative Reward (Revenue - Penalties): ${total_reward_episode:.2f}")
 
env.close()








Just like in the previous environment, we’re not limited to basic sanity checks—we can dig deeper with integration tests and agent behavior analysis. Figure 3.6 shows how two different agents evolve over multiple iterations, along with a side-by-side comparison to highlight their differences.




Figure 3.6 Agents’ behaviors analysis for dynamic pricing environment.





We highly recommend cloning the integration tests and agent behavior analysis notebook from the book’s GitHub and spending some time exploring it. It’s a hands-on way to get familiar with different aspects of the environment and see how everything works under the hood.




By observing this visualization with a random and heuristic agents, we can quickly perform a sanity check. The total revenue is positive for both but likely suboptimal, as the random and heuristic policies won't effectively balance price and demand. If the agent ends with a large amount of unsold inventory, we'd expect the final total reward to be lower than the gross revenue, reflecting the penalty.




This validated environment now serves as a powerful digital twin of our pricing problem, ready for a reinforcement learning agent to learn a profit-maximizing strategy that a human might struggle to discover.




3.4 Trailer loading and packing environment




After exploring 2D environments for navigation and pricing, we now move into the third dimension to tackle one of the most challenging and significant problems in logistics: trailer loading and packing optimization. Often referred to as the 3D Bin Packing Problem (3D-BPP).




Imagine you work in logistics, and your goal is to efficiently pack a sequence of boxes into one or more trailers. Each box has different dimensions and can be rotated in six possible orientations. Your trailers (containers) vary in size, and each one has fixed dimensions. The challenge is to decide where and how to place each box—maximizing space usage while avoiding overlaps or out-of-bound placements which directly translates to reducing the number of shipments, cutting transportation costs, and minimizing the environmental impact.




This is a notoriously difficult combinatorial optimization problem. The sheer number of possible positions and orientations for each item creates a vast decision space. A human packer might rely on experience and simple heuristics, but they can rarely find the truly optimal solution. This makes it an ideal domain for reinforcement learning. A reinforcement learning agent can explore this complex state space and learn a sophisticated packing policy that considers the shapes of upcoming items and the remaining empty space in the containers.




Let's apply our conceptual framework to design a 3D environment for this task. First, the Business Abstract Layer.




	Problem Definition: The core process is “outbound logistics and shipment consolidation”. We are scoping this down to the "packing" sub-process, where a fixed sequence of items must be loaded into a set of available trailers.

	Entities: We have a list of items, each with specific dimensions. We have one or more containers (trailers), each with its own dimensions. The agent's task is to decide where and how to place each item from a predefined sequence.

	Assumptions: All items are rectangular cuboids (boxes). Items can be rotated, but only in six fixed orientations (e.g., lying flat, on its side,). To see a visualization of six origantions you can consider running box_orientations.py file in book’s GitHub. The sequence of items to be packed is given and cannot be changed. The agent must place each item without it overlapping with already packed items or protruding outside the container boundaries.

	KPIs: The primary KPI is space utilization, which we will measure by the total volume of all successfully packed items. A higher packed volume means less wasted space and greater efficiency.




Let’s start by getting a feel for how this environment looks in action. We use four different trailer shapes and randomly allocate items inside each one to visualize the packing results. Figure 3.7 shows a snapshot of the final state after a random agent has tried to pack the items. You can generate similar visualizations by running the environment script yourself.




Figure 3.7 Visualization of one instance of trailer loading and packing environment.





This 3D visualization gives us a quick look at how 12 items are packed into four trailers of different sizes using a random policy. It’s a simple way to see how the environment handles item allocation across varying trailer shapes.




With the problem specified, we transition to the Simulation Design Layer. Here, we will construct our PackingEnv, translating the physical constraints of packing into a functioning simulation. This environment will be significantly more complex than our previous 2D examples due to the added dimension and the geometric interactions between objects.




We start by defining the static components of our problem: the types of items we can pack and the containers we can pack them into. These are defined as simple lists of dictionaries, making the environment easily configurable for different scenarios. We also define the specific sequence of items for a single packing episode. The initial configuration of item types and container schemas for an episode can be defined as follow:





ITEM_DEFINITIONS = [
    {'id': 1, 'name': 'BoxA', 'dims': (4, 3, 2)},
    {'id': 2, 'name': 'BoxB', 'dims': (3, 3, 3)},
    ...
]
TRAILER_SCHEMAS = [
    {'id': 'C1_Std', 'dims': (10, 8, 6)},
    ...
]








Next, we design the PackingEnv class itself. The initialization sets up the environment based on the provided schemas and item lists. The reset() method is crucial; it prepares the environment for a new packing episode. This involves creating empty 3D grids (using NumPy arrays) to represent the space inside each container, resetting the list of items to be packed, and clearing all state variables like packed volume and step counts. Listing 3.12 shows the initialization and reset logic.




Listing 3.12 Environment Initialization and Reset Logic


class PackingEnv:
    def __init__(self, container_schemas, item_definitions, item_sequence_names): #A
        self.container_schemas = container_schemas
        self.num_containers = len(container_schemas)
        self.item_definitions = {item['name']: item for item in item_definitions}
        self.item_sequence_names = item_sequence_names
        self.id_to_color_map = {0: (0,0,0,0)} #B
 
        for item_def in item_definitions: #C self.id_to_color_map[item_def['id']] = item_def['color']  #C
        self.num_orientations = 6 #C
        self.reset()
 
    def reset(self): #D
        self.container_spaces = [] #E
        self.container_dims_list = [] #E
        for sch in self.container_schemas: #F
            dims=np.array(sch['dims'],dtype=int) #F
            self.container_spaces.append(np.zeros(dims,dtype=int)) #F
            self.container_dims_list.append(dims) #F
        
        self.packed_items_info=[] #G
        self.items_to_pack_this_episode=[] #G
        for name in self.item_sequence_names:
            if name in self.item_definitions: self.items_to_pack_this_episode.append(self.item_definitions[name].copy()) #G
 
        self.current_item_idx_to_pack=0 #H
        self.total_steps_taken_episode=0 #H
        self.invalid_attempts_current_item=0 #H
        self.total_packed_volume=0 #H
        self.packed_volume_per_container=np.zeros(self.num_containers) #H
        return self._get_observation() #H








The agent's state, or observation, needs to provide all the information required to make a sensible placement decision. In this environment, the observation consists of two parts: A list of 3D matrices representing the filled space in each container, and info about the current item to be packed.




The action an agent takes must specify which container to use, the (x, y, z) coordinates for the placement, and the desired orientation. In another words, we define action space as tuple of (container_idx, x, y, z, orientation_idx) which attempts placing the next item in one of the available containers, at a chosen (x, y, z) position, in a chosen orientation (0 to 5).




Before the environment can process an action, it needs helper functions to handle the geometry of packing. This involves calculating the dimensions of an item in a given orientation and, most importantly, checking if a proposed placement is valid. A placement is valid only if the item, in its chosen orientation, fits entirely within the container's boundaries and does not collide with any space already occupied by another item. Listing 3.13 shows these critical helper functions.




Listing 3.13 Geometric Helper and Placement Validation Logic


def _get_oriented_dims(self, base_dims, o_idx):  
    l,w,h=base_dims
    if o_idx==0: return(l,w,h) #A
    if o_idx==1: return(l,h,w) #A
    if o_idx==2: return(w,l,h) #A
    if o_idx==3: return(w,h,l) #A
    if o_idx==4: return(h,l,w) #A
    if o_idx==5: return(h,w,l) #A
    raise ValueError(f"Invalid orientation: {o_idx}")
 
def _get_observation(self): #B
    item=self._get_current_item_details() #B
    item_info={'id':item['id'],'base_dims':item['dims']} if item else None
    return ([s.copy() for s in self.container_spaces], item_info) #B
 
def _check_placement(self, c_idx, i_dims_o, pos): #C
    space=self.container_spaces[c_idx]; c_dims=self.container_dims_list[c_idx]
    px,py,pz=np.array(pos,dtype=int); dx,dy,dz=np.array(i_dims_o,dtype=int)
    
    if not (px>=0 and px+dx<=c_dims[0] and py>=0 and py+dy<=c_dims[1] and pz>=0 and pz+dz<=c_dims[2]): return False #D
    
    if np.any(space[px:px+dx, py:py+dy, pz:pz+dz]!=0): return False #E
    
    return True








Now we arrive at the heart of the environment: the step() function. This function takes an action from the agent, validates it, and updates the environment's state accordingly. If the placement is valid, the 3D grid of the chosen container is updated by filling the space with the item's ID, the total packed volume is increased, and the environment moves on to the next item in the sequence. If the placement is invalid, the agent receives a penalty, and its "invalid attempt" counter for the current item is incremented. If the agent fails too many times to place an item, the item is skipped, and a larger penalty is applied. The reward function is woven directly into this logic. As we discussed in reward engineering strategies, in reinforcement learning mild penalties are useful for discouraging suboptimal but reasonable decisions and stronger penalties are used to teach the agent not to explore clearly nonsensical parts of the action space. We designed reward steps and normalization based on this fact and steps have been summarized in Table 3.3.




Table 3.3 Reward engineering for trailer loading and packing environment




	


        Agent behavior 
       





 
	


        Reward 
      


 
	


        Purpose 
      


 



	

       Successfully pack an item 
     
 
	

       + (Volume of the item) 
     
 
	

       Primary positive signal. Directly rewards the agent for using space. 
     
 



	

       Attempt an invalid placement 
     
 
	

       –0.5 
     
 
	

       Small penalty to discourage collisions and out-of-bounds placements. 
     
 



	

       Attempt an invalid action 
     
 
	

       –2.0 / –3.0 
     
 
	

       Stronger penalty for invalid actions (e.g., bad orientation (-2) and invalid container index (-3). 
     
 



	

       Fail to place an item (skip) 
     
 
	

       –5.0 
     
 
	

       Significant penalty for giving up on an item, encouraging perseverance. 
     
 



	

       Exceed maximum episode steps 
     
 
	

       –10.0 
     
 
	

       Terminal penalty to discourage inefficient, time-wasting policies 
     
 








Listing 3.14 shows the full step function including impact of action, transition dynamic and reward calculations.




Listing 3.14 Core Step Logic and Reward Design


def step(self, action):
    self.total_steps_taken_episode+=1
    done=False; reward=0.0
    info={'packed_volume_current_item':0, 'skipped_item':False}
    if self.current_item_idx_to_pack>=len(self.items_to_pack_this_episode): 
        done=True; return self._get_observation(),reward,done,info #A
    
    item_def=self.items_to_pack_this_episode[self.current_item_idx_to_pack]
    c_idx,px,py,pz,o_idx=action #A
    
    try:
        oriented_dims=self._get_oriented_dims(item_def['dims'],o_idx) #B
    except ValueError:
        reward=-2.0; self.invalid_attempts_current_item+=1; #B
        return self._get_observation(),reward,done,info #B
 
    if self._check_placement(c_idx,oriented_dims,(px,py,pz)): #C
        dx,dy,dz=oriented_dims #C
        self.container_spaces[c_idx][px:px+dx,py:py+dy,pz:pz+dz]=item_def['id']
        item_vol=np.prod(oriented_dims)
        reward=float(item_vol) #D
        self.total_packed_volume+=item_vol
        self.packed_items_info.append({'name':item_def['name'], ...})
        self.current_item_idx_to_pack+=1; self.invalid_attempts_current_item=0 #E
        if self.current_item_idx_to_pack>=len(self.items_to_pack_this_episode): done=True
    else:
       
        reward=-0.5; self.invalid_attempts_current_item+=1 #F
        if self.invalid_attempts_current_item >  #G
MAX_INVALID_ATTEMPTS_PER_ITEM: #G
            self.current_item_idx_to_pack+=1;   #G
self.invalid_attempts_current_item=0
            reward-=5.0; info['skipped_item']=True #G
            if self.current_item_idx_to_pack>=len(self.items_to_pack_this_episode): done=True
    
    if self.total_steps_taken_episode >= MAX_EPISODE_STEPS: done=True; reward-=10.0 #H
    
    return self._get_observation(),reward,done,info








In this environment, the episode ends when all items are packed or skipped, or the agent exceeds the maximum allowed steps.




Finally, we enter the Evaluate and Test Layer. Given the complexity of the 3D space, visualization is not just helpful; it's essential. A render function that can draw the containers and the packed items in 3D is the only practical way to debug the environment and understand the agent's behavior. Listing 3.15 shows the core rendering logic.




Listing 3.15 Rendering the 3D Environment


    def render(self, fig=None, title_prefix="Container Packing"): #A
        if self.num_containers == 0: return
 
        for i in range(self.num_containers): #B
            ax = fig.add_subplot(rows, cols, i + 1, projection='3d')
            draw_container_wireframe(ax, self.container_dims_list[i], ...)
            
            for item_info in self.packed_items_info: #C
                if item_info['container_idx'] == i:
                    item_color = self.id_to_color_map.get(item_info['id'], ...)
                    draw_cuboid(ax, item_info['pos'], item_info['oriented_dims'], face_color=item_color, ...)
                        
        fig.suptitle(title_prefix, fontsize=14)
        plt.draw()
        return fig








To sanity-check this complex environment, we once again employ a random agent. This agent will choose a random container, a random position, and a random orientation at each step. While it's extremely unlikely to produce a good packing solution, watching it work allows us to verify that the core mechanics are functioning correctly. Are collisions being detected? Are rewards being assigned appropriately for both valid and invalid moves? Does the 3D rendering accurately reflect the state of the internal NumPy grids? Listing 3.16 shows the test script.




Listing 3.16 Running a Random Agent for Sanity Checking


def run_random_agent_episode(env, render_each_step=False, final_render=True):
    obs = env.reset()
    done=False; total_reward=0.0
    
    # ... (setup for visualization, skiped for brevity) ...
    
    while not done:
        _, current_item_info = obs 
        if current_item_info is None: break 
        
        # --- Generate a completely random action ---
        rand_c_idx = random.randint(0, env.num_containers - 1) #A
        sel_c_dims = env.container_dims_list[rand_c_idx] 
        rand_x = random.randint(0, sel_c_dims[0]-1) #A
        rand_y = random.randint(0, sel_c_dims[1]-1) #A
        rand_z = random.randint(0, sel_c_dims[2]-1) #A
        rand_o_idx = random.randint(0, env.num_orientations - 1) #A
        action = (rand_c_idx, rand_x, rand_y, rand_z, rand_o_idx)
        
        obs, reward, done, info = env.step(action) #B
        # ... (logging and rendering logic, skiped for brevity) ...
 
# --- Main execution block ---
if __name__ == '__main__':
    env = PackingEnv(...) #C
    run_random_agent_episode(env, render_each_step=False, final_render=True) #D








Just like before, we’ve built integration tests and an agent evolution notebook to analyze how random and heuristic agents behave as they iterate. Figure 3.8 shows a snapshot of their evolution. As expected, both agents produce fairly chaotic and inefficient results—but the heuristic still outperforms random allocation. That said, the visualization confirms one important point: all packed items are placed correctly without overlaps, and within the trailer boundaries.




Figure 3.8 Evolution of random and heuristic agent behaviors in the trailer packing environment.





With this sophisticated and visually-grounded environment, we have created a robust digital sandbox. It is now ready for an intelligent reinforcement learning agent to learn the complex, non-intuitive strategies required to master the art of 3D packing.




To be honest, the logic and design of this environment are pretty complex, and it's totally fine if you don’t catch everything on the first try. I strongly suggest jumping back and forth between the code and the chapter explanations a few times. Try running the code, tweaking things, and exploring how different parts behave—that hands-on approach will really help you get a deeper understanding.




In addition to building custom environments from scratch, it's also helpful to explore existing reinforcement learning environment libraries that offer well-tested, modular simulations. Libraries like OpenAI Gym, PettingZoo (for multi-agent setups), Google’s BSuite, Unity ML-Agents, and Meta’s Habitat offer environments ranging from simple control tasks to complex physics-based simulations and 3D navigation challenges. While these environments aren’t tailored for business scenarios, they are excellent for testing algorithms, prototyping ideas, and understanding the nuances of agent learning. Exploring them in parallel can strengthen your intuition and expose you to different design patterns and evaluation strategies—especially as you build more complex business environments later on.




Alright, let’s wrap up. In this chapter, we took the most important step toward making reinforcement learning practical for real-world problems: designing our own environments. We started with a simple but powerful idea—if we want reinforcement learning agents to solve real business challenges, we need to build worlds where they can safely learn, fail, and improve. That’s why we introduced a full conceptual framework that guides you from identifying a business problem all the way to creating a testable environment.




We applied this framework to three very different but very common challenges, each case taught us something new—from state and action design to transition logic and reward shaping. We also tested every environment using random agents to make sure things worked as expected. This step-by-step approach helped us not only build logic but also gain confidence that the environments actually reflect what happens in the real world.




In the second part of the book, we’re going to build each even more environments in code—from scratch. So, what’s ahead is a very hands-on journey. Let’s move on and start building.




3.5 Summary




	Custom environments are essential for applying reinforcement learning to real-world business problems.

	A good environment must reflect the business process, constraints, and objectives.

	Environment design follows three key layers: business abstraction, simulation logic, and evaluation/testing.

	Clearly defining KPIs and assumptions shapes how your environment behaves.

	Breaking complex systems into smaller, focused sub-problems makes modeling and training more manageable.

	Use 2D environments when modeling decision processes over grids, time periods, or sequences—like routing, or pricing over time.

	Use 3D environments when physical space and geometry matter—like trailer packing, or spatial resource allocation.

	The state space must include all the information the agent needs to make informed decisions. It should also follow Markov property.

	The action space must reflect real decision options and adhere to domain constraints.

	The reward function translates business goals into learnable signals for the agent.

	Poorly designed rewards can lead to bad learning outcomes or agent confusion.

	Transition dynamics must realistically simulate how the system evolves after each action.

	Sanity checks using random agents help catch bugs before training real models.

	Visual debugging is often more effective than printed logs, especially in spatial tasks.

	Invalid actions should be penalized to help the agent learn feasible strategies.

	Every environment should be testable, extensible, and clear in its feedback to the agent.

	Building environments is an iterative process—design, test, adjust, repeat.

	A structured environment template (reset, step, reward, and transition logic) accelerates implementation.

	High-quality environments are the foundation for training reliable reinforcement learning agents.



4 Perfect knowledge, optimal policy: dynamic programming




This chapter covers


	Break problems intro stages using Bellman’s principles.

	Solve Markov decision process with policy and value iteration.

	Apply dynamic programming to resource allocation with numerical example and code

	Understand dynamic programming limitations







In preparing for battle, I have always found that plans are useless, but planning is indispensable.





Dwight D. Eisenhower, 34th president of United States




So far, we’ve learned how to formulate a sequential decision-making problem using the Markov Decision Process framework. We also explored how to build custom environments that reflect the complexity of the problems we want to solve. Now, it’s time to tackle the next big step: learning how to actually solve problems once they’ve been cast into the Markov decision process framework. Broadly speaking, there are two major categories of solution methods:




	Model-based methods: These rely on having or learning a model of the environment — which is combination of transition probabilities and reward function — and use that model to plan ahead.

	Model-free methods: These bypass the model entirely and only receive reward. Instead of relying on a known transition function, they learn purely from experience — from actual sampled transitions. Experience in this context means tuple of (State, Action, Reward, Next State).




So everything boils down to how we treat the transition function and the reward function. The reward function is non-negotiable — every method must use it. But the transition function? That can be ignored if it is hard to obtain (which is a case for most of business problems), but there’s a trade-off: you’ll need more interactions with environment, more computation, and time. Also, it’s one thing to use a transition function, and another to learn it. I hope you agree that the most straightforward path to solving a Markov decision process is to assume we have access to full model, the transition function and just use it (and not learn it) —with reward.




This brings us to dynamic programming — the most direct algorithmic paradigm to solve problems when the transition function is known. Now, a quick note: dynamic programming is a term with many lives. In computer science, it refers to a problem-solving mindset — breaking a complex problem into smaller overlapping subproblems, solving each only once, and caching results via memorization or tabulation. This idea shows up in many classic algorithms: computing matrix multiplications, optimizing database queries, finding shortest paths, and so on. These are often called deterministic dynamic programming methods.




In reinforcement learning, dynamic programming adapts that same idea to stochastic environments. Here, we still break down problems into recursive components, but we do so under uncertainty — where actions lead to probabilistic outcomes. So when we say dynamic programming in this chapter, we’re referring to this flavor: methods that assume a Markov decision process and exploit its structure to solve it using transition and reward information.




Even though dynamic programming is the simplest to grasp — clean, recursive, and elegant — it’s not always practical. Why? Because it's computationally expensive. In real-world settings, where the environment is large, complex, or partially unknown, dynamic programming assumptions and costs make it hard to use. This limitation is especially relevant to the challenges we promised to address back in Chapter 1.




But here’s the exciting part: many of the most powerful ideas in reinforcement learning were inspired by dynamic programming. In fact, a lot of what we’ll study in this chapter can be seen as creative reinterpretations or approximations of dynamic programming.




So let’s get started. Let’s step back, look at the whole jungle, and map out the main paradigms we have for solving sequential decision-making problems.




4.1 Paradigms on solving Markov decision process




Once a problem is formulated as a Markov decision process, the next big question is: how do we actually solve it?




Over the years, five major paradigms have emerged, each offering a different lens on how an agent can learn to make good decisions over time. They vary not just in technical mechanisms, but in how they approach uncertainty, structure, and learning. Some rely on complete knowledge of the environment. Others embrace experience as the only guide. And a few simulate the future before committing to action.




Figure 4.1 gives a visual snapshot of these five approaches.




Figure 4.1 Five different paradigms in solving Markov decision process.





You can think of them as different strategies for navigating a world that hides its rules — where outcomes are uncertain and must be discovered step by step. Let’s walk through them.




Multi-Armed Bandits (MAB): No states, just actions: In the bandit setting, there’s no notion of state or long-term consequence. Each time you take an action, you receive a reward — that’s it. There’s no tomorrow, no transitions — just a repeated decision under uncertainty.




This is ideal for business scenarios like A/B testing. Suppose you're trying to decide which of several price points yields the most profit. You test different prices, observe the returns, and gradually learn which one works best. That’s a multi-armed bandit. No need to model how the market evolves — you just care about choosing the best option right now.




The challenge is in the exploration-exploitation trade-off: try new prices to discover better options (exploration) versus sticking to the current best price to maximize revenue (exploitation). Bandit algorithms balance this tension by keeping track of uncertainty in their estimates.




Though simple, bandits form the foundation of online decision-making under uncertainty — and they teach us that even in static environments, learning what works is not always trivial.




Temporal Difference Learning: Learn while moving: Now imagine you’re managing a warehouse. Each action — such as hiring more staff or adjusting delivery schedules — affects not only the immediate cost but also the long-term performance. You want to improve your policy over time, but you don’t want to wait months to evaluate full quarterly outcomes. Instead, you update your decisions step-by-step, learning from short-term trends and gradually refining your strategy.




This is the essence of temporal difference learning. It doesn’t wait until an episode ends to learn. Instead, it updates value estimates incrementally after each step — combining observed reward with predicted future value. This is known as bootstrapping.




In business, this is powerful for ongoing, continuous decision-making processes — like inventory management, customer retention strategies, or personalized marketing — where the effects of actions unfold over time and data arrives sequentially.




Temporal difference learning is fast and efficient, and it forms the core of many modern reinforcement learning algorithms. It handles long-term consequences without needing to observe full trajectories, which is ideal for dynamic environments where waiting isn’t practical.




Monte Carlo Estimation, Learn from complete experience: Monte Carlo methods take a different stance. Instead of updating after each step, they wait until the end of an episode — a full business cycle, a full customer journey, a full marketing campaign — and then look at the total outcome.




Suppose you want to evaluate the success of a seasonal promotion strategy. You don’t update after one week; you wait until the campaign ends. Then you analyze the full return — total profit, customer engagement, retention — and use that outcome to adjust your strategy going forward.




That’s Monte Carlo learning. It relies on real outcomes rather than predictions. This makes it unbiased but also slower. If the business scenario has long episodes (e.g., customer lifetime value), learning may be delayed. And because real-world outcomes can be noisy, the variance usually is high, and it requires many episodes to stabilize.




Still, Monte Carlo teaches us the value of patient learning — sometimes, it’s better to wait for the whole story before making updates. Especially in domains where outcomes are clear only after long chains of interaction.




Dynamic Programming, Plan with full knowledge: Dynamic programming assumes the ideal case: you know exactly how the world works. You have a full model of the environment — in business terms, this means you know how your system evolves in response to every possible action. You know the probability that a delivery will arrive on time, the likelihood that a customer will churn, and how revenue changes as you increase prices.




With that knowledge, you don’t need to learn from experience — you can compute optimal behavior directly by solving the Bellman equations. Algorithms like value iteration and policy iteration recursively refine value functions and policies until they converge.




Of course, this requires something rare in business: a complete model. But when it's available — say in well-simulated environments like supply chain planning models or financial forecasting engines — it offers deep insight. It helps us understand optimal strategies in idealized settings and sets the theoretical foundation for all model-free methods.




Dynamic programming doesn’t just solve problems — it teaches us how problems are structured. Even if we don’t use it directly, the intuition it provides helps develop other learning approaches when the full model of the world is incomplete.




Tree Search, Simulate the future before acting: Imagine you’re deciding on an expansion plan for a logistics network. You don’t just blindly execute and hope for the best. Instead, you simulate different scenarios: What happens if we open a new warehouse in Vancouver? How does that impact delivery times, costs, and customer satisfaction across the country?




This is the idea behind tree search. It doesn’t rely entirely on real experience or full models. Instead, it builds a search tree from the current state — each branch representing a possible action and future outcome. These simulations guide action selection.




In business, this is useful in strategic planning and what-if scenario analysis, where foresight matters. Tree search allows you to project the impact of decisions without committing to them — especially when combined with learned heuristics or value estimates.




Together, these five paradigms form the intellectual foundation of reinforcement learning. They don’t just offer algorithms — they represent distinct philosophies of decision-making: Multi-Armed Bandits act without context. Temporal Difference learns by doing. Monte Carlo learns by reflecting. Dynamic Programming learns by planning. Tree Search learns by simulating. Each has strengths. Each has limitations. And in practice, the most powerful agents combine ideas from multiple paradigms — using models when they’re available, simulating where possible, and learning when needed.




Let’s begin with the first explorer: Dynamic Programming. It will guide us through the foundational ideas that will echo throughout the rest of our journey.




4.2 The domino decision rule: Bellman equations




In many real-world problems, focusing only on the immediate reward can be short-sighted. A decision that looks good right now might actually lead to poor outcomes in the long run, while a seemingly small or costly step might open the door to much better rewards later. So, to make smarter decisions, we need to look beyond the present — we need to account for what comes next. This is where the core idea of reinforcement learning comes in: evaluating not just the reward we get now, but also the potential value of future steps. And at the heart of this idea lies the Bellman equations.




Bellman equations, probably, is the most important concept in the theory of reinforcement learning, and sequential decision making in general, which happens to be very simple and intuitive. These equations — named after Richard Bellman — are backbone of many algorithms in reinforcement learning and sit at the heart of solving Markov decision processes. They represent the core logic behind optimal decision making over time. If reinforcement learning were a game of dominoes, Bellman equations would define how one decision knocks over the next — and the next, and the next — until the final outcome.




At their core, Bellman equations break down the value of current state (or state-action pair) into two parts:




	Immediate reward.

	Discounted expected value of next state




In simple term bellman equations says “Long term value of being in a state (or taking an action) is equal to average of the immediate reward plus the discounted value of what come next (all actions or states).”




Once an agent take an action, it receives an immediate reward and moves from current state to the next one. Assuming the system follows Markov property, as we discussed it in chapter 2, these are necessary elements to find the optimal solution without having to consider all sequences of states at once.




Bellman equation is a sort of decomposition that creates a kind of recursive dependency — a value at current time depends on values at next time, and so on. Like a chain reaction, each value pulls information from what lies ahead. That’s why I like to call it the domino rule. Let’s get a little bit deep on what are these equations and how we should interpret them.




Before we bring everything together in the Bellman equation, it’s important to do a kind of conceptual clarification, as philosophers say, to understand each of its building blocks on their own. Table 4.1 lays out the core elements involved, including what they represent, how they’re used, and where they actually come from.




Table 4.1 Core elements of the Bellman equation




	


        Element 
      


 
	


        Symbol 
      


 
	


        Description 
      


 
	


        How it is obtained 
      


 



	

       State 
     
 
	

       s 
      



 
	

       A representation of the environment at a specific point in time. It includes all the information the agent needs. 
     
 
	

       Defined by the environment; observed directly during interaction or simulation. 
     
 



	

       Action 
     
 
	

       a 
      



 
	

       A choice available to the agent in state s. Determines how the agent interacts with the environment. 
     
 
	

       Selected by the agent, either via a policy or during exploration. 
     
 



	

       Next State 
     
 
	

       s′ 
      



 
	

       The resulting state after action a is taken in state s. 
     
 
	

       Observed from the environment after the action is executed. 
     
 



	

       Transition Probability 
     
 
	

       P(s′ | s, a) 
      



 
	

       The probability that action aa in state ss will lead to next state s′. 
     
 
	

       Estimated from data through sampling or modeled explicitly if dynamics are known. 
     
 



	

       Reward Function 
     
 
	

       R(s, a, s′) 
      



 
	

       The immediate reward received after transitioning from s to s' via action a. 
     
 
	

       Defined by the problem designer or observed as feedback from the environment. 
     
 



	

       Policy 
     
 
	

       π(a | s) 
      



 
	

       The agent’s behavior strategy: probability of taking action a in state s. 
     
 
	

       Learned through training, or predefined in a rule-based or heuristic form. 
     
 



	

       Discount Factor 
     
 
	

       γ 
      ∈ [0,1] 
      



 
	

       A number balancing the importance of immediate vs. future rewards. 
     
 
	

       Chosen by the designer based on how far into the future the agent should plan. 
     
 








Among all these elements, most are either given by the environment or can be directly observed — with one important exception: the policy. This is a probability function that the agent learns during training, and it tells us how likely the agent is to take each possible action in a given state. For now, we don’t care whether these probabilities are optimal or not — we just use policy function to compute the expected value. In the next section, we’ll dive deeper into how to actually optimize this policy function and make better decisions over time.




We distinguish two flavors of Bellman equations — the state-value function and the action-value function — because this separation helps design and analyze different types of algorithms, depending on whether the focus is on evaluating states or making action-based decisions. Let’s get started with the first one. Figure 4.2 shows the formula and a simple code snippet for computing the state value function Vπ(s) which tells us how good it is to be in state s if we follow a given policy π.




Figure 4.2 State value function representation





This equation might look a bit intimidating at first glance, but it's actually very intuitive. It says that the value of a state is the average outcome you can expect if you pick actions following current policy (using current estimates of policy function). To calculate it, we consider all possible actions the agent might take in that state, and how likely each action is under the policy. Then, for each action, we consider all possible next states the agent might land in, and how likely those are. For every possible combination of action and next state, we add up the immediate reward and the expected value of the next state, discounted by a factor γ that controls how far into the future we care to look. Finally, we combine everything — we compute an average over actions and another over next states. In essence, the Bellman equation gives us a powerful averaging mechanism that accounts for all likely paths the future might take.




Figure 4.3 gives a visual interpretation of this idea using a backup diagram. From the current state s, you can take several possible actions. Each action leads to multiple next states with certain probabilities. The value of state s is then backed up from the values of these possible next states, weighted by their probabilities and policy preferences. You can think of it like a weighted average of all the ways the future could unfold, based on your current decision.




Figure 4.3 Backup diagram for state value function.





Backup diagrams are one of the most helpful tools for building an intuitive understanding of Bellman equations. While the equations themselves are compact and elegant, they can feel abstract or even cryptic when you're first learning them. Backup diagrams translate these mathematical expressions into visual reasoning — they show you exactly how value flows backward from the future to the present. Each node in the diagram represents a state or state-action pair, and the arrows show how decisions fan out into possible futures, each weighted by probability and influenced by the policy.




By tracing these arrows, you can see the recursive structure of Bellman updates — how the value of current decision depends on the expected values of next one. It’s like peeling back the logic layer-by-layer, watching how one step influences the next. Especially when learning reinforcement learning for the first time, these diagrams act as mental scaffolding: they give shape to the equation, show you where each term comes from, and make the flow of reasoning crystal clear.




I strongly recommend making a habit of drawing backup diagrams for yourself whenever you encounter a new reinforcement learning formulation. It doesn’t have to be perfect or fancy — even a rough sketch on paper can clarify what the equations are doing under the hood. Drawing the diagram forces you to think about what the agent can do in each state, where those actions can lead, and how rewards and values propagate backward. Over time, this practice will sharpen your intuition and help you reason through complex problems with ease. It's one of the simplest yet most powerful habits you can build as you learn to think like a reinforcement learning practitioner.




Now let’s move to the second flavor: the action value function Qπ(s,a), shown in Figure 4.4. This function tells you how good it is to take a specific action a in a given state s, and then follow policy π afterward. The difference is subtle but important. While the state value function tells you how good it is to be somewhere, the action value function tells you how good it is to do something from that place.




Figure 4.4 Action value function representation.





Here too, we examine all the next states you might land in after taking action a, and their probabilities. But instead of averaging over actions at this point, we wait until we’ve arrived in the next state, and then take the expected value of the next action values, weighted by the policy π(a′,s′).So this formula is just one layer shift from backup diagram perspective. Instead of averaging actions first, we lock in the current action, simulate possible futures, and then average the next steps.




Figure 4.5 shows the backup diagram for action value functions. It illustrates how the value of a single action taken in a state depends on the possible next states, and the policy-driven choices that follow from there. Unlike the state value diagram, here we explicitly trace the backup path through actions at the second step as well.




Figure 4.5 Backup diagram for action value function.





You can imagine this as choosing the first step in a multi-stage project. Starting with a certain resource allocation (the action), you reach one of several project configurations (the next state). In each of those, you’ll again have to make decisions — continue, switch direction, escalate — and those decisions shape the overall project value. The Bellman equation shows how all of this folds back to the very first move you made.




The state-value function Vπ(s) and the action-value function Qπ(s,a), are essentially two sides of the same coin — they both represent expected long-term return under a given policy. In fact, one can be derived directly from the other: the value of a state is simply the expected value of the actions taken in that state, weighted by the policy.




So, in theory, we only need one of them. However, in practice, we use both because they serve different purposes. The value function Vπ(s) gives us a high-level view — it tells us how good a state is overall — which is useful for evaluating and improving policies. On the other hand, Qπ(s,a) gives us finer control — it tells us how good each individual action is in a state — which is critical when the agent needs to actually choose between actions. Especially in control tasks, where we care about finding the best action at every step, Qπ(s,a) becomes the workhorse, while Qπ(s,a) serves more as a strategic guide.




The difference between these two gives rise to another important concept: the advantage function, defined as Aπ(s,a) = Qπ(s,a) - Vπ(s).This tells us how much better (or worse) taking a specific action a is compared to the average action value we would take in state s under the policy. If the advantage is positive, that action is better than average; if negative, it’s worse. This comparison is especially useful in advanced reinforcement learning algorithms, where we want the agent not just to follow a policy blindly, but to refine it based on how much better or worse its chosen actions are compared to the baseline.




Together, these functions — value, action-value, and advantage — form a powerful trio that allows us to measure, compare, and ultimately optimize decisions. Throughout the rest of the book, we’ll come back to these concepts again and again. Whether we’re evaluating a policy, choosing an action, or updating model parameters, they will be the core tools we rely on to build intelligent, goal-directed behavior.




Now that we’ve broken down the Bellman equations and built an intuitive understanding of how value flows backward through decisions, we’re ready to take the next step: learning how to actually solve them. Understanding the structure is one thing — using it to improve behavior is another. In the next section, we’ll introduce a powerful framework called Generalized Policy Iteration, which brings together two core processes: evaluating a policy using the Bellman equations and then improving that policy based on what we’ve learned. This back-and-forth loop is the engine behind many reinforcement learning algorithms, and it’s where theory starts turning into practical solutions.




4.3 Solving bellman equations: Generalized Policy Iteration




So far, we’ve built up a deep conceptual understanding of Bellman equations and what they mean — not just mathematically, but intuitively. We’ve seen how they break down the logic of decision-making over time into immediate consequences and recursive dependencies. But now comes the crucial part: how do we actually use them to improve an agent’s behavior?




Understanding the Bellman equations gives us a powerful lens through which we can evaluate policies. However, merely evaluating a policy is not enough. Our ultimate goal is to find a good policy — ideally, the optimal one — that tells the agent how to act in every state to maximize long-term return. The method we use to reach this goal is called Generalized Policy Iteration.




This is arguably the most iconic dynamic programming algorithm — a foundational idea that paved the way for the next generation of reinforcement learning methods. But it's not just about learning how it works mechanically. What truly matters is understanding it deeply. Grasping the underlying logic gives us more than just an algorithm — it offers a powerful lens into how learning unfolds over time, how agents build knowledge from interaction, and how decision-making improves through structure and recursion. A clear understanding of this algorithm doesn't just teach us how reinforcement learning works — it shows us why it works.




At a high level, generalized policy iteration consists of two intertwined processes that alternate and feed into one another:




	Policy Evaluation: Estimate the value of the current states or action-state under current policy.

	Policy Improvement: Use the estimated values to derive a better policy.




This loop — evaluate, improve, evaluate again — continues until the policy stops changing, ideally converging to the optimal policy π*. Figure 4.6 illustrates the overall schema of this algorithm.




Figure 4.6 General algorithm and schema of general policy iteration algorithm.





The main philosophy behind this algorithm is beautifully simple yet incredibly powerful: we can use our current understanding — the values we've already computed — to guide better actions. And in turn, we use the new experiences and knowledge gained from those actions to update and refine our value estimates. It's a continuous feedback loop, where learning feeds into action, and action feeds back into learning. Over time, this recursive process helps the agent converge toward more intelligent behavior, without ever needing to plan everything from scratch. In a sense, it’s like climbing a hill of understanding — each step informed by where we've been, and each view shaping where we go next.




This framework is both general and powerful. Almost all reinforcement learning algorithms can be viewed as special cases or approximations of this process, whether in model-based or model-free settings, whether tabular or deep.




The generalized policy iteration algorithm is pretty simple: you begin with some initial policy, then evaluate its value function by solving the Bellman expectation equations to see how good each state is under that policy. Next, you improve the policy by making it greedy with respect to those value estimates—that is, at each state you pick the action that maximizes the expected one-step reward plus the discounted value of the successor states. Generalized policy iteration algorithm has been show in figure 4.7.




Figure 4.7 Generalized policy iteration algorithm.





You repeat these two steps—evaluate, then improve—until the policy no longer changes; at that point you have simultaneously found the optimal policy and its corresponding value function. We can do the iterations in different ways but this version of single sweep is a particularly efficient flavor of generalized policy iteration known as Value Iteration.




Let's learn generalized policy iteration by considering a numerical example for a simplified inventory management problem for a small electronics retailer. The business needs to decide how many units to order each week based on current stock levels, with the goal of maximizing long-term profit while avoiding both stockouts and excess inventory costs.




Before jumping into the example, let’s clarify what we’re trying to learn and the assumptions behind it. The goal here is to find a policy — that tells us how many items to order based on the current inventory level at the beginning of each week. Once the decision is made, we assume that the ordered items are delivered immediately — a simplification that helps focus on policy optimization without complicating the dynamics with shipping delays or lead times.




Time advances in weekly intervals, and each week, demand is fulfilled after the ordering decision. For simplicity, we assume deterministic demand of exactly 1 unit per week, meaning a customer always shows up and requests one item. This keeps our transitions straightforward and lets us isolate the effect of policy changes. In more realistic models, demand vary or follow a probability distribution, but we’ll tackle those extensions later but the purpose here is to keep things calculatable by hand. That said, let’s define Markov decision process elements:




	State: Current inventory level. For simplifications we consider four states only (0, 1, 2, or 3+ units).

	Action: Order quantity. To handle calculations we need to choose smaller set of possible actions. Let’s go for (0, 1, or 2 units).

	Transition Dynamics: Next week's inventory = Current inventory + Orders - Demand

	Demand Pattern: Average demand is 1 unit per week. We assume deterministic demand for simplicity. In this setting, all transition probabilities will be either 1, or 0.

	Reward: Like the case in previous chapters, our reward signal is combination of profits and costs. Let’s designed it as follow:





   Weekly profit = Sales revenue - Ordering costs - Holding costs - Stockout penalties 
 




Let's define our reward structure as shown in table 4.2.




Table 4.2 Components of simple inventory optimization problem.




	


        Component 
      


 
	


        Value 
      


 
	


        Description 
      


 



	

       Sales revenue 
     
 
	

       $100 per unit 
     
 
	

       Revenue earned from each unit sold to customers 
     
 



	

       Ordering cost 
     
 
	

       $20 per unit 
     
 
	

       Cost to replenish inventory 
     
 



	

       Holding cost 
     
 
	

       $5 per unit 
     
 
	

       Cost of carrying inventory per week 
     
 



	

       Stockout penalty 
     
 
	

       $30 per occurrence 
     
 
	

       Lost goodwill when demand cannot be met 
     
 








Let’s now initialize our policy. There are two straight forward options: random action, and rule based policy. For making more sense, let’s choose rule based one. Our initial policy can be “Always Order 1 Unit” which simply means a policy where we always order exactly 1 unit, regardless of current inventory state or π0(s) = 1 for all states.




The first iteration of generalized iteration policy can be started now. Following the schema, we need to first perform single sweep of policy evaluation as shown in figure 4.3.




Table 4.3 First iteration of policy evaluation calculations.




	


        State 
      


 
	


        Action (π 
       0) 
      


 
	


        Immediate Reward 
      


 
	


        γV 
       0(next) 
      


 
	


        V 
       1(s) 
      


 



	

       0 
     
 
	

       Order 1 
     
 
	

       Sales: $0 + Order: -$20 + Stockout: -$30 = -$50 
     
 
	

       +0.9×$0 
     
 
	

       -$50 
     
 



	

       1 
     
 
	

       Order 1 
     
 
	

       Sales: $100 + Order: -$20 + Holding: -$5 = $75 
     
 
	

       +0.9×$0 
     
 
	

       $75 
     
 



	

       2 
     
 
	

       Order 1 
     
 
	

       Sales: $100 + Order: -$20 + Holding: -$10 = $70 
     
 
	

       +0.9×$0 
     
 
	

       $70 
     
 



	

       +3 
     
 
	

       Order 1 
     
 
	

       Sales: $100 + Order: -$20 + Holding: -$15 = $65 
     
 
	

       +0.9×$0 
     
 
	

$65 
       





          
      


 








For the first iteration of policy evaluation, value of each state is equal to the immediate reward because the value of each state is 0 for start.




Also, here is how the rewards work in this inventory example. If you're in state 0 (out of stock), you can’t sell anything, so you make no money, and if a customer shows up, you get hit with a $30 penalty for not having the item. If you decide to reorder one unit, that costs $20, so being out of stock can be pretty expensive. In state 1, you have one unit to sell — if it sells, you make $100, but you still have to pay the $20 ordering cost, and you’ll have one unit left, which costs you $5 to hold. In state 2, you also sell one unit for $100, pay the same $20 to order, but now you’re holding two units, which costs $10. And if you’re in state 3 or higher, you again sell one unit for $100, pay the $20 ordering cost, and holding three or more units costs $15.




Based on V1 we check if we can improve the policy by computing Q-values for each action or computing π(a|s). As we have seen in bellman equations formulas, Q-value calculation format is Sales Revenue - Ordering Cost - Holding/Stockout Cost + discounted value of next state. let’s do these calculations in table 4.4.




Table 4.4 First iteration of policy improvement (with round up values)




	


        State 
      


 
	


        Order 0 
      


 
	


        Order 1 
      


 
	


        Order 2 
      


 
	


        Best Action 
      


 
	


        New Policy π 
       1



 



	

       0 
     
 
	

       $0-$0-$30 + 0.9×(-$50) = -$75 
     
 
	

       $0-$20-$30 + 0.9×$75 = $18 
     
 
	

       $0-$40-$0 + 0.9×$70 = $23 
     
 
	

       Order 2 
     
 
	

       π 
      1(0) = 2 
     
 



	

       1 
     
 
	

       $100-$0-$0 + 0.9×(-$50) = $55 
     
 
	

       $100-$20-$5 + 0.9×$75 = $143 
     
 
	

       $100-$40-$5 + 0.9×$70 = $118 
     
 
	

       Order 1 
     
 
	

       π 
      1(1) = 1 
     
 



	

       2 
     
 
	

       $100-$0-$5 + 0.9×$75 = $163 
     
 
	

       $100-$20-$10 + 0.9×$70 = $133 
     
 
	

       $100-$40-$10 + 0.9×$65 = $109 
     
 
	

       Order 0 
     
 
	

       π 
      1(2) = 0 
     
 



	

       +3 
     
 
	

       $100-$0-$10 + 0.9×$70 = $153 
     
 
	

       $100-$20-$15 + 0.9×$65 = $124 
     
 
	

       $100-$40-$15 + 0.9×$65 = $104 
     
 
	

       Order 0 
     
 
	

       π 
      1(+3) = 0 
     
 








Here are a few key takeaways from how the system behaves based on current calculations. When you’re in state 0 (no inventory), it’s smart to order 2 units — this not only avoids the stockout penalty but also gives you a bit of extra stock as a safety net. In state 1, the current plan is already working well — you just keep reordering regularly to stay in a good rhythm. But once you get to state 2, it’s actually better not to order — you’ve got enough stock, and skipping the order helps you avoid those extra holding costs. And for state 3 or more, the best move is again to skip ordering and let your inventory come down a bit. You’re holding too much, and it’s costing you — so the smart thing to do is work through what you’ve got before bringing in more.




As a result, the policy has changed. New policy looks like π1: {0→2, 1→1, 2→0, 3+→0}.




We have finished the first iteration of generalized policy iteration and now it is perfect time to move one step ahead and start our section iteration. The process is quite similar but definitely with different results. Using the new policy π1 and current values V1, we compute V1 as shown in table 4.5.




Table 4.5 Second iteration of policy evaluation.




	


        State 
      


 
	


        Action (π 
       1) 
      


 
	


        Immediate Reward 
      


 
	


        γV 
       1(next) 
      


 
	


        V 
       2(s) 
      


 



	

       0 
     
 
	

       Order 2 
     
 
	

 Sales: $0 + Order: -$40 + Stockout: $0 = -$40 
     
 
	

 +0.9×$70 = $63 
     
 
	

 $23 
     
 



	

       1 
     
 
	

       Order 1 
     
 
	

 Sales: $100 + Order: -$20 + Holding: -$5 = $75 
     
 
	

 +0.9×$75 = $68 
     
 
	

 $143 
     
 



	

       2 
     
 
	

       Order 0 
     
 
	

       Sales: $100 + Order: $0 + Holding: -$5 = $95 
     
 
	

 +0.9×$75 = $68 
     
 
	

 $163 
     
 



	

       +3 
     
 
	

       Order 0 
     
 
	

 Sales: $100 + Order: $0 + Holding: -$15 = $85 
     
 
	

 +0.9×$70 = $63 
      



 
	

       $148 
     




           
       


 








Next states are obtained based on transition dynamics. In state 0, by ordering 2 items, next state will be 2 which its value is $75. Similarly for state 1, by ordering 1 item, and fulfilling 1 demand, the next state will be 1 again. In state 2, by ordering nothing and 1 unit demand, the next state will be state 1. However, for state +3, by fulfilling 1 unit of demand and order nothing, it will transit to state 2 which its value is $70.




Compared to previous iteration, there are a few important changes in the new policy that really make a difference. First, in state 0, the agent now chooses to order 2 units instead of just 1. This costs a bit more up front, but it’s worth it — it helps avoid the $30 stockout penalty and adds some buffer stock for the next day. In state 2, the new policy says to skip ordering, which saves $20 immediately, and also lowers the holding cost from $10 to $5, since the inventory naturally drops after a sale. And in state 3 or higher, the agent still doesn’t order, which again saves $20, and you still get to sell 1 unit, so you're making revenue without adding more to your already full shelves. These changes help strike a better balance between staying stocked and keeping costs low.




Based on the obtained evaluation, we can check if we can improve π1 using V2 to obtain π2 as shown the calculations in table 4.6.




Table 4.6 Second iteration of policy improvement (with round up values)




	


        State 
      


 
	


        Order 0 
      


 
	


        Order 1 
      


 
	


        Order 2 
      


 
	


        Best Action 
      


 
	


        New Policy π 
       2



 



	

       0 
     
 
	

 $0-$0-$30 + 0.9×$23 = -$9 
     
 
	

 $0-$20-$30 + 0.9×$143 = $79 
     
 
	

 $0-$40-$0 + 0.9×$163 = $107 
     
 
	

       Order 2 
     
 
	

       No change 
     
 



	

       1 
     
 
	

 $100-$0-$0 + 0.9×$23 = $121 
     
 
	

 $100-$20-$5 + 0.9×$143 = $204 
     
 
	

 $100-$40-$5 + 0.9×$163 = $202 
     
 
	

       Order 1 
     
 
	

       No change 
     
 



	

       2 
     
 
	

 $100-$0-$5 + 0.9×$143 = $224 
     
 
	

 $100-$20-$10 + 0.9×$163 = $217 
     
 
	

 $100-$40-$10 + 0.9×$148 = $183 
     
 
	

       Order 0 
     
 
	

       No change 
     
 



	

       +3 
     
 
	

 $100-$0-$15 + 0.9×$163 = $232 
     
 
	

 $100-$20-$15 + 0.9×$148 = $198 
     
 
	

 $100-$40-$15 + 0.9×$148 = $178 
     
 
	

       Order 0 
     
 
	

       No change 
     
 








The final policy improvement value calculation is similar to what we have done in previous iteration: for each action, we compute the expected return by taking sales revenue, subtracting the ordering cost and any holding or stockout penalty, and then adding the discounted value of the next state, based on our updated value estimates — that’s the γV(next) part.




After two rounds of policy evaluation and improvement, the process converged: our updated policy π2 turned out to be exactly the same as the previous one, π1.




That means we’re done and the policy has stabilized. So, the optimal inventory policy is: {0→2, 1→1, 2→0, 3+→0}.




What’s really fascinating is what this tells us from a business perspective. The generalized policy iteration process uncovered a smart and adaptive inventory strategy. When the system is out of stock, the best move is to order 2 units, which might feel aggressive at first, but it considers long term gain not immediate reward and therefore it prevents a costly chain reaction of stockouts and lost customers.




With 1 unit in stock, it’s optimal to order just 1, keeping things steady without overstocking. And when there are 2 or more units, the best action is to skip ordering entirely — this temporary pause helps cut down on holding costs and frees up cash flow.




What’s powerful here is that this strategy wasn’t obvious from the beginning. Our initial guess — “just order 1 unit every time” — seemed reasonable, but it actually failed to adapt to different inventory situations. Through recursive evaluation, generalized policy iteration helped us see that context matters: sometimes spending more up front (like ordering 2 units) saves a lot more in the long run, while other times, doing nothing is the smartest move.




This is the beauty of this powerful algorithm and more importantly optimization mindset. It doesn’t just search randomly or rely on intuition. Instead, it systematically explores the space of possible policies, using each round of learning to improve the next. And when the loop finally stops, we’re not just left with a working policy — we gain confidence that this policy is the best possible choice within the system’s rules and goals.




In the next section, we’re going to bring everything together. After building the intuition, understanding the theory, and walking through a small example, it’s time to scale up. We’ll tackle a more realistic business optimization problem — one with more complexity, more states, and real operational trade-offs. And this time, we’ll get hands-on. You’ll see how to translate these ideas into code, step by step to solve the problem from scratch. This is where the theory meets practice.




4.4 Hands-on code: solving a resource allocation problem




In the modern business world, companies are constantly facing a tough and recurring challenge: how to allocate limited resources — whether it's money, people, or time — across multiple competing options to get the most value. This gets even trickier when outcomes are uncertain, resources are tight, and every decision affects what you can (or can’t) do next.




To make this more concrete, imagine a tech startup with a limited budget. It needs to decide how to invest its funds across four potential projects: a safe but small product improvement, a high-risk innovation, a low-risk market expansion, and a medium-risk platform upgrade. Each project has different odds of success, different payoffs, and different costs. The catch? You can’t do them all — you have to pick carefully. And once you commit, you won’t know if it worked until the resources are already spent.




We begin by defining our problem and parameters involve in it. Listing 4.1. shows settings we will use to define our allocation problem but you can always play with these parameters to examine the problem and solution from different angles.




Listing 4.1 Defining Problem Class


class ResourceAllocationMDP:
   
    n_projects: int = 4          #A
    max_budget: int = 10         #B
    max_allocation: int = 5      #C
    discount_factor: float = 0.9 #D
    
    def __post_init__(self):
       
        self.project_names = [f"Project_{chr(65+i)}" for i in range(self.n_projects)] #E
        
       
        self.project_params = { #F
            0: {"base_return": 2.1, "volatility": 0.3, "success_prob": 0.7},
            1: {"base_return": 2.9, "volatility": 0.5, "success_prob": 0.5},
            2: {"base_return": 1.8, "volatility": 0.2, "success_prob": 0.8},
            3: {"base_return": 2.3, "volatility": 0.4, "success_prob": 0.6},
        }








We’ve defined four distinct projects to represent a mix of risk and return profiles — covering a wide range of investment scenarios the agent might face. The idea is to model realistic trade-offs that businesses encounter all the time.




For instance, Project 1 is a low-risk, medium-return option — something safe and steady, like a product improvement with predictable outcomes. Project 2 is the opposite: it’s high-risk but high-return, representing a bold innovation or breakthrough idea that could pay off big, or fail entirely. Project 3 keeps things extremely safe — it’s very low-risk with low return, more like a maintenance or minor efficiency upgrade. And finally, Project 4 offers a balanced trade-off, with moderate risk and a fairly strong return, similar to expanding into a new but somewhat familiar market.




As always, let’s define Markov decision process components for resource allocation problem. Starting from state space, we can consider set of two vectors to shape our state:




	Budget remaining vector: it can take values between {0,1,2,...,Maximum budget} which represents available resources.

	Project status vector: as its length equal to the number of projects, the value at each position shows the status of that project. There are three status flags 0: Project not yet attempted, 1: Project completed successfully, and -1: Project attempted but failed.




This state representation satisfies the Markov property: all information necessary for optimal future decisions is contained in the current state, regardless of how that state was reached. Listing 4.2. shows how we define state for our problem.




Listing 4.2 Defining State Space


def create_state_space(mdp: ResourceAllocationMDP) -> list[tuple]:
 
    states = []
    
    # Generate all possible combinations of remaining budget and project outcomes
    for budget in range(mdp.max_budget + 1): #A
        
        for proj_state in range(3**mdp.n_projects): #B
            
            proj_outcomes = []
            temp = proj_state
            for _ in range(mdp.n_projects):
                proj_outcomes.append(temp % 3 - 1)  #C
                temp //= 3
            
            states.append((budget, tuple(proj_outcomes)))
    
    return states








Let’s see few examples of state space representation to grasp a clear picture on how it looks like. Given the full budget is 10, and four projects available:




	S1 = (10,(0,0,0,0)): Full budget available, no projects attempted.

	S2 = (6,(1,0,-1,0)): 6 units remaining, Project A succeeded, Project C failed.

	S3 = (0,(1,1,0,0)): No budget remaining, Projects A and B succeeded.




Now let’s switch the gears to define our action space. The action space consists of tuple of two dimensions: project id, and allocation amount for that project. Total number of actions is multiplication of these two. Here are details for each dimension plus a special action for do nothing:




	Project id takes value between {0,1,2,...,n-1}. Moreover, we include {-1} for defining special action.

	Allocation amount takes values between {0,1,2,...,Maximum Allocation Amount} in which Maximum Allocation Amount is a parameter defined by user and planner.

	Special action (-1,0) represents “do nothing” or “cease allocation”.




Before we let our agent start making decisions, we need to lay down some ground rules — action constraints that reflect the reality of running a business. After all, not every action is valid in every situation. These constraints make sure our decisions are realistic and respect the limits of the system.




First, there’s the obvious resource constraint: You can’t allocate more than you have. So the allocation amount must always be less than or equal to the remaining budget. No overspending, no dipping into funds that don’t exist. Second, the agent can only choose to allocate resources to projects that haven’t been attempted yet. If a project is already in progress or completed, it’s off the table. This keeps the model clean and reflects real-world logic — you can’t re-invest in something that’s already underway or finished. And finally, when the agent does choose to invest in a project, it has to be a meaningful investment: No zero allocations. If you're picking a project, you have to commit some actual resources — no placeholder or empty moves. This avoids wasteful or indecisive actions and forces the agent to make real trade-offs. Listing 4.3 shows how we define all of these logics, constrains and action dynamics.




Listing 4.3 Define Action Space


def create_action_space(mdp: ResourceAllocationMDP) -> list[tuple]:
 
    actions = [(-1, 0)]  #A
    
    for project_id in range(mdp.n_projects): #B
        for allocation in range(1, min(mdp.max_allocation + 1,  #C
  mdp.max_budget + 1)):
            actions.append((project_id, allocation))
    
    return actions








Now let’s talk about how the environment actually responds to the agent’s actions — in other words, how the state changes over time based on the decisions made. This is where the transition probability function, P(s'|s,a), comes into play. It captures the uncertainty that’s baked into the real world — especially in cases like project planning, where putting resources into something doesn’t guarantee it’ll succeed.




Here’s the setup: whenever the agent allocates resources to a project, there's a chance the project succeeds, and a chance it fails. But the probability of success isn’t fixed — it depends on how much you're willing to invest. Allocate just a little, and you’re rolling the dice. Allocate more, and your chances improve. However, there’s a catch: you don’t get linear returns. The first few units of budget help a lot, but each additional unit gives you less and less of a boost. This models a very real business truth — that throwing more money at something helps, but only up to a point.




Mathematically, we model it like this: Let’s say project i has a base success probability p(base,i) Then, the enhanced probability is min(0.95, p(base,i) + α.(allocation-1)).




Here, α = 0.05 is the enhancement factor, which controls how much each extra unit of allocation improves the odds. We cap the total probability at 0.95 to keep things realistic — even with heavy investment, nothing is guaranteed.




Let’s make this concrete with a few examples for Project A, which has a base probability of 0.7. If you allocate 1 unit, the success probability is exactly the base P = 0.7. If you allocate 3 units, the boost is 0.05 × (3 - 1) = 0.1 and P = min(0.95,0.7 + 0.1) = 0.8. If you go all in with 6 units, the boost is 0.25 but we cap it: P = min(0.95,0.7 + 0.25) = 0.95. Listing 4.4 shows how we define transition dynamics function.




Listing 4.4 Transition Dynamics Function


def transition_probability(mdp: ResourceAllocationMDP, 
                         state: tuple, 
                         action: tuple, 
                         next_state: tuple) -> float:
 
    budget, proj_outcomes = state #A
    next_budget, next_proj_outcomes = next_state #A
    project_id, allocation = action #A
    
    if project_id == -1: #B
        return 1.0 if state == next_state else 0.0 #B
    
    if allocation > budget or allocation <= 0: #C
        return 0.0
    
    if proj_outcomes[project_id] != 0: #D
        return 0.0
    
    if next_budget != budget - allocation: #E
        return 0.0
     
    base_prob = mdp.project_params[project_id]["success_prob"] #F
    enhanced_prob = min(0.95, base_prob + (allocation - 1) * 0.05)#F
    
    expected_outcomes = list(proj_outcomes)
    
    if next_proj_outcomes[project_id] == 1: #G
        expected_outcomes[project_id] = 1 #G
        if tuple(expected_outcomes) == next_proj_outcomes: #G
            return enhanced_prob #G
    
    elif next_proj_outcomes[project_id] == -1: #H
        expected_outcomes[project_id] = -1 #H
        if tuple(expected_outcomes) == next_proj_outcomes: #H
            return 1.0 - enhanced_prob #H
    
    return 0.0 #I








This dynamic gives the agent an interesting trade-off: spend more to increase confidence, or take a chance and save resources for other projects. It's this probabilistic feedback loop that makes sequential decision-making both challenging and interesting — you’re always weighing immediate gains against uncertain futures.




The reward structure is where everything comes together — it defines what the agent is really trying to optimize. Real resource allocation often involves multiple objectives. Primary objective is expected financial return and secondary objectives could be risk minimization, strategic alignment, and social impact.




In our setup, the reward function R(s,a,s') reflects a mix of economic forces that any decision-maker would face when allocating resources under uncertainty. It doesn't just reward success; it also accounts for failure, costs of action, and even the cost of inaction. Let’s walk through each part.




When a project succeeds, the agent earns a return that depends on how much was allocated and how valuable the project is. Specifically, the reward is calculated as the base return of the project multiplied by the amount of resources committed to it. This makes sense: the more you invest in a project that works out, the bigger the payoff. It mimics real-world investments where returns scale with the size of your bet — assuming that bet pays off.




But not every bet does. If a project fails, there’s a penalty. The agent loses half the amount it invested (-0.5). This models sunk cost — money that was spent but didn’t generate value. And it introduces a healthy dose of risk into the system: go big, and you might win big — but if it goes sideways, your losses scale too.




On top of that, there’s the operational cost of allocating resources at all. Even if a project succeeds, just choosing to invest has a cost: management time, logistics, coordination. We model this as a small negative reward (-0.1) proportional to the amount allocated. It’s not huge, but it adds up — and it reminds the agent that every action, even a good one, comes with friction.




Finally, if the agent chooses to do nothing, that’s not free either. Unused budget is penalized slightly (-0.1) to reflect opportunity cost — money left idle could’ve been working somewhere. This pushes the agent to make use of its resources wisely, instead of sitting on them indefinitely. Listing 4.5 shows the way we define reward function.




Listing 4.5 Reward Function


def reward_function(mdp: ResourceAllocationMDP, 
                   state: tuple, 
                   action: tuple, 
                   next_state: tuple) -> float:
    budget, proj_outcomes = state
    next_budget, next_proj_outcomes = next_state
    project_id, allocation = action
    
    reward = 0.0
    
    if project_id == -1: #A
        return -0.1 * budget  #A
    
    reward -= allocation * 0.1 #B
    
    for i in range(mdp.n_projects):
        if proj_outcomes[i] == 0 and next_proj_outcomes[i] != 0: #C
            if next_proj_outcomes[i] == 1: #D
                # Reward based on project's expected return and allocation
                base_return = mdp.project_params[i]["base_return"]
                reward += base_return * allocation
            else:  #E
                reward -= allocation * 0.5
    
    return reward








In designing these reward structure, we used strategies we have discussed in chapter 1 specifically reward normalization, and balancing. These values are chosen arbitrarily to make reward function normalized but it’s a matter of parameter fine tuning and you can change them. Together, this reward setup creates the kind of incentives a real business would face. It encourages meaningful investment, rewards smart risk-taking, punishes reckless or wasteful spending, and nudges the agent away from passivity. What we end up with is not just a mathematical reward function — but a behavioral framework that guides the agent to act like a strategic business planner: cautious but opportunistic, cost-aware, and value-driven.




So, we have a policy—our current best guess for how to act. But how good is it, really? Before we can improve our strategy, we first need to measure its worth. This is the job of policy evaluation: to calculate the value function, for our current policy. Think of it as an audit. We're not making any new decisions yet; we're just taking stock of our current plan to see how it plays out in the long run.




The function in Listing 4.6 does exactly this. It’s an iterative algorithm that applies the Bellman expectation equation over and over again until the value estimates for every state stop changing. It’s like letting the ripples in a pond settle. We start with an arbitrary guess for the values (usually all zeros) and in each iteration, we update the value of every state based on the values of its potential next states.




Listing 4.6 Policy Evaluation Function


def policy_evaluation(mdp: ResourceAllocationMDP, 
                     states: list[tuple], 
                     policy: dict[tuple, tuple], 
                     value_function: dict[tuple, float],
                     theta: float = 1e-6) -> dict[tuple, float]:
 
    actions = create_action_space(mdp)
    
    iteration = 0
    while True:
        delta = 0.0
        new_value_function = value_function.copy()
        
        for state in states:
            old_value = value_function[state]
            
            action = policy.get(state, (-1, 0))  #A
            
            expected_value = 0.0
            for next_state in states:
                trans_prob = transition_probability(mdp, state, action, next_state)
                if trans_prob > 0:
                    reward = reward_function(mdp, state, action, next_state)
                    expected_value += trans_prob * (reward + mdp.discount_factor * value_function[next_state]) #B
            
            new_value_function[state] = expected_value
            delta = max(delta, abs(old_value - expected_value)) #C
        
        value_function = new_value_function #D
        iteration += 1
        
        if delta < theta: #E
            break
    
    print(f"Policy evaluation converged in {iteration} iterations")
    return value_function








The policy evaluation step loops through all states, using the Bellman equation to update each state's value based on the current policy — by averaging over all possible next outcomes, weighted by their probabilities and rewards. This process continues until changes in the values become negligible, indicating convergence. The final value function reflects how good each state is under the current policy, serving as the foundation for future policy improvement.




Once we’ve evaluated our policy and have a solid value function, the next logical question is: “Can we do better?” This is where policy improvement comes in. It's the action-oriented part of our cycle. We take our newfound knowledge about state values and use it to make greedier, smarter choices.




The function in Listing 4.7 implements this logic. It walks through every state and, for each one, considers all the actions it could possibly take. It's no longer bound by the old policy. Instead, it asks, “If I were in this state, which action would give me the best possible return right now, based on my current understanding of the world?”




Listing 4.7 Policy improvement Function


def policy_improvement(mdp: ResourceAllocationMDP, 
                      states: list[tuple], 
                      value_function: dict[tuple, float]) -> tuple[dict[tuple, tuple], bool]:
    
    actions = create_action_space(mdp)
    new_policy = {}
    policy_stable = True #A
    
    for state in states:
        budget, proj_outcomes = state
 
        valid_actions = [] #B
        for action in actions: #B
            project_id, allocation = action #B
 
            if project_id == -1: #B
                valid_actions.append(action) #B
            elif (allocation <= budget and  #B
                  project_id < mdp.n_projects and  #B
                  proj_outcomes[project_id] == 0): #B
                valid_actions.append(action) #B
 
        best_action = None #C 
        best_value = float('-inf') #C
        
        for action in valid_actions:
            expected_value = 0.0
            for next_state in states: #D
                trans_prob = transition_probability(mdp, state, action, next_state) #D
                if trans_prob > 0:
                    reward = reward_function(mdp, state, action, next_state) #D
                    expected_value += trans_prob * (reward + mdp.discount_factor * value_function[next_state]) #D
            
            if expected_value > best_value: #E
                best_value = expected_value #E
                best_action = action #E
        
        new_policy[state] = best_action if best_action else (-1, 0) #F
    
    return new_policy, policy_stable








To answer this, it calculates the action-value, for every valid action. It does this by looking one step ahead: for a given action, it sums up the immediate rewards and the discounted values of all possible next states, weighted by their transition probabilities. This is the same one-step lookahead we saw in the Bellman equations. After checking all valid actions from a state, it simply picks the one with the highest expected value. This becomes the new recommended action for that state in our new policy.




The policy improvement step checks whether any state's recommended action has changed; if even one differs, the policy is marked unstable. If no changes occur across all states, the policy is deemed optimal and the algorithm stops. This greedy update ensures continuous progress toward the best possible decisions.




Now we want to put everything together. We’ve seen the two key moves in our strategic dance: evaluation and improvement. Now, let's choreograph the full performance. generalized policy iteration is the master algorithm that combines these two steps into a powerful loop, driving the agent relentlessly toward the optimal policy. It’s the engine that powers our resource allocation solver.




The code in Listing 4.8 brings it all to life. We start from scratch: the value function is initialized to all zeros, and the initial policy is to be completely passive— “do nothing” in every state. Then, the main loop begins. This is efficient flavor of generalized policy iteration known as value iteration. Instead of running policy evaluation to full convergence every single time, we perform just one sweep of value updates across all states (a single-pass evaluation). Immediately after this sweep, we update our policy by making it greedy with respect to these new, slightly more accurate values.




Listing 4.8 Generalized Policy iteration Function


def generalized_policy_iteration(mdp: ResourceAllocationMDP, 
                               max_iterations: int = 100) -> tuple[dict, dict, list]:
        
    states = create_state_space(mdp)
    actions = create_action_space(mdp)
    print(f"State space size: {len(states)}")
    
    value_function = {state: 0.0 for state in states} #A
    policy = {state: (-1, 0) for state in states}  #A
    
    convergence_history = []
    
    for iteration in range(max_iterations):
        print(f"\nIteration {iteration + 1}:")
        print("-" * 30)
        
 
        old_value_function = value_function.copy()
        delta = 0.0
        
        for state in states: #B
         
            action = policy.get(state, (-1, 0)) #B
            
            expected_value = 0.0 #C
            for next_state in states:
                trans_prob = transition_probability(mdp, state, action, next_state) #C
                if trans_prob > 0:
                    reward = reward_function(mdp, state, action, next_state)
                    expected_value += trans_prob * (reward + mdp.discount_factor * old_value_function[next_state]) #D
            
            value_function[state] = expected_value
            delta = max(delta, abs(old_value_function[state] - value_function[state])) #E
            
        print(f"Policy evaluation sweep complete. Max value change: {delta:.6f}")
 
        policy_stable = True #F
        old_policy = policy.copy() #F
 
        for state in states:
            budget, proj_outcomes = state
            
            valid_actions = [] #G
            for action in actions: #G
                project_id, allocation = action #G
                if project_id == -1:  
                    valid_actions.append(action) #G
                elif (allocation <= budget and  #G
                      project_id < mdp.n_projects and  
                      proj_outcomes[project_id] == 0): #G
                    valid_actions.append(action)
            
            best_action = None
            best_value = float('-inf')
            
            for action in valid_actions: #H
         
                action_value = 0.0
                for next_state in states:
                    trans_prob = transition_probability(mdp, state, action, next_state)
                    if trans_prob > 0:
                        reward = reward_function(mdp, state, action, next_state)
                        action_value += trans_prob * (reward + mdp.discount_factor * value_function[next_state]) #I
                
                if action_value > best_value:
                    best_value = action_value
                    best_action = action
            
            policy[state] = best_action if best_action else (-1, 0)
            
            if old_policy.get(state) != policy[state]: #J
                policy_stable = False
        
        policy_changed = sum(1 for s in states if old_policy.get(s) != policy.get(s))
        print(f"Policy improvement sweep complete. Policy changes: {policy_changed}")
 
        convergence_history.append({ #K
            'iteration': iteration + 1,
            'policy_changes': policy_changed,
            'max_value_change': delta
        })
        
       
        if policy_stable: #L
            print(f"\nPolicy converged after {iteration + 1} iterations!")
            break
            
    return policy, value_function, convergence_history








This evaluate-improve rhythm repeats. In each iteration, value information flows backward from future states, sharpening our estimates. This, in turn, allows for better greedy choices in the policy improvement step. The changes might be small at first, but they compound. The delta tracks how much the value function is changing, giving us a sense of how close we are to settling on the truth. Meanwhile, we track policy changes to see how strategy is evolving.




The loop for generalized policy iteration terminates when we complete a full sweep and the policy no longer changes (policy stable remains true). At this magical moment, the dance is over. The policy has stabilized because it has reached a point where it is perfectly in sync with its own value function. This is the optimal policy, and its corresponding optimal value function. We have not just found a good plan; we have mathematically proven that no better plan exists.




For those who wish to dive deeper and experiment with the code themselves, the complete source file for this resource allocation problem is available in the book's official GitHub repository. This includes the full implementation of problem, the value iteration solver, and the scripts used to generate the convergence plots and policy analysis visualizations discussed in the following section.




We highly encourage you to download the code, run it, and try tweaking the parameters—like the project returns or the budget—to see how the optimal policy changes.




After all the numbers have been crunched and the algorithm has converged, what have we actually learned? A list of optimal actions for thousands of states is hard to interpret. This is where visualization becomes indispensable. By plotting the results, we can transform raw data into strategic insights.




Figure 4.8 would show us two key things. First, a convergence plot. We'd see the max_value_change jump around, peaking at 6.92 in iteration 2, before steadily falling. More dramatically, we'd see the policy_changes plummet from 780 in the first iteration to zero by the ninth, confirming the algorithm has found a stable solution.




Figure 4.8 Visualization of results for resource allocation problem.





Second, and more importantly, we visualize the optimal policy itself, which reveals the agent's strategy. Looking at the optimal first moves from a state of full budget:




	With a small budget (1-2 units): The policy is conservative. It allocates everything to Project C, the safest bet (80% success), even though its return is lowest. This minimizes the risk of early failure.

	With a medium budget (3-6 units): The policy shifts, investing in Project A. This project offers a solid return (2.1) with a good success rate (70%), representing a balanced risk-reward profile.

	With a large budget (7 units): A fascinating change occurs. The policy takes its most aggressive action, allocating funds to Project B, the high-risk, high-return moonshot (50% success for a 2.9 return). With enough resources in reserve, the agent is willing to gamble for the biggest payoff.

	With a very large budget (8-10 units): The policy surprisingly reverts to the balanced Project A. This suggests that once a certain value is locked in, the extreme risk of Project B is no longer optimal for maximizing the total expected return.




This isn't a simple set of rules; it's a nuanced, state-dependent strategy. The agent acts like a savvy portfolio manager: starting cautiously, taking calculated risks when appropriate, and then consolidating gains. The project allocation frequencies confirm this: Project A is the workhorse (chosen in 27% of decisions), while Project B is the opportunistic bet (21%). This is the kind of sophisticated strategy that dynamic programming can uncover.




4.5 Limitations of dynamic programming




Dynamic programming is an elegant and powerful method that provides a solid theoretical foundation for reinforcement learning. However, in practical real-world problems, it often faces significant limitations. The two main challenges are commonly known as the curses of dimensionality or NP-hard problem, which make it difficult to scale dynamic programming to large or complex environments.




First is the curse of a massive state space. Dynamic programming methods require us to iterate over every single state. Our resource allocation problem, with a budget of 12 and 4 projects, had 1,053 states (13×34)—manageable, but not trivial. Now, imagine a slightly more realistic scenario: a budget of 100 (granulated by dollar) and 10 projects. The state space would be 101×310, which is nearly 6 million states. A real-world problem in logistics or finance could have trillions of states or continuous state variables, making it computationally impossible to even store the value function, let alone iterate through it.




Second is the curse of a perfect model. Dynamic programming is a planning algorithm, not a learning one. It works perfect only if you hand it map of the cave—the complete transition probabilities and the reward function. In our examples, we could define these rules. But in the real world, do we know the exact probability that a marketing campaign will succeed if we invest $50,000? Do we know the precise reward function for customer satisfaction? Almost never. The world's rules are often hidden. This requirement for a perfect model is dynamic programming greatest weakness and the primary motivation for the model-free methods we will explore in later chapters.




These limitations mean you will rarely use dynamic programming to solve a large, practical reinforcement learning problem from end to end. Its value is not in direct application, but in conceptual clarity. Generalized policy iteration, Bellman equations, and value iteration are the foundational principles upon which almost all of reinforcement learning is built. The other explorers in our cave are all, in their own way, trying to find clever ways to achieve the same optimal results as dynamic programming, but without having to pay its impossibly high cost.




4.6 Summary




	Dynamic programming is a collection of model-based algorithms used to solve Markov decision processes by breaking a problem into a sequence of smaller, recursive subproblems.

	Fundamental requirement of dynamic programming is the perfect model of the environment, meaning the state transition probabilities and reward function are completely and fully given and known.

	The Bellman equations are the core mathematical tool, defining the value of a state or state-action pair recursively in terms of the values of successor states.

	We use two key metrics: the state-value function which measures the long-term value of being in a state, and the action-value function which measures the value of taking an action from that state.

	Generalized Policy Iteration is the central pattern for solving Markov decision process, involving an interaction between two processes:

	Policy Evaluation: Calculating the value function for the current policy.

	Policy Improvement: Greedily updating the policy based on the current values.

	Value Iteration is an efficient dynamic programming algorithm that combines a single sweep of evaluation with an improvement step in each iteration, guaranteeing convergence to the optimal policy.

	The hands-on resource allocation example showed dynamic programming uncovering a nuanced strategy—be conservative with low budgets, takes balanced actions with medium budgets, and acts opportunistically with high budgets.

	Dynamic programming is severely limited by the curse of dimensionality, making it computationally and memory-wise intractable for problems with large state spaces.

	The requirement of a perfect model is a second major weakness of dynamic programming as such models are unavailable or inaccurate for most real-world problems, motivating the need for model-free methods.



 welcome




Thank you for purchasing the MEAP for Reinforcement Learning for Business. I’m excited to have you on this journey to explore how we can use one of the most powerful areas of AI to solve meaningful, real-world challenges.




To get the most from this book, you should have a basic knowledge of Python programming. While not strictly required, a general understanding of machine learning concepts will be beneficial.




I decided to write this book because I saw a major gap in the available resources on Reinforcement Learning. Most books focus on theory or use examples from the world of games, which can feel abstract. This book takes a different approach. We use practical problems inspired by business—like optimizing supply chains or setting prices—to make the core ideas of RL intuitive and easy to grasp.




And while we use business optimization as our theme, this book is for anyone seeking a practical, hands-on path to mastering Reinforcement Learning. The challenges of resource allocation, scheduling, and dynamic response are universal in software and data science. By grounding the concepts in tangible examples, you'll gain a deep, intuitive understanding of RL that you can apply anywhere, far beyond the specific case studies in the book. You'll learn how to frame a problem, design a custom environment to simulate it, and apply a range of powerful RL algorithms to find optimal solutions.




Your feedback during this MEAP process is invaluable. It will help me create the clearest, most practical, and most effective book possible. Please be sure to post any questions, comments, or suggestions you have in the liveBook discussion forum.




Thanks again for your interest and for joining the MEAP!




—Hadi Aghazadeh
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