O'REILLY"

.Beyond
Vibe ing

From Coder to Al-Era Developer

Addy Osmani

“Al is rewriting the rules of software engineering, and Beyond Vibe Coding is
the handbook every modern software developer needs. Addy Osmani shows
how to transform Al's raw coding power into thoughtful, reliable products
and helps readers to embrace the added speed without compromising
on robustness, maintainability, or long-term value.”

Sergio Pereira, fractional CTO and author of Generative Al for Software Development

Beyond Vibe Coding

Al is transforming software development, shifting programmers from writing code to collaborating with
Alin anintent-driven workflow. Vibe coding—a prompt-first, exploratory approach where you describe what
you want in natural language and let a large language model fill in the blanks—represents a radical shift in the
developer's role from writing code to directing it. However, vibe coding comes with a serious caveat: like a
high-speed exploratory vehicle, it can quickly take you off the beaten path. Beyond Vibe Coding: From Coder
to Al-Era Developer explores how Al-powered coding assistants like GitHub Copilot and OpenAl Codex are
reshaping the way we build software, from automating routine coding tasks to influencing architecture and
design decisions.

Written by Addy Osmani, this guide provides developers, tech leads, and organizations with practical
strategies to integrate Al into their workflows effectively. Learn how to formulate clear goals and constraints
for the Al critically review Al-generated code, and integrate those pieces into a coherent whole. Whether
you're adopting Al tools today or preparing for the future of software engineering, this book offers insights
and hands-on examples to keep your skills sharp in this evolving landscape.

e Understand how Al-assisted development is Addy Osmani is an engineering
reshaping programming leader working on Google Chrome.

* Master techniques for refining, validating, and He leads Chrome’s Developer
debugging Al-generated code, and understand Experience organization, helping
how and why LLM generations can go wrong reduce the friction for developers

« Explore multiagent coding systems to build great user experiences.

and Al-driven software workflows

e Future-proof your career by adapting
to Al's growing role in development

SOFTWARE DEVELOPMENT

US $69.99 CAN $87.99
ISBN: 979-8-341-63475-6

9 ‘798341 634756

56999

LD OREILLY"

Beyond Vibe Coding

From Coder to AI-Era Developer

Addy Osmani

O'REILLY"

Beyond Vibe Coding
by Addy Osmani

Copyright © 2025 Addy Osmani. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA 95401.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Louise Corrigan Indexer: Ellen Troutman-Zaig
Development Editor: Sarah Grey Interior Designer: David Futato
Production Editor: Katherine Tozer Cover Designer: Susan Brown
Copyeditor: nSight, Inc. Cover lllustrator: José Marzan Jr.
Proofreader: Piper Content Partners Interior lllustrator: Kate Dullea
August 2025: First Edition

Revision History for the First Edition
2025-08-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9798341634756 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Beyond Vibe Coding, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

This book is not intended as legal advice. Please consult a qualified professional if you require legal
advice.

979-8-341-63475-6
LSI

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9798341634756

Table of Contents

o] 1 [« vii

Partl. Foundations

1. Introduction: WhatIs Vibe Coding?..........cooviiiiiiiiiiiiiiiii i 3
The AI Coding Spectrum: From Vibe Coding to AI-Assisted Engineering 4
Beyond Lines of Code: Programming with Intent 13
Productivity, Accessibility, and the Changing Nature of Programming 16
A Glimpse of the Tools: The Emerging Ecosystem 18
AI Models: The Landscape for Code Generation 25
Major Models 26
Choosing the Right Model for Your Needs 29
The Benefits and Limitations of Vibe Coding: A Nuanced View 30
Summary and Next Steps 38

2. The Art of the Prompt: Communicating Effectively with Al 39
Prompt Engineering Fundamentals 40
Specificity and Clarity: Writing Prompts That Deliver 41
Iterative Refinement: The Feedback Loop with the AI 43
Comparing Two Prompts 46
Prompting Techniques: A Toolbox for Effective Communication 49

Advanced Prompting: Combining Techniques and Handling Complexity 58
Summary and Next Steps 63

Partll. Al Coding in Practice

3. The 70% Problem: Al-Assisted Workflows That Actually Work. 67
How Developers Are Actually Using AI 69
The Golden Rules of Vibe Coding 76

¢. Summary and Next Steps

4. Beyond the 70%: Maximizing Human Contribution........................ ... 81
Senior Engineers and Developers: Leverage Your Experience with Al 82
Midlevel Engineers: Adapt and Specialize 84
Junior Developers: Thrive Alongside Al 90
Summary and Next Steps 95

5. Understanding Generated Code: Review, Refine, Own................cevvenenn. 97
From Intent to Implementation: Understanding the AI’s Interpretation 98
The “Majority” Problem: Most Common Doesn’t Mean Most Appropriate 99
Code Readability and Structure: Patterns and Potential Issues 100
Debugging Strategies: Finding and Fixing Errors 101
Refactoring for Maintainability: Making AI Code Your Code 103
The Importance of Testing: Unit, Integration, and End to End 104
Summary and Next Steps 106

6. Al-Driven Prototyping: Tools and Techniques.c.covviviinniinnnnns, 109
Rapid Prototyping with AI Assistants 109
AT Prototyping Tools 111
From Concept to Prototype: Iterative Refinement 112
Evolving a Prototype Toward Production 115
Addressing Challenges in AI Prototyping 119
Summary and Next Steps 120

7. Building Web Applicationswith ALcoovviiiiiiiiiiiiiiiiiiiennn 121
Setting Up the Project: Scaffolding with AI 121
Database Design and Integration 130
Full Stack Integration: Marrying Frontend and Backend 132
Testing and Validation for AI-Generated Web Applications 136
Examples of Successful AI-Built Web Projects 138
Summary and Next Steps 140

iv | Tableof Contents

Partlll. Trustand Autonomy

8. Security, Maintainability, and Reliability................c.oooiiiiiiiiii.n, 143
Common Security Vulnerabilities in AI-Generated Code 143
Security Audits 149
Building Effective Testing Frameworks for AI-Generated Systems 153
Performance Optimization 157
Ensuring Maintainability in AI-Accelerated Codebases 160
Code Review Strategies 165
Best Practices for Reliable Deployment 167
Summary and Next Steps 170

9. The Ethical Implications of Vibe Coding.ccovvviiiiiiiiiiiinns, 17
Intellectual Property Considerations 172
Transparency and Attribution 177
Bias and Fairness 178
Golden Rules for Responsible AI Use 181
Summary and Next Steps 186

10. Autonomous Background CodingAgents...........ccovviiiiiiiiiinennnnnen. 187
From Copilots to Autonomous Agents:

What Are Background Coding Agents? 187
How Do Autonomous Coding Agents Work? 188
How Do Background Agents Compare to In-IDE AI Assistants? 192
Combining Multiple AI Models to Maximize Strengths 195
Major Players in Autonomous Coding Agents 198
Challenges and Limitations 199
Best Practices for Using Al Coding Agents Effectively 202
Summary and Next Steps 204

11. Beyond Code Generation: The Future of Al-Augmented Development............ 205
Al in Testing, Debugging, and Maintenance 205
Al-Driven Design and User Experience Personalization 207
The Evolution of Project Management with Al 210
How Autonomous Agents Could Change Software Engineering 212
The Future of Programming Languages:

Natural-Language-Driven Development? 217
How Vibe Coding Is Reshaping the Industry 220
Summary and Next Steps 222

INAEX. .. e 225

Table of Contents | v

Preface

We're in the midst of a profound shift in how software is built. Professional vibe
coding—the art of collaborating with AI to create software—is transforming develop-
ers from code artisans into product visionaries and orchestrators.

Vibe coding is about leveraging AI’s prowess to handle the heavy lifting of coding,
allowing developers to focus more on ideas, design, and high-level problem solving.
As Andrej Karpathy quipped, it’s like “forget[ting] the code even exists” and simply
building—describing what you need and letting the AI fill in the implementation
details. This can lead to order-of-magnitude productivity gains, making the mythical
“10x engineer” potentially a 100x reality.

Who This Book Is For

This book is written for three key audiences. The first is experienced developers and
engineering leaders who want to multiply their impact. If you've been coding for
years and feel the weight of repetitive tasks, this book will show you how to delegate
the mundane to Al while elevating your role to architect and strategist. You'll learn to
build faster without sacrificing the quality standards you've developed over your
career.

Second, this book serves product-minded engineers who see code as a means to an
end rather than an end itself. If you're frustrated by the gap between having a vision
and implementing it, vibe coding can dramatically compress that distance. You’ll dis-
cover how to rapidly prototype, iterate, and ship products that would have taken
months with traditional approaches.

Here’s the most counterintuitive thing I've discovered about Al tools: they help expe-
rienced developers more than beginners. This seems backward—shouldn’t AT democ-
ratize coding?

vii

https://oreil.ly/7bnWe
https://oreil.ly/8UGID

The reality is that Al is like having a very eager junior developer on your team. They
can write code quickly, but they need constant supervision and correction. The more
you know, the better you can guide them.

This creates what I call the knowledge paradox: senior engineers and developers use
AT to accelerate what they already know how to do, while juniors try to use it to learn
what to do, and the results differ dramatically.

I've watched senior engineers use Al to:

« Rapidly prototype ideas they already understand
« Generate basic implementations they can then refine
« Explore alternative approaches to known problems

+ Automate routine coding tasks
Meanwhile, juniors often:

o Accept incorrect or outdated solutions

« Miss critical security and performance considerations
o Struggle to debug Al-generated code

o Build fragile systems they don't fully understand

Third, this book addresses engineering managers and CTOs grappling with the impli-
cations of Al on their teams and processes. You'll gain insights into how to structure
teams, evaluate talent, and maintain code quality in an era where a single engineer
can produce what once required a team. The strategies here will help you navigate the
transition while keeping your engineering culture intact.

What you worn't find here is a beginner’s guide to programming. While AT makes cod-
ing more accessible, wielding it effectively still requires judgment that comes from
experience. Think of this book as advanced training for those ready to transcend tra-
ditional programming and embrace a new paradigm of software creation.

What to Expect

This book explores how the role of developers is evolving, from hands-on-keyboard
programming to product engineering. This means using human judgment to guide
Al, ensuring that quality, architecture, and user needs are met. We still provide the
creativity, system thinking, and empathy that turn a functional program into a great
product. Al doesn’t replace us; it amplifies us—if we wield it wisely.

In Part I, T'll identify domains where vibe coding excels: spinning up new products,
prototyping features, churning out standard CRUD apps or integration code—all

vii | Preface

areas where speed and pattern matching trump deep originality. Conversely, I'll also
look at where we remain cautious about relying on Al for truly complex, low-level,
or novel algorithms where it might stumble. Recognizing the current limits of AI pre-
vents frustration and failure; there’s still plenty only human ingenuity can achieve.

The human element remains the linchpin. We ensure the architecture is sound, debug
the tricky bugs, and judge the quality of code beyond “it runs” Critically, we infuse
development with user-centric thinking—something an AI can’t do. It’s up to us to
make sure the software not only works but works for the users in a meaningful way. In
short, developers become curators and editors of Al output, always aligning it with
real-world needs and high standards.

Part IT looks at the practical aspects of vibe coding. Embracing new workflows is cru-
cial. Techniques like “roll, not fix” remind us not to get bogged down—sometimes
regenerating code is faster than debugging it. Parallel prompting lets us solve prob-
lems from multiple angles at once. We must balance rapid iteration with eventual
refinement, ensuring we don’t accumulate unsustainable mess. Best practices like
modularizing Al code, thorough testing, and iterative refinement help keep the code-
base clean and robust despite the speed of development.

As projects scale, we have to manage an accelerated influx of code and potential tech-
nical debt. AI can flood your repo with code; only discipline and good engineering
practices (plus maybe Al-assisted refactoring) will keep it maintainable. On the peo-
ple side, we'll hire and train engineers to be adept at using Al tools, valuing adaptabil-
ity and system design skills. And we’ll know when to dial back into traditional
modes—Ilike when solidifying a product for long-term maintenance or handling criti-
cal systems where caution trumps velocity.

Part III covers security and reliability, ethics, and an arsenal of tools that make vibe
coding possible today: Al-augmented IDEs like Cursor and Windsurf that integrate
models from Anthropic, Google’s Gemini, and OpenAl to understand your entire
codebase and assist at every turn. Knowing which tools and models to apply (Claude’s
variants for different tasks, ChatGPT for general Q&A) is part of the new developer
skill set. They each have strengths: Cursor for interactive editing, Windsurf for
context-heavy tasks, chat interfaces for brainstorming and troubleshooting, etc.

Looking to the future, I anticipate even more abstract ways of building software
(“vibe designing” through GUIs and higher-level input), diminishing reliance on
generic libraries as Al generates more bespoke code, and even software that evolves
on its own based on AI feedback loops. In this future, success in software will lean
heavily on human creativity, distribution savvy, and the ability to harness network
effects, because the brute-force barrier of coding will be so low. New user experience
paradigms may emerge, driven by AI's ubiquity—from conversational interfaces to
adaptive Uls and beyond.

Preface | ix

In all of this, one theme stands out: the fusion of human and AI strengths. Neither
alone is as powerful as both together. Al brings speed, breadth of knowledge, and
tireless execution. Humans bring direction, depth of understanding, and values. The
optimal workflow of the future is a symbiosis—think of it as pairing a master crafts-
person with a superpowered apprentice who can instantly fetch any tool or reference.
The craftsperson’s expertise is still crucial to create something truly excellent.

For developers reading this: it’s time to embrace these tools and paradigms. This book
will encourage you to experiment with an Al coding assistant on your next project,
practice breaking problems down for an Al to solve parts of it, and cultivate that skill
of crafting prompts and curating results. But it will also urge you to double down on
what makes you uniquely valuable—your ability to design systems, empathize with
users, and make judgment calls that align software with reality.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a general note.

This element indicates a warning or caution.

x | Preface

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

141 Stony Circle, Suite 195

Santa Rosa, CA 95401

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata and any additional informa-
tion. You can access this page at https://oreil.ly/BeyondVibeCoding.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Watch us on YouTube: https://youtube.com/oreillymedia.

Preface | xi

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/BeyondVibeCoding
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

PARTI

Foundations

CHAPTER1
Introduction: What Is Vibe Coding?

Al is reshaping how we build software, introducing new paradigms for coding that
range from free-form prompting to structured assistance. Imagine writing software
by simply describing what you want it to do—almost like talking to a teammate—
while an Al translates those ideas into code. This is the essence of vibe coding, a
prompt-first, exploratory approach where you describe what you want in natural lan-
guage and let a large language model (LLM) fill in the blanks. The term was recently
coined by AI pioneer Andrej Karpathy to describe this new way of programming,
where developers “fully give in to the vibes” of AI assistance.

In this book, I'll dive deeper into what vibe coding means for professional developers
and how it compares with—and complements—what I call Al-assisted engineering, a
more formal augmented coding process. I'll explore how the developer’s role is evolv-
ing in this AI-first era, what tools and workflows can maximize your effectiveness,
and how to address the unique challenges of letting an AI loose on your codebase. I'll
also look at where vibe coding shines, where it struggles, and how to balance the
speed of Al generation with the wisdom of human oversight. By the end, you should
have a clear picture of how to harness “the vibes” in your own coding practice—
responsibly and effectively—to become not just a faster coder but a more creative and
impactful software product engineer in the age of Al

In this chapter, we explore how the role of the developer is transforming from writing
detailed instructions for machines to collaborating with AI by expressing intent (see
Figure 1-1). We'll see why this “vibe shift” in programming is such a big deal, how it
works at a high level, and what opportunities and challenges it brings.

https://oreil.ly/Ot6CR

2

Developer

Figure 1-1. A conceptual illustration of programming with intent. The developer provides
a high-level specification (the “intent”), and the Al translates it into code. This highlights
the shift from writing code line by line to guiding code generation at a high level.

The Al Coding Spectrum: From Vibe Coding
to Al-Assisted Engineering

Over the past year, I've observed a fascinating split in how developers—especially
intermediate and advanced web developers—embrace Al in their workflow. On one
end of the spectrum lies vibe coding. On the other end is what I'll call Al-assisted
engineering: a disciplined method of weaving Al into each phase of software develop-
ment, from design through testing, under clear constraints. Both approaches leverage
powerful AI, but their goals, audiences, and expectations differ markedly. Through-
out this book, I'll explore these two extremes and what they mean for modern web
development.

The Vibe-Coding Approach: Code by Conversation

In vibe coding, you leverage powerful LLMs as coding partners, letting them handle
the heavy lifting of code generation so you can focus on higher-level goals. As one
Business Insider summary puts it, vibe coding “means using Al tools...for the heavy
lifting in coding to quickly build software” As NVIDIAs CEO Jensen Huang says,
thanks to Al, “the hottest new programming language” is English, not Java or Python.
Instead of manually typing out every function and bug fix, you interact with the Al in
natural language—sketching out features, reviewing suggestions, and iterating based
on the AT’s output.

This approach represents a dramatic shift from traditional programming to Al-
assisted development. Conventional coding demands careful planning, syntax preci-
sion, and often painstaking debugging. Vibe coding flips that script: “It’s not really
coding—TI just see stuff, say stuff, run stuff, and copy-paste stuff, and it mostly works,”

4 | Chapter 1: Introduction: What Is Vibe Coding?

https://oreil.ly/nvcFW
https://oreil.ly/nvcFW

Karpathy quipped to Business Insider, highlighting how AI can turn high-level
instructions into working code with minimal manual effort.

Developers move from writing detailed instructions for computers to orchestrating
outcomes with the help of Al. As an example, Karpathy describes building a web app
by continually accepting the ATs suggestions: “I ‘Accept All' always, I don’t read the
diffs anymore....When I get error messages, I just copy paste them in....Sometimes
the LLMs can't fix a bug so I just work around it or ask for random changes until it
goes away.” The code “grows” beyond what hed normally write himself, yet the project
comes together quickly through iterative prompting and fixing. Essentially, vibe cod-
ing treats coding as an interactive conversation with your Al pair programmer rather
than as a solo slog through syntax and stack traces. The goal is speed and exploration
—to get a working solution with minimal friction.

Several trends converged to make vibe coding possible. First, modern AI coding
assistants (like OpenAl’s Codex, ChatGPT, Anthropic’s Claude, etc.) have become
astonishingly good at generating and correcting code. In the same post, Karpathy
notes this is “possible because the LLMs...are getting too good”—they have ingested
vast swaths of GitHub code and can produce plausible solutions for many tasks.

Second, new developer tools have emerged to integrate these models seamlessly into
the coding workflow (more on these tools in a moment). Finally, the developer com-
munity’s mindset is evolving to trust Al assistance for bigger and bigger chunks of
work. It’s no longer just autocomplete on steroids; it's handing over whole functions
or files to the Al In practical terms, vibe coding often feels like having an unlimited
supply of eager junior developers to implement whatever you ask for—except they
work at the speed of cloud computation.

One of the most eye-popping promises of vibe coding is the productivity boost. Early
adopters report being able to create software features or prototypes ten to a hundred
times faster than before. For instance, Codeium Windsurf engineer John Hoestje
muses, “Why be a 10x engineer when you could be a 100x engineer?” This suggests
that, with the right Al-powered IDE, extraordinary productivity is within reach.
Tools like Windsurf, an Al-enhanced IDE, “can dramatically accelerate development
time, allowing you to achieve that 100x productivity” While 100x might be an
extreme scenario, even more conservative studies find huge gains.

Developers can generate boilerplate code in seconds, fix bugs in the blink of an eye,
and even have Al write tests or docs, compressing workflows that used to take days
into mere hours. No longer limited by typing speed or memory, a single developer
armed with Al can often prototype a full stack application in a weekend—something
that might have taken a small team weeks to accomplish in the past. It’s not just hype
either; as I noted in a January 2025 blog post for Pragmatic Engineer, surveys show
that 75% of developers have already integrated some form of Al into their workflows,
and many companies report double- or triple-digit percentage improvements in

The Al Coding Spectrum: From Vibe Coding to Al-Assisted Engineering | 5

https://oreil.ly/Ki6iJ
https://oreil.ly/_nfZn
https://oreil.ly/_nfZn
https://oreil.ly/khEfs

development velocity. In short, AI pair programmers are turning the mythical “10x
engineer” into a very real (and reachable) 100x engineer phenomenon.

To understand how revolutionary this is, consider a concrete example. A developer
wants to build a simple web app that counts words in a podcast script and estimates
reading time. Instead of starting from scratch, they open an Al-powered coding envi-
ronment and tell the AI their idea. Within minutes, the Al produces a working proto-
type. The developer then says, “Make the stats counters bright colors and add a PDF
export,” and the AI updates the code accordingly. The result is a functional tool,
deployed with one click—all achieved in under 10 minutes. This real-world scenario
(reported by a creator using Replit's AI) shows how vibe coding enables extremely
rapid, iterative development driven by high-level requests. Similarly, nonengineers
are jumping in: the same article describes one laid-off marketer with no coding back-
ground who used an Al coding assistant to build 100 simple web tools that collec-
tively reached the top of Product Hunt. When the barrier to creating software drops
this low, were not just increasing productivity for seasoned developers—were funda-
mentally expanding who can develop software in the first place.

However, vibe coding comes with serious caveats. Because youre deferring so much
to the AI, you might end up with code that “works” in the happy path but hides a
minefield of bugs or poor design decisions. Without a solid plan or constraints, an
LLM might generate a solution that lacks proper error handling, security checks, or
scalability. In fact, AI-generated code can sometimes be built on sand: it appears solid
but has hidden issues that only surface under real-world conditions. I've seen cases
where a developer vibed their way to a complete feature in record time, only to dis-
cover later that the code was inefficient and hard to maintain. This kind of “house of
cards” code can collapse under pressure.

For example, imagine asking an AI to “whip up a user login system” The AI might
produce a working authentication flow quickly, but perhaps it uses a simplified
encryption method or a known vulnerable library. If you deploy that without deeper
inspection, you're taking on faith that everything is sound. Seasoned engineers know
that’s risky: code running in production has to be understood and trusted. As one
expert put it, “Vibe coding your way to a production codebase is clearly risky. Most of
the work we do as software engineers involves evolving existing systems, where the
quality and understandability of the underlying code is crucial” Vibe coding, at its
extreme, can bypass those quality gates.

Another challenge is that vibe coding tends to downplay upfront planning. Tradi-
tional software engineering values designing for clarity and constraint-thinking
through data models, choosing appropriate patterns, and writing out at least a mini-
mal spec. Vibe coding flips this: it starts with no scaffolding, diving straight into
implementation via prompts. That can lead to a meandering development process.
You might prompt your way into a corner—say the Al chooses a state management

6 | Chapter 1: Introduction: What Is Vibe Coding?

https://oreil.ly/guqFZ
https://oreil.ly/ppXCf
https://oreil.ly/ppXCf

approach or library you didn’t intend, and now you have to either steer it back or live
with it. Without an initial blueprint, the final architecture might be haphazard. This is
fine for a quick proof of concept, but it’s troublesome in a larger codebase where con-
sistency matters.

Vibe coding isn’t inherently “bad” In fact, its emergence is part of the ongoing
democratization of programming. It lowers the barrier to creating software, much
like early low-code platforms or scripting languages did. A motivated nonengineer
with a clear idea could potentially build a simple app through vibes alone. And for
experienced developers, vibe coding can be a powerful brainstorming tool—it’s like
pseudo coding but with immediate, runnable results. The key is recognizing its limits.
Speed without discipline can lead to brittle software, so vibe coding requires a vigilant
human in the loop. I often remind developers (and myself) that “vibe coding is not an
excuse for low-quality work” It should be the start of a solution, not the end.

The Al-Assisted Engineering Approach: Structure with an Al Partner

On the opposite end of our spectrum is Al-assisted engineering—a more structured,
methodical way of building software with AI as a copilot at every step. Here, the
developer remains very much in the driver’s seat. Al-assisted engineering includes
using Al across the traditional software development lifecycle (SDLC), such as Al-
powered autocomplete, chat, code migrations, bug detection, test generation, and
both granular (function, module, component) and full code generation (see
Figure 1-2).

(Developer creates) VDeveIoper prompts‘
plan/spec Al (targeted)
—>
i generates code (Developer reviews)
snippet and iterates

Figure 1-2. The plan-first Al-assisted engineering workflow: developers create specifica-
tions, provide targeted prompts to Al systems, review generated code snippets, and inte-
grate approved solutions into their projects.

The Al Coding Spectrum: From Vibe Coding to Al-Assisted Engineering | 7

You begin with a plan (even if it’s lightweight), outlining what you need to build and
defining the constraints and acceptance criteria up front. Then you incorporate Al
tools in a targeted manner to accelerate or enhance parts of that plan. In contrast to
prompt-first vibe coding, we might call this “plan-first” development with AI sup-
port. This could be as formal as a mini-product requirements document (a short PRD
for a feature) or as simple as a checklist of tasks. The crucial difference is that you
ground the work in clear intent and constraints before letting the AT loose.

Consider a React developer tasked with creating a new interactive dashboard compo-
nent. In an Al-assisted engineering approach, they might begin by writing down the
component’s responsibilities and API:

Dashboard component shows a list of analytics cards, supports filtering by date range,
and has refresh and export buttons. It should fetch data from our API (with proper
error handling), and it must follow our design system for styling.

This outline is essentially a spec. The developer might even sketch a quick data model
or identify existing utility functions to reuse. Only then do they bring in the AI: for
instance, using an Al-enabled IDE or coding assistant to generate the skeleton of the
component based on that description. The AI might provide a starting implementa-
tion of the React component with placeholders for data fetching and stubbed event
handlers. Because the developer provided clear guidance, the Al's output is more
likely to align with the project’s needs (such as using the right design system classes or
calling the correct API endpoints). The code isn’t a surprise; it’s the product of a well-
formed request.

Al-assisted engineering doesn't stop at code generation for a single component. It
permeates the entire development lifecycle in a controlled fashion. For routine coding
tasks, an Al autocompletion tool like GitHub Copilot can suggest the next few lines as
you type, saving keystrokes when you’re implementing known patterns. For example,
as you write a unit test, your Al helper might autosuggest assertions based on the
function name. Speaking of tests, you might use Al to generate test cases once a fea-
ture is in place—feeding the component’s spec or code into a prompt to get sugges-
tions for edge cases you should check. The idea is to augment the engineer’s work, not
replace it. You're still thinking through the logic and verifying correctness; the AT just
offloads some of the grunt work.

When it comes to code migration or refactoring, Al can be a godsend. Imagine need-
ing to convert a class-based React component to a modern function component with
hooks. Rather than doing it all manually, you could ask an Al assistant to transform
the code or at least outline the steps. With a good understanding of the old and new
patterns, an LLM can produce a draft of the refactored code, which you then review
and polish. This structured use of Al tackles well-defined tasks (like “migrate this
code from Redux to React Context API”) one by one rather than handing the Al an
open-ended “build whatever” mandate.

8 | Chapter 1: Introduction: What Is Vibe Coding?

Perhaps the most dramatic form of Al-assisted engineering is using Al to generate a
full mini-application or feature from a detailed specification. Several tools now allow
you to input a description of an app, something akin to a mini-PRD, and get back a
working codebase or prototype. For instance, a developer could supply a spec for:

a to-do list app with React frontend and Node.js backend, supporting user authentica-
tion and real-time updates

The AI tool would scaffold the project, create the key components, and set up the
database schema.

This isn’t magic; it’s an accelerated version of what a diligent engineer might do when
starting a new project (setting up directories, choosing libraries, writing boilerplate
code). The important thing is that the AD’s creativity is bounded by the constraints
given in the spec. The result is a minimum viable product (MVP) that adheres to the
requirements you provide. An experienced developer, treating this output correctly,
will not assume it’s production-ready on the first generation. Instead, they’ll treat it as
a first draft. They’ll run the app, write or regenerate tests to validate each feature,
review the code for any inconsistencies or insecure configurations, and refine as
needed. In short, they’ll apply all their usual engineering rigor—just accelerated by an
AT ability to produce bulk code from a blueprint.

The goals of Al-assisted engineering are different from those of vibe coding. The aim
here is not just to get working code quickly but to get high-quality code more effi-
ciently. It's about boosting productivity while preserving (or even improving) the reli-
ability of the outcome. A team practicing Al-assisted engineering might say, “We
want to deliver this feature two times faster but with zero compromise on our
standards”

The audience for this approach is typically professional developers and teams who
have established processes (code review, testing, deployment pipelines) that they
aren’t willing to abandon. These are intermediate to senior engineers who see Al as a
powerful new tool in their toolbox, not a replacement for the toolbox. They likely
have seen what happens when you cut corners, so they value practices that keep soft-
ware maintainable. (By way of comparison, the audience for vibe coding includes solo
developers hacking together demos, product-minded folks with some coding knowl-
edge, and even relatively new programmers who leverage Al to compensate for gaps
in their expertise.)

The expectations in Al-assisted engineering are that humans remain in control of
decisions, and the AI provides suggestions or accelerators. Code quality, perfor-
mance, and security remain paramount, so every Al-generated piece is subject to the
same scrutiny as if a junior developer wrote it. Treat the AI as your intern, not your
replacement. You might delegate tasks to it, but you must review its work. Just as
youd never deploy code written by a human intern without a code review, you

The Al Coding Spectrum: From Vibe Coding to Al-Assisted Engineering | 9

shouldn’t deploy AI-written code without understanding it. This mindset keeps the
engineering discipline front and center.

Different Mindsets, Different Expectations

Vibe coding and Al-assisted engineering are two distinct mindsets. Vibe coding is
top-down and exploratory: you start with a broad idea and let the implementation
emerge through interaction with the AI It’s a bit like improvisational jazz—minimal
structure, lots of room for creative riffs, and you discover the shape of the song as you
play. Al-assisted engineering is systematic and iterative: more like classical composi-
tion, where you begin with a theme or motif (your requirements) and methodically
develop it, perhaps using some improvisation (Al suggestions) within the measures of

a written score. Both can produce “music,” but the process and the kind of result will
differ.

For an intermediate or advanced web developer, your expectations for each approach
are key. If youre vibe coding, you expect to be surprised. The AI might come up with
an approach you wouldn't have written yourself—maybe it uses a different library or
a programming idiom you’re less familiar with. Part of the allure is learning from
those surprises or quickly getting past things you find tedious. But you also need to
expect hiccups. Vibe-coding enthusiasts should go in with eyes open that they’ll be
responsible for that tricky last stretch. The magic is real, but it’s not total.

If youre practicing Al-assisted engineering, your expectations are more measured
and arguably more realistic for long-term projects. You expect the Al to save you time
and perhaps inspire a solution or two but not to do your whole job. In fact, a good
Al-assisted engineer might use vibe-style prompting in microdoses within a larger
framework. For example, while implementing a well-specified module, they might
momentarily switch into “vibe mode” to ask, “Hey Al, generate a quick utility func-
tion to format these dates,” then immediately switch back to engineer mode to inte-
grate and check that function. The mindset is that AI is a collaborator that works
under your guidance. You allocate tasks to it where it excels (like boilerplate, repeti-
tive code, broad-stroke implementations), and you handle the rest yourself (critical
logic, integration, final review).

Expectations here include improved productivity, fewer rote mistakes (an Al is less
likely to misspell a variable name, for instance), and possibly a broader solution
search space (the AI might suggest an algorithm you hadn’t thought of). But you also
expect to invest time in validation. Debugging Al-assisted code is still debugging:
you run tests and step through the code in the debugger if needed. The difference is
that you might find yourself debugging code the AI wrote for you, which is a new
experience that comes with a learning curve. Chapter 5 will discuss this experience in
detail.

10 | Chapter 1: Introduction: What Is Vibe Coding?

The two approaches’ goals highlight a fundamental difference between them: vibe
coding optimizes for velocity in the short term, whereas Al-assisted engineering opti-
mizes for sustained velocity and reliability. A vibe coder might say, “I need to get this
app running by tonight to see if the idea works” An Al-assisted engineer would say,
“I need to build this feature fast, but it should be robust enough to live in our code-
base for years” The former is satisfied if the code basically functions; the latter cares
that the code is clean enough for others to build upon.

These differences naturally appeal to different audiences. Less-experienced develop-
ers or those outside the engineering discipline might lean toward vibe coding because
it lowers the barrier to entry and provides instant gratification. I've met product man-
agers and designers dabbling in code via vibe prompts, treating the AI almost like a
superpowered Stack Overflow that gives them full solutions. On the flip side, seas-
oned developers and engineering teams tend to favor Al-assisted engineering.
They’ve been burned by fragile code before, so they start from a place of “let’s do this
right, even if we use new tools to go faster” They put in a bit more effort up front
(writing that mini-PRD, setting up the project structure) in exchange for long-term
payoffs.

Finding Your Place on the Spectrum

It's tempting to ask: which approach is better? The truth is, vibe coding and Al-
assisted engineering aren’t mutually exclusive categories: they represent two ends of a
spectrum, and real-world workflows often blend elements of both. A developer might
start a project with a burst of vibe coding to scaffold something novel, then switch
into engineering mode to firm it up. Or they might generally follow an Al-assisted
discipline but occasionally—for a trivial one-off script or a throwaway prototype—
say, “You know what, I'll just vibe code this and see what I get” The key is under-
standing the trade-offs and using the right approach for the right context.

Think of vibe coding as a high-speed exploratory vehicle: it can take you off the
beaten path quickly, and it’s great for discovery. Al-assisted engineering is more like a
reliable train on a track: you have to lay down rails first (plan), but it’s a safer bet and
more likely to reach a defined destination without derailing. Intermediate and
advanced developers should be capable of driving both vehicles, but they’ll choose
based on the task at hand. If the goal is to innovate or ideate rapidly (say, in a hacka-
thon or when validating an idea’s feasibility), vibe coding provides momentum. Just
remember to tighten things up if you plan to reuse that code. If the goal is to build a
maintainable product feature in a professional setting, leaning toward Al-assisted
engineering ensures you don’t end up with a black-box chunk of code in your code-
base that nobody truly understands.

One fascinating thing I've observed is that as developers gain experience with Al
tools, their usage often naturally shifts from the vibe end toward the engineering end.

The Al Coding Spectrum: From Vibe Coding to Al-Assisted Engineering | 11

Initially, the novelty of having an AI generate entire blocks of code from a single
prompt is alluring—who wouldn't want to try essentially “talking” an app into
existence?

But after the honeymoon, pragmatism kicks in. Developers start to see where the Al
shines and where it stumbles. They learn to break problems down and feed them to
the Al in pieces rather than asking for the whole solution in one go. In effect, they
move from being “prompt artists” to becoming AI “orchestra conductors”—still uti-
lizing the AT’s creative power but guiding it with a skilled hand and following a clear
score. In my own practice, I've become more deliberate with prompts, often writing
small pieces of pseudocode or comments and asking the Al to complete them instead
of just asking open-ended questions. This way, I get the benefits of vibe-like fluidity
but within a structure I control.

It’s also worth noting that tooling is evolving to support the entire spectrum. On one
side, we have chat-based interfaces and natural-language coding environments
explicitly designed for vibe coding, where you might not even see the code until you
ask for it. On the other, IDEs are adding AI features that seamlessly blend into tradi-
tional coding: for example, AI linters that suggest improvements, documentation
generators that explain code, and version-control bots that can automatically create a
pull request and suggest changes for review. These tools encourage an engineering
mindset by fitting into the usual development workflow (edit, review, test, etc.) while
still leveraging AL

The distinction between vibe coding and Al-assisted engineering might even blur
over time as best practices emerge. We may find that what today feels like “vibing”
will gain more guardrails, and what feels like “structured engineering” will become
more fluid. In fact, I'd argue that the ideal future is one where we can move up and
down this spectrum effortlessly: exploring creative solutions with AI when we want
to but always reining things in with solid engineering practices when it’s time to
harden and ship the software.

This spectrum of approaches represents a significant evolution in how we work with
AT tools today. Yet even as we refine our techniques for collaborating with AI—
whether through rapid vibe coding or structured engineering workflows—a more
fundamental transformation is taking shape. The very nature of programming itself is
changing. We're moving away from the traditional paradigm where developers must
translate their ideas into explicit instructions and toward a future where we can
express our intentions directly and let AT handle the translation into code.

This shift challenges our most basic assumptions about what it means to be a pro-
grammer. For generations, our value has been tied to our ability to think like
machines—to break down problems into discrete, logical steps that computers can
execute. But what happens when machines become capable of understanding what
we want, not just what we tell them to do? This is where programming with intent

12 | Chapter 1: Introduction: What Is Vibe Coding?

enters the picture, representing not just a new tool or technique but a fundamental
reimagining of the developer’s role.

Beyond Lines of Code: Programming with Intent

For decades, programming has meant writing instructions: line after line of code tell-
ing the computer how to do something. Each function, loop, and conditional had to
be carefully crafted by a human. Programming with intent flips this script. Instead of
focusing on the low-level implementation, the developer focuses on the outcome or
goal: what you want the program to accomplish. You express that intent in a high-
level way (often in natural language), and the AI system figures out the code to ful-
fill it.

Think of it this way: traditional coding is like giving someone step-by-step directions,
while intent-based coding is like telling them your destination and letting them figure
out the best route. By focusing on the what instead of the how, developers can work at
a higher level of abstraction. This approach isn't entirely new—tools like visual pro-
gramming, low-code platforms, and code generators have long promised to raise the
abstraction level. But today’s AI advancements are finally making it practical to
describe complex behaviors in plain language and get working code in return.

The Rise of the Prompt: From Instructions to Descriptions

At the heart of this shift is the humble prompt. A prompt is the input or question you
give to an Al coding system. In essence, it’s a description of what you want the pro-
gram to do rather than an instruction for how to do it. This can feel very different
from writing code. For example, instead of writing a loop to parse a file, you might
prompt:

Read this CSV file and extract the email addresses of all users older than 18.
The AT will attempt to generate code that accomplishes that description.

Why is this happening now? The rapid progress of LLMs in understanding and gen-
erating text, including programming languages, has been a game changer. These AI
models have been trained on vast amounts of code and natural language text. They
can interpret a prompt that looks like a description of software behavior and translate
it into actual code that implements that behavior. In other words, they've learned the
patterns of how humans describe tasks and how those tasks translate into code.

This rise of prompt-based development means that, as a developer, you increasingly
write descriptions of features and logic in natural language or pseudocode and let the
AT handle the heavy lifting of writing syntactically correct code. The prompt becomes
your new unit of thought. It’s a concise expression of intent. We've gone from telling

Beyond Lines of Code: Programming with Intent | 13

the computer, “Do X, then Y, then Z” to saying, “I need X, Y, and Z done” and trust-
ing the Al to fill in the blanks.

It's important to note that writing a good prompt is itself a skill (which we'll dive into
in Chapter 3). A vague prompt can lead to incorrect or inefficient code, just as a
vague requirement can confuse a human programmer. The better you can articulate
your intent in the prompt, the better the AI’s output will match your needs. This is
why many are calling prompt writing the new programming literacy.

How It Works: The Iterative Cycle and Al’s Role in Code Generation

So how does an AI go from your free-form description to actual, functioning code?
The magic lies in LLMs’ ability to interpret context and generate text. The large in
“large language model” refers to the number of parameters (the internal configura-
tion) it has, often billions or more, which enable it to capture the complexities of nat-
ural and programming languages. These models have been trained on public code
repositories, forums, documentation, and Q&A sites, learning both the syntax of pro-
gramming languages and the semantics of how code is used to solve problems. When
you interact with an Al coder, you're tapping into this expansive learned knowledge.
Let’s break it down in simple terms:

Understanding the prompt
When you provide a prompt (for example, “Generate a function that checks if a
number is prime”), the AI model analyzes the text of that prompt. Modern mod-
els from Google, OpenAl, and Anthropic have been trained on countless exam-
ples of language and code, so they use statistical patterns to infer what youre
asking. Essentially, the AI tries to predict the most likely completion of the
prompt with code that makes sense.

Leveraging context
These Al systems often take into account additional context beyond just the
single-line prompt. For instance, if youre working in an IDE with an Al assistant,
the model might also consider the current file content, your coding style, com-
ments, and even related files. All this context helps the Al generate code that fits
your project. It’s similar to how a human developer reads surrounding code and
documentation to understand what to do next.

Generating code
Once the model has understood (or at least made a best guess about) your intent,
it proceeds to generate code. Under the hood, it does this one token at a time (a
token is a piece of a word or code symbol) using probabilities learned during its
training. The model doesn’t “think” in the conventional sense; it doesn’t have a
compiler or runtime checking the code. It's simply very good at continuing text in
a way that has a high chance of being correct code because it has seen so many

14 | Chapter 1: Introduction: What Is Vibe Coding?

examples before. If the prompt and context are clear, the code it produces can be
remarkably accurate and even follow best practices it has seen in its training data.

Validating with human oversight
Importantly, the AI doesn’t run off and deploy your application for you. You
remain in the loop. You review the generated code, test it, and can accept or
modify it. In many cases, the AI might also offer an explanation of the code if
asked, helping you understand the result. The AT’s role is like an assistant that
drafts the code for you—but you, the developer, are still the decision maker who
ensures the code is correct and fits the project’s needs.

What's truly impressive is that this process happens in seconds or less. The high-level
overview is that your description (prompt) goes into a prediction engine (the LLM),
which produces likely code as output. While the inner workings of models involve
complex math and neural network layers, at the user level, it feels almost like collabo-
rating with an expert who can instantly recall how to implement just about anything.

One of the key things to understand about vibe coding (intent-based programming)
is that it’s an iterative, collaborative process between the human and the Al You don’t
just write one perfect prompt and then sit back as the AI writes an entire program
flawlessly. In practice, you engage in a back-and-forth, a feedback loop that gradually
takes a vague idea to polished code.

Here’s how a typical cycle might look:

Step 1: You describe what you want
This is your initial prompt or request. For example:

Generate a function to calculate monthly loan payments given principal, interest rate,
and term.

Step 2: Al provides an initial solution
The AI generates code for that function, complete with parameters and formula
for loan payments. It might even include comments explaining the formula.

Step 3: You review and test
You look at the code. Does it make sense? Does it handle edge cases? You run a
quick test: what if the interest rate is 0? Does it behave correctly? You notice it
might not handle that scenario well.

Step 4: You refine your request or code
If the code isn’t perfect (and often it won't be on the first try), refine it. Maybe
you prompt the Al again (“Modify the function to handle a 0% interest rate
gracefully”), or edit the code yourself and tell the A, “Explain this part,” if some-
thing is unclear. This guidance helps correct any misunderstandings.

Beyond Lines of Code: Programming with Intent | 15

Step 5: Al refines the solution
The Al takes your feedback or new prompt and adjusts the code. Now the func-
tion checks for zero interest and handles it appropriately.

Step 6: Repeat as needed
You continue this loop until satisfied. Perhaps next you ask the Al to also gener-
ate unit tests for this function to ensure it works correctly. It does so, and you run
them to verify all is well.

This collaboration is much like a pair-programming scenario where one partner is
the human and the other is an Al assistant. The human sets the direction and knows
the high-level requirements, while the Al offers suggestions, writes boilerplate, and
speeds up the tedious parts. Neither is effective alone for complex tasks: the AI relies
on the human for direction and validation, and the human offloads some work to the
Al to move faster.

Crucially, the iteration isn't just about fixing errors; it’s also about evolving the solu-
tion. You might start with a very rough prompt and then progressively refine your
intent as you see what the Al produces.

This encourages a mindset of experimentation. If the first attempt isn't right, you
haven’t wasted much time—just refine the prompt or tweak the code and try again. In
traditional coding, writing a module only to throw it away can be frustrating, but
with Al-generated code, the cost of a false start is low, encouraging exploration of dif-
ferent approaches.

Productivity, Accessibility, and the
Changing Nature of Programming

Why is programming with intent such a big deal? This shift has several profound
implications:

Boosting developer productivity

Perhaps the most immediate benefit is speed. Developers can accomplish tasks
faster when the AI handles the rote work. Routine code that might take hours to
write by hand (like setting up database models, API endpoints, or data cleaning
scripts) can often be generated in minutes. Early studies on Al coding assistants
back this up: developers using tools like GitHub Copilot have been shown to
complete tasks significantly faster (one study found a 55% time reduction on a
given task with Copilot assistance). When you multiply these gains across an
entire project, it hints at a future where software development cycles shorten dra-
matically and teams can iterate more quickly.

16 | Chapter 1: Introduction: What Is Vibe Coding?

https://oreil.ly/4Ksmy

Keeping developers “in the flow”

Beyond raw speed, there’s a psychological benefit. Writing boilerplate or looking
up syntax can break a programmer’s flow and train of thought. With an AI han-
dling many of those interruptions, developers can stay focused on the problem
they’re solving. Many users report that with AT help, they feel less frustrated by
tedious tasks and can concentrate on the creative and design aspects of coding. In
other words, it can make coding more enjoyable by offloading the boring parts,
which in turn can improve the quality of the work (a happier coder often pro-
duces better code).

Lowering the barrier to entry

Programming has traditionally required learning the exacting grammar of code
and the quirks of various libraries and frameworks. With intent-based program-
ming, some of that burden shifts to the AI. A newcomer might not remember the
exact syntax to open a file or the parameters of a graphing function, but if they
can describe what they want, the AI can fill in those details. This doesn’t mean
anyone can code complex systems with zero knowledge (you still need to under-
stand what the program should do), but it does mean that the ramp-up to pro-
ducing useful results is shorter. Its conceivable that domain experts (like a
biologist or an economist) could write prototypes in their field by describing
their needs, even if theyre not professional developers. In this sense, program-
ming becomes more accessible to people who have the ideas and intent but not
deep coding skills.

Changing developer roles and skills

As AT takes on more code generation, the role of the human developer evolves.
Skills like architectural design, problem decomposition, and validation become
even more important. You might find yourself spending more time deciding what
to build and reviewing why the code works (or doesn’t) than typing out the syn-
tax. The nature of “knowing how to code” may shift toward “knowing how to get
the AI to code” This could democratize certain aspects of software development
while also elevating the level at which professionals operate. We'll likely see new
best practices centered around how to effectively guide AI (a topic I'll introduce
in Chapter 3 and revisit throughout the book).

Productivity versus creativity
Interestingly, as Al handles more routine coding, human developers can focus on
higher-level creative tasks like refining the user experience, brainstorming new
features, or tackling tricky algorithmic problems that AT might not solve well on
its own. In this ideal scenario, the Al increases productivity on the repetitive 80%
of coding, freeing your mental energy for the inventive 20%. It’s a shift in how we
allocate our effort.

Productivity, Accessibility, and the Changing Nature of Programming | 17

https://oreil.ly/inQHR

However, it’s not all rainbows and sunshine. This new style of development also raises
challenges:

Trust and correctness
Can you trust the code an Al writes? If you don't see every line, there’s a risk of
mistakes going unnoticed. Developers need to thoroughly test and review Al-
generated code. The onus is on the human to ensure the output is correct, secure,
and efficient. Blindly trusting AI output is risky, as we'll discuss.

Losing some low-level skills
If you rely on Al for routine coding, will you gradually lose your ability to write
that code from scratch or debug issues deep in the weeds? It’s a concern akin to
overreliance on calculators weakening arithmetic skills. Developers will need to
consciously balance convenience with maintaining a solid understanding of the
fundamentals.

Shifting job landscape
As programming with intent becomes widespread, the industry might value dif-
ferent skills. There may be less demand for people who are good at just cranking
out boilerplate logic, and more demand for those who can design systems, inte-
grate components, and verify correctness. The nature of software jobs could shift,
with AI handling more implementation and humans focusing on design and
oversight.

Additionally, one of the most critical factors in “vibe coding” is context window size.
Gemini offers the longest context window of all AI models, which can be game
changing when working with large projects. Some models now support context
windows of over a million tokens, allowing them to maintain awareness of entire
applications. Developers can feed entire codebases to an Al for comprehensive
understanding.

Well delve into these trade-offs more at the end of the chapter. But first, let’s familiar-
ize ourselves with the emerging tools that enable this new way of coding.

A Glimpse of the Tools: The Emerging Ecosystem

Vibe coding may be a philosophy, but it’s enabled by a new generation of AI-powered
tools. Experienced developers who want to embrace this workflow will need to get
acquainted with some key platforms and models that make Al-assisted coding
effective.

This section is a quick tour of the essential tools in the vibe coder’s toolkit. These
include Visual Studio Code (VSCode) with its growing ecosystem of Al features and
extensions, next-gen Al-integrated IDEs like Cursor and Windsurf, LLMs like Claude

18 | Chapter 1: Introduction: What Is Vibe Coding?

(in its various versions), and ChatGPT. This section does not cover background cod-
ing agents, but I discuss them in detail in Chapter 10.

As you read this section, don't worry about memorizing specific tool names or fea-
tures; the landscape is evolving fast. The goal is to understand the types of solutions
available.

VSCode + Copilot: Microsoft’s Integrated Al Development Platform

VSCode has transformed from the world’s most popular code editor into a compre-
hensive Al-assisted development platform through its deep integration with GitHub
Copilot. This evolution represents Microsofts vision for keeping Al capabilities
within the familiar VSCode environment that millions of developers already use daily.

GitHub Copilot is an Al-powered coding assistant integrated into VSCode. It pro-
vides code suggestions, explanations, and automated implementations based on natu-
ral language prompts and existing code context. What sets this integration apart is its
seamless nature—Copilot isn’t just an add-on but feels like a natural extension of the
editor itself.

The core of VSCode’s Al capabilities centers on three main modes of interaction.
First, there’s inline code autocompletion, where Copilot provides inline code sugges-
tions as you type, ranging from single-line completions to entire function implemen-
tations. As you write code, ghost text appears with suggestions that you can accept
with Tab or partially accept word by word.

Second, there’s the chat interface, accessible through a sidebar panel where you can
have conversations about your code, ask questions, or request specific implementa-
tions. Third, and perhaps most powerful, is the agent mode that uses tool calling to
access a growing set of capabilities inside Visual Studio. When given a goal, it selects
and executes the right tools step-by-step. This agent mode can analyze your codebase,
propose edits across multiple files, run terminal commands, respond to build errors,
and self-correct in a loop until the task is completed.

What makes VSCode’s Copilot implementation particularly compelling is its support
for the Model Context Protocol (MCP). MCP provides a standardized way for Al
models to discover and interact with external tools, applications, and data sources.
This means Copilot in VSCode can connect to databases, invoke APIs, access docu-
mentation, and integrate with your entire development ecosystem. For instance, with
the GitHub MCP server enabled, you can ask Copilot to “create an issue for each bug
we discussed,” and it will interact directly with GitHubs API to create those issues.
The extensibility through MCP transforms Copilot from a code generator into a
comprehensive development assistant that understands not just your code but your
entire workflow.

A Glimpse of the Tools: The Emerging Ecosystem | 19

https://code.visualstudio.com

To leverage VSCode with Copilot effectively in professional development, start by
exploring the different interaction modes based on your task complexity. For simple
code completions and refactoring, rely on the inline suggestions and the sparkle icon
that appears near errors—click it for AI-powered fixes.

For more complex tasks, switch to agent mode by opening the chat panel and select-
ing “Agent” from the drop-down. Agent mode is optimized for making autonomous
edits across multiple files in your project. It is particularly useful for complex tasks
that require not only code edits but also the invocation of tools and terminal com-
mands. The combination of VSCode’s familiar interface with Copilot’s evolving Al
capabilities offers a compelling option for teams that want enterprise-grade AI assis-
tance without leaving their established development environment.

VSCode + Cline: The Open Source Autonomous Coding Agent

Before exploring purpose-built AI IDEs, it’s worth examining how Cline (formerly
Claude Dev) transforms VSCode into a powerful Al-assisted development environ-
ment. Cline represents a different philosophy from Microsoft’s Copilot. Rather than
being a tightly integrated assistant, it functions as an autonomous coding agent that
can take on complex, multistep development tasks from start to finish. This open
source extension brings capabilities to VSCode that often exceed those found in pro-
prietary Al editors, all while maintaining the flexibility and extensibility that VSCode
users expect.

What distinguishes Cline is its truly agentic approach to software development.
When you give Cline a high-level request like “Create a REST API for user manage-
ment with authentication,” it doesn’t simply generate boilerplate code. Instead, it ana-
lyzes your project structure, plans the implementation across multiple files, creates
proper folder hierarchies, installs necessary dependencies, and can even run tests to
verify the implementation. Throughout this process, Cline maintains transparency by
showing you each planned action—file creations, modifications, and terminal com-
mands—and giving you the opportunity to approve or modify each step. This
human-in-the-loop design provides the perfect balance between automation and con-
trol, allowing developers to leverage AI’s capabilities while maintaining oversight of
their codebase.

Cline’s technical capabilities extend far beyond code generation. It can use browser
automation to research API documentation, debug complex issues by analyzing error
traces across multiple files, and even interact with external services through its MCP
support. For debugging, you can paste an error message, and Cline will trace through
your codebase to identify the root cause, propose a fix, implement it, and add appro-
priate error handling to prevent similar issues. Its MCP integration means Cline can
connect to your database to understand schemas before generating queries, access
your project management tools to align implementations with requirements, or inter-

20 | Chapter 1: Introduction: What Is Vibe Coding?

https://cline.bot

act with any other MCP-compatible service. This extensibility transforms Cline from
a code generator into a comprehensive development partner that understands your
entire technical ecosystem.

For teams, Cline offers several compelling advantages. Being open source, teams can
inspect its code, contribute improvements, or fork it for custom needs—crucial for
organizations with specific security or compliance requirements. It supports multiple
AT providers including Anthropic’s Claude, OpenAI’s models, Google’s Gemini, and
even local models through Ollama, giving teams flexibility in model selection based
on performance, cost, or data residency requirements.

To use Cline effectively, craft detailed prompts that include project context and con-
straints, leverage its ability to analyze your entire codebase before making changes,
and take advantage of its iterative development capabilities. After Cline implements a
feature, you can immediately test it and request refinements in the same conversation
context. The combination of VSCode’s mature ecosystem with Cline’s autonomous
capabilities offers teams a powerful, flexible, and cost-effective path to Al-assisted
development without abandoning their existing tools and workflows.

Cursor: The Al-Driven Code Editor

One of the flagship tools of the vibe-coding movement is Cursor, an Al-enhanced
IDE that has quickly gained popularity among developers seeking a more fluid cod-
ing experience. Cursor is essentially an AI-first code editor (a fork of VSCode, in fact)
that builds state-of-the-art code generation and understanding right into your devel-
opment environment.

Its tagline is “The AI Code Editor;” and it’s designed to let you write and modify code
using plain language instructions. For example, you can highlight a function and ask
Cursor to “optimize this function” or “add error handling here,” and it will instantly
suggest the code changes. Cursor’s Al is project-aware—it indexes your codebase and
understands the context of your files, so it can make more relevant suggestions (far
beyond a simple autocomplete). Cursor IDE integrates LLM capabilities into its core
interface. It's ChatGPT that knows your codebase.

Under the hood, Cursor leverages advanced language models (often Anthropic’s
Claude or OpenAT’s models, depending on your setup) to power its features. It has a
chat sidebar where you can have conversations about your code, and even a “Com-
poser” mode for multistep code generation. Andrej Karpathy himself has used Cur-
sor’s Composer with a model called “Sonnet” in his vibe-coding experiments. This
setup allowed him to literally talk to the editor (using voice-to-text via “SuperWhis-
per”) and have code appear, which he would then accept or refine.

Cursor can not only generate code but also edit existing code when instructed. For
example, you can ask:

A Glimpse of the Tools: The Emerging Ecosystem | 21

https://oreil.ly/aFqAO

Could you make it easier to switch certificates in the transport listener?

Cursor will understand you're referring to your code and propose direct edits in the
relevant file or read from relevant files, such as a specification markdown file (see
Figure 1-3). In the free version, it often provides the diff in the chat for you to
approve; in the pro version, it can auto-apply changes to your workspace.

eoe e ——— ooos
QO P v % MovieDetailsjsx X s icejs 4 FavoriteMovies @ ~ NewChat 00 - x

 GEMINI-MOVIES-REACT src > pages > MovieDetails jsx > 4 MoviaDetais jax

> node_modules 1 inport React, { useState, useEffect, useCallback } from 'react's 3

> public 2 inport { useParans, useNavigate } fron 'react-router-don'; Add cast nformation to this details page

inport { getMovieDetails, getFavoriteMovies } from '../services/movieService'; // Add

Ve gethovieDetails Generating,

> components 3 import { getMovieDetails, getFavoriteMovies, getiovieCredits } from '../services/

~ pages novieService'; // Add getHovieCredits

Il help you add cast information to the movie details page.

AuthCallback jsx 4 import { toggleFavorite } from '../services/movieService'; First, let me check the current movie service to see what
X 5 APl endpoints are available and then add the cast

idhiovieEstals sy 7 const placeholderInage = '/placeholder.png';

£ PopularMovies.jsx 8 ® Read movieService,s

> services 9 7/ simple component to display genres) .

¢ ropees 10 const GenreBadge = ({ genre }) = (Now Il add a functon to fetch castinformation and update

& Aopisx 11 <span style={{ border: 'lpx solid #ccc', borderRadius: '12px’, padding: '0.2em @.6em', the MovieDetails component to display it. I'll add the cast

marginRight: '0.5en’, fontsize: '0.8en’, display: ‘inline-block', marginBottom: '0.5en’ }} APIendpoint to the movie service first:

index.css >

£ main jox 12 {genre.nane} 5 movieService s +13 + x v
& env 5 13

FUNT] /e

O oo 15 * Fetches the cast and crew information for a sp
® eslint.config js 16 function MovieDetails({ session, account }) { * @param {string|nunber} movield - The ID of the
< indexhtml 17 const [movie, setMoviel = useState(null);

* @returns {Promise<object>} — The APT response

{3 package-lockjson 18 const [isFavorite, setIsFavorite] = useState(false); */
0 packageson 19 const [loading, setLoading] = useState(true); export async function getMovieCredits(novield) {
g 20 const [error, setError] = useState(null); if (tmovield) {
® README.md 21 const { movield } = useParans(); // Get movie ID from URL throw new Error("Movie I0 is required to fetd
¥ vite.config s 2 const navigate = useNavigate();
23 console. log(*Fetching credits for movie ${novie
2 const fetchDetailsAndFavoriteStatus = useCallback(asyne () = { It fetchapil /novie/snovierdy/cred
25 if (1movieId) return;
2 setLoading(true); jate the MovieDetails component to fetch and
27 setError(null); stop
28 try 4
2 const details = await getMovieDetails(movield);
0 setovie(details); [
e
5 ourue 3 pd e e TR | (< 21210 > D - =@
> TIMELINE 33 if (session & account) {

© Background Agents ®0 A0 W 0.

Cursor Tab Ln1,Col 1 Spaces:4 UTF-8 LF (} JavaScript JSX (1

Figure 1-3. Cursor’s interface exemplifies the newer breed of IDEs integrating Al By
indexing your project and iterating on prompts, tools like Cursor enable “leaving your

editor running, grabbing coffee, and coming back to fully working features,” delivering
exponential productivity gains.

To use Cursor effectively in a professional workflow, you should take advantage of its
capabilities systematically. Start by opening a chat in Cursor and describe the feature
or fix you want. For instance: add a user login form with email and password, includ-
ing validation and error messages. Cursor will generate the needed code (creating
new files or modifying existing ones) in a draft state. You can review these changes (it
shows a diff or preview) and then hit “Apply” to merge them into your codebase.
Many developers follow this loop: prompt — review — accept. If the suggestion isn’t
perfect, you can refine your prompt (for instance, “Use Tailwind CSS for styling the
form”) or just ask Cursor to fix any issues you spot (“Now, handle the case where the

email is already registered”). In essence, you converse with your code until it looks
good.

Cursor also excels at understanding errors and logs. If you run your code and get a
traceback or error message, you can paste it into the Cursor chat, and often the Al
will analyze it and suggest a fix. This turns debugging into a cooperative experience:

22 | Chapter 1: Introduction: What Is Vibe Coding?

https://oreil.ly/aFqAO

rather than you manually searching Google or Stack Overflow, Cursor’s Al can often
pinpoint the problem and even write the patch. That said, it’s wise to verify the fixes,
as the AT might not always get it right on the first try.

Another pro tip: use Cursor’s ability to take multiple files into account. You can select
a set of files (or let it know about project context in the prompt) so that it considers
your whole codebase when generating code. For example: add a new API endpoint in
the backend to support the login form, and connect it to the frontend form we just
made. Cursor will recall the frontend code it just wrote and help craft the corre-
sponding backend logic. This project-wide context is a game changer compared to
earlier coding assistants that only worked file by file.

In summary, Cursor is like having an Al pair programmer inside your IDE, 24/7. It’s
intuitive (you chat with it in plain language), and it can update your code directly.
The more you practice breaking down tasks and prompting Cursor with clear
instructions, the more you’ll find you can accomplish in a short time. It’s particularly
great for iterative development: you build a bit, run and see output, then immediately
ask Cursor to adjust or extend the code, and repeat.

Windsurf: An Al-Powered IDE with Full Codebase Indexing

Another rising star in the vibe-coding toolbox is Windsurf, an Al-driven develop-
ment environment that takes code understanding to the next level. Windsurf is built
by the team behind Codeium, and it differentiates itself by indexing your entire code-
base and using retrieval techniques to feed the relevant pieces to the AI model as you
work. In practical terms, this means Windsurf is extremely good at handling large
projects where the answer to your question might be spread across many files. Its core
uses something called retrieval-augmented generation (RAG), which is a fancy way of
saying it looks up the parts of your code that are relevant to your prompt and pro-
vides that context to the AI so that its suggestions are consistent with your existing
code.

What does this look like for a developer? Lets say youre new to a big codebase and
need to add a feature. With Windsurf, you can ask in natural language:

Where in the codebase is the user authentication logic handled?

It will search through the index and point you to the right file or even function. Then,
you might open a chat (Windsurf calls it the “Cascade” view, triggered by Cmd+L)
and say:

Add a phone-based two-factor authentication to the login flow.

Because Windsurf has the context of your auth logic, it can generate changes span-
ning multiple files (database, API, frontend) to implement this, making informed
choices that line up with how your system is structured.

A Glimpse of the Tools: The Emerging Ecosystem | 23

https://windsurf.com

Windsurf’s Write mode can boldly apply changes for you: it will create new files or
edit existing ones automatically rather than just suggesting diffs in a sidebar. This can
be a huge time-saver: instead of copy-pasting from suggestions, you see your project
evolving in place. Windsurf essentially tries to take actions on your behalf when its
confident, behaving like an autonomous junior dev implementing features across the
codebase. (Cursor’s philosophy is a bit more conservative, asking for confirmation,
although its Pro version has an “auto-apply” feature too.)

To leverage Windsurf effectively, it helps to understand its strengths:

Codebase Q&A
You can query your codebase in plain English, almost like a custom Stack Over-
flow for your project. This is great for large legacy projects where finding where
something is defined can take hours. Windsurf will answer in seconds by pulling
from the indexed code.

Global context suggestions
Because it feeds relevant files into the model, Windsurf can handle tasks like
“Refactor the payment module to use the new logging utility we wrote” very well,
as it knows about both the payment module and the logging utility.

Modes of operation
Windsurf has multiple modes (Autocomplete, Chat, Command, and Cascade, as
mentioned). The Cascade is like a superchat, where it can consider a broader
context. The Write mode (within chat) actually executes changes. You, as the
engineer, can decide how much autonomy to give it.

For a team, Windsurf can be integrated into daily development much like Cursor.
When picking between them, some developers prefer Windsurf for its speed and
boldness (noting that it feels faster to generate and apply changes) and for working
with very large projects due to its indexing. On the other hand, Cursor’s interface
might feel more familiar to VSCode users. It’s not necessarily an either/or choice—
some engineers keep both handy, or teams might standardize on one.

In sum, Windsurf is an excellent tool if you want an Al coding assistant that truly
“reads the docs/code” before writing. It minimizes the chances of hallucinated func-
tions or misnamed variables because it can look things up. To get the most out of it,
feed it clear instructions and let it rip in Write mode for big tasks, but also feel free to
use it in a more controlled fashion for delicate changes. Always review the changes it
makes (it will show them to you), especially for critical code. Windsurf is smart, but
it’s not infallible. Used wisely, its like a hyperintelligent IDE that knows your entire
project and can implement ideas across it, giving a serious boost to your throughput.

24 | Chapter 1: Introduction: What Is Vibe Coding?

Al Models: The Landscape for Code Generation

The AI coding landscape has transformed dramatically, with multiple powerful mod-
els now competing for developers attention, including models from the Claude,
Gemini, and OpenAl families. Where once a single model might have dominated,
today’s ecosystem offers a rich selection of options, each with distinct strengths that
make them suitable for different coding scenarios.

Understanding Model Categories

Today’s coding models generally fall into several categories based on their approach
and strengths:

Speed optimized
These prioritize quick responses and are ideal for real-time code completion and
rapid iteration. They typically offer lower latency at the cost of slightly reduced
accuracy on complex tasks.

Deep reasoning
These take more time to “think through” problems but excel at complex debug-
ging, architectural decisions, and multistep problem solving. Models with
advanced reasoning capabilities can break down complex bugs step-by-step.

Multimodal powerhouses
Some models can process not just code and text but also images, diagrams, and
even video content. This makes them particularly valuable for understanding vis-
ual documentation or working with UI/UX elements.

Open source alternatives
DeepSeek stands out by offering a comparable level of AI power to closed-source
models without requiring payment or sign-up, though it may lack some features
like image generation or web browsing capabilities.

Choosing the Right Model for Your Task

Rather than seeking a single “best” model, successful developers now match models
to specific tasks:

« For rapid prototyping and general coding, models optimized for speed and broad
language support work well.

« For complex debugging and system design, deep reasoning models that can trace
through logic methodically are a good choice.

Al Models: The Landscape for Code Generation | 25

» For working with large codebases, choose models with extensive context win-
dows that can maintain project-wide awareness.

o For budget-conscious teams, open source models provide excellent value without
subscription costs.

Many tools now support multiple AI models, including OpenAl, Claude, and Gemini
variants, along with proprietary models, allowing developers to switch between them
based on the task at hand.

Practical Tips for Any Model

Regardless of which AI model you choose, certain practices consistently improve
results. First, provide rich context. Don't just ask for “a payment processing function.”
Instead, share your data models, existing code patterns, error-handling approaches,
and any specific requirements. The more context you provide, the better the output
will align with your codebase.

Most modern coding models excel at reviewing their own output. After receiving
generated code, ask the model to check for potential issues, suggest improvements, or
explain its reasoning. This self-critique often catches subtle bugs or suggests
optimizations.

Use the model’s ability to maintain conversation context. Start with a basic implemen-
tation, then progressively refine it through follow-up requests. This iterative
approach often yields better results than trying to specify everything up front.

Each model has subtle differences in how it approaches problems. Some are more
verbose in their explanations, while others are more concise. Some default to newer
syntax, while others play it safe. Learning these tendencies helps you craft better
prompts.

Major Models

The Al coding landscape evolves monthly, with new models regularly challenging
established leaders. The competition has become so intense that developers benefit
from unprecedented choice and capability improvements. What matters most isn't
picking the “perfect” model but understanding how to leverage the strengths of what-
ever tools are available.

Many development teams now use a portfolio approach—leveraging fast models for
routine tasks, powerful models for complex challenges, and specialized models for
specific domains like database optimization or frontend development. Some IDEs
even allow seamless switching between models midtask.

26 | Chapter 1: Introduction: What Is Vibe Coding?

Success comes from understanding these options and strategically applying them to
accelerate your development workflow.

Google Gemini: The Multimodal Coding Powerhouse

Google’s Gemini family represents a fundamental shift in Al-assisted development
through its native multimodal capabilities. Unlike models that were primarily trained
on text and code, Gemini was architected from the ground up to seamlessly under-
stand and work across text, code, images, video, and other data formats. This makes it
exceptionally powerful for modern development workflows where visual context
matters as much as textual information.

The multimodal nature of Gemini proves particularly valuable in web development
scenarios. Developers can share screenshots of design mockups, and Gemini can gen-
erate pixel-perfect implementations that match the visual style. It excels at under-
standing charts, diagrams, and UI elements, making it an ideal partner when
translating visual designs into functional code. This capability extends beyond simple
image recognition: Gemini can reason about visual elements, understand design pat-
terns, and maintain aesthetic consistency across an entire project.

Gemini’s integration with development workflows through popular editors (VSCode,
Cursor, Windsurf) and plug-ins like Cline and Code Assist offers developers power-
ful customization options that scale from individual preferences to team-wide stand-
ards. Developers can create custom commands for repetitive tasks, establish rules that
apply to every code generation, and maintain consistent coding patterns across large
codebases. The generous free tier makes it accessible to students, hobbyists, and start-
ups, while enterprise features support complex organizational requirements.

What distinguishes Gemini in the coding landscape is its ability to think deeply about
problems while maintaining practical speed. The model can alternate between quick
responses for simple tasks and extended reasoning for complex challenges, adapting
its approach based on the problem at hand. This flexibility, combined with its visual
understanding capabilities, makes it particularly effective for full stack development
where both backend logic and frontend aesthetics matter equally.

Claude: The Reasoning Virtuoso

Anthropic Claude’s approach to coding assistance centers on transparency and deep
reasoning capabilities. The Claude family, particularly the Sonnet models, has estab-
lished itself as exceptionally capable at complex software engineering tasks that
require careful analysis and step-by-step problem solving. What sets Claude apart is
its ability to show its thinking process, allowing developers to follow along with its
reasoning and verify its logic before implementing solutions.

Major Models | 27

https://gemini.google.com
https://anthropic.com/claude

The Artifacts feature represents a paradigm shift in how developers interact with Al
coding assistants. Rather than simply providing code in a chat interface, Claude cre-
ates a dedicated workspace where code can be viewed, edited, and previewed in real
time. This interactive environment is particularly powerful for frontend development,
data visualization, and any scenario where immediate visual feedback accelerates the
development process. Developers can iterate on designs, test functionality, and refine
implementations all within the same conversation.

Claude demonstrates exceptional performance on real-world software engineering
benchmarks, consistently ranking among the top models for tasks like bug fixing, fea-
ture implementation, and code refactoring. Its strength lies not just in generating
code but in understanding the broader context of software projects. Claude can ana-
lyze existing codebases, identify patterns and antipatterns, suggest architectural
improvements, and maintain consistency with established coding styles. This makes
it invaluable for both greenfield projects and legacy system maintenance.

The model’s approach to memory and context management enables it to build under-
standing over extended coding sessions. When working with large projects, Claude
can extract and retain key information about the codebase structure, design deci-
sions, and project-specific patterns. This accumulated knowledge allows it to provide
increasingly relevant and contextual suggestions as development progresses, making
it feel more like a team member who grows familiar with the project over time rather
than a stateless assistant.

ChatGPT: The Versatile Coding Companion

ChatGPT has established itself as the Swiss Army knife of AI coding assistants, valued
not for specialized features but for its remarkable versatility and broad knowledge
base. Its position in the developer toolkit is unique. While other models might inte-
grate directly into IDEs or offer specialized coding environments, ChatGPT serves as
an always available programming consultant that developers keep open in their
browsers throughout the workday.

The conversational interface of ChatGPT makes it exceptionally effective for explora-
tory problem solving and learning. Developers regularly use it for rubber-duck
debugging, pasting in problematic code and thinking through issues in natural con-
versation. Its extensive training enables it to recognize patterns across virtually every
programming language, framework, and tool in common use. Whether debugging a
regex expression, understanding an obscure error message, or exploring unfamiliar
library documentation, ChatGPT can provide relevant insights drawn from its com-
prehensive knowledge base.

ChatGPT’s strength lies in its ability to bridge the gap between human intent and
code implementation. It excels at bidirectional translation—converting natural lan-
guage descriptions into working code and explaining complex code in plain English.

28 | (Chapter 1: Introduction: What Is Vibe Coding?

https://oreil.ly/hZdNC

This makes it invaluable for documentation, code reviews, and knowledge transfer
within teams. Developers can paste unfamiliar code and receive clear explanations of
its functionality, or describe desired behavior and receive appropriate implementa-
tions across multiple programming paradigms.

The model’s versatility extends beyond traditional programming languages to config-
uration files, scripts, data formats, and domain-specific languages. While specialized
coding tools excel within their focused domains, ChatGPT provides valuable assis-
tance across the entire spectrum of software development tasks. This breadth makes
it particularly useful when working at the boundaries between different technologies
or when encountering problems that span multiple domains. Its ability to maintain
context across extended conversations allows developers to explore complex prob-
lems iteratively, refining solutions through collaborative dialogue.

Choosing the Right Model for Your Needs

The availability of these powerful AI coding assistants represents a fundamental shift
in software development practices. Rather than viewing them as competing options,
successful developers recognize that each model family brings unique strengths to
different aspects of the development process. Google’s Gemini excels when visual
context and multimodal understanding are crucial, particularly in UI/UX develop-
ment and when working with design specifications. Anthropic’s Claude shines in sce-
narios requiring deep reasoning, complex refactoring, and transparent problem-
solving approaches. The OpenAl family of models provides unmatched versatility
and broad knowledge, making it ideal for learning, debugging, and cross-domain
challenges.

Many development teams now employ a portfolio approach, leveraging different
models for different tasks within the same project. A typical workflow might involve
using Gemini to translate design mockups into initial implementations, Claude for
complex architectural decisions and code reviews, and ChatGPT for general problem
solving and documentation. This multimodel approach maximizes productivity by
matching each tools strengths to specific development challenges.

As these models continue to evolve, the key to effective Al-assisted development lies
not in choosing a single “best” option but in understanding how to orchestrate multi-
ple Al assistants to accelerate and enhance every aspect of the software development
lifecycle.

This ecosystem is young and rapidly changing. New players and capabilities are
emerging every few months. The key takeaway is that you don’t have to build your
own Al from scratch to leverage programming with intent—there are plenty of tools
that bring this power to your fingertips. Throughout this book, I'll discuss various
platforms and how they fit into the vibe-coding workflow.

Choosing the Right Model for Your Needs | 29

The Benefits and Limitations of
Vibe Coding: A Nuanced View

Its important to recognize the scenarios where Al-assisted development truly
shines—and where it might still fall flat. Let’s explore some ideal use cases where vibe
coding excels, as well as situations where today’s Al still struggles or requires heavy
human intervention.

Ideal Use Cases for Vibe Coding

Just as certain architectures are suited for certain problems, vibe coding has its “sweet
spots” in the software development landscape.

Zero-to-one product development

Vibe coding is a game changer for getting a brand-new project off the ground. The
term zero to one (popularized by Peter Thiel) refers to creating something new from
scratch. With Al you can go from a blank canvas to a functional prototype at light-
ning speed. Need to stand up a web app that’s never existed before? You can generate
boilerplate code for your frontend, backend, database schema, and even deployment
scripts in one frenetic session of prompting. This is perfect for startups or hackathon
projects where the goal is to validate an idea quickly. Instead of spending weeks set-
ting up the “scaffolding” of a project (all the repetitive setup code), you can have the
Al do it in minutes.

Many developers have recounted how they built an MVP over a weekend with the
help of Al pair programmers—something that might have taken them a month work-
ing solo before. By quickly materializing the idea into a working product, you can
start testing it with users or stakeholders much sooner. The Al is great at the generic
stuff (setting up routing, basic Ul components, standard CRUD operations), which
frees you to focus on the novel aspects of your product.

However, once your MVP gains traction and moves toward production, your
approach must shift. This is where Al-assisted engineering becomes essential. While
vibe coding has helped you explore and validate quickly, scaling now requires more
deliberate practices. You'll need to refactor that rapidly generated code with proper
error handling, add comprehensive test coverage, and establish clear architectural
boundaries. The transition from prototype to product marks the natural evolution
from vibe coding’s exploratory freedom to engineering’s structured discipline. Smart
teams recognize this inflection point and adjust their Al usage accordingly—main-
taining velocity while introducing the guardrails necessary for sustainable growth.

30 | Chapter 1: Introduction: What Is Vibe Coding?

Feature prototyping and CRUD applications

A lot of software engineering, especially in business apps, involves CRUD—create,
read, update, delete—functionality around data. This is formulaic work that AI is
exceptionally good at because it’s seen countless examples. If you need to add, say, a
new “Inventory” module to your system with CRUD screens and APIs, vibe coding
will handle that extremely well. It can produce database migrations, ORM models,
API endpoints, and UI forms with validation—basically the full stack—largely error-
free because these patterns are so common in its training data. Even if your app has
custom rules, you can specify those in a prompt and get a decent first pass. The result:
what used to be a week-long task of boring wiring-up becomes an afternoon of
prompting and testing. For internal tools or admin panels (which are essentially big
CRUD apps), you might almost entirely lean on Al to generate them, given how
straightforward yet time-consuming they normally are.

The engineering approach becomes crucial when these CRUD operations involve
complex business logic, data validation rules, or integration with existing systems.
While vibe coding can generate the basic structure quickly, Al-assisted engineering
ensures that your inventory module properly handles edge cases like concurrent
updates, maintains referential integrity, and follows your organization’s established
patterns. For instance, you might use vibe coding to generate the initial CRUD scaf-
folding, then switch to engineering mode to implement domain-specific rules like
inventory threshold alerts, multiwarehouse allocation logic, or integration with your
existing authentication and authorization systems. The key is recognizing when to
transition from rapid generation to careful refinement.

Glue code and integration

Need to integrate two services or APIs together? That often involves reading docs and
writing code to transform data from one format to another. AI models have often
been trained on API documentation and code examples, meaning they can expedite
integration work. Ask ChatGPT to show how to call Service As API from Language
B—chances are it will produce example code with the right endpoints and maybe
even an auth example. Combining multiple systems (like hooking up a payment gate-
way with your order system or connecting a third-party analytics SDK) becomes eas-
ier when the AT can suggest the boilerplate and edge cases to handle. It excels at these
standard integration patterns.

Modern framework utilization

AT coding assistants have effectively read the manuals on all popular frameworks:
React, Angular, Django, Rails, Node/Express, Flutter—you name it. This means that if
youre using well-known frameworks, the Al can generate idiomatic code for those
frameworks. For instance, it can spit out a new React component with hooks and
state management or a new Django model with the proper admin class and serializer.

The Benefits and Limitations of Vibe Coding: A Nuanced View | 31

The benefit is you don’t have to remember every little detail—the AI fills in the gaps.
Vibe coding performs especially well with modern web development tasks like gener-
ating HTML/JSX with the right classes or hooking up controller endpoints, because
these are tasks AI models have seen over and over. It’s like having a framework expert
always by your side to write the boilerplate while you decide on the specifics of what
the feature should do.

Repetitive code generation

Sometimes you need to create lots of similar code (like many similar endpoints or
classes for each type in some schema). This can be tedious and error-prone for a
human. Al on the other hand, loves repetitive structures—once you show it one or
two examples, it can churn out the rest consistently. This bulk code generation can
save a ton of time. For instance, if youre writing data model classes for 50 types of
records, you can prompt one example and ask the AI to generate classes for all 50
types following that pattern. It will likely do so flawlessly and in seconds. The result:
you avoid a whole day of monotonous coding.

When Al-assisted engineering should take precedence

While vibe coding excels in certain scenarios, Al-assisted engineering becomes indis-
pensable in others. Understanding these situations helps developers choose the right
approach from the start, avoiding costly rewrites or technical debt. Complex algorith-
mic implementations require the engineering approach. When youre building
sophisticated data structures, implementing performance-critical algorithms, or solv-
ing novel computational problems, you need precise control over every aspect of the
implementation.

Here, Al serves as a knowledgeable assistant rather than a code generator. You might
ask it to explain algorithmic approaches or review your implementation for correct-
ness, but you maintain direct control over the architecture and optimization deci-
sions. The AT helps you think through problems rather than solving them wholesale.

Mission-critical systems demand engineering rigor from the outset. Financial trans-
actions, healthcare applications, security infrastructure, and other high-stakes
domains cannot afford the exploratory nature of vibe coding. In these contexts, every
line of code needs careful consideration, comprehensive testing, and often regulatory
compliance. Al assists by suggesting best practices, identifying potential vulnerabili-
ties, and helping ensure compliance with standards, but the developer maintains tight
control over the implementation.

The cost of failure in these systems far outweighs any speed advantages from rapid
generation. Legacy system integration presents unique challenges where engineering
discipline proves essential. When working with decades-old codebases, proprietary
protocols, or systems with extensive technical debt, vibe coding’s pattern matching

32 | Chapter 1:Introduction: What Is Vibe Coding?

often fails. These scenarios require deep understanding of existing constraints, care-
ful planning of integration points, and methodical refactoring. AI can help by
explaining legacy code patterns or suggesting modernization strategies, but the actual
implementation requires the precision that only structured engineering provides.

Performance optimization represents another domain where engineering trumps vib-
ing. While AI can generate functional code quickly, it rarely produces optimal solu-
tions for performance-critical paths. Tasks like memory management, cache
optimization, parallel processing, and latency reduction require deep understanding
of hardware, operating systems, and algorithmic complexity. Here, AI serves best as a
research assistant, helping you explore optimization techniques or benchmark differ-
ent approaches, while you make the informed decisions about implementation.

In these scenarios, AI's pattern recognition and speed align perfectly with the task.
Essentially, vibe coding thrives on tasks that are well-trodden territory in program-
ming (like CRUD or typical web app structures) and tasks that benefit from rapid
trial and error (prototypes, new ideas). It’s like having a junior developer who has
read every GitHub repo and can instantly recall how it’s usually done and write it for
you to review. That’s incredibly powerful for getting things moving quickly.

Recognizing the transition points

The art of modern Al-enhanced development lies not in choosing one approach over
the other but in recognizing when to transition between them. Successful developers
develop an intuition for these inflection points. Starting a new feature? Begin with
vibe coding to explore possibilities quickly. Notice the code becoming complex or
touching critical systems? Shift to engineering mode. Building a proof of concept for
a client demo? Vibe coding gets you there fast. Converting that proof of concept into
a production system? Time for engineering discipline.

This fluidity—the ability to move seamlessly between rapid exploration and careful
construction—distinguishes truly effective AI-augmented developers. They under-
stand that vibe coding and Al-assisted engineering are complementary tools in their
toolkit, each suited for different phases of the development lifecycle. The goal isn’t to
pick a side but to leverage both approaches strategically, maximizing both velocity
and quality throughout the software development process.

Where Al Still Struggles

As impressive as current Al coding tools are, they are not magic. There are classes of
problems that remain difficult for AI to handle reliably, often requiring human
insight or traditional coding techniques. Knowing these limitations helps set the right
expectations and lets you plan when to lean in versus when to take back the reins.

The Benefits and Limitations of Vibe Coding: A Nuanced View | 33

The limitations include the following:

Deeply complex systems
If youre dealing with very complex algorithms or novel problems that the Al
likely hasn't seen, it may flounder. For example, writing a brand-new algorithm
from a research paper or doing something like writing a compiler or highly con-
current system—these involve intricate logic that requires true understanding
and often creative leaps. Al can try, but it might get things subtly wrong.

In complex domains like these, the AI's tendency to make approximately correct
but not exactly correct code can lead to a lot of back-and-forth. As Chapters 3
and 4 will discuss, the final 30% or so of correctness is very hard for the Al to nail
down. This is related to what I call the 70% problem—AI gets you most of the way
quickly, but the last part is tough. An experienced developer might use Al to gen-
erate skeletons or helper functions for such complex tasks but do the core logic
themselves.

Low-level optimizations and systems programming
Current Al models are primarily trained on high-level languages and abstrac-
tions. If you need to do low-level bit-twiddling, write highly optimized C code
for a specific microcontroller, or generate vectorized SIMD instructions, the Al
might not be reliable. It might produce code that looks plausible but isn't truly
optimal, or even correct, on a hardware level.

Similarly, for things like memory management or real-time constraints, the Al
doesn’t have a real concept of those (it doesn’t simulate a CPU cache in its head).
So for performance-critical code, you’ll want to either thoroughly test AI sugges-
tions or write those parts manually. That said, AT might still help by providing a
starting template or explaining assembly, but you cannot blindly trust it in these
scenarios.

Unique or niche frameworks
If you're using a very new or obscure framework that wasn't around during the
AT’ training, it won’t know about it. In such cases, the AI might try to generalize
or might produce code that looks like it fits but actually call functions that don't
exist (hallucinations) or use outdated versions of the API. For example, if a new
web framework version came out last month with breaking changes, the AT won’t
know about those changes. It might give you code for the old version. In these
cases, you have to fall back on documentation and perhaps even help train the Al

by feeding it context from the docs within your prompt (basically teaching it on
the fly).

Creative UI/UX design
If you ask AI to design a completely novel user interface or experience, it’s not
great at that creative leap. It can generate UI code for known patterns (like a

34 | Chapter 1: Introduction: What Is Vibe Coding?

standard form or a dashboard), but if you want an innovative UI that doesn’t
have clear precedents, the Al might not give you something inspiring. It might
just stitch together familiar components. Human designers and frontend devs are
still very much needed to dream up new user experiences. In coding terms, Al
can make you a standard-looking interface quickly, but for that special custom
feel, you'll guide it or hand-tweak.

Interpreting intent and requirements

Sometimes Al struggles when requirements are implicit or contradictory. It has
no true understanding of the end goal beyond what you explicitly tell it. If
requirements are vague (“make it efficient”—what does that precisely mean?), the
AT might guess incorrectly what you care about (memory versus speed, for
instance). Humans are better at clarifying intent, especially with nontechnical
stakeholders. Al can also misinterpret instructions, especially if there’s domain-
specific context it's unaware of (like business rules). It might produce a logically
correct solution that doesn’t actually solve the real problem because the nuance
was lost in translation.

A good example scenario combining these: imagine developing a new 3D graphics
engine (complex system) in Rust (system-level, performance critical). You have novel
algorithms for rendering (unique problems). AI could maybe help write some boiler-
plate, but youd largely rely on human ingenuity for the core. The AI might get you
started with setting up a window and a basic render loop (common tasks), but for the
bespoke parts, youd proceed with traditional careful coding and perhaps get some
algorithmic help from Al in pseudocode form. And if you asked it to optimize a hot
loop in assembly, youd have to verify every instruction.

AT also lacks true problem-solving insight. At the end of the day, it’s pattern match-
ing. So if your problem requires an aha! insight, the AI might just flail around, pre-
senting things that look like code but don’t solve it. This is where a human stepping
back, thinking abstractly, or drawing on real experience can save the day. Once you
have the insight, you can then use the AI to implement it quickly.

Understanding these strengths and weaknesses ensures you’ll deploy vibe-coding
techniques in the right situations. To maximize success, leverage the AI for what it’s
good at (the known patterns), and apply your creativity to the unique parts of your
application. Be ready to intervene in those areas where Al is known to struggle. For
instance, do a careful review of any security-sensitive code it writes, because it might
miss an edge case or two.

Use Al to complement human strengths: let it handle breadth (lots of code, boiler-
plate) while you handle depth (complex logic, architecture). Use it as a booster where
it excels, and don’t be afraid to take the wheel on those tougher stretches of the road.
This plays to the strengths of both and yields the best outcome. Knowing when to use

The Benefits and Limitations of Vibe Coding: A Nuanced View | 35

AT and when to rely on human skill is what will make you a highly effective developer
in this new era.

Every new technology comes with its advantages and its caveats. As we embrace the
productivity and creativity boost from Al-assisted development, it's important to
approach it with a nuanced understanding of its limitations and trade-offs. Key bene-
fits include:

Faster development cycles
Projects can move from concept to prototype to finished product more quickly.
Al can generate scaffolding code (like setting up the boilerplate for a new project)
in a flash, so you spend more time on the unique parts of your application.

Enhanced prototyping and experimentation
Because the cost of trying something is lower (just describe what you want to the
AT and get a quick draft), developers may feel freer to experiment. You can proto-
type multiple approaches to a problem by prompting the AI in different ways,
then pick the best one. This iterative ideation can lead to more creative solutions.

Knowledge at your fingertips
LLMs are trained on a vast corpus of programming knowledge. It often “knows”
obscure APIs or error message solutions. In practice, it can surface solutions or
ideas you might not have thought of, making you a more effective problem
solver.

Consistency and standardization
In team settings, an Al assistant can help enforce coding standards and best prac-
tices by generating code in a consistent style. If configured with your projects
style guide, it could ensure everyone’s code follows similar patterns. Even without
explicit training, AI models often produce idiomatic code (since they learned
from millions of examples). This can reduce the effort involved in code reviews,

since its functions may look familiar and adhere to common conventions by
default.

Some of the limitations and trade-offs to consider include:

Variable output quality
These models are not infallible. They might produce code that looks correct but
has subtle bugs or inefficiencies. They might choose an outdated approach
because their training data included a lot of older code. As a developer, you must
remain vigilant. Just as you wouldn’t copy-paste code from the internet without
understanding it, you shouldn’t accept AI code thoughtlessly. Part II of this book
will discuss techniques to validate and test Al-generated code thoroughly.

36 | Chapter 1: Introduction: What Is Vibe Coding?

Ambiguity in prompts leads to ambiguity in code
If your prompt is underspecified, the Al has to guess your intent—and it might
guess wrong. For example, if you tell it to “sort a list of names,” it might default to
alphabetical sorting, but maybe you meant something else (like sorting by the
length of the name). The AI won't know the difference unless you clarify it. This
is why specificity in prompts (Chapter 2’s topic) is vital—you’ll learn to anticipate
what details you need to spell out.

Overreliance and skill atrophy
If new developers always rely on AI to write their code, will they develop the
same depth of understanding of algorithms and debugging? There’s a risk of skill
atrophy, similar to how relying on GPS for navigation might weaken your own
sense of direction. To mitigate this, it's important to use Al as a learning tool (pay
attention to the code it provides and ask why) and sometimes practice coding
without it to ensure you retain your fundamental skills.

Privacy and security concerns

Using cloud-based Al coding tools often means sending your code (which might
be proprietary or sensitive) to a third-party service for analysis. Companies need
to consider this. Many tools are addressing it by allowing on-premises models or
giving assurances about not storing code, but its still a consideration. Also,
there’s a risk that AI might inadvertently generate code that is very similar to
something in its training data, which could be under an open source license (like
GPL). While unlikely (and measures are in place to prevent verbatim long out-
puts), it highlights the need to review and understand what the AI produces
before integrating it. Chapter 8 dives into questions of security and reliability.

Bias in Al output

AT models can reflect biases present in their training data. In a coding context,
this might be as benign as preferring certain variable names or as significant as
using examples that assume particular user attributes. For instance, it might use
foo/bar for every example variable (because many examples did), or it might
assume things about user locales. It's usually not a huge issue in code generation
compared to other AI applications, but it's worth being aware of this possibility.
More subtly, the AI might be biased toward solutions it saw more often, even if
those aren’t the best for your case. Chapter 9 discusses bias and other ethical con-
siderations.

Human factors and trust
Not all developers are immediately comfortable with this style of work. Coding
has a certain pleasure and artistry to it, and some may feel that is diminished by
AT involvement. There can also be an initial lack of trust—“Did it really do this
right?”—which only good practices and time can overcome. Teams adopting Al
should allow a period of adjustment and encourage sharing of experiences and

The Benefits and Limitations of Vibe Coding: A Nuanced View | 37

tips. Over time, as with any tool, most will find a balance where the AT’s contri-
butions are valued and human expertise focuses on what humans do best.

Summary and Next Steps

The vibe shift toward programming with intent offers tremendous potential to make
software development faster, more accessible, and in many ways more enjoyable. But
realizing that potential means understanding the new dynamics: how to communi-
cate with Al effectively, how to verify its output, and how to integrate it responsibly
into your development process.

My perspective, forged from working with these tools and observing many projects, is
that As best use lies in combining the creative “vibe” with solid engineering hygiene.
Encourage the wild ideas and rapid drafts that Al can offer—those are the new super-
powers at our disposal. But channel them with the wisdom that software develop-
ment has accumulated over decades: the importance of planning, testing, and
understanding what you build.

When we strike that balance, we get the best of both worlds. We get software that is
built faster and potentially more imaginatively but also software that we trust, main-
tain, and grow with confidence. That, ultimately, is how we elevate our craft in the
age of AlL: not by choosing vibes over engineering, or vice versa, but by mastering the
whole spectrum between.

Next, Chapter 2 explores the art of crafting prompts and collaborating with AI. With
the foundational concepts from this chapter in mind, youre ready to explore the
practical side of this new programming era. This will set the stage for hands-on
examples and deeper prompting techniques in subsequent chapters.

38 | Chapter 1: Introduction: What Is Vibe Coding?

CHAPTER 2

The Art of the Prompt:
Communicating Effectively with Al

In vibe coding, prompts are the new source code.

The way you communicate your intent to the AI has a direct impact on the quality of
the code it generates. Writing a good prompt is both an art and a science, often called
prompt engineering. This chapter will equip you with techniques to get the most out
of your Al coding assistant. We'll start with some fundamentals about why prompts
matter and then delve into a toolbox of prompting techniques, from simple to
advanced. By learning how to craft effective prompts and how to iteratively refine
them (Figure 2-1), you'll be able to cocreate with AI more efficiently and accurately.

39

Prompt

Generate a Python function

that sums an array

Prompt

<

Alresponse

add unit tests
def sum_array(arr):
return sum(arr)

q---

Al response

Add unit

def test_sum_array()
assert sum_array[1, 2]
3, 4, 5]) == 15
assert sum_array (]]
assert sum_array [7]

~N ©

\. J

Figure 2-1. An illustration of a chatbot assisting with coding. The developer and Al
engage in a dialogue: the developer provides instructions or questions (prompts), and the
Al responds with code or answers. Communicating effectively with the Al through well-
crafted prompts is key to getting accurate and useful code generation.

Prompt Engineering Fundamentals

If vibe coding is a conversation between you and an Al model, prompt engineering is
the skill of speaking the AT’s language to get the best results. A well-crafted prompt
can be the difference between an irrelevant or buggy code suggestion and a perfect
solution. Mastering prompt engineering means understanding how to guide the AI
effectively, how to provide context, and how to iterate with the AI when the first
answer isn’t quite right.

When you program with an Al, you are essentially programming through the Al
using natural language. The prompt you provide is like a high-level programming
language that the Al interpreter then translates into actual code. Just as a compiler’s

40 | Chapter2: The Art of the Prompt: Communicating Effectively with Al

output is only as good as the source code fed to it, an AT's output is only as good as
the prompt.

Why are prompts so important? LLMs, despite their sophistication, are not mind
readers. They respond only to the input theyre given. Ambiguous or poorly worded
prompts can lead to irrelevant or incorrect code, while a clear and specific prompt
can yield a spot-on solution on the first try. In traditional coding, you spend time
thinking about algorithms and writing code; in vibe coding, you spend time thinking
about how to convey your requirements to the Al It’s a shift in what “writing code”
means: you might write a paragraph instead of a function, but you still need to be
precise and logical.

Think of writing prompts as being like writing documentation or user stories for a
very literal and pedantic junior developer, one who will do exactly (and only) what
the documentation says, and who has a lot of knowledge but no common sense
beyond patterns they have seen. If your instructions (prompts) leave room for inter-
pretation, the AI might fill the gaps in ways you didn’t intend. Thus, learning to com-
municate with the Al is as crucial as learning a programming language’s syntax used
to be.

Another reason prompts are crucial is reproducibility and future-proofing. If you dis-
cover a prompt that reliably generates good code for a certain pattern or task, that
prompt becomes a valuable piece of knowledge (almost like a snippet or template).
You might save it or reuse it in similar contexts. In teams, developers might share
effective prompt patterns with each other, similar to how they share coding best
practices.

Finally, as models get better and more integrated, they may allow more complex
interactions. Being good at prompting will let you harness new capabilities quickly.
For instance, some advanced systems allow you to attach extensive instructions or
provide entire reference documents as part of the context for the model. Knowing
how to structure that input is key to leveraging such power.

So treat prompt writing as a new essential skill. In many ways, prompting is program-
ming. The main difference is youre writing in a language (like English) that the Al
then converts into code. But you still have to be clear, logical, and anticipate edge
cases in your description.

Specificity and Clarity: Writing Prompts That Deliver

One of the golden rules of prompting (which I'll lay out more fully in Chapter 3) is to
be specific and clear about what you want. Unlike a human collaborator, an AI doesn't
truly understand your goal beyond the words you provide. A common mistake is giv-
ing the AT a very high-level prompt like “Make a website” and expecting magic. The
AT works better with concrete details.

Specificity and Clarity: Writing Prompts That Deliver | 41

Always assume it knows nothing about your project beyond what you provide.
Include relevant details such as the programming language, framework, and libraries,
as well as the specific function or snippet in question. If there’s an error, provide the
exact error message and describe what the code is supposed to do. Any vagueness or
room for interpretation can lead to unintended outputs.

For example, instead of “Write a sorting function,” you could say:

Write a Python function sort_by_lastname(customers) that takes a list of customer
records (each with a first_name and last_name field) and returns a list sorted by
last_name alphabetically. Include a brief docstring and handle the case of missing last
names by treating them as empty strings.

This prompt sets clear expectations about the language (Python), the function name
and purpose, the input structure, the sort key, additional requirements (docstring),
and an edge case. Its likely to produce exactly what you need or very close to it.
Essentially, think like a spec writer: the more precisely you specify the task, the less
guesswork the Al has to do and the fewer revisions you’ll need.

Strategies for specificity include:

Mention the language or environment
If you want a solution in JavaScript, say so: “Write a JavaScript function..” versus
just “Write a function..” If you want it for a specific framework or version,
include that (“Using React Hooks..” or “in Python 3..”).

Define the scope of the output
Do you want just a single function? A full file or module? Tests included? For
example, “Provide only the function implementation” and “Provide a complete
runnable script” can yield different responses.

Include requirements and constraints
In the login example, we specified password length and attempt limit. Think of
edge cases or constraints and put them in the prompt. If you need the code to be
optimized for performance or use a certain algorithm, say so: “using O(n) time
and O(1) space” or “using a binary search approach”

Avoid ambiguous references
Don’t use words like it without a clear antecedent. Instead of “Process it and
return the result,” say, “Process the array and return the resulting array.”

Name your desired output format
If you want the Al to output just code or code with comments or an explanation,
you can instruct that: “Give only the code, no explanation” or “Provide code and
a brief comment for each step”

42 | Chapter 2: The Art of the Prompt: Communicating Effectively with Al

A clear prompt sets the AT up for success. If you find the AT’s answers often need a lot
of correction, examine whether your prompts might be underspecified.

Here’s what not to do:

Don’t write a whole novel
Long-winded prompts that include irrelevant info can confuse the model or
cause it to focus on the wrong thing. Be concise but complete in your description.
For instance, you usually don't need to preface with “You are a world-class pro-
grammer..” in a coding context (some people do that in general ChatGPT usage,
but for coding tasks, it’s often unnecessary and could add noise).

Don’t assume the AI will fill in details by itself correctly
If something is important (like thread safety, handling of special characters, etc.),
mention it. If it’s not mentioned, assume the AI might not handle it.

Avoid open-ended ‘creative” prompts when you need deterministic outputs
For example, saying, “Write some code to analyze data” might cause the AI to
guess what analysis you want. Instead, specify:

Calculate the average and standard deviation of a list of numbers.

In summary, say exactly what you mean. The more the Al “knows” about what you
truly want, the better it can deliver. If you find yourself having to correct the AI mul-
tiple times, ask: could my initial prompt have been clearer?

Iterative Refinement: The Feedback Loop with the Al

Even with clear prompts, you won't always get the perfect answer on the first try.
Think of interacting with the Al as a conversation or an iterative development pro-
cess. This is the feedback loop I touched on in Chapter 1.

When the AI gives you code, review it critically, just as you would code written by a
human. Does it meet the requirements? If not, identify what’s missing or wrong. Then
provide feedback or a refined prompt. This can be done in a conversational AI by
simply continuing the dialogue, or in an editor by writing another comment for the
AT to respond to.

By providing feedback to the Al, you steer it closer to your desired outcome. In a
sense, you are training it on the fly for your specific problem. Advanced prompt engi-
neering is like the loop in Figure 2-2: Prompt — Al output - Review — Refine
prompt - Al output —...until satisfied. Keeping each iteration’s changes small is use-
ful; if you overhaul the prompt too much, you may lose some good parts of the previ-
ous output.

Iterative Refinement: The Feedback Loop with the Al | 43

Until satisfied

Figure 2-2. Advanced prompt engineering loop.

For example, you might prompt:
Write a function that takes a list of integers and returns their sum.

The AI then returns a function, but its code assumes a non-empty list and doesn’t
handle an empty list well. You could then reply:

That looks good. However, please modify it to return 0 if the list is empty.

The AI would then update the function accordingly. In this way, you didn’t have to
prompt from scratch; you just told the AI to make an adjustment. The Al already had
the context of the previous code it gave.

If youre using an inline assistant, refinement might look like editing the code and
perhaps writing a comment like # TODO: handle empty list and then seeing if the
AT suggests a fix for that.

Another refinement approach is reprompting with more info if the first output wasn't
right. Suppose you said, “Sort a list of names,” and it gave code sorting case-
sensitively but you wanted case-insensitive. You could rephrase:

Sort a list of names case-insensitively.
Or even:
The previous code sorts case-sensitively. Modify it to be case-insensitive.

In debugging, for more complex logic bugs (where no obvious error message is
thrown but the output is wrong), you can prompt the Al to walk through the code’s
execution. For instance:

Walk through this function line by line and track the value of total at each step. It’s not
accumulating correctly—where does the logic go wrong?

This is an example of a “rubber duck” debugging prompt: you're essentially asking the
Al to simulate the debugging process a human might do with prints or a debugger.

44 | Chapter 2: The Art of the Prompt: Communicating Effectively with Al

Such prompts often reveal subtle issues like variables not resetting or incorrect condi-
tional logic, because the Al will spell out the state at each step. If you suspect a certain
part of the code, you can zoom in:

Explain what the filter call is doing here and if it might be excluding more items than it
should.

Engaging the AI in an explanatory role can surface the bug in the process of
explanation.

After the explanation, it’s often effective to directly ask for what you need:
What might be causing this issue, and how can I fix it?

This invites the Al to both diagnose and propose a solution. If the AT’s first answer is
unclear or partially helpful, don't hesitate to ask a follow-up question:

That explanation makes sense. Can you show me how to fix the code? Please provide
the corrected code.

In a chat setting, the AI has the conversation history, so it can directly output the
modified code. If youre using an inline tool like Copilot in VSCode or Cursor
without a chat, you might instead write a comment above the code:

// BUG: returns NaN, fix this function and see how it autocompletes
In general, though, the interactive chat yields more thorough explanations.
Another follow-up pattern: if the Al gives a fix but you don’t understand why, ask:
Can you explain why that change solves the problem?

This way, you learn for next time, and you double-check that the AI’s reasoning is
sound.

LLMs thrive on examples and corrections. If you point out what's wrong or give a
quick example, the Al can incorporate it:

If input is [], it should return 0, but now it errors.

This iterative process is normal. In fact, trying to cram every detail into one prompt
might be less effective than a couple of back-and-forth turns. Use that to your
advantage.

»

Be patient and specific in your feedback. Instead of saying, “No, that’s wrong,” say
what’s wrong or what’s needed:

This code doesn’'t handle negative numbers correctly. It should treat them as 0 in the
sum.

Iterative Refinement: The Feedback Loop with the Al | 45

Also, if the AT goes off track, you can steer it back: sometimes resetting or rephrasing
is easier than trying to salvage a very incorrect attempt. Use your judgment. If the Al
output shows that it is completely misunderstanding you, clarify your prompt from
scratch.

As you refine, you'll also learn how the AI interpreted your prompt. This can inform
how you write future prompts. You might realize, “Oh, it took ‘login system’ to mean
an entire UL Next time I'll specify backend only”

Think of it like debugging code: if the AI output is wrong, the “bug” might be in your
prompt, not in the AI’s processing. Just as youd examine and fix your code when it
produces incorrect results, you should refine your prompts when the Al generates
unexpected or incorrect output. The conversation between you and the Al is like a
debugging session where each exchange helps you pinpoint and fix the issue.

Comparing Two Prompts

Imagine you have a simple Node.js function meant to convert a list of user objects to
a lookup map by user ID. However, it’s throwing an error. Here’s the buggy code:

// Buggy function: converts array of users to a map by ID
function mapUsersById(users) {
const userMap = {};
for (let 1 = 0; 1 <= users.length; i++) {
// Note: using <= will go out of bounds on the last iteration
const user = users[i];
userMap[user.id] = user;

}

return userMap;

}

// Example usage:

const result = mapUsersById([{ id: 1, name: "Alice" }]);
This code is supposed to iterate through the user’s array and build an object where
keys are user IDs. However, there is a bug: the loop uses 1 <= users.length instead
of 1 < users.length. This will cause users[i] to be undefined on the last iteration,
likely leading to a runtime error (like attempting to access the property ID of
undefined). Let’s see how an Al assistant might respond to two different prompts
about this issue (see Figure 2-3).

46 | Chapter 2: The Art of the Prompt: Communicating Effectively with Al

Specific
[Vagueprompt] [prompt]

for (int 1=0;
1 < n; ++1)

Generic/wrong Accurate code
code

\. J

Figure 2-3. Prompt quality impact comparison: vague prompts produce generic or incor-
rect code, while specific, well-structured prompts generate accurate, contextually appro-
priate solutions.

Poor prompt
Here’s an example of a poor prompt:

Why isn't my mapUsersByld function working?
AT’s response to the poor prompt (simulated):

It's hard to say without more information. Are you sure the function is being called
with a proper array of users? Perhaps the issue is that users is empty or not an array,
causing the loop not to execute properly. It could also be that there’s an error when set-
ting the property on userMap. Make sure that each user has an id property. If users is
undefined or null, that would also cause it to not work.

This answer is quite vague. The prompt gave no details except the function name, so
the AI is guessing at generic causes (“Maybe the array is empty or not an array,
“Make sure each user has an ID”). It did not identify the actual bug.

This is the kind of response you get when the question is underspecified—the model
can only regurgitate common debugging tips. If youre a developer, this isn't very
helpful because it doesn’t address the real mistake. The lack of context and specificity
in the prompt yields a generic answer: essentially, the Al equivalent of “Have you
tried turning it off and on again?” This aligns with the community advice that vague
prompts lead to irrelevant or generic answers.

Comparing Two Prompts | 47

Improved prompt
Let’s try this again:

I have a JavaScript function mapUsersById that should convert an array of user objects
into a map (object) keyed by user ID. However, it throws an error when I run it. For
example, when I pass [{id: 1, name: "Alice"}], I get TypeError: Cannot read
property 'id' of undefined. Here is the function code:
function mapUsersById(users) {
const userMap = {};
for (let 1 = 0; 1 <= users.length; i++) {
const user = users[i];
userMap[user.id] = user;

}
return userMap;
}
It should return { "1": {id: 1, name: "Alice"} }. What is the bug and how can I
fix it?

The AT’s response to the improved prompt (simulated):

The error Cannot read property 'id' of undefined suggests that at some point, user is
undefined, and then you try to access user.id. Looking at your loop, the issue is with
the loop bounds. You are using i <= users.length. If users.length is 1 (for one user
in the array), the loop runs with { = @ and i = 1. When 1 is 1, users[1] is undefined
(since the only index in the array is 0). Thus user becomes undefined on that iteration,
and user.id throws a TypeError. The fix is to change the loop condition to 1 <
users.length so that i goes from 0 to users.length-1. For example:
for (let 1 = 0; 1 < users.length; i++) {
const user = users[i];
userMap[user.id] = user;

}

This way, i will be 0 for the first (and only) element, and then the loop stops. With that
change, your function will no longer hit an undefined user and should work as
expected, returning {"1": {id: 1, name: "Alice"}} for the given input.

This response directly pinpoints the bug (using <= in the loop) and explains why it
causes the user to be undefined. It then provides the correct code solution (1 <
users.length) and confirms the expected outcome. The improved prompt succee-
ded because it followed our principles: it specified the language (JavaScript),
described the function’s purpose, included the exact error message and a sample
input, and even provided the code snippet in question.

Notice how the AI used the error message as a clue to focus on the loop bounds—a
targeted prompt enabled the AI to engage in true problem solving, effectively simu-
lating how a human debugger would think: “Where could undefined come from?

48 | Chapter 2: The Art of the Prompt: Communicating Effectively with Al

Likely from the loop indexing” This is a concrete demonstration of the benefit of
detailed prompts.

Prompting Techniques: A Toolbox for
Effective Communication

Now let’s get into specific techniques that can supercharge your prompting skills.
These are like patterns or recipes you can use when a straightforward instruction isn't
enough or when you want to guide the Al in a certain way.

By mastering these techniques, you can handle an array of situations: instructing the
AT in plain English, giving it examples, making it explain or structure its output, or
setting it into different mindsets or roles. All of these help you guide the AI to pro-
duce exactly what you need.

Prompting techniques are not mutually exclusive; you will often use several together
for best results, especially on complex tasks.

A Note on Style

When you use these techniques, adapt your tone to the model.
Many models respond well to polite or neutral instructions. You
don’t need to use archaic or overly formal language. Direct but
polite often works: “Please do X” or “Let’s do Y.” For example, with
chain-of-thought (CoT) prompting, a popular phrase is “Let’s think
step-by-step” Models like GPT-4 recognize this as a cue to show
reasoning.

Zero-Shot Prompting

Zero-shot prompting is simply asking the model to do something without providing
any examples or additional guidance beyond the instruction. Essentially, the model is
solving the task from “zero” examples.

When to use: This is the most common scenario: you just ask for what you want in
plain language. If the task is standard and the prompt is clear, this is often sufficient.

Example:
Write a Python function that checks if a number is prime.

This is zero shot. The AI will likely produce a prime-checking function using a loop
or trial division.

Pros: It's quick and relies on the model’s learned knowledge. Modern models are sur-
prisingly good at zero-shot responses for many programming tasks, especially if
they’re common (like prime checking, sorting, or string manipulation).

Prompting Techniques: A Toolbox for Effective Communication | 49

Cons: If the task is unusual or output format is specific, zero shot might yield a result
that doesn't quite match what you need on the first try, because the model might have
multiple ways to interpret it.

Usually, it's a good idea to try zero shot first for simple things. If the result is off, you
may then shift to refining or other techniques.

One-Shot and Few-Shot Prompting

One-shot prompting means you provide exactly one example of what you want (input
and desired output) as part of the prompt; few-shot prompting means providing a few
examples (typically two to five) before asking the model to perform the task on a new
input.

This is like showing the model, “Here’s how I solve one instance. Now you do the next
one similarly”

When to use: This type of prompting is useful when the model might not know
exactly the format or style you need or when the task is a bit unusual. By giving exam-
ples, you reduce ambiguity.

Example (one shot): Suppose youre using a language or a certain style that the model
might not have seen as much. Let’s say you want pseudocode in a specific format.
Your prompt might be:

Convert the following English instructions to Python-like pseudocode.

Example instruction: “Calculate the factorial of n”:

Example pseudocode:
function factorial(n):
if n <= 1:
return 1
else:
return n * factorial(n-1)
Instruction: "Find the largest number in a list"

Pseudocode:

You've provided one example (factorial) and the format you want. Now the model is
more likely to produce pseudocode for the “largest number” instruction in a similar
format (with a function, with if/else or loop logic as needed).

50 | Chapter2: The Art of the Prompt: Communicating Effectively with Al

Example (few shot): Let’s say you want the Al to use a specific algorithm. You might
give it a smaller example of that algorithm in action as a hint. Or if the task has multi-
ple correct answers but you prefer a certain one, an example can push it toward that.

Few-shot prompting is powerful for formatting; for instance:

Convert The Following English Statements To SQL Queries.\N1."Get All Employees
Hired After 2020” — Select * From Employees Where Hire_Date > 2020-01-01’;\N2.
“List Customer Names Who Made A Purchase In The Last Month” — Select Name
From Customers Join Purchases On ... Where Purchase_Date > ...;\N3. “Count Of
Products That Are Out Of Stock” —

Here, once you give two examples of English-to-SQL, the AI is likely to answer the
third query correctly by following the pattern. Few-shot examples can be applied to
coding too: show the Al the style you want in a small sample and then ask for more.
It’s like giving it a minitraining dataset within your prompt.

Pros: You can achieve outputs in very specific styles. This technique also helps the
model handle tasks that involve following a pattern or applying a concept repetitively.

Context Window

The term context window refers to the maximum amount of text
(measured in tokens) that a language model can process in a single
interaction, including both the input prompt and the generated
response. This represents a limitation of current AI models—once
you reach this threshold, the model cannot process additional
information. When youre crafting prompts, everything you
include (instructions, examples, data, and the space needed for the
response) must fit within this fixed capacity.

Cons: Few-shot prompting in particular makes the prompt longer (which uses up
context window). For very large/complex examples, it might “eat” a lot of the model’s
capacity. But usually a small example or two is fine.

Tip: If you want the model to strictly adhere to a certain output structure, giving an
example can nearly guarantee it matches that structure rather than offering a free-
form reply that you have to parse.

Chain-of-Thought Prompting

Chain-of-thought (CoT) prompting involves asking the model to think step-by-step
or show its reasoning before giving the final answer. In other words, you encourage
the model to break down the problem.

Prompting Techniques: A Toolbox for Effective Communication | 51

When to use: This is useful for complex problems that involve reasoning and multi-
step computations, or when you suspect the model might make a mistake if it jumps
straight to the answer. It’s also useful if you want an explanation in the output.

Combinatorial Math

Combinatorial math deals with counting, arranging, and selecting
objects according to specific rules or constraints. Common prob-
lems include calculating permutations (arrangements where order
matters), combinations (selections where order does not matter),
and other counting principles. Key notation includes “n choose k”
(written as C(n,k) or nCk), which represents the number of ways to
choose k items from n total items, calculated using the formula
n!/(k!(n-k)!). These calculations frequently appear in probability,
statistics, and discrete mathematics applications.

Example: Instead of just asking a combinatorial math problem like “What is 12
choose 4?” and getting an answer, you might say:

Solve 12 choose 4 step-by-step.
The model might then outline:

12 choose 4 = 12!/(4!*8!) = ... = 495

In coding, CoT can be useful for tricky algorithmic tasks. You might try the following
prompt:

Explain step-by-step how to merge two sorted lists, then provide the Python code.
The model would first outline something like:

We will use two pointers starting at the heads of each list, compare the elements,
append the smaller to a result list, and move that pointer, and so on...

Then it might give the code. This ensures it has structured the solution correctly
before coding.

Another use is debugging or understanding output:

Walk through the logic to determine if the number 19 is prime, then give the result.
The model might list divisions by primes, then conclude:

19 is prime.

Pros: Improves correctness on tasks requiring reasoning. There’s research evidence
that prompting the model to “think out loud” can lead to better results on math and
logic tasks. It also gives you insight into the model’s process, which can be instructive
or help you trust the answer more.

52 | Chapter2: The Art of the Prompt: Communicating Effectively with Al

https://oreil.ly/vI3V5
https://oreil.ly/t7flF

Cons: The output is longer (which might not be what you want in final code). Also,
some interfaces (like typical code completions) aren’t set up to show reasoning sepa-
rate from code. This technique is more common in Q&A or chat scenarios. However,
you can instruct the model to include the reasoning as comments in the code, which
is a neat way to get thoroughly commented code.

Role Prompting

Role prompting means you ask the Al to assume a certain identity or role that might
influence how it responds.

When to use: This is useful when you want to influence the style or detail of the
answer or get a certain perspective. For instance, an Al taking on an “expert” role
might give a more advanced solution or more explanation, while a “beginner” role
might make it explain more basic concepts.

Examples:

« You are a Python instructor. Explain the following code and then modify it to be
more Pythonic.

o Act as a security analyst. Here’s some code. Identify any security vulnerabilities.

« Pretend you are a linter that checks code for style issues.

This can significantly affect the response. Assigning the AI a security analyst role
might make it focus on things it otherwise wouldn’t mention (like data validation,
secure coding practices, or potential vulnerabilities). An instructor role might make it
provide clearer explanations and perhaps not assume prior knowledge.

In coding, you might say before asking for code:

You are an expert C++ programmer well-versed in optimization, instructing a junior
developer.

The result will likely use more advanced C++ features and explain why certain
choices were made, balancing technical sophistication with educational clarity.

Pros: This technique steers the tone and depth of the answer. This can tailor the solu-
tion to a certain level of complexity or thoroughness. It’s useful if you want either a
very simple solution (tell it to act as a novice and maybe it'll avoid complex tricks) or
a very optimized one (tell it to act as a performance guru).

Cons: Sometimes the model might focus more on the persona than needed (an
“instructor” might start explaining things you already know). Also, some AI safety
systems are more sensitive to certain role descriptions—particularly those that might
suggest deception, authority impersonation, or potentially harmful activities—though

Prompting Techniques: A Toolbox for Effective Communication | 53

straightforward technical and professional roles like “data analyst” or “software engi-
neer” typically work without issues.

Contextual Prompting

Contextual prompting means giving the Al additional context or information beyond
the immediate task description. AI models don’t have persistent memory of your
entire project unless you provide it in the prompt (or through some integrated con-
text window in advanced IDE integrations). So if you want the Al to write code that
fits into your existing codebase, give it that context. Basically, you supply relevant
data or background as part of the prompt.

When to use: Use when solving a problem requires knowing certain data or defini-
tions that the model might not know or might not recall correctly from training. Or
use when you want to ensure consistency with some external info (like an API spec or
previous part of conversation).

Examples:

If you have a data structure and you want code that works with it, you might paste its
definition:

Given the class below, implement the function X.
class Node:
def __init__(self, value, next=None):
self.value = value
self.next = next

Now write a function to count the nodes in a linked list starting at head.

By including the class definition, you make the AI much more likely to use
Node.value and Node.next properly in its code.

If you want to use a specific API, include a snippet of the documentation in the
prompt:

Using the requests library, fetch the data from the APIL. (The API returns JSON with
format: {...})

If you include even a short example of API usage from docs, the AI can mimic it.
For disambiguation:
Using the term student to refer to high school students, write a function that...

If student could be ambiguous in context, you've clarified it.

54 | Chapter2: The Art of the Prompt: Communicating Effectively with Al

Pros: Youre grounding the Al in the context you care about. It’s less likely to make
wrong assumptions if you supply the facts. This is extremely helpful if the AI other-
wise might not remember or know your specific use-case details.

Cons: This technique makes prompts longer. Also, the model might occasionally
regurgitate the provided context into the answer (like copying lines from a documen-
tation snippet into the code if not careful). But usually it uses it appropriately.

Tip: If you have a large context (like a big schema or many lines of code), sometimes
it’s better to summarize the key elements for the model rather than including every-
thing verbatim. This approach helps you stay within context limits while ensuring the
model receives the most relevant information. However, if the content is small
enough, just include it raw.

Constraints are also useful to mention: performance constraints (“Optimize for O(n
log n) or better”), compatibility constraints (“Must run on Python 3.8”), or library
choices (“Use standard library only, no external dependencies”). These act like guard-
rails and ensure the Al doesn’t suggest something outside acceptable bounds.

Metaprompting

Metaprompting is giving instructions about the output itself, not just what the solu-
tion should do. It’s like telling the Al how to format or approach the solution.

When to use: Useful when you need the answer in a specific format or style or when
you want to control how the AI works through the problem.

Examples:
First, explain the approach in two sentences, then provide the code.
This ensures the AI doesn’t launch straight into code:
Do not use any libraries in the solution.
This places a constraint on the solution:
Format the output as JSON.
This is useful if you're using the AI to produce data, not code:
Only provide the function body, without the definition line.
This is handy if you want to insert the function into existing code:
If the input is invalid, instead of error, return None.

This is not exactly the output format, but its instructing the AI how to behave for
certain cases.

Prompting Techniques: A Toolbox for Effective Communication | 55

Pros: You get exactly what you need, how you need it, without extra editing. This is
crucial for some scenarios. If you plan to automatically use the AI's output in a pipe-
line, then you really want consistent formatting.

Cons: If the instructions conflict with the model’s default style, sometimes it might
partially follow them or you have to emphasize them. For instance, even if you say
“only code, no explanation,” occasionally the model might include a tiny comment or
so. Usually, phrasing it as a direct imperative helps:

Do not include any explanation; output only code inside a single code block.

Models like GPT follow that quite well.

Self-Consistency (Multiple Outputs and Majority Voting)

Self-consistency is more of a strategy than a prompt style. The idea is to get multiple
outputs for the same prompt and then decide on the best or most common one. As
Sander Schulhoff of Learn Prompting notes, self-consistency leverages the notion that
if you ask the model multiple times (with slight randomness) and many of its answers
agree, that consensus is likely correct.

When to use: This is useful for complex problems where youre unsure the model’s
first answer is correct, especially if you can’t verify it easily yourself, or if you want a
confidence check from the Al by seeing whether it gives the same answer repeatedly.

How to use manually: On some platforms (like ChatGPT), you can click “Regenerate
answer.” Or you can copy the prompt into a new session and see if it gives the same
result. If you get three answers and two are the same and one is different, you might
trust the two (assuming the problem has a single correct answer).

In programming context, if it's generating code for something deterministic, usually
it will give very similar code each time (with small variations in variable names or
style). But if it’s an algorithmic question (like “What’s the output of this code?”), you
could check multiple runs.

This technique is more powerful in noncoding tasks (like logic puzzles) but worth
noting.

Another angle—ensemble prompting: You can actually ask the model within one
prompt to consider multiple possibilities:

Give two different solutions to this problem.

Then perhaps you can see which one you like or test both. This is like self-consistency
in one shot because you get multiple answers.

56 | Chapter2: The Art of the Prompt: Communicating Effectively with Al

https://oreil.ly/fHABW

Pros: This technique can increase confidence in the solution if multiple attempts con-
verge. Also, you might get variety (which is good if you want to choose the most ele-
gant solution among many).

Cons: It’s time-consuming to do multiple calls and compare outputs.

In practice, if ’'m unsure about an answer, I'll often repose the question differently to
see if I get the same answer. If I do, 'm more confident it’s correct.

ReAct (Reason + Act) Prompting

ReAct is a more advanced prompting technique that combines reasoning and acting. It
gets the model not only to think, like CoT does, but also to take actions like making a
calculation, calling an API, or using a tool. (See the ReAct Prompt Engineering Guide
for more). In current practice, this is often used with frameworks like LangChain,
where the Al can output a special format that a program interprets as an action (like a
command to execute or a query to run), then feed the result back.

For our scope (without such an execution environment in the loop), you can still do a
form of ReAct by instructing the AI to first outline a plan, then output the result. It’s
similar to CoT but specifically oriented to using tools or performing subtasks.

Example:
Using Python, determine the current weather in Paris and print it.

Unless the Al has browsing capabilities, it cannot truly get the current weather. A
ReAct approach would have the Al first reason through the problem by stating:

I need to access current weather data for Paris, which requires calling a weather APL

The AI would then attempt to use an available tool to make this API call. If success-
ful, it would receive actual weather data; if no such tool is available, it might acknowl-
edge the limitation or work with hypothetical data. Finally, the AI would write the
Python code to display the weather information, incorporating whatever data it was
able to obtain through this reasoning and action process.

Without external tool access, ReAct might not be particularly relevant for simple
prompting tasks. However, when evaluating Al tools for your organization, determin-
ing whether they can access current information from the internet represents a criti-
cal capability assessment. Many Al models operate with knowledge cutoffs, meaning
their training data only extends to a specific date, which can result in outdated infor-
mation for rapidly changing topics.

Prompting Techniques: A Toolbox for Effective Communication | 57

https://arxiv.org/abs/2210.03629
https://oreil.ly/P_KIV

If you are using an environment where the Al can execute code (such as Jupyter inte-
grations or similar platforms), you could implement ReAct by instructing the system:

First write a test for this function, run it, then adjust the code accordingly.

This demonstrates the ReAct pattern through a reasoning step (writing the test), fol-
lowed by an action (executing the test), and then code adjustment based on the
results. However, orchestrating such workflows through pure prompts requires
advanced prompting techniques and appropriate technical infrastructure.

Simpler use: You can simulate a Q&A where the AI has intermediate steps that mimic
actions:

Think step-by-step and if you need to, do calculations.
It’s effectively CoT but with a more imperative tone.

Pros: When available, it can solve problems that require external info or iterative trial
(like the AT can correct itself by actually running code). In debugging contexts, an Al
that can execute code to test it is fantastic.

Cons: This technique is not widely accessible without specific tooling. And if you just
prompt that way in plain ChatGPT, it will either imagine the actions or just do CoT.

For our purposes in prompt writing, keep in mind that some systems (like OpenAT’s
tool-using agents or others) exist, but in vanilla prompting we mostly do CoT, and we
ourselves handle actions like running the code or tests.

Advanced Prompting: Combining Techniques
and Handling Complexity

Prompting techniques can be combined. For instance, you might do a few-shot
prompt that also demonstrates CoT in the examples. Or you might combine a role
with CoT:

As a senior engineer, think step-by-step through the problem, then give the code.

Now that we've explored various prompting techniques, let’s see them in action with a
scenario or two, then discuss how to review and refine the AT's output (which leads
into the next chapter about understanding and owning the generated code).

Imagine you have a function that isn’t working. You might use a combination of role
and CoT prompting:

You are a Python debugger. Lets think step-by-step to find the bug in the following
code.

58 | Chapter2: The Art of the Prompt: Communicating Effectively with Al

This would be followed by the code. The AI might respond with an analysis of each
line and pinpoint the bug.

Or let’s say you want to generate code for a somewhat complex algorithm, ensure it’s
well commented, and also get test cases for it. A combined prompt might look like
this:

You are an expert Python developer. Let’s solve this step-by-step. We need a function
merge_sorted_lists(listl, list2) that merges two sorted lists into one sorted list.
First, explain the approach, then provide the Python code with comments. After that,
give 2-3 example tests in code to demonstrate it works.

This single prompt is quite comprehensive. The first sentence sets a role. The second
requests step-by-step reasoning. The third gives the main task. The fourth sentence
asks for code with explanatory comments, and the fifth even asks for tests.

The AI might then output an explanation, then the code with inline comments, then
some test cases at the end. This is an advanced use, but it shows how you can direct
the AI through a multifaceted response.

Know the Model’s Limits

Prompt engineering also involves knowing what not to ask and how to avoid pitfalls.
If a prompt is getting too large or includes too many instructions, the model might
get confused or truncate some output. If you find it starts ignoring parts of your
prompt, you might need to simplify or do it in parts. If an AI model sometimes pro-
duces incorrect facts or code (it “hallucinates”), you learn to double-check and not
use it as a factual oracle. If you find it tends to give overly verbose code, you can pre-
empt that with “Make the solution as concise as possible” If it sometimes uses func-
tions that don’t exist, you might instruct, “Use only the API functions listed below”
and list them. The better you understand the AI’s behavior, the more you can mold
your prompts to get around any weaknesses.

If a task is very complex, you can also break it into subtasks for the Al For example,
you might first prompt:

List the steps to implement a basic compiler for a simple arithmetic expression
language.

Once the Al gives the steps, you tackle each step with separate prompts, maybe even
in separate files or sessions:

Now implement step 1: tokenization.

This is like doing system design with the Al you can outline then refine each piece. It
leverages the AT’s ability to assist in planning (not just coding).

Advanced Prompting: Combining Techniques and Handling Complexity | 59

Stateful Conversation Versus One-Shot Prompting

In a chat setting, you have a conversation history, known as state. You can build up
context by discussing with the Al In an IDE completion setting, the context is mostly
your file content and comments. Both allow cumulative context in different ways. Use
conversation if you need the Al to remember what was said (like refining an answer).
Use fresh prompts or file context if you want to ensure its focusing only on what’s
relevant now. Sometimes wiping away the context prevents the model from sticking
to a potentially wrong earlier assumption.

By practicing with these techniques on various examples, you’ll become adept at
knowing which approach to use and when:

o If output format is important, give examples (few shot) or explicit formatting
instructions.

o Iflogic is tricky, use CoT or step-by-step.

o If the solution can vary in quality, set a role (like “seasoned engineer”) to get a
better style.

o If the model isn't complying, maybe break your prompts into pieces, simplify
them, or use stronger wording for constraints.

Common Prompt Antipatterns and How to Avoid Them

Not all prompts are created equal. By now, we've seen numerous examples of effective
prompts, but it’s equally instructive to recognize antipatterns—common mistakes that
lead to poor Al responses. This section covers some frequent prompt failures and
how to fix them.

The vague prompt

This is the classic “It doesn't work, please fix it” or “Write something that does X”
without enough detail. The question “Why isn’t my function working?” will generally
get a useless answer. Vague prompts force the Al to guess the context and often result
in generic advice or irrelevant code.

The fix is straightforward: add context and specifics. If you find yourself asking a
question and the answer feels like a Magic 8-Ball response (“Have you tried checking
X?7), stop and reframe your query with more details (error messages, code excerpt,
expected versus actual outcome, etc.). A good practice is to read your prompt and
ask, “Could this question apply to dozens of different scenarios?” If the answer is yes,
it’s too vague. Make it so specific that it could only apply to your scenario.

60 | Chapter2: The Art of the Prompt: Communicating Effectively with Al

The overloaded prompt

This is the opposite issue: asking the Al to do too many things at once. For instance:

Generate a complete Node.js app with authentication, a frontend in React, and deploy-
ment scripts.

Or even, on a smaller scale:
Fix these 5 bugs and also add these 3 features in one go.

The AI might attempt it, but you’ll likely get a jumbled or incomplete result, or it
might ignore some parts of the request. Even if it addresses everything, the response
will be long and harder to verify.

The remedy is to split the tasks. Prioritize: do one thing at a time, as we emphasized
earlier. This makes it easier to catch mistakes and ensures the model stays focused. If
you catch yourself writing a paragraph that uses “and” multiple times in the instruc-
tions, consider breaking it into separate prompts or sequential steps.

Missing the question

Sometimes users will present a lot of information but never clearly ask a question or
specify what they need, like dumping a large code snippet and just saying, “Here’s my
code” This can confuse the AI—it doesn’t know what you want.

Always include a clear ask:

« Identify any bugs in the above code.
« Explain what this code does.

« Complete the to-dos in the code.

A prompt should have a purpose. If you just provide text without a question or
instruction, the AI might make incorrect assumptions (like summarizing the code
instead of fixing it, etc.). Make sure the Al knows why you showed it some code. Even
a simple addition like “What’s wrong with this code?” or “Please continue implement-
ing this function” gives it direction.

Vague success criteria

This is a subtle one. Sometimes you might ask for an optimization or improvement,
but you don’t define what success looks like—for example, “Make this function faster.”
Faster by what metric? If the Al doesn't know your performance constraints, it might
micro-optimize something that doesn’t matter or use an approach that’s theoretically
faster but practically negligible. Or “Make this code cleaner™: “cleaner” is subjective.
We dealt with this by explicitly stating goals like “reduce duplication” or “improve
variable names,” etc.

Advanced Prompting: Combining Techniques and Handling Complexity | 61

The fix: quantify or qualify the improvement:

 Optimize this function to run in linear time (current version is quadratic).

« Refactor this to remove global variables and use a class instead.

Basically, be explicit about what problem you're solving with the refactor or feature. If
you leave it too open, the AI might solve a different problem than the one you care
about.

Ignoring Al's clarification or output

Sometimes the Al might respond with a clarifying question or an assumption:

+ Are you using React class components or functional components?

« Tassume the input is a string—please confirm.

If you ignore these and just reiterate your request, youre missing an opportunity to
improve the prompt. The Al is signaling that it needs more info. Always answer its
questions or refine your prompt to include those details.

Additionally, if the AD’s output is clearly off (like it misunderstood the question),
don’t just retry the same prompt verbatim. Take a moment to adjust your wording.
Maybe your prompt had an ambiguous phrase or omitted something essential. Treat
it like a conversation: if a human misunderstood, youd explain differently; do the
same for the Al

Inconsistency

If you keep changing how you ask or mixing different formats in one go, the model
can get confused. Two examples include switching between first person and third
person in instructions or mixing pseudocode with actual code in a confusing way.

Try to maintain a consistent style within a single prompt. If you provide examples,
ensure they are clearly delineated (use Markdown triple backticks for code, quotes for
input/output examples, etc.). Consistency helps the model parse your intent correctly.
Also, if you have a preferred style (say, ES6 versus ES5 syntax), consistently mention
it; otherwise, the model might suggest one way in one prompt and another way later.

Vague references like “the above code”

When using chat, if you say “the above function” or “the previous output,” be sure the
reference is clear. If the conversation is long and you say, “Refactor the above code,
the AI might lose track or pick the wrong code snippet to refactor.

It's safer to either quote the code again or specifically name the function you want
refactored. Models have a limited attention window, and although many LLMs can

62 | Chapter2: The Art of the Prompt: Communicating Effectively with Al

refer to prior parts of the conversation, giving it explicit context again can help avoid
confusion. This is especially true if some time (or several messages) passed since the
code was shown.

Summary and Next Steps

The art of prompting is iterative and creative. As models evolve, prompt best practi-
ces might change (for instance, future models might better understand intent with
less wording). But the underlying principle remains: communicate effectively, and the
AT will serve you better.

In essence, mastering prompt engineering is like mastering a new programming lan-
guage—the language of instructions for AL It’s a blend of technical writing, foresight,
and interactive debugging of the prompt itself. But once you get good at it, the Al
truly starts to feel like an extension of your own mind, because you can reliably
extract the solutions you envision (or even those you don’t fully envision yet but can
guide the Al to discover) with minimal friction. This skill will likely become as funda-
mental as knowing how to google things or how to use a debugger—it’s part of the
modern developer’s skill set in the age of vibe coding.

If AT can solve about 70% of a problem, how do you approach it as a partner in cod-
ing? Chapter 3 looks at how developers really use Al and sets out some “golden rules”
for vibe coding.

Summary and Next Steps | 63

PART II

Al Coding in Practice

CHAPTER 3

The 70% Problem: Al-Assisted
Workflows That Actually Work

Al-based coding tools are astonishingly good at certain tasks.' They excel at produc-
ing boilerplate, writing routine functions, and getting projects most of the way to
completion. In fact, many developers find that an AT assistant can implement an ini-
tial solution that covers roughly 70% of the requirements.

Peter Yang perfectly captured what I've been observing in the field in a post on X:

Honest reflections from coding with Al so far as a non-engineer:
It can get you 70% of the way there, but that last 30% is frustrating. It keeps taking one
step forward and two steps backward with new bugs, issues, etc.

If I knew how the code worked I could probably fix it myself. But since I don't, I ques-
tion if 'm actually learning that much.

Nonengineers using Al for coding find themselves hitting a frustrating wall. They can
get 70% of the way there surprisingly quickly, but that final 30% becomes an exercise
in diminishing returns.

This “70% problem” reveals something crucial about the current state of Al-assisted
development. The initial progress feels magical: you can describe what you want, and
AT tools like vO or Bolt will generate a working prototype that looks impressive. But
then reality sets in.

1 This chapter is based on an essay originally published on my Substack newsletter. See Addy Osmani, “The
70% Problem: Hard Truths About AI-Assisted Coding”, Elevate with Addy Osmani, December 4, 2024.

67

https://oreil.ly/aRKIJ
https://oreil.ly/aRKIJ
https://oreil.ly/i9qwq

The 70% is often the straightforward, patterned part of the work—the kind of code
that follows well-trod paths or common frameworks. As one Hacker News com-
menter observed, Al is superb at handling the “accidental complexity” of software
(the repetitive, mechanical stuff), while the “essential complexity”—understanding
and managing the inherent complexity of a problem—remains on human shoulders.
In Fred Brooks’s classic terms, Al tackles the incidental but not the intrinsic difficul-
ties of development.

Where do these tools struggle? Experienced engineers consistently report a “last mile”
gap. Al can generate a plausible solution, but the final 30%—covering edge cases,
refining the architecture, and ensuring maintainability—“needs serious human
expertise””

For example, an Al might give you a function that technically works for the basic sce-
nario, but it won’t automatically account for unusual inputs, race conditions, perfor-
mance constraints, or future requirements unless explicitly told. AI can get you most
of the way there, but that final crucial 30% (edge cases, keeping things maintainable,
and solid architecture) needs serious human expertise.

Moreover, Al has a known tendency to generate convincing but incorrect output. It
may introduce subtle bugs or “hallucinate” nonexistent functions and libraries. Steve
Yegge wryly likens today’s LLMs to “wildly productive junior developers”—incredibly
fast and enthusiastic but “potentially whacked out on mind-altering drugs,” prone to
concocting crazy or unworkable approaches.

In Yegge's words, an LLM can spew out code that looks polished at first glance, yet if a
less-experienced developer naively says, “Looks good to me!” and runs with it, hilar-
ity (or disaster) ensues in the following weeks. The Al doesn't truly understand the
problem; it stitches together patterns that usually make sense. Only a human can dis-
cern whether a seemingly fine solution hides long-term landmines. Simon Willison
echoed this after seeing an AI propose a bewitchingly clever design that only a senior
engineer with deep understanding of the problem could recognize as flawed. The les-
son: Al’s confidence far exceeds its reliability.

Crucially, current Als do not create fundamentally new abstractions or strategies
beyond their training data. They won't invent a novel algorithm or an innovative
architecture for you—they remix what’s known. They also won’t take responsibility
for decisions. As one engineer noted, “Als don't have ‘better ideas’ than what their
training data contains. They don't take responsibility for their work”

All of this means that creative and analytical thinking—deciding what to build, how
to structure it, and why—firmly remains a human domain. In summary, Al is a force
multiplier for developers, handling the repetitive 70% and giving us a “turbo boost”
in productivity. But it is not a silver bullet that can replace human judgment. The
remaining 30% of software engineering—the hard parts—still requires skills that only

68 | Chapter3:The 70% Problem: Al-Assisted Workflows That Actually Work

https://oreil.ly/Ff3Ts
https://oreil.ly/Ff3Ts
https://oreil.ly/hjv8f
https://oreil.ly/hjv8f
https://oreil.ly/yPMPO
https://oreil.ly/sLzFY
https://oreil.ly/sLzFY
https://oreil.ly/HkwVF
https://oreil.ly/HkwVF

trained, thoughtful developers can bring. Those are the durable skills to focus on, and
Chapter 4 is dedicated to them. As one discussion put it: “Al is a powerful tool, but it’s
not a magic bullet....Human judgment and good software engineering practices are
still essential”

How Developers Are Actually Using Al

I've observed two distinct patterns in how teams are leveraging Al for development.
Let’s call them the “bootstrappers” and the “iterators” Both are helping engineers
(and even nontechnical users) reduce the gap from idea to execution (or MVP).

First, there are the bootstrappers, who are generally taking a new project from zero to
MVP. Tools like Bolt, v0, and screenshot-to-code Al are revolutionizing how these
teams bootstrap new projects. These teams typically:

o Start with a design or rough concept
+ Use Al to generate a complete initial codebase
+ Get a working prototype in hours or days instead of weeks

« Focus on rapid validation and iteration

The results can be impressive. I recently watched a solo developer use Bolt to turn a
Figma design into a working web app in next to no time. It wasn’t production-ready,
but it was good enough to get very initial user feedback.

The second camp, the iterators, uses tools like Cursor, Cline, Copilot, and Windsurf
for their daily development workflow. This is less flashy but potentially more trans-
formative. These developers are:

« Using AI for code completion and suggestions
o Leveraging Al for complex refactoring tasks
« Generating tests and documentation

o Using Al as a “pair programmer” for problem solving

But here’s the catch: while both approaches can dramatically accelerate development,
they come with hidden costs that aren’t immediately obvious.

When you watch a senior engineer work with Al tools like Cursor or Copilot, it looks
like magic. They can scaffold entire features in minutes, complete with tests and docu-
mentation. But watch carefully, and you’ll notice something crucial: they’re not just
accepting what the AI suggests. They’re constantly refactoring the generated code into
smaller, focused modules. They’re adding comprehensive error handling and edge-case
handling the Al missed, strengthening its type definitions and interfaces, and question-
ing its architectural decisions. In other words, they’re applying years of hard-won engi-

How Developers Are Actually Using Al | 69

https://oreil.ly/QXYsj

neering wisdom to shape and constrain the AT’s output. The Al is accelerating their
implementation, but their expertise is what keeps the code maintainable.

Common Failure Patterns

Junior engineers often miss these crucial steps. They accept the AI's output more
readily, leading to what I call “house of cards code”—it looks complete but collapses
under real-world pressure.

Two steps back

What typically happens next follows a predictable antipattern I call the “two steps
back” pattern (shown in Figure 3-1):

 You try to fix a small bug. You ask Al to fix the new issue.

o The AI suggests a change that seems o This creates two more problems.

reasonable. + Rinse and repeat.

o This fix breaks something else.

[Try to fix a small bug m]—l

Al suggests a change

I that seems reasonable @
You ask Al to fix new l
issues .

This creates two more
problems -’é

*

Figure 3-1. The “two steps back” antipattern.

This cycle is particularly painful for nonengineers because they lack the mental mod-
els to understand what’s actually going wrong. When an experienced developer
encounters a bug, they can reason about potential causes and solutions based on
years of pattern recognition. Without this background, youre essentially playing
whack-a-mole with code you don't fully understand. This is the “knowledge paradox”
I mentioned back in this book’s preface: senior engineers and developers use Al to
accelerate what they already know how to do, while juniors try to use it to learn what
to do.

70 | Chapter3:The 70% Problem: Al-Assisted Workflows That Actually Work

This cycle is particularly painful for nonengineers using Al in a “bootstrapper” pat-
tern, because they lack the mental models needed to address these issues building
their MVP. However, even experienced “iterators” can fall into this whack-a-mole trap
if they overly rely on Al suggestions without deep validation.

There’s a deeper issue here: the very thing that makes AI coding tools accessible to
nonengineers—their ability to handle complexity on your behalf—can actually
impede learning. When code just “appears” without you understanding the underly-
ing principles, you don’t develop debugging skills. You miss learning fundamental
patterns. You can't reason about architectural decisions, and so you struggle to main-
tain and evolve the code. This creates a dependency where you need to keep going
back to the Al model to fix issues rather than developing the expertise to handle them
yourself.

This dependency risk enters a new dimension with the emergence of autonomous Al
coding agents—a topic I explore in depth in Chapter 10. Unlike current tools that
suggest code snippets, these agents represent a fundamental shift in how software can
be developed. As I write this, we're witnessing the early deployment of systems that
can independently plan, execute, and iterate on entire development tasks with mini-
mal human oversight.

This evolution from assistive to autonomous Al introduces profound questions about
developer expertise and control. When an Al system can handle complete develop-
ment workflows, from initial implementation through testing and deployment, the
risk of skill atrophy becomes acute. Developers who rely heavily on these agents
without maintaining their foundational knowledge may find themselves unable to
effectively audit, guide, or intervene when the AI’s decisions diverge from intended
outcomes.

The challenge compounds when we consider how these autonomous systems make
cascading decisions throughout a project. Each individual choice might appear rea-
sonable in isolation, yet the cumulative effect could steer development in unintended
directions. Without the expertise to recognize and correct these trajectory shifts early,
teams risk building increasingly complex systems on foundations they don’t fully
understand.

As we'll examine more thoroughly later, the advent of autonomous coding agents
doesn’t diminish the importance of software engineering fundamentals—it amplifies
it. The more powerful our AI tools become, the more critical it is that we maintain
the expertise to remain architects of our systems rather than mere operators. Only
through deep understanding of software principles can we ensure these remarkable
tools enhance our capabilities rather than erode them.

How Developers Are Actually Using Al | 71

The demo-quality trap

It's becoming a pattern: teams use Al to rapidly build impressive demos. The happy
path works beautifully. Investors and social networks are wowed. But when real users
start clicking around? That’s when things fall apart.

I've seen this firsthand: error messages that make no sense to normal users, edge cases
that crash the application, confusing U states that never got cleaned up, accessibility
completely overlooked, and performance issues on slower devices. These aren’t just
low-priority bugs—they're the difference between software people tolerate and soft-
ware people love.

Creating truly self-serve software—the kind where users never need to contact sup-
port—requires a different mindset, one that’s all about the lost art of polish. You need
to be obsessing over error messages; testing on slow connections and with real, non-
technical users; making features discoverable; and handling every edge case grace-
fully. This kind of attention to detail (perhaps) can't be Al-generated. It comes from
empathy, experience, and caring deeply about craft.

What Actually Works: Practical Workflow Patterns

Before we dive into coding in Part II of this book, we need to talk about modern
development practices and how Al-assisted coding fits within a team workflow. Soft-
ware development is more than writing code, after all—it’s a whole workflow that
includes planning, collaboration, testing, deployment, and maintenance. And vibe
coding isn't a standalone novelty—it can be woven into agile methodologies and
DevOps practices, augmenting the team’s productivity while preserving quality and
reliability.

In this section, we'll explore how team members can collectively use vibe-coding
tools without stepping on each other’s toes, how to balance AI suggestions with
human insight, and how continuous integration/continuous delivery (CI/CD) pipe-
lines can incorporate Al or adapt to Al-generated code. I'll also touch on important
considerations like version-control strategies.

After observing dozens of teams, here are three patterns I've seen work consistently
in both solo and team workflows:

Al as first drafter
The AI model generates the initial code and developers then refine, refactor, and
test it

Al as pair programmer
Developer and Al are in constant conversation, with tight feedback loops, fre-
quent code review, and minimal context provided

72 | Chapter3:The 70% Problem: Al-Assisted Workflows That Actually Work

Al as validator
Developers still write the initial code and then use Al to validate, test, and
improve it (see Figure 3-2)

\ e N\

Developer writes Al analyzes code

code

A 4

\. J \. J

v

Alanalyzes code Developer reviews
(bugs, security, tests) and applies

Figure 3-2. Al validation workflow: developers write initial code; Al systems analyze for
bugs and security issues, then suggest improvements; and developers review and apply
recommended changes.

In this section, I'll walk you through each pattern in turn, discussing workflows and
tips for success.

Al as first drafter

It's important to ensure everyone on the team is on the same page before you ask your
AT model to draft any code. Communication is key so that developers don’t ask their
AT assistants to do redundant tasks or generate conflicting implementations.

In daily stand-ups (a staple of agile workflows), it's worth discussing not just what
youre working on but also whether you plan to use Al for certain tasks. For example,
two developers might be working on different features that both involve a utility
function for date formatting. If both ask the Al to create a formatDate helper, you
might end up with two similar functions. Coordinating up front (“I'll generate a date
utility we can both use”) can prevent duplication.

Teams that successfully integrate Al tools often start by agreeing on coding standards
and prompting practices. For example, the team might decide on a consistent style
(linting rules, project conventions) and even feed those guidelines into their Al tools
(some assistants allow providing style preferences or example code to steer outputs).
As noted in Codacy’s blog, by familiarizing the AI with the team’s coding standards,

How Developers Are Actually Using Al | 73

https://oreil.ly/FeEN_

you get generated code that is more uniform and easier for everyone to work with.
On a practical level, this could mean having a section in your project README for
“AlI Usage Tips,” where you note things like “We use functional components only” or
“Prefer using Fetch API over Axios,” which developers can keep in mind when
prompting AL

Another practice is to use your tools’ collaboration features, if available. Some Al-
assisted IDEs allow users to share their Al sessions or at least the prompts they use. If
Developer A got a great result with a prompt for a complex component, sharing that
prompt with Developer B (perhaps via the issue tracker or a team chat) can save time
and ensure consistency.

As for using version control, the fundamentals remain—with a twist. Using Git (or
another version control system) is nonnegotiable in modern development, and that
doesn’t change with vibe coding. In fact, version control becomes even more crucial
when Al is generating code rapidly. Commits act as the safety net to catch Al mis-
steps; if an Al-generated change breaks something, you can revert to a previous
commit.

One strategy is to commit more frequently when using AI assistance. Each time the
AT produces a significant chunk of code (like generating a feature or doing some
major refactoring) that you accept, consider making a commit with a clear message.
Frequent commits ensure that if you need to bisect issues or undo a portion of Al-
introduced code, the history is granular enough.

Also, try to isolate different Al-introduced changes. If you let the Al make many
changes across different areas and commit them all together, it’s harder to disentangle
if something goes wrong. For example, if you use an agent to optimize performance
and it also tweaks some UI texts, commit those separately. (Your two commit mes-
sages might be “Optimize list rendering performance [Al-assisted]” and “Update UI
copy for workout completion message [Al-assisted]”). Descriptive commit messages
are important; some teams even tag commits that had heavy AI involvement, just for
traceability. It's not about blame but about understanding the origin of code—a com-
mit tagged with “[AI]” might signal to a reviewer that the code could use an extra
thorough review for edge cases.

Essentially, the team should treat Al usage as a normal part of the development con-
versation: share experiences, successful techniques, and warnings about what not to
do (like “Copilot suggests using an outdated library for X, so be careful with that”).

Review and refinement are crucial to this pattern. Developers should manually review
and refactor the code for modularity, add comprehensive error handling, write thor-
ough tests, and document key decisions as they refine the code. The next chapter goes
into detail about these processes.

74 | Chapter3:The 70% Problem: Al-Assisted Workflows That Actually Work

Al as pair programmer

Traditional pair programming involves two humans collaborating at one workstation.
With the advent of Al, a hybrid approach has emerged: one human developer
working alongside an Al assistant. This setup can be particularly effective, offering a
blend of human intuition and machine efficiency.

In a human-AlI pairing, the developer interacts with the AI to generate code sugges-
tions while also reviewing and refining the output. This dynamic allows the human to
leverage the AT’s speed in handling repetitive tasks, such as writing boilerplate code or
generating test cases, while maintaining oversight to ensure code quality and rele-
vance.

For instance, when integrating a new library, a developer might prompt the AI to
draft the initial integration code. The developer then reviews the AI’s suggestions,
cross-referencing with official documentation to verify accuracy. This process not
only accelerates development but also facilitates knowledge acquisition, as the devel-
oper engages deeply with both the AT’s output and the library’s intricacies.

Let’s compare this to traditional human-human pair programming:

o Human-AlI pairing offers rapid code generation and can handle mundane tasks
efficiently. It’s particularly beneficial for solo developers or when team resources
are limited.

o Human-human pairing excels in complex problem-solving scenarios, where
nuanced understanding and collaborative brainstorming are essential. It fosters
shared ownership and collective code comprehension.

Both approaches have their merits, and your choice between them can be guided by
the project’s complexity, resource availability, and the specific goals of the develop-
ment process.

Best practices for Al pair programming

To maximize the benefits of Al-assisted development, consider the following practices:

Initiate new Al sessions for distinct tasks
This helps maintain context clarity and ensures the AI’s suggestions are relevant
to the specific task at hand.

Keep prompts focused and concise
Providing clear and specific instructions enhances the quality of the AT’s output.

Review and commit changes frequently
Regularly integrating and testing Al-generated code helps catch issues early and
maintains project momentum.

How Developers Are Actually Using Al | 75

Maintain tight feedback loops
Continuously assess the AI's contributions, providing corrections or refinements
as needed to guide its learning and improve future suggestions.

Al as validator

Beyond code generation, Al can serve as a valuable validator, assisting in code review
and quality assurance. Al tools can analyze code for potential bugs, security vulnera-
bilities, and adherence to best practices. For example, platforms like DeepCode and
SnyK’s AI-powered code checker can identify issues such as missing input sanitization
or insecure configurations, providing actionable insights directly within the develop-
ment environment. Platforms such as Qodo and TestGPT can automatically generate
test cases, ensuring broader coverage and reducing manual effort. And many Al tools
can assist in monitoring application performance, detecting anomalies that might
indicate underlying issues.

By integrating Al validators into the development workflow, teams can enhance code
quality, reduce the likelihood of defects, and ensure compliance with security stand-
ards. This proactive approach to validation complements human oversight, leading to
more robust and reliable software. These tools enhance the efficiency and effective-
ness of the quality assurance (QA) process by handling repetitive and time-
consuming tasks, allowing human testers to focus on more complex and nuanced
aspects of QA.

Incorporating Al into the development process, whether as a pair programmer or
validator, offers opportunities to enhance productivity and code quality. By thought-
fully integrating these tools, developers can harness the strengths of both human and
artificial intelligence.

To maximize the benefits of both Al and human capabilities in QA, I recommend a
few best practices:

o Use Al for initial assessments and preliminary scans to identify obvious issues.

o Prioritize human review for critical areas, such as complex functionalities, user
experience, and Al limitations.

o Foster an environment of continuous collaboration, where Al tools and human
testers work in tandem, with ongoing feedback loops to improve both AI perfor-
mance and human decision making.

The Golden Rules of Vibe Coding

While vibe coding offers unprecedented speed and creative freedom in software
development, its very flexibility demands a structured approach to ensure consistent
quality and team cohesion. The rapid, intuitive nature of Al-assisted development

76 | Chapter3:The 70% Problem: Al-Assisted Workflows That Actually Work

can quickly lead to chaos without clear guidelines that balance creative exploration
with engineering discipline.

These golden rules emerged from collective experience across teams who have suc-
cessfully integrated vibe coding into their workflows. They represent hard-won
insights about where AI excels, where it stumbles, and how human judgment remains
essential throughout the process. Rather than constraining creativity, these principles
create a framework within which teams can confidently experiment while maintain-
ing the standards necessary for production-ready software.

The rules address three critical dimensions of vibe coding: the interaction between
human and A, the integration of Al-generated code into existing systems, and the
cultivation of team practices that support sustainable Al-assisted development. By
following these guidelines, teams can harness the transformative power of vibe cod-
ing while avoiding common pitfalls that lead to technical debt, security vulnerabili-
ties, or unmaintainable codebases:

Be specific and clear about what you want
Clearly articulate your requirements, tasks, and outcomes when interacting with
Al Precise prompts yield precise results.

Always validate Al output against your intent
Al-generated code must always be checked against your original goal. Verify
functionality, logic, and relevance before accepting.

Treat Al as a junior developer (with supervision)
Consider Al outputs as drafts that require your careful oversight. Provide feed-
back, refine, and ensure quality and correctness.

Use Al to expand your capabilities, not replace your thinking
Leverage Al to automate routine or complex tasks, but always remain actively
engaged in problem solving and decision making.

Coordinate up front among the team before generating code
Align with your team on AI usage standards, code expectations, and practices
before starting Al-driven development.

Treat Al usage as a normal part of the development conversation
Regularly discuss AI experiences, techniques, successes, and pitfalls with your
team. Normalize AT as another tool for collective improvement.

Isolate AI changes in Git by doing separate commits
Clearly identify and separate Al-generated changes within version control to
simplify reviews, rollbacks, and tracking.

The Golden Rules of Vibe Coding | 77

Ensure that all code, whether human or AI-written, undergoes code review
Maintain consistent standards by subjecting all contributions to the same rigor-
ous review processes, enhancing code quality and team understanding.

Don’t merge code you don’t understand
Never integrate Al-generated code unless you thoroughly comprehend its func-
tionality and implications. Understanding is critical to maintainability and
security.

Prioritize documentation, comments, and ADRs
Clearly document the rationale, functionality, and context for AI-generated code.

Good documentation ensures long-term clarity and reduces future technical
debt.

Share and reuse effective prompts
Document prompts that lead to high-quality AI outputs. Maintain a repository of
proven prompts to streamline future interactions and enhance consistency.

Regularly reflect and iterate
Periodically review and refine your AI development workflow. Use insights from
past experiences to continuously enhance your team’s approach.

By adhering to these golden rules, your team can harness Al effectively, enhancing
productivity while maintaining clarity, quality, and control.

Summary and Next Steps

The 70% problem defines the current state of Al-assisted development: these tools
excel at generating boilerplate and routine functions but struggle with the final 30%
that includes edge cases, architectural decisions, and production readiness. We've
identified two main usage patterns—bootstrappers who rapidly build MVPs, and iter-
ators who integrate Al into daily workflows—along with common failure patterns
like the “two steps back” antipattern and the “demo-quality trap” where impressive
prototypes fail under real-world pressure.

Three proven workflow patterns have emerged: AI as first drafter (generate then
refine), AI as pair programmer (continuous collaboration), and Al as validator
(human-written code with AI analysis). The golden rules of vibe coding provide
essential guardrails, emphasizing clear communication, thorough validation, team
coordination, and the nonnegotiable requirement to understand all code before
merging it.

Individual developers should choose one workflow pattern to experiment with sys-
tematically while implementing the golden rules in daily practice. Focus on develop-

78 | Chapter3:The 70% Problem: Al-Assisted Workflows That Actually Work

ing the durable skills covered in Chapter 4: system design, debugging, and
architecture—rather than competing with AI on code generation.

Teams need to establish standards for Al usage, create shared repositories of effective
prompts, and integrate Al considerations into existing agile practices. Regular knowl-
edge sharing about successes and pitfalls will help teams avoid common traps while
maximizing AI'’s benefits.

As autonomous Al coding agents emerge, the human role will shift toward architec-
tural oversight and strategic decision making. The next chapter explores how to max-
imize this irreplaceable human contribution, helping engineers at every level thrive as
partners to increasingly capable Al systems rather than competitors.

The Golden Rules of Vibe Coding | 79

CHAPTER 4

Beyond the 70%: Maximizing
Human Contribution

You've seen how Al coding assistants like Cursor, Cline, Copilot, and Windsurf have
transformed how software is built, shouldering much of the grunt work and boiler-
plate—about 70%.' But what about that last “30%” of the job that separates a toy solu-
tion from a production-ready system? This gap includes the hard parts:
understanding complex requirements, architecting maintainable systems, handling
edge cases, and ensuring code correctness. In other words, while Al can generate
code, it often struggles with engineering.

Tim O'Reilly, reflecting on decades of technology shifts, reminds us that each leap in
automation has changed how we program but not why we need skilled programmers.
We're not facing the end of programming but rather “the end of programming as we
know it today,” meaning developers’ roles are evolving, not evaporating.

The challenge for today’s engineers is to embrace Al for what it does best (the first
70%) while doubling down on the durable skills and insights needed for the remain-
ing 30%. This article dives into expert insights to identify which human skills remain
crucial. We'll explore what senior and midlevel developers should continue to lever-
age and what junior developers must invest in to thrive alongside Al

This chapter’s goal, then, is to offer you pragmatic guidance for maximizing the value
of that irreplaceable 30%, with actionable takeaways for engineers at every level.

1 This chapter is based on two essays I first published on my Substack newsletter: Addy Osmani, “Beyond the
70%: Maximizing the Human 30% of AI-Assisted Coding”, Elevate with Addy Osmani, March 13, 2025; and
Addy Osmani, “Future-Proofing Your Software Engineering Career”, Elevate with Addy Osmani, December
23,2024.

81

https://oreil.ly/PMFsp
https://oreil.ly/PMFsp
https://oreil.ly/1EoW8
https://oreil.ly/BYrNh

Senior Engineers and Developers:
Leverage Your Experience with Al

If you're a senior engineer, you should see the advent of AI coding tools as an oppor-
tunity to amplify your impact—if you leverage your experience in the right ways.
Senior developers typically possess deep domain knowledge, intuition for what could
go wrong, and the ability to make high-level technical decisions.

These strengths are part of the 30% that AI can’t handle alone. This section looks at
how seasoned developers can maximize their value.

Be the Architect and the Editor in Chief

Let AT handle the first draft of code while you focus on architecting the solution and
then refining the AD’s output. In many organizations, Steve Yegge writes that we may
see a shift where teams need “only senior associates” who “(a) describe the tasks to be
done; i.e., create the prompts, and (b) review the resulting work for accuracy and cor-
rectness.” Embrace that model. As a senior dev, you can translate complex require-
ments into effective prompts or specifications for an AI assistant, then use your
critical eye to vet every line produced. You are effectively pair programming with the
Al—it’s the fast typer, but you're the brain.

Maintain high standards during review: ensure the code meets your organization’s
quality, security, and performance benchmarks. By acting as architect and editor, you
prevent the “high review burden” from overwhelming you. (A cautionary note: if jun-
ior staff simply throw raw AI output over the wall to you, push back—instill a process
where they must verify Al-generated work first, so youre not the sole safety net.)

Use Al as a Force Multiplier for Big Initiatives

Senior engineers often drive large projects or tackle hairy refactors that juniors can’t
approach alone. AI can supercharge these efforts by handling a lot of mechanical
changes or exploring alternatives under your guidance. Yegge introduced the term
chat-oriented programming (CHOP) for this style of working—“coding via iterative
prompt refinement,” with the Al as a collaborator. Leverage CHOP to be more ambi-
tious in what you take on.

Having Al assistance lowers the bar for when a project is worth investing time in at
all since what might have taken days can now be done in hours. Senior devs can thus
attempt those “Wouldn’t it be nice if...?” projects that always seemed slightly out of
reach.

The key is to remain the guiding mind: you decide which tools or approaches to pur-
sue, and you integrate the pieces into a cohesive whole. Your experience allows you to
sift the AT’s suggestions—accepting those that fit, rejecting those that don't.

82 | Chapter4:Beyond the 70%: Maximizing Human Contribution

https://oreil.ly/QtJ7_
https://oreil.ly/QtJ7_

Mentor and Set Standards

Another crucial role for senior engineers is to coach less-experienced team members
on effective use of Al and on the timeless best practices. You likely have hard-won
knowledge of pitfalls that juniors may not see, like memory leaks, off-by-one errors,
and concurrency hazards.

With juniors now potentially generating code via Al it’s important to teach them how
to self-review and test that code. Set an example by demonstrating how to thoroughly
test AI contributions, and encourage a culture of questioning and verifying machine
output. Some organizations (including even law firms) have instituted rules that if
someone uses an Al to generate code or writing, they must disclose it and verify the
results themselves—not just assume a senior colleague will catch mistakes.

As a senior engineer, champion such norms on your team: Al is welcome, but dili-
gence is required. By mentoring juniors in this way, you offload some of the oversight
burden and help them grow into that 30% skill set more quickly.

Continue to Cultivate Domain Mastery and Foresight

Your broad experience and context are more important than ever. Senior developers
often have historical knowledge of why things in the company are built a certain way
or how an industry operates. This domain mastery lets you catch AI’s missteps that a
newcomer wouldn't.

Continue investing in understanding the problem domain deeply. That might mean
staying up-to-date with the business’s needs, user feedback, or new regulations that
affect the software. AI won't automatically incorporate these considerations unless
you tell it to. When you combine your domain insight with AT’s speed, you get the
best outcomes.

Also, use your foresight to steer Al For instance, if you know that a quick fix will
create maintenance pain down the line, you can instruct the AI to implement a more
sustainable solution. Trust the instincts you've honed over the years—if a code snip-
pet looks “off” or too good to be true, dig in. Nine times out of ten, your intuition has
spotted something that the AI didn’t account for. Being able to foresee the second-
and third-order effects of code is a hallmark of senior engineers; don’t let the conve-
nience of AI blunt that habit. Instead, apply it to whatever the AI produces.

Hone Your Soft Skills and Leadership

With Al shouldering some coding, senior developers can spend more energy on the
human side of engineering: communicating with stakeholders, leading design meetings,
and making judgment calls that align technology with business strategy. Tim O’Reilly

Senior Engineers and Developers: Leverage Your Experience with Al | 83

https://oreil.ly/rbIKm

and others suggest that as rote coding becomes easier, the value shifts to deciding what
to build and how to orchestrate complex systems.

Senior engineers are often the ones orchestrating and seeing the big picture. Step up
to that role. Volunteer to write that architecture roadmap, to evaluate which tools (Al
or otherwise) to adopt, or to define your org’s Al coding guidelines. These are tasks
AT can't do—they require experience, human discretion, and, often, cross-team con-
sensus building. By amplifying your leadership presence, you ensure that youre not
just a code generator (replaceable by another tool) but an indispensable technical
leader guiding the team.

In short, continue doing what seasoned developers do best: seeing the forest for the
trees. Al will help you chop a lot more trees, but someone still needs to decide which
trees to cut and how to build a stable house from the lumber. Your judgment, strategic
thinking, and mentorship are now even more critical. A senior developer who har-
nesses Al effectively can be dramatically more productive than one who doesn’t—but
the ones who truly excel will be those who apply their human strengths to amplify the
AT’s output, not just let it run wild.

As one Redditor observed, “Al is a programming force multiplier” that “greatly
increases the productivity of senior programmers.” The multiplier effect is real, but
it’s your expertise that’s being multiplied. Keep that expertise sharp and at the center
of the development process.

Midlevel Engineers: Adapt and Specialize

Midlevel engineers face perhaps the most significant pressure to evolve. Many of the
tasks that traditionally occupied your time—implementing features, writing tests,
debugging straightforward issues—are becoming increasingly automatable.

This doesn’t mean obsolescence; it means elevation. The focus shifts from writing
code to more building specialized knowledge, which the following sections explore.

Learn to Manage Systems Integration and Boundaries

As systems become more complex, understanding and managing the boundaries
between components becomes crucial. This includes API design, event schemas, and
data models—all requiring careful consideration of business requirements and future
flexibility. Deepen your computer science fundamentals, including gaining an
advanced understanding of disciplines like:

« Data structures and algorithms

« Distributed-systems principles

84 | Chapter4:Beyond the 70%: Maximizing Human Contribution

https://oreil.ly/rbIKm
https://oreil.ly/HulC9

« Database internals and query optimization

« Network protocols and security

This knowledge helps you understand the implications of Al-generated code and
make better architectural decisions.

Learn to handle edge cases and ambiguity too. Real-world software is rife with odd-
ball scenarios and changing requirements. Al tends to solve the general case by
default. It’s up to the developer to ask “What if...?” and probe for weaknesses.

The durable skills here are critical thinking and foresight—enumerating edge cases,
anticipating failures, and addressing them in code or design. This might mean think-
ing of null input, network outages, unusual user actions, or integration with other
systems.

Build Your Domain Expertise

Understanding the business context or the user’s environment will reveal edge cases
that a generic Al simply doesn’t know about. Experienced engineers habitually con-
sider these scenarios. Practice systematically testing boundaries and questioning
assumptions. Specialize in complex domains where human understanding remains
crucial. Generic domains include:

« Financial systems with regulatory requirements
o Healthcare systems with privacy concerns

o Real-time systems with strict performance requirements

+ Machine learning infrastructure

Software-engineering-specific domains include frontend and backend engineering,
mobile development, DevOps, and security engineering, to name a few. Domain
expertise provides context that current Al tools lack and helps you make better deci-
sions about where and how to apply them.

Master Performance Optimization and DevOps

While LLMs can suggest basic optimizations, identifying and resolving system-wide
performance issues requires a deep understanding of the entire stack, from database
query patterns to frontend rendering strategies. Understanding how systems run in
production becomes more valuable as code generation becomes more automated.

Focus on fields like the following:

+ Monitoring and observability

o Performance profiling and optimization

Midlevel Engineers: Adapt and Specialize | 85

o Security practices and compliance

« Cost management and optimization

Focus on Code Review and Quality Assurance

With AI writing lots of code, the ability to rigorously review and test that code
becomes even more critical. “Everyone will need to get a lot more serious about test-
ing and reviewing code;” Yegge emphasizes. Treat AI-generated code as you would a
human junior developer’s output: you are the code reviewer responsible for catching
bugs, security flaws, or sloppy implementations. This means strengthening your skills
in unit testing, integration testing, and debugging.

Writing good tests is a durable skill that forces you to understand the spec and verify
correctness. It’s wise to assume nothing works until proven otherwise. Al often yields
functional but unoptimized code until you guide it through iterative improvement.
This can be due to a number of reasons, including that the training data coding mod-
els are trained on don’t reflect all best practices as completely as they could.

Cultivate a testing mindset: verify every critical logic path, use static analysis or lint-
ers, and don’t shy away from rewriting Al-given code if it doesn't meet your quality
bar. Even if you're following the “Al as validator” pattern discussed in the previous
chapter, quality assurance is not an area to simply outsource to AI—it’s where human
diligence shines. When software doesn’t work as expected, you need real problem-
solving chops to diagnose and fix it. AI can assist with debugging (for example, by
suggesting possible causes), but it lacks true understanding of the specific context in
which your application runs. Human testers possess domain-specific knowledge and
an understanding of user expectations that AI currently lacks. This insight is vital
when assessing the relevance and impact of potential issues. Diagnosing complex
bugs often requires creative problem solving and the ability to consider a broad range
of factors—skills that are inherently human. And evaluating the ethical implications
of software behavior, such as fairness and accessibility, requires human sensitivity and
judgment.

Being able to reason through a complex bug—reproducing it, isolating the cause,
understanding the underlying systems (OS, databases, libraries)—is a timeless engi-
neering skill. This often requires a strong grasp of fundamentals (how memory and
state work, concurrency, etc.) that junior developers must learn through practice. Use
AT as a helper (it might explain error messages or suggest fixes), but don’t rely on it
thoughtlessly. The skill to methodically troubleshoot and apply first principles when
debugging sets great developers apart. It’s also a feedback loop: debugging Al-written
code will teach you to prompt the Al better next time or avoid certain patterns.

86 | Chapter4:Beyond the 70%: Maximizing Human Contribution

https://oreil.ly/QtJ7_

Learn Systems Thinking

Software projects are not just isolated coding tasks; they exist within a larger context
of user needs, timelines, legacy code, and team processes. Al has no innate sense of
the big picture, like your project’s history or the rationale behind certain decisions
(unless you explicitly feed all that into the prompt, which is often impractical).
Humans need to carry that context.

The durable skill here is systems thinking—understanding how a change in one part
of the system might impact another, how the software serves the business objectives,
and how all the moving pieces connect.? This holistic perspective lets you use Al out-
puts appropriately. For example, if an Al suggests a clever shortcut that contradicts a
regulatory requirement or company convention, you’ll catch it because you know the
context. Make it a point to learn the background of your projects and read design
docs, so you can develop your judgment about what fits and what doesn’t.

Be Adaptable—and Never Stop Learning

Finally, a metaskill: the ability to learn new tools and adapt to change. The field of AI-
assisted development is evolving rapidly. Engineers who keep an open mind and
learn how to effectively use new AI features will remain ahead of the curve—Tim
O'Reilly suggests that developers who are “eager to learn new skills” will see the big-
gest productivity boosts from Al Invest in learning the fundamentals deeply and stay-
ing curious about new techniques. This combination enables you to harness Al as a
tool without becoming dependent on it.

It's a balancing act: use Al to accelerate your growth, but also occasionally practice
without it to ensure youre not skipping core learning (some developers do an “Al
detox” periodically to keep their raw coding skills sharp). In short, be the engineer
who learns constantly—that’s a career-proof skill in any era.

Get Good at Cross-Functional Communication

The ability to translate between business requirements and technical solutions
becomes more valuable as implementation time decreases. Engineers who can effec-
tively communicate with product managers, designers, and other stakeholders will
become increasingly valuable. Good areas of focus here include:

+ Requirements gathering and analysis

« Technical writing and documentation

2 To learn more about systems thinking, check out Donella H. Meadows, Thinking in Systems: A Primer, 2nd
edition (Rizzoli, 2008); and Peter M. Senge, The Fifth Discipline: The Art and Practice of the Learning Organi-
zation (Crown, 2010).

Midlevel Engineers: Adapt and Specialize | 87

https://oreil.ly/BYrNh
https://oreil.ly/XFPqu
https://oreil.ly/XFPqu

« Project planning and estimation

o Team leadership and mentoring

Learn System Design and Architecture

Instead of spending days implementing a new feature, midlevel engineers might
spend that time designing robust systems that gracefully handle scale and failure
modes. This requires deep understanding of distributed systems principles, database
internals, and cloud infrastructure—areas where LLMs currently provide limited
value.

Practice designing systems that solve real-world problems at scale. These skills
remain valuable regardless of how code is generated, as they require understanding
business requirements and engineering trade-offs.

Designing a coherent system requires understanding trade-offs, constraints, and the
“big picture” beyond writing a few functions. Al can generate code but won’t auto-
matically choose the best architecture for a complex problem.

The overall design—how components interact, how data flows, how to ensure scala-
bility and security—is part of that 30% that demands human insight; this includes the
following:

« Load balancing and caching strategies
o Data partitioning and replication
o Failure modes and recovery procedures

o Cost optimization and resource management

Senior developers have long honed this skill, and midlevel and junior devs should
actively cultivate it. Think in terms of patterns and principles (like separation of con-
cerns and modularity)—these guide an Al-generated solution toward maintainability.
Remember, solid architecture doesnt emerge by accident; it needs an experienced
human hand on the wheel.

Use Al!

Remember that Al should be an integral part of your workflow—its not something to
resist. Practical ways to incorporate Al into your daily work include:

o Scaffolding initial code structures
o Quick prototypes and proof of concepts
o Pair programming for faster debugging and problem solving

« Suggesting optimizations and alternative approaches

88 | Chapter4: Beyond the 70%: Maximizing Human Contribution

» Handling repetitive code patterns while you focus on architecture and design
decisions

Venture into Ul and UX Design

There’s a growing narrative that midlevel software engineers should “just quit”—that
pure engineering skills will become obsolete as AI handles the implementation
details. While the conclusion is overstated, the discourse about the importance of
skills beyond engineering (like design) deserves examination. In a representative
exchange on X in December 2024, @fchollet wrote:

We'll soon be in a world where you can turn test-time compute into competence—for
the first time in the history of software, marginal cost will become critical.

To which @garrytan replied:
UX, design, actual dedication to the craft will take center stage in this next moment.

Actually make something people want. Software and coding won't be the gating fac-
tor. It is the ability to be a polymath and smart/effective in many domains together
that creates great software.

Successful software creation has always required more than just coding ability. What’s
changing is not the death of engineering but rather the lowering of pure implementa-
tion barriers. This shift actually makes engineering judgment and design thinking
more crucial, not less.

Consider what makes applications like Figma, Notion, or VSCode successful. It's not
just technical excellence—it’s the deep understanding of user needs, workflows, and
pain points. This understanding comes from the following:

« User experience design thinking

+ Deep domain knowledge

« Understanding of human psychology and behavior

« System design that considers performance, reliability, and scalability

« Business model alignment

The best engineers have always been more than just coders. They’ve been problem
solvers who understand both technical constraints and human needs. As Al tools
reduce the friction of implementation, this holistic understanding becomes even
more valuable.

However, this doesn’t mean every engineer needs to become a UX designer. Instead, it
means developing stronger product thinking abilities and building better collabora-
tion skills with designers and product managers. It means thinking more about users,

Midlevel Engineers: Adapt and Specialize | 89

https://oreil.ly/BokTH

understanding their psychology and behavior patterns, and learning to make techni-
cal decisions that support user experience goals. You're at the point of achieving tech-
nical elegance: now balance it out with close attention to practical user needs.

Tan went on to post:
UX, design, actual dedication to the craft will take center stage in this next moment.

Actually make something people want. Software and coding won’t be the gating fac-
tor. It is the ability to be a polymath and smart/effective in many domains together
that creates great software.

The future belongs to engineers who can bridge the gap between human needs and
technical solutions—whether that's through developing better design sensibilities
themselves or through more effective collaboration with dedicated designers.

Junior Developers: Thrive Alongside Al

If youre a junior or less-experienced developer, you might feel a mix of excitement
and anxiety about Al Al assistants can write code that you might not know how to
write yourself, potentially accelerating your learning. Yet there are headlines about
the “death of the junior developer”, suggesting entry-level coding jobs are at risk.
Contrary to popular speculation, while Al is significantly changing the early-career
experience, junior developers are not obsolete.

You need to be proactive in developing skills that ensure youre contributing value
beyond what an AI can churn out. The traditional path of learning through imple-
menting basic CRUD applications and simple features will evolve as these tasks
become increasingly automated.

Consider a typical junior task: implementing a new API endpoint following existing
patterns. Previously, this might have taken a day of coding and testing. With Al assis-
tance, the implementation time might drop to an hour, but the crucial skills become:

o Understanding the existing system architecture well enough to specify the
requirement correctly
+ Reviewing the generated code for security implications and edge cases
« Ensuring the implementation maintains consistency with existing patterns
» Writing comprehensive tests that verify business logic
These skills can’t be learned purely through tutorial following or AI prompting—they

require hands-on experience with production systems and mentorship from senior
engineers.

90 | Chapter4:Beyond the 70%: Maximizing Human Contribution

https://oreil.ly/QtJ7_

This evolution presents both challenges and opportunities for early-career develop-
ers. The bar for entry-level positions may rise, requiring stronger fundamental
knowledge to effectively review and validate AI-generated code. However, this shift
also means junior engineers can potentially tackle more interesting problems earlier
in their careers.

Here’s how to invest in yourself to handle that 30% gap effectively.

Learn the Fundamentals—Don't Skip the “Why”

Its tempting to lean on AI for answers to every question (“How do I do X in
Python?”) and never truly absorb the underlying concepts. Resist that urge. Use Al as
a tutor, not just an answer vending machine. For example, when AI gives you a piece
of code, ask why it chose that approach, or have it explain the code line by line.

Make sure you understand concepts like data structures, algorithms, memory man-
agement, and concurrency without always deferring to AI. The reason is simple:
when the AD’s output is wrong or incomplete, you need your own mental model to
recognize and fix it. If you're not actively engaging with why the Al is generating cer-
tain code, you might actually learn less, hindering your growth. So take time to read
documentation, write small programs from scratch, and solidify your core knowl-
edge. These fundamentals are durable; they’ll serve you even as the tools around you
change.

Practice Problem Solving and Debugging Without the Al Safety Net

To build real confidence, sometimes you have to fly solo. Many developers advocate
doing an “Al-free day” or otherwise limiting AT assistance periodically. This ensures
you can still solve problems with just your own skills, which is important for avoiding
skill atrophy. You'll find it forces you to truly think through a problem’s logic, which
in turn makes you better at using AI (since you can direct it more intelligently).

Additionally, whenever you encounter a bug or error in Al-generated code, jump in
and debug it yourself before asking the Al to fix it. You'll learn much more by step-
ping through a debugger or adding print statements to see what’s going wrong.

Consider Al suggestions as hints, not final answers. Over time, tackling those last
tricky bits of a task will build your skill in the very areas Al struggles—exactly what
makes you valuable.

Focus on Testing and Verification

As a junior dev, one of the best habits you can develop is writing tests for your code.
This is doubly true if you use Al to generate code.

Junior Developers: Thrive Alongside Al | 91

When you get a chunk of code from an LLM, don’t assume it’s correct—challenge it.
Write unit tests (or use manual tests) to see if it truly handles the requirements and
edge cases. This accomplishes two things: it catches issues in the AT’s output, and it
trains you to think about expected behavior before trusting an implementation.

You might even use the AI to help write tests, but you define what to test. Yegge’s
advice about taking testing and code review seriously applies at all levels. If you culti-
vate a reputation for carefully verifying your work (AlI-assisted or not), senior collea-
gues will trust you more, and you’ll avoid the scenario where they feel youre just
“dumping” questionable code on them.

In practical terms, start treating testing as an integral part of development, not an
afterthought. Learn how to use testing frameworks, how to do exploratory manual
testing, and how to systematically reproduce bugs. These skills not only make you
better at the 30% work, but they also accelerate your understanding of how the code
really works.

Remember: if you catch a bug that the Al introduced, you just did something the AI
couldn’t—that’s added value.

Build an Eye for Maintainability

Junior devs often focus on “getting it to work” But in the AI era, getting a basic work-
ing version is easy—the Al can do that. The harder part (and what you should focus
on) is making code that’s readable, maintainable, and clean.

Start developing an eye for good code structure and style. Compare the Al’s output
with best practices you know of; if the Al code is messy or overly complex, take the
initiative to refactor it. For instance, if an LLM gives you a 50-line function that does
too many things, you can split it into smaller functions. If variable names are unclear,
rename them.

Essentially, pretend you’re reviewing a peer’s code, and improve the ATs code as if a
peer wrote it. This will help you internalize good design principles. Over time, you'll
start prompting the AI in ways that yield cleaner code to begin with (because you'll
specify the style you want). Software maintainers (often working months or years
later) will thank you, and you’ll prove that youre thinking beyond just “make it
run’—you're thinking like an engineer. Keeping things maintainable is exactly in that
human-driven 30%, so make it your concern from the start of your career.

Develop Your Prompting and Tooling Skills (Wisely)

There’s no denying that “prompt engineering”—the skill of interacting with AT tools
effectively—is useful. As a junior dev, you should absolutely learn how to phrase
questions to Al, how to give it proper context, and how to iterate on prompts to
improve the output (Chapter 2 of this book is a good place to start). These are new

92 | Chapter4:Beyond the 70%: Maximizing Human Contribution

https://oreil.ly/QtJ7_
https://oreil.ly/QtJ7_

skills that can set you apart (many experienced devs are still figuring this out too!).
However, remember that prompting well is often a proxy for understanding the prob-
lem well. If you find you can’t get the AI to do what you want, it might be because you
need to clarify your own understanding first. Use that as a signal.

One strategy is to outline a solution in plain English yourself before asking the AI to
implement it. Also, experiment with different Al tools (Copilot, Claude, etc.) to see
their strengths and weaknesses. The more fluent you are with these assistants, the
more productive you can be—but never treat their output as infallible. Think of Al
like a super-charged Stack Overflow: an aid, not an authority.

You might even build small personal projects using Al to push your limits (“Can I
build a simple web app with AT’s help?”). Doing so will teach you how to integrate Al
into a development workflow, which is a great skill to bring into a team. Just balance
it with periods of working without the net, as mentioned earlier.

Seek Feedback and Mentorship

Lastly, one durable skill that will accelerate your growth is the ability to seek out feed-
back and learn from others. An AI won't get offended if you ignore its advice, but
your human teammates and mentors are invaluable for your development—especially
when it comes to soft skills, leadership, communication, and navigating office
politics.

Don't hesitate to ask a senior developer why they prefer one solution over another,
especially if it differs from what an Al suggested. Discuss design decisions and trade-
offs with more experienced colleagues—these conversations reveal how seasoned
engineers think, and thats gold for you. In code reviews, be extra receptive to com-
ments about your Al-written code. If a reviewer points out that “this function isn’t
thread-safe” or “this approach will have scaling issues,” take the time to understand
the root issue. These are exactly the kinds of things an AI might miss, and you want
to learn to catch them. Over time, you’ll build a mental checklist of considerations.

Additionally, find opportunities to pair program (even if remotely). Perhaps you can
“pair” with a senior who uses Al in their workflow—you’ll observe how they prompt
the AI and how they correct it. But even more important, you'll see how they com-
municate, lead discussions, and handle delicate team dynamics. Being open to feed-
back and actively asking for guidance will help you mature from doing tasks that an
Al could do to performing the high-value tasks that only humans can do. In a sense,
you're trying to acquire the wisdom that usually comes with experience, as efficiently
as you can. That makes you more than just another coder in the room—it makes you
the kind of engineer teams are eager to keep and promote.

Junior Developers: Thrive Alongside Al | 93

Communicate and Collaborate

Building software is a team sport. Al doesn’t attend meetings (thank goodness)—
humans still must talk to other humans to clarify requirements, discuss trade-offs, and
coordinate work. Strong communication skills are as valuable as ever. Practice asking
good questions and describing problems clearly (both to colleagues and to AI).

Interestingly, prompting an Al is itself a form of communication; it requires you to
precisely express what you want. This overlaps with a core engineering skill: require-
ments analysis.> If you can formulate a clear prompt or spec, it means you've thought
through the problem.

Additionally, sharing knowledge, writing documentation, and reviewing others” code
are collaborative skills that AI cannot replace. In the future, as developers work
“with” AI, the human-to-human collaboration in a team—making sure the right
problems are being solved—stays vital. One emerging trend is that developers may
focus more on high-level design discussions (often with AI as a participant) and on
coordinating tasks, essentially taking on more of a conductor role. Communication
and leadership skills will serve you well in that conductor’s seat.

Shift Your Mindset: From Consuming to Creating

It's worth noting a mindset shift for juniors in the Al era: you need to move from just
consuming solutions to creating understanding. In the past, you might have struggled
through documentation to eventually write a feature; now an Al can hand you a solu-
tion on a platter. If you simply consume it (copy-paste and move on), you haven't
grown much.

Instead, use each Al-given solution as a learning case. Dissect it, experiment with it,
and consider how you might have arrived at it yourself. By treating AI outputs not as
answers to end all questions but as interactive learning material, you ensure that
you—the human—are continuously leveling up. This way, rather than replacing your
growth, AT accelerates it.

Many experts believe that while AI might reduce the need for large teams of junior
“coder-grinders,” it also raises the bar for what it means to be a junior developer. The
role is shifting to someone who can work effectively with Al and quickly climb the
value chain. If you adopt the habits discussed in this section, you'll distinguish your-
self as a junior developer who doesn't just bring what an AI could bring (any com-
pany can get that via a subscription) but who brings insight, reliability, and
continuous improvement—traits of a future senior developer.

3 For more on this topic, see Mark Richards and Neal Ford, Fundamentals of Software Architecture, 2nd edition
(O'Reilly, 2025); and Mark Richards, Neal Ford, and Raju Gandhi, Head First Software Architecture (O'Reilly,
2024).

94 | Chapter4:Beyond the 70%: Maximizing Human Contribution

Summary and Next Steps

To thrive in an Al-enhanced development world, engineers at all levels should double
down on the enduring skills and practices that AI cannot (yet) replicate. These capa-
bilities will remain crucial no matter how advanced our tools become. In particular,
focus on these areas:

« Strengthening your system design and architecture expertise

« Practicing systems thinking and maintaining a contextual understanding of the
big picture

« Honing your skills in critical thinking, problem solving, and foresight
o Building expertise in specialized domains

 Reviewing code, testing, debugging, and quality assurance

« Improving your communication and collaboration skills

« Adapting to change

« Continuously learning, keeping your fundamentals strong while gaining new
skills and updating your knowledge

« Using Al

These skills form the human advantage in software engineering. They are durable
because they don’t expire with the next framework or tooling change; if anything, AT’s
rise makes them more pronounced. Simon Willison has argued that AI assistance
actually makes strong programming skills more valuable, not less, because those with
expertise can leverage the tools to far greater effect.

A powerful machine in unskilled hands can be dangerous or wasted, but in capable
hands it’s transformative. In the AI era, an experienced engineer is like a seasoned
pilot with a new advanced copilot: the journey can go faster and farther, but the pilot
must still navigate the storms and ensure a safe landing.

Software engineering has always been a field of continuous change—from assembly
language to high-level programming, from on-prem servers to the cloud, and now
from manual coding to Al-assisted development. Each leap has automated some
aspect of programming, yet each time, developers have adapted and found even more
to do. In response to a Tim O’Reilly note, one HN commenter remarked that past
innovations “almost always resulted in more work, more growth, more opportunities”
for developers. The rise of Al is no different. Rather than making developers irrele-
vant, it is reshaping the skill set needed to succeed. The mundane 70% of coding is
getting easier; the challenging 30% becomes an even larger part of our value.

To maximize that human 30%, focus on the timeless engineering skills: understand-
ing problems deeply, designing clean solutions, scrutinizing code for quality, and

Summary and Next Steps | 95

https://oreil.ly/5F3O7
https://oreil.ly/BYrNh
https://oreil.ly/OewGO

considering the users and context. Experienced programmers are gaining more from
AT because they know how to guide it and what to do when it falters. Those who
combine these skills with AI tools will outperform those who have only one or the
other. In fact, the consensus emerging among experts is that Al is a tool for the skil-
led: that “LLMs are power tools meant for power users.” This means the onus is on
each of us to become that “power user”’—to cultivate the expertise that lets us wield
these new tools effectively.

Ultimately, the craft of software engineering is more than writing code that works. It’s
about writing code that works well—in a real-world environment, over time, and
under evolving requirements. Today’s AI models can assist with writing code but can-
not yet ensure the code works well in all those dimensions. That’s the developer’s job.

By doubling down on the skills just outlined, senior developers can continue to lead
and innovate, midlevel developers can deepen their expertise, and junior developers
can accelerate their journey to mastery. AI will handle more and more of the routine,
but your creativity, intuition, and thoughtful engineering will turn that raw output
into something truly valuable. Al is a powerful tool, but it’s all about how we use it.
Good engineering practices, human judgment, and a willingness to learn will remain
essential.

In practical terms, whether you are pair programming with an “eager junior” AI that
writes your functions or reviewing a diff full of Al-generated code, never forget to
apply your uniquely human lens. Ask, Does this solve the right problem? Will others
be able to understand and maintain this? What are the risks and edge cases? Those
questions are your responsibility. The future of programming will indeed involve less
typing every semicolon by hand and more directing and curating—but it will still
require developers at the helm who have the wisdom to do it right.

In the end, great software engineering has always been about problem solving, not
just code slinging. AI doesn’t change that: it simply challenges us to elevate our prob-
lem solving to the next level. Embrace that challenge, and you’ll thrive in this new
chapter of our industry.

96 | Chapter4:Beyond the 70%: Maximizing Human Contribution

https://oreil.ly/5gfvc

CHAPTER 5

Understanding Generated Code:
Review, Refine, Own

You've learned how to prompt an Al to generate code, and by this point you've likely
produced some code using these techniques. Now comes a critical phase: making sure
that code is correct, safe, and maintainable.

As a developer, you can’t just take the AT's output and blithely ship it. You need to
review it, test it, possibly improve it, and integrate it with the rest of your codebase.
This chapter focuses on how to understand what the AI gave you, iteratively edit and
debug it, and fully take ownership of the code as part of your project.

This chapter covers:

o Interpreting the Al's code in terms of your original intent

 The “majority solution” phenomenon, or why Al-generated code often looks like
a common solution

o Techniques to review code for clarity and potential issues
+ Debugging Al-written code when it doesn’t work as expected
« Refactoring the code for style or efficiency

 Writing tests to validate the code’s behavior

By mastering these skills, youll be able to integrate AI contributions into your
projects with confidence.

97

From Intent to Implementation:
Understanding the Al's Interpretation

When you get the AT’s code, your first step should be to compare it to your intent (the
prompt you gave). Does the code fulfill the requirements you set out? Sometimes the
Al might slightly misinterpret or only partially implement what you asked.

Read through the code carefully. Step through it in your mind or on paper:

o Trace what it does for a typical input.

o If your prompt had multiple parts (“do X and Y”), verify that the AI has done
them all.

o Ensure that the AI didn’t add functionality you didn't ask for—sometimes it will
add an extra feature it “thinks” is useful, like adding logging or a parameter,
which could be OK or not.

Just as you would with a colleague’s code, if something is unclear, note it. If you look
for a good reason for it to be there, you might find one. If you don't, query it or con-
sider removing it.

For example, if you ask for a prime-number checker and the AI code also prints
something like “Checking 7...” for each number, that may be an artifact of how you
prompted it or a pattern from its training data (some tutorial code prints its pro-
gress). If you don’t want that, plan to remove it or prompt the Al to remove it.

Also make sure the edge cases are handled as you expect. If you intended it to handle
empty input, does it? If the input could be None or negative, did the AI consider that?

If something about your prompt was ambiguous and the AI had to choose an inter-
pretation, identify where that happened. Perhaps you didn’t specify an output format,
and it chose to print results instead of returning them. Now you have to decide if you
want to accept that or modify the code.

This understanding phase is crucial; don't skip it. Even if you're going to test the code,
understanding it by reading is important because tests might not cover everything
(and reading is faster for some obvious things).

Last, consider the AI's assumptions. Al often goes for the “majority” or most com-
mon interpretation (which leads us to the next section).

98 | Chapter5: Understanding Generated Code: Review, Refine, Own

The “Majority” Problem: Most Common
Doesn’t Mean Most Appropriate

AT models trained on lots of code will often produce the solution that's most repre-
sented in that training data (or the simplest solution that fits). I call this the majority
solution effect. It’s correct in general cases, but it might not be the best for your spe-
cific situation.

For example, if you ask for a search algorithm without further context, the AI might
output a basic linear search, because that’s straightforward and common. Maybe you
actually needed a binary search, but the AI didn’t know that efficiency was critical,
because you didn’t say so. Linear search works for many moderate cases but not if
performance is key.

Similarly, the AI might use a global variable because many simple examples do, but
perhaps in your project, that’s not acceptable practice.

Be mindful that the AT’s solution might optimize for a generic scenario. As a human
developer, you have insight into context that the AI lacks.

To address this:

o Identify assumptions in the code. If it assumes a list is sorted or an input is valid,
was that assumption OK? Did you specify it? If not, maybe it should have
included a check.

« Consider alternatives: If you know multiple ways to solve the problem (like dif-
ferent algorithms), did the AI pick one? Is it the one you want? If not, you can
prompt for the alternative or just change it.

If the AI code works for the “usual” case but not for edge conditions that matter to
you, that’s something to fix. For instance, maybe it didn’t consider integer overflow in
some math. In many training examples, that might not have been addressed, but in
your context, it could be important.

Understanding that the AI tends toward generic solutions will make you better at
reviewing its code. It’s not magic or tailor-made; it’s a very educated guess at a solu-
tion. The tailoring is your job.

The “Majority” Problem: Most Common Doesn’t Mean Most Appropriate | 99

Code Readability and Structure:
Patterns and Potential Issues

Al-generated code often has some telltale patterns. It might:

o Include more comments than usual or oddly phrased comments (since it learned
from tutorial code, which tends to be heavily commented)

o Use certain variable names consistently (like i, j, k for loops)

« Lay out code in a somewhat verbose style (to cover general cases)

Check for these and consider whether they match your project’s style. The code might
be functionally fine but need a readability pass. In that pass, you may want to:

» Rename variables to be more descriptive or consistent with your codebase.

« Remove or refine comments. If it added a comment like # check if number is
prime above a self-explanatory if statement, you could remove that. But if it has
a comment explaining a complex bit of logic, that’s gopod—keep or improve it.

« Ensure consistent formatting by running the code through a linter or formatter
(like Black for Python or gofmt for Go) to match the spacing and bracket styles
you want.

Also look for any unusual structure. Did the Al define multiple classes or functions
when you expected one? Sometimes it might break a problem into multiple functions
because that’s how a training example did it. If that’s overkill, you can inline them (or
vice versa). Is the code too clever or too naive? Al sometimes produces a very
straightforward solution or, occasionally, a fancy one-liner. Does that align with your
team’s preferences? If not, adjust accordingly.

Other potential issues to watch out for include:

Off-by-one errors
Yes, Al can make those, too. For example, loop boundaries can be tricky. If you
have time, mentally test a simple case through the loop.

Unhandled exceptions
Does the code assume that a file opens successfully or that all input is in the cor-
rect format? Add error handling if it’s needed.

Performance pitfalls
Maybe the AI is using an inner loop on a large dataset for membership checks,
even though a better approach exists, like using a set. The AI solution might be
correct but not optimal.

100 | Chapter5: Understanding Generated Code: Review, Refine, Own

Library usage
If the code uses a library, ensure it’s one you want to use (and that it’s available).
Sometimes it might use, say, numpy for a simple sum (because it saw that in exam-
ples in its training data). If dragging in that dependency isn’t worth it, you can
switch to pure Python or the library you intended.

Inconsistencies
Occasionally, the AI code might have minor inconsistencies, like a function doc-
string saying one thing but the code doing another (if it revised the logic but not
the comment, for instance). Fix those.

Minor syntax issues
This is rare with well-tested models but not impossible in languages where it
might confuse something.

Using outdated APIs
The AI might use an old version of a library’s function that has changed, for
instance. If you see a function call you don’t recognize, quickly check the library
docs to ensure it’s correct for the version you use.

Placeholders
If the AI output uses placeholders like “Your code here” (rare, but it can happen
in a generic template), fill those in.

In short, treat the Al code as if an intern wrote it and left for the day. You need to
review it for quality and integrate it properly.

Debugging Strategies: Finding and Fixing Errors

Let’s say you run the code (or write tests for it, which we’ll cover soon) and some-
thing’s not working. Debugging Al-generated code is no different than debugging
your own or someone else’s code—except you didn’t write it, so you might be less
familiar. But because you've carefully read it already, youre in good shape (see
Figure 5-1).

Debugging Strategies: Finding and Fixing Errors | 101

Error occurs
Run Al code ﬁ

Al suggests fix Feed errorand

code to Al

@ Apply and test

Loop (if still error)

Figure 5-1. The AI code debugging cycle: execute AI-generated code, capture errors, pro-
vide error context back to Al for analysis, implement suggested fixes, and iterate until
resolution.

Here’s a six-step approach to debugging:

1. Reproduce the issue.
Run the function or code with inputs that fail. Observe the output or error.
2. Locate the source of the issue.

Use typical debugging techniques like print statements, or use a debugger to step
through. If it’s a logical error (wrong output), trace the logic manually or with
prints to see where it diverges from your expectations.

3. Check the prompt against the code.

Sometimes the bug is simply that the code didn't fully implement the require-
ment, like if you asked for something to be sorted but it isn't sorting properly.
That might mean the ATs logic is flawed or that an edge case (like an empty list)
isn’t handled.

4. Leverage the Al to debug!

You can actually feed the problematic code back into the Al and say, “This code is
giving the wrong result for X. Can you help find the bug?” Often, it will analyze it
(like a code review) and point out issues. For example, maybe it sees that a loop
should go to len(arr) but goes to len(arr)-1. It might catch that quicker. (Be
mindful to not fully trust it either—but it’s like asking a colleague to help debug.)

102 | Chapter5: Understanding Generated Code: Review, Refine, Own

5. Fix the code.

Now you have a choice: fix it manually or prompt the Al for a corrected version.
If the fix is obvious, just do it. If it’s not, you can try something like “The above
function fails on input X (expected Y, got Z). Please correct it” The Al might then
adjust the code accordingly.

6. Test again.

Ensure the bug is resolved and that no new issues have been introduced.

I recommend using test-driven debugging. If possible, write a few tests for critical
functions (more on that in the testing section later in this chapter). Any failing tests
will directly show what’s wrong. This can be faster than manual checking, for any-
thing but the simplest functions.

Finally, when debugging, be sure you ask why, not just what. Try to understand why
the AI made the mistake. Was the prompt unclear on that point? This can inform
how you prompt next time or whether you need to always double-check that aspect
in AI outputs. For example, if you notice the Al often doesn’t handle empty inputs
unless told, you'll start always specifying that in prompts and reviewing for it.

Refactoring for Maintainability:
Making Al Code Your Code

Once the code is functionally correct, consider refactoring it to align with your proj-
ect’s standards and to make it easier to work with in the future. The AIs job was to
get you code quickly; your job is to polish it.

Here is another six-step process, this time for refactoring:

1. Align with style guidelines.

Run the code through your formatter or linter. Fix any warnings like “Variable
name should be lowercase” or “Line too long” This instantly makes the code look
like the rest of your codebase. Many Al tools do a decent job at style, but slight
adjustments might be needed.

2. Improve naming and structure.

If the AI named functions _helperl and _helper2 in a class, and you prefer
meaningful names, rename them. If it created a bunch of small functions that are
only used once, maybe inline them, unless they add clarity.

3. Remove any unnecessary parts.

For example, perhaps the Al included a main block or test code in the output that
you didn’t ask for. If you don’t need that, remove it. Conversely, maybe it wrote

Refactoring for Maintainability: Making Al Code Your Code | 103

everything in one function but you want to split it into smaller pieces for clarity;
if so, do that split now.

4. Add documentation.

If this code is intended to be part of a library or a module that others will use, add
docstrings or comments where appropriate. The AI might have commented
some, but ensure it meets your standards. For example, maybe your project
requires a certain docstring format with parameters and returns documented.

5. Optimize if needed.

Now that the code works, is it efficient enough? If this code might be called in a
tight loop or on large data, check its complexity. The AI might not have used the
most optimal approach (again, the “majority solution” might be a simple loop,
not a more optimized approach). If performance is a concern, refactor to a better
algorithm. You can again involve the Al

Optimize this code to run faster by using a set instead of a list for lookups.

But you, as a developer, often know what pattern you want, so you might just
implement that change.

6. Simplify if needed.
Sometimes Al code can be overly verbose. For instance, it might use an if-else
with returns where a single return with a condition would suffice. While explicit

code is not necessarily bad, you might want to simplify it to fewer lines to
improve readability without losing clarity.

The goal of refactoring is that if another developer pulls up this code later, it shouldn’t
be obvious that “an AI wrote this” It should just look like good code. That often
means giving it the small human touches that make code clean.

When you refactor, you need to verify you didn't break anything. So let’s segue into
testing.

The Importance of Testing: Unit,
Integration, and End to End

Testing is always important, but it’s especially important for Al-generated code for
two reasons. First, since you didn’t write it from scratch, you want assurance that it
will work in all cases. Second, if you prompt the AI for changes later or integrate
more Al code, tests help you ensure that any new changes don’t break the existing
functionality. Let’s look quickly at different kinds of tests:

104 | Chapter5: Understanding Generated Code: Review, Refine, Own

Unit tests
Wrrite tests for each function or module you got from the Al, particularly cover-
ing edge cases. For our prime example, you might test with a prime number, a
nonprime, 1 (an edge case), 0 or negative (maybe defining the expected behav-
ior), a large prime, and so on. If the code passes all those tests, it’s likely correct.

You can even ask the Al to generate these tests:
Write PyTest unit tests for the above function, covering edge cases.

It often does a decent job. Still, review them to ensure they’re valid and cover
what you think is necessary.

Integration tests
If the AT code interacts with other parts of the codebase, like a function that uses
a database, write a test that calls it in context. Does it actually store to the data-
base what it should? If it produces output consumed by another function, chain
them in a test.

End-to-end tests
If this code is part of a larger workflow, run a scenario from start to finish. For
example, if the Al code was part of a web route, do a test request to that route in
a test environment and see if the format, error handling, and everything else
holds up.

The level of testing you need to do depends on how critical and complex the code is.
But even a quick manual test run or simple assert statements in a script are better
than nothing for verification. Remember, testing doesn’t just find bugs; it locks down
behavior. If you change something later (or an AI does), testing helps you ensure the
code’s functionality doesn't regress.

Testing is also a good way to assert ownership. Once you've tested for and fixed any
issues, you can be confident in the code. At this point, it’s fair to say the code is
“yours,” just like any other code in the codebase. You understand it, you trust it, and
you have tests to guard it.

A Note on Al and Testing

Some AI coding tools are starting to integrate testing suggestions.
For example, CodeWhisperer will sometimes suggest an assert after
a piece of code. Use those suggestions as a starting point, but don’t
assume theyre 100% comprehensive. Think of creative edge
cases—that’s one place where human intuition is still very valuable.

The Importance of Testing: Unit, Integration, and EndtoEnd | 105

Summary and Next Steps

We've gone through generating, understanding, debugging, and refactoring the code.
This loop might happen in a short span (within minutes, for a small function) or take
longer (for a complex module, over hours or days, with intermittent AI assistance).

It's important to acknowledge that you, the developer, are responsible for the final code.
Al is a tool to accelerate creation, but it won't take the blame if something fails.
There’s also a licensing or copyright risk: some AI providers say that outputs over a
certain length might be statistically likely to contain copied material. It’s rare, and the
providers mitigated the problem a lot, but just as you scan Stack Overflow answers
for any obviously licensed text or attributions, do a quick check—especially if the out-
put is big or too clean. For instance, if you prompt “implement quicksort” and the Al
gives you 20 lines of pristine code, that’s probably fine and common knowledge. But
if you ask for something obscure and get a large chunk of code, try searching a
unique string from it online to see if it was pulled verbatim from somewhere. This
issue has become more apparent recently, with documented cases of Al systems
reproducing text from journal articles and other copyrighted sources. As part of
responsible code ownership, developers should verify the provenance of any Al-
generated content that appears to go beyond generic patterns or seems unusually spe-
cific to particular sources.

Finally, integrate the code into your project: add it to your version control system,
perhaps mentioning in your commit message that Al helped. There’s no requirement
to do this, but some teams like to track it.

Over time, you'll likely modify this Al-generated code as requirements change. Treat
it like any other code: don't think, “Oh, thats the AT’s code; I'll ask the Al to change
it” You can, if you want, but you can also freely modify it by hand. Do whatever is
most efficient and maintainable.

Through careful review and testing, Al-generated code becomes just more code in
your project. At that point, whether an AI wrote line 10 or you did is irrelevant—
what matters is that it meets the project’s needs and standards.

By following these practices, you harness the speed of AI coding while ensuring qual-
ity. You avoid the pitfalls of unquestioningly trusting AI output and instead integrate
it into a professional development workflow.

Next, Chapter 6 examines how Al tools can fundamentally transform the prototyping
phase of software development. I will explore practical techniques for leveraging Al
assistants to accelerate the journey from initial concept to working prototype, often
reducing development time from days to hours. The discussion covers specific Al-
powered prototyping tools, including Vercel vO and screenshot-to-code utilities,
along with strategies for iterative refinement under AI guidance.

106 | Chapter5: Understanding Generated Code: Review, Refine, Own

https://oreil.ly/kYyO_
https://oreil.ly/h_BzA

I will also address the critical transition process from Al-generated prototypes to
production-ready code, examining both the opportunities and potential challenges
that arise when AI becomes a central part of the development workflow. Through
real-world case studies, I will demonstrate how developers are successfully using Al
to test ideas rapidly while maintaining code quality—and avoiding common pitfalls
that can emerge when moving too quickly from concept to implementation.

Summary and Next Steps | 107

CHAPTER 6

Al-Driven Prototyping:
Tools and Techniques

This chapter explores how Al-driven vibe coding accelerates the prototyping phase of
software development. Prototyping is all about rapidly turning an idea into a working
model. With Al assistants, developers can achieve in hours what might normally take
days, quickly iterating on concepts. I'll discuss techniques for going from concept to
prototype with Al, compare popular Al prototyping tools (including Vercel v0 and
screenshot-to-code utilities), and examine how to refine prototypes iteratively under
AT guidance. I also address the crucial step of transitioning a rough Al-generated
prototype into production-quality code. Throughout the chapter, I'll also look at case
studies where Al-driven prototyping led to successful outcomes and demonstrate
both the potential and the pitfalls of this approach.

Rapid Prototyping with Al Assistants

Prototyping benefits greatly from the speed of Al-generated code. The goal in proto-
typing is not polished, production-ready code but a proof of concept that you can eval-
uate and refine. Al coding assistants shine here by producing functioning code
quickly from minimal input. For example, instead of manually coding a UI mockup, a
developer can describe the desired interface in natural language and let the AI gener-
ate the HTML/CSS or React components. This allows for a very fast idea-to-
implementation cycle.

One UX engineer describes how using a generative Al tool has completely trans-
formed his workflow: “The speed at which I could generate functional prototypes
with Generative Al was amazing. I built prototypes in a few hours [that] would nor-
mally take days” The Al handles routine boilerplate and repetitive patterns automati-
cally, freeing him to focus on higher-level design decisions. In prototyping, this

109

https://oreil.ly/dP5U3

means you can try out more ideas in the same amount of time. Another benefit is that
AT can fill in the tedious parts of a prototype (basic Ul components, form handling,
sample data) almost instantly, allowing the human developer to concentrate on the
core concept or unique feature being tested.

However, it’s important to remember that a prototype’s code is often throwaway code.
An Al may generate a working solution quickly, but that code might not be struc-
tured for maintainability or scale. This is acceptable in prototypes, where speed and
experimentation matter more than elegance—as long as you plan to refactor or
rewrite critical parts for production (I'll discuss this process later in the chapter). As
Chapters 3 and 4 explored, the AI can confidently handle about 70% of the coding for
a prototype, while you guide the overall architecture and correct any critical flaws.

Programming with intent, a concept introduced in Chapter 1, is essential here. You
provide high-level instructions (the intent of what you want the prototype to do or
look like) and let the AI fill in the implementation. To illustrate, let'’s walk through a
very simple prototyping example using an Al assistant. Suppose you have an idea for
a sign-up page for a new service. You want to prototype the frontend quickly, so you
start with the following developer prompt:

Create a simple HTML page for a sign-up form with fields for Name, Email, and Pass-
word, and a Submit button. Make it look presentable with basic styling.

A modern code assistant like Cline might provide a complete HTML/CSS example:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Sign Up</title>
<style>
body { font-family: Arial, sans-serif; max-width: 400px; margin: 2em auto; }
form { display: flex; flex-direction: column; }
label { margin-top: lem; }
input, button { padding: 0.5em; font-size: lem; }
button { margin-top: lem; background: #4CAF50; color: #fff; border: none; }
</style>
</head>
<body>
<h2>Sign Up</h2>
<form>
<label>Name: <input type="text" name="name" required></label>
<label>Email: <input type="email" name="email" required></label>
<label>Password: <input type="password" name="password" required></label>
<button type="submit">Create Account</button>
</form>
</body>
</html>

110 | Chapter 6: Al-Driven Prototyping: Tools and Techniques

This Al-generated code is a decent starting point for a prototype of the sign-up form.
It includes a basic layout and some inline CSS for styling. As a developer, you didn’t
have to write any HTML/CSS by hand—you simply described the outcome, and the
AT provided an implementation. This demonstrates programming by intent: you
focus on what the Ul should do, and the Al figures out how to do it.

Of course, this is a trivial example. In practice, prototypes can be more complex and
involve multiple files, frameworks, or data. But the principle is the same: You use the
AT to create a first draft swiftly. You might then open this prototype in a browser, see
how it looks, and refine it further. That leads me to the next topic: using specialized
Al prototyping tools that go beyond plain-language prompts.

Al Prototyping Tools

While general-purpose assistants like Gemini, ChatGPT, and Claude can generate
prototype code from prompts, the landscape of specialized Al-assisted prototyping
tools continues to evolve rapidly. As I write this, the available tools offer different
approaches to the fundamental trade-off between fidelity and control in Al-generated

prototypes.

The ecosystem has matured to serve distinct prototyping needs. Some tools excel at
transforming visual designs into code, allowing designers to upload screenshots or
sketches and receive working HTML, CSS, or React components within seconds. This
“screenshot-to-code” capability dramatically accelerates the design-to-code process,
particularly valuable when you have hand-drawn sketches or Figma designs that need
rapid implementation. Tools like Vercel v0 exemplify this approach, offering high
fidelity to the original design while trading off some control over code structure.

Other platforms focus on generating complete applications through conversational
interfaces. These allow users to describe functionality in natural language and receive
full stack implementations. For instance, a designer wanting a quick app without cod-
ing might use tools like Lovable or Bolt.new, which offer high-level prompt interfaces
that can scaffold entire applications. Some designers report building functional pro-
totypes in hours that would traditionally take days, with the Al automatically han-
dling tedious components and patterns.

A third category integrates Al directly into development environments, functioning
as intelligent pair programmers during the prototyping phase. These Al-augmented
IDEs like Cursor, Windsurf, and Cline allow developers to maintain more control
over the code generation process while still benefiting from AT acceleration. The dis-
tinction often lies in workflow philosophy: some prioritize automated application of
changes for rapid experimentation, while others require explicit acceptance of modi-
fications for more careful iteration.

Al Prototyping Tools | 111

The common thread across all these approaches is their ability to compress the jour-
ney from concept to working prototype. However, they differ significantly in two key
dimensions that shape their utility for different users and use cases.

Fidelity refers to how closely the generated output matches your input or intention.
Screenshot-to-code tools typically offer high fidelity to visual designs but may pro-
duce code that doesn’t align with your architectural preferences. Conversational tools
might interpret your requirements more loosely, generating functional but generic
implementations that require refinement.

Control encompasses your ability to guide and modify the generation process. Some
tools operate as black boxes that produce complete outputs, while others allow itera-
tive refinement through continued dialogue or direct code editing. This dimension
becomes crucial when you need specific architectural patterns, performance opti-
mizations, or integration with existing codebases.

Understanding these trade-offs helps in selecting the right tool for your prototyping
needs. A designer validating a new interaction pattern might prioritize fidelity and
speed, accepting less control over implementation details. A developer exploring
technical feasibility might value control and transparency, even if it means more
manual intervention in the generation process.

None of these tools produces production-quality code without human oversight.
They typically deliver what I call the “80% prototype”—functional enough to test
concepts and demonstrate to stakeholders but requiring additional work for produc-
tion deployment. The remaining 20% often involves security hardening, performance
optimization, error handling, and architectural refinement.

Even during rapid prototyping, a quick code review remains essential. While you
might not polish every detail in a prototype, scanning for obvious issues like exposed
API keys or insecure data handling prevents problems from propagating into later
development stages. Most modern tools provide transparency into their generated
code, allowing you to inspect and understand what’s being created.

As the Al prototyping landscape continues to evolve, the specific tools will undoubtedly
change, but these fundamental considerations of fidelity versus control, and the need
for human oversight, will remain constant. The key is understanding your prototyping
goals and selecting approaches that align with your specific needs, whether that’s rapid
visual implementation, functional demonstration, or technical exploration.

From Concept to Prototype: Iterative Refinement

One of the strengths of Al-driven prototyping is the iterative loop: you can generate
an initial version and then refine it by interacting with the Al Instead of manually
editing code, you just tell the AI what you want changed (see Figure 6-1). While I

112 | Chapter 6: Al-Driven Prototyping: Tools and Techniques

advocate a more responsible approach than pure “seat-of-the-pants” vibe coding, the
fast feedback cycle is definitely something to embrace in prototypes.

Change
() X
Initial prompt
Al prototype v1 ‘ Aed

Al prototype v2

{

|

;
i

Apply and test
Al prototype v3 PoY

D

Figure 6-1. Iterative prototype refinement process: initial prompts generate baseline pro-
totypes, and developer feedback drives successive improvements, creating increasingly
refined solutions through Al collaboration.

Most Al prototyping tools keep a history or context of your requests, which is
extremely useful. It means the AI remembers the purpose of your app and previous
instructions, so you don't have to re-explain everything each time. This context persis-
tence is a hallmark of vibe-coding environments: the conversation with the Al
becomes the development log.

Here’s how a typical iterative refinement might go:

Step 1: Initial generation
You provide a prompt or input to create the prototype:

Generate a basic expense-tracker app with a form to add expenses and a table to
list them.

Step 2: Review and run the code
You get the generated code and run it. Maybe it works, but you notice some
things that could be improved. For example, the Ul is functional but plain, or the
table doesn’t sort the expenses.

Step 3: Refine your prompts
You go back to the Al and provide additional instructions. For instance:

Make the expense list sortable by amount or date.

From Concept to Prototype: Iterative Refinement | 113

The AI might modify the code to include sorting logic or use a library for sorta-
ble tables:

Add some color styling, maybe use a modern CSS framework.

The AI could integrate a CSS library (like Tailwind or Bootstrap) or just add cus-
tom styles to make it look nicer:

Validate the form so you can’t add an expense without a name and amount.
The AI might add simple frontend validation.

Each of these prompts modifies the prototype. Because the Al understands the
context (tools like Cursor and ongoing chat tools will keep the code state), it can
often apply changes in the right places—for example, inserting validation code in
the form or rewriting the table rendering to include sortable columns.

Step 4: Rinse and repeat
After each refinement, you check the result. If the Al introduced a new issue or
didn’t do exactly what you intended, you clarify or fix it via prompts:

o The sorting is backward—please sort ascending by default.

o The new color scheme is good, but make the header dark blue instead of
black.

Each iteration cycle is quite fast—often taking just a few seconds of processing—
which means you can go through a dozen iterations within an hour. Compared to
manually coding and checking all those changes, the AI approach can be significantly
faster. That’s especially true for broad changes, like restyling or adding a feature.

Importantly, iterating with Al requires clear communication. This is where your
prompt engineering skills come into play. The more explicit and clear you are about
the change you want, the more likely the AI will do it correctly. For example, saying
“Make it look nicer” is vague. A more specific prompt gives the assistant a concrete
direction:

Apply a light theme with a blue header and increase the font sizes for readability.

If youre using a tool like Vercel vO or Lovable, you might even point to a part of the
Ul using its interface and say, “Change this to X”

Let’s look at a short conversational iteration process between a developer and an Al
coding assistant:

Generate a React component for a to-do list. It should display a list of tasks and a text
input to add a new task.

114 | Chapter 6: Al-Driven Prototyping: Tools and Techniques

The AI produces a React component with state for tasks and renders a list, an input,
and a button to add tasks:

Great. Now make each task editable and add a checkbox to mark it complete.

The AI updates the code, rendering each task with a checkbox and an edit function
and modifying state accordingly. The developer runs the app and finds that editing
works, but there’s no delete button:

Add a delete button for each task.
The AI adds a delete feature in the code:

The layout is a bit cramped. Add some basic CSS to space out the list items and make
the font a bit larger.

The AI outputs CSS styling, possibly as a <style> in the component or a separate CSS
snippet:

Looks better!

This kind of back-and-forth could continue until the prototype meets the vision. In
the end, the developer gets a working prototype for a to-do list app, with create, edit,
complete, and delete functionalities—all built via natural-language requests and
quick AI code outputs.

Throughout this process, remember that the developer remains the director of what
happens. The Al might propose a way to implement a feature, but you decide if that
fits your needs. Sometimes the AI's implementation is correct but not what you
expected (maybe it uses a different UI approach than what you had in mind). You can
either accept it (if it doesn’t harm the prototype goals) or instruct the AI to change to
your preferred approach.

Evolving a Prototype Toward Production

A prototype is meant to be a proof of concept and a tool for learning what works.
Once it has served that purpose—say, you've validated the design with users or pro-
ven that a certain feature is feasible—the next step is often to turn it into a production
application. This transition is a critical juncture. Al can still help, but human devel-
opers must sand down the rough edges of the prototype. This section looks at some
key considerations when moving from prototype to production code.

First, review the architecture and code structure carefully. Prototypes can be messy
under the hood. Perhaps all your code ended up in one file or you bypassed certain
best practices for speed. Now is the time to introduce a proper structure. For exam-
ple, if the prototype was a single-page script, you might separate it into multiple
modules; for a web UI, you might introduce a proper component structure; for a

Evolving a Prototype Toward Production | 115

backend, you might set up a formal model-view-controller (MVC) architectural
pattern.

While AT wrote much of the prototype, you, as the developer, understand the archi-
tecture goals best. You might even start a fresh project and use the prototype as a ref-
erence or as scaffolding, perhaps reusing some of the prototype code but generally
treating it as throwaway code. Others might incrementally refactor the prototype
codebase into shape, with Al suggesting refactorings or generating tests to ensure
nothing breaks during cleanup.

Next, add error handling and edge cases. Prototype code often focuses on the sunny-
day scenario, but what if the API call fails? What if the input is empty? Go through
each feature systematically and consider potential failure modes.

AT can help you brainstorm edge cases, given a prompt like this:
What are potential error cases for this feature and how to handle them?

The assistant will likely list some scenarios (network errors, bad input, concurrency
issues) for which you can implement handling (or ask Al to help implement it).
Ensuring your code’s robustness is part of making it production-ready.

Your prototype code probably isn’t optimized, so check for any parts that are ineffi-
cient or could pose security issues. For instance, maybe the Al in the prototype used a
naive algorithm that works on small test datasets but would be slow with real data.
Identify such spots and optimize them. (I'll cover common Al-generated code flaws
in Chapter 8.)

One strategy is to run performance tests or use profilers on the prototype to see bot-
tlenecks, then ask Al to help optimize that function. Definitely review security fea-
tures like authentication and data handling too—its not uncommon for Al
prototypes to use SQL queries without proper parameterization (risking SQL injec-
tion attacks) or to include sensitive information. These problems must be fixed. A
2021 study found that about 40% of AlI-generated code had potential vulnerabilities. So
part of productionizing is staying vigilant. Run static analysis and/or security tests on
the code manually, or prompt the Al to “scan this code for security issues”

Prototypes often lack documentation, which you’ll need to add as you formalize the
code: a clear, human-reviewed explanation of each module will help future team
members, as well as you, when you revisit the code months later. Once you've cleaned
up your code, you might prompt an Al tool to produce a Markdown API document
or README based on the code that describes how the system works. Chapter 1 dis-
cussed how Al can produce explanations of code; this is a great moment to leverage
that.

116 | Chapter 6: Al-Driven Prototyping: Tools and Techniques

https://oreil.ly/gzUjn
https://oreil.ly/a72lb

It’s crucial to test your prototype thoroughly, as you learned in Chapter 5. You might
write unit tests for core logic, integration tests for major flows, etc. You can accelerate
this by asking the AT to generate test cases:

Write Jest tests for the to-do list component covering adding, editing, completing,
deleting tasks.

Then run and adjust the tests it generates. Having a good test suite gives you confi-
dence as you refactor the prototype code.

Sometimes you might decide to replace certain sections of your code entirely—such
as if the prototype used some quick-and-dirty library or a hack that isn't suitable in
the long term. AI can speed this up as well. Suppose your prototype code uses local
arrays for data, but now you need a proper database integration. Your prompt might
be something like this:

Integrate an SQLite database for storing the tasks instead of an in-memory array.
The Al can provide a starting point for this integration, which you should then refine.

In making these changes, it’s wise to switch your mindset from “rapid prototyping
mode” to a more disciplined engineering approach. The Al is now your assistant in
improving code quality—it’s no longer just spitting out quick features. The dynamic is
a bit different: you might evaluate each Al suggestion more critically now that stability
and quality are your top priorities. As I mentioned back in Chapter 4, senior developers
can derive enormous benefit from Al because they know what to accept and what to fix.
At this stage, you'll be exercising that senior mindset heavily: you have a vision of the
final system, so you task the Al with specific improvements or implementations.

To ground this discussion, let’s consider a brief example. Imagine a solo developer,
Jane, who wants to build a small web app that converts data from CSV files into
charts. She uses an Al assistant to get a quick prototype done in just one weekend: a
basic Node.js script with an API, plus a simple frontend to upload CSVs and render
charts using a JavaScript chart library.

She demonstrates this prototype to a few potential users and gets positive feedback,
so Jane decides to turn it into a real product (a web service). Here’s how she navigates
the transition:

Hardening the backend
The prototype’s Node.js API had no authentication (anyone could upload data).
For production, she needs user accounts and auth. She uses the Al to integrate an
authentication system (maybe JWT-based). The Al provides a scaffold, but she
carefully reviews it to ensure passwords are hashed properly and tokens are
secure. She also adds input validation to the upload endpoint (the AI had not
done that), using a combination of AI-suggested code and her own tweaks.

Evolving a Prototype Toward Production | 117

Refactoring the frontend

The initial frontend was a single HTML file with script tags pointing at a CDN
for dependencies. Jane decides to refactor into a structured React app for main-
tainability. She first asks the AI to refactor her project to be more production-
ready by using a build system and npm rather than script tags. She then asks the
AT to help integrate them as React components. For example, it turns the chart-
rendering code from the prototype into a <Chart> component. Jane uses the Al
to expedite writing these components, but she ensures that the state management
and component hierarchy follow best practices (something the prototype didn’t
consider deeply).

Testing and checking performance

Jane writes unit tests for critical functions (CSV parsing, data transformation).
When she’s unsure about edge cases, she queries the Al

What edge cases should I test for CSV parsing?

It suggests scenarios like empty fields and irregular columns, which she incorpo-
rates into her tests. She also notices that the prototype loaded entire CSV files
into memory; for large files, this could crash. She modifies the code to stream the
processing and uses Al to double-check her stream logic. Now the app can han-
dle bigger files more reliably.

Polishing the UI

The prototype UI was utilitarian. For her product, Jane spends a bit more time
on user experience. She asks the Al to recommend a responsive layout and per-
haps integrate a CSS framework. The AI adds Bootstrap, which she then uses to
improve the look (forms, buttons, layout). She manually fine-tunes some CSS
afterward. This polishing stage is less about heavy coding and more about design
choices, but AI still helps by providing quick code for standard UI patterns (like
a navigation bar and a loading spinner).

After these efforts, the once-rough prototype is a far cleaner, more secure, and more
scalable application ready for real users. Jane deploys it, feeling confident because she
added tests and reviewed the Al-generated code. This process from prototype to pro-
duction might have taken her a couple of weeks, whereas writing the entire product
from scratch would have taken much longer. The AT accelerated the initial prototype
and continued to assist in the transition, but Jane’s human oversight and restructuring
were indispensable in reaching production quality.

118

| Chapter 6: Al-Driven Prototyping: Tools and Techniques

Addressing Challenges in Al Prototyping

While AI-driven prototyping is powerful, it’s not without challenges. As a developer,
you should be aware of these and know how to mitigate them. Two areas of particular
interest are scope creep and integration.

Because it’s so easy to add features with Al, you might be tempted to keep going and
going, adding “one more thing” to the prototype, a phenomenon known as scope
creep. This can lead to an ever-growing prototype that tries to be the final product.
Remember the purpose of a prototype: to focus on the key question you want to
answer or the core experience to demonstrate. If you find yourself implementing
login systems, payment processing, etc., ask if that’s really needed at the prototype
stage. It might be better to stub those out (the AI can generate a fake login flow that
isn’t real, just to simulate it). Keeping the prototype focused will save you time and
make it easier to throw away or rework later.

Stay Focused

Write down the goal of your prototype (“Demonstrate that users
can upload a CSV and get a chart to test viability”), and use that as
a North Star. Use the Al to get to that goal quickly, and resist the
allure of gold-plating the prototype.

Second, there’s the question of integration to real systems. Prototypes often use mock
data or simplified subsystems. If your AI prototype uses dummy data or a local file,
integrating it with real databases or services in production can be nontrivial. Be
mindful when prototyping that some shortcuts were taken. For example, maybe the
prototype emails weren't actually sent but just logged to console. In production, you’'ll
need a real email service. The Al can help integrate those later, but it's good to keep
track: maintain a list of “things to address if we move forward” while prototyping.

That way you won't forget which parts were temporary. If working in a team, commu-
nicate these clearly. For instance, you might leave a comment in code: // TODO:
integrate real email service here. Many Al tools actually include such TODO
comments themselves when they generate a simplified solution, which is helpful.

By anticipating these challenges, you can use AI prototyping effectively without fall-
ing into its traps. When it is used thoughtfully, the result is a robust prototype devel-
oped in record time, ready to either be transformed into a final product or set aside
after extracting the lessons it offered.

Addressing Challenges in Al Prototyping | 119

Summary and Next Steps

In this chapter, you saw how Al-assisted vibe coding turbocharges the prototyping
process. By letting Al handle the heavy lifting of code generation, developers can
move from concept to working model with unprecedented speed. I covered tools like
Vercel v0 for Ul generation, Lovable for full stack prototypes, and Al-augmented
IDEs like Cursor and Windsurf—each enabling different aspects of rapid prototyp-
ing. I also emphasized the iterative nature of Al prototyping: generating, testing, and
refining in quick cycles, with natural-language prompts guiding the changes.

While Al-driven prototyping can produce a functional demo in hours, we also dis-
cussed the critical transition to production. The message is clear: a prototype is not a
final product. Its the first draft. Human developers must refactor and harden the
code, with AT continuing to assist in that journey (suggesting improvements, generat-
ing tests, etc.). Case studies of individuals and teams using these techniques highlight
the real productivity gains—prototypes built in days instead of weeks, enabling faster
user feedback and business decisions.

By now, you should appreciate how vibe coding makes prototyping feel more like
brainstorming with an assistant rather than grinding out boilerplate. It's a fundamen-
tally different vibe: more conversational, more high-level, and a lot faster. However,
you've also seen the importance of maintaining code quality awareness even in a
quick prototype—and definitely when evolving it beyond the prototype stage.

In Chapter 7, I'll shift focus from rapid prototyping to comprehensive web applica-
tion development with Al assistance. While prototyping explores possibilities, full-
scale development demands systematic approaches to architecture, implementation,
and deployment.

120 | Chapter 6: Al-Driven Prototyping: Tools and Techniques

CHAPTER 7
Building Web Applications with Al

This chapter shifts the focus from prompting quick prototypes to developing com-
plete web applications using AI assistance. Web apps typically involve a frontend
(often written in frameworks like React, Angular, or Vue), a backend (APIs, data-
bases, servers), and glue to connect everything. Vibe coding can accelerate each of
these layers.

I'll walk you through an end-to-end workflow for building a web application with an
Al pair programmer, including:

o Setting up the project and its scaffolding
+ Coding the frontend UI

« Implementing backend logic

« Integrating with a database

o Testing and validating the whole stack

Along the way, I'll highlight AI development patterns for frontends (for example,
having AI generate React or Vue components from descriptions) and backends (writ-
ing routes, business logic, and database queries through natural-language prompts).
I'll also cover how to optimize collaboration between humans and Al in a full stack
project, ensuring that each side contributes its strongest work. By the end of this
chapter, you should have a clear roadmap for using Al not just for isolated coding
tasks but for managing entire web development workflow efficiently and effectively.

Setting Up the Project: Scaffolding with Al

Every web application starts with some scaffolding—the initial setup of build tools,
file structure, dependencies, etc. Al can automate the creation of a lot of the boiler-

121

plate. Modern web frameworks often come with command-line interface (CLI) tools
that can generate a base project, but you might still need to configure certain things
or integrate additional libraries. An Al assistant can help by either guiding you
through these CLI tools or setting up custom project structures on demand.

For example, suppose you want to start a new application project using React for the
frontend and Express for the backend. A pre-Al workflow for this task would proba-
bly look something like this:

1. Run a CLI tool or Vite to set up the React project.
2. Initialize an Express app (perhaps with npm init and installing Express).

3. Set up a proxy for development or configure Cross-Origin Resource Sharing
(CORS) so the React frontend can talk to the Express backend.

4. Maybe integrate a database like MongoDB or set up an SQLite file for simple
usage.

Using an Al coding environment like Cursor or Cline, you can instead describe your
desired setup in one go:

Set up a new project with a React frontend (using Vite) and an Express backend. The
backend should serve a REST API for a to-do list and use an in-memory array to start.
Configure the frontend to proxy API requests to the backend in development.

An advanced AI IDE can take this instruction and do the following:

« Create two directories (frontend and backend).

o Run npm create vite@latest (if it has shell access) or template out a basic
React app.

o Initialize a basic Express server file in the backend, with an endpoint like /api/to-
dos (returning some sample data).

o Include a package.json in each directory with relevant scripts (like start both).

« Set up communication between frontend and backend by either configuring a
proxy in the React development server or providing instructions for implement-
ing CORS headers.

Within a couple of minutes, you’ll have the skeleton of a full stack web app. Even if
the AI doesn’t do everything automatically, it might present you with code and the
instructions you need to finalize it (for example, “Add this proxy setting to your React
package.json file”). This saves a lot of mindless setup time and allows you to focus
immediately on features.

If you aren’t using an Al IDE, you can still use ChatGPT or another assistant step-by-
step as you go; for example:

122 | Chapter7: Building Web Applications with Al

https://oreil.ly/bgw1V
https://oreil.ly/bgw1V

I want to create a new React app. What commands should I run?

The AI can guide you through steps or recommend newer alternatives like Vite or
Next.js:

Now set up an Express server with a /api/to-dos route.
It can generate the code for the Express server, which you copy into a file:
How do I connect my React app to this API during development?

It might suggest either a proxy configuration or tell you how to call the API (includ-
ing the full URL, if not proxying).

This way, even setting up the basic plumbing becomes a conversation rather than a
hunt through documentation. As noted in earlier chapters, programming by intent
means you tell the AT what outcome you want, and it figures out the steps. Setting up
a project is a perfect scenario for that.

At this stage, it's important to assert your architectural decisions. The AI will follow
your lead. Humans are essential for architectural and high-level decisions, so decide
on the stack and major patterns yourself: Do you want a monorepo or separate repos
for front and back? Will you use REST or GraphQL? Which database?

Once you have these in mind, you can instruct the Al accordingly:
Also set up a basic Prisma schema for the SQLite database.

Or:
Include a GraphQL server instead of REST.

The AI might not perfectly execute complex setups, but it will get the bulk of the
work done, and you can refine from there.

Many experienced developers integrate these steps into project templates or use
boilerplate generators, but Al offers a more flexible approach: you can customize on
the fly using natural language. This means if your project is slightly unusual (maybe
you need three services instead of the usual two tiers, or you want to preconfigure a
particular library like Tailwind CSS), just ask the AI to include what you want.

Frontend Development Patterns with Al

Once the scaffolding is ready, developing the frontend of a web app is a major part of
the effort. This section explores how you can leverage an Al pair programmer for
your frontend code.

Setting Up the Project: Scaffolding with Al | 123

Implementing components from descriptions

You can ask the AI to create components by describing their functionality and
appearance; for example:

Create a React component called TodoList that takes a list of to-do items and displays
them. Each item should show its title and a checkbox to mark it complete.

The AI should produce the code as a functional component, with props and state as
needed:

Create a Vue component for a login form with inputs for username and password, and
emit an event with the form data on submit.

The AI will likely output the <template>, <script>, and <style> sections accord-
ingly. You, as the developer, skip writing boilerplate and directly get the structure you
need. It’s then easy to tweak if needed. Often the AI will even include basic validation
or state handling, if your prompt implies that they’re needed.

It's important to ensure consistency at this stage. If you generate multiple components
in isolation, you might need to adjust them to work together. For instance, if the Todo
List expects items as a certain prop shape, make sure any component that uses Todo
List provides that. You can either generate components in one prompt (so the AT is
aware of everything) or simply wire them up yourself and ask the AI to fix any mis-
matches.

Styling and layout

CSS and styling can be tedious. Describe the look you want and let the AI handle the
CSS details:

« Style the to-do list component: use a flex column for the list, add some spacing,
and change the text color of completed items to gray and crossed out.

o For the login form component, center it on the page and make the input fields
larger with rounded borders.

The assistant can output CSS-in-JS, plain CSS, or inline styles, depending on context.
If youre using a framework like Tailwind CSS, you could even ask it to output the
appropriate classes (though keep in mind that not all models know Tailwind
thoroughly).

The point is: you can iterate on design without manually fiddling with CSS values.
This keeps your focus at a higher level of abstraction—specifying what looks good
rather than writing every margin and color.

124 | Chapter7: Building Web Applications with Al

Integrating APIs and state management

Web frontends often need to fetch data from backends and manage state with some-
thing like Redux, context, or simple component state. AI can help write these integra-
tion pieces; for example:

 Add code to fetch the to-do list from /api/to-dos when the TodoList component
mounts, and store it in state.

o Implement a function in the TodoL1ist that, when a checkbox is toggled, sends a
POST request to /api/to-dos/{id}/complete and then updates the state accordingly.

The AI can generate the useEffect hook in React to do the fetch or the mounted()
hook in Vue. It can also stub out the HTTP calls (using fetch or Axios, etc.). You'll
want to confirm that the API endpoints and payloads match what your backend
expects (if you've built the backend or have a spec for it).

If you haven’t built the backend yet, you might simultaneously be using the Al to cre-
ate it—we’ll get to that soon. But you can work on front and back in parallel with AI
assistance, because each can be specified and generated relatively independently, as
long as you keep track of the interface between them.

Handling complexity with Al guidance

If your frontend has complex logic, such as dynamic form validation rules, condi-
tional rendering, or intricate user interactions, you can implement these step-by-step
with AL A good practice is to break the problem down:

Add a feature: when the user checks the “complete” box on a to-do, fade out that list
item (CSS transition), then remove it from the list after 1 second.

The AI might produce the code to add a CSS class on check and use a timeout to
remove the item, including the necessary CSS for fading out:

The form has an optional field for ‘notes. Only show the notes text area if an ‘Add
notes’ checkbox is checked.

The Al can modify the component state and JSX to conditionally render the notes
field.

Each of these can be an iterative prompt. Essentially, you describe the UX behavior
and AI writes the code. Always test after each addition to ensure it behaves as
expected.

Setting Up the Project: Scaffolding with Al | 125

Framework-specific tips

Different frameworks have different idioms:

o In React, the AI might use hooks (like useState, useEffect). Double-check that
it's following best practices (for instance, that the dependencies array in use
Effect is correct).

o In Vue, the AI might output Options API style or Composition API style
depending on what it has seen. If you prefer one, you should specify that (for
instance, “Use Vue 3 Composition API”).

o In Angular, the Al can generate components, but Angular has a steeper learning
curve. The AI might be able to produce a template, a TypeScript class, and basic
service injection on request, but you’ll likely need to do more manual work or
use Angular CLI for structure, then ask Al to fill in specific parts (like form vali-
dation logic).

Backend/API Development Patterns with Al

Now let’s turn to the backend. Using AI to build the server side of a web application
follows a similar paradigm: you describe the endpoints, data models, and logic you
want, and the Al produces code. Common backend components include route han-
dlers, business logic, database interactions, and validations. Al can help with all of
these.

Implementing API endpoints

Suppose you're building a RESTful API for your to-do list app. You might have end-
points like GET /to-dos, POST /to-dos, PUT /to-dos/:id, DELETE /to-dos/:1id.
You can go endpoint by endpoint:

« In the Express app, add a GET /api/to-dos route that returns the list of to-dos
(just use an array stored in memory for now).

o Add a POST /api/to-dos route that accepts a JSON body and adds a new to-do
to the list. Return the new to-do with an ID.

The AI will write the Express route handlers accordingly, likely using something like
app.get('/api/to-dos', ...).If you've indicated that youre using Express with
JSON, it might include the necessary middleware if it’s not already present:

app.use(express.json())

As your backend grows, you can ask the Al to refactor:

Refactor the Express routes into a separate router module.

126 | Chapter7:Building Web Applications with Al

It might split the routes out into a separate file, which is a good practice for maintain-
ability.

Database integration

You might use in-memory data for a prototype, but for a more complete application,
you'll want a database. Let’s say you choose MongoDB or PostgreSQL. You can
prompt:

Integrate MongoDB into the Express app using Mongoose. Create a to-do model with
fields: title (string), completed (boolean). Modify the GET/POST routes to use the
database instead of an in-memory array.

The AI may output the Mongoose model definition and adjust the route handlers to
query the database (like Todo.find() for GET and Todo.create() for POST). Similarly,
for SQL, you could ask it to set up an object-relational mapping (ORM) like Prisma or
Sequelize. Keep in mind you might need to provide configuration details (like con-
nection strings). The AI might not know your database URI; you’ll have to slot that
in. But it will handle the generic code.

Business logic and validation

If your backend has specific rules (for example, that users cannot delete a to-do that is
marked important or that list titles must be unique), you can encode those via Al

Add validation to the POST /api/to-dos route: reject if the title is empty or longer
than 100 chars, and return 400 status.

The AT will include checks and send proper responses.

Add logic: when a to-do is marked complete (say via PUT /api/to-dos/:1d), if all to-
dos are complete, log a message ‘All done!”

It can insert that logic in the PUT handler.

You describe these requirements in plain terms, and the AI modifies the code accord-
ingly. You still need to test that the code does what you expect.

Using frameworks or boilerplates

Many web backends use frameworks beyond raw Express (like Nest]S for Node or
Django for Python). AI can work with those, too, though you may have to break
down more involved tasks:

« For Django (Python), you might prompt:

Create a Django model for to-do with fields X, and corresponding views for list
and create.

Setting Up the Project: Scaffolding with Al | 127

https://oreil.ly/AoWDL

o The AI might output model code and a generic view or DRF (Django REST
Framework) serializer/viewset if it knows that context.

 For Ruby on Rails, you can get help generating models and controllers. (At that
point, you might just use Rails scaffolding, but the AI could supplement by
adding validations or adjusting routes).

AT models demonstrate varying levels of proficiency across different programming
languages and technology stacks, largely determined by the prevalence of those tech-
nologies in their training data. While models can work with any language they’ve
encountered during training, their effectiveness varies significantly. Popular lan-
guages like JavaScript, Python, and Java typically receive stronger support due to their
abundant representation in open source repositories, documentation, and educa-
tional materials that form part of the training corpus.

Determining a model’s proficiency with your chosen stack requires practical evalua-
tion. Start by testing the model with basic tasks in your target language, then progres-
sively increase complexity to gauge its capabilities. Pay attention to whether the
model generates idiomatic code that follows language-specific conventions, recog-
nizes common frameworks and libraries without extensive explanation, and suggests
appropriate design patterns for that ecosystem. Strong proficiency manifests as con-
textually appropriate suggestions, while weaker support often results in generic or
outdated code patterns.

Many Al providers publish documentation about their models’ capabilities, though
these rarely include detailed language-specific benchmarks. The most reliable
approach involves running small experiments with your actual technology stack. For
instance, if youre working with Ruby on Rails, test whether the model understands
Rails conventions like ActiveRecord patterns or can generate proper RSpec tests. Sim-
ilarly, for newer frameworks or less common languages, expect more variable results,
and be prepared to provide additional context in your prompts to compensate for
potential gaps in the model’s training.

Orchestrating multistep operations

Some endpoints might involve multiple steps, like creating an entry in one table and
then another, or calling an external API. You can outline the sequence and let the Al

draft it:

When a new user signs up (POST /api/users), create a user record and also send a
welcome email via SendGrid API.

The AI can write code to save the user (maybe using an object-relational mapper, or
ORM) and then an HTTP request to SendGrid’s API with appropriate payload. Youd
fill in actual API keys or tweak content, but most of the boilerplate is done:

128 | Chapter7: Building Web Applications with Al

Implement a transaction: when transferring money (POST /api/transfer), deduct
from account A and add to account B, ensure it’s atomic (all-or-nothing).

If youre using an ORM or database that supports transactions, the AI might use
those features (like an SQL transaction block or an ORM’ transaction method).
Review such code cautiously for correctness—transaction logic, especially, can be
tricky. But the AI might know common pitfalls and include checks. For instance,
when prompted to handle a money transfer endpoint, an AI generated the following
code structure:

async function transferMoney(fromAccountId, toAccountId, amount) {
const session = await db.startSession();

try {
await session.startTransaction();

// Deduct from source account

const sourceAccount = await Account.findByIdAndUpdate(
fromAccountId,
{ $inc: { balance: -amount } },
{ session, new: true }

);

if (sourceAccount.balance < 0) {
throw new Error('Insufficient funds');

}

// Add to destination account
await Account.findByIdAndUpdate(
toAccountId,
{ $inc: { balance: amount } },
{ session }

);

await session.commitTransaction();
return { success: true };

} catch (error) {
await session.abortTransaction();
throw error;

} finally {
session.endSession();

The AI correctly wrapped both database operations in a transaction, included valida-
tion for insufficient funds, and properly handled rollback on any error. While youd
still need to review edge cases and add appropriate logging, the fundamental transac-
tion structure demonstrates understanding of atomic operations.

Setting Up the Project: Scaffolding with Al | 129

APl documentation and testing

When building APIs, you can also have the AI produce documentation. For instance,
“Write a brief documentation for the /api/to-dos endpoints.” It may generate something
like this:

GET /api/to-dos - returns list of to-dos.
POST /api/to-dos - create a new to-do. Expects JSON: {title: string}. Returns
the created to-do.

This is handy for quick reference and also to share with frontend developers (if youre
working in a team). Additionally, you can use Al to write tests for your API end-
points, using a testing framework like Jest or Mocha for Node, or PyTest for a Python
API. With a prompt like “Generate tests for the to-dos API (one test for listing, one

for creating, one for validation error),” the AI will output test code that you can run
and verify.

Database Design and Integration

Human knowledge of the business domain is crucial in designing a database schema,
but Al can assist in translating that design into code (like migration scripts or ORM
models). Also, if you're unsure about your schema, you can brainstorm with the AL

For example, say your app is expanding beyond to-do lists to become a full project-
management tool. You need to design several tables: Projects, Tasks, Users, and so on.
You could ask, “What data models would I need for a simple project management app
with users, projects, and tasks? Include relationships” The AI might respond with
something like this:

o User (id, name, email, etc.)
o Project (id, name, owner_id referencing User)
o Task (id, description, project_id, assigned_to (User), status, etc.)

It might not be exactly what you want, but it gives you a starting point. You confirm
or tweak these design ideas, then implement them.

Using an ORM

If you use an ORM like Prisma, Entity Framework, or SQLAlchemy, you can have the
Al generate model classes or schema definitions:

Using Sequelize (for Node), define models for User, Project, Task with associations:
One User has many Projects, Project belongs to User; Project has many Tasks, Task
belongs to Project; Task can be assigned to a User (many-to-one).

130 | Chapter7: Building Web Applications with Al

The AI would then write JS/TS code to define those Sequelize models and associa-
tions, which you can then integrate into your codebase. It might also suggest foreign
keys or cascade rules if it’s familiar with them.

If you aren’t using an ORM and youre writing raw SQL migrations, you could even
have the AI draft migration scripts:

Write an SQL script to create tables for users, projects, tasks with appropriate foreign
keys.

It will output an SQL DDL script, which you can review for correctness and run.

Database Queries

When integrating the database in your code, you might need queries more complex
than simple CRUD. Suppose you want to get all projects, along with their tasks and
the user assigned to each task—that’s a join across Project, Task, User. You could
prompt:

Write an SQL query to retrieve projects with their tasks and each task’s assigned user
name.

The AI could produce an SQL join query for you.
Or if you're using an ORM:
Using Sequelize, fetch all projects with associated tasks and the user for each task.

You could expect the code to come with something to load related data, like:

include: [Task, { model: User, as: 'assignedUser' }]

Checking Al-Generated Queries

Database operations require careful verification to ensure the Al-generated code
aligns with your actual schema and maintains data integrity. The Al cannot automati-
cally know your specific table names, field names, or relationships unless you provide
this information explicitly in your prompt. Even when models have conversation
memory, you should include schema details in each complex database-related prompt
to ensure accuracy. This explicit approach prevents the common issue of Al-
generated queries that reference generic field names like user_id when your schema
actually uses userId or customer_ref.

Performance considerations often require human oversight. While AI models under-
stand basic database concepts like primary keys and joins, they may not automatically
suggest performance optimizations such as adding indexes on frequently queried
fields or considering query execution plans. Review generated queries for efficiency,
particularly for operations that will run frequently or against large datasets.

Database Design and Integration | 131

Data consistency rules represent another critical area requiring explicit specification.
When implementing delete operations, clearly define the cascading behavior you
expect. For example, when deleting a Project record, you must decide whether the
database should automatically delete associated Task records through cascading dele-
tes or whether your application logic should handle this cleanup. Communicate these
business rules clearly to the Al:

When a project is deleted, configure the database to cascade delete all related tasks.
Or alternatively:
When deleting a project, first check for existing tasks and prevent deletion if any exist.

The AI can implement either approach effectively when given clear direction. For
cascade deletes, it might generate foreign key constraints with ON DELETE CASCADE.
For application-level handling, it could produce code that queries for related records
before permitting deletion. The key lies in explicitly stating your data-integrity
requirements rather than assuming the AI will infer the appropriate behavior for your
specific domain.

Full Stack Integration: Marrying Frontend and Backend

Now that you've built both your frontend and backend with AI help, the next chal-
lenge is integrating them into a seamless web application. This involves making sure
that the API endpoints are called correctly from the frontend, the data flows properly,
and the overall system is coherent.

Aligning Frontend and Backend Contracts

This is crucial: the frontend expects to receive data in a certain shape, so what the
backend sends should match that expectation. If you let AT work on each end in isola-
tion, small mismatches can occur (maybe the backend returns { success: true,
data: [...] }, but the frontend expects to receive the array directly). To avoid this,
you can explicitly instruct the AI on the response format to use when coding both
sides. Alternately, once both are done, test an end-to-end call: for instance, open the
web app and see if the list loads. If it doesn't, check the browser console against the
server logs.

I often use the Al to adjust one side to match the other:

o If the backend returns slightly different JSON key names than what the frontend
expects and you notice a bug, you can say to the AI (on either side):

Modify the code to use ‘tasks’ (plural) instead of ‘taskList’ (singular) in the JSON.

132 | Chapter7: Building Web Applications with Al

o If the frontend is sending form data as form-encoded but the backend expects
JSON, you can ask the Al to convert that, maybe by using JSON.stringify on
the frontend or adding body-parser on the backend.

Real-Time Collaboration with Al

Al-augmented IDEs that hold the context of the whole project, like Cline or Cursor,
can be especially helpful during this integration phase. You could open the frontend
and backend files side by side in your IDE-based tool and prompt:

Ensure that the frontend fetch from /api/to-dos matches the Express route’s expected
request/response. Fix any discrepancies.

The AI might then harmonize the content (like adding await response.json() in the
frontend if it was missing or adjusting the JSON structure).

State management and sync

In a full stack app, consider implementing things like loading states and error han-
dling on the frontend for failed API calls for a professional result. You might use
prompts like:

Add loading indicators: when the React component is fetching tasks, show a ‘Load-
ing..” text until data is loaded.

Or:
Handle errors: if the API call fails (non-200 response), show an error message on the UL

It will add the isLoading state and conditional rendering or implement a try/catch
around fetch to catch errors and display a message. This kind of polish makes your
app feel robust.

WebSockets and advanced integrations

If your app requires real-time updates (like using WebSockets or SSE), you might
prompt something like this:

Set up a WebSocket using Socket.io. When a new task is created on the server, broad-
cast it to all connected clients. Modify the frontend to listen for new tasks and add
them to the list in real time.

This is complex, but an AI might generate the server-side Socket.io setup (like adding
io0.on('connection', ...) and emitting an event upon creation of a new task), as
well as client-side code to connect and listen for that event. You would need to inte-
grate this carefully, but it’s quite astonishing that these descriptions can lead to work-
ing real-time code. If it doesn’t work perfectly off the bat, iterative prompting and
testing can get it there.

Full Stack Integration: Marrying Frontend and Backend | 133

Example: full stack flow with Al

To illustrate, let’s imagine you're building a simple contact-manager web app:

You scaffold a React frontend and a Node/Express backend, as you did earlier in
the chapter.

First, for the frontend, prompt for a ContactList and a ContactForm compo-
nent. Then prompt to add API calls:

In ContactList, fetch contacts from /api/contacts on mount.

In ContactForm, on submit, send a POST to /api/contacts with the form data, then
update the list of contacts on success.

For the backend, you may want to use an in-memory array or integrate a data-
base first. Then prompt for Express routes GET /api/contacts (to return a list)
and POST /api/contacts (to add a contact to the database or memory).

Try adding a contact via the UL If it shows up in the list, great. If not, debug.
Maybe the POST route didn't return the new contact properly or the form code
didn’t refresh the list. Identify the gap and prompt the Al to fix it:

After adding a contact, the backend should return the new contact object in the
response, and the frontend should append it to the list without requiring a full
reload.

This might lead the AI to adjust the backend response and frontend state logic to
push the new contact (maybe using React state update).

Implement edit and delete functions similarly, each time letting AI handle the
routine parts and focusing your input on what the feature should do.

Doing all this manually could easily amount to a week or two of work for a junior dev
but could be done in a day or two with an AI codeveloper, given that a lot of template
code and wiring is automated.

Optimizing Al-human collaboration in full stack development

When working through an entire stack, it’s useful to establish a productive rhythm
with your Al assistant. Here are some strategies to optimize your collaboration:

Use the Al for boilerplate; write any custom logic yourself

Identify which parts of the code are mundane and which are the unique core
logic. Let the Al generate a CRUD API or a standard component—but if there’s a
particularly tricky piece of logic, maybe a proprietary algorithm or a specific
business rule that is easier to implement directly, do that part manually, then ask
the AI to review or test it. Think of it as delegating repetitive tasks to the Al,
while you handle the novel ones.

134

| Chapter7: Building Web Applications with Al

Use AI to tackle your to-do list one item at a time
As you develop, keep track of tasks (like features to add and bugs to fix). Then
explain each task to the AI, one by one, and let it propose a solution. For exam-
ple, let’s say you have a note that reads “Implement password hashing on user
registration.” Try a prompt like this:

Add password hashing using berypt in the POST /api/register route before sav-
ing the user.

This targeted, systematic approach helps ensure you don't forget anything.

Prompt Al to improve code quality as you go
After achieving functionality, you might prompt, “Refactor this code for better
readability” or “Optimize this function” The AI can often make the code cleaner
or suggest performance improvements, like an assistant doing a second pass for
polish under your supervision. Be sure to verify that any changes still pass your
tests.

Use Al for cross-checking
If you're uncertain about your design approach, ask the Al

Is using an array to store contacts in memory fine or should I use a database?
What are the pros and cons?

While you likely know the answer (use a database for persistence), it’s like bounc-
ing ideas off a colleague. Sometimes the AI might mention a consideration you
hadn’t thought of:

If there are multiple server instances, an in-memory store won’t sync across them.

Use Al to coordinate with your team
If you're working in a team, not everyone may be using the Al directly. In that
case, make sure to ask the AI to document what you did. Also, it’s good to com-
municate your approach to the team: “I used an Al to generate these controllers
quickly. I've checked them, but keep an eye out for any unconventional patterns.”
Encourage a code-review culture in which everyone reviews Al-written code just
like they would any other code to catch any quirks.

Real-world teams that adopt AI (like those at Snyk) report that it can boost produc-
tivity, but they also stress keeping a human in the loop for validation. In one 2024
survey by GitHub, 97% of developers reported using AI coding tools at work in some
capacity.

Full Stack Integration: Marrying Frontend and Backend | 135

https://oreil.ly/8Dmn7
https://oreil.ly/oivAx
https://oreil.ly/oivAx

Testing and Validation for Al-Generated Web Applications

After building your web app with AT help, test thoroughly to ensure everything works
as intended and to catch issues that you or the AI might have introduced. Here’s how
you can approach testing in this Al-assisted context:

Unit tests
For backend logic, write unit tests for critical functions (like a function that cal-
culates something or validates input). If the AI wrote the function, writing a test
for it can reveal any hidden bugs. You can even have the AI generate these tests,
as mentioned. Be cautious, though: Al-generated tests are sometimes trivial or
assume an implementation, so you may need to guide it to test edge cases:

Write tests for the password strength function, including edge cases like empty
password, very long password, password with special chars, etc.

Integration tests
Test the API endpoints with something like Supertest (for Node) or direct HTTP
calls. Check that each endpoint returns the expected results. AI can help you
scaffold these:

Write integration tests for the /api/to-dos endpoints using Jest and Supertest.
It might produce tests that start the app, hit the endpoints, and assert on responses.

Frontend tests
Web UI testing can be done with tools like Jest (for component logic) and
Cypress or Playwright for end-to-end UT tests. You can certainly ask AT to gener-
ate a Cypress test scenario:

Write a Cypress test that loads the app, adds a new to-do via the form, and checks
that it appears in the list.

You'll get a test script, which you can run. This is quite powerful—you quickly
get end-to-end test coverage by leveraging the Al to script user interactions.

Manual tests

Whatever automated tests you run, always do some manual exploratory testing,
too. Click around the web app yourself (or have QA do it, if youre working in a
team). The AI might not anticipate every real-world scenario: for example,
maybe using the browser Back button breaks some state, or a particular sequence
of actions causes a glitch. As you find bugs, fix them or ask the AI to help fix
them. Manual testing is also important for UI/UX judgment—does the app feel
good to use? Are there any awkward flows? The AI won't know how to judge
these subjective UX issues, so human feedback is key.

136 | Chapter7: Building Web Applications with Al

Code review
If youre working with others, have them review the Al-generated code. Fresh
eyes can catch things you might have glossed over—they might spot a security
oversight or simply suggest a more idiomatic way to write something. Teams
using AT often maintain normal code-review processes, just with more focus on
reviewing for subtle bugs or security issues that an AI might inadvertently intro-
duce.

Security audit
Chapter 8 will dive into security, but even at development time, it’s worth scan-
ning your code for known vulnerability patterns. There are automated tools you
can run, like linters and Static Application Security Testing (SAST) tools, or you
can prompt the AL

Review the Express app code and list any potential security vulnerabilities or best
practice violations.

The AI might flag some surprising things, like “You are not sanitizing user input
here” or “You should set up CORS properly” Use that as a checklist for hardening
the app.

One interesting effect of using Al is that you may write tests you wouldn't have other-
wise, because the Al makes it so easy to create them. This can actually lead to more
robust code in the end. If you adopt a practice of generating tests immediately after
generating features (essentially Al-assisted test-driven development, or at least post
hoc tests), you ensure that the rapid development doesn’t compromise quality. Think
of it like this: since the Al saved you time writing code, invest some of that saved time
into writing and running tests.

AT can suggest insecure code if the user isn’t careful. For example, earlier Al versions
might generate SQL queries that are vulnerable to injection attacks if not specifically
prompted to avoid that. By testing and reviewing, you catch these issues. One study
found that developers using Al assistance tended to be overconfident in their code’s
security, even when it was worse than it would’ve been if written manually.

Never skip validation just because an AI wrote the code. Assume it can have bugs,
just like any human-written code.

Testing and Validation for Al-Generated Web Applications | 137

https://oreil.ly/O5Dbj
https://oreil.ly/T531z
https://oreil.ly/U3b8H

Examples of Successful Al-Built Web Projects

Let’s highlight a couple of examples (composites drawn from various reports) where
AT assistance played a significant role in delivering real web applications.

Ecommerce site by a solo developer

A solo developer wanted to create a small ecommerce web app to sell custom T-
shirts but had limited time. He used GPT, through an IDE extension, to build the
entire stack. He prompted the Al to generate a React frontend with product list-
ings, a cart, and checkout pages, as well as a Node.js backend with endpoints for
products and orders. He used Stripe for payments, integrating it by asking the Al
to help with Stripe’s API. After working on it in the evenings for two weeks, he
had a functioning site.

This developer reported that AI had done probably 70% of the coding, especially
the repetitive Ul parts and form handling, while he focused on configuring Stripe
correctly and fine-tuning the UI for branding. In the end, customers could
browse products, add them to the cart, and purchase them—all in a system built
largely via vibe coding. It also highlights that external service integration (like
Stripe) is feasible with AI guidance, as long as documentation is available for the
model to draw from or you provide it.

Internal company dashboard

A product manager with some coding skills used an AI pair programmer to cre-
ate an internal analytics dashboard for her team. Normally, she would have had
to wait for engineering resources, but using a tool like Replit's Ghostwriter or
GitHub Copilot in a web project, she managed to build a basic web app herself.
The AI helped with setting up a simple Flask backend to query their database
(with safe read-only credentials) and a Vue.js frontend to display graphs (using a
charting library). She described what each chart should show (“total sign-ups
over time,” “active users by region”), and the AI wrote the SQL queries and chart
code.

The whole process took a couple of weeks of tinkering and testing, but eventually
she delivered a working dashboard. The code quality wasn’t enterprise grade, but
since it was internal, it was fine. More importantly, she empowered her team with
a tool in a fraction of the time. This example illustrates how Al tools can enable
nonspecialist programmers to produce useful web apps, unblocking tasks that
might otherwise sit in a backlog. It's an example of the “unbundling of the pro-
grammer” that I'll discuss in Chapter 10, which is all about how individuals can
create personal or team-specific software more easily now.

138

| Chapter7: Building Web Applications with Al

Startup minimum viable product (MVP)

A small startup (just two cofounders: one business, one technical) needed an
MVP web application to show to investors. The technical cofounder used vibe
coding extensively to build an MVP in record time. Using an Al assistant, he
scaffolded a modern web app using Next.js for the SSR React frontend and a sim-
ple Node API. He leveraged Al to implement features like social login (the AI
wrote the OAuth flows), image uploads (the AI integrated with a cloud-storage
API), and an Al-based feature within the product itself. They even used the AI to
help integrate an NLP model from an APIL In a few months, one developer
achieved what might normally take a small team four to six months. The result
was a somewhat hacky but functioning product that they could demo, and they
could even onboard beta users onto the platform.

When the cofounders later hired more devs to polish the product, the new devs
found the Al-written code to be mostly understandable, though they did refactor
significant portions for scalability. This underlines that AI can get you to the first
stage quickly, but you might need to invest in quality as you move to the next
stages.

These stories, while anecdotal, align with emerging patterns in the industry. In web
development specifically, which often involves wiring many components together, the
productivity boost is very tangible. Microsoft and others reported studies finding that
developers with AI could complete tasks significantly faster than those without.

However, there have also been cautionary tales. For instance, a developer might
deploy an Al-generated web app with a security flaw because they don’t fully under-
stand the code. This risk reinforces why testing and review are crucial.

In conclusion, building web applications with Al assistance is becoming a main-
stream approach. It doesn't remove the need for skilled developers; rather, it aug-
ments them. The developers still plan the architecture, ensure correctness, and
handle the complex or novel aspects of the code, while the Al handles the repetitive
boilerplate code that glues everything together. The end-to-end workflow we walked
through—from scaffolding to frontend to backend to testing—demonstrates that
practically every step of web development can be accelerated with Al as long as you
apply your human judgment and expertise along the way.

Examples of Successful Al-Built Web Projects | 139

https://oreil.ly/QLunu
https://oreil.ly/BNVrB

Summary and Next Steps

In this chapter, you've seen how vibe coding extends to full-scale web application
development. By treating the AI as an always available pair programmer, you can
tackle frontend and backend tasks in parallel, generate components and APIs from
natural descriptions, and iteratively refine a prototype application to production
quality. The keys to success include clearly communicating your intent (so the Al
knows what you want at each step), carefully verifying (to catch issues in the Al out-
put), and leveraging the Al not just to generate code but for things like brainstorming
schema designs and writing tests.

This chapter also explored how a developer can effectively be a full stack engineer,
augmented by AI bridging gaps in their knowledge by suggesting code in areas they
are less familiar with. This greatly reduces development time for common features
and democratizes development in some ways, enabling people to create custom web
solutions without large teams (a theme I'll revisit in Chapter 10).

AT doesn't replace understanding the requirements or ensuring quality; it accelerates
execution.

Now that your web application is up and running, the next concern is making sure it
is secure, reliable, and maintainable. Chapter 8 dives into the challenges of security
and reliability in Al-generated codebases, identifying common vulnerabilities that
might slip in, how to audit for and fix them, and best practices (like the ones we've
started applying here with tests and reviews) to ensure that moving fast with Al
doesn’t break things. Essentially, we'll shift from building to hardening—making sure
your vibe-coded software stands up to real-world conditions and threats.

140 | Chapter7: Building Web Applications with Al

PART I

Trust and Autonomy

CHAPTER 8
Security, Maintainability, and Reliability

This chapter confronts a critical aspect of vibe coding and Al-assisted engineering—
ensuring that the code you produce with AI assistance is secure, reliable, and main-
tainable. Speed and productivity mean little if the resulting software is riddled with
vulnerabilities or prone to crashing.

First, I'll examine common security pitfalls that arise in Al-generated code, from
injection vulnerabilities to secrets leakage. You'll learn techniques for auditing and
reviewing Al-written code for such issues, effectively acting as the security safety net
for your Al pair programmer.

Next, I'll discuss building effective testing and QA frameworks around Al-generated
code to catch bugs and reliability issues early. Performance considerations will also be
covered. Al might write correct code, but it’s not always the most efficient code, so I'll
outline how to identify and optimize performance bottlenecks. I'll also explore strate-
gies to ensure maintainability, such as enforcing consistent styles or refactoring Al
code, since AT suggestions can sometimes be inconsistent or overly verbose.

I'll show you how to adapt your code-review practices to an Al-assisted workflow,
highlighting what human reviewers should focus on when reviewing code that was
partially or wholly machine-generated. Finally, I'll round up best practices for deploy-
ing Al-assisted projects with confidence, from continuous integration pipelines to
monitoring in production. By the end of this chapter, you'll have a toolkit of
approaches to keep your Al-accelerated development safe and robust.

Common Security Vulnerabilities in Al-Generated Code

AT coding assistants, while powerful, can inadvertently introduce security issues if not
guided properly. They learn from lots of public code—which includes both good and
bad practices—and may regurgitate insecure patterns if the prompt or context doesn't

143

steer them away. It’s vital for you to know these common pitfalls so you can spot and
fix them. This can include using both manual and automated means to detect poten-
tial security issues (see Figure 8-1).

Al generates code

Security scanner

Figure 8-1. Al-introduced security vulnerabilities: AI-generated code may contain subtle
security flaws that require careful review and automated security scanning to identify
and remediate.

Some typical security issues observed in Al-generated code include:

Hard-coded secrets or credentials

Sometimes Al outputs API keys, passwords, or tokens in code, especially if simi-
lar examples were in its training data. For instance, if you ask it to integrate with
AWS, it might put a dummy AWS secret key directly in the code. This is danger-
ous if left in—it could leak sensitive info if the code is shared. Always ensure that
secrets are properly managed via environment variables or config files. If an Al
suggests something like api_key = "ABC123SECRET", treat it as a flag—real keys
should not be in source code.

SQL injection vulnerabilities
If you have your AI model generate SQL queries or ORM usage, check that it’s
not constructing queries by concatenating user input directly. For example, an
insecure pattern would be:

sql = "SELECT * FROM users WHERE name = '" + username + "'";

This is susceptible to injection attacks. An AI might produce this if you don’t
specifically tell it to parameterize queries. Always use prepared statements or
parameter binding. Many Al assistants will do so if they recall best practices (like
using ? or placeholders for user inputs in SQL), but it's not guaranteed. It’s on
you to verify and ask the Al to fix it if needed:

Modify this query to use parameters to prevent SQL injection.

144 | Chapter 8: Security, Maintainability, and Reliability

Cross-site scripting (XSS) in web apps
When generating web code, Al tools don’t always automatically escape user input
in outputs. For example, your AI might produce a templating snippet that
directly inserts {{comment.text}} into HTML without escaping, which could
allow a malicious script placed in a comment to run. If using frameworks, Als
often escape by default, but if they’re handling raw HTML construction, be care-
ful. Implement output encoding or sanitization routines. You can prompt the Al:

Add sanitization for user inputs to prevent XSS.

Many modern frameworks have built-in mechanisms, so ensure that the Al uses
them, like innerText versus innerHTML in Document Object Model (DOM)
manipulation.

Improper authentication and authorization
Als can write authentication flows, but subtle mistakes might creep in: for
instance, generating a JSON Web Token (JWT) without a sufficiently strong
secret or not checking a password hash correctly.

The same is true for authorization: an AI might not automatically enforce that an
action (like deleting a resource) is limited to the user who owns that resource.
These logic issues are hard to catch automatically—they require thinking through
the security model. When writing such code, specify clearly:
Ensure that only the owner of the resource can delete it. Add checks for
user ID.
Then test those conditions. It’s easy for an Al to omit a check because it doesn’t
truly “understand” the context unless told.

Insecure defaults or configurations
AT might choose convenience over security unless prompted to do otherwise.
Examples include:

 Using HTTP instead of HTTPS for API calls (if TLS is not specified)

« Not validating SSL certificates (some code examples on the internet use
verify=false in requests, which AI might copy)

o Widely enabling CORS for all origins and methods without restriction
(potentially opening the app to any cross-origin requests)

 Choosing outdated cryptography (like MD5 or SHA1 for hashes, which are
weak, instead of SHA-256/Bcrypt/Argon2 for passwords)

These issues are often subtle, which is one reason it’s good to audit your configu-
ration files and initialization code. If the AI sets up something like app.Use
Cors(allowAll) or chooses an old cipher, you should spot that and correct it.

Common Security Vulnerabilities in Al-Generated Code | 145

https://oreil.ly/5o_2x
https://oreil.ly/5o_2x
https://oreil.ly/rf7JL

Error handling revealing sensitive info
Al-generated error handling might print or return stack traces. For example, a
Node.js API might catch an error and do res.send(err.toString()), which
could leak internal details. Ensure that error messages to users are sanitized and
logs are properly handled. Adjust as needed to avoid giving attackers clues like
full error messages or file paths.

Dependency management and updates
If the AT adds dependencies (such as libraries) to your project, ensure that they’re
up to date and from reputable sources. An Al might pick a library that was popu-
lar in its training data, but that is no longer maintained or has known vulnerabili-
ties. For instance, if it suggests using an older version of a package, you should
bump it to the latest stable. Running npm audit or equivalent after generation is
wise too. Or ask the AL

Is this library still maintained and secure?
It might not fully know, but it could tell you if there’s a known deprecation.

A 2023 large-scale analysis of GitHub Copilot in real-world projects revealed that as
much as 25%-33% of generated code—depending on language—contained potential
security weaknesses, including high-severity CWEs such as command injection, code
injection, and cross-site scripting. These findings underscore that Copilot reflects
insecure patterns present in its training data, as opposed to intentionally producing
flawed code. The consistent recommendation? Developers must stay alert: manually
review Al-generated code, use security-aware tooling, and maintain strict code
hygiene. Especially during “vibe coding,” the speed and scope of Al-generated content
demand even more vigilance. More code in less time means more surface area to
audit.

Let’s look at a short example.

Improper Authentication and Authorization

Imagine you ask an Al to create a login route in an Express app. It might produce
something like this:

// Insecure example
app.post('/login', async (req, res) => {
const { username, password } = req.body;
const user = await Users.findOne({ username: username });
if (!user) return res.status(401).send("No such user");
if (user.password === password) { // plain text password comparison
res.send("Login successful!");
} else {
res.status(401).send("Incorrect password");
}
H;

146 | Chapter 8: Security, Maintainability, and Reliability

https://arxiv.org/abs/2310.02059

What are the issues here?

o It compares passwords directly, implying that the password is stored in plain text
in the database—a big no-no.

o It sends very generic responses, which may be appropriate for security but could
also inadvertently expose sensitive information.

Consider authentication error messages as a critical example. A properly secure sys-
tem should return a generic message like “Invalid credentials” when login fails,
regardless of whether the username or password was incorrect. However, Al-
generated code might produce more specific errors such as “Username not found” or
“Incorrect password for this user”

These specific messages create a security vulnerability by confirming to potential
attackers which piece of information they have correct. If an attacker receives “Incor-
rect password” as an error, they now know they have discovered a valid username in
your system. This enables them to build a list of legitimate usernames through
repeated attempts, then focus their efforts on cracking passwords for those confirmed
accounts. This technique, known as user enumeration, transforms a guessing game
into a more targeted attack. The AT’s tendency toward helpful, specific error messages
inadvertently aids malicious actors unless you explicitly instruct it to maintain appro-
priately vague responses for security-sensitive operations.

While it isn’t shown in the code, no rate limiting or other protections are included
here.

A secure implementation would incorporate several critical safeguards:

o First and foremost, passwords should never be stored in plain text. Instead, the
system should store cryptographically hashed passwords and use a secure com-
parison function to verify login attempts.

o This comparison process must employ constant-time algorithms to prevent tim-
ing attacks, where attackers analyze response times to deduce information about
password correctness. Many security-focused libraries provide these constant-
time comparison functions specifically to address this vulnerability.

« Additionally, the authentication system should implement rate limiting or throt-
tling mechanisms to prevent brute-force attacks. Failed login attempts should be
logged for security monitoring, allowing administrators to detect and respond to
suspicious patterns. These measures work together to create a defense-in-depth
approach that protects user credentials even if one security layer is compromised.

Common Security Vulnerabilities in Al-Generated Code | 147

You can ask AT to help fix this:

Improve the login route to use berypt to hash and compare passwords, and ensure the
password in the database is hashed.

It might then output:

const bcrypt = require('bcrypt');

app.post('/login', async (req, res) => {
const { username, password } = req.body;
const user = awailt Users.findOne({ username 1});
if (luser) {
return res.status(401).send("Invalid credentials");

}

const match = await bcrypt.compare(password, user.passwordHash);
if (!match) {
return res.status(401).send("Invalid credentials");

}

res.send("Login successful!");

s

This is better: it uses bcrypt to compare against a hashed password (assuming the
variable user.passwordHash stores that). When creating users, youd also want to
make sure to use bcrypt.hash to hash their passwords.

With a bit of guidance, the Al can do the right thing, but its initial naive output might
well be insecure. This underscores the pattern: review and refine.

Package Management Issues

Another common vulnerability category is package management. Al sometimes
invents a library or misremembers a name, a problem known as package hallucina-
tion. Such a package might not exist, but an attacker could, theoretically, publish
packages under commonly hallucinated names that contain malicious code. If you
install such a package without confirming that it both exists and is the correct pack-
age, you could be introducing serious risk. If you're not sure about a particular pack-
age, try a quick web search or check npm/PyPI directly.

Additionally, the AT might inadvertently produce code that is identical to a licensed
snippet from training data. This is more an intellectual property concern than a secu-
rity issue, but it warrants careful attention. GitHub Copilot, for instance, includes a
duplicate detection feature that can flag when generated code closely matches public
repositories, helping developers avoid potential licensing conflicts. Similar tools are
emerging to address this specific challenge of AI-generated code provenance. Chap-
ter 9 will delve into licensing and intellectual property considerations in more detail,
providing comprehensive guidance on navigating these complex issues.

148 | Chapter 8: Security, Maintainability, and Reliability

In summary, the main message remains—and yes, I realize I've emphasized this point
throughout the book to the point where you could probably recite it in your sleep—
that AI output requires the same careful review you would apply to a junior developer’s
code. The repetition is intentional, because this principle underpins virtually every
aspect of safe and effective Al-assisted development. Whether youre prototyping,
building backends, or implementing security features, this mental model provides the
right balance of trust and verification to make AI a powerful ally rather than a risky
shortcut. It can write a lot of code fast, but you need to instill security best practices
into it and double-check for vulnerabilities. Novelist Frank Herbert put it this way in
an often-quoted line from God Emperor of Dune (Putnam, 1981): “They increase the
number of things we can do without thinking. Things we do without thinking—
there’s the real danger”

Using Al can lull you into doing less thinking about routine code, and you should be
consciously thinking about how to apply a security-review mindset. It’s crucial for
catching those “things we can do without thinking”

Security Audits

Given the types of vulnerabilities outlined, how can you effectively audit and secure
our Al-generated code? This section looks at several techniques and tools you can
employ.

Leverage Automated Security Scanners

Static analysis tools (SASTs) can scan your code for known vulnerability patterns; for
example:

« ESLint + security plug-ins can detect insecure functions or unsanitized input in
JavaScript and Node code.

« Bandit for Python can flag uses of assert in production, weak cryptography, hard-
coded secrets, and more.

 GitHub CodeQL lets you run queries across your codebase to find SQL injection,
XSS, and other common patterns.

 Semgrep has rules for many languages, including community-maintained ones
for JavaScript, Python, Java, Go, and more, and can spot top issues out of the box.

You can integrate these tools into your CI/CD or dev pipelines. Run them on your
Al-generated code—it won't catch everything, but it will probably flag the obvious
mistakes (e.g., plain-text password checks, unsanitized SQL, insecure crypto). It’s a
solid safety net.

Security Audits | 149

https://oreil.ly/yr2B_
https://oreil.ly/55ppH
https://bandit.readthedocs.io
https://github.com/github/codeql
https://semgrep.dev

Use a Separate Al as a Reviewer

Two distinct approaches can leverage Al for security review of generated code, each
with unique advantages. The first involves using the same AI model that generated
the code, asking it to switch perspectives and audit its own output. After generating
code, you can prompt the model with something like this:

Review this code for security vulnerabilities and explain any issues you find.

This approach often yields surprisingly effective results, as the model can identify
common security problems such as plain-text password storage, missing input vali-
dation, or potential SQL injection vulnerabilities.

The second approach employs a different AI model as an independent reviewer. For
instance, if you generated code using ChatGPT, you might paste that code into
Claude or Gemini for security analysis. This cross-model review can surface different
perspectives and catch issues the original model might have overlooked, much like
how different security tools or human reviewers bring varying expertise and focus
areas. Different models may have been trained with different emphases or datasets,
potentially catching distinct categories of vulnerabilities.

Both techniques serve as valuable additional layers of security review, complementing
but never replacing proper security testing and human expertise. While AI reviewers
may occasionally flag false positives or miss subtle vulnerabilities, they excel at catch-
ing common security antipatterns quickly. Think of this process as automated pair
programming focused specifically on security considerations. The key lies in treating
these Al-generated security reviews as another input to your security assessment pro-
cess rather than as definitive security clearance.

Perform a Human Code Review with a Security Checklist

If you're in a team, have a checklist for reviewing code with an eye to security. Al
often produces code that “works” for the expected case but isn’t hardened to deal with
malicious cases. For Al-generated code, be sure to consider:

O Authentication flows: Are they solid?
O Any place data enters the system: Are we validating inputs?

O Any place data leaves the system: Are we sanitizing outputs? Are we protecting
sensitive data?

O Use of external APIs: Are we handling failures? Are we exposing keys?

O Database access: Are we using ORMs safely? Are we using parameterized
queries?

O Memory management in low-level code: If AI is writing C/C++ or Rust, are there
overflows? Is there any misuse?

150 | Chapter 8: Security, Maintainability, and Reliability

Penetration Testing and Fuzzing

Use dynamic approaches. For fuzz testing, feed random or specially crafted inputs
into your functions or endpoints to see if they break or do weird things. AI can help
generate fuzz cases, or you can use existing fuzz tools, such as OSS Fuzz by Google.

Running penetration-testing tools like OWASP’s ZAP against your AI-made web app
can automate scanning for things like XSS and SQL injection vulnerabilities. For
example, ZAP might attempt to inject a script and get it reflected, and detect that a
certain input isn’t sanitized.

If you're building an API, tools like Postman or custom scripts can try sending ill-
formed data to see how the system behaves: does it throw a 500 error or handle errors
gracefully?

Add Security-Focused Unit Tests

For critical pieces of code, write tests that assert security properties. For instance, you
might test that your login rate limiter triggers after X bad attempts, or that certain
inputs (like "<script>alert(1)</script>") come out escaped in the response. To
test that unauthorized users cannot access a protected resource, simulate both
authorized and unauthorized calls and ensure the app behaves correctly.

You can ask the AI to help generate these tests:
Write tests to ensure an unauthorized user gets 403 on the /deleteUser endpoint.

And then run the tests.

Provide Updates to Compensate for Training Cutoffs

AT models possess a fundamental limitation that directly impacts security: their
knowledge freezes at a specific point in time. When a model completes training, it
cannot learn about vulnerabilities discovered afterward, security patches released
subsequently, or new best practices that emerge. This knowledge cutoff creates a criti-
cal gap between what the Al knows and current security standards.

Consider a model trained in 2023 generating code in 2025. During those intervening
years, numerous security vulnerabilities have been discovered, patched, and docu-
mented. New attack vectors have emerged, frameworks have added security features,
and best practices have evolved. The AI, however, remains unaware of these develop-
ments unless you explicitly provide updated information within your prompts.

This limitation becomes particularly acute with rapidly evolving security standards
and vulnerability databases. The OWASP Top 10, for instance, undergoes periodic
updates to reflect the changing threat landscape. If you prompt an Al to “write a
secure file upload function,” it might implement reasonable protections based on its

Security Audits | 151

https://oreil.ly/OoFzT
https://oreil.ly/FvKSU
https://oreil.ly/US-uh

training data—perhaps including file type validation, size limits, and storage outside
the web root. However, it could miss recently discovered attack vectors or fail to
implement newly recommended mitigations.

The solution involves actively supplementing the Al's knowledge with current secu-
rity information. When requesting security-sensitive code, include references to cur-
rent best practices in your prompts. For example, rather than simply asking for secure
code, you might prompt:

Write a file upload function that addresses the security concerns in the 2025 OWASP
Top 10, particularly focusing on injection attacks and server-side request forgery.

This approach grounds the ATs response in current security standards rather than
potentially outdated training data.

Similarly, framework-specific security features often emerge after an AT’s training cut-
off. Express.js applications, for instance, benefit significantly from the Helmet mid-
dleware for setting security headers. An Al trained before Helmet became standard
practice might generate Express applications without this crucial security layer. By
explicitly mentioning current security tools and practices in your prompts, you help
the AI generate code that aligns with contemporary security standards rather than
historical ones.

Optimize Your Logging Practices

Ensure that the code (AI and human) has good logging, especially around critical
operations or potential failure points. This helps in debugging issues in production. If
an Al wrote a section with minimal logs, consider adding more. For example, if
there’s an Al-generated catch block that just swallows an error, change it to log the
error (and maybe some context) for visibility. Also, sanitize the logs so they contain
no sensitive info.

Use Updated Models or Tools with a Security Focus

Some Al coding tools aim to blend code generation with built-in security scanning.
Snyk is a prime example: it uses a hybrid approach combining LLM-generated sug-
gestions with rule-based taint analysis. According to Snyk, when you request code
(even from LLM libraries like OpenAl, Anthropic, or Hugging Face), Snyk Code
tracks potentially unsafe data flows and flags untrusted inputs before they reach sen-
sitive sinks. In practice, that means if an Al suggests a database query, Snyk ensures
it's parameterized, preventing SQL injection—even if you forget to do so yourself.
This kind of tool is particularly useful because it works to avoid introducing insecure
code through AI-generated suggestions.

152 | Chapter 8: Security, Maintainability, and Reliability

https://oreil.ly/WSPar
https://oreil.ly/WSPar
https://oreil.ly/0ZGFv

Pay Attention to Warnings in Context

If you're using an IDE, often you’ll see warnings or squiggly lines to highlight suspi-
cious code. Modern IDEs with IntelliSense can sometimes catch, for instance, a string
concatenation of SQL that looks suspicious. Don’t ignore those warnings and flags
just because the AI writes them—address the issue. The AI doesn’t have the benefit of
those real-time warnings when generating the code.

Slow Down

After using Al to generate a lot of code quickly, shift gears and slow down when it’s
time for auditing. When you can produce features fast, it'’s tempting to chase the next
one, but schedule time for a thorough review. Think of it as “AI-accelerated develop-
ment, human-accelerated security” Snyk’s best practices recommend scanning Al
code right in the IDE, and caution against letting AI’s speed outpace your security
checks. In other words, integrate security scanning into your dev loop, so you can
catch vulnerabilities as soon as the code is written.

In summary, when you audit Al-generated code, you'll use many of the same tools
you use in traditional development—static analysis, dynamic testing, code review—
but you might apply them more frequently, because code is produced more quickly.
Treat every Al output as needing inspection.

Building Effective Testing Frameworks
for Al-Generated Systems

While security forms one pillar of reliability, the broader concept encompasses the
fundamental dependability of your software system. Reliability, in software architec-
ture terms, addresses critical questions about system failure and its consequences.
Does your system need to be fail-safe? Is it mission critical in ways that could affect
human lives or safety? If the system fails, will it result in significant financial losses
for your organization? These considerations determine the rigor required in your
development and testing practices.

When you're building with Al assistance, these reliability stakes remain unchanged.
A banking application generated with Al assistance carries the same requirements for
transaction accuracy and data integrity as one written entirely by humans. A health-
care system must meet identical standards for patient safety regardless of how its code
originated. The ATls involvement in code generation does not diminish these funda-
mental reliability requirements.

This reality underscores why comprehensive testing becomes even more critical in
Al-assisted development. A strong testing framework ensures that your code per-
forms its intended functions correctly and maintains that correctness as the project

Building Effective Testing Frameworks for Al-Generated Systems | 153

https://oreil.ly/uUExW

evolves. While testing Al-generated code follows the same fundamental principles as
testing human-written code, certain nuances and opportunities emerge from the Al
development process that warrant specific attention.

The following sections explore how to leverage Al not just in generating code but in
creating robust test suites that validate reliability, maintain system stability, and pro-
vide confidence that your software will perform correctly when the stakes are highest.

First, embrace automated testing early and often. It’s easy to skip writing tests when
development is slow because you want to push features. Ironically, when development
is fast (with AI), it’s also easy to skip tests, because new features keep coming at you.
But when code is churned out rapidly, thats precisely when you most need tests to
catch regression or integration issues. So after implementing a feature with AI help,
get into the habit of immediately writing tests for it (or even using Al to write those
tests). This verifies the feature and also guards it as you change things later.

A 2022 study found that developers who were using an Al assistant were more confi-
dent in the security of the code they wrote even when it was objectively less secure
than code written by those without Al assistance. You need to counteract that over-
confidence with actual tests.

As I noted in Chapter 4, you can use the Al not just to generate the code but also to
produce a suite of tests. This way, AI helps double-check itself. It’s like having it do
both the implementation and an initial pass at validation. For example, after writing a
new module, you could ask:

Write unit tests for this module, covering edge cases.

If they pass, great. If they fail, either there’s a bug or the tests expected something else.
Investigate and fix either code or test as appropriate.

Be cautious that the AI may assume some output or behavior incorrectly; treat its
tests, like its code, as suggestions, not the ground truth. You might need to adjust the
test’s expectations to match the intended behavior—but even that process is valuable,
because it forces you to define the intended behavior clearly.

Incorporate your test suite into a CI pipeline that runs on every commit. This way,
whenever Al-generated code is added or changed, all tests run automatically. If some-
thing breaks, you'll catch it early. Sometimes AI might introduce subtle breaking
changes (like changing a function signature or output format slightly), and a robust
test suite will detect that. Include security scans in the CI too (like npm audit or static
analysis) so that any new introduction of a risky pattern is flagged. Types of tests to
try include:

Property-based testing and fuzzing
Property-based testing (with tools like Hypothesis for Python or fast-check for
JavaScript) is another valuable technique. Instead of writing individual test cases

154 | Chapter 8: Security, Maintainability, and Reliability

https://oreil.ly/Vc8Gd
https://oreil.ly/JcYBf
https://fast-check.dev
https://fast-check.dev

with specific inputs and expected outputs, you define high-level properties that
your code should always satisfy. The framework then generates a wide range of
inputs to check whether those properties hold.

Take sorting as an example. Rather than asserting that sort([3, 1, 2]) ===
[1, 2, 3], you can define properties:

« The output should be in order
o It should contain the same elements as the input

The tool then generates dozens or hundreds of input arrays to test those condi-
tions—and finds edge cases you might not think of manually.

This can be especially useful for Al-generated code. If your Al writes a function
to normalize email addresses (such as by lowercasing the domain), a property
test might check that the output is idempotent—meaning running the function
twice gives the same result as running it once. If an edge case violates that invari-
ant, the test framework will generate a counterexample to help you diagnose the
bug.

Load and performance testing
AT might write code that’s not optimized. Its a good idea to test your system
under load. This is reliability in terms of performance. Use tools like JMeter,
Locust, or k6 to simulate many requests or heavy data and see if the system holds
up. If not, identify the bottlenecks.

For instance, maybe the AI writes a naive 0(n~2) algorithm that works fine on
100 items but will tank at 10,000. Without performance tests, you might not
notice that until it’s in production. So incorporate some performance scenarios, if
applicable. Time some critical operations with increasing input sizes, or use
profiling tools to see where CPU time or memory goes for heavy tasks.

Error handling
Intentionally cause errors to ensure the system responds gracefully, such as:

o For an API, shut down the database and see if the API returns a friendly
error or crashes. If it crashes, add code (or ask Al to add code) to handle DB
connection errors.

o For the frontend, simulate the backend returning 500 errors and ensure the
UI shows an error message, not a blank page or infinite spinner.

AT might not think of these failure modes on its own when writing code, so you
have to test them and then refine. Testing these scenarios will improve reliability
by prompting you to add proper fallback logic, retries, or user feedback.

Building Effective Testing Frameworks for Al-Generated Systems | 155

Monitoring and logging
Incorporate logging and perhaps use the logs in tests for verification. For
instance, if a certain action should trigger an audit log entry, test for that. Al can
generate log lines; verify they print out as expected.

Also, think about setting up monitoring (like an in-memory simulation of how
your service will be monitored in production). For example, you might track if
any uncaught exceptions are logged during test runs. If yes, treat it as a test fail-
ure; that means there’s some case not properly handled.

Maintainability

Maintainability testing, like ensuring code style and standards, is important. Use
linters and formatters to keep code consistent, since Al can produce slightly dif-
ferent styles from different prompts. A formatting tool like Prettier or Black (for
Python) can unify style. For more logical consistency and to catch overly com-
plex Al-generated code that might need refactoring, consider adding linting rules
that enforce things like function complexity limits. (See “Ensuring Maintainabil-
ity in AI-Accelerated Codebases” on page 160 for more.)

Once your tests are in place, you can refactor AI code more confidently. Perhaps the
AT produces a working but clunky solution; you can improve it and rely on tests to
ensure you haven't broken its behavior. You might even ask AI to refactor its own
code:

Refactor this function for clarity while keeping it passing the current tests.
If your tests are good, you can check that the refactoring didn’t break anything.

Understanding nondeterminism in AI systems requires distinguishing between two
fundamentally different scenarios. When AI operates at runtime in production sys-
tems, such as a chatbot responding to customer queries or a recommendation engine
personalizing content, the outputs can vary even with identical inputs. This variabil-
ity stems from factors like model temperature settings, random seeds, or evolving
model states. Testing such systems requires specialized approaches that account for
acceptable variation ranges rather than expecting exact matches.

However, Al-assisted code generation presents a different paradigm entirely. Once an
Al generates code and that code is committed to your repository, it becomes as deter-
ministic as any human-written code. The function that calculates tax rates will pro-
duce the same output for the same input every time, regardless of whether a human
or AT originally wrote it. This determinism is crucial for system reliability and makes
traditional testing approaches entirely applicable to Al-generated code.

156 | Chapter 8: Security, Maintainability, and Reliability

https://prettier.io
https://pypi.org/project/black
https://pypi.org/project/black

The more subtle challenge emerges when integrating multiple Al-generated compo-
nents, each potentially created in isolation with different implicit assumptions. Con-
sider a concrete example from an ecommerce system. You might prompt an Al to
generate an order processing module, instructing it to handle international orders.

Separately, you ask the Al to create a shipping calculation service for the same system.
The order processing module, following American conventions, formats dates as
“12/25/2024” for December 25. Meanwhile, the shipping service, perhaps influenced
by European examples in its generation, expects dates formatted as “25/12/2024”
Both components function perfectly in isolation, passing their individual unit tests.

The mismatch only surfaces during integration testing when the order processor
passes a date to the shipping calculator. The shipping service interprets “12/01/2024”
as January 12 rather than December 1, potentially calculating shipping times based on
the wrong month entirely. This type of assumption mismatch is particularly common
with Al-generated components because the Al might draw from different examples
or conventions when generating each piece independently. Comprehensive integra-
tion testing that exercises the actual data flow between components becomes essential
for catching these subtle incompatibilities before they cause production failures.

The QA process for Al-assisted projects might require a bit more creativity, since Al
can introduce unusual edge cases. For instance, an AI might output a feature you
didn’t explicitly consider—if so, test that as well. If it added a hidden behavior, either
remove it or properly test it.

Finally, if possible, test your application in an environment similar to production,
with a realistic data load. Sometimes performance issues only appear with larger data
volumes or higher concurrency. Use those test results to pinpoint inefficiencies.

Performance Optimization

While the AI often writes correct code, it may not always write optimal code. LLMs
don’t inherently do performance analysis; they typically reproduce what is common
in their training data. Therefore, be vigilant about potential performance issues, espe-
cially in critical paths or for large-scale use.

You can even chat with the AI for hints about performance optimization:

o What is the complexity of this code? Can it be improved?

o This function is slow—any ideas on how to make it faster?

It might not always be right, but it can sometimes give useful suggestions or at least
confirm your thinking.

That said, dont overoptimize, and don't optimize prematurely or where its not
needed. Sometimes the Al solution is perfectly fine, if the data sizes are small or the

Performance Optimization | 157

operation infrequent. Use your profiling data to focus on real bottlenecks and opti-
mize the parts that really need it. The advantage of vibe coding is that you haven't
spent a ton of time handcrafting code from scratch, so you can afford to let some
noncritical parts be simple and not superoptimized, as long as they don’t impact user
experience or cost. This approach aligns with agile practices: make it work, then
make it fast (if needed).

Here are some areas to cover as you ensure your Al-augmented project runs
efficiently:

Complexity analysis

When the Al generates an algorithm, take a moment to consider its complexity.
Sometimes it will use a brute-force solution where a more efficient algorithm
exists. For example, it might double-sort a list because it didn’t recall a single-step
method, resulting in O(n log n x 2) where O(n log n) could do (the capital O
stands for memory usage). Or it might use nested loops that make an operation
O(n?) when there’s a known O(n) approach. If you spot something like that, ask
for improvements:

Can we optimize this to avoid nested loops? Perhaps use a set for lookups.

The AI often will oblige and give a better solution if you hint at the approach. If
not, you might have to implement that part manually.

To identify slow functions, run a profiler or measure execution time of key code
paths with representative or worst-case data. If something is too slow, you can
attempt to optimize manually or with AT assistance:

Optimize this function, which is currently a bottleneck; try to reduce its complexity.

The AI might restructure the code for performance. Use tests to make sure it still
works.

For critical algorithms, write a small benchmark harness. If AI gives you a piece
of code to, say, compute something, test it against another approach, or at least
measure how it scales with input size. You might decide to rewrite in a more effi-
cient way if needed.

Memory usage, leaks, and retention

Al-generated solutions might use more memory than necessary: reading entire
files into memory instead of streaming, for example, and thus holding large data
structures. If your use case involves big data, check your system’s memory usage
and optimize by streaming or chunking if needed. For instance, if you need to
process millions of records, youd want to refactor your Al-generated function
loadAllRecords() to process them in batches or stream from the database.

158

| Chapter 8: Security, Maintainability, and Reliability

Also check that the Al-generated code is releasing resources. In languages like
Java or C#, maybe it opens a file or DB connection and doesn’t close it. In a front-
end single-page app, maybe event listeners aren’t removed, leading to leaks. Tools
can help (like Chrome dev tools’ Memory Inspector for frontends or Valgrind for
C++ leaks), but often just reading the code helps. Identify these and fix them. If
you see an open file handle not closed, add a close in a finally block.

Concurrency and parallelism

If you're using languages that support threads or async, look for places where the
AT code might be single-threaded when it could be parallel. AI might not auto-
matically use async/await where appropriate, and may not know to offload a
heavy CPU task to a worker thread. Identify such opportunities. For example, for
I/O-bound tasks in Node or Python, ensure asynchronous usage so that the sys-
tem doesn’t block. For CPU-bound tasks, maybe the Al can’t help much in code,
but you might decide to implement in a more performant language or offload to
a background job.

Caching
A common performance optimization that AI doesn’t always automatically add is
to cache results of expensive operations. Look at your code: is it recalculating
something repeatedly? If so, implement caching (either in-memory or using an
external cache like Redis). You can prompt AL

Add caching to this function to avoid redundant calculations.
It may implement a simple memorization or suggest using a caching library.

Database query optimization
If your application uses a database, examine the queries the AI creates. Are they
using indexes properly? Perhaps the Al wrote SELECT * where only a few columns
are needed. Or it’s fetching extensive data to filter in code, creating performance
bottlenecks like the N + 1 query problem. These inefficiencies require optimization
by pushing more work to the database or leveraging proper indexing.

For instance, if the generated code calls findOne repeatedly within a loop, result-
ing in multiple database round trips, you can refactor this into a single batch
query using WHERE id IN (...). Similarly, if the Al omitted index creation in a
migration for frequently queried fields, adding those indexes becomes essential
for maintaining acceptable performance. The AI often generates functionally
correct but suboptimal database interactions that require human expertise to
identify and resolve.

To illustrate, let’s take an example. Suppose Al writes you a function that merges two
sorted arrays by simply concatenating and sorting the result: (O(n log n))—even
though there’s a known linear algorithm it could be using to merge two sorted lists

Performance Optimization | 159

(like merge step or merge sort, O(n)). In code review, you realize this could be a bot-
tleneck for large arrays, so you prompt Al to implement the linear merge:

Optimize the mergeSortedArrays function to perform the merge in linear time without
using built-in sort.

The Al recognizes this as the classic merge algorithm and writes it. The solution
passes your tests, so congratulations: you gained performance without sacrificing
correctness.

Al-assisted development doesn’t remove the need for performance tuning; it just
shifts when you do that tuning. You'll often get a correct solution first (which is
extremely valuable), then turn your attention to measuring and optimizing targeted
parts. When you do need to optimize something, the Al can help, as long as you
guide it on what you need.

Ensuring Maintainability in Al-Accelerated Codebases

A codebase’s maintainability describes how easy it is to modify, extend, and compre-
hend over time. Some worry that Al-generated code could be messy or inconsistent,
especially if multiple suggestions have varying styles or patterns. This section covers
several practices you can use to address these concerns and keep your vibe-coded
project clean and maintainable.

While Prompting
As you prepare your prompts, a few things to keep in mind:

Use consistent coding standards
Use linters and formatters to enforce a consistent style. As mentioned, AI might
sometimes use different naming conventions or formatting in different outputs.
Running a formatter (like Prettier for JS, Black for Python, gofmt for Go, etc.) on
all code after generation ensures it conforms to a unified style. This makes read-
ing code much easier (no cognitive load switching styles). Additionally, define
naming conventions for your project and stick to them. If the AI outputs
get_user_data in one place and fetchUserData in another, decide which con-
vention you prefer (snake_case versus camelCase, etc.) and refactor to one style.

Use architectural patterns to encourage modularity and avoid sprawl
Encourage the Al to write modular code by prompting it to separate concerns.
For example, instead of asking it to write one huge file implementing everything,
break the work into tasks:

o Create a UserService class for user logic.

o Create a separate module for sending emails.

160 | Chapter 8: Security, Maintainability, and Reliability

This leads to a codebase that’s logically divided. It’s easier to maintain when each
module has a clear responsibility. You can guide the architecture:

Put database access code in a separate file or class from the API routing code.

Because its so very easy to add features when using Al, it’s crucial to guard
against feature creep and code sprawl. Without disciplined architectural think-
ing, you risk your codebase devolving into what software architects call a big ball
of mud: an antipattern where code lacks clear structure or boundaries. This risk
intensifies with Al assistance, as the friction traditionally associated with adding
features disappears, potentially accelerating architectural decay.

To combat this, ground your Al-assisted development in proven architectural
patterns and principles. When instructing AI, explicitly reference the patterns
your project follows:

o Add this new feature following the repository/service pattern used in the
project.

« Implement this using the hexagonal architecture established in our domain
layer.

This specificity helps maintain consistency even as features accumulate rapidly.

For developers seeking deeper architectural grounding, several foundational texts
provide essential guidance:

o Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1994) by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (the
“Gang of Four”) remains the definitive catalog of reusable design solutions.

o Fundamentals of Software Architecture: An Engineering Approach by Mark
Richards and Neal Ford offers comprehensive coverage of architectural patterns
and principles across technology stacks.

o Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric
Evans (Addison-Wesley, 2003) provides crucial techniques for aligning software
design with business domains—particularly valuable when AI generates code
that must reflect complex business logic.

These resources equip you to guide AI tools effectively, ensuring generated code
adheres to sound architectural principles rather than contributing to technical debt.
Remember: Al excels at implementing patterns but cannot determine which patterns
are appropriate for your specific context. That architectural judgment remains funda-
mentally human.

Ensuring Maintainability in Al-Accelerated Codebases | 161

https://learning.oreilly.com/library/view/fundamentals-of-software/9781098175504/

Working with Code Output

Once the Al responds with generated code, maintainability techniques to use include
the following:

Refactor continuously

Test

Don't hesitate to refactor Al-generated code when needed. Sometimes the first
pass is correct but not ideally structured: for example, the AI might write a very
long function or duplicate its logic in two places. A common challenge is unin-
tentionally duplicated code: the AI might not realize two functions do similar
things and create both. If you notice similar blocks, refactor to one. Tools like
code linters can detect duplicates (there are linters for too-similar code). Running
those could highlight places to “DRY out” (don't repeat yourself).

To ask the Al to help refactor, you could prompt:
Refactor this code to remove duplication and improve clarity.

It might create helper functions or simplify some logic. Always test after
refactoring.

This chapter has already covered testing, so I'll just note that a good test suite
makes maintenance easier. When you or others modify code in the future (possi-
bly with AI again), your tests will catch if the changes break anything, so you can
refactor or change implementations with peace of mind. Testing decouples “what
it does” from “how it does it,” giving you flexibility to maintain or improve “how”
without altering “what?”

Avoid excessive complexity or overrelying on Al-specific constructs

Sometimes the AI might use a clever trick or less common function that other
developers might not know. While that’s not inherently bad, consider maintaina-
bility: if an average developer would scratch their head at the code, maybe sim-
plify it. For instance, if AI uses a bit of regex magic or list comprehension that’s
too terse, rewrite it in a more explicit loop for clarity (or at least comment it).

Similarly, an Al trying to be helpful might overengineer a solution, like adding
layers that aren’t needed. For instance, maybe a direct approach was fine, but the
AT introduced an abstraction that isn't pulling its weight. Remove it to keep
things straightforward. Simpler code is usually easier to maintain.

Build in resilience and fallbacks

Think about fallback strategies in case of failures. For example, if an Al-coded
component calls an external API and that API is down or returns unexpected
data, do we have a fallback (like using cached data or a default response)? Imple-
menting such resilience patterns (circuit breakers, retries with backoff, etc.) can

162

| Chapter 8: Security, Maintainability, and Reliability

make the system more robust. The AI likely won’t do this on its own unless
asked. Ensure the system can handle partial failures gracefully. One microservice
going down shouldn't take the whole app down, if possible. Use timeouts and
fallback logic.

Follow-Up

Once you're satisfied with the code, a few more practices help to keep it maintainable:

Provide thorough documentation and comments
Make sure the code is properly documented. Al often writes minimal comments
unless prompted. You can request docstrings or comments with prompts:

o Add comments to explain the purpose of each section in this code.
 Write a docstring for this function.

These can save future readers time. The AI can usually generate fairly good
explanations but sometimes misexplains subtle points, so review for accuracy.

Also consider maintaining a high-level documentation (like a README or
design doc) for the project, describing its architecture, main components, and so
on. You can largely write this yourself, but AI can help by summarizing the code-
base if needed.

If you encounter some quirk like “The AI always names this parameter weirdly;’
mention it in your dev notes for others. It’s part of the new collaborative environ-
ment. If it’s just you using the Al-generated code, a few quirks are fine—but if
others join the project, they might wonder, “Why is this thing named like that?”
Perhaps just standardize those names.

There’s also an aspect of maintainability in terms of knowing which pieces of
code were Al-generated and which were human-written. It’s not strictly neces-
sary to label, but some teams might comment, “Generated with the help of
GPT-4 on 2025-05-01" for traceability. Ideally, flag anything you're unsure about
in your PR description: “Used ChatGPT to help with this function; it seems to
work, but please check the error-handling logic carefully”

This isn’t a widespread practice. It can be helpful during code review, but you
might not need it if a human has already reviewed the code and it's now just
code. If you do keep any transcripts or prompts, you could link them in com-
ments for complicated code: “This algorithm derived via GPT-4, based on
prompt X; see docs for derivation” A reviewer doesn’t need to treat it differently
in terms of scrutiny (you should scrutinize all code), but it can help to under-
stand the context. For example, if code has a certain style mismatch or an odd
idiom, knowing it came from AI might clue the reviewer in that this isn’t a delib-
erate authorial choice but an Al artifact.

Ensuring Maintainability in Al-Accelerated Codebases | 163

Code reviews and team norms

If youre working in a team, have all team members review code—even if one
person and Al cowrote it. They might spot awkward patterns or things that break
team norms. Over time, you'll develop a sense of how to prompt the AI to match
your team’s style (maybe including specifics in system prompts or initial guide-
lines). If multiple developers use AI, make sure everyone knows the desired style
patterns so they can prompt accordingly (like “Write this in functional style” or
“Use async/await, not callbacks”). See the next section for some tips on code
review with AT code.

Track technical debt

If, during development, you accept an Al solution that you know isn’t ideal, track
it as technical debt in your comments or the project to-dos: “TODO: The solu-
tion works but is O(n?); if data grows, optimize this,” or “TODO: This uses a
global variable for simplicity; refine this later” The AI can even insert TODO
comments itself if you ask:

If there are any areas that need future improvement, add to-do comments.

Just address those to-dos eventually.

Learn from Al patterns

If AT introduces a design pattern or library you're not familiar with, take time to
learn more about it rather than ignoring it. Understanding a particular caching
approach or a library it uses will help you maintain or modify that part confi-
dently in the future. If it’s too arcane, you might decide to remove it in favor of
something you know—but sometimes Al can pleasantly surprise you with a use-
ful library or pattern you didn’t know. If it’s a well-known solution that you and
the team can learn, this can even improve maintainability.

In practice, maintainability comes down to applying the same good software-
engineering principles as always—just applying them to code that was partially writ-
ten by Al Fortunately, because Al reduces the grunt work, you may have more time
to focus on cleaning up the code and writing docs, which improves maintainability.

Some companies report that after an initial burst of generating code with AI, they
invest time in a “hardening sprint” to refactor and document it all. Consider alternat-
ing between generation-heavy sprints and cleanup sprints as a potential strategy.

164

| Chapter 8: Security, Maintainability, and Reliability

https://oreil.ly/2lrTW

Code Review Strategies

As discussed in Chapter 4, code review is a critical process in traditional development
and remains so in Al-assisted development. This section discusses some nuances to
consider when a chunk of the code under review is machine-suggested. Because Al
can produce code so quickly, it’s reasonable to worry that code review will become a
bottleneck—but don’t let that worry hamper the review process. It’s crucial to allocate
proper time for reviews. Don’t skimp on the assumption that “we wrote it fast, let’s
merge fast” If anything, commit smaller changes more frequently to make reviews
easier (generally a good practice anyway). Frequent, smaller pull requests (PRs) are
easier to review thoroughly than one giant PR. The AI can help break tasks into
smaller PRs as well, if you plan accordingly.

Don’t assume code is correct just because “the AI wrote it and the tests pass” Think
critically and try to reason through the logic. If possible, test it mentally or with addi-
tional cases outside the provided tests, because tests might not cover everything. You
can also run the code and even experiment by running a snippet with a tricky input
to see if it behaves.

Code reviews can also be important learning moments. If the Al introduces a novel
solution that is actually good, the reviewer might learn something new while verify-
ing its correctness. Similarly, if the Al/human combination does something subopti-
mal, the reviewer can explain a better approach. Over time, this feedback loop can
improve how the team uses Al (like helping everyone understand which things to
avoid or ask differently). In a sense, code review helps to close the human learning
loop, since the human author should learn and understand anything the AI wrote
that is new to them.

When you review code, your first priority should be making sure it meets the require-
ments and intended design. Does this code do what the feature/bugfix is supposed to?
Does it cover any edge cases mentioned in the specifications? If the prompt is off, Al
might solve a slightly different problem: maybe it handles a case that wasn’t needed or
misses a case. This is normal, but watch that the developer didn't just accept Al out-
put that only partially addresses the issue. For example, an AI might produce code to
format a date but assume a certain time zone, which might or might not align with
requirements.

If something in the code isn't obvious, ask the author to explain how it works or why
it's done that way. If they struggle to explain or reach for “the AI did it and I assume
it’s right,” that’s a red flag. The team should understand everything in the codebase.
Encourage the author to double-check with the AI or documentation and provide a
proper explanation, possibly as a comment in code.

Code Review Strategies | 165

Pay attention to the security and performance vulnerabilities discussed earlier in this
chapter, too, and if any known best practice is violated, call it out—like if output isn’t
escaped (in web dev) or if you find credentials in the code.

Request changes or refactoring if you see code that works but could be simpler or
more in line with team style:

The AI created 3 separate functions for different user roles that mostly duplicate each
other. Can we merge these into one function with a parameter for role?

The code’s author can then do so (maybe with AT’s help). If the Al suggestion didn't
use the team’s consistent style or standard libraries, mention that too:

We usually use the requests library for HTTP calls, but this code is using http.client.
Let’s stick to requests for consistency.

The author can then prompt the Al to rewrite using the preferred library.

If the AT has written something really complex, like a tricky algorithm, consider dis-
cussing it with another reviewer or the team for a deeper review.

You may want to try some of the emerging tools that use AI to assist in code review—
like GitHub’s Copilot for Pull Requests, which can generate summaries and flag
potential bugs and other issues. Such a tool might highlight something like “This
code snippet is similar to one in module X with slight differences” (pointing out pos-
sible duplication). These hints can complement the human review but should not
replace it.

Finally, be respectful and constructive in your reviewing, even when the code has
flaws due to Al Avoid blaming the developer for what could be an AI artifact: while
they are still responsible for their code, recognize the context. Al is a tool, and both
author and reviewer are working with it. The goal is to improve the code and share
knowledge, not point fingers. For example: “This part seems to have a security
issue—likely an oversight from the AT suggestion; let’s fix it”

Ultimately, code review in vibe coding is how we fully exercise the human intelligence
side of the human/AI partnership. It's where oversight and expertise come in to catch
what the AI might miss and to keep the quality bar high. It’s also a knowledge-sharing
moment for the team, since discussing code in reviews spreads understanding of both
the domain and how to best use AL

Code review also formalizes the concept of “developers as editors” introduced by
Grant Gross in CIO: the reviewer is an editor, making sure the code is polished and fit
for production. This aligns perfectly with vibe coding as a concept, where the vibes
(AT suggestions) are there but human judgment refines them.

166 | Chapter 8: Security, Maintainability, and Reliability

https://oreil.ly/INPFV
https://oreil.ly/INPFV

Best Practices for Reliable Deployment

Once you know your code is secure, tested, and maintainable, you need to deploy it
and keep it running reliably in production.

While Al-assisted development doesn't alter the core principles of software deploy-
ment, it does introduce considerations around deployment velocity and operational
complexity. For those seeking comprehensive coverage of deployment fundamentals,
The DevOps Handbook (IT Revolution Press, 2016), by Gene Kim, Jez Humble, Pat-
rick Debois, John Willis, and Nicole Forsgren, provides the definitive guide, covering
everything from continuous integration and deployment pipelines to monitoring,
security, and organizational transformation. This foundational knowledge becomes
even more critical when AT accelerates your ability to generate deployable code, as the
principles ensure your deployment practices can scale with your increased develop-
ment velocity.

Before and During Deployment

As you ramp up to deployment, consider the following best practices:

Automate your CI/CD pipeline

Given the fast pace of Al development, a robust continuous integration/continu-
ous deployment (CI/CD) pipeline is valuable. Every commit (with or without AI-
generated code) should be built, tested, and potentially deployed through an
automated pipeline. This reduces human error and confirms that all deployment
steps (tests, lint, security scans) are consistently run. If AI code introduces some-
thing that breaks the build or fails the tests, the CI will catch it immediately. Also,
an automated CI/CD pipeline allows for quick iteration, so you can patch any Al-
introduced issues and deploy fixes rapidly.

Infrastructure as code

Use infrastructure as code (Terraform, CloudFormation, etc.) to define your
deployment environment. While not directly related to AI coding, it’s part of reli-
able deployments. You could even use Al to help write Terraform scripts, but
treat those with the same caution and testing as other AI code, including perhaps
testing them in a sandbox before applying them to production. A valuable start-
ing point is the book Terraform: Up & Running (O'Reilly, 2022), by Yevgeniy
Brikman, which provides a comprehensive introduction to the principles and
practices of IaC with Terraform.

Use staged rollouts—and have a rollback plan
Use staged rollout strategies like deploying to a staging environment or a canary
release before full production rollout. This way, you can catch anything you've
overlooked before it affects all users. For example, you might deploy a new

Best Practices for Reliable Deployment | 167

https://learning.oreilly.com/library/view/terraform-up-and/9781098116736/

Al-coded feature to 5% of users and monitor (with metrics and logs) for any
errors or performance issues. If all is good, roll it out to 100% of users.

Always have a rollback plan. Despite all tests and reviews, sometimes things slip
through. If a new release goes wrong, be ready to revert to the last stable version.
If youre using a containerization strategy like Kubernetes, maintain previous
deployments for quick switchback. If it’s a serverless function, keep the previous
version alive until youre confident in the new one.

Set up observability

Set up comprehensive monitoring in production, of both system metrics and
application logs:

« Use tools like Sentry to track errors and capture exceptions. If the Al code
throws an unexpected error in production (perhaps an edge case wasn’t cov-
ered), you'll get an alert so you can fix it.

« Use performance-monitoring tools like application performance monitoring
(APM) to track response times, throughput, and memory usage. This will
show you if any code in the new deployment has introduced a slowdown or
memory leak.

o Monitor availability: for instance, ping the service endpoints to confirm
theyre up. If something crashes (maybe due to some untested scenario), an
alert should fire, so you can react quickly.

Stay vigilant about security

Make sure that secrets like API keys are handled properly in deployment. For
example, if your Al wrote code that expects a secret in an environment variable,
set up that secret in the CI/CD or cloud config, so it’s not accidentally logged or
exposed. Use secret management tools like HashiCorp Vault (HashiCorp Vault
offers secrets management, key management, and more with many integrations)
or AWS Secrets Manager (AWS Secrets Manager allows you to securely store and
rotate secrets like database credentials, API keys, and tokens, and can integrate
with CI/CD tools like GitHub). Also, if youre using container images, scan them
for vulnerabilities.

Test using techniques like blue-green deployments or shadow testing

For major changes, consider a blue-green deploy. This involves setting up two
identical production environments: “blue” (the current live version) and “green”
(the new version). Traffic is initially directed to the blue environment. Once the
green environment is ready and tested, traffic is switched over to it. If any issues
arise with the green environment, traffic can be quickly rerouted back to the blue
environment, minimizing downtime and risk. This method tests the new version
in a full production setting before making it the sole live version.

168

| Chapter 8: Security, Maintainability, and Reliability

https://oreil.ly/NqQ-T
https://oreil.ly/LlYX-

Alternatively, if a specific AI-coded algorithm change is risky or you want to vali-
date its behavior with real-world data without impacting users, you could shadow
test it. This involves deploying the new version alongside the current live version.
Real production inputs are fed to both versions in parallel. However, only the
current version’s outputs are shown to users. The outputs from the new (shadow)
version are collected and compared against the current version’s results to evalu-
ate its performance, accuracy, and stability. If the shadow version’s results are sat-
isfactory and performance is good, you can then confidently switch it to be the
active version.

Ongoing Best Practices
After deployment, these strategies can help keep everything running reliably:

Create operational runbooks

Provide runbooks for the ops team that describe any special aspects of the Al-
generated parts of the code: “This service uses an Al model for X; if the model
output seems erroneous, try restarting service or check the model’s version” Or
“Feature Y heavily uses caching to perform well; if performance issues arise,
check the cache hit rate” Essentially, document any operational considerations
that might not be obvious. If Al has introduced a dependency (like using a temp
file), note that, so ops will know to monitor disk space and the like.

Test in production
In addition to testing during development and as part of the rollout, some com-
panies do testing in production (TiP) in safe ways, like running continuous small
experiments. For instance, you might use feature flags to turn on an Al-generated
feature for a small subset of users and see if any error rates change. This overlaps
with canary releases, but you can make it more granular using feature toggles.

Audit regularly
Schedule periodic security and performance audits of the codebase, especially as
more Al contributions accumulate. This is similar to managing tech debt: it helps
you catch things that were fine at first but that could turn problematic as the scale
or context changes. Watch for “drift,” too—if Al code is generating SQL queries,
make sure that your migrations and code stay in sync and that the deployment
runs migrations properly before new code takes traffic.

Keep humans in the loop
The theme continues—humans should monitor the automations. AI might help
you write code, but it won't fix a production incident at 2 a.m. Have someone on
call who understands the system. Over time, you might enlist Al for trouble-
shooting help like analyzing logs (a feature of some emerging tools), but at the
end of the day, a human should make decisions about fixes.

Best Practices for Reliable Deployment | 169

Learn from failures
No process is 100% perfect. If an error gets through your defenses and causes an
incident, do a postmortem. Identify if the problem was related to AI usage (like
“We trusted the AI code here and it failed under scenario X”), and update your
processes and tests to prevent that class of issue. Doing this kind of analysis every
time continuously improves reliability.

Reliability isn’t just about code, of course; it also involves the infrastructure and oper-
ations around the code. Al helps mostly on the code side. Robust operational practi-
ces (which can be partially assisted by AI) keep the overall system reliable.

In essence, treat an Al-heavy project the same as any high-quality software project
when it comes to deployment: employ thorough testing, roll out gradually, monitor
heavily, and make sure you can roll back quickly. Because Al can create changes
faster, you may end up deploying more frequently (which is fine, if your CI/CD pipe-
line is good). Frequent small deployments are actually known to reduce risk com-
pared to infrequent big ones. The reason is that each individual change is smaller,
making it easier to identify and fix any issues that arise. If a problem occurs, rolling
back a small change is also simpler and faster. This approach contrasts with large,
infrequent releases where numerous changes are bundled together, making it difticult
to pinpoint the cause of any problems and increasing the potential impact of a failed
deployment.

By following these best practices, you can be confident that even though a lot of its
code was machine-generated, your system as a whole will behave reliably for users.
The combination of automated testing, careful deployment, and monitoring closes
the loop to catch anything that slipped through earlier stages. As a result, you can
reap the speed and productivity benefits of AI development without sacrificing your
ability to trust your software in production.

Summary and Next Steps

In summary, vibe coding does not remove the need for engineering rigor—it ampli-
fies the productivity of the engineers who apply that rigor. Your mantra should be the
old Russian proverb: Trust but verify. Trust the AI to handle the grunt work, but ver-
ify everything with your tools and expertise.

Security and reliability are one dimension of responsible development; ethics is
another. Al-assisted coding raises important questions about intellectual property,
bias, the impact on developer jobs, and more. Chapter 9 will delve into those broader
implications. How can you use Al coding tools responsibly and fairly? How do you
deal with licensing of Al-generated code and ensure your models and prompts are
used ethically?

170 | Chapter 8: Security, Maintainability, and Reliability

https://oreil.ly/ATjYo
https://oreil.ly/Y5uDn

CHAPTER9
The Ethical Implications of Vibe Coding

As Al-assisted development becomes increasingly commonplace, it’s critical to
address the ethical and societal implications of this new paradigm. This chapter steps
back from the technical details to examine vibe coding through an ethical lens: these
new development methods can be effective, but they also need to be implemented
responsibly and to benefit individuals and society at large.

I begin with questions of intellectual property (IP). Who owns the code that AI gen-
erates, and is it permissible to use AI outputs that may be derived from open source
code without attribution? From there, I consider bias and fairness. Transparency is
another focus: should developers disclose which parts of a codebase were AI-
generated, and how can teams ensure accountability for code quality and bugs?

I outline responsible development practices in Al usage, from establishing transpar-
ency and accountability to avoiding sensitive data in prompts to ensuring accessibility
and inclusivity. The chapter finishes with a set of guidelines for using Al tools
responsibly.

Legal Disclaimer

The following section touches on complex legal topics, particularly
concerning copyright and intellectual property law, from a primar-

" ily US perspective. Legal systems and interpretations are evolving
worldwide, especially concerning artificial intelligence. This infor-
mation is for educational purposes only and does not constitute
legal advice. You should consult with a qualified intellectual prop-
erty lawyer before making any decisions based on this information,
especially if you have concerns about the ownership or licensing of
code you or an Al tool generates.

7

Intellectual Property Considerations

Who owns Al-generated code? And does using it respect the licenses and copyrights
of the source material on which the AI was trained? AI models like GPT have been
trained on huge swaths of code from the internet, including open source repositories
with various licenses (MIT, GPL, Apache, etc.). If the Al generates a snippet that is
very similar (or identical) to something from a GPL-licensed project, using that snip-
pet in a proprietary codebase could inadvertently violate the GPL, which generally
requires sharing derivative code.

According to open source norms and general copyright principles, small snippets of a
few lines might not be copyrightable if they lack sufficient originality to be considered
an independent creative work, or their use could potentially be considered de minimis
(too trivial to warrant legal concern). However, anything substantial or expressing a
unique creative choice is more likely to be protected by copyright. It’s crucial to
understand that “open source” does not mean “public domain.” By default, creative
work, including code, is under exclusive copyright by its author. Open source licenses
explicitly grant permissions that would otherwise be restricted by copyright law.

If you want to know more about open source norms, good places to start include the
following:

The Open Source Initiative
The OSI defines and promotes open source software, maintains the Open Source
Definition, and approves licenses that meet its criteria.

The Free Software Foundation (FSF)
The FSF advocates for “free software” (which has a strong overlap with open
source principles) and is the steward of licenses like the GNU General Public
License (GPL).

Project-specific documentation
Individual open source projects typically include LICENSE files, README files,
and CONTRIBUTING guidelines that detail the terms of use and contribution for
that specific project.

Community and legal resources
Websites like GitHub offer extensive documentation and discussions on open
source practices. Organizations like the Linux Foundation and legal information
sites also provide valuable resources on open source compliance and legal
aspects.

The question of whether using small code snippets overlaps with the fair use doctrine
(in the US; “fair dealing” in many other jurisdictions) is complex and highly fact-
dependent. Fair use permits limited use of copyrighted material without permission

172 | Chapter 9: The Ethical Implications of Vibe Coding

https://oreil.ly/I3HxT
https://oreil.ly/8inJc
https://oreil.ly/hmJVN
https://fsf.org
https://oreil.ly/d0ZK8
https://oreil.ly/EwrJ2

for purposes such as criticism, comment, news reporting, teaching, scholarship, or
research. US courts typically consider four factors to determine fair use:

o The purpose and character of the use (commercial versus nonprofit, transforma-
tive versus duplicative)

o The nature of the copyrighted work (highly creative versus factual)

o The amount and substantiality of the portion used in relation to the copyrighted
work as a whole

o The effect of the use upon the potential market for or value of the copyrighted
work

While some might argue that copying very small, functional code snippets for inter-
operability or to access uncopyrightable ideas could fall under fair use, especially if
the use is transformative, this is not a clearly settled area of law for code, and there’s
no universally agreed-upon number of lines that is definitively “fair use” or de mini-
mis. The safest course is often to get permission or to understand the underlying idea
and rewrite the code in your own way. The U.S. Supreme Court case Google LLC v.
Oracle America, Inc. addressed fair use in the context of software APIs, finding Goo-
gle’s reimplementation of Java API declaring code to be fair use, but this was a specific
and complex ruling focused on API declarations, not all code. It’s generally under-
stood that copyright protects the specific expression of an idea, not the idea, proce-
dure, or method of operation itself.

Typically, the developer using the Al is considered the “author” in the sense that the
Al is a tool, similar to a compiler or a word processor. Thus, if code is generated in a
work context, the developer’s company would likely own the code produced by the
developer using the tool, subject to the AI tool’s terms of service and underlying IP
issues. However, the terms of service (ToS) of Al tools are critical. Most ToS grant the
user rights to the output they generate. OpenATl’s ToS, for instance, states, “You own
the outputs you create with GPT-4, including code”

This “ownership,” however, needs careful consideration. It generally means that the
Al provider isn’t claiming ownership of what you create with their tool. But this
assumes you have the rights to the inputs you provide, and it doesn’t automatically
mean the output is itself eligible for copyright protection or that it’s free from third-
party intellectual property claims. If you input your own original code to the tool for
modification or extension, the output is most likely yours (or your employer’s), again,
subject to how the AI processes it and what it incorporates from its training data. But
if you input someone else’s copyrighted code to fix or transform, the output might be
considered a derivative work of that third-party code.

In the US and many other jurisdictions, whether Al-generated output that is substan-
tially similar to training data, or output based on copyrighted input, constitutes a

Intellectual Property Considerations | 173

https://oreil.ly/1TE5B
https://oreil.ly/mBPyq

derivative work is a subject of ongoing legal debate and lacks full clarity. Don’t feed
large chunks of copyrighted code that isn’t yours (or licensed appropriately) into an
AT tool, because the output could be deemed a derivative work and thus fall under the
license of that original copyrighted code.

Given these uncertainties, to be safe, treat Al-generated code as if it’s under an ambig-
uous license, and only use it if you are comfortable that it doesn’t infringe on existing
copyrights and that you can comply with any potential open source license obliga-
tions. Regarding the copyright status of the AI output itself, the US Copyright Office
has stated that works generated solely by AI without sufficient human authorship are
not copyrightable. If a human significantly modifies or arranges Al-generated mate-
rial in a creative way, that human contribution might be copyrightable but not the AI-
generated elements standing alone. Thus, it's often wise to assume that purely Al-
generated outputs might not be copyrightable by anyone or that copyright would
extend only to the human’s creative contributions.

This is not a hypothetical worry. In fact, there’s ongoing legal debate. A prominent
class-action lawsuit, Doe v. GitHub, Inc., was filed against GitHub, Microsoft, and
OpenAl, claiming that GitHub Copilot produces code that is too similar to licensed
open source code without proper attribution or adherence to license terms. While
some claims in this case have been dismissed or are under appeal (as of mid-2025, the
case involves ongoing proceedings, including an appeal to the Ninth Circuit regard-
ing DMCA claims and remaining breach of contract claims), it highlights a genuine
concern: Al can and sometimes does regurgitate or closely paraphrase copyrighted
code from its training data.

An older (but still relevant and later substantiated) study by GitHub itself noted that,
in some cases, Copilots output included suggestions that matched training data,
including rare instances of longer verbatim snippets. While most Al tools are
designed to avoid direct, extensive copying of identifiable code unless specifically
prompted or dealing with very standard algorithms, the risk exists. Furthermore, it’s
not just open source code thats a concern; numerous lawsuits have been filed by
authors, artists, and media companies alleging that their fully copyrighted, privately
owned intellectual property was used without permission or compensation to train
large language models and other generative Al systems. The challenge with propriet-
ary code is that, unlike open source, it’s often not publicly visible, making it harder
for an end user to confirm if an AI's output is inadvertently similar to such private
code.

Nevertheless, the ethical and prudent practice is to act as if any code you accept from
an Al tool is your responsibility. Thoroughly review, test, and understand any Al-

1 Case information can often be found on court dockets, like those for the US District Court for the Northern
District of California and the Ninth Circuit Court of Appeals, or through legal news outlets and case trackers.

174 | Chapter 9: The Ethical Implications of Vibe Coding

https://oreil.ly/BdDiV
https://oreil.ly/AZrc-
https://oreil.ly/O4ktq
https://oreil.ly/Y0PYG
https://oreil.ly/Y0PYG
https://oreil.ly/NV3Gl
https://githubcopilotlitigation.com
https://githubcopilotlitigation.com
https://oreil.ly/fFUUd

generated code before incorporating it into your projects, and ensure its use complies
with all applicable licenses and copyright laws.

What to Do If You Get Suspicious Qutput

If an Al output seems like a verbatim or near-verbatim copy of known code (espe-
cially if it includes distinctive comments or author names), treat it carefully. Consider
running a similarity check using a plagiarism detector tool, or do a web search for
unique strings to see if you find any matches that could indicate copying.

Another principle to follow is When in doubt, leave it out. Either avoid using the out-
put or make sure it’s under a compatible license and give attribution if required. For
example, if Copilot spits out a well-known algorithm implementation that you recog-
nize from Stack Overflow or an open source project, cite the source or rewrite it in
your own way, using the AI's answer as a guide but not quoting it verbatim.

If you suspect the output matches an existing library solution, consider including the
library itself instead (with proper license). You can also prompt the AI:

Please provide an original implementation rather than one copied from a library.

It might then synthesize a more unique solution. (There’s no guarantee it won't be
influenced by its training code, but at least it will try to not copy outright).

The ethics here also touch on not using AT to willfully strip attribution. For example,
it would be unethical to copy code from Stack Overflow via AI without attribution to
circumvent a policy that you should credit the answer. That erodes trust in the open
knowledge ecosystem. It’s better to incorporate the material with proper credit.
Depending on the circumstances, that might mean the following:

o If an Al writes a code comment from some source that has an author’s name (like
copying a snippet with “John Doe 2018” in a comment), you should keep that or
move it to a proper attribution section with a full citation rather than deleting it.
That respects the original author’s credit.

o If an AT provided a solution that you know comes from a known algorithm or
code snippet, cite that source as you normally would if you had looked it up
yourself.

o If an AT tool creates something arguably creative (like a unique approach or text
for documentation), acknowledge its contribution. Though it doesn’t have rights,
it’s about transparency (and maybe a nod to the tech).

Intellectual Property Considerations | 175

Some open source licenses (like MIT) are permissive enough that including copied
code with attribution would satisfy the license. Others, like GPL or AGPL, would
“infect” your whole codebase if you include that code, which is undesirable for closed
projects.

In short: if you suspect the AI has given you something that might cause IP issues,
either avoid using it or transform it sufficiently to ensure youre complying with any
possible license.

Gray Areas

Even as I write this, AI tools continue to raise new questions about IP, copyright, and
ethics. For instance:

« If your vibe coding includes using AI to generate noncode assets like documenta-
tion text, config files, or images, similar IP questions arise. For instance, if you
generate an icon image via an Al tool that was trained on copyrighted images,
who owns that new image?

o If an AI writes a significant part of a software product, should the original
authors of the code on which the AT was trained get credit?

« Could someone claim that your AI-generated code infringes on their copyright
because it looks similar to theirs? If sections of nontrivial lengths are possibly
identical, this is where similarity checking comes in.

There’s an emerging notion that AI companies might need to implement license-
respecting filters or allow teams to opt out of their code being included in Al training
data. It’s evolving, but developers on the ground should act conservatively to not vio-
late rights.

It will take time for courts to settle all of the legal issues, but in the meantime, intel-
lectual honesty and respect should guide us. If AI uses a known algorithm from a
published paper, cite the paper in a comment. If it uses a common open source helper
code, credit the project. It’s about respect for authorship. If you recognize where
something came from, err on the side of giving credit. It’s a good practice that fosters
transparency.

Remember that under the hood, the AT’s knowledge comes from thousands of devel-
opers who shared their code publicly. Ethically, the software industry owes that com-
munity the respect of upholding open source licenses and norms. Give credit where
it's due and don’t abuse others’ work under the guise of “the AI wrote it, not me”

176 | Chapter 9: The Ethical Implications of Vibe Coding

Transparency and Attribution

Transparency refers to being open about the use of Al in your development process
and outputs, and attribution refers to giving proper credit when Al-derived code
comes from identifiable sources.

Transparency is important for the sake of accountability. For example, if Al-generated
code introduces a bug or security flaw, being transparent that “this code was Al-
suggested” might help you analyze the root cause—perhaps an ambiguous prompt
should be rewritten. In code comments or a projects README or documentation,
you might mention generally that “this project was built with assistance from Al tools
like ChatGPT. Or get more specific: “Added a function to parse CSV (generated with
ChatGPT'’s help, then modified).” It’s a bit like acknowledging your use of frameworks
or libraries.

Transparency is also key to trust: stakeholders (your team, clients, end users, or
industry regulators) might want to know how your software was developed and vali-
dated. If an Al was involved in code generation, some stakeholders might wrongly
trust it too much or too little. Transparency allows a conversation about reliability:
“Yes, we used Al but we tested it thoroughly” or “This part was tricky—we had Al
generate the initial code, but we've since verified it”

Attributions are also expected or required in many academic venues. Some open
source projects restrict or even forbid Al contributions due to IP concerns, so check
the contributor guidelines before using Al. Being transparent with maintainers if a
patch was Al-generated helps them evaluate it, especially if licensing is a worry.

In fact, some highly regulated industries require software vendors to disclose any Al
use for auditing purposes. The EU’s Al Act mandates transparency for automated
decision making that affects individuals (such as credit-scoring algorithms). If vibe
coding leads to such systems, it becomes a legal/ethical necessity to inform users that
“recommendations are generated automatically and may reflect patterns in data”

Similarly, if your product feeds user data or proprietary data like user-provided code
examples into an Al model to fine-tune it and help program its analysis, you might
need to say in the privacy policy that user data may be used with permission to
improve Al models (as always, do consult a lawyer for legal matters). Transparency
intersects with privacy here.

It’s also just generally ethical to acknowledge the tools and sources you use. If 30% of
your code was generated by Copilot, it’s fair to mention that in your documentation
or internal communication—not to diminish your own role but to be honest about
the process.

Transparency and Attribution | 177

https://oreil.ly/wDNKs

Some developers might fear admitting that AI helped, worried that it could under-
mine their perceived contribution or skill or be seen as “cheating” As vibe coding
becomes more normalized, this stigma should decrease; eventually, you might be seen
as behind the times if you're not using the Al available to you. We need to normalize
AT as a tool—it’s no more “cheating” than using Stack Overflow or an IDE.

On the flip side, providing too many disclaimers could cause undue worry. If you tell
a client, “We used Al to code this product,” they might question its safety (even if
that’s due to misconceptions). It’s important how you phrase it. Emphasize quality
measures in the same breath: “We utilized advanced coding assistants to speed up
development, and all Al-generated code was rigorously reviewed and tested to meet
our quality standards”

In sum, transparency and attribution foster trust and community values. They ensure
that credit flows to human creators and that we remain honest about how our soft-
ware is built. It’s akin to an artist listing their tools or inspirations; it doesn’t diminish
the art; it contextualizes it. If, like me, you want vibe coding to be accepted widely,
being open about using AI and how you mitigate its risks is important.

Bias and Fairness

As you know well by this point in the book, AI models’ output reflects the data they’re
trained on. If that data contains biases or exclusionary patterns, the models can pro-
duce outputs that are biased or unfair.

You might ask: “How can code be biased? It’s not like an LLM is making hiring deci-
sions or something.” But bias can creep into your coding in subtle ways:

» Code often reflects assumptions on its creators’ part. User-facing text or content
the Al generates might reflect cultural biases or insensitive language present in its
training data. For instance, Microsoft’s Tay, an early chatbot in 2016, infamously
learned to parrot racist and misogynistic slurs from Twitter interactions within
hours of launch.

 Assumptions can also be geared toward specific cultural norms, like a middle-
class North American lifestyle (such as assuming car ownership or universal
access to certain technologies). A notable example of unexamined assumptions
leading to exclusionary products was the initial 2014 release of Apple’s Health
app, which lacked a period tracker—a significant oversight likely stemming from
a lack of diversity and perspective on the design team. Even in example code,
comments, or synthetic data, the model might always use he/him pronouns, rein-
forcing gender bias.

o It is well known that code repositories and the broader software development
landscape predominantly reflect Western perspectives and English speakers. As a

178 | Chapter 9: The Ethical Implications of Vibe Coding

https://oreil.ly/d8wxO
https://oreil.ly/67sZG
https://oreil.ly/67sZG

result, an Al trained on these repositories might overlook crucial internationali-
zation aspects, such as proper support for Unicode and multibyte characters
(essential for languages like Chinese, Japanese, Korean, Arabic, Hindi, and many
others using non-Latin or syllabary scripts), or it might default to English-centric
examples for things like type names. Developers must bring awareness and
design and code for internationalization, even if the AI doesn't spontaneously
do so.

« If writing algorithms, be wary of certain variables like race, gender, age, etc. The
AT might not spontaneously include them unless asked, but if it hallucinates
some criteria or if you're using an Al like Code Assistant on a dataset, apply fair-
ness constraints; the AI won't inherently know the moral or legal context.

Beyond just coding, models can mirror data bias in their content domain: the histori-
cal biases present in their training data. For example, consider an Al tasked with writ-
ing code for a credit-scoring algorithm for loan approvals. In the United States, credit
scoring systems have a documented history of reflecting and perpetuating racial bia-
ses. These biases stem from historical practices like redlining and other forms of sys-
temic discrimination that have had lasting financial repercussions, particularly for
Black communities and other marginalized groups. (See Richard Rothstein’s The
Color of Law [Economic Policy Institute, 2017] for a comprehensive history of how
government policies segregated America.)

If the training data reflects these historical biases, the AI might incorporate discrimi-
natory variables, such as using zip codes (which can be a proxy for racial demograph-
ics due to segregated housing patterns) or other seemingly neutral data points that
correlate with protected characteristics. If not properly guided, the AT might produce
code that leads banks to make unfair lending decisions, thus perpetuating historical
inequalities and affecting real people’s lives. Similar issues arise in areas like predic-
tive policing algorithms, where historical arrest data (itself potentially biased) can
lead to Al systems that disproportionately target certain communities.

Similarly, if you're using specialized models (like an AI code assistant fine-tuned for,
say, medical software), ensure the model isn’'t locked into biases from that domain’s
data. For example, historically, some medical guidelines were biased by research stud-
ies that predominantly used male subjects, leading to misdiagnoses or less effective
treatments for other genders. If Al is recommending code or solutions for medical
diagnostics, you need to double-check that it doesn't inadvertently encode those
biases.

There are tools emerging to detect bias in AI outputs, though these are more com-
mon in GPT models used to generate content, and Al providers themselves attempt
to filter overtly biased or toxic outputs. Code-oriented Als rarely produce hate speech
spontaneously, but it’s good that they have content filters for it. Building in ethical
constraints means, in many Al tools, that if a user tries to get the Al to create mal-

Biasand Fairness | 179

https://oreil.ly/H4rmr

ware or discriminatory algorithms, it will refuse. Don’t try to break those filters to get
unethical outputs.

There are lots of other ways to recognize and mitigate bias at different stages of the
development process, though. These include:

Testing with diverse examples
If your Al generates user-facing components or logic that deals with human-
related data, test it with diverse inputs. For example, if an AI-generated form vali-
dation expects “First Name” and “Last Name,” does it allow single names, which
are common in some cultures? If not, that’s a bias in assumption. If it generates
sample usernames, are they all like “JohnDoe”? If so, consider incorporating
more diversity in the examples.

Prompting for inclusivity
You can explicitly instruct the Al to be neutral or inclusive: “Generate examples
using a variety of names from different cultures” If it always refers to the user as
“he;” you might prompt:

Avoid gendered language in this code comment; use neutral phrasing or they/
them pronouns.

Also, be cautious about jokes or examples the AI might produce that could be
culturally insensitive; you can prompt it to use a professional tone to avoid that.
The AI will usually comply. It doesn’t have an agenda; it just outputs what seems
normal to it, unless told otherwise. We shape that “normal”

Hiring diverse teams
Having a diverse team review outputs can catch issues. For example, someone
might say, “Hey, our AI always picks variable names like foo/bar, which is fine,
but in documentation, all of its personas are male-typed.” Then you can correct
that systematically. If all developers are from similar backgrounds, they might not
catch a subtle bias. If possible, involve people from underrepresented groups—or
at least consider their perspectives—when reviewing Al usage guidelines.

In summary, bias and fairness are about using vibe-coding tools to produce code that
is fair to users of all backgrounds and that doesn’t reflect—or, worse, perpetuate—his-
torical discrimination. The way we use these tools in teams should also be fair to
developers and other colleagues of varying levels and backgrounds. See Chapter 4 for
a discussion of the ethical implications of how Al tools are changing workplaces,
especially for junior developers.

180 | Chapter9: The Ethical Implications of Vibe Coding

Golden Rules for Responsible Al Use

Bringing together a lot of what we've covered, it's worth articulating a set of responsi-
ble practices for vibe coding:

1. Always keep a human in the loop.

Again: never let the Al work unsupervised. Responsible Al-assisted dev means
you, the developer, are reviewing every line and making decisions, not deploying
raw Al output without human validation.

2. Take responsibility for your code.

If something goes wrong, it's not the AIs fault—it’s the development team’s
responsibility. Keeping that mindset avoids complacency. Be prepared to justify
your code, whether you wrote it from scratch or accepted AI code. If someone
asks you, “Why does the code do this?” don’t say, “I don’t know; Copilot did that”
That’s why one of Chapter 3’s golden rules is “Never commit code you don't fully
understand.” That’s responsible engineering.

3. Protect users’ privacy and ask for their consent.

Ethically, you owe it to users and your company to keep their secret data secret.
When using Al tools, especially cloud-based ones, be careful not to expose sensi-
tive data in your prompts or conversations. For instance, if youre debugging an
issue with a user database, don’t feed actual user records to ChatGPT. Use sani-
tized or synthetic data instead.

Many tools now allow users (or at least business users) to opt out of having their
input data used for training. If youre an enterprise user, use those settings or use
on-prem solutions for sensitive code. If you do feed any user data to a model, or
if any AI functionality directly touches users (like a chatbot in your app that uses
an LLM), get users’ consent and allow them to opt out if appropriate. A warning
like “This feature uses an Al service; your input will be sent to it for processing”
is transparent and lets privacy-conscious users decide for themselves.

4. Comply with laws and regulations.

Keep an eye on legal requirements around Al, which are constantly evolving. For
instance, data protection laws like the EU’s General Data Protection Regulation
(GDPR) and AI Act consider some Al outputs as personal data if they include
any personal data. Training a model on users’ data might require those users’
consent. Regulatory bodies may classify code generation as “general AI” and
impose transparency or risk management obligations. Stay informed and work
closely with your legal and compliance professionals to avoid breaking any
regulations.

Golden Rules for Responsible AlUse | 181

While this should go without saying, do not use Al to generate malware, exploit
code without ethical justification, or automate unethical or illegal practices.
While an AI could probably write a very effective phishing email or code injec-
tion attack, using it for that purpose violates ethics, the laws of most countries,
and likely the AT’s terms of service. Focus on constructive use.

. Foster a responsible Al culture in your organization.

If your team adopts vibe coding, encourage discussions about ethics and provide
relevant ethics training. Consider having developers and code reviewers use a
brief checklist like the one in Figure 9-1.

Al —
Responsible Al
checklist

MIP check
@Bias review
MSecurity audit

Before merging Al-generated code

Figure 9-1. Responsible AI development checklist: essential validation steps includ-
ing intellectual property review, bias assessment, and security audits before integrat-
ing Al-generated code into production systems.

Everyone should feel responsible for ethical Al use; it’s a collective effort, not just
the burden of the individual using the tool at any given moment. To formalize
this, consider designating an “ethics champion” or a small ethics committee
within your team or organization. This individual or group wouldn’t be the sole
owner of ethics (as that responsibility remains shared), but they would take the
lead on:

o Staying abreast of the latest developments in AI ethics, emerging best practices,
and new regulatory landscapes

« Facilitating discussions about ethical considerations in specific projects

o Championing the integration of ethical principles into the development
lifecycle

2 There are some ethically justified exceptions. Penetration testers and security researchers can ethically use Al
to find vulnerabilities that should be fixed, as long as they work under responsible disclosure protocols.

182

| Chapter 9: The Ethical Implications of Vibe Coding

« Helping to curate and disseminate relevant resources and training materials to
the broader team

« Acting as a point of contact for team members who have ethical questions or
concerns

Since this field is moving incredibly fast, it's crucial to work as a team to stay
updated on new versions of Al tools and their capabilities, limitations, and evolv-
ing best practices for responsible use.

Since this field is moving fast, work as a team to stay updated on new versions of
AT tools and best practices. One important concept to integrate into your work-
flows is the use of model cards. Model cards are essentially standardized docu-
ments that provide transparency about a machine learning model. Think of them
as nutrition labels for AI models. They typically include details about:

« What the model is, its version, and when it was developed
o The specific use cases the model was designed and tested for

o Scenarios where the model should not be used, due to limitations or potential
for harm

o How well the model performs on various benchmarks, including evaluations
for fairness and bias across different demographic groups

« Information about the datasets used to train the model, including any known
limitations or biases in the data

o Potential risks and societal implications and any mitigation strategies
employed

Whenever you are using a pretrained model or evaluating a model for use, look

for its model card. If you are fine-tuning or developing models, creating your

own model cards is a best practice.

. Create guardrails and safety nets.

Practicing responsible design means that your Al-generated systems should have
safety nets. For example, if Al suggests an out-of-bounds index fix that might
mask an underlying issue, it’s better for the system to fail safely than to cause
silent errors. If an Al-generated recommendation system might be wrong, pro-
viding ways for users to correct or override it shows respect for their human
agency. Strive to build systems that degrade gracefully if Al components misbe-
have.

. Document Al usage decisions within your team.

Keep an internal log of why you used certain Al suggestions (or didn’t): “We tried
Al for module X, but it tended to produce too much duplicate code, so we wrote
that part manually” This can help you refine your processes, provide context to

Golden Rules for Responsible AlUse | 183

new team members about Als role in the codebase’s history, and augment your
team’s collective memory. It can also be useful during audits.

8. Proactively work to avoid bias, discrimination, and unfairness.

Be vigilant for signs that your Al usage could lead to discrimination, and work to
avoid such situations before they happen. For example, if your app is global, is
your AI multilingual or does it favor those who speak English? Do all of your
team members have equal access to Al tools and training?

Responsible Al Checklist

1. Prompting and code generation (developers)

O Confirm that your prompts contain no confidential or sensitive data such as
client info, PII, or secrets.

O Check licensing for all output and confirm it includes no proprietary or GPL
code, unless allowed. Use tools like FOSSA for scanner checks.

O Test output for bias to ensure code and comments don’t reinforce stereotypes
or discrimination.

O Confirm security hygiene by prompting for safe defaults. Confirm the code
avoids insecure patterns (eval, unsanitized input).

O Specify any constraints in prompts, including style, framework, performance
needs, and compatibility guidelines.

2. Code review checks (developers and code reviewers)

O Verify that no embedded copyrighted material is used in the code unless
licensed.

O Confirm that attribution and credit are given when due.

O Audit the logic, language, and naming for bias and fairness—especially in user/
Ul-facing layers.

O Ensure that the code doesn't facilitate harm, misuse, manipulation, or discrim-
ination.

O Validate your input sanitization, data handling, and logging, and check for
secret leaks.

O Confirm the code’s functionality and correctness via unit tests, edge cases,
error handling, and test coverage.

O Check for inefficient or power-hungry patterns.

O Check dependencies to ensure they include no unvetted libraries or hidden
license risks.

184 | Chapter 9: The Ethical Implications of Vibe Coding

O Check for readability and maintainability: the code should follow style guides
and use clear naming conventions.

O

Check that any unused code has been removed.

O Confirm that code comments explain the code’s intent, especially for Al-
generated logic.

O Confirm that your code-review feedback is respectful, specific, and empathetic.
3. Governance and process (organization)

O Confirm that integrated license scanners, audit logs, and provenance tracking
are in place.

O

Provide training in ethics and Al-assisted coding, and share updates regularly.
O Maintain a vetted list of AT tools; prohibit unapproved or high-risk ones.

O Put an incident process in place, with escalation channels and whistleblower
options for anyone who discovers unethical code.

O Monitor responsible AI metrics, such as bias incidents, security findings, and
license violations. Maintain a checklist of these metrics and revise it periodi-
cally.

O Solicit and listen to community feedback. Include diverse perspectives via ret-
rospective meetings or external audits.

How to Use This Checklist

o Customize this list to include questions specific to your organization and busi-
ness domain, as well as your team’s tech, risk tolerance, and values.

o Start small: begin with key questions like “Did we avoid sensitive data?” and “Did
we scan for licenses?”

« Integrate checks and checklists into your workflow via PR templates, CI pipe-
lines, and code-review tools.

o Schedule reviews of this checklist every quarter or after major incidents. Use
these reviews to iterate on the list, adding new items or deleting unneeded ones.

o Treat this checklist not as a rigid rulebook but as a conversation starter, just as
pilots and surgeons do with their checklists.

As the Al landscape continues changing and growing, the software industry is likely
to introduce Al standards or certifications. It’s early, but your company could even
help shape those guidelines by engaging in standardization efforts, like IEEE or ISO
working groups on Al software engineering. Ethically, it's better for the dev commu-
nity to help set the rules than to leave it solely to regulators or the courts.

Golden Rules for Responsible AlUse | 185

Summary and Next Steps

Responsible vibe coding means integrating Al into the software development lifecycle
in a way that respects all stakeholders: original creators (by respecting their IP), col-
leagues (through transparency and fairness), users (through privacy, security, and
fairness in outcomes), and society (by not letting misuse cause harm). It’s about lever-
aging AT’s strengths while diligently guarding against its weaknesses.

I've often said that vibe coding is not an excuse for low-quality work. It’s not an
excuse for ethical shortcuts either. As the humans in charge, developers must ensure
that speed doesn’t compromise values.

Next, Chapter 10 looks at a new technology thats changing the way we work with AI
models: autonomous coding agents.

186 | Chapter9: The Ethical Implications of Vibe Coding

CHAPTER 10
Autonomous Background Coding Agents

Autonomous background coding agents are rapidly emerging as the next evolution of
AT coding tools. Unlike familiar “copilot” assistants that suggest code while you type,
these agents operate more like background junior developers you can dispatch to
handle entire tasks asynchronously. Code is generated in an isolated environment
spun up for the agent, tests can be run, and the result often comes back as a fully
formed pull request for you to review.

In this section, I'll explore what background coding agents are, how they work, the
current landscape of tools (OpenAlI Codex, Google Jules, Cursor, Devin, and more),
and how they compare to traditional in-IDE assistants. I'll also examine their capabil-
ities, limitations, and the pragmatic changes they signal for the future of software
engineering.

From Copilots to Autonomous Agents:
What Are Background Coding Agents?

Traditional Al coding assistants (like Cursor, GitHub Copilot, or VSCode extensions
like Cline) are supervised coding agents—interactive helpers that respond to a develo-
per’s prompts or inline context. They’re essentially autocomplete on steroids, generat-
ing suggestions in a chat or as you write, but the human developer is in the driver’s
seat guiding every step.

In contrast, autonomous background coding agents operate with much greater inde-
pendence. You give them a high-level task or goal, then “send them off” to work
through the problem on their own, without constant supervision. These agents will
read and modify your codebase, formulate a plan, execute code (even running tests or
commands), and produce a result (often a commit or pull request)—all in an asyn-
chronous workflow.

187

Think of the difference between a copilot and an autopilot: your copilot (much like
GitHub Copilot) is always in the cockpit beside you, awaiting your input; the autopi-
lot (background agent) can fly the plane on its own for a while. This autonomy means
that background agents can tackle multistep coding tasks while you focus elsewhere.
Using async agents like Codex and Jules is like expanding your cognitive bandwidth:
you can fire off a task to the AI and forget about it until it’s done. Instead of a single-
threaded back-and-forth with an Al, you suddenly have a multithreaded workflow:
the agent works in parallel with you, much like a competent junior dev working in
the background.

Crucially, background agents operate in isolated development environments (often
cloud VMs or containers) rather than directly in your editor. They typically clone
your repository into a sandbox, install dependencies, and have the tools needed to
build and test the project. For security, these sandboxes are restricted (with rules like
“No internet access unless explicitly allowed”) and ephemeral. The agent can run
compilers, tests, linters, and the like without any risk to your local machine. When
the task is complete, the agent outputs the code changes (diffs) and a summary of
what it did. Usually this comes through as a pull request (with code diffs, commit
message, and sometimes an explanation), which you can then review and merge.

To sum up, a background coding agent is an Al-powered autonomous coder that
understands your intent, works through an entire task in a sandbox environment by
reading and writing code and testing it, and then delivers the results for you to
review. It’s not just suggesting a line or two—it can handle larger-scope tasks:

o Write a new feature X across the codebase.
o Refactor module Y for efficiency.
» Upgrade this project’s dependencies.

This is a significant shift in how we might incorporate Al into development work-
flows, moving from assistive suggestions to delegating actual implementation work.

How Do Autonomous Coding Agents Work?

Under the hood, most background agents follow a similar pattern of operation: plan,
execute, verify, and report. Let’s walk through these steps and their capabilities.

Plan

When you give an agent a task (typically via a prompt or command describing what
you want), the agent first parses the request and formulates a plan of attack. Some
agents explicitly show you this plan before proceeding. For example, Google’s Jules
presents an execution plan that you can review and tweak before it starts coding,

188 | Chapter 10: Autonomous Background Coding Agents

https://oreil.ly/jxDhZ

which “prevents the anxiety of wondering whether the agent understood your request
correctly” A good agent will break the task into substeps:

Step 1: search the codebase for relevant sections; Step 2: make changes in files A, B, C;
Step 3: run tests; Step 4: commit changes.

This planning stage is key to effective autonomy: it's the AI's way of reasoning about
how to accomplish your goal before diving in.

The agent launches a dedicated development environment for the task. Jules, for
instance, “clones your codebase into a secure Google Cloud VM” and works asyn-
chronously there. OpenATI’s Codex similarly runs each task in its own cloud sandbox,
preloaded with your repository. Tools like Cursor’s background agents use a remote
Ubuntu-based machine that has internet access to install packages and can be cus-
tomized via Docker or snapshots. Ensuring the environment has all needed depen-
dencies (like the correct language runtimes and build tools) is both critical and
nontrivial. As I noted in a previous analysis, “Figuring out a smooth experience to
spin up just the right environment for an agent is key...and the user experience to
configure it is as frustrating, if not more, than it can be for CI pipelines.” Nonetheless,
agents are tackling this by allowing configuration files to specify setup steps. The goal
is to create a dev environment in the cloud that mirrors what a human developer
would need to successfully run the project’s code and tests.

Notably, many agents disable internet access to their code after setup, so they can
sandbox the run without unauthorized data exfiltration or unrestricted internet calls.
Some allow controlled internet use for specific needs: for example, OpenAl recently
enabled optional internet access for Codex tasks like fetching package updates or
documentation.

Execute

Next comes the main show: the agent starts writing and modifying code according to
the plan. Armed with a large language model (or a mix of models) fine-tuned for
coding, it can read multiple files, generate new code, and even create new files if
needed. This is where the agent essentially acts like a programmer: locating where
changes should be made, editing code, and inserting new logic.

One interesting observation from early runs is that agents often use brute-force text
search (like the Unix grep command) to find relevant parts of the codebase. For
example, an agent might search for a function name or a keyword to figure out where
in the repository to make changes. This seems surprisingly simplistic—shouldn’t they
use fancy semantic code search or AST-based analysis? Yet, it’s effective and reliable.
As Birgitta Bockeler notes, many coding agents default to straightforward full-text
search, perhaps finding it the most broadly effective method despite more advanced
techniques existing.

How Do Autonomous Coding Agents Work? | 189

https://oreil.ly/wDSkr

As the agent edits code, some systems provide real-time logs or status updates so you
can follow along if you want. OpenAl Codex exposes a log of the agents “thoughts”
and commands (summarized) as it works through a task. Cursor allows you to “view
their status and enter the machine the agent is running in” to observe or even inter-
vene midtask. In practice, though, the idea is you don’t need to babysit—you can let
the agent run on autopilot.

Verify

A defining capability of these agents is that they don’t stop at writing code—they
often compile the code and run tests to verify their changes. For instance, OpenAT’s
Codex is designed to iteratively run tests until it receives a passing result. If an agent
can run the project’s test suite (or at least a relevant subset of tests), it can catch mis-
takes and automatically correct them in subsequent iterations. This is huge: it moves
the AI from just generating code to also debugging and validating its code.

In theory, an agent with a robust test harness can attempt a fix, see a test fail, adjust
the code, and loop until tests pass—without a human in the loop. In practice, envi-
ronment issues sometimes thwart this. In one case I studied, Codex wasn’t able to run
the full test suite due to environment mismatches (certain tools were missing), result-
ing in a pull request that still had two failing tests. Had the environment been fully
aligned, the agent could have fixed those trivial issues before making the PR.

This underscores why environment setup is so important for autonomous agents: if
they can run everything a developer would (linters, tests, builds), they can self-correct
many errors automatically. Agents like Devin emphasize this loop—Devin “writes
code, finds bugs in the code, corrects the code, and runs its own end-to-end tests to
verify it works” as a normal part of its operation. In fact, Devin will even spin up a
live preview deployment of a frontend app it built so you can manually verify a fea-
ture in the browser, which is a clever extension of the verification step.

Report

Once the agent has a candidate solution (all tests have passed, or it deems the code
ready), it prepares the results for you. Depending on the platform, this might come as
a PR on GitHub, a diff and explanation in chat, or files ready to merge.

190 | Chapter 10: Autonomous Background Coding Agents

At this point, you—the human—do a review. Here we come back to “Trust but ver-
ify”: you trust the agent to produce something useful, but you verify the changes
through code review and additional testing. Many agent systems explicitly integrate
with the PR review process because it’s a familiar workflow for developers. Jules, for
example, plugs into your GitHub and will open a branch and PR with its changes.
OpenATls Codex presents the diff inside ChatGPT for you to approve or ask follow-
up questions. If you find issues or have change requests, you can often feed that back
to the agent for another iteration.

Some agents handle this via chat (Devin can take feedback from a linked Slack thread:
if you point out a problem or ask for tweaks, it will “start working on a reply” to
address it). Others might require a new run with an adjusted prompt or use a review
comment interface. Impressively, Devin even responded to a GitHub PR comment
asking why it made certain changes—it reacted with an “eyes” emoji to signal it saw
the comment, then posted a detailed explanation of its reasoning. (The explanation
turned out to be not entirely correct in that case, but the fact that it can discuss PRs
says something about how interactive these agents can become.)

If all looks good, you merge the agents PR or integrate the changes. If not, you might
discard it or have the agent try again. One pragmatic question teams face is what to
do if an agent’s output is almost good but not quite. Do you spend time fixing up the
last 10%-20% of an agent-generated patch, even if it was a low-priority task you
offloaded to the AI? This is what I call the “sunk cost” dilemma for AI contributions.
Birgitta Bockeler muses that if an agent PR only partly succeeds, teams will have to
decide “in which situations would [they] discard the pull request, and in which situa-
tions would they invest the time to get it the last 20% there” for a task that originally
wasn't worth much dev time. There’s no one answer—it depends on the context and
value of the change—but its a new kind of trade-off introduced by autonomous
agents.

In summary, background coding agents handle the end-to-end cycle of coding tasks:
understand > plan > code > test > deliver. They essentially simulate what a diligent,
methodical developer might do when assigned a task, albeit within the current limits
of Al (see Figure 10-1).

How Do Autonomous Coding Agents Work? | 191

https://oreil.ly/IdJ9d

J
J

Plan task @ Agent

Execute codein
sandbox @Agent

il
kil

Verify (run tests) @ Agent

Report (pull
request)
Apply and test

Change
X

g
[

#

Developer

b

Figure 10-1. Autonomous Al agent workflow: self-directed agents plan tasks, execute sol-
utions, verify results, and report outcomes with minimal human intervention.

How Do Background Agents Compare
to In-IDE Al Assistants?

It's worth drawing a clear line between the coding Al tools we've had for a couple
years (GitHub Copilot, ChatGPT coding mode, etc.) and this new generation of
autonomous agents. Both are useful, but they play different roles and have different
strengths/weaknesses.

The most obvious difference is their level of autonomy. In-IDE assistants like Copilot
or VSCode’s Al extensions work synchronously with you—they generate suggestions
or answer questions when invoked, and their scope is usually limited to the immedi-
ate context (like the file or function you're editing or a specific prompt you gave). You
decide when to accept a suggestion, ask for another, or apply a change.

With background agents, once you hit “go” on a task, the agent will autonomously
perform potentially hundreds of actions (file edits, runs, searches) without further
confirmation. It's operating asynchronously. This requires a higher degree of trust
(you're letting it change things on its own) but also frees you from micromanaging. I
often describe it as the difference between having an Al pair programmer versus an Al
assistant developer on the team. The pair programmer (Copilot) is with you keystroke
by keystroke; the assistant dev (Codex/Jules/etc.) works in parallel on another issue.

192 | Chapter 10: Autonomous Background Coding Agents

The copilot style of Al tools means they excel at microtasks—writing a function,
completing a line, generating a small snippet, answering a question about how to use
an API. They don’t maintain a long narrative or project-wide understanding, beyond
what’s in your editor’s open files or a limited window.

Autonomous agents operate at the project level. They load your entire repository (or
at least index it) and can make coordinated changes across multiple modules. They
keep track of a multistep plan. For example, GitHub Copilot might help you write a
unit test if you prompt it, but a background agent could, on its own, decide to add the
corresponding implementation in one file, the test in another, and a modified a con-
fig in a third—all as part of one unified task. This makes agents far better suited for
things like refactoring a cross-cutting concern (logging, error handling), performing
upgrades (which often involve many files), or implementing a feature that touches
backend and frontend. IDE assistants couldn’t easily handle those because they lack
long-term task memory and whole-repo visibility.

Copilot-style assistants are reactive—they respond to your code or queries. They don’t
initiate actions. Background agents are proactive in the sense that once activated, they
will take initiative to reach the goal. A Jules or Devin agent might decide, “I need to
create a new file here” or “Let me run the tests now;” without being explicitly told at
each step. They also can notify you of things proactively, like:

I found another place to apply this change, so I'll include that too.

They behave more like an employee, who might say, “I noticed X while I was in the
code, so I fixed that as well” That said, autonomy also means they might do some-
thing you didn’t expect or necessarily want. The supervised nature of this style of tool
means it will only do exactly what you accept (except maybe for subtle missugges-
tions you didn't notice). So with great power (proactivity) comes the need for greater
oversight.

A major difference is that background agents can execute code and commands,
whereas traditional IDE assistants usually cannot (unless you count things like
ChatGPT’s Code Interpreter mode, but that’s more for data analysis, not integrated
with your project’s build).

Agents will run your test suite, start your dev server, compile the app, maybe even
deploy it. They operate in a sandbox, but it’s effectively like having an automated
developer who can use the terminal. This is a game changer—it closes the loop of ver-
ify/fix. An IDE helper might generate code that looks plausible, but if it didn't actually
run it, there could be runtime issues or failing tests.

With an agent that runs the code, you have a higher chance the output is actually
functional. It also offloads the debugging step; if something fails, the agent can try to
fix it immediately. The flip side is this requires the agents environment to be correct
(as discussed earlier), and it opens the door to potential side effects. Imagine an agent

How Do Background Agents Compare to In-IDE Al Assistants? | 193

running a database migration or modifying data—usually they’re in sandbox mode,
so this doesn’t affect production, but be careful.

GitHub Copilot and tools like it live in the editor, which is great for in-the-flow cod-
ing. Agents often integrate with project management and DevOps tools, too. For
example, you might create a GitHub issue and have an agent pick it up and generate a
PR, or trigger an agent run from a CI pipeline for certain tasks (like autofixing lint
errors on PRs). In fact, CodeGen advertises its agents ability to attach to issue track-
ers so that when an issue moves to “In Progress,” the Al agent works on it. This kind
of integration is beyond what IDE tools do. It hints that AT agents could become part
of the CI/CD loop—for instance, automatically attempting to fix build failures or
automatically creating follow-up PRs for minor issues. That’s a different mode of col-
laboration: not just helping a dev write code but acting as a bot user in the team’s
toolchain.

Using copilot-type assistants often still feels like programming, just faster—you type,
they suggest, you accept, you test. Using a background agent feels more like delega-
tion followed by review. The human effort shifts from writing code to writing a good
task description and then reviewing the code produced. I call this “generator versus
reviewer asymmetry’—generating a solution (or code) from scratch is hard, but
reviewing and refining it is easier. Async agents capitalize on this: they handle the
bulk generation, leaving you with the (typically faster) job of vetting and tweaking.
This can be a productivity boon, but it also means as an engineer you need to sharpen
your code review and verification skills.

Code review has always been important, but now it’s not just for other human collea-
gues’ code—its for Al-generated code as well, which might have different patterns of
mistakes. My mantra is that you should treat agent-produced code as if it were writ-
ten by a slightly overeager junior developer: assume good intentions and decent com-
petence, but verify everything and don’t hesitate to request changes or reject if it’s not
up to standards.

In practice, I find that I use copilot-style tools and background agents together. For
instance, I might use Copilot or Cursor’s inline suggestions while I'm actively coding
a complex piece of logic, because I want tight control over that logic. Meanwhile, I
might delegate a peripheral but time-consuming task (like updating all our API client
libraries for new endpoints) to a background agent to handle in parallel. They fill dif-
ferent niches. One doesn’t necessarily replace the other. In fact, I foresee IDEs offer-
ing a unified experience: a palette of options from “Complete this line” to “Generate a
function” to “Hey, Al, please implement this entire ticket for me” Youd choose the
tool depending on the scope.

194 | Chapter 10: Autonomous Background Coding Agents

Combining Multiple Al Models to Maximize Strengths

So far, I've often referred to “the AI” as if it’s one monolithic assistant. In reality, there
are many Al models, each with different strengths. Some are great at natural language
understanding, others excel at generating code, and some might be specialized in cer-
tain domains (like a math problem solver or a UI generator). An advanced practi-
tioner of vibe coding can orchestrate multiple Als together, using each for what it’s
best at. This is like having a team of specialists rather than a single generalist.

Consider a future workflow where you have:

o A CodeGen AI highly trained on programming that can produce code and fix
code efficiently

o A TestGen Al specialized in generating test cases and finding edge cases
o A Doc Al that writes clear documentation and explanations
o A Design Al that’s skilled at generating UI layouts or graphics

« An Optimization Al focused on performance tuning and perhaps even aware of
low-level details

You can pipe your task through several of these Als. For example, you ask CodeGen
AT to write an implementation. Immediately, you feed that output to TestGen Al to
generate tests for it (or to critique it). Then feed both code and tests to Doc Al to
produce documentation or a usage guide. If the code involves user interface, maybe
Design Al is used earlier to propose the layout structure that CodeGen AI then
implements. By chaining them, you leverage each model’s domain expertise. This is
analogous to a software pipeline or assembly line, but instead of different human
roles, it’s different Al roles.

Even among similar models, combining them can improve reliability. If you have two
code-generation models from different providers or of different architectures, you
can have them both attempt the solution and then compare or test both outputs. If
one model’s output passes all tests and the other doesn’t, you pick the passing one. If
both pass but have different approaches, you might manually choose the more read-
able one. If one fails, you can even show the failing one the successful code as a hint
to learn from. This kind of AI cross-talk can reduce errors since it’s less likely that two
different models will make the exact same mistake. It’s like getting a second opinion.
You can already find research and tools that use one Al to check another’s reason-
ing—for instance, one generates an answer and another judges it.

Combining Multiple Al Models to Maximize Strengths | 195

Differentiate Models by Task Type

Use the right tool for the job. Large language models (LLMs) are good generalists, but
sometimes smaller, specialized models or tools do better. For example, for arithmetic
or certain algorithms, a deterministic tool (or an Al thats more constrained) might
be better. Some advanced dev setups use symbolic solvers or older rule-based Al for
specific subtasks and LLMs for others. As an advanced vibe coder, you might main-
tain a toolbox: when you need regex, you call a regex-specific generator; when you
need a commit message, maybe a model fine-tuned for summarization is used. The
beauty is these can be integrated via simple scripts or prompt wrappers. For instance,
you could have a local script like ai_regex_generator that internally prompts an Al
but with some pre- and postprocessing to ensure the output is a valid regex, and
maybe tests it on provided examples.

Use an Orchestration System

If you find yourself frequently combining models, you might use or build an orches-
tration system, an emerging category of frameworks often referred to as AI orchestra-
tion or agents. These systems allow you to define a flow; for example:

Step 1: Use Model A to interpret user request.
Step 2: If request is about data analysis, use Model B to generate SQL; if about text, use
Model C...

Step 3: Feed the result to Model D to explain it.

This is more relevant if youre building an app or service powered by multiple AI
steps. But even in personal dev, you can script a multistep approach. For example,
one custom CLI tool, ai_dev_assist, takes a prompt and behind the scenes uses an
AT to classify the prompt into categories like code, design, test, and optimize. Based
on the category, it forwards the prompt to the appropriate specialist AI. When it
receives the result, it can optionally pipe the result into another AI for review or
improvement.

This kind of meta-AlI coordinating other Als sounds complex, but an advanced user
can set it up with current technology. It will likely get easier as we begin to see dedica-
ted support in IDEs or cloud platforms.

Human-Al Hybrid Teams

While on the subject of multiple intelligences, let’s not forget human collaborators.
An advanced vibe coder also knows when to involve fellow human developers in the
loop. For example, you might use Al to generate two or three different design proto-
types for a feature, then bring those to your team’s UX designer for feedback. Which
one aligns with our brand? Which feels intuitive? If an AI writes a complex piece of
code, you might do a code review session with a colleague focusing on that piece,

196 | Chapter 10: Autonomous Background Coding Agents

acknowledging that “an AT helped write this, so I want another pair of human eyes on
it too” In a sense, the “multiple model” approach can include humans as just highly
advanced models—each entity (human or AI) has unique strengths. The future of
development might often be human + AI pair programming or even team program-
ming where some “team members” are AL

Imagine building a small web application through vibe coding. Your workflow might
look like this:

1. You use a UI Layout AI to generate the HTML/CSS for your page given a
description (specialized in frontend).

2. You use a Content Al to generate some placeholder text or images needed (like
marketing text, maybe using a model geared for copywriting).

3. You then use your main Code Al to generate the interactive functionality in Java-
Script, feeding it the HTML so it knows which element IDs to hook into.

4. You then ask a Testing Al to generate Selenium or Playwright tests for the inter-
face interactions.

5. Finally, you use a Security Al to scan the code for common vulnerabilities. This
could be a model or simply a static-analysis tool augmented with AL

This multimodel approach covers frontend, backend (if there is one), content, testing,
and security in one integrated process. Each Al handled its portion and you, as the
orchestrator, ensured they all align.

While today you might have to manually copy outputs from one tool to another or
use some glue scripts, tomorrow’s IDEs might let you configure this pipeline so it
feels seamless. The key takeaway is: don’t rely on just one AI model if you have access to
several. Use the best one for each job and make them work together. It leads to better
outcomes and also reduces single-point failure—if one model isn’t good at something,
another might cover that weakness.

Combining AI models is an advanced move, but it’s a logical extension of specializa-
tion, a principle well known in software engineering (think microservices, each ser-
vice doing one thing well). Here, each Al service does one thing well. As a vibe coder,
your role expands to Al conductor, not just AI prompter. It requires a bit more setup
and thought, but the payoff is a symphony of AI collaborators each contributing to a
high-quality end product.

Now that you know how they work, let’s meet some of the leading examples and see
how they stack up.

Combining Multiple Al Models to Maximize Strengths | 197

Major Players in Autonomous Coding Agents

As 1 write this in 2025, the autonomous coding agent landscape has rapidly evolved
over the past year, with distinct approaches emerging across different platforms.
These tools represent a shift from passively completing code to acting as active devel-
opment partners that can execute complex tasks independently.

Cloud-based command-line agents: OpenAl Codex

OpenATls Codex exemplifies the cloud-based agent approach, operating through
ChatGPT'’s interface or an open source CLI. It spins up isolated sandboxes to exe-
cute coding tasks in parallel, handling everything from React upgrades to unit
test creation. What distinguishes Codex is its reinforcement-learning training on
real coding tasks, enabling it to follow best practices, like running tests iteratively
until they pass. While results can vary between runs, Codex typically converges
on working solutions for well-bounded tasks. Its strength lies in actual code exe-
cution within CI-like environments, representing the first wave of agents that
truly “pair” with development pipelines.

Workflow-integrated agents: Google Jules

Google Jules takes a different approach by deeply integrating with GitHub work-
flows. Running on Google Cloud VMs with full repository clones, Jules emphasi-
zes visible, structured planning—presenting its reasoning and allowing plan
modifications before execution. This “plan, then execute” philosophy, combined
with real-time feedback capabilities, positions Jules as a supervised assistant
rather than a black-box automation. Its GitHub-native design means it operates
directly where teams work, creating branches and PRs without context switching.
The agent even experiments with novel features like audio changelogs, pointing
toward more accessible code review processes.

IDE-integrated agents: Cursor

Cursor’s background agents represent the IDE-centric approach, launched
directly from the editor but executing on remote machines. This hybrid model
lets developers orchestrate multiple AI workers from their command center
while maintaining local control. Cursor provisions Ubuntu instances with cus-
tomizable environments (via environment.json or Dockerfiles), giving agents full
internet access and package installation capabilities. The key innovation is seam-
less IDE integration: developers can monitor agent progress, intervene when
needed, and immediately access changes locally when complete. This approach
blurs the line between local Al assistance and cloud execution power.

Team-integrated agents: Devin
Devin positions itself as an “AI teammate” rather than just a tool, integrating with
Slack, GitHub, and issue trackers like Jira. Built by Cognition Labs, it uses custom
Al models tuned for long-term reasoning and multistep execution. Devin excels

198 | Chapter 10: Autonomous Background Coding Agents

https://oreil.ly/Ml-NU
https://jules.google
https://oreil.ly/V-Pci
https://devin.ai

at parallel execution of small maintenance tasks like bugfixes, test additions, and
linter cleanups that often get deprioritized. Its collaborative design includes status
updates, clarification requests, and even automatic preview deployments. While
it handles straightforward tasks well, complex issues can still require significant
human intervention, highlighting the current boundaries of autonomous coding.

The field is expanding rapidly, with both established players and startups racing to
define the category. Microsoft has hinted at “Copilot++,” moving beyond inline sug-
gestions to agent capabilities. Enterprises are being courted by startups like CodeGen
(which uses Anthropic’s Claude) promising “SWEs that never sleep” Meanwhile,
open source projects and academic research continue pushing boundaries, exploring
how to make code generation more reliable and contextual.

This proliferation suggests that we're witnessing the birth of a new development para-
digm where individual developers orchestrate multiple AI agents, each specialized for
different aspects of the software lifecycle. The key differentiators emerging are:

« Execution environment (local versus cloud)
« Integration depth (IDE versus workflow tools)
+ Autonomy level (supervised versus independent)

o Target use cases (maintenance versus feature development)

Challenges and Limitations

While autonomous coding agents inherit the foundational challenges of Al-assisted
development, as discussed throughout this book—particularly the 70% problem,
explored in Chapter 3—their autonomous nature introduces distinct complications
that warrant separate examination:

The compounding effect of sequential decisions

Unlike interactive Al assistance where humans intervene at each step, autono-
mous agents make chains of decisions that can compound errors in unique ways.
When an agent misinterprets the initial requirements, it doesn’t just generate one
flawed function: it builds an entire implementation architecture on that misunder-
standing. Each subsequent decision reinforces the original error, creating what I
call “coherent incorrectness™: code that’s internally consistent but fundamentally
misaligned with actual needs.

This sequential decision making particularly challenges agents that tackle multi-
file changes. An agent implementing a new feature might correctly modify the
backend API but then propagate incorrect assumptions through the frontend,
database schema, and test suites. By the time you review the complete pull
request, untangling these interconnected mistakes tends to require more effort

Challenges and Limitations | 199

than the interactive, incremental corrections that are possible with traditional Al
assistance.

Environmental brittleness at scale

The

While Chapter 8 discusses general environment configuration challenges, auton-
omous agents face unique complications from their sandbox execution model.
Each agent run requires spinning up an isolated environment that precisely mir-
rors your development setup—a challenge that scales poorly. When you're run-
ning multiple agents concurrently, even slight variations in the environment can
lead to dramatically different outcomes.

Consider a scenario where five agents work on different features simultaneously.
Agent A might have a slightly older Node version in its container, Agent B might
lack a specific system library, and Agent C might have different time zone set-
tings. These variations, invisible during execution, surface as subtle bugs that
only appear when you begin integrating their work. This “environmental drift
between agent sandboxes represents a new class of integration challenge that is
absent from single-developer workflows.

async coordination paradox

Autonomous agents promise parallel development, but this introduces coordina-
tion challenges that are quite distinct from human team dynamics. When multi-
ple agents modify overlapping code sections, they lack the implicit
communication channels humans use—there’s no quick Slack message asking,
“Are you touching the auth module?” or informal awareness of what colleagues
are working on.

This creates what I term the async coordination paradox: the more agents you run
in parallel to increase productivity, the more complex integrating them becomes.
Unlike human developers, who naturally coordinate through standups and infor-
mal communication, agents operate in isolation. You might discover that Agent A
has refactored a utility function, while Agent B was busy adding new calls to the
old version, creating conflicts that wouldn't occur if agents had human develop-
ers’ natural awareness of each other’s work.

review bottleneck—amplified

While code review remains essential for all AI-generated code (as discussed in
previous chapters), autonomous agents amplify this challenge through sheer vol-
ume and timing. Unlike interactive Al assistance, where code arrives incremen-
tally as you work, agent-generated PRs appear as complete implementations—
often as multiple PRs arriving simultaneously after overnight runs.

200

| Chapter 10: Autonomous Background Coding Agents

This creates a kind of cognitive overload that’s distinct from the kind you get
when reviewing human PRs. With human contributions, you can often rely on
commit messages and PR descriptions to reflect a coder’s actual thought pro-
cesses. Agent PRs, however, require you to reverse-engineer the agents “reason-
ing” from the code itself. When five agents each deliver PRs of 500 lines or more
on Monday morning, the review burden shifts from being a collaborative quality
check to something more like an archaeological expedition.

Delegating to agents requires trust
Perhaps most significantly, autonomous agents challenge our trust models in
ways interactive Al tools don’t. When you delegate a task to an agent and walk
away, you're making an implicit bet about acceptable risk. This differs fundamen-
tally from supervised AI assistance, where you maintain moment-by-moment
control.

Consider agentic technologies’ security implications. Autonomous agents with
repository write access and execution capabilities present unique attack surfaces.
A compromised or misdirected agent doesn’t just suggest bad code—it actively
commits it and potentially even deploys it. Our sandboxing and access controls
for agents must be correspondingly more sophisticated than for suggestion-based
tools (covered in Chapter 8).

Emerging organizational challenges
As teams scale up their agent usage, new organizational patterns are emerging
that don't exist with traditional Al assistance. Who “owns” agent-generated code
when the requesting developer is out sick? How do you track agent resource
usage across teams? What happens when an agent’s monthlong refactoring
project conflicts with urgent feature development?

These aren’t technical limitations but organizational challenges, and they’re
unique to autonomous systems. They require new roles (agent coordinators?),
new processes (agent impact assessments?), and new tools (agent fleet manage-
ment?) that extend beyond the individual developer considerations this book has
addressed in earlier chapters.

The autonomous nature of these agents—their ability to work independently, make
sequential decisions, and operate at scale—transforms them from productivity tools
into something approaching team members. This shift demands not just the technical
practices discussed throughout this book but entirely new frameworks for coordina-
tion, trust, and integration that we’re only beginning to understand.

Challenges and Limitations | 201

Best Practices for Using Al Coding Agents Effectively

While many general AI development practices apply to autonomous coding agents,
certain aspects of agent-based development require specific consideration. Based on
collective experience with tools like Codex, Jules, Devin, and Cursor’s background
agents, these practices address the unique challenges of delegating entire develop-
ment tasks to Al systems operating independently.

Strategically Select the Tasks Autonomous
Agents Are Going to Implement

The fundamental difference between AI assistants and autonomous agents lies in
their scope and independence. Agents excel at well-defined, encapsulated tasks with
clear success criteria—particularly those involving parallel execution of many small
tasks. Ideal agent assignments include comprehensive test coverage improvements,
systematic dependency updates, bulk refactoring operations, and standardized feature
implementations across multiple components.

Consider the difference between asking an Al assistant to help write a single test ver-
sus tasking an agent to achieve 80% test coverage across an entire module. The agent
can methodically work through each untested function, generate appropriate test
cases, run them to verify correctness, and iterate until the coverage target is met. This
type of systematic, measurable work is the sweet spot for autonomous agents.

Conversely, tasks that require making significant architectural decisions, interpreting
complex stakeholder requirements, or designing novel algorithms remain better
suited to human-led development with AI assistance. The key lies in recognizing
which aspects of a larger task can be effectively delegated to agents and which require
human judgment and creativity.

Leverage Agent-Specific Planning and Oversight Features

Modern autonomous agents distinguish themselves through sophisticated planning
and execution transparency features that demand active engagement. When Jules
presents its execution plan before beginning work or when Cursor displays real-time
logs of agent activity, these represent critical intervention points that are unique to
agent-based development.

The planning phase serves as your primary quality gate. Review proposed plans not
just for correctness but for efficiency and alignment with your codebase conventions.
If Jules plans to update a Next.js application but omits critical webpack configuration
changes, catching this during planning prevents extensive rework later on. This pro-
active review differs fundamentally from reactive code review and represents a new
skill in the developer toolkit.

202 | Chapter 10: Autonomous Background Coding Agents

Runtime monitoring provides another layer of agent-specific oversight. While you
need not watch every operation, periodic checks can prevent agents from pursuing
inefficient solutions or making unnecessarily broad changes. Cursor’s ability to
“enter” the agent’s environment midtask exemplifies how modern tools support inter-
vention without completely abandoning the autonomous workflow. To maximize effi-
ciency, you'll need to learn when to intervene and when to let the agent self-correct.

Manage Concurrent Agent Operations

Unlike traditional development, where a single developer works on one task at a time,
agents enable true parallel development. This capability requires new coordination
strategies. When running multiple agents simultaneously—perhaps one updating
dependencies while another adds logging infrastructure—you must consider the
potential conflicts and dependencies between their work.

Establish clear boundaries for each agent’s scope to minimize merge conflicts. Assign
agents to different modules or layers of the application when possible. Consider the
order of integration: an agent that is adding new features might need to wait for
another agent’s infrastructure improvements to complete. This orchestration resem-
bles managing a distributed team more than it does traditional solo development.

Evolve Your Team Practices to Integrate Agents

The introduction of autonomous agents fundamentally alters team dynamics and
review processes. Unlike reviewing a colleague’s carefully crafted PR, agent-generated
PRs may contain technically correct but stylistically inconsistent code. Teams must
develop new review practices that account for this difference.

Consider establishing agent-specific review checklists that emphasize not just correct-
ness but also alignment with team conventions and architectural patterns. Document
common quirks you spot as you work with the agent: perhaps your chosen agent con-
sistently uses certain antipatterns or misses specific optimization opportunities. This
institutional knowledge helps reviewers quickly identify and address recurring issues.

Build Feedback Loops with Autonomous Systems

Perhaps most importantly, autonomous agents enable a new form of iterative devel-
opment in which the feedback loop extends beyond mere code review. When an
agent’s pull request needs refinement, you can often send it back and ask for another
iteration with specific guidance. This differs from traditional development, where
sending work back to a human colleague carries social and time costs.

Work to develop prompting patterns that work well with your chosen agents. When
you find successful prompt formulations that consistently yield high-quality results,
document them. Create templates for common task types that include all necessary

Best Practices for Using Al Coding Agents Effectively | 203

context and constraints. This is a kind of prompt engineering specifically for agents
that considers their planning, execution, and revision cycles, and it represents a dis-
tinct skill from general Al interaction.

The goal remains unchanged: delivering high-quality software efficiently. Autono-
mous agents simply provide a new tool for achieving this goal, one you should inte-
grate into your existing practices thoughtfully rather than replacing established
methods wholesale. By understanding these agents and leveraging their unique capa-
bilities while maintaining rigorous quality standards, teams can realize significant
productivity gains without sacrificing code quality or architectural integrity.

Summary and Next Steps

To wrap up, I'll echo a sentiment from Chapter 4: Al won't replace developers, but
developers who can use Al effectively may well replace those who can’t. The advent of
autonomous coding agents is a leap in that direction—those who learn to harness
these “headless colleagues” will be able to do more in less time. It’s an exciting time to
be a software engineer, as long as we adapt and continue to hold our work to high
standards. The tools may be changing, but the goals remain: build reliable, efficient,
and innovative software. With AI agents at our side (or in the background), we have
new ways to reach those goals—and perhaps get a good night’s sleep while the bots
burn the midnight oil.

Next, the final chapter of this book takes a broader look at the future of Al in coding,
including the future of agentic Al

204 | Chapter 10: Autonomous Background Coding Agents

CHAPTER 11

Beyond Code Generation: The Future
of Al-Augmented Development

Vibe coding may have started with AI generating code from our prompts, but its
implications reach far beyond just writing code. As AI technologies advance, they are
poised to transform every aspect of the software development lifecycle. In this chap-
ter, I take a speculative yet informed look at how AT’s role in software might expand
in the future. I will explore Al-driven testing, debugging, and maintenance; how Al
could influence software design and user experience personalization; the evolution of
project management with Al assistance; and even the future of programming lan-
guages themselves. The aim is to imagine a future where Al isn’t just a code generator
but a holistic participant in software engineering—all while grounding the discussion
in fundamental principles, so it remains relevant even as specific technologies come

and go.

Alin Testing, Debugging, and Maintenance

Imagine a future development environment where as soon as you write a function
(whether by hand or via vibe coding), an Al tool immediately writes a suite of unit
tests for it, finds potential bugs, and maybe even fixes them—all in a matter of sec-
onds. This scenario is quickly becoming plausible. Let’s break down AIs potential
(and already emerging) contributions in quality assurance and maintenance.

Automated Test Generation

Writing thorough tests is time-consuming and often neglected due to deadlines. As
you saw in Chapter 7, current Al assistants can alleviate this by generating tests auto-
matically. For example, given a piece of code, an Al can suggest a set of unit tests cov-
ering typical cases, edge cases, and error conditions.

205

In the future, this could go further: the AI could examine your entire codebase, iden-
tify functions or modules with insufficient test coverage, and generate additional
tests. It might even simulate inputs that a human tester wouldn’t think of (like fuzz
testing), potentially catching corner-case bugs. The benefit is a more robust codebase
with minimal manual test writing.

The caveat is that tests are only as good as the AT’'s understanding of the specification.
Thus, a human should review Al-generated tests to ensure they align with the
intended behavior of the software. For instance, the AI might assert a certain output
that is technically what the code does, but perhaps the requirement was different—
which, as long as a human is in the loop, can actually help to catch a misunderstand-
ing in either the code or the test.

Intelligent Debugging

Debugging often involves tedious searching through logs or stepping through code to
locate the source of an error. Chapter 5 showed you how Al can act like a smart
debugging companion. Some current Al tools can take an error message and prob-
lematic code as input and return an explanation and a code change to fix it.

For a glimpse of how Al-assisted debugging workflows may evolve, consider an Al
system that monitors your program’s execution, and when a crash or exception hap-
pens, it analyzes the stack trace and variable states to pinpoint the likely cause.
Instead of just giving you an error message, it might say:

The application crashed because userProfiles was null when calling getEmail(). This
suggests a missing null-check when loading user profiles.

Further, the Al could suggest a fix:

A possible solution is to initialize userProfiles if it’s null or add a condition before call-
ing getEmail(). Would you like me to apply this fix?

Future debugging Als could integrate directly with runtime environments, catching
issues in real time. They might even predict issues before they happen by analyzing
code paths:

This function might throw a DivisionByZero exception if called with y = 0; consider
handling that case.

This is similar to static analysis but powered by the ATI's learned knowledge of count-
less codebases and error patterns, making it potentially more insightful or flexible.

Predictive Maintenance and Refactoring

As requirements change over time, code becomes outdated or suboptimal. Mainte-
nance involves activities like refactoring (improving code structure without changing

206 | Chapter 11: Beyond Code Generation: The Future of Al-Augmented Development

behavior), updating dependencies, and optimizing performance. Al can assist in each
of these areas:

Refactoring

A future AT could identify code smells (like duplicate code or long functions) and
automatically refactor them. For instance, it might detect that you have similar
chunks of code in three places and recommend abstracting them into a single
helper function. Or it could transform a deeply nested set of loops into a more
readable form. Since the Al has seen many examples of “good” code, it can sug-
gest stylistic improvements to keep the codebase clean and maintainable. We
might one day have a mode in our editors where the Al continuously refactors
code in the background, with the developer reviewing and approving changes.

Updating dependencies
A future AT service might monitor your project’s dependencies (such as libraries
and frameworks) and automatically generate pull requests to update them to
newer versions, including any code changes needed to accommodate breaking
changes. For example, if a new version of a web framework changes the API, the
AT could adapt your code to the new API. This would save developers the repeti-
tive work of reading migration guides and fixing version issues.

Performance tuning

Maintenance often includes improving performance as data scales or usage pat-
terns shift. Al can play a role by analyzing performance profiles and pointing out
inefficiencies. For example, an Al might notice that a certain database query in
your code is taking a long time and suggest adding an index or rewriting the
query. It might identify that a loop in your code is making redundant calculations
and propose a cache. This is akin to having a performance expert always keeping
an eye on your application—proactively detecting inefficiencies like redundant
loops or suboptimal data structures.

The AI might run in a staging environment, simulate heavy loads, and then feed
you a report: “Under high load, Module X becomes a bottleneck due to Y. Con-
sider refactoring using approach Z” In essence, the AI not only finds issues but
also educates the team on better patterns.

Al-Driven Design and User Experience Personalization

Beyond the code and logic, Al is set to influence how we design software and how
users experience it. Good software isn't just correct under the hood; it’s also intuitive,
accessible, and satisfying for users. AI will continue to develop new ways to create
better user interfaces and tailor experiences to individual user needs.

Al-Driven Design and User Experience Personalization | 207

https://oreil.ly/XWXC_

Generative Design Tools

Today’s Al design tools use techniques from generative adversarial networks or trans-
formers to produce UI mockups from descriptions. A product manager can describe
a feature in natural language:

We need a mobile sign-up screen with a welcome message, a playful illustration, and a
form for name, email, and password. It should have our brand colors and a friendly
look.

An Al design assistant can take this description and generate several candidate Ul
designs in seconds, complete with layout, placeholder text, and even styled compo-
nents. The designer or developer then picks the closest one and refines it.

In the future, these tools could be integrated directly into design software or even
coding environments so that the line between “designing” and “coding the UI” blurs.
The AI might directly output HTML/CSS or Flutter code for the design it generates,
making it immediately testable. This would speed up the design iteration cycle tre-
mendously. Instead of sketching by hand or in software, youd collaborate with an AI
that proposes designs based on best practices and vast training data of what users find
appealing or usable.

Even in the creative process of design, an Al could be a muse. When a designer is
brainstorming a color scheme or an illustration style for an app, an Al tool could gen-
erate a mood board of colors or even create custom iconography on the fly. For
instance, they might tell the AI:

I need a logo that combines the ideas of code and music.

It would produce a few sample logos mixing symbols of coding (like curly braces)
with musical notes. While a professional designer might ultimately handcraft the final
asset, the AIs suggestions can spark ideas and accelerate the exploration phase. In
essence, Al can fill the role of a quick prototyper and creative partner that broadens
the designer’s palate of options.

It's important to note that in design and UX, human judgment is paramount. Aes-
thetic taste, understanding of human emotions, brand identity—these are things an
Al can approximate but not inherently possess. Thus, Al in design is a tool to
enhance human creativity, not replace it. It can handle the grunt work of producing
variants and processing user data, freeing designers to focus on empathy and creative
decisions.

For developers, Al-driven design means that the traditional handoff between design
and development might become more fluid. Developers could generate UI code with
Al in collaboration with designers, or vice versa. It also means frontend developers
might spend less time tweaking layouts pixel by pixel and more time ensuring the
design aligns with functionality and is implemented accessibly. They might also work

208 | Chapter 11: Beyond Code Generation: The Future of Al-Augmented Development

on creating the hooks for personalization—writing code that allows the AI to choose
between layout A or B based on user data and ensuring both layouts are performant
and solid.

In a future of vibe coding, you might “vibe design” as well: just describe the vibe (pun
intended) you want for your applications look and feel, and AI will help materialize
it. The result is a holistic AI development process—not just writing backend logic or
database queries with AI assistance but crafting the whole product experience in part-
nership with AL

Al for UX Research

Another aspect of design is understanding user behavior. Al can analyze usage data
from your application (with privacy considerations in mind) to highlight where users
struggle. For instance, an Al might detect that many users hover over a certain icon
expecting it to be clickable, and it’s not—indicating a UX improvement opportunity.
Or it might notice that users from a certain demographic consistently drop off at a
particular step of a workflow, suggesting that step might not be intuitive for them.

In the future, AI could even simulate user interactions (using models of user behav-
ior) to predict UX issues before real users encounter them. This “virtual UX testing”
could catch things like overly complex navigation or unclear labels during develop-
ment, when they’re easier to fix.

Personalized User Experiences

Personalization has been a buzzword for a while—in the sense of providing different
content to different users based on preferences or history. AI can take personalization
to the next level by fine-tuning software behavior and interfaces for each user in real
time. For example, an app’s Al could learn that a particular user tends to navigate the
app via search rather than menus. The AI could then adapt by making the search bar
more prominent for that user or even preloading search results it expects the user
might want given the context (like a human assistant anticipating their boss’s needs).

Another scenario would improve accessibility: if the AI detects a user is using screen-
reader technology (and thus is perhaps visually impaired), it could automatically
switch the application to a high-contrast, larger-font mode with optimized screen-
reader labels, even beyond what the static accessibility settings might do. Essentially,
software can become adaptive.

Imagine an ecommerce site that rearranges its layout on the fly—some users might
see a grid of products and others a list with more details, depending on what seems to
engage them more. These changes could be subtle and continuous as the Al experi-
ments and learns—somewhat like how A/B testing works but on an individual level
and autonomously.

Al-Driven Design and User Experience Personalization | 209

The Evolution of Project Management with Al

Software development isn’t just writing code and making designs; it’s also planning,
coordinating, and making decisions—the domain of project management and team
leadership. AT’s analytical and predictive capabilities can greatly assist in managing
projects, from allocation of tasks to risk management and decision support. Here’s
how AI could reshape the way we plan and execute software projects:

Task allocation

Managing a team involves knowing each developer’s strengths, weaknesses, and
current workload, then assigning tasks accordingly. An Al project management
assistant could analyze various data points—code commit history, areas of exper-
tise (perhaps gleaned from which parts of the codebase a developer has worked
on), even personal productivity patterns (some people code more effectively in
the morning, others late at night)—and recommend who should tackle a new
task.

For example, if a new feature involves database work and the AI knows Alice has
done a lot of database-related tasks successfully and isn’t overloaded, it might
suggest assigning the task to Alice. Moreover, the Al could predict how long the
task might take by comparing it to similar tasks in the past and considering the
individual’s velocity. This helps project managers set more realistic timelines and
avoid overburdening any single team member. Over time, such an AI could learn
to balance the workload like a skilled manager, ensuring that no one is idle and
no one is overwhelmed.

Scheduling and sprint planning

Al can assist in breaking down high-level goals into actionable items. You might
feed the AT a feature request or a user story, and it could suggest a list of subtasks
required to implement it. Essentially, it could produce a draft plan or a work
breakdown structure. During sprint planning (in Agile methodologies), the Al
could analyze the backlog and, given the team’s past velocity, suggest which set of
tasks fits into the next sprint.

It could even highlight dependencies between tasks, ensuring the plan is logically
ordered:

Task B should be done after Task A, as it builds on that functionality.
For long-term roadmapping, Al tools might simulate different scenarios:

If we prioritize Feature X now, the model predicts we risk delaying Feature Y by 2
weeks due to overlapping resource needs.

Having these simulations and data-driven insights can help human managers
make informed decisions on priorities.

210

| Chapter 11: Beyond Code Generation: The Future of Al-Augmented Development

Risk analysis and management
Risk management often involves anticipating what could go wrong—delays, tech-
nical hurdles, integration issues—and planning mitigation efforts. Al is well
suited for pattern recognition, so it could analyze historical project data (within
the company or even industry-wide, if available) to identify risk factors.

For example, the AI might flag things like:

o Projects involving a switch in technology stack have a 30% higher chance of
running over schedule based on historical data.

» We have slipped in integration testing phase in the last three projects; likely a
risk for this project as well.

With this, managers can preemptively allocate more time or resources to those
phases. Another angle is monitoring current progress: an Al system could watch
the rate of task completion, the rate of bug discovery, etc., and send alerts if it
senses trouble:

The team is closing tasks at half the expected rate this sprint; possible blockers
need attention.

Essentially, AT can be an ever-vigilant project auditor, spotting issues before they
escalate.

Decision support
Project management involves many decisions—like whether to cut a feature to
meet a deadline or whether to invest in refactoring instead of adding new fea-
tures. Al can't make these decisions because they involve business and human
factors, but it can provide data to support them. For instance, if debating a refac-
tor, the AI might report:

If we refactor module Z, based on complexity metrics and team input, it could
reduce future development time on related features by 20%. It might add a two-
week delay now but pay off in six months.

While these numbers would be estimates, having an objective analysis helps
stakeholders weigh trade-offs more concretely.

Another example might be deciding whether to adopt a new library or build in-
house. The Al could scan documentation, community support, and known issues
about that library and summarize its pros and cons, saving the team hours of
research.

Natural-language status queries
Stakeholders or managers could one day query an Al in natural language about
project status:

How is the payment integration feature going? What are the blockers?

The Evolution of Project Management with Al | 211

The Al having parsed ticket updates, commit messages, and test results, might
answer:

The payment integration is 70% complete. One blocker is a failing test related to
currency conversion, which two developers are currently debugging. If resolved
by tomorrow, the feature is on track for completion by Friday.

This kind of accessible status reporting can improve communication, especially
in large teams or teams with nontechnical stakeholders. The AI basically
becomes an omniscient project assistant that knows the nitty-gritty details and
can summarize them as needed.

Emotional and team health insights

This is a bit speculative, but Al could also gauge team morale or stress by analyz-
ing communication patterns (respecting privacy and boundaries, of course). For
example, an Al might detect that code review comments are becoming terse or
Jira tickets are getting a lot of “reopen” actions—possibly indicating confusion or
frustration—and gently alert a project lead to check in on the team’s well-being.
In remote or distributed teams, where such signals are harder to read, an Al that
monitors the “digital mood” could be valuable. Of course, this would have to be
handled delicately and transparently to avoid feeling invasive.

In all these ways, Al acts as a force multiplier for project managers. It handles the
heavy analysis and routine suggestions, allowing human managers to focus on what
they do best: making judgment calls, motivating the team, and handling the human
side of collaboration. Good project management is as much art as science; Al can
strengthen the science part (data, predictions, analysis) so that the art (leadership,
vision, adaptability) can shine. Developers should welcome these enhancements too:
a well-planned, well-monitored project means clearer goals and fewer nasty surprises.
It also means less time in status meetings or updating spreadsheets—since the Al
takes care of those details—and more time doing creative development work.

How Autonomous Agents Could
Change Software Engineering

We're still in the early innings of this technology, but it's moving fast. It’s worth pon-
dering the longer-term implications and how things might evolve in the next few
years. Here’s a vision of the future of software engineering in the age of autonomous
coding agents, drawing from current trends and some informed speculation:

AT agents will become a standard part of the dev team
Just as using source control or CI/CD is standard today, having AI agents partici-
pate in development could become routine. It might be normal that, every morn-
ing, you check an “Al assistant board” showing tasks done overnight by agents—

212 | Chapter 11: Beyond Code Generation: The Future of Al-Augmented Development

the code reviews will be waiting for you when you log in. There’s already a hint of
this today, with agents running “while you sleep” Engineers might commonly
delegate a batch of tasks at day’s end for the Al to attempt by next morning. The
mindset of what a “developer’s job” is will shift: less about typing out boilerplate
or doing rote updates, more about defining problems, integrating solutions, and
guiding the Al You might say, to be a bit fanciful, that developers become more
like product managers for Al developers—they specify what needs doing and
ensure that it meets requirements.

Multiagent collaboration will be more common
Right now, each agent largely works in isolation on a task you give it. But the
future could see scenarios where multiple agents with different specialties collab-
orate. One agent might be great at frontend tasks and another at backend tasks,
and you give them a coordinated task (or maybe they even figure out how to split
it). Alternatively, an agent could explore multiple solution paths in parallel —what
Kojo calls multibranch exploration.

Imagine you give a complex problem to an Al and it spins up three subtasks with
different approaches or architectures, then chooses the best one—or even asks
you which direction you prefer. This could dramatically reduce the time it takes
to evaluate different implementations (something that currently might take mul-
tiple engineers prototyping over days). Of course, orchestrating that is a nontriv-
ial task, but its not out of the question as agent frameworks become more
advanced.

Intelligent checkpointing will let Als ask humans for help

Future agents may be smart enough to ask for guidance proactively at decision
points. This isn't just speculation: there’s active research happening on uncer-
tainty estimation and self-reflection for LLMs, with early signs that models can
be trained or prompted to recognize when they’re unsure and ask for help rather
than forge ahead. For example, an agent might reach a point where two libraries
could be used to implement something and instead of guessing, it pauses (much
like a junior dev might) and asks you:

I could use Library A or B for this—do you have a preference?

There’s a growing belief in the industry that adding this kind of “intelligent
checkpointing” makes agents feel more trustworthy, like collaborators rather than
black boxes. It also aligns well with how humans work in teams—knowing when
to ask instead of bluffing. While it’s still early, were starting to see more models
that support this kind of behavior through techniques like tool-use reflection,
planning with uncertainty thresholds, and making explicit affordances for user
feedback midrun. Intelligent checkpointing requires the agent to know its own
uncertainty, which is a challenge, but researchers are working on AI self-
awareness, including confidence.

How Autonomous Agents Could Change Software Engineering | 213

Agent UX will improve
As we offload more work to agents, we'll need better ways to keep track of what
they’re doing. Kojo proposes an agent inbox—a unified view of what tasks agents
are working on, whats been done, and what needs your attention. This could be a
dashboard showing all running agent tasks along with their progress (“3/5 steps
completed” or “awaiting review”) and results.

Instead of the current mix of logs and PRs, a clear interface to manage agents will
emerge. Perhaps IDEs will have an “Agents” sidebar listing active tasks and a feed
of updates. You might also get notifications:

o Agent X has finished task Y and opened PR #123.
o Agent Z needs input to continue.

This infrastructure will be important to scaling up usage without losing overview.
After all, no one wants 10 silent bots doing who knows what with no central
control.

Agents will integrate with issue trackers and CI systems
I foresee a tighter loop where an issue in your tracker (Jira, GitHub Issues, Lin-
ear) can be addressed by an agent from end to end. In fact, CodeGen’s Linear
integration already hints at this.

The workflow might be as follows:

1. A PM files a ticket with specs.

2. A developer (or tech lead) approves it for Al

3. An Al agent picks it up, does it, and attaches the PR to the ticket.
4. A human reviews and tests the fix and closes the ticket.

This could make the development process more continuous. Similarly, CI sys-
tems might invoke agents automatically when certain checks fail. For instance, if
a security scan finds vulnerabilities, an agent could attempt to upgrade the vul-
nerable library or refactor the risky code and then open a PR with the fix. Or if
code coverage drops below threshold after a PR, an agent could generate addi-
tional tests to raise it. Think of it as automated maintenance.

As a concrete example, Dependabot currently opens PRs to update dependencies.
Not only could an AI agent open the PR, but it could also adjust any code that
broke due to the update, run tests, and ensure it’s all good—basically a super-
charged Dependabot.

Model improvements will narrow the 30% gap
The major AI models themselves (GPT-4, Gemini, Claude, and the like) will con-
tinue to improve their code understanding and generation. As they get more
capable, that “last 30%” gap might shrink. We might see agents that hardly ever

214 | Chapter 11: Beyond Code Generation: The Future of Al-Augmented Development

miss an obvious reuse or edge case, because the model has been trained on even
more scenarios or has better reasoning.

With better models, agents will make fewer mistakes, require less oversight, and
possibly handle more complex tasks. That said, software is inherently complex,
so I suspect there will always be some gap for human judgment. Maybe it
becomes the last 5%-10% rather than the last 30%.

I also expect models to become more efficient, making it feasible for those wor-
ried about data privacy (or cost) to run local or self-hosted agents. Open source
coding models might catch up, to the point where you can have an on-prem
agent that’s nearly as good for many tasks as the big cloud agents.

Agents and tooling will become more specialized
We might see specialized coding agents for different domains or roles. Imagine a
“BugFixer” agent that you point at a failing test or error log and it zeroes in on
the bug, a “PerformanceGuru” agent that focuses on profiling and optimizing hot
spots, or a specialized agent for writing documentation and code comments from
an existing codebase.

By specializing, agents could incorporate more domain-specific knowledge or
tools. We might see an agent that integrates with game engines to help with game
dev tasks, or one that’s great at data-engineering pipelines. A team of narrow Al
specialists could parallel the distribution of expertise within human teams, where
some devs are known for frontend work and others for infrastructure. You could
have Al teammates like DocsBot, TestBot, RefactorBot, and SecurityBot, each
tuned for those purposes. In fact, Cursor already has something called BugBot
for automated PR reviews, which is a step in that direction. BugBot doesn’t write
code; it comments on PRs with a focus on bug risks, like a static analysis on
steroids.

Developers will undergo a cultural and skill shift

If agents handle more routine coding, the skill sets of developers will shift more
toward design, architecture, and oversight, as discussed in Chapter 4. Soft skills,
like clearly communicating requirements (to humans and Als alike), become
even more important. Code reading and review skills may well become as essen-
tial as code writing skills. We might also place more emphasis on testing: since
tests are a critical way to verify Al outputs, being good at writing test cases (or
guiding Al to write them) remains valuable.

Essentially, the “human 30%” will concentrate on the higher-level critical think-
ing and quality-control aspects of software development. I suspect we'll also see
changes in how junior developers ramp up. Maybe they’ll start by managing an
AT agent on simple tasks before writing a ton of code themselves, which could be
both good (they can deliver value quickly) and challenging (they need to learn

How Autonomous Agents Could Change Software Engineering | 215

the fundamentals and not treat the Al as a crutch). It’s an exciting time for those
willing to adapt, but it may be uncomfortable for those who prefer the old ways.
As Inoted in Chapter 4, a big part of “future-proofing” your career in this Al era
is embracing these tools and emphasizing your uniquely human strengths.

New roles and processes will emerge

We might see the rise of roles like “AI Wrangler” or “Automation Lead” in engi-
neering teams—people who are particularly skilled at leveraging AI agents,
designing workflows around them, and maintaining their configurations. Its
analogous to how “build/release engineers” emerged when build systems became
complex, or “DevOps engineers” as infrastructure automation grew. Similarly,
audits to check that AI has not introduced any insecure patterns might become
standard in code reviews.

There may be more emphasis on testing culture to provide extra confidence: per-
haps every agent PR will have to include tests (written by the agent or a human)
to be considered for merge. If Al agents are writing a lot of the code, maybe
human engineers should write more of the tests (or vice versa) to ensure inde-
pendent verification.

In essence, the future with background coding agents looks like one where developers
orchestrate and verify, while AI agents execute and implement (see Figure 11-1). Soft-
ware engineering could become more about supervising a fleet of automated coders
and less about doing every step manually. This could unlock massive productivity,
reduce the boring grunt work, and even allow teams to tackle technical debt and
maintenance tasks they never had time for before. (Imagine clearing out all those
minor bugs and inconsistencies because now you can just tell an Al to handle them!)
It might also lower the barrier to prototyping new ideas: you could have an Al draft a
whole prototype app, then just fine-tune it yourself. We may also get to explore more
solutions before settling on decisions, since Al can generate alternatives quickly.

However, our industry must integrate these changes carefully. The human element—
with its creativity, intuition, and ethical judgment—remains irreplaceable. Al can
amplify our abilities, but it can also amplify mistakes if unchecked.

My vision is optimistic: used wisely, autonomous coding agents will make developers
more productive and allow us to focus on the truly challenging and interesting parts
of building software, ultimately leading us to build better software faster. Achieving
that means cultivating good practices and being aware that our role as developers and
engineers is evolving.

216 | Chapter 11: Beyond Code Generation: The Future of Al-Augmented Development

=

DesignBot

| SecurityBot

Apply and test

Figure 11-1. Multiagent Al collaboration architecture: developers orchestrate specialized
Al agents for testing, design, coding, and security to collaboratively develop comprehen-
sive software solutions.

The Future of Programming Languages:
Natural-Language-Driven Development?

One of the most intriguing questions about the future of vibe coding is how it will
shape programming languages. If we can “just tell the AI what we want,” will we even
need traditional syntax and languages? Will English (or any human language)
become the new programming language? This section explores the possibilities.

We've already seen signs of natural language functioning as code in tools where you
describe a task in plain language and the AI writes the code. If this trend continues,
we might shift more of the programming effort to specifying the intent and require-
ments rather than the implementation. Future development environments could
allow developers (or even nondevelopers) to write something like this:

Every hour, check our database for inactive users, and send an email reminder to any
user who hasn’t logged in for 90 days, using template X. If the email bounces, mark the
user as ‘invalid email in the database.

The Al could take this specification and translate it into the appropriate code (like
setting up a cron job or scheduled function, writing the SQL queries or using the
ORM, or calling an email API). Essentially, the programmer’s role becomes more
about policy and behavior description.

The Future of Programming Languages: Natural-Language-Driven Development? | 217

This doesnt mean programming languages will vanish overnight. Instead, what
might happen is a layering: natural language for high-level orchestration and existing
programming languages under the hood for fine-grained control.

One reason programming languages exist is because natural language can be ambigu-
ous. If we remove formal languages entirely, we risk miscommunicating with the
machine. AI might bridge this gap by disambiguating based on context and by asking
clarifying questions, but there’s likely a limit; certain complex algorithms or optimiza-
tions might still require very specific instructions that are easier to convey in code
than prose. Thus, it’s conceivable that programmers of the future will need to be
bilingual in a sense: fluent in human language to talk to the AI, and fluent in the
underlying technical concepts to verify and tweak what the AI produces.

We might also see the rise of domain-specific natural languages—constrained forms of
English (or other languages) that Als can reliably understand, tailored to software
domains: for example, a “requirements language” for writing use cases that the Al can
convert into tests or code.

Even if they don't go all the way to full natural language, AT’s influence will likely
bring programming languages to higher levels of abstraction. In the past, we moved
from assembly to high-level languages and from manual memory management to
garbage-collected environments, each time raising the level of abstraction. AI could
allow us to define abstractions on the fly. Think of this in terms of “programming
with intent,” as discussed throughout this book: you specify a goal and the AI figures
out how to achieve it, possibly writing lower-level code as needed.

Another possibility is hybrid languages that blend natural language and code. For
example, a future language might allow code like this:

// Create a list of customer names from the orders, excluding duplicates
// and sorted alphabetically, then print it.
list<Customer> customers = orders -> map(order -> order.customerName)

-> unique()

-> sort()

-> print();

In this pseudo example, the comment in English is almost executable by the Al
Maybe, in the actual environment, you wouldn’'t even need the lambda syntax; the Al
could infer from the comment what you intend and fill it out. Or maybe the language
would have constructs that look like English but are formal enough for the AI to
parse. Think of it as an evolution of comments and pseudocode into actual code, with
Al interpreting the intent behind them.

218 | Chapter 11: Beyond Code Generation: The Future of Al-Augmented Development

Coding is already becoming more conversational. Instead of writing a complete pro-
gram, you start a dialogue with the AI:

Prompt: “I need a function to calculate loyalty points for customers based on their pur-
chase history”

AL “Sure. Do all products count equally, or do some products give more points? And
how should time factor in (e.g., recent purchases versus older)?”

Prompt: “Electronics give 2x points compared to other categories. And purchases in the
last month give a 10% bonus.”

AI “Understood. Here is the function implementing that... [AI presents code]. Shall 1
also generate tests for different scenarios?”

Prompt: “Yes, and also make sure it handles the case of no purchase history gracefully
(should return 0 points).”

In this scenario, programming is a back-and-forth in natural language with the Al,
which writes the code and asks clarification questions. This is akin to pair program-
ming, except the pair partner is an Al. We already see early versions with ChatGPT
plug-ins and Copilot Chat, etc. In the future, this could become the dominant mode
for creating software: a conversation that progressively refines the software, which is
much more fluid than writing a strict static text file from scratch.

Even if much of coding becomes natural language—driven, understanding how code
and computers work will remain important. Calculators and spreadsheets didn’t elim-
inate the need for a mathematician or accountant to understand arithmetic. You need
to know when the AT’s output is off somehow. If the Al misunderstands an English
instruction, a skilled developer might switch to pseudocode or actual code to pin it
down. So while the trivia of syntax might become less crucial (no need to remember
the exact order of some API’s parameters if the Al can fill that in), algorithmic think-
ing and debugging will still be vital. The languages might change, but the underlying
logic and problem-solving skills persist.

However, the barrier to entry for programming is already lower. Nondevelopers and
domain experts can directly create simple applications by conversing with Al through
vibe coding. This democratization is exciting: more people can create software solu-
tions without deep programming knowledge. The professional developers will then
tackle the harder problems, integrate those citizen-developed scripts safely, or build
the platforms that allow such interactions.

Even as AT helps us code in natural language, Als themselves might evolve new “lan-
guages” that are somewhere in between. Perhaps new programming paradigms will
emerge that are inherently Al-friendly—meaning they leave space for the Al to fill in
blanks, for instance, a language that allows partial programs with placeholders that an
AT can resolve (“[Optimize here for speed]”) or with fuzzy logic that the Al can refine
into deterministic logic.

The Future of Programming Languages: Natural-Language-Driven Development? | 219

In the end, what’s likely is not a complete replacement of programming languages
with English but a fusion of the two: more expressive power for developers and a
more intuitive way to tell computers what to do. As Andrej Karpathy aptly puts it,
“Maybe the future of programming isn't about writing perfect code anymore. Maybe
it’s about perfectly explaining what you want” The essence of programming—think-
ing clearly about a problem and specifying a solution—remains. The form of the
specification, however, will evolve to be more natural, with AI as the translator that
turns our high-level intentions into low-level execution.

This future holds great promise: faster development, more accessibility, and the abil-
ity to create increasingly complex systems by focusing on what we want to achieve
rather than the nitty-gritty of how to type it out. As always, each leap in abstraction
has led to an explosion in creativity (high-level languages enabled software that
assembly could never have scaled to). Natural-language-driven development could
unleash another wave of innovation, with vibe coders at the forefront, literally talking
new worlds into existence through software.

How Vibe Coding Is Reshaping the Industry
Throughout this book, several fundamental principles and ideas have emerged:

Intent over implementation
Vibe coding shifts the focus from writing step-by-step code to expressing the
intent or desired outcome and letting AI handle the implementation details. This
changes how we approach problems: we think more about what we want to
achieve and less about how fo type it out. It's a higher-level way of thinking about
software development.

Al as a collaborative partner
Rather than a tool used in isolation, Al in vibe coding is like a pair programmer
or an assistant. It’s interactive and iterative. We saw how important it is to guide
the AI (through prompt engineering), to review its output, and to combine our
strengths with the ADs. The future isn’t “Al replacing programmers” but pro-
grammers working alongside AI for greater productivity.

Ethics and responsibility
We emphasized that with great power (of AI) comes great responsibility. Mitigat-
ing bias, ensuring fairness, keeping processes transparent, and maintaining
accountability are all critical. The industry is recognizing that relying on Al
without guardrails can cause issues, so best practices around testing Al outputs,
documenting Al involvement, and addressing legal questions (like IP rights of
Al-generated code) are becoming part of standard procedure.

220 | Chapter 11: Beyond Code Generation: The Future of Al-Augmented Development

https://www.youtube.com/watch?v=LCEmiRjPEtQ
https://oreil.ly/0uP00

Al goes beyond code generation
AT’ role extends to testing, debugging, design, project management, and more.
This holistic integration means the entire software lifecycle is accelerated and
enhanced by Al Tools will increasingly support these phases—some already do,
like AI test generation in IDEs or Al-based project scheduling tools.

Skills are evolving, but fundamentals are evergreen
Programmers who embrace the previously mentioned practices will find that
their skill set is evolving—shifting to include prompt engineering, Al oversight,
data analysis, and high-level design alongside traditional coding and algorithmic
skills. The core problem-solving mindset remains crucial, but the day-to-day
tasks look different.

Yet certain fundamentals hold: understanding your problem domain deeply,
writing clear specifications (prompts are basically specs), maintaining rigorous
testing and validation, and focusing on user needs. Al doesn’t change these; if
anything, it amplifies their importance because any ambiguity or lack of clarity
can be magnified by ATl’s ultrafast execution.

This new paradigm of vibe coding is reshaping the industry in practical ways. Teams
that adopt AT tools report significant boosts in productivity: developers can complete
features in less time, or handle more complex projects with the same resources. It’s
also lowering entry barriers: less-experienced developers can achieve more with Al
guidance, potentially leveling up faster. On the flip side, it's pushing experienced devs
to expand their horizons and avoid getting complacent with old workflows.

Companies are starting to hire not just for programming knowledge but also for “AI
literacy”—the ability to leverage AI tools effectively. Job descriptions might soon
include familiarity with AI coding assistants, just like they include familiarity with
version control or cloud platforms today. Being a pioneer in vibe coding thus offers a
career advantage.

Importantly, vibe coding democratizes programming to an extent. More people—
including those who aren't traditional software engineers—can participate in software
creation by describing what they want. This could lead to a flourishing of software
tailored to niche needs, created by domain experts with the help of AI (with profes-
sional developers focusing on providing guardrails, platforms, and polished core
components for them to use).

It’s an inspirational time. We stand on the brink of a transformation that we as devel-
opers get to shape. Think back to the early days of computing: those who embraced
the personal computer revolution ended up creating the world we have now. Today,
Al in programming is a similar inflection point. Embracing it means being part of
defining how software is built for decades to come.

How Vibe Coding Is Reshaping the Industry | 221

Summary and Next Steps

The future of programming is not something that will just happen to us—it’s some-
thing we will create. Each of us in the developer community has a role to play in how
vibe coding and Al tools are adopted, regulated, and advanced. This is a call to action
for you as a reader and practitioner:

Experiment

Don’t wait for all the answers to be given to you. Go out and try vibe coding in
different contexts. Use Al to build something quirky and new. Push the bound-
aries of what these tools can do. Maybe you’ll discover a novel use case or a limi-
tation that no one has documented yet. Each experiment, whether it succeeds or
fails, contributes knowledge to the community.

Share your findings

Write about your experiences or at least discuss them with peers. If you find a
technique that works brilliantly, publish it. If you encounter a pitfall, warn others.
In this rapid evolution, community knowledge sharing is how we all keep up. You
could save someone days of debugging by posting that solution you found to an
AT quirk, or spark someone’s creativity by sharing a cool Al-assisted project.

Contribute to tools

If you have the inclination, contribute to the development of Al tools themselves.
This might mean contributing code to open source Al frameworks or simply giv-
ing detailed feedback to tool makers (many of whom are very eager to hear from
users about what to improve). By helping shape the tools, you directly influence
how the future will look. Many Al coding assistants today have come a long way
because developers like you tested beta versions and provided insight.

Advocate for positive change

Within your organizations or communities, advocate for using Al to improve
productivity and also for training people to use it properly. Encourage managers
to allow time for learning Al tools or to update policies that might forbid them
out of misunderstanding. Show how it can be done securely and beneficially. The
more success stories emerge of Al augmenting teams positively, the more the
industry will lean into it.

Keep a lifelong student mentality

Adopt the mindset that we are all students in this new era. Stay humble and
open-minded. The juniors of tomorrow might come in knowing Al tooling
natively (like how today’s new grads might have grown up with more exposure to
coding than some older folks did). Be ready to learn from anyone, regardless of
experience level, because this is new to everyone in some way. If you keep that
student mentality, you'll always find growth and avoid the trap of thinking you've
figured it all out.

222

| Chapter 11: Beyond Code Generation: The Future of Al-Augmented Development

Balance enthusiasm with prudence
Be enthusiastic about what’s possible—your excitement will inspire others. But
also be the voice of prudence when needed, ensuring that excitement doesn’t lead
to careless use. For example, champion Al-driven development but also push for
unit tests and code reviews on Al outputs. This balanced approach will make vibe
coding sustainable and respected.

Mentor the next generation
As you gain mastery, help newcomers. Vibe coding lowers the barriers to entry,
meaning more beginners might dive into programming. They’ll need guidance to
learn solid fundamentals that AI might abstract away. By mentoring them, you
ensure that the next generation of developers doesn’t become overly reliant on Al
without understanding. You’'ll be passing on the torch of good software engineer-
ing practices, now enhanced by Al

The exponential change were seeing is a rare opportunity. Think of previous techno-
logical leaps, from the Industrial Revolution to the internet boom—those who
engaged with them shaped entire industries. We are at such a juncture with Al in
software development. It's not just about keeping your job or making it easier; it’s
about having a say in how technology evolves and how it impacts society.

By reading this book, you've shown you're a forward-thinking person. Now, I encour-
age you to take that forward thinking and put it into action. Every line of code you
write with Al every prompt you engineer, every colleague you teach, every policy you
influence—it all contributes to the future of vibe coding.

In closing, remember that at its heart, coding has always been about creation and
solving problems. Vibe coding, powered by Al, is an incredibly powerful new
medium for creation. Embrace it with optimism and curiosity. Use it to build things
that matter. And as you do, keep the human element at the center—our creativity, our
judgment, our values.

The future of programming is being written right now, not just in code but in how we
choose to integrate these AI partners into our work. It’s an exciting, uncharted path,
and each of us gets to be a pioneer. So step forward, experiment boldly, share freely,
and lead with the best of human intellect and spirit. By doing so, you won't just be
adapting to the future—you’ll be actively shaping it.

Happy vibe coding, and I'll see you in the future you help create!

Summary and Next Steps | 223

A

accessibility, future improvement with AI, 209
actions and reasoning in ReAct prompts, 57
adaptability and learning, importance of, 87
AT (artificial intelligence)
autonomous Al coding agents, 71
coding assistance, 3
coding spectrum, 4
combining multiple models to maximize
strengths, 195-197
confidence far exceeding its reliability, 68
as first drafter, 72, 73
going beyond code generation, 221
midlevel engineers using, 88
as pair programmer, 72, 75
best practices for, 75
practicing problem solving and debugging
without using AL 91
real-time collaboration with in full stack
development, 133-135
as validator, 72, 76
where AT still struggles, 33
Al pair programmer versus Al assistant devel-
oper, 192
Al patterns, learning from, 164
Al-assisted engineering, 3
differences from vibe coding, 10
structured approach with Al partner, 7-10
code migration or refactoring, 8
expectations, 9
generating full mini-application or fea-
ture from detailed specs, 9
goal of high-quality code, 9
workflow, 7

Index

when it should take precedence, 32

Al-augmented development, future of, 205-223

automated test generation, 205

how vibe coding is shaping the industry,
220

intelligent debugging, 206

possible changes by autonomous agents to
software engineering, 212-216

predictive maintenance and refactoring, 206

project management, evolution with AL,
210-212

shaping programming languages or possible
natural-language-driven development,
217-220

shaping the future of vibe coding, 222-223

Al-based coding tools

generating convincing but incorrect output,
68

incapable of producing new abstractions or
strategies, 68

integrating testing suggestions, 105

situations in which they struggle, 68

tasks they excel at, 67

Al-generated code, understanding, 97-107

code readability and structure, 100

debugging strategies for, 101

developer's role, reviewing, refining, and
owning the code, 106

majority solution not most appropriate sol-
ution, 99

refactoring code for maintainability and
ownership of, 103

unit, integration, and end-to-end testing,
importance of, 104

225

Al-human collaboration, optimizing in full
stack development, 134
algorithms
junior developers' understanding of, 91
performance optimization in Al-generated
code, 158
ambiguous references in prompts, 42
Angular, 121
tips on, 126
Anthropic’s Claude language model, 21
APIs
backend/API development patterns with Al
126-130
API documentation and testing, 130
implementing endpoints, 126
multistep operations at endpoints,
orchestrating, 128
failed calls, error handling on frontend, 133
integrating in web application frontend
using Al 125
junior developers implementing new end-
point following patterns, 90
outdated, checking for use in Al code, 101
penetration and fuzzing tests on, 151
testing error handling in AI-generated sys-
tems, 155
in web application backends, 121
architect and editor, senior engineers and
developers as, 82
architecture
foundational texts on, 161
midlevel engineers learning system architec-
ture, 88
solid architecture needing human oversight,
88
using architectural patterns to encourage
modularity and avoid sprawl, 160
Artifacts feature (Claude), 28
async agents, 188
(see also autonomous background coding
agents)
coordination paradox, 200
async/await functions, 159
attributions for Al-generated code, 177
audits
periodic security and performance audits of
codebase, 169
security, 137
(see also security)

authentication
asking Al to whip up user logging system, 6
creating REST API for with Cline, 20
improper, in Al-generated code, 145, 146
author of Al-generated code, 173
authorization, improper, in AI-generated code,
145
autonomous Al coding agents, 71
using VSCode with Cline, 20
autonomous background coding agents, 187
about, 187
best practices for effective use, 202-204
challenges and limitations, 199-201
comparison to in-IDE AT assistants, 192
how they could change software engineer-
ing, 212-216
how they work, 188-192
major players in, 198-199

B
backends
backend/API development patterns with Al
business logic and validation, 127
database integration, 127
implementing endpoints, 126
using frameworks or boilerplates, 127
hardening for service converting CSV files
to charts, 117
integrating with frontend in web application
using Al, 132-135
aligning frontend and backend con-
tracts, 132
real-time collaboration with AI, 133
testing error handling in AI-generated sys-
tems, 155
web application, 121
background coding agents, 187
(see also autonomous background coding
agents)
Bandit (security scanner), 149
berypt, using to hash and compare passwords,
147
bias in AT output, 37, 178-181, 184
bidirectional translation (ChatGPT), 28
big ball of mud architectural antipattern, 161
blue-green deployments, 168
Bolt.new, 111
boundaries between system components, man-
aging, 84

226 | Index

brute-force text searches by autonomous cod-
ing agents, 189
business logic
in backend components of web application,
126
complex, CRUD operations involving, 31
in web application backend, 127

C

caching, 88
adding for performance in AI-generated
code, 159
cascading deletes in databases, 132
chain-of-thought (CoT) prompting, 51-53
ReAct prompting and, 58
change, adapting to, 87
chat-based interfaces, 12
chat-oriented programming (CHOP), 82
ChatGPT, 5
OpenAT’s ToS for, 173
remarkable versatility and broad knowledge
base, 28
use by Cursor, 21
CI/CD (continuous integration and continuous
deployment) pipelines
automating, 167
autonomous coding agents and, 194
more frequent deployments with AI-
assisted code, 170
security in, 168
Claude, 5, 21, 25
choosing between Google's Gemini,
Anthropic's Claude, and OpenAl mod-
els, 29
reasoning virtuosity of, 27
support for multiple AI models, 26
Cline, 27,110, 111, 187
transforming VSCode into powerful AI-
assisted development environment, 20
cloud-based command-line agents, 198
Code Assist, 27
code by conversation approach in vibe coding,
4-7
code editors
Cursor, 21
Gemini's integration with development
workflows through, 27
code generation
Al-assisted engineering not stopping at, 8

how it works, iterative cycle and Al's role in,
14-16
repetitive, using vibe coding for, 32
code reviews
for Al-generated web applications, 137
bottleneck amplified by autonomous coding
agents, 200
code produced by autonomous coding
agents, 194
having all team members review code, 164
midlevel engineers focusing on, 86
performing human code review with secu-
rity checklist, 150
in responsible AI, 184
strategies for Al-assisted development,
165-166
using separate Al as reviewer for security of
Al code, 150
codebase
full indexing by Windsurf, 23
querying in plain English with Windsurf, 24
Codex, 5, 188, 190, 198
coding spectrum, Al-assisted engineering ver-
sus vibe coding, finding your place on, 11
coding standards, consistent, using in AI-
generated code, 160
collaboration
Al as collaborative partner, 220
junior developers collaborating with team
members, 94
collaboration features of tools, using, 74
combinatorial math, 52
comments in AI-generated code, 100, 163
communication
clear communication in iterating with AlI,
114
cross-functional, getting good at, 87
junior developers communicating with team
members, 94
company dashboard (internal), built using AI,
138
compatibility constraints, mentioning in
prompts, 55
complexity
analysis of in Al-generated code, 158
breaking up complex tasks in prompts, 59
excessive, avoiding in Al-accelerated code-
base, 162

Index | 227

handling frontend complex logic with Al
guidance, 125
Composer mode (Cursor), 21
concurrency, 91, 159
concurrent agent operations, managing, 203
conﬁgurations, insecure, in Al- generated code,
145
consistency and standardization in coding, 36
constraints
including in prompts, 42
mentioning in contextual prompts, 55
constructs, AI-speciﬁc, overrelying on, 162
context
Claude's understanding of broader context,
28
context window size in vibe coding, 18
Cursor's project-wide context, 23
global context suggestions by Windsurf, 24
leveraging in Al-assisted coding, 14
context window, 51
contextual prompting, 54
control over Al-generated prototyping, 112
conversation, stateful, versus one-shot prompt-
ing, 60
conversational interfaces, generating complete
applications through, 111
Copilot, 192
lawsuit against, 174
reactive nature of Copilot-style assistants,
193
copyrights, Al-generated code and, 172, 173
possible copyrightable material, 174
cost optimization, 88
credentials
hard-coded, in Al-generated code, 144
management of for deployments, 168
credentials, hard-coded, in Al-generated code,
144
critical thinking and foresight, 85
cross-site scripting (XSS) in web apps, 145
CRUD (create, read, update, delete) operations,
30
feature prototyping and CRUD applications,
31
CSS
Al generating, 109
Al integrating CSS library, 114
Al outputting CSS styling, 115

Cline generating complete CSS/HTML page
example, 110
handling for web application frontend using
Al 124
CSV files, converting to charts, Al-assisted pro-
totyping of, 117
cultural biases, 178
Cursor IDE, 21, 111, 187, 190
background coding agents, 198
background coding gents, 189
code generation by, 21
editing existing code, 21
Gemini's integration with, 27
using effectively in professional workflow,
22

D
dashboards
internal company dashboard built using A,
138
data bias, 179
data consistency rules (database), 132
data partitioning and replication, 88
data protection laws, 181
data structures, 91
databases
design and integration in web application
using Al, 130-132
checking Al-generated queries, 131
database queries, 131
using an ORM, 130
integration in web application backend
using Al, 127
query optimization for Al-generated code,
159
in web application backends, 121
transactions in, 129
date formatting, using Al for, 73
mismatches in Al-generated components
generated in isolation, 157
de minimis, 172
death of the junior developer, 90
debugging
of Al-assisted code, 10
of Al-generated code, 101-103
by autonomous coding agents, 193
effective prompts to Al for, 44
intelligent debugging using AI, 206
junior developers practicing without A, 91

228 | Index

lack of skill development in caused by Al
coding, 71
as timeless engineering skill, 86
using Cursor, 22
decision support in project management, 211
deep reasoning models, 25
DeepSeek model, 25
defaults, insecure, in Al-generated code, 145
deletes
cascading deletes in databases, 132
demo-quality trap, 72
democratization of programming, 7
dependence on Al coding tools, problems
caused by, 71
dependencies, 121
background coding agents installing, 188
checking for unvetted libraries or license
risks, 184
Cline installing, 20
in React useEffect hook, 126
updating, using future Al, 207
dependency management and updates, security
vulnerability in Al-generated code, 146
deployments
best practices for reliable deployment,
167-170
before and during deployment, 167
ongoing practices after deployment, 169
design
Al-driven design and UX personalization,
207-209
Al for UX research, 209
generative design tools, 208
personalized user experiences, 209
design-to-code process, acceleration using
Al prototyping tools, 111
learning system design, 88
Ul and UX, midlevel engineers venturing
into, 89
developers
considered as authors of AI-generated code,
173
cultural and skill shift in future resulting
from use of autonomous agents, 215
developers as editors, code reviews formal-
izing, 166
evolving Al-generated prototype toward
production, 115-118
how they're actually using Al 69-76

common failure patterns, 70-72
practical workflow patterns, what
actually works, 72
innovations resulting in more growth and
opportunities for, 95
junior developers thriving along with AI,
90-94
communicating and collaborating, 94
developing eye for maintainability, 92
developing prompting and tooling skills,
92
focusing on testing and verification, 91
learning the fundamentals, 91
practicing problem solving and debug-
ging without Al 91
seeking feedback and mentorship, 93
shifting mindset from consuming to cre-
ating solutions, 94
reviewing, refining, and owning AI-
generated code, 106
roles evolving, not disappearing, 81
development
Al-assisted, 4
Al-assisted engineering permeating entire
lifecycle, 8
Al-powered tools dramatically accelerating,
5
faster cycles with Al-assisted coding, 36
plan-first development with Al support, 8
Devin, 190, 193
as Al teammate, 198
(see also AI)
DevOps
background coding agents integrating with
tools, 194
midlevel engineers mastering, 85
vibe coding woven into, 72
diffs, 190
discrimination resulting from Al usage, 184
diverse teams, hiring, 180
Django, 127
documentation
adding while evolving prototype toward
production, 116
produced by Al for web application back-
end API, 130
providing for Al-accelerated codebase, 163
Doe v. GitHub, Inc. class-action lawsuit, 174
domain expertise, building, 85

Index | 229

domain mastery and foresight, cultivating, 83
domain-specific natural languages, 218
domains, software-engineering-specific, 85

E
ecommerce site by solo developer, built using
Al 138
edge cases
Al introducing unusual edge cases, 157
brainstorming for prototype using AI, 116
checking AI's handling of, 98
emotional and team health insights, gauging
using Al 212
end-to-end tests
writing for Al-generated code, 105
endpoints
implementing for backend API, 126
multistep operations, orchestrating, 128
engineering
switching from rapid prototyping mode to
disciplined engineering, 117
engineers
future-proofing your career with durable
engineering skills, 95
midlevel engineers, adapting and specializ-
ing, 84-90
building domain expertise, 85
cross-functional communication, 87
focusing on code review and quality
assurance, 86
learning new tools and adapting to
change, 87
learning system design and architecture,
88
learning systems thinking, 87
managing systems integration and
boundaries, 84
performance optimization and DevOps,
85
using Al 88
venturing into UI and UX design, 89
senior engineers and developers, leveraging
experience with Al, 82-84
being the architect and editor in chief, 82
cultivating domain mastery and fore-
sight, 83
honing soft skills and leadership, 83
mentoring and setting standards, 83

using Al as force multiplier for big ini-
tiatives, 82
environment, specifying in prompts, 42
error handling
revealing sensitive information in AI-
generated code, 146, 147
testing for Al-generated systems, 155
errors
finding and fixing in Al-generated code,
101-103
ESLint and security plug-ins, 149
ethical implications of vibe coding, 171-186,
220
bias and fairness, 178-181
intellectual property considerations,
171-176
transparency and attribution, 177-178
EU's Al Act, 177
exceptions (unhandled) in Al code, 100
execution of code and commands by autono-
mous coding agents, 193
execution stage, autonomous coding agents,
189
expectations of Al-assisted engineering versus
vibe coding, 10
experimentation
enhancement by Al-assisted coding, 36
vibe coding encouraging mindset of, 16
Express routes, 126

F

failure modes and recovery procedures, 88
failure patterns with use of Al-assisted coding,
70
demo-quality trap, 72
two steps back pattern, 70
failures
learning from, 170
fair use, 173
fairness in AI-generated output, 178-181
fallbacks in AI-generated code, 162
features
ease of adding using AI, 119
feedback
feedback loop with Al in prompts, 43
feedback loops with autonomous systems,
203
junior developers seeking from team mem-
bers, 93

230 | Index

few-shot prompting, 50
fidelity of Al-generated prototypes to input or
intention, 112
first drafter, Al as, 72, 73
force multiplier, Al as, 84
foresight, using to steer Al 83, 85
formatters, 156, 160
formatting
ensuring consistent code formatting in Al
code, 100
frameworks
modern framework utilization by AI coding
assistants, 31
using in web application backends, 127
frontends
integrating with backend in web application
using Al 132-135
aligning frontend and backend con-
tracts, 132
real-time collaboration with AI, 133-135
refactoring for prototype service converting
CSV files to charts, 118
testing error handling in Al-generated sys-
tems, 155
testing for Al-generated web applications,
136
web application, 121
web application frontend development pat-
terns with Al, 123-126
framework-specific tips, 126
handling complexity with AL, 125
implementing components from
descriptions, 124
integrating APIs and state management,
125
styling and layout, 124
full stack flow with AI (example), 134
full-text searches, coding agents defaulting to,
189
functionality you didn't want in AI code, 98
functions
Al defining multiple functions when one is
expected, 100
performance optimization in Al-generated
code, 158, 159
refactoring in Al-generated code, 103
fundamentals
evergreen nature of, 221

importance of learning by junior develop-
ers, 91
future of Al-augmented development (see AlI-
augmented development, future of)
future-proofing your career with durable engi-
neering skills, 95
fuzz testing of Al-generated code, 151, 155

G

Gemini, 18
choosing between Google's Gemini,
Anthropic's Claude, and OpenAI mod-
els, 29
multimodal coding capabilities, 27
support for multiple Al models, 26
gender bias, 179
generator versus reviewer asymmetry, 194
GitHub CodeQL, 149
GitHub Copilot, 187
lawsuit against, 174
living in the editor, 194
GitHub’s Copilot for Pull Requests, 166
glue code and integration, using vibe coding
for, 31
goals of vibe coding versus Al-assisted engi-
neering, 11
Google Gemini (see Gemini)
Google Jules, 198
(see also Jules)
Google LLC v. Oracle America, Inc. (court
case), 173
governance and process in responsible Al, 185
GPT-4, OpenAl's ToS for code, 173
gray areas in intellectual property issues with
Al-generated code, 176

H
Helmet middleware, 152
hooks in React, 126
HTML/CSS
Al generating, 109
Cline generating complete HTML/CSS page
example, 110
generation by Al design tools, 208
UI Layout Al generating, 197
HTML/CSS page
creating using Al assistant, 110
human contribution, maximizing, 81-96

Index | 231

Al-human collaboration in full stack devel-
opment, 134
future-proofing your career with durable
engineering skills, 95
humans monitoring automations, 169
junior developers thriving along with AL,
90-94
midlevel engineers, adapting and specializ-
ing, 84-90
senior engineers and developers, leveraging
experience with Al, 82-84
human oversight of Al-assisted coding, 15, 68,
181
Al-driven prototyping tools and, 112
evolving a prototype toward production,
115
performing human code review for security,
150
human-ATI hybrid teams, 196
human-AI pair programming, 75, 82
human intelligence exercised in code
reviews, 166
versus human-human pair programming,
75
(see also human-human)
human-human pair programming
versus human-Al pair programming, 75
junior developers with senior mentors, 93
human-related data, testing with diverse inputs,
180

idempotence, 155
IDEs (integrated development environments)
Al assistants in, comparison to autonomous
coding agents, 192
AT features blending into traditional coding,
12
Al-augmented, integrating AI directly into
development, 111
Al-augmented, using in full stack develop-
ment for web application, 133
Al-enhanced IDEs, 5
autonomous background agents integrated
with, 198
modern IDEs with IntelliSense, warnings
and flags from, 153
ignoring Al's clarification or output (prompt
antipattern), 62

inclusivity, prompting for, 180
inconsistencies (minor) in Al code, 101
inconsistency in prompts, 62
infrastructure as code, using to define deploy-
ment environment, 167
instructor role, assigning to Al, 53
integration of prototypes into real systems, 119
integration tests
for Al-generated web applications, 136
writing for AI-generated code, 105
integration, using vibe coding for, 31
intellectual property, considerations with AI-
generated code, 148, 171-176
copyrights, licenses, and ownership of code,
172-175
dealing with suspicious AI output, 175
gray areas, 176
intent over implementation, 220
intent, interpretation by Al, 35
intent, programming with, 3, 13-16, 110
from intent to implementation, understand-
ing Al's interpretation, 98
internationalization, Al model training and,
179
iterative loop in Al-driven prototyping, 112
iterative prototype refinement with Al-driven
prototyping, 112-118
iterative refinement of prompts, 43

J

jobs in software, shifting landscape of, 18
Jules, 188, 193, 198

junior developers (see developers)

K

key management, 168
knowledge paradox, 70

L

leadership and soft skills, honing, 84

learning, importance of, 87

legal requirements around Al, 181

library usage in Al-generated code, 101

licensing considerations in Al code, 148, 172

linters, 12, 156, 160

LLMs (large language models), 3, 196
ambiguous prompts, problems with, 41
leveraged by Cursor, 21

232 | Index

as power tools meant for power users, 96
thriving on examples and correlations, 45
training on vast corpus of programming
knowledge, 36
load balancing, 88
load testing, 155
logging
incorporating and using in tests of AI-
generated systems, 156
optimizing practices for security purposes,
152
Lovable, 111

M

maintainability
ensuring in Al-accelerated codebases,
160-164
considerations while prompting, 160
follow-up practices, 163
working with code output, 162
junior developers developing eye for, 92
refactoring Al-generated code for, 103
testing for AI-generated systems, 156
maintenance, predictive, using AI, 206
majority solution effect, 99
memory
optimizations for performance in AI-
generated code, 158
memory management, 91
mentorship
junior developers seeking from team mem-
bers, 93
senior engineers mentoring and setting
standards, 83
metaprogramming, 55
midlevel engineers (see engineers)
minimum viable product (MVP)
building quickly with help of AI pair pro-
grammer, 30
web application MVP, 139
model cards, 183
models (AI), 25-26
adapting your tone in prompts to, 49
categories based on approach and strengths,
25
choosing right model for your needs, 29
choosing right model for your task, 25
combining multiple models to maximize
strengths, 195-197

differentiating models by task type, 196
human-ATI hybrid teams, 196
using an orchestration system, 196
context window size, 18
future improvements to, narrowing 30%
gap, 214
knowing limits of, 59
major models in coding landscape, 26-29
ChatGPT, 28
Claude, 27
Google Gemini, 27
multimodel approach in development, 29
practical tips for any model, 26
providing updates to compensate for train-
ing cutoffs, 151
updated models with security focus, using,
152
variable output quality in coding, 36
modes of operation (Windsurf), 24
modularity, encouraging in Al code, 160
MongoDB, 127
monitoring, setting up in Al-generated sys-
tems, 156
multimodal processing (Al models), 25
MVP (see minimum viable product)

N

natural-language coding environments, 12
natural-language project status queries, 211
natural-language-driven development, 217-220
nondeterminism in AI systems, 156

0

object-relational mappers (see ORMs)
observability, setting up for deployments, 168
off-by-one errors, 100
one-shot prompting, 50

stateful conversation versus, 60
open source

and class action lawsuit Doe v. GitHub, Inc.,

174

information about norms, sources of, 172

not synonymous with public domain, 172
open source Al models, 25
OpenAl

models, 25

support for multiple AT models, 26
OpenAl models

Index | 233

choosing between Gemini, Claude, and
OpenAl models, 29
OpenAT's Codex, 5, 190, 198
OpenAT’s ToS (terms of service), 173
operational runbooks, 169
orchestration system for multiple AT models,
196
organizational challenges with autonomous
coding agents, 201
ORMs (object-relational mappers), 127, 128
Al generating model classes or schemas for
web application database, 130
output
clearly incorrect output from Al handling,
62
getting multiple outputs from same prompt
and choosing best one, 56
giving instructions about in metaprogram-
ming prompts, 55
output format, specifying in prompts, 42
overloaded prompts, 61
overreliance and skill atrophy from Al-assisted
coding, 37
OWASP Top 10 security vulnerabilities, 151
OWASP’s ZAP, 151
ownership of code, 106, 173
code generated by autonomous coding
agents, 201

P

package hallucination, 148
package management issues in Al-generated
code, 148
pair programmer, Al as, 72, 75
best practices for Al pair programming, 75
pair programming
Al pair programmer versus Al assistant
developer, 192
human-human versus human-AlI, 75
junior developers with senior mentors, 93
parallelism, 159
passwords
cryptographically hashed, 147
security vulnerabilities in AI-generated
code, 147
using berypt to hash and compare in AI-
generated code, 147
patterns (AI), learning from, 164
patterns in Al-generated code, 100

penetration testing of Al-generated code, 151
performance
Al-generated database queries, 131
checking for Al-driven prototype, 118
midlevel engineers mastering performance
optimization, 85
optimization for Al-generated code, 104,
157-160
areas to cover, 158
example, function merging sorted arrays,
159
periodic audits of Al-accelerated codebase,
169
pitfalls in Al-generated code, 100
testing for Al-generated systems, 155
tuning, using future Al, 207
performance constraints, mentioning in
prompts, 55
personalized user experiences, 209
placeholders in Al code, 101
planning and oversight features, agent-specific,
leveraging, 202
planning stage, autonomous coding agents, 188
poor prompts, example of, 47
improving the prompt, 48
PostgreSQL, 127
PR (pull request) review process
autonomous coding agents integrating with,
191
privacy and security concerns (Al coding), 37
privacy concerns with user data, 181
problem solving
junior developers practicing without AL, 91
productivity gains from Al-assisted coding
faster development cycles, 36
programming
AT as force multiplier, 84
disadvantages of new style of development,
18
with intent, 13-16, 110
productivity, accessibility, and changing
nature of, 16-17
programming languages
future of, in Al-augmented development,
217-220
specifying in prompts, 42
project level, autonomous coding agents oper-
ating at, 193

234 | Index

project management, evolution with Al,
210-212
prompt antipatterns, avoiding, 60-63
ignoring Al's clarification or output, 62
inconsistency in prompts, 62
missing the question, 61
overloaded prompts, 61
vague prompts, 60
vague references, 62
vague success criteria, 61
prompt engineering, 39
fundamentals of, 40
prompting techniques, 49-58
advanced prompting, combining techniques
and handling complexity, 58-63
knowing model's limits, 59
chain-of-thought prompting, 51, 53
contextual prompting, 54
metaprogramming, 55
one-shot and two-shot prompting, 50
ReAct, 57
role prompting, 53
self-consistency, 56
zero-shot prompting, 49
prompts
ambiguity in, leading to ambiguity in code,
37
checking Al's interpretation and implemen-
tation of, 98
considerations for maintainability of Al
code while prompting, 160
effective communication with Al 39
comparison of two prompts, 46-49
iterative refinement and feedback loop
with AL 43
specificity and clarity in prompts, 41
junior developers developing skills in, 92
prompt artists versus Al orchestra conduc-
tors, 12
prompting Al as form of communication,
94
prompting and code generation, responsible
Al 184
refining in iterative prototyping using Al,
113
understanding, 14
proof of concept, 109
property-based testing, 154

prototyping

Al-driven, tools and techniques, 109-120
addressing challenges in Al prototyping,
119
concept to prototype, iterative refine-
ment, 112-115
evolving prototype toward production,
115
prototyping tools, 111-112
rapid prototyping with Al assistants,
109-111
enhancement by Al-assisted coding, 36
feature prototyping, 31
PRs (pull requests), 165
autonomous coding agent PRs, 201

Q

quality
demo-quality trap with AI coding, 72
variable output quality of AT models, 36
quality assurance
Al tools enhancing efficiency and effective-
ness of, 76
maximizing benefits of AT and human capa-
bilities in, 76
midlevel engineers focusing on, 86
process for Al-assisted projects, unusual
edge cases and, 157
question, missing in prompts, 61

R
race, gender, and age, variables in algorithms,
179
racial biases, 179
RAG (retrieval-augmented generation), 23
rate limiting or throttling mechanisms to pre-
vent brute force attacks, 147
React, 121
tips on, 126
ReAct (Reason + Act) prompting, 57
readability of code
Al-generated code, issues with, 100
reasoning, deep reasoning Al models, 25
refactoring
of Al code after testing, 156
of AI code for maintainability, 103
continuous refactoring of Al-accelerated
codebase, 162
requesting for Al-assisted code that could
be simpler, 166

Index | 235

using future AL, 207
references (vague), in prompts, 62
reliability, 153

of infrastructure and operations around the

code, 170
repetitive code generation, using vibe coding
for, 32
reporting by autonomous coding agents, 190
requirements
including in prompts, 42
interpretation by Al 35
thinking about how to convey to Al, 41
requirements analysis, 94
resilience, building into Al-accelerated code-
base, 162
resource management, 88
responsibility and ethical concerns with use of
Al 220
responsible Al use, golden rules for, 181-185
responsible Al checklist, 183
using the responsible AI checklist, 185
RESTful APIs
endpoints, 126
retrieval-augmented generation (RAG), 23
reviewing code, generator versus reviewer
asymmetry, 194
risk analysis and management, using Al for,
211
roles, new, in engineering teams, 216
rollback plans, 168
routing Al endpoints, 126
rubber duck debugging prompts, 44
Ruby on Rails, 128
runbooks, 169

S

safety systems (AI), sensitivity to role descrip-
tions, 53

SAST (static analysis tools), 149

scaffolding
vibe coding starting without, 6
web application scaffolding using Al

121-123

scheduling and sprint planning, using Al for,
210

scope creep, 119

screenshot-to-code capability, 111

secret data, keeping secret, 181

secret management tools, 168

secrets or credentials, hard-coded, in AI-
generated code, 144
security, 143-153
audit for Al-generated web applications, 137
audits of AI-generated code, 149-153
optimizing logging practices, 152
paying attention to warnings in context,
153
penetrating testing and fuzzing, 151
performing human review for security,
150
security-focused unit tests, 151
slowing down for audits, 153
updates of Al model training, 151
using automated security scanners, 149
using separate Al as reviewer, 150
using updated models or tools with secu-
rity focus, 152
common vulnerabilities in AI-generated
code, 143-149
improper authentication and authoriza-
tion, 146
package management issues, 148
remaining vigilant about in deployments,
168
vulnerabilities in AI-generated code, 116
security analyst role, assigning to Al, 53
self-consistency, 56
Semgrep, 149
senior engineers (see engineers)
Sequelize, 130
servers in web application backends, 121
70% problem, 67-69
maximizing human contribution in remain-
ing 30%, 81
shadow testing, 169
sign-up page, prototyping using Al assistant,
110
skill atrophy resulting from Al-assisted coding,
37
skills
durable engineering skills that future-proof
your career, 95
evolution of resulting from use of vibe cod-
ing, 221
Snyk, 152
best practices for security audits of AI-
generated code, 153
soft skills and leadership, honing, 83

236 | Index

software engineering
continuous change in, 95
how autonomous coding agents could
change it, 212-216
solutions
most common not most appropriate, 99
shifting mindset from consuming to creat-
ing, 94
Sonnet models, 27
sources, acknowledging for Al-generated code,
177
specificity in prompts, 60
strategies for, 42
speed-optimized models, 25
sprawl, avoiding in AI-generated code, 160
sprint planning, using Al for, 210
SQL
Al generating SQL migration scripts, 131
database query written using A, 131
SQL injection vulnerabilities in Al-generated
code, 144
staged rollout strategies, 167
startup minimum viable product web applica-
tion, 139
state, 60
managing for web application frontend
using Al 125
managing using Al in full stack web app,
133
stateful conversation versus one-shot prompt-
ing, 60
static analysis tools (SAST), 149
style guidelines
checking AI code for compliance with, 100
refactoring AI code to align with, 103
styling and layout for web application, using Al
for, 124
success criteria (vague), in prompts, 61
supervised coding agents, 187
synchronization and state management in full
stack web app, 133
syntax issues (minor) in Al code, 101
systems
durable engineering skills to future-proof
your career, 95
learning system design and architecture, 88
learning systems thinking, 87
systems integration and boundaries, managing,
84

I

tasks for autonomous coding agents, selecting
strategically, 202
team practices, evolving to integrate autono-
mous coding agents, 203
team-integrated autonomous coding agents,
198
technical debt, tracking in Al-accelerated code-
base, 164
terms of service (ToS) of Al tools, 173
testing
AT coding tools integrating testing sugges-
tions, 105
Al generating tests for web application
backend API, 130
AT tools assisting in, 76
of Al-driven prototypes, 117
for Al-generated web applications, 136-137
automatic test generation by Al, 205
building effective frameworks for AI-
generated systems, 153-157
challenges when integrating multiple AI-
generated components, 157
nondeterminism in Al systems, 156
types of tests to include, 154
critical importance for Al-generated code,
86
helping to ensure maintainability of AI-
accelerated codebase, 162
junior developers focusing on, 91
in production, 169
shadow testing via deployment, 169
test-driven debugging, 103
unit tests for AI-driven prototype, 118
unit, integration, and end-to-end testing,
importance in Al code, 104
thinking out loud, prompting AT models to, 52
timing attacks, 147
TODOs, adding in prototyping, 119
tools
acknowledging use of in Al-generated code,
177
Al prototyping tools, 111-112
Al-powered, emerging ecosystem of, 18-24
Cursor code editor, 21
Windsurf IDE, 23
junior developers building AI tooling skills,
92

Index | 237

using updated Al-powered tools with secu-
rity focus, 152

tools for coding spectrum, 12

transactions, implementing in web application
backend, 128

transition points in Al-enhanced development,
33

transparency about use of Al in development,
177

two steps back antipattern, 70

u
UTI and UX design, 34
Al for UX research, 209
generative design tools, 208
midlevel engineers venturing into, 89
personalized user experiences, creating with
Al 209
polishing UT for Al-driven prototype, 118
rapid prototyping with Al assistants, 109
unfairness resulting from Al usage, 184
unit tests
for Al-generated web applications, 136
security-focused, adding to AI-generated
code, 151
writing for Al-generated code, 105
writing with Al to test AI-generated code,
154
updates to dependencies added in Al-generated
code, 146
use cases, ideal, for vibe coding, 30
user enumeration, 147

v

vague prompts, 60
validation
for Al-generated web applications, 136-137
in backend/API development with AT, 127
validator, Al as, 72, 76
variables in Al-generated code, 100
verbosity in Al code, 100, 104
Vercel v0, 111
verification
of Al-generated code, focusing on, 91
by autonomous coding agents, 190
version control
more essential with Al-generated code, 74
vibe coding
about, 3

benefits and limitations of, nuanced view,
30-38
benefits of, 36
combining creative vibe with solid engi-

neering, 38

limitations and trade-offs, 36-38

code by conversation approach, 4-7
productivity boost from, 5
risks in, 6

differences from Al-assisted engineering, 10

encouraging mindset of experimentation, 16

golden rules of, 76-78

how it's reshaping the industry, 220

key point about, 15

shaping the future of, 222-223

typical cycle in, 15

VSCode (Visual Studio Code), 187

Al extensions, 192

Cline transforming VSCode into open
source autonomous coding agent, 20

Gemini's integration with, 27

Vue, 121
tips on, 126

]

web applications, building with AT, 121-140
backend/API development patterns with Al,
126-130
database design and integration, 130-132
end-to-end workflow, 121
examples of successful projects, 138-139
frontend development patterns with Al,
123-126
full stack integration, 132-135
aligning frontend and backend con-
tracts, 132
real-time collaboration with AI, 133-135
multimodel approach, 197
setting up the project, scaffolding with AI,
121-123
testing and validation, 136-137
WebSockets
setting up using Al in full stack web app,
133
why, not just what, asking in debugging AI
code, 103
Windsurf IDE, 23, 111
Cascade view, 23
Gemini's integration with, 27

238 | Index

strengths of, 24 Y4

workflow-integrated agents, 198 ZAP (OWASP), penetrating testing with, 151
zero-shot prompting, 49
X zero-to-one product development, 30

XSS (cross-site scripting) in web apps, 145

Index | 239

About the Author

Addy Osmani is a senior engineering leader at Google, where he works on developer
experience, performance, and Al-powered software development tools. He has 25
years of industry experience building web technologies and has authored multiple
books on software engineering best practices.

Addy has worked extensively with Al-driven developer tools, testing and evaluating
emerging platforms like Cursor, Cline, Copilot, Bolt, v0, Lovable, and Claude Code.
His writing on Al-assisted software development has influenced thousands of devel-
opers, and his leadership at Google Chrome has helped shape the future of web per-
formance and Al-augmented developer workflows.

This book distills his deep expertise in software engineering and his hands-on experi-
ence with Al-powered coding assistants, offering developers practical strategies to
integrate Al into their daily workflow and adapt to the rapidly changing landscape of
software development.

Colophon

The birds on the cover of Beyond Vibe Coding are wallcreepers (Tichodroma muraria),
a species native to inland cliffs and mountain peaks across Europe, the Middle East,
and Asia. In flight, wallcreepers are said to look like large butterflies, but they are dif-
ficult to spot at rest against rock faces. The wings have rich red coloring with black
and white feather tips, while the bodies are mostly blue-gray. Breeding males have
black necks.

Adult wallcreepers are about 6 inches long and weigh about 0.6 ounces. They raise a
single brood each year, laying clutches of three to five eggs in cup nests of moss and
grasses wedged into rock crevices. They are insectivores.

The IUCN Red List of Threatened Species lists the wallcreeper’s conservation status
as “Least Concern” Many of the animals on O’Reilly covers are endangered; all of
them are important to the world.

The cover illustration is by José Marzan Jr., based on an antique line engraving from
Lydekker’s Royal Natural History. The series design is by Edie Freedman, Ellie Volck-
hausen, and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con-
densed; and the code font is Dalton Maag’s Ubuntu Mono.

O'REILLY"

Learn from experts.
Become one yourself.

60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O'Reilly learning platform free for 10 days.

©2025 O'Reilly Media, Inc. O'Reilly is a registered trademark of O'Reilly Media, Inc. 718900_7x9.1875

https://www.oreilly.com/start-trial/?utm_medium=content+synd&utm_source=general+ad&utm_campaign=tria

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What to Expect
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us

	Part I. Foundations
	Chapter 1. Introduction: What Is Vibe Coding?
	The AI Coding Spectrum: From Vibe Coding to AI-Assisted Engineering
	The Vibe-Coding Approach: Code by Conversation
	The AI-Assisted Engineering Approach: Structure with an AI Partner
	Different Mindsets, Different Expectations
	Finding Your Place on the Spectrum

	Beyond Lines of Code: Programming with Intent
	The Rise of the Prompt: From Instructions to Descriptions
	How It Works: The Iterative Cycle and AI’s Role in Code Generation

	Productivity, Accessibility, and the Changing Nature of Programming
	A Glimpse of the Tools: The Emerging Ecosystem
	VSCode + Copilot: Microsoft’s Integrated AI Development Platform
	VSCode + Cline: The Open Source Autonomous Coding Agent
	Cursor: The AI-Driven Code Editor
	Windsurf: An AI-Powered IDE with Full Codebase Indexing

	AI Models: The Landscape for Code Generation
	Understanding Model Categories
	Choosing the Right Model for Your Task
	Practical Tips for Any Model

	Major Models
	Google Gemini: The Multimodal Coding Powerhouse
	Claude: The Reasoning Virtuoso
	ChatGPT: The Versatile Coding Companion

	Choosing the Right Model for Your Needs
	The Benefits and Limitations of Vibe Coding: A Nuanced View
	Ideal Use Cases for Vibe Coding
	Where AI Still Struggles

	Summary and Next Steps

	Chapter 2. The Art of the Prompt: Communicating Effectively with AI
	Prompt Engineering Fundamentals
	Specificity and Clarity: Writing Prompts That Deliver
	Iterative Refinement: The Feedback Loop with the AI
	Comparing Two Prompts
	Poor prompt
	Improved prompt

	Prompting Techniques: A Toolbox for Effective Communication
	Zero-Shot Prompting
	One-Shot and Few-Shot Prompting
	Chain-of-Thought Prompting
	Role Prompting
	Contextual Prompting
	Metaprompting
	Self-Consistency (Multiple Outputs and Majority Voting)
	ReAct (Reason + Act) Prompting

	Advanced Prompting: Combining Techniques and Handling Complexity
	Know the Model’s Limits
	Stateful Conversation Versus One-Shot Prompting
	Common Prompt Antipatterns and How to Avoid Them

	Summary and Next Steps

	Part II. AI Coding in Practice
	Chapter 3. The 70% Problem: AI-Assisted Workflows That Actually Work
	How Developers Are Actually Using AI
	Common Failure Patterns
	What Actually Works: Practical Workflow Patterns

	The Golden Rules of Vibe Coding

	Chapter 4. Beyond the 70%: Maximizing Human Contribution
	Senior Engineers and Developers: Leverage Your Experience with AI
	Be the Architect and the Editor in Chief
	Use AI as a Force Multiplier for Big Initiatives
	Mentor and Set Standards
	Continue to Cultivate Domain Mastery and Foresight
	Hone Your Soft Skills and Leadership

	Midlevel Engineers: Adapt and Specialize
	Learn to Manage Systems Integration and Boundaries
	Build Your Domain Expertise
	Master Performance Optimization and DevOps
	Focus on Code Review and Quality Assurance
	Learn Systems Thinking
	Be Adaptable—and Never Stop Learning
	Get Good at Cross-Functional Communication
	Learn System Design and Architecture
	Use AI!
	Venture into UI and UX Design

	Junior Developers: Thrive Alongside AI
	Learn the Fundamentals—Don’t Skip the “Why”
	Practice Problem Solving and Debugging Without the AI Safety Net
	Focus on Testing and Verification
	Build an Eye for Maintainability
	Develop Your Prompting and Tooling Skills (Wisely)
	Seek Feedback and Mentorship
	Communicate and Collaborate
	Shift Your Mindset: From Consuming to Creating

	Summary and Next Steps

	Chapter 5. Understanding Generated Code: Review, Refine, Own
	From Intent to Implementation: Understanding the AI’s Interpretation
	The “Majority” Problem: Most Common Doesn’t Mean Most Appropriate
	Code Readability and Structure: Patterns and Potential Issues
	Debugging Strategies: Finding and Fixing Errors
	Refactoring for Maintainability: Making AI Code Your Code
	The Importance of Testing: Unit, Integration, and End to End
	Summary and Next Steps

	Chapter 6. AI-Driven Prototyping: Tools and Techniques
	Rapid Prototyping with AI Assistants
	AI Prototyping Tools
	From Concept to Prototype: Iterative Refinement
	Evolving a Prototype Toward Production
	Addressing Challenges in AI Prototyping
	Summary and Next Steps

	Chapter 7. Building Web Applications with AI
	Setting Up the Project: Scaffolding with AI
	Frontend Development Patterns with AI
	Backend/API Development Patterns with AI

	Database Design and Integration
	Using an ORM
	Database Queries
	Checking AI-Generated Queries

	Full Stack Integration: Marrying Frontend and Backend
	Aligning Frontend and Backend Contracts
	Real-Time Collaboration with AI

	Testing and Validation for AI-Generated Web Applications
	Examples of Successful AI-Built Web Projects
	Summary and Next Steps

	Part III. Trust and Autonomy
	Chapter 8. Security, Maintainability, and Reliability
	Common Security Vulnerabilities in AI-Generated Code
	Improper Authentication and Authorization
	Package Management Issues

	Security Audits
	Leverage Automated Security Scanners
	Use a Separate AI as a Reviewer
	Perform a Human Code Review with a Security Checklist
	Penetration Testing and Fuzzing
	Add Security-Focused Unit Tests
	Provide Updates to Compensate for Training Cutoffs
	Optimize Your Logging Practices
	Use Updated Models or Tools with a Security Focus
	Pay Attention to Warnings in Context
	Slow Down

	Building Effective Testing Frameworks for AI-Generated Systems
	Performance Optimization
	Ensuring Maintainability in AI-Accelerated Codebases
	While Prompting
	Working with Code Output
	Follow-Up

	Code Review Strategies
	Best Practices for Reliable Deployment
	Before and During Deployment
	Ongoing Best Practices

	Summary and Next Steps

	Chapter 9. The Ethical Implications of Vibe Coding
	Intellectual Property Considerations
	What to Do If You Get Suspicious Output
	Gray Areas

	Transparency and Attribution
	Bias and Fairness
	Golden Rules for Responsible AI Use
	Summary and Next Steps

	Chapter 10. Autonomous Background Coding Agents
	From Copilots to Autonomous Agents: What Are Background Coding Agents?
	How Do Autonomous Coding Agents Work?
	Plan
	Execute
	Verify
	Report

	How Do Background Agents Compare to In-IDE AI Assistants?
	Combining Multiple AI Models to Maximize Strengths
	Differentiate Models by Task Type
	Use an Orchestration System
	Human-AI Hybrid Teams

	Major Players in Autonomous Coding Agents
	Challenges and Limitations
	Best Practices for Using AI Coding Agents Effectively
	Strategically Select the Tasks Autonomous Agents Are Going to Implement
	Leverage Agent-Specific Planning and Oversight Features
	Manage Concurrent Agent Operations
	Evolve Your Team Practices to Integrate Agents
	Build Feedback Loops with Autonomous Systems

	Summary and Next Steps

	Chapter 11. Beyond Code Generation: The Future of AI-Augmented Development
	AI in Testing, Debugging, and Maintenance
	Automated Test Generation
	Intelligent Debugging
	Predictive Maintenance and Refactoring

	AI-Driven Design and User Experience Personalization
	Generative Design Tools
	AI for UX Research
	Personalized User Experiences

	The Evolution of Project Management with AI
	How Autonomous Agents Could Change Software Engineering
	The Future of Programming Languages: Natural-Language-Driven Development?
	How Vibe Coding Is Reshaping the Industry
	Summary and Next Steps

	Index
	About the Author
	Colophon

