

[image:]

Code Your Own Game with C++

Master C++ by Building a Text-Based RPG Engine from Scratch

By

STEM School

This Page Left Intentionally Blank

Contents

Chapter 1

Introduction –

Chapter 2

Setting Up Your C++ Development Environment

Chapter 3

C++ Fundamentals Refresher

Chapter 4

Mastering Object-Oriented Programming in C++

Chapter 5

Designing the Game Engine Architecture

Chapter 6

Building the Game World and Navigation System

Chapter 7

Implementing Player and Character Classes

Chapter 8

Turn-Based Combat System from Scratch

Chapter 9

Building the Inventory and Item System

Chapter 10

Quest and Dialogue Engine

Chapter 11

Save/Load Game State with File I/O

Chapter 12

Building the User Interface and Game Menus

Chapter 13

Adding Game Modding

Chapter 14

Designing the Sound and Music Layer (Optional)

Chapter 15

Building a Game Editor for Map and NPCs

Chapter 16

Testing and Debugging the RPG Engine

Chapter 17

Polishing the Engine – Adding Final Features

Chapter 18

Packaging and Distributing Your RPG Game

Chapter 19

Build Your Own RPG Game Using the Engine

Chapter 20

Advanced Game Engines and C++

Appendices

Appendix A

Full Engine Class Reference

Appendix B

C++ Syntax Cheat Sheet

Appendix C

Useful C++ Libraries for Game Development

Appendix D

ASCII Art for Game UI

Appendix E

Glossary of Game Development Terms

Chapter 1

Introduction – Why Learn C++ Through a Game Engine

Learning C++ can be a transformative experience for any aspiring programmer or system developer, especially when the learning process is anchored in building something engaging, challenging, and meaningful—like a game engine. This chapter begins by laying a strong foundation for why C++ remains one of the most influential and essential programming languages in both system-level development and the gaming industry. It also introduces the concept of building a game engine from scratch, not only as a technical challenge but also as an educational tool that helps develop deep, transferable programming skills.

The Power of C++ in System-Level Development

C++ has long stood as a pillar in the world of high-performance computing. Unlike many higher-level languages that abstract away the internal workings of the system, C++ places the developer closer to the metal. This allows you to manage memory explicitly, fine-tune performance, and craft systems that interact directly with hardware or operating system components. These features make C++ the language of choice for developing game engines, operating systems, device drivers, real-time simulations, and many embedded systems.

In the context of gaming, performance is paramount. Every millisecond counts when rendering frames, processing input, and managing complex game logic. C++ excels in these areas due to its compiled nature, deterministic resource management through RAII (Resource Acquisition Is Initialization), and support for object-oriented as well as low-level programming paradigms. Major game engines like Unreal Engine, CryEngine, and id Tech have been built using C++ for these very reasons.

Why Build a Game Engine?

While playing a game is fun, building one is educationally rich. But going a step deeper—building a game engine—amplifies that experience tenfold. A game engine is the software framework used to create and run games. It handles rendering, physics, audio, scripting, and input management. By constructing even a simple, modular game engine, you touch nearly every aspect of computer science and software engineering.

Core Concepts Covered:

	Component	Concept Learned	Description
	
Memory Management

	Pointers, Dynamic Allocation	Learn to manage heap memory, avoid leaks, and understand how C++ handles resources.
	Game Logic	Control Structures, Algorithms	Design branching paths, events, and character actions with clarity and modularity.
	Input Handling	Event-Driven Programming	Capture and interpret user input in real-time for responsive gameplay.
	Modular Design	Classes, Inheritance, Interfaces	Implement game components (like entities and scenes) using solid OOP principles.
	Architecture	File Structure, Abstraction Layers	Learn how to structure large projects, divide code into manageable sections.

Building a game engine reinforces problem-solving skills, logical thinking, and a deep understanding of how games are constructed from the ground up. It also gives you a project to showcase—something that demonstrates your grasp of both the technical and creative sides of software development.

A Hands-On, Project-Based Approach

This book will not just walk you through the theory of how C++ works or what a game engine is. Instead, you will actively build a modular, extensible text-based RPG engine using C++. From the first line of code to the final battle scene, you’ll construct every piece by hand, gaining practical experience along the way.

Here’s a high-level preview of what the final product will look like:

Final Product: Modular Text-Based RPG Engine

The game engine will support key components of a role-playing game (RPG), such as characters, enemies, quests, inventory, dialogue, and a turn-based combat system. Everything will be written in C++ using clean object-oriented design and smart memory management.

	Feature	Description
	Text-Based Interface	Simple command-line interface for rendering game content and user input.
	Modular Entities	Create characters, enemies, and items as separate modular classes.
	Turn-Based Combat	Implement a flexible battle system with initiative order and abilities.
	Save/Load System	Serialize game state to disk and load it back.
	Quest and Dialogue	Simple story engine to create branching narrative paths.
	Expandability	Easy to add new items, quests, or mechanics through modular design.

Learning Outcomes

By the time you complete this book, you will not only have a functioning game engine that can serve as the backbone for countless RPG experiences but also the confidence to tackle larger software engineering projects. You will understand how to break a big idea into smaller, manageable tasks, organize code in a scalable way, and write C++ that is both elegant and efficient.

You’ll also gain insight into critical software development practices such as:

	Planning system architecture before diving into code
	Writing modular and reusable components
	Debugging and profiling for performance
	Testing individual parts of a system in isolation
	Writing documentation for future collaborators or your future self

Visualizing the Engine Structure

To help you better understand the architecture you’ll be building, the diagram below illustrates the major components of the engine and how they interact: [image:]

This modular design will allow you to expand, replace, or improve individual components without rewriting the entire engine. For example, you could later swap out the text-based interface with a graphical one using libraries like SFML or SDL, or integrate a scripting engine like Lua to enhance the flexibility of your RPG logic.

In summary, learning C++ through the process of building a game engine offers a deeply immersive, hands-on learning journey that grounds abstract programming concepts in a real-world application. Rather than starting with theory or fragmented tutorials, this book invites you to create something complete and functional from the very beginning. This not only builds your confidence but also gives you a project worth showcasing.

In the chapters that follow, we will begin this journey by setting up your development environment, writing your first lines of C++, and constructing the foundational building blocks of your very own game engine. The road ahead is technical and at times challenging—but incredibly rewarding.

Let’s build something unforgettable.

Chapter 2

Setting Up Your C++ Development Environment

Before diving into writing powerful code for your RPG engine, it's essential to set up a clean, robust, and scalable development environment. A well-configured environment not only makes programming easier and more enjoyable but also teaches you how professional developers organize and manage large-scale software projects. In this chapter, we will walk through the installation and configuration of compilers, Integrated Development Environments (IDEs), build tools like CMake, and version control using Git. The goal is to empower you with a full-featured toolchain and professional workflow that you can use for this project and many others in your future career as a developer.

Understanding the Core Tools

Before jumping into installations, let’s clarify the role of each component in the development ecosystem.

The compiler is a tool that translates your human-readable C++ source code into machine-readable executable programs. Examples include g++ (GNU Compiler Collection) and Microsoft’s Visual C++ Compiler (MSVC).

The IDE (Integrated Development Environment) combines a code editor, build tools, debugger, and sometimes version control into a single platform.

CMake is a powerful build automation tool that generates native build files for various compilers and IDEs.

Git is a distributed version control system that allows you to track changes, manage versions, collaborate with others, and back up your code safely.

Choosing and Installing a C++ Compiler

The choice of a compiler depends on your operating system. On Linux and macOS, the GNU Compiler Collection (g++) is commonly used. On Windows, you may use either g++ via MinGW or the Microsoft Visual C++ (MSVC) compiler, which is part of Visual Studio.

Installing G++ (GNU Compiler)

On Linux or macOS, open the terminal and type:

sudo apt install g++ # For Debian/Ubuntu

brew install gcc # For macOS with Homebrew

On Windows, you can install MinGW-w64 to get the GNU compiler:

	
Download MinGW-w64 from https://www.mingw-w64.org/

	
Choose the architecture (32-bit or 64-bit) and thread model (posix).

	
After installation, add the bin folder path to the system’s environment variable PATH.

Installing MSVC Compiler

Install Visual Studio Community Edition from https://visualstudio.microsoft.com/. During setup, choose the "Desktop development with C++" workload. This will install the MSVC compiler and all required libraries.

Installing an IDE

An IDE helps you manage files, track errors, debug, and build projects more efficiently. Below are three highly recommended IDEs.

Visual Studio Code (VS Code)

VS Code is a lightweight, extensible editor ideal for C++ if you prefer terminal-based workflows.

	
Download it from https://code.visualstudio.com/

	
Install extensions: C++ (by Microsoft), CMake Tools, and GitLens.

	
Make sure g++ or cl.exe (MSVC) is in your system path.

	
Set up a workspace with tasks.json and launch.json for building and debugging.

Code::Blocks

Code::Blocks is a dedicated C++ IDE with built-in compiler integration.

	
Download the version bundled with MinGW from https://www.codeblocks.org/

	
Run the installer and select the appropriate compiler.

	
Create a new project and choose “Console Application”.

CLion (JetBrains)

CLion is a professional IDE from JetBrains, perfect for CMake-based projects.

	
Download CLion from https://www.jetbrains.com/clion/

	
Configure your toolchains under File > Settings > Build, Execution, Deployment > Toolchains.

	
Set up a CMake-based project and you're ready to code.

Installing CMake

CMake allows your project to be portable and platform-independent. It generates build files for various IDEs or command-line environments.

To install CMake:

Windows: Download the installer from https://cmake.org/download/

macOS: Use Homebrew: brew install cmake

Linux: Use your package manager: sudo apt install cmake

To verify installation:

cmake --version

Installing and Configuring Git

Git is a must-have for version control. It helps you save your progress, experiment without risk, and work with others.

Install Git from https://git-scm.com/

After installation, open your terminal and configure Git with your user details:

git config --global user.name "Your Name"

git config --global user.email "you@example.com"

Initialize a Git repository inside your project folder:

git init

Create a .gitignore file to exclude unnecessary files from version tracking, such as build artifacts: build

/*.exe

*.o

*.log

Setting Up a Clean Project Structure

Let’s now structure our RPG engine in a way that is modular, maintainable, and easy to expand.

[image:]

A well-defined structure like this makes it easy to grow your engine. Each module (such as combat, character, and map systems) will eventually get its own pair of .cpp and .h files.

Writing Your First Program: “Hello RPG World”

Now that the environment is ready, let’s write our first program.

Inside src/main.cpp, add the following:

#include <iostream>

int main() {

std::cout << "Hello RPG World!" << std::endl;

return 0;

}

To compile using g++:

g++ src/main.cpp -o build/RPGEngine

.buildRPGEngine

To compile using MSVC in the Developer Command Prompt:

cl src\main.cpp /Fe:build\RPGEngine.exe

.\build\RPGEngine.exe

If you are using CMake, create a CMakeLists.txt in the root directory:

cmake_minimum_required(VERSION 3.10)

project(RPGEngine)

set(CMAKE_CXX_STANDARD 17)

include_directories(include)

add_executable(RPGEngine src/main.cpp)

Then generate and build:

mkdir build

cd build

cmake ..

cmake --build .

You will see the program output:

Hello RPG World!

This simple step marks the beginning of your journey. You have compiled your first C++ program in a structured, professional environment using tools like CMake and Git.

In this chapter, we established your C++ development foundation by guiding you through selecting, installing, and configuring the necessary compilers, IDEs, and build tools. You also created a logical file structure for your game engine and wrote your first “Hello RPG World” application. This setup not only prepares you to develop the RPG engine but also gives you valuable skills in modern software development workflows used by professionals worldwide.

As we proceed, this project structure and toolchain will support us in building complex features while keeping the code organized, modular, and scalable. In the next chapter, we will start constructing the core game loop, which is the heart of any game engine. Get ready to breathe life into your RPG world.

Chapter 3

C++ Fundamentals Refresher

In this chapter, we will go over the fundamental building blocks of C++ that are crucial for game development. Understanding these concepts is essential to creating a functional and efficient game engine. By the end of this chapter, you will not only be familiar with the syntax and structure of C++ but also have hands-on experience with console input/output (I/O), which is vital for simulating game choices and interaction.

C++ is a statically-typed language, meaning you must define the type of data each variable will hold, and it relies heavily on logic-based control structures like conditionals and loops. You will also encounter functions, which allow you to break your code into reusable and manageable chunks. The use of scope, or where variables are accessible within your program, will also be a key concept to understand in organizing your game logic. Let’s dive deeper into these concepts.

Variables and Data Types

Variables in C++ are placeholders that store data. Before you can use a variable, you must declare it with a type, indicating what kind of data it will hold. Understanding data types is essential because different types consume different amounts of memory and allow for specific operations.

Basic Data Types: The most commonly used data types include:

	int: Used to store integer values (whole numbers).
	float: Stores decimal numbers.
	double: Stores double-precision floating-point numbers (for higher precision).
	char: Used to store a single character.
	string: A sequence of characters (used for text).
	bool: Represents true or false values.

Here's an example:

int playerHealth = 100;

float playerSpeed = 3.5f;

char playerClass = 'W'; // Warrior

string playerName = "Hero";

bool isAlive = true;

In this example, we’ve defined a few basic variables: playerHealth, playerSpeed, playerClass, playerName, and isAlive. These represent different aspects of the player's state in the game.

Conditionals

Conditionals allow us to make decisions in our code. The most commonly used conditional statement in C++ is the if statement. Conditionals evaluate a boolean expression (true or false) and execute code based on whether the condition is true or false.

if (playerHealth > 0) {

cout << "You are still alive!" << endl;

} else {

cout << "You have died!" << endl;

}

In this example, we check if the player’s health is greater than zero. If it is, the player is alive; otherwise, they have died.

You can also combine multiple conditions using else if or logical operators like && (AND) and || (OR).

if (playerHealth > 50) {

cout << "You are in good health!" << endl;

} else if (playerHealth > 0) {

cout << "You are critically injured!" << endl;

} else {

cout << "You have died!" << endl;

}

This structure helps create more complex decision-making logic in your game, such as checking for multiple conditions before displaying messages or taking actions.

Loops

Loops are essential for repeating tasks, such as updating the game state, moving the player, or iterating through a list of items. The most commonly used loops in C++ are for, while, and do-while.

For Loop: A for loop is ideal when you know how many times you need to iterate.

for (int i = 0; i < 5; i++) {

cout << "Loop iteration: " << i << endl;

}

In this case, the loop will run five times, displaying the iteration count each time.

While Loop: A while loop continues to run as long as the condition is true.

int i = 0;

while (i < 5) {

cout << "Loop iteration: " << i << endl;

i++;

}

The while loop checks the condition at the beginning of each iteration. If the condition is true, it executes the code inside the loop.

Do-While Loop: This loop is similar to a while loop, except it guarantees that the loop runs at least once, even if the condition is false initially.

int i = 0;

do {

cout << "Loop iteration: " << i << endl;

i++;

} while (i < 5);

Functions

Functions in C++ help break down a program into smaller, more manageable pieces. A function consists of a name, a return type, and a set of parameters (optional). Functions allow you to organize and reuse code efficiently.

Let’s create a simple function to print out the player's health:

void displayHealth(int health) {

cout << "Player Health: " << health << endl;

}

This function takes one parameter (health) and prints it out. To call the function, you simply pass the argument: int playerHealth = 100;

displayHealth(playerHealth); // Outputs: Player Health: 100

In game development, functions become very useful for tasks like updating the game state, handling user input, or managing in-game mechanics like combat.

Scope

Scope refers to the region of a program where a variable or function is accessible. In C++, there are two main types of scope:

Local Scope: A variable declared inside a function is only accessible within that function.

Global Scope: A variable declared outside of all functions is accessible anywhere in the program.

For example:

int globalVar = 10; // Global variable

void printGlobalVar() {

cout << "Global variable: " << globalVar << endl;

}

void changeGlobalVar() {

globalVar = 20; // Modifying global variable inside a function

}

int main() {

printGlobalVar(); // Outputs: Global variable: 10

changeGlobalVar();

printGlobalVar(); // Outputs: Global variable: 20

return 0;

}

While global variables can be useful, it’s best practice to minimize their use in large projects to avoid confusion. Local variables are often more manageable because their scope is limited to the functions they’re declared in.

Input and Output (I/O)

In game development, input and output operations are essential for player interaction. Console I/O allows us to take user input and display output in the console window. This is particularly useful in text-based games or during the development phase when graphical interfaces have not yet been implemented.

Input: We can take input from the player using the cin function.

string playerName;

cout << "Enter your player name: ";

cin >> playerName;

cout << "Welcome, " << playerName << "!" << endl;

Output: Output to the console is done using the cout function.

cout << "You have chosen the Warrior class!" << endl;

These functions will allow you to simulate the player’s choices during gameplay. For example, let’s simulate a basic main menu where the player can choose between different actions: #include <iostream>

using namespace std;

void mainMenu() {

int choice;

cout << "Welcome to the RPG Game!" << endl;

cout << "1. Start New Game" << endl;

cout << "2. Load Game" << endl;

cout << "3. Exit" << endl;

cout << "Please choose an option: ";

cin >> choice;

if (choice == 1) {

cout << "Starting a new game..." << endl;

} else if (choice == 2) {

cout << "Loading game..." << endl;

} else if (choice == 3) {

cout << "Exiting game..." << endl;

} else {

cout << "Invalid choice. Please try again." << endl;

}

}

int main() {

mainMenu();

return 0;

}

In this example, the player is presented with a menu, and based on their choice, the game will respond with a corresponding action.

Displaying a Main Menu and Simple Choices

Now it’s time to apply what you’ve learned. Your task is to build a small console-based menu that simulates the start of an RPG game. The menu should ask the player to choose one of several actions, such as starting a new game, loading an existing game, or quitting the game.

Here’s a suggested approach:

	Use the cin function to take input from the player.
	Display different messages based on the player's choice using cout.
	Implement basic conditionals to handle different menu options.

As you complete this task, try experimenting with different types of input and output, and see how you can extend the logic for future choices (such as creating a character, selecting a class, or choosing difficulty levels).

In this chapter, we’ve reviewed some of the fundamental building blocks of C++ that are essential for game development. By working with variables, conditionals, loops, functions, scope, and I/O, you’ve gained the foundational knowledge needed to create interactive text-based games. These skills will serve as the bedrock upon which you can build more complex game engines and enhance your development workflow. Keep practicing these concepts, as they will be crucial as you continue to develop your RPG game.

Chapter 4

Mastering Object-Oriented Programming in C++

In the journey toward building your own modular text-based RPG engine, mastering Object-Oriented Programming (OOP) in C++ becomes not only beneficial but absolutely essential. Object-Oriented Programming is a paradigm that organizes code into reusable and logical structures based on real-world entities. Instead of writing everything procedurally—where you define what should happen step-by-step—you model your problem using objects, which contain both data (attributes) and behavior (methods). This approach significantly enhances code readability, modularity, scalability, and reusability. It also allows you to build complex systems like a game engine more naturally, in a way that mirrors real-world interactions between players, enemies, non-player characters (NPCs), and the environment.

Let us begin by understanding the fundamental building blocks of OOP in C++, and then we will apply these concepts to build a foundational character system that will be directly used later in our game engine.

Understanding the Core Concepts of OOP in C++

Object-Oriented Programming revolves around several key concepts that work together to create flexible and robust programs. These concepts include classes and objects, constructors and destructors, encapsulation, inheritance, and polymorphism. Each concept will be introduced in-depth and followed by its practical application in building a game character system.

Classes and Objects

In C++, a class is a user-defined data type that serves as a blueprint for creating objects. Think of a class as a mold and an object as an instance created from that mold. For instance, if we define a class Character, we can use it to instantiate specific types like Player, Enemy, and NPC.

class Character {

public:

std::string name;

int health;

int level;

void displayInfo() {

std::cout << "Name: " << name << ", Health: " << health << ", Level: " << level << std::endl;

}

};

To create an object of the class and use it:

Character hero;

hero.name = "Archer";

hero.health = 100;

hero.level = 5;

hero.displayInfo();

Constructors and Destructors

A constructor is a special function that is automatically called when an object is created. It typically initializes data members. A destructor is another special function that is called when an object goes out of scope or is deleted, allowing cleanup activities like releasing memory.

class Character {

public:

std::string name;

int health;

int level;

// Constructor

Character(std::string n, int h, int l) {

name = n;

health = h;

level = l;

std::cout << "Character " << name << " created!" << std::endl;

}

// Destructor

~Character() {

std::cout << "Character " << name << " destroyed." << std::endl;

}

void displayInfo() {

std::cout << "Name: " << name << ", Health: " << health << ", Level: " << level << std::endl;

}

};

Now when you create and destroy an object:

void gameSession() {

Character knight("Knight", 120, 10);

knight.displayInfo();

} // Destructor called automatically here

Encapsulation

Encapsulation is the practice of keeping the internal state of an object hidden from the outside world and exposing only what is necessary. In C++, this is achieved using access specifiers: private, protected, and public.

Here is how you can apply encapsulation to secure your class design:

class Character {

private:

std::string name;

int health;

public:

Character(std::string n, int h) : name(n), health(h) {}

void setHealth(int h) {

if (h >= 0) health = h;

}

int getHealth() const {

return health;

}

void displayInfo() const {

std::cout << "Name: " << name << ", Health: " << health << std::endl;

}

};

With this model, health cannot be directly modified from outside the class. Instead, a safe interface is provided.

Inheritance

Inheritance allows one class to acquire properties and methods of another class. It helps reduce code duplication and enables a hierarchical relationship. For example, all characters in a game share common traits like name and health, but a player and an enemy might differ in specific behavior.

Here is how you can define a base class Character and derive other types from it:

class Character {

protected:

std::string name;

int health;

public:

Character(std::string n, int h) : name(n), health(h) {}

virtual void displayInfo() const {

std::cout << "Name: " << name << ", Health: " << health << std::endl;

}

};

class Player : public Character {

private:

int experience;

public:

Player(std::string n, int h, int xp) : Character(n, h), experience(xp) {}

void displayInfo() const override {

Character::displayInfo();

std::cout << "Experience: " << experience << std::endl;

}

};

class Enemy : public Character {

private:

std::string type;

public:

Enemy(std::string n, int h, std::string t) : Character(n, h), type(t) {}

void displayInfo() const override {

Character::displayInfo();

std::cout << "Type: " << type << std::endl;

}

};

Polymorphism

Polymorphism allows the same interface to be used for different underlying data types. In C++, this is mainly achieved through virtual functions and pointers to base class objects.

Consider this snippet where we use polymorphism to handle various character types uniformly:

void showCharacterInfo(Character* c) {

c->displayInfo(); // Correct method is called at runtime based on actual object type

}

int main() {

Player hero("Hero", 150, 300);

Enemy goblin("Goblin", 80, "Beast");

showCharacterInfo(&hero);

showCharacterInfo(&goblin);

return 0;

}

Building the Character Class Hierarchy

Let us now build a simple but extensible class hierarchy for characters in our RPG game. This structure will form the core of our game engine’s runtime entities and will be expanded throughout the book.

Project Folder Structure

Before diving into the code, organize your files neatly to keep everything modular.

[image:]

Step-by-Step Code Integration

Character.hpp

#ifndef CHARACTER_HPP

#define CHARACTER_HPP

#include <string>

class Character {

protected:

std::string name;

int health;

public:

Character(const std::string& n, int h);

virtual ~Character();

virtual void displayInfo() const;

};

#endif

Character.cpp

#include "Character.hpp"

#include <iostream>

Character::Character(const std::string& n, int h) : name(n), health(h) {}

Character::~Character() {}

void Character::displayInfo() const {

std::cout << "Name: " << name << ", Health: " << health << std::endl;

}

Player.hpp and Player.cpp would define the Player class with additional properties like experience.

Enemy.hpp and Enemy.cpp would define the Enemy class with attributes like type or strength.

main.cpp

#include "Player.hpp"

#include "Enemy.hpp"

int main() {

Player player("Knight", 120, 300);

Enemy enemy("Goblin", 80, "Beast");

player.displayInfo();

enemy.displayInfo();

return 0;

}

	Class	Attributes	Methods
	Character	name, health	displayInfo()
	Player	experience	displayInfo()
	
Enemy

	type	displayInfo()

By mastering Object-Oriented Programming in C++, you gain the capability to write structured, modular, and scalable software systems. When you think in terms of objects—such as a player, an enemy, or a non-player character—you naturally begin modeling your game like a real world. This mental shift helps you break down even the most complex problems into manageable components, leading to cleaner code and more robust systems.

From this chapter forward, every new system we build—whether it's an inventory, quest manager, combat engine, or event handler—will use these object-oriented principles. As we expand the RPG engine, you will see how inheritance, polymorphism, and encapsulation provide immense flexibility and reusability. Not only does this help you build your own games more efficiently, but it also elevates your skill as a professional-grade C++ developer.

Chapter 5

Designing the Game Engine Architecture

In this chapter, we move from theoretical programming concepts to architectural thinking. Now that you understand how to design character classes using object-oriented programming in C++, it is time to elevate your skills further by learning how to architect a complete game engine. This chapter focuses on designing a clean, modular, and maintainable architecture for a text-based RPG engine using the principle of separation of concerns. The aim is to break the game logic into well-defined, independent subsystems, such as the input handler, state manager, rendering system, battle system, save/load mechanism, and the game engine core loop. These modular systems work together, but they each have a clear responsibility. This chapter also guides you through the initial design and implementation of the GameEngine class, which will act as the conductor for all these systems.

Through detailed explanations, class diagrams, and step-by-step C++ implementations, this chapter will allow you to start building a working engine backbone. This is a pivotal moment in your journey as you will go beyond individual classes and begin managing how multiple components interact inside a complete system. If you’re dreaming of developing a full game, this chapter will give you the architectural thinking necessary to scale your ideas into reality.

Separation of Concerns in Game Development

When designing a game engine—especially one meant to simulate an RPG world—it is critical to keep the logic organized. This is achieved through separation of concerns, a software design principle that states that each part of your program should be responsible for only one specific task.

Imagine a conductor directing a symphony. Each instrument—strings, woodwinds, brass, percussion—performs a separate function but contributes to the complete musical experience. Similarly, in a game engine, different systems manage player input, game states, display logic, and battles, all working in harmony. If you blend them together into a single function or class, you quickly create what's known as a “God Object” that becomes unmanageable and impossible to maintain.

In our engine, we break down functionality into the following systems:

	Subsystem	Purpose
	
Input Handler

	Reads and interprets user input from the console.
	State Manager	Controls the current game state (e.g., Main Menu, Battle, Inventory).
	Rendering System	Displays output in the console in a structured and styled format.
	Battle System	Manages turn-based combat logic between player and enemies.
	Save/Load System	Reads from and writes to a file for game persistence.
	Engine Core Loop	Central loop that continuously runs the game, calling the appropriate subsystems.

Building the Skeleton

Now that we understand the architecture, let us build the initial code for this engine. We will create a skeleton system with empty stubs for each module. Later chapters will gradually implement the logic of each component.

Step 1: Project Structure

Create the following folder structure in your development environment to promote clean modularity:

[image:]

Step 2: Implementing the GameEngine Class

The GameEngine class controls the flow of the game. It initializes subsystems and runs the core loop.

GameEngine.hpp

#ifndef GAMEENGINE_HPP

#define GAMEENGINE_HPP

#include "InputHandler.hpp"

#include "StateManager.hpp"

#include "RenderSystem.hpp"

#include "BattleSystem.hpp"

#include "SaveLoadSystem.hpp"

class GameEngine {

private:

bool isRunning;

InputHandler* inputHandler;

StateManager* stateManager;

RenderSystem* renderSystem;

BattleSystem* battleSystem;

SaveLoadSystem* saveLoadSystem;

public:

GameEngine();

~GameEngine();

void initialize();

void run();

void shutdown();

};

#endif

GameEngine.cpp

#include "GameEngine.hpp"

#include <iostream>

GameEngine::GameEngine() : isRunning(false) {

inputHandler = new InputHandler();

stateManager = new StateManager();

renderSystem = new RenderSystem();

battleSystem = new BattleSystem();

saveLoadSystem = new SaveLoadSystem();

}

GameEngine::~GameEngine() {

delete inputHandler;

delete stateManager;

delete renderSystem;

delete battleSystem;

delete saveLoadSystem;

}

void GameEngine::initialize() {

isRunning = true;

std::cout << "Game Engine Initialized.\n";

}

void GameEngine::run() {

while (isRunning) {

inputHandler->processInput();

stateManager->updateState();

renderSystem->render();

}

}

void GameEngine::shutdown() {

isRunning = false;

std::cout << "Game Engine Shutting Down.\n";

}

This is a minimal but functional skeleton. Each subsystem only has placeholder functions for now. We will flesh these out in upcoming chapters.

Stubbing Subsystems for Now

To keep the compilation process successful and demonstrate modularity, let us also stub one of the subsystems, such as InputHandler.

InputHandler.hpp

#ifndef INPUTHANDLER_HPP

#define INPUTHANDLER_HPP

class InputHandler {

public:

void processInput();

};

#endif

InputHandler.cpp

#include "InputHandler.hpp"

#include <iostream>

void InputHandler::processInput() {

std::cout << "[InputHandler] Awaiting player input...\n";

}

Repeat similar minimal implementations for StateManager, RenderSystem, BattleSystem, and SaveLoadSystem.

Core Loop in main.cpp

Finally, tie everything together in main.cpp to run your engine.

#include "GameEngine.hpp"

int main() {

GameEngine engine;

engine.initialize();

engine.run();

engine.shutdown();

return 0;

}

Running this code will give you output confirming that your game engine skeleton has initialized, is running in a loop, and will shut down correctly. This modular design makes it incredibly easy to test, upgrade, or replace any subsystem independently.By designing the game engine with modular subsystems, you are laying a strong foundation for long-term development and feature expansion. As we move forward, you will gradually implement each subsystem with increasing complexity, transforming the skeleton into a functional game. Every game you ever build will benefit from this architecture-first mindset. It allows you to scale up from small personal projects to large professional titles. Moreover, this design will teach you how to think like a software engineer and architect complex systems in the real world, far beyond gaming.

This chapter marks a critical transition in your learning journey—from understanding C++ features in isolation to engineering full systems. By building each subsystem step by step and keeping concerns separated, you are not just building a text-based RPG; you are learning how to become a system designer and real-world software engineer.

Chapter 6

Building the Game World and Navigation System

In this chapter, we move from the structural core of the engine into the creative and interactive world that the player will explore. The concept of world-building is crucial in any role-playing game. Whether it’s a sprawling city with hidden alleys or a haunted dungeon filled with mysteries, the game world forms the canvas on which all gameplay unfolds. Designing such a world in a way that is both interactive and scalable requires a proper understanding of how to represent space, connections, and transitions between areas. This chapter focuses on building a navigable, interactive game world using rooms, doors, and pathways.

We will implement a modular and expandable navigation system where each location in the game is defined as an instance of a Room class. These rooms are interconnected through defined exits, allowing players to move between them using directional commands. We will also introduce the Standard Template Library (STL) containers such as std::vector and std::map to efficiently store and manage collections of game objects and room connections. This chapter will significantly improve your understanding of dynamic data structures, pointer-based references, and real-time interaction flow—core competencies that every C++ developer must master.

Let us now begin crafting the world that will become the stage for the game’s characters, battles, and adventures.

Understanding the Structure of a Navigable World

The world in our RPG engine is made up of interconnected "rooms." Each room contains a description, a set of possible directions to travel (e.g., north, south, east, west), and a collection of entities such as items or characters. Rooms are not arranged in a hardcoded grid; instead, they are dynamically connected using references and mapping structures, allowing for a non-linear, open-ended world design.

Below is a conceptual representation of three rooms connected by paths:

[image:][image:]

Each arrow represents a path in one direction, and each room stores a mapping of directions to neighboring rooms.

Designing the Room Class

To create a functional world map, we must first define the Room class. Each room will hold a name, a textual description, and a map of exits that link to other Room objects.

Let’s look at the Room.hpp header:

#ifndef ROOM_HPP

#define ROOM_HPP

#include <string>

#include <map>

class Room {

private:

std::string name;

std::string description;

std::map<std::string, Room*> exits;

public:

Room(const std::string& name, const std::string& description);

void setExit(const std::string& direction, Room* neighbor);

Room* getExit(const std::string& direction);

std::string getDescription() const;

std::string getName() const;

std::string getExitString() const;

};

#endif

In this design, we use std::map<std::string, Room*> to link directions (such as "north", "south") to room pointers. This choice allows dynamic linking of any room to another using direction keys.

Let us now look at the implementation:

#include "Room.hpp"

#include <sstream>

Room::Room(const std::string& name, const std::string& description)

: name(name), description(description) {}

void Room::setExit(const std::string& direction, Room* neighbor) {

exits[direction] = neighbor;

}

Room* Room::getExit(const std::string& direction) {

if (exits.count(direction) == 0)

return nullptr;

return exits[direction];

}

std::string Room::getDescription() const {

return description;

}

std::string Room::getName() const {

return name;

}

std::string Room::getExitString() const {

std::ostringstream oss;

oss << "Exits: ";

for (const auto& pair : exits) {

oss << pair.first << " ";

}

return oss.str();

}

This implementation enables players to explore rooms dynamically. The exit mapping lets us add or remove paths at runtime, which is especially useful for puzzles or evolving environments.

Creating the World and Navigating Rooms

Now, let’s write a class called World that will handle room creation and player movement.

World.hpp

#ifndef WORLD_HPP

#define WORLD_HPP

#include "Room.hpp"

#include <map>

#include <string>

class World {

private:

std::map<std::string, Room*> rooms;

Room* currentRoom;

public:

World();

~World();

void buildWorld();

void displayCurrentRoom() const;

void move(const std::string& direction);

};

#endif

World.cpp

#include "World.hpp"

#include <iostream>

World::World() {

buildWorld();

}

World::~World() {

for (auto& pair : rooms) {

delete pair.second;

}

}

void World::buildWorld() {

Room* library = new Room("Library", "You are in a dusty old library filled with ancient books.");

Room* courtyard = new Room("Courtyard", "You stand in an open courtyard surrounded by stone walls.");

Room* dungeon = new Room("Dungeon", "Dark and cold, the dungeon smells of mold and despair.");

library->setExit("north", courtyard);

courtyard->setExit("south", library);

courtyard->setExit("east", dungeon);

dungeon->setExit("west", courtyard);

rooms["Library"] = library;

rooms["Courtyard"] = courtyard;

rooms["Dungeon"] = dungeon;

currentRoom = library;

}

void World::displayCurrentRoom() const {

std::cout << currentRoom->getName() << "\n";

std::cout << currentRoom->getDescription() << "\n";

std::cout << currentRoom->getExitString() << "\n";

}

void World::move(const std::string& direction) {

Room* nextRoom = currentRoom->getExit(direction);

if (nextRoom == nullptr) {

std::cout << "You cannot go that way.\n";

} else {

currentRoom = nextRoom;

displayCurrentRoom();

}

}

This World class initializes three rooms and connects them with directional exits. The function move(direction) lets the player move between rooms using simple commands like "north" or "east".

Understanding std::map and std::vector

The Standard Template Library is a powerful part of C++. In this chapter, we have made extensive use of std::map, which is a container that stores elements formed by a combination of a key and a value. In our case, we use it to map string directions like "north" or "west" to pointers to neighboring rooms. This gives us fast lookups and flexibility in adding or removing paths.

If you wish to extend the functionality by storing items or characters in a room, you would use std::vector for that purpose. Here's a brief example of how that would work in the Room class: #include <vector>

std::vector<std::string> items;

void addItem(const std::string& item) {

items.push_back(item);

}

This allows the room to dynamically store an inventory of items, which the player can interact with.

A Sample Hands-On Exploration Project

To test your current implementation and let players navigate the world, write a simple command interface inside main.cpp: #include "World.hpp"

#include <iostream>

int main() {

World gameWorld;

std::string command;

gameWorld.displayCurrentRoom();

while (true) {

std::cout << "\n> ";

std::getline(std::cin, command);

if (command == "quit") break;

else if (command == "look") gameWorld.displayCurrentRoom();

else gameWorld.move(command);

}

return 0;

}

This creates a very basic shell for exploration. The player starts in the library and can type commands like “north”, “east”, “look”, or “quit”. Behind the scenes, they are actually traversing a real dynamic map represented in memory.

Skill Gained and Next Steps

By completing this chapter, you have built an extensible navigation system using object-oriented C++ and the STL. You have learned how to model a real-world environment in memory using Room objects and have explored how to connect these objects using maps and pointers. Most importantly, you now have a working text-based navigation prototype that can be expanded to include treasures, characters, battles, and puzzles.

In the next chapter, we will start populating this world with Non-Playable Characters (NPCs) and enemies, and then develop interaction mechanics that form the core of gameplay. By combining this with your growing knowledge of OOP, data structures, and modular programming, you are developing not just a game engine—but a powerful programming mindset.

Chapter 7

Implementing Player and Character Classes

In this chapter, we begin one of the most exciting stages of building our game engine: designing and implementing the Player and Character classes. These classes form the core entities that the player will control and interact with. A game world without characters is lifeless, and a game without a player is pointless. Therefore, our goal is to breathe life into the game world by giving structure to the entities that inhabit it—starting with the player and extending to other characters such as enemies, NPCs, and allies.

To accomplish this, we will build a robust object-oriented architecture that supports both player-specific features and general character behavior. This architecture will rely heavily on two powerful C++ concepts: inheritance and virtual functions. These allow us to define general behavior in a base class and customize specific behavior in derived classes like Player and Enemy.

The Blueprint for All Creatures

To start, we define a Character class. This will act as the base class for both the player and any non-player characters (NPCs), including enemies. The character will include essential attributes such as health points (HP), magic points (MP), level, experience points (XP), and a name. By abstracting these attributes into a base class, we allow all types of characters to share these features while enabling customization through polymorphism.

Let’s define Character.hpp as follows:

#ifndef CHARACTER_HPP

#define CHARACTER_HPP

#include <string>

class Character {

protected:

std::string name;

int hp;

int mp;

int level;

int xp;

public:

Character(const std::string& name, int hp, int mp, int level, int xp);

virtual ~Character();

virtual void takeDamage(int damage);

virtual void attack(Character& target) = 0; // pure virtual

bool isAlive() const;

std::string getName() const;

int getHP() const;

int getMP() const;

int getLevel() const;

int getXP() const;

};

#endif

Here, attack is a pure virtual function. This enforces that all derived classes must implement their own version of the attack behavior, allowing enemies and players to behave differently when engaging in combat.

The implementation of Character.cpp is straightforward:

#include "Character.hpp"

Character::Character(const std::string& name, int hp, int mp, int level, int xp)

: name(name), hp(hp), mp(mp), level(level), xp(xp) {}

Character::~Character() {}

void Character::takeDamage(int damage) {

hp -= damage;

if (hp < 0) hp = 0;

}

bool Character::isAlive() const {

return hp > 0;

}

std::string Character::getName() const {

return name;

}

int Character::getHP() const {

return hp;

}

int Character::getMP() const {

return mp;

}

int Character::getLevel() const {

return level;

}

int Character::getXP() const {

return xp;

}

This base class will now serve as the foundation for player characters, enemy characters, and even neutral NPCs.

Implementing the Player Class: Extending Character

The Player class inherits from Character and adds new responsibilities such as an inventory system and methods for gaining experience, leveling up, and using items. This highlights the power of inheritance, allowing us to reuse and extend existing functionality.

The Player.hpp file might look like this:

#ifndef PLAYER_HPP

#define PLAYER_HPP

#include "Character.hpp"

#include <vector>

#include <string>

class Player : public Character {

private:

std::vector<std::string> inventory;

public:

Player(const std::string& name);

void attack(Character& target) override;

void gainXP(int amount);

void levelUp();

void addItem(const std::string& item);

void showInventory() const;

};

#endif

Now let us examine the implementation in Player.cpp:

#include "Player.hpp"

#include <iostream>

Player::Player(const std::string& name)

: Character(name, 100, 50, 1, 0) {}

void Player::attack(Character& target) {

int damage = 10 + (level * 2); // Example formula

std::cout << name << " attacks " << target.getName() << " for " << damage << " damage!\n";

target.takeDamage(damage);

if (!target.isAlive()) {

std::cout << target.getName() << " has been defeated!\n";

gainXP(20);

}

}

void Player::gainXP(int amount) {

xp += amount;

std::cout << name << " gains " << amount << " XP!\n";

if (xp >= level * 100) {

levelUp();

}

}

void Player::levelUp() {

level++;

hp += 20;

mp += 10;

xp = 0;

std::cout << name << " has reached Level " << level << "!\n";

}

void Player::addItem(const std::string& item) {

inventory.push_back(item);

std::cout << item << " has been added to your inventory.\n";

}

void Player::showInventory() const {

std::cout << name << "'s Inventory:\n";

for (const auto& item : inventory) {

std::cout << " - " << item << "\n";

}

}

This implementation gives players a growth path through combat and rewards. By combining inventory mechanics and level progression, the game engine starts feeling more immersive and interactive.

Adding Enemies with Unique Behavior

To complement the player, we implement an Enemy class. This class also inherits from Character, but it behaves differently in combat. For instance, enemies may have predefined attack styles, random damage, or scripted behaviors based on their type.

Enemy.hpp

#ifndef ENEMY_HPP

#define ENEMY_HPP

#include "Character.hpp"

class Enemy : public Character {

public:

Enemy(const std::string& name, int hp, int mp, int level);

void attack(Character& target) override;

};

#endif

Enemy.cpp

#include "Enemy.hpp"

#include <iostream>

#include <cstdlib>

#include <ctime>

Enemy::Enemy(const std::string& name, int hp, int mp, int level)

: Character(name, hp, mp, level, 0) {}

void Enemy::attack(Character& target) {

std::srand(time(nullptr));

int damage = (std::rand() % 10) + (level * 2);

std::cout << name << " attacks " << target.getName() << " for " << damage << " damage!\n";

target.takeDamage(damage);

}

By using inheritance, the engine becomes extensible. You can easily add a Boss or NPC class with additional properties and behaviors, without rewriting core functionality.

Using Polymorphism in Battle

The benefit of inheritance shines when managing a group of characters using base class pointers. Suppose you have a list of characters engaged in a battle. You can store them all in a container of type std::vector<Character*>, and call attack() on them, and the correct function will execute depending on whether it is a Player or an Enemy.

Example:

std::vector<Character*> combatants;

Player* player = new Player("Hero");

Enemy* goblin = new Enemy("Goblin", 50, 0, 1);

combatants.push_back(player);

combatants.push_back(goblin);

// Turn-based combat

for (Character* fighter : combatants) {

for (Character* target : combatants) {

if (fighter != target && target->isAlive()) {

fighter->attack(*target);

}

}

}

This use of virtual functions demonstrates polymorphism—allowing you to work with a generalized interface while enabling specialized behavior.

A Hands-On Combat Scenario

Let us build a mini-project in main.cpp to simulate combat:

#include "Player.hpp"

#include "Enemy.hpp"

#include <iostream>

int main() {

Player player("Archer");

Enemy goblin("Goblin", 40, 0, 1);

std::string input;

while (player.isAlive() && goblin.isAlive()) {

std::cout << "\nPlayer HP: " << player.getHP() << ", Goblin HP: " << goblin.getHP() << "\n";

std::cout << "Choose action (attack/show/inventory): ";

std::getline(std::cin, input);

if (input == "attack") {

player.attack(goblin);

if (goblin.isAlive()) {

goblin.attack(player);

}

} else if (input == "show") {

std::cout << "Level: " << player.getLevel() << ", XP: " << player.getXP() << "\n";

} else if (input == "inventory") {

player.showInventory();

}

}

std::cout << (player.isAlive() ? "You survived!" : "You were defeated!") << "\n";

return 0;

}

This code brings everything to life and creates a turn-based combat loop. The player makes decisions, gains experience, and survives through careful strategy.

Summary Table: Player vs Enemy Comparison

	Feature	Player	Enemy
	Derived From	Character	Character
	HP, MP, XP	Yes	Yes
	Can Level Up	Yes	No
	Attack Type	Fixed + scaling	Random + scaling
	Inventory	Yes	No
	Behavior	Controlled by user input	Pre-programmed or random

By the end of this chapter, you have learned how to design a class hierarchy using inheritance and virtual functions—an essential pattern for any object-oriented game engine. You’ve built a Character base class and extended it into Player and Enemy subclasses, each with unique behavior. You’ve also practiced real-time decision-making and combat mechanics using turn-based logic.

This knowledge not only allows you to extend the game into a more complex RPG system but also prepares you for more advanced design patterns such as the Strategy or State pattern, which we will explore in later chapters. As you continue building the game, these character systems will become the foundation for more nuanced gameplay, including dialogue systems, faction interactions, and dynamic AI behavior.

In the next chapter, we will focus on implementing an inventory system and item interactions, further enhancing the gameplay and giving players more control and customizability.

Chapter 8

Turn-Based Combat System from Scratch

Building a turn-based combat system is an essential milestone in any role-playing game (RPG) development process. This chapter guides you through the design and step-by-step implementation of a fully functional battle engine from scratch. The goal is not only to provide you with the tools to build a working system but also to deepen your understanding of object-oriented programming (OOP), game logic structuring, and real-time interaction handling. By the end of this chapter, you will be able to create a turn-based combat module that integrates with your Player and Character classes and provides immersive gameplay with features like attacks, defenses, spells, and random dice-roll mechanics.

1. Understanding the Core Components of Turn-Based Combat

Before writing any code, it is crucial to understand what a turn-based combat system needs to accomplish. At its core, turn-based combat involves a series of alternating actions between player-controlled characters and enemy-controlled characters. Each participant takes a turn where they can perform specific actions, such as attacking, defending, using an item, or casting a spell.

Each turn affects the game state by updating player or enemy statistics like health points (HP), mana points (MP), status effects, and possibly triggering events like critical hits or misses. The system should keep track of whose turn it is, enforce action rules, and determine win or loss conditions based on current states.

The following table summarizes the essential elements involved in such a system:

	Component	Description
	Player & Enemy Stats	HP, MP, attack power, defense, spells, items, status effects
	Actions	Attack, defend, use item, cast spell
	Turn Order	Alternating turns, often based on a queue or initiative system
	
Battle Loop

	Runs continuously until one party wins
	Randomization	Adds unpredictability using simulated dice rolls or chance percentages
	Outcome Handling	Determines victory or defeat and triggers rewards or retry logic

2. Laying the Foundation with OOP: Classes and Structure

To build a clean and extensible system, we will rely heavily on object-oriented principles. The system builds upon previously defined Player and Character classes and introduces a new BattleSystem class.

The Character class should act as a base class, and both Player and Enemy can inherit from it. This ensures shared attributes like HP and MP are centrally managed, while behaviors unique to each can be customized through polymorphism.

Here is a conceptual class diagram showing how the inheritance flows:

[image:]

The BattleSystem class controls the flow of combat, manages the turn order, and processes inputs and outputs. Each round is governed by a loop that checks if both player and enemy are still alive, processes their actions, and updates the state accordingly.

3. Building the Battle Engine: Turn-by-Turn Logic

The most critical part of the battle system is the engine that governs turns. Below is a pseudocode representation of the main battle loop:

while (player.isAlive() && enemy.isAlive()) {

displayStatus();

playerTurn(); // Ask player for input and resolve action

if (!enemy.isAlive()) break;

enemyTurn(); // Enemy AI chooses and performs an action

}

The playerTurn() function could present a simple text menu to the user:

Choose your action:

1. Attack

2. Defend

3. Cast Spell

4. Use Item

Depending on the player's choice, the system will execute the appropriate method on the Player object. For example, choosing “Attack” could call player.attack(enemy), which subtracts damage from the enemy’s HP.

In the enemy turn, the system uses AI logic to make decisions. Initially, you can hardcode basic logic like attacking every round. Later, this can evolve into complex behavior trees.

4. Implementing Actions: Attack, Defend, Spells, and Items

Each action a player or enemy can perform needs to have specific effects. These effects must manipulate attributes such as HP or MP and be subject to game rules and randomness.

Attack

The attack function subtracts the attacker’s attack power from the target’s HP. You can enhance this with random critical hits or misses.

void attack(Character& target) {

int damage = baseAttack + rand() % 6; // Simulate dice roll

target.takeDamage(damage);

std::cout << name << " attacks and deals " << damage << " damage!\n";

}

Defend

Defending temporarily increases the character’s defense stat or reduces incoming damage in the next turn.

void defend() {

isDefending = true;

std::cout << name << " braces for impact, reducing incoming damage.\n";

}

Cast Spell

Spellcasting costs MP and can vary widely in effect. A healing spell might restore HP, while an offensive spell deals magical damage.

void castSpell(Character& target, std::string spellName) {

if (mp < spellCost) {

std::cout << "Not enough MP!\n";

return;

}

mp -= spellCost;

if (spellName == "Fireball") {

int dmg = 10 + rand() % 10;

target.takeDamage(dmg);

std::cout << "Casts Fireball! Deals " << dmg << " magical damage.\n";

}

}

Use Item

Items like potions can be stored in an inventory system and used during battle. Using an item affects stats directly.

void useItem(std::string itemName) {

if (inventory.hasItem(itemName)) {

applyItemEffect(itemName);

inventory.remove(itemName);

}

}

5. Adding Realism with Randomness

Randomness simulates unpredictability in real-life battles. You can use pseudo-random number generation to simulate dice rolls, critical strikes, missed attacks, or random enemy choices.

A common technique is to simulate a 20-sided die roll:

int roll = rand() % 20 + 1;

if (roll > 18) {

std::cout << "Critical Hit!\n";

damage *= 2;

}

Random behavior in enemy AI can be implemented by generating a random number and mapping it to different strategies:

int decision = rand() % 3;

if (decision == 0) attack(player);

else if (decision == 1) defend();

else castSpell(player, "Dark Bolt");

6. Combat Output: Communicating the Action to Players

The combat system must clearly output battle actions, player choices, and consequences in real time. Use simple but descriptive text-based output for clarity. For example: Player casts Fireball! It explodes and deals 17 damage.

Enemy snarls and swings back, dealing 9 damage.

You have 21 HP remaining. Enemy has 5 HP left.

Consider wrapping output in a combat log buffer that stores the last few events for a richer user experience.

7. Determining Win or Lose Conditions

The battle loop ends when either the player or the enemy has 0 or fewer HP. At that point, the system triggers either a victory or defeat screen and proceeds accordingly.

if (!enemy.isAlive()) {

std::cout << "Victory! You have defeated the enemy!\n";

player.gainXP(50);

} else if (!player.isAlive()) {

std::cout << "You have been defeated...\n";

// Optionally reload or retry

}

8. Hands-On Project: Build Your First Battle

Now that all components have been explained, it's time to integrate everything. Set up a test battle in your main() function.

int main() {

Player hero("Hero");

Enemy goblin("Goblin");

BattleSystem battle;

battle.startBattle(hero, goblin);

return 0;

}

Inside the startBattle function, you will call the turn-by-turn loop described earlier, allowing full combat to unfold based on user input and enemy AI behavior.

9. Extending the System

Once you’ve built the basic system, you can continue enhancing it with more complex spells, elemental affinities, multi-character battles, skill cooldowns, turn timers, status effects like poison or stun, and animation-based feedback.

A sample table showing possible expansions:

	Feature	Description
	Status Effects	Poison, Burn, Sleep, Stun, Regeneration
	Elemental Types	Fire, Ice, Lightning with effectiveness against enemy types
	Party System	Multiple players or enemies in combat
	Action Cooldowns	Prevent spamming spells or skills
	Turn Queue	Based on speed stat instead of strict alternating turns

In this chapter, you designed and implemented a complete turn-based combat engine from scratch using C++ and OOP principles. You now understand how to manage player and enemy turns, perform actions, update stats, handle randomness, and present combat text. By structuring your code in modular, reusable ways, you’ve created a flexible framework for expanding and refining your game.

In the next chapter, we will focus on saving and loading game states, allowing your RPG to persist progress and enhance realism. Keep experimenting with your combat system, and try to add unique mechanics of your own to make it feel more engaging and personal.

Chapter 9

Building the Inventory and Item System

In any meaningful RPG or adventure game, a robust and interactive inventory and item system plays a pivotal role in player immersion and strategic depth. From carrying powerful weapons and mysterious potions to managing resources and triggering special effects, the inventory becomes an extension of the player’s decision-making ability. In this chapter, we are going to build a full-featured inventory system from scratch using C++, grounded in object-oriented principles, dynamic memory management, and data structures such as vectors and maps.

By the time you complete this chapter, you will have implemented a functioning inventory system where players can equip weapons, use potions, drop items, and experience real-time status changes. You will also be introduced to the concept of pointers in C++, how objects are stored and managed in memory, and how inheritance is used to manage item types cleanly.

1. Designing the Core Inventory Architecture

Before coding begins, a solid architecture must be laid out. At its core, the inventory is a collection of various items, each of which belongs to a certain category—such as weapons, potions, armor, or miscellaneous collectibles. To avoid duplicated code and to create extensible logic, inheritance is used.

We start by creating a base class called Item, which will be the superclass of more specific types such as Weapon and Potion. Each item has shared attributes such as name, description, weight, and value, but different subclasses will extend functionality to include specific properties, like attack power for a weapon or healing value for a potion.

2. Implementing the Base Item Class

The Item class acts as an abstract representation of anything that can be held in the inventory. Here is a foundational implementation: class Item {

protected:

std::string name;

std::string description;

int value;

double weight;

public:

Item(std::string name, std::string description, int value, double weight)

: name(name), description(description), value(value), weight(weight) {}

virtual void use() = 0; // Pure virtual function

std::string getName() const { return name; }

virtual ~Item() {}

};

Since Item is an abstract class, it cannot be instantiated directly. Instead, it provides the interface and shared attributes for its subclasses. The use() function is marked as pure virtual, which enforces that every derived class must implement its own version of how it is used.

3. Extending the System with Weapons and Potions

We now define the Weapon class, which inherits from Item and introduces a damage attribute. The equip() function will be triggered when a player chooses to equip the weapon.

lass Weapon : public Item {

private:

int damage;

public:

Weapon(std::string name, std::string description, int value, double weight, int damage)

: Item(name, description, value, weight), damage(damage) {}

void use() override {

std::cout << "You equip the " << name << ". It deals " << damage << " damage.\n";

}

int getDamage() const { return damage; }

};

Similarly, we implement the Potion class, which heals or affects the player in different ways: class Potion : public Item {

private:

int healAmount;

public:

Potion(std::string name, std::string description, int value, double weight, int healAmount)

: Item(name, description, value, weight), healAmount(healAmount) {}

void use() override {

std::cout << "You drink the " << name << " and restore " << healAmount << " HP.\n";

}

int getHealAmount() const { return healAmount; }

};

4. Using Vectors and Maps to Store Inventory

The actual inventory will be implemented as a std::vector<Item*>, which allows us to store pointers to objects of different subclasses due to polymorphism. Here's how a simple inventory class may look: class Inventory {

private:

std::vector<Item*> items;

public:

void addItem(Item* item) {

items.push_back(item);

}

void removeItem(int index) {

if (index >= 0 && index < items.size()) {

delete items[index]; // Free memory

items.erase(items.begin() + index);

}

}

void listItems() {

for (int i = 0; i < items.size(); i++) {

std::cout << i << ". " << items[i]->getName() << "\n";

}

}

void useItem(int index) {

if (index >= 0 && index < items.size()) {

items[index]->use();

}

}

~Inventory() {

for (auto item : items) delete item;

}

};

Notice that each item is dynamically allocated and stored via pointers. This introduces the need for memory management using delete to prevent memory leaks. Later in this book, we will move to smart pointers for automated memory management.

5. Implementing Item Interaction: Equip, Use, Drop

The player must be able to interact with the items. To simulate interaction, you can create a console menu:

Inventory Menu:

1. View Items

2. Use Item

3. Drop Item

4. Exit

The input logic can be handled like this:

int choice;

std::cout << "Choose an item to use: ";

std::cin >> choice;

inventory.useItem(choice);

Dropping an item simply deletes it from the vector and releases memory:

std::cout << "Choose item index to drop: ";

int index;

std::cin >> index;

inventory.removeItem(index);

Equipping a weapon could involve setting a flag or reference in the player object:

void equipWeapon(Weapon* weapon) {

equippedWeapon = weapon;

std::cout << "You are now wielding the " << weapon->getName() << "!\n";

}

6. Demonstrating Status Effects and Feedback

To show the impact of using items, such as potions increasing HP or weapons raising attack power, you can directly manipulate player stats. For example: void usePotion(Potion* potion, Player& player) {

player.heal(potion->getHealAmount());

std::cout << "You regained health. Current HP: " << player.getHP() << "\n";

}

You can even implement more advanced potion types, such as speed boosts or temporary invincibility by creating more subclasses or adding status effect logic.

7. Hands-On Project: Full Inventory in Action

You now have everything you need to create a working demo. Below is an example scenario:

int main() {

Player player("Hero");

Inventory inventory;

inventory.addItem(new Weapon("Sword", "A sharp blade", 150, 4.5, 25));

inventory.addItem(new Potion("Health Potion", "Restores 50 HP", 50, 0.5, 50));

bool running = true;

while (running) {

std::cout << "\n--- Inventory Menu ---\n";

std::cout << "1. View Items\n2. Use Item\n3. Drop Item\n4. Exit\n";

int input;

std::cin >> input;

switch (input) {

case 1:

inventory.listItems();

break;

case 2:

std::cout << "Select item to use: ";

int useIndex;

std::cin >> useIndex;

inventory.useItem(useIndex);

break;

case 3:

std::cout << "Select item to drop: ";

int dropIndex;

std::cin >> dropIndex;

inventory.removeItem(dropIndex);

break;

case 4:

running = false;

break;

}

}

return 0;

}

By constructing this inventory and item system from the ground up, you have unlocked several key programming competencies. You have learned how to apply inheritance and polymorphism effectively to manage a class hierarchy of items. You have practiced storing objects via pointers, managing dynamic memory, and utilizing data structures like vectors and maps. Moreover, you’ve built a hands-on interactive system that mirrors what many professional game engines do under the hood.

The modularity of the system allows future expansion. You can now build:

	Feature	Expansion Possibility
	Equip Slots	Add armor, shields, rings, boots
	Item Cooldowns	Prevent spam usage of powerful items
	Stackable Items	Manage quantity using maps or custom stacks
	Weight Limits	Enforce carry capacity based on total weight
	Item Rarity	Add color-coded rarity and drop rates
	Item Descriptions	Use rich text for immersive item stories

In the next chapter, we will persist all of these systems—character stats, inventory, and battle states—using file I/O, so your game world becomes fully savable and loadable.

Chapter 10

Quest and Dialogue Engine

The richness of any role-playing game or adventure simulation often comes not just from combat mechanics or inventory management, but from the depth of its narrative and the player's interaction with non-playable characters (NPCs). A quest and dialogue system introduces life to the world, enabling branching stories, moral dilemmas, and cause-and-effect mechanisms that respond to the player's choices. In this chapter, we will construct an interactive quest and dialogue engine in C++ using object-oriented design, conditional logic, and data-driven structures. By the end of this chapter, readers will have developed a working system that handles dialogue trees, player choices, quest progress tracking, and scripted logic—all of which can be extended into full-scale storytelling engines.

1. The Purpose of a Quest and Dialogue Engine

A quest and dialogue system is the beating heart of narrative-driven gameplay. This system is responsible for presenting story content to the player, capturing their responses or choices, and changing the world state or player objectives accordingly. In practical terms, this means that when a player interacts with an NPC, they should be able to engage in branching conversations, accept quests, and progress or influence events based on their decisions.

At the core of such a system are three components: dialogue nodes, choice branches, and quest state trackers. We must ensure that each of these components is data-driven, meaning they can be created or modified without changing the program’s source code, allowing for expandable and mod-friendly design.

2. Structuring Dialogue Trees Using C++ Structs

Dialogue trees represent conversations between the player and an NPC. A dialogue tree can be visualized as a directed graph, where each node represents a line of dialogue, and each edge represents a player choice leading to the next node.

Let us look at a basic structural representation of this tree:

[image:]

To model this in C++, we will use struct data types to create lightweight but powerful data containers for each dialogue node.

struct DialogueChoice;

struct DialogueNode {

int id;

std::string speaker;

std::string text;

std::vector<DialogueChoice> choices;

};

struct DialogueChoice {

std::string text;

int nextNodeID;

std::function<void()> action; // Optional action when selected

};

Each DialogueNode holds a line of text, identifies who is speaking, and presents multiple choices. The choices contain the text the player sees, the ID of the next node to move to, and potentially an action that is executed upon selection.

3. Building the Dialogue Engine

We now need a system to manage dialogue traversal. This engine will load dialogue nodes (either hardcoded or from external files), display the current node, prompt the player for a choice, and execute the corresponding next node and action.

class DialogueEngine {

private:

std::map<int, DialogueNode> dialogueMap;

public:

void addNode(const DialogueNode& node) {

dialogueMap[node.id] = node;

}

void start(int startNodeID) {

int currentID = startNodeID;

while (true) {

auto node = dialogueMap[currentID];

std::cout << node.speaker << ": " << node.text << "\n";

if (node.choices.empty()) break;

for (size_t i = 0; i < node.choices.size(); ++i) {

std::cout << i + 1 << ". " << node.choices[i].text << "\n";

}

int choice;

std::cin >> choice;

auto selected = node.choices[choice - 1];

if (selected.action) selected.action();

currentID = selected.nextNodeID;

}

}

};

This engine maintains a map of dialogue nodes and supports dynamic branching based on player input. By embedding actions into choices, we allow the dialogue system to trigger quest updates, give items, or change game state.

4. Hands-On Example: Creating a Simple Dialogue Tree

Let us create a small conversation with a blacksmith NPC:

DialogueNode node1 = {1, "Blacksmith", "Welcome to my forge, traveler!",

{

{"Do you have any work for me?", 2, nullptr},

{"Just browsing, thanks.", 3, nullptr}

}

};

DialogueNode node2 = {2, "Blacksmith", "Yes, I need someone to deliver this sword.",

{

{"I’ll take the job.", 4, [](){ QuestManager::getInstance().startQuest("SwordDelivery"); }},

{"No thanks.", 3, nullptr}

}

};

DialogueNode node3 = {3, "Blacksmith", "Very well. Come back if you change your mind.", {}};

DialogueNode node4 = {4, "Blacksmith", "Thank you! Deliver it to the guard captain.", {}};

We register these nodes into our DialogueEngine and start the interaction:

DialogueEngine engine;

engine.addNode(node1);

engine.addNode(node2);

engine.addNode(node3);

engine.addNode(node4);

engine.start(1);

This small interaction now supports branching dialogue and real-time quest initialization.

5. Creating the Quest System

Quests are tracked using a quest manager. Each quest has a name, description, progress state, and optional completion criteria. We define a Quest struct as follows: enum class QuestState { NotStarted, InProgress, Completed };

struct Quest {

std::string title;

std::string description;

QuestState state = QuestState::NotStarted;

void start() {

state = QuestState::InProgress;

std::cout << "Quest started: " << title << "\n";

}

void complete() {

state = QuestState::Completed;

std::cout << "Quest completed: " << title << "\n";

}

};

The QuestManager singleton class will manage all available quests:

class QuestManager {

private:

std::map<std::string, Quest> quests;

QuestManager() {}

public:

static QuestManager& getInstance() {

static QuestManager instance;

return instance;

}

void addQuest(const Quest& quest) {

quests[quest.title] = quest;

}

void startQuest(const std::string& title) {

quests[title].start();

}

void completeQuest(const std::string& title) {

quests[title].complete();

}

QuestState getQuestState(const std::string& title) {

return quests[title].state;

}

};

You can now use QuestManager inside your dialogue system or other parts of the game to track progress.

6. Conditional Dialogue and Quest Branching

To further expand the depth of the engine, dialogue should change depending on quest status or player decisions. This can be done by dynamically building the dialogue tree at runtime based on conditions.

Here’s a small table describing how a quest might influence dialogue:

	Quest State	Dialogue Node Presented
	Not Started	"Do you want to help me deliver this sword?"
	In Progress	"Have you delivered the sword yet?"
	Completed	"Thanks for your help! The captain received the sword."

This logic can be embedded like this:

if (QuestManager::getInstance().getQuestState("SwordDelivery") == QuestState::Completed) {

// Load a different node

engine.start(10); // Node ID 10 is post-quest dialogue

} else {

engine.start(1); // Original intro dialogue

}

This allows the same NPC to serve multiple narrative purposes without duplicating data or code.

7. Scripting Dialogue Trees Using External Files

To make the engine extensible, dialogue trees can be stored in JSON or plain-text formats. You can create a file like this:

{

"nodes": [

{

"id": 1,

"speaker": "Guard",

"text": "Halt! What is your business?",

"choices": [

{"text": "I'm here on official business.", "nextNodeID": 2},

{"text": "Just passing through.", "nextNodeID": 3}

]

},

{

"id": 2,

"speaker": "Guard",

"text": "Very well. Proceed.",

"choices": []

}

]

}

Use a JSON parser like nlohmann/json to parse and populate the dialogue engine dynamically. This makes the game modifiable by writers and designers without needing to touch the core codebase.

By building this dialogue and quest engine, readers gain invaluable hands-on experience in game architecture, logic branching, data-driven design, and interaction systems. These concepts are crucial not only for game development but also for creating any type of interactive application. The modularity and reusability of this system allow readers to continuously expand the narrative scope, add new content via external files, and support complex storylines involving conditional logic and persistent quest progression.

This chapter lays the groundwork for deeper narrative design, which, when combined with combat, inventory, and world simulation, will lead to a fully interactive, player-driven adventure game. In the next chapter, we will tie together all systems—character, battle, inventory, dialogue, and quest—into a unified save/load engine using persistent storage with file I/O.

Chapter 11

Save/Load Game State with File I/O

One of the key features that any game must offer is the ability to save and load progress. Whether it’s preserving the player's state, tracking quest completion, or maintaining inventory items, the ability to save and reload a game allows players to pick up where they left off, providing a better and more personalized experience. In this chapter, we will explore how to implement save/load functionality using File I/O in C++. We will delve into different strategies for serializing data, such as CSV, binary files, and custom formats, which are commonly used in game development. The goal is to provide you with a practical understanding of file handling in C++ so you can efficiently manage game states.

1. Understanding File I/O in C++

Before we begin implementing save/load functionality, it's essential to understand how file input/output (I/O) works in C++. File I/O allows you to read from and write to files on your computer, enabling your game to store data persistently. The C++ standard library provides classes such as ifstream (input file stream) and ofstream (output file stream) for handling file operations.

The basic operations you need to know are:

Opening a File – Using ofstream to write to a file or ifstream to read from a file.

Reading and Writing Data – Using << to write data to a file and >> to read from a file.

Closing a File – Using close() to ensure that all file streams are properly closed after operations.

Example of opening and writing to a file:

std::ofstream outFile("game_save.txt");

if (outFile.is_open()) {

outFile << "PlayerName: John\n";

outFile << "Level: 5\n";

outFile << "Health: 100\n";

outFile.close();

}

And reading from a file:

std::ifstream inFile("game_save.txt");

std::string line;

while (getline(inFile, line)) {

std::cout << line << std::endl;

}

inFile.close();

In this chapter, we will explore how to apply these fundamental techniques to save and load more complex game data such as player state, map position, inventory, and quest progress.

2. Saving and Loading Player State

The player’s state is fundamental to the game’s progress. The player’s attributes (such as health, experience points, level, etc.) should be saved so that the game can resume where it left off. Let’s define a Player class to encapsulate the player’s state: class Player {

public:

std::string name;

int level;

int health;

int experience;

// Constructor

Player(std::string n, int lvl, int hp, int exp)

: name(n), level(lvl), health(hp), experience(exp) {}

// Method to save the player's state

void saveToFile(const std::string& filename) {

std::ofstream outFile(filename);

if (outFile.is_open()) {

outFile << name << "\n";

outFile << level << "\n";

outFile << health << "\n";

outFile << experience << "\n";

outFile.close();

} else {

std::cerr << "Error opening file for saving!\n";

}

}

// Method to load the player's state

void loadFromFile(const std::string& filename) {

std::ifstream inFile(filename);

if (inFile.is_open()) {

getline(inFile, name);

inFile >> level;

inFile >> health;

inFile >> experience;

inFile.close();

} else {

std::cerr << "Error opening file for loading!\n";

}

}

};

Here, the saveToFile method writes the player’s attributes to a file, while loadFromFile loads the player’s state back into memory. These methods store each attribute on a new line to make the data easily readable and accessible.

3. Saving and Loading the Map Position

The player’s position on the game map is another crucial piece of information that needs to be preserved. Assuming the map is represented as a 2D grid, we can store the player’s current coordinates (x, y). Let’s assume the game world is made up of rooms, and the player can move between them.

Here’s how we can define and save the player’s position:

class GameWorld {

public:

int playerX, playerY;

GameWorld(int x, int y) : playerX(x), playerY(y) {}

// Save player position to a file

void savePositionToFile(const std::string& filename) {

std::ofstream outFile(filename);

if (outFile.is_open()) {

outFile << playerX << "\n";

outFile << playerY << "\n";

outFile.close();

} else {

std::cerr << "Error opening file for saving position!\n";

}

}

// Load player position from a file

void loadPositionFromFile(const std::string& filename) {

std::ifstream inFile(filename);

if (inFile.is_open()) {

inFile >> playerX;

inFile >> playerY;

inFile.close();

} else {

std::cerr << "Error opening file for loading position!\n";

}

}

};

In this example, playerX and playerY represent the player’s position in the game world. These values are saved and loaded from a file similar to how we handle the player’s attributes.

4. Saving and Loading Inventory

The player’s inventory might contain a variety of items such as weapons, potions, and tools. A simple way to manage the inventory is to use a collection of objects. In this case, we will use a std::vector to hold a list of items, where each item can be represented as a class.

Let's create a basic Item class and extend it with derived classes like Weapon and Potion: class Item {

public:

std::string name;

int id;

Item(std::string n, int i) : name(n), id(i) {}

virtual void saveToFile(std::ofstream& outFile) const {

outFile << name << "," << id << "\n";

}

virtual void loadFromFile(std::ifstream& inFile) {

std::getline(inFile, name, ',');

inFile >> id;

}

};

class Weapon : public Item {

public:

int damage;

Weapon(std::string n, int i, int dmg) : Item(n, i), damage(dmg) {}

void saveToFile(std::ofstream& outFile) const override {

Item::saveToFile(outFile);

outFile << damage << "\n";

}

void loadFromFile(std::ifstream& inFile) override {

Item::loadFromFile(inFile);

inFile >> damage;

}

};

class Potion : public Item {

public:

int healAmount;

Potion(std::string n, int i, int heal) : Item(n, i), healAmount(heal) {}

void saveToFile(std::ofstream& outFile) const override {

Item::saveToFile(outFile);

outFile << healAmount << "\n";

}

void loadFromFile(std::ifstream& inFile) override {

Item::loadFromFile(inFile);

inFile >> healAmount;

}

};

Now, we can store the player’s inventory by saving each item:

class Inventory {

public:

std::vector<Item*> items;

void addItem(Item* item) {

items.push_back(item);

}

void saveToFile(const std::string& filename) {

std::ofstream outFile(filename);

if (outFile.is_open()) {

for (auto item : items) {

item->saveToFile(outFile);

}

outFile.close();

} else {

std::cerr << "Error opening file for saving inventory!\n";

}

}

void loadFromFile(const std::string& filename) {

std::ifstream inFile(filename);

if (inFile.is_open()) {

while (inFile) {

std::string itemType;

inFile >> itemType;

if (itemType == "Weapon") {

Weapon* weapon = new Weapon("", 0, 0);

weapon->loadFromFile(inFile);

items.push_back(weapon);

} else if (itemType == "Potion") {

Potion* potion = new Potion("", 0, 0);

potion->loadFromFile(inFile);

items.push_back(potion);

}

}

inFile.close();

} else {

std::cerr << "Error opening file for loading inventory!\n";

}

}

};

5. Serialization Strategies

There are different ways to serialize game data. Serialization refers to converting objects into a format that can be saved to a file and then later deserialized (converted back into objects).

CSV (Comma-Separated Values): This format is easy to read and write but lacks support for complex objects.

Binary Files: Faster and more efficient but harder to debug and modify.

Custom Formats: You can create your own text or binary format tailored to your needs. This offers the most flexibility but requires custom parsing logic.

In this chapter, we’ve demonstrated the CSV approach by using simple text files. If you need more efficient storage, you can use binary files, but that requires careful handling of memory and object sizes.

Chapter 12

Building the User Interface and Game Menus

One of the key aspects of any successful game is its user interface (UI). The UI not only serves as the gateway for players to interact with the game but also plays a vital role in ensuring that the gameplay experience is intuitive, engaging, and smooth. In this chapter, we will delve into the process of creating simple yet effective text-based game menus, including the main menu, inventory screens, stats display, and in-game choices. We will focus on designing these elements using ASCII art and basic layout formatting techniques that can be implemented in C++. Along the way, you will learn how to enhance user experience (UX) by organizing these elements with borders, tabs, and proper alignment, all of which contribute to a more professional and polished look.

The goal of this chapter is to provide hands-on techniques for building these screens, teaching you how to manage input from the player, and formatting your interface to make it both functional and visually appealing. By the end of this chapter, you will have the knowledge to implement menus and interactive screens that allow players to control various aspects of the game world, manage their inventory, and monitor their stats.

1. Designing the Main Menu

The main menu of a game is the first point of interaction between the player and the game itself. It typically serves as a starting point for navigating through different game modes, options, and exits. In a text-based game, we can use simple ASCII art and text formatting to create a visually appealing and clear menu.

Here’s an example of how you could design a simple main menu:

#include <iostream>

#include <string>

void displayMainMenu() {

std::cout << "**************************************\n";

std::cout << " Welcome to the Game! \n";

std::cout << " 1. Start New Game \n";

std::cout << " 2. Load Game \n";

std::cout << " 3. View High Scores \n";

std::cout << " 4. Exit \n";

std::cout << "**************************************\n";

std::cout << "Please choose an option: ";

}

int main() {

int choice;

displayMainMenu();

std::cin >> choice;

switch (choice) {

case 1:

std::cout << "Starting a new game...\n";

break;

case 2:

std::cout << "Loading saved game...\n";

break;

case 3:

std::cout << "Displaying high scores...\n";

break;

case 4:

std::cout << "Exiting the game...\n";

break;

default:

std::cout << "Invalid choice, please try again.\n";

break;

}

return 0;

}

In this example, the menu options are displayed in a simple bordered box created with ASCII characters, such as *, -, and |. The user is prompted to input their choice, and the program executes the appropriate action based on the user’s selection.

Explanation of Key Concepts:

Borders and Formatting: The * characters are used to create borders around the menu, which helps organize the content and makes it stand out.

Input Handling: The menu waits for input from the user, which is handled through std::cin. Depending on the user’s choice, different actions are executed.

This approach makes the game’s main menu look more structured and visually appealing, while also being simple enough for beginners to understand and implement.

2. Designing the Inventory Screen

After the player starts the game, managing the inventory becomes one of the most crucial aspects. The inventory screen displays a list of items the player has collected, along with options to equip, use, or drop items. To make this screen functional and user-friendly, we can use a similar ASCII art approach to display the items and organize them neatly.

Here’s an example of how you could design an inventory screen:

#include <iostream>

#include <vector>

class Item {

public:

std::string name;

Item(std::string itemName) : name(itemName) {}

};

void displayInventory(std::vector<Item>& inventory) {

std::cout << "********** INVENTORY **********\n";

for (size_t i = 0; i < inventory.size(); ++i) {

std::cout << " " << i + 1 << ". " << inventory[i].name << " \n";

}

std::cout << "*******************************\n";

std::cout << "Please select an item number to interact with, or 0 to return: ";

}

int main() {

std::vector<Item> inventory = {Item("Health Potion"), Item("Sword"), Item("Shield")};

displayInventory(inventory);

int choice;

std::cin >> choice;

if (choice > 0 && choice <= inventory.size()) {

std::cout << "You selected: " << inventory[choice - 1].name << "\n";

} else if (choice == 0) {

std::cout << "Returning to the previous menu...\n";

} else {

std::cout << "Invalid choice, please try again.\n";

}

return 0;

}

In this example:

The inventory items are displayed with a numbered list inside a bordered box, making it easy for the player to choose which item to interact with.

The player can select an item number to see more options or interact with the item. If the player inputs 0, they return to the previous menu.

This design provides a clean, organized view of the inventory, with proper alignment and spacing to enhance readability.

3. Displaying Player Stats

Tracking player stats is essential for providing feedback to the player on their progress throughout the game. A typical RPG game might display stats such as health points (HP), magic points (MP), experience points (XP), and level. Displaying these stats clearly helps the player understand their current status and motivates them to keep playing.

Here’s an example of how to design a stats display screen:

#include <iostream>

class Player {

public:

int level;

int health;

int maxHealth;

int mp;

int maxMp;

int xp;

Player(int lvl, int hp, int mhp, int mp, int mmp, int xp)

: level(lvl), health(hp), maxHealth(mhp), mp(mp), maxMp(mmp), xp(xp) {}

void displayStats() {

std::cout << "********** PLAYER STATS **********\n";

std::cout << " Level: " << level << " \n";

std::cout << " HP: " << health << "/" << maxHealth << " \n";

std::cout << " MP: " << mp << "/" << maxMp << " \n";

std::cout << " XP: " << xp << " \n";

std::cout << "**********************************\n";

}

};

int main() {

Player player(5, 100, 100, 50, 50, 200);

player.displayStats();

return 0;

}

In this example:

	
The player’s stats are displayed in a structured format using ASCII art borders.

	
The stats are aligned neatly to ensure they are easy to read.

	
This layout clearly indicates the player’s health, magic, experience, and level, with proper formatting to distinguish each stat.

By using simple ASCII characters and aligning text properly, we can create a visually organized and readable stats screen.

4. Enhancing UX with Utility Functions

To ensure that our user interface remains consistent and easy to manage across various screens, we can write utility functions to handle common formatting tasks. These functions can help in creating borders, aligning text, and clearing the screen, which can save you time and reduce the complexity of the code.

For example, let’s write a simple utility function to create borders around menus and text:

void printBorder(int length) {

for (int i = 0; i < length; ++i) {

std::cout << "*";

}

std::cout << "\n";

}

void printCenteredText(const std::string& text, int width) {

int padding = (width - text.length()) / 2;

for (int i = 0; i < padding; ++i) {

std::cout << " ";

}

std::cout << text << "\n";

}

In this example, the printBorder function draws a border of stars based on the specified length, and printCenteredText ensures that the text is centered within a given width.

These utility functions help maintain a consistent style across the game’s UI, making it easier to develop and enhance as you go.In this chapter, we have explored how to create simple yet effective user interfaces for your game using ASCII art and basic formatting techniques. We have covered the design of essential game menus such as the main menu, inventory screen, and player stats display, and demonstrated how to use C++ functions to implement and organize them effectively. By using text-based formatting and proper alignment, you can create a clean and user-friendly experience for players, even without relying on advanced graphical interfaces. The next steps would involve refining these UI elements and adding more advanced features such as dynamic menus, animations, and more interactive elements as your game progresses. Remember, the key to creating a great user experience lies in simplicity, clarity, and ease of use. With the knowledge gained from this chapter, you can continue to enhance your game’s interface and build more interactive, user-friendly

Chapter 13

Adding Game Modding Support with External Scripts

In the world of game development, one powerful way to enhance the longevity and replayability of your game is by enabling modding support. Modding refers to the ability for users (or players) to modify certain aspects of the game, from changing the appearance of characters and maps to tweaking the underlying game mechanics. One common approach to supporting modding is to externalize key game data—such as enemy definitions, item properties, and quests—into easily editable files, which can be loaded dynamically at runtime without needing to recompile the game.

In this chapter, we will explore how to achieve this by using plain text files, as well as structured data formats like JSON and XML. We will also demonstrate how to use libraries such as nlohmann/json to easily parse and load these external data files into your game engine. By the end of this chapter, you will have the skills to implement a modding system that allows players or modders to customize the game world without modifying the game’s source code.

1. Introduction to Externalized Game Data

The idea behind externalizing game data is to separate the static information that drives the game world from the game engine itself. This means that certain aspects of the game—such as enemy stats, item attributes, and quest data—can be stored in external files that can be easily modified by anyone. These files might be in plain text, JSON, or XML format. This externalization allows for rapid content changes and the ability for players to create their own mods, making the game more dynamic and customizable.

By loading this data at runtime, the game engine remains flexible and scalable, able to accommodate new or modified content without the need for recompilation. This not only saves development time but also opens the door to a thriving modding community where new content can be continuously created by the players themselves.

2. Using Plain Text Files for Simple Data Storage

The simplest way to store external game data is through plain text files. These files are easy to read, write, and modify, making them ideal for quick prototyping or small games. You can store basic game data, such as enemy names, health, damage values, and item properties, in a text-based format.

Example: Defining Enemies in a Plain Text File

Let’s start by creating a simple text file (enemies.txt) to store enemy data: Goblin,100,15,5

Orc,200,25,10

Dragon,500,50,20

In this format:

	The first field is the name of the enemy.
	The second field is the health of the enemy.
	The third field is the damage the enemy deals.
	The fourth field is the armor value of the enemy.

Each enemy is represented by a line in the file, and the data fields are separated by commas. This format is simple and easy to modify, but it may lack the structure required for more complex game data.

Loading Data from a Plain Text File

To load this enemy data into our game, we can write a function in C++ to read the file line by line and parse each line into the respective fields. Here’s an example implementation: #include <iostream>

#include <fstream>

#include <sstream>

#include <vector>

struct Enemy {

std::string name;

int health;

int damage;

int armor;

Enemy(std::string n, int h, int d, int a)

: name(n), health(h), damage(d), armor(a) {}

};

std::vector<Enemy> loadEnemies(const std::string& filename) {

std::ifstream file(filename);

std::vector<Enemy> enemies;

if (file.is_open()) {

std::string line;

while (getline(file, line)) {

std::stringstream ss(line);

std::string name;

int health, damage, armor;

std::getline(ss, name, ',');

ss >> health >> damage >> armor;

enemies.push_back(Enemy(name, health, damage, armor));

}

file.close();

} else {

std::cout << "Error: Could not open file " << filename << std::endl;

}

return enemies;

}

int main() {

std::vector<Enemy> enemies = loadEnemies("enemies.txt");

for (const auto& enemy : enemies) {

std::cout << "Name: " << enemy.name << ", Health: " << enemy.health

<< ", Damage: " << enemy.damage << ", Armor: " << enemy.armor << std::endl;

}

return 0;

}

In this example:

	
We define an Enemy struct to store the data for each enemy.

	
The loadEnemies function reads the enemy data from the text file and parses it into a vector of Enemy objects.

	
The getline function is used to split the input line by commas, and then the integer values for health, damage, and armor are extracted using a stringstream.

This approach works well for simple games with minimal data, but as the game grows, you may want to switch to a more structured format like JSON or XML to store more complex data.

3. Using JSON for Structured Data Storage

JSON (JavaScript Object Notation) is a lightweight, human-readable format for structuring data. It is widely used in modern applications due to its simplicity and flexibility. In games, JSON can be used to store a wide variety of data, such as enemy definitions, items, quests, or even game settings.

To work with JSON in C++, we can use the nlohmann/json library, which provides an easy-to-use API for parsing and serializing JSON data.

Example: Defining Enemies in JSON Format

Let’s create a JSON file (enemies.json) to define our enemies: {

"enemies": [

{

"name": "Goblin",

"health": 100,

"damage": 15,

"armor": 5

},

{

"name": "Orc",

"health": 200,

"damage": 25,

"armor": 10

},

{

"name": "Dragon",

"health": 500,

"damage": 50,

"armor": 20

}

]

}

This structure is more flexible than plain text, as it allows us to easily add new attributes to enemies or even add entirely new types of objects, such as quests or items.

Loading Data from JSON

To load the JSON data, we will need to include the nlohmann/json library and parse the JSON file into a C++ object. Here’s how to do it: First, install the nlohmann/json library. If you are using a package manager like vcpkg or conan, you can easily add it to your project. Otherwise, you can directly include the header file in your project.

Now, let’s implement the code to load the JSON file:

#include <iostream>

#include <fstream>

#include <nlohmann/json.hpp>

using json = nlohmann::json;

struct Enemy {

std::string name;

int health;

int damage;

int armor;

Enemy(std::string n, int h, int d, int a)

: name(n), health(h), damage(d), armor(a) {}

};

std::vector<Enemy> loadEnemies(const std::string& filename) {

std::ifstream file(filename);

json j;

file >> j;

std::vector<Enemy> enemies;

for (const auto& enemyData : j["enemies"]) {

std::string name = enemyData["name"];

int health = enemyData["health"];

int damage = enemyData["damage"];

int armor = enemyData["armor"];

enemies.push_back(Enemy(name, health, damage, armor));

}

return enemies;

}

int main() {

std::vector<Enemy> enemies = loadEnemies("enemies.json");

for (const auto& enemy : enemies) {

std::cout << "Name: " << enemy.name << ", Health: " << enemy.health

<< ", Damage: " << enemy.damage << ", Armor: " << enemy.armor << std::endl;

}

return 0;

}

Here’s how the code works:

	
We load the JSON data into a json object using the nlohmann/json library.

	
We then iterate through the "enemies" array in the JSON object, extracting the attributes for each enemy and storing them in a vector of Enemy objects.

	
Finally, we print out the details of each enemy.

The JSON format is more structured than plain text, and it allows for easy modifications, additions, or deletions of data without changing the game engine itself.

4. Using XML for Data Storage (Optional)

Another common format for storing structured data is XML (Extensible Markup Language). While JSON is often favored for its simplicity and readability, XML provides similar functionality and is still used in many applications, particularly in enterprise and older systems.

In C++, libraries such as TinyXML or RapidXML can be used to parse XML files. The process of loading and parsing XML data is similar to that of JSON, but XML tends to be more verbose and can be harder to read for humans.

In this chapter, we have explored how to add modding support to your game by externalizing key data like enemies, items, and quests. We began by using simple plain text files for storing game data, then transitioned to more structured formats like JSON, which offer more flexibility and scalability.

By externalizing game data, you can create a more dynamic game engine that can be easily modified by players or developers without the need for recompilation. This opens up a whole new world of customization, enabling the creation of mods and custom content that can keep your game fresh and engaging for years to come.

In the next chapter, we will look into how to integrate these modding systems into a more complex game engine, allowing players to modify not only the content but also the mechanics of the game itself.

Chapter 14

Designing the Sound and Music Layer (Optional)

The immersive quality of a game extends far beyond the visual experience. Sound and music play a critical role in shaping a player's interaction with the game world. From the subtle background melodies that enhance atmosphere to the loud and impactful sound effects that accompany combat, leveling up, or movement, sound is an essential part of any game’s sensory experience. In this chapter, we will explore how to integrate sound and music into a console-based game using libraries such as SDL (Simple DirectMedia Layer) or system calls, depending on your development environment.

While many modern games use highly sophisticated audio engines, even a simple console game can benefit from basic sound and music integration. Whether you are targeting Windows, Linux, or cross-platform systems, understanding how to implement sound in your games can significantly elevate the player experience. For the purpose of this chapter, we will focus on basic sound effects that can be triggered by game events, such as combat, movement, and leveling up.

1. The Importance of Sound and Music in Games

Sound serves several purposes in a video game, including:

Atmospheric Enhancement: Background music and ambient sounds help set the tone of the game world, creating a more immersive and believable environment.

Action Feedback: Sound effects provide players with immediate feedback for their actions, such as the satisfying sound of an enemy being hit or the sound of a character leveling up. This feedback reinforces the game's mechanics and helps to maintain engagement.

Emotional Impact: Music can evoke emotional responses, whether it’s excitement, tension, or joy. The right soundtrack can enhance a player’s emotional investment in the game.

Narrative Support: Music and sound can also convey information about the game’s storyline. For example, a change in music might indicate a change in mood or environment, signaling to the player that something significant is about to happen.

In this chapter, we will cover the basic implementation of sound using SDL, one of the most popular and accessible libraries for handling audio in games. We will also demonstrate how to integrate sound effects and background music, as well as the code required to trigger these sounds based on player actions in the game.

2. Introduction to SDL for Sound and Music

SDL (Simple DirectMedia Layer) is an open-source multimedia library that provides a simple API for handling graphics, sound, and input. Although SDL is most commonly used for 2D game development, it is versatile enough to handle sound effects and music. SDL can be used on multiple platforms, including Windows, macOS, and Linux, making it an excellent choice for cross-platform game development.

Before diving into sound integration, it’s important to ensure that SDL is set up correctly in your development environment. The basic setup involves including the SDL header files, linking the SDL libraries, and initializing the SDL subsystems that handle audio.

Setting Up SDL for Audio

Installing SDL2:

If you are using a package manager like vcpkg or conan, you can quickly add SDL to your project.

For Linux-based systems, SDL2 can be installed using your system’s package manager (e.g., sudo apt-get install libsdl2-dev).

On Windows, you can download the SDL2 development libraries from the SDL website.

Initializing SDL Audio: Before we can play sound, we need to initialize the audio subsystem of SDL. This is done by calling the SDL_Init() function with the SDL_INIT_AUDIO flag.

#include <SDL2/SDL.h>

#include <iostream>

if (SDL_Init(SDL_INIT_AUDIO) != 0) {

std::cerr << "SDL_Init failed: " << SDL_GetError() << std::endl;

return 1;

}

Once SDL is initialized, we can load and play sound effects or background music.

3. Loading and Playing Sound Effects

Sound effects are typically short audio clips that are triggered by specific events within the game. Common examples of sound effects include footsteps, weapon sounds, or combat noises.

To load and play sound effects in SDL, we can use the Mix_Chunk structure, which represents a loaded sound effect. We will use the SDL_mixer library (which extends SDL’s functionality) to handle loading and playing audio files.

Example: Loading and Playing a Sound Effect

First, make sure that SDL_mixer is installed and linked properly. Then, we can load and play a sound effect with the following code:

Initializing SDL_mixer:

Before using SDL_mixer functions, we need to initialize the audio mixer with a desired frequency and format.

#include <SDL2/SDL_mixer.h>

if (Mix_OpenAudio(22050, MIX_DEFAULT_FORMAT, 2, 4096) < 0) {

std::cerr << "Mix_OpenAudio failed: " << Mix_GetError() << std::endl;

return 1;

}

Loading a Sound Effect:

Now, we will load a sound effect (e.g., a sword swing sound) into memory using Mix_LoadWAV(): Mix_Chunk* swordSwing = Mix_LoadWAV("sword_swing.wav");

if (!swordSwing) {

std::cerr << "Error loading sound: " << Mix_GetError() << std::endl;

return 1;

}

Playing the Sound Effect:

Once the sound is loaded, we can play it using the Mix_PlayChannel() function. This function allows us to specify which audio channel (out of several available) to play the sound on. We can also specify the number of loops (in this case, one-time play).

Mix_PlayChannel(-1, swordSwing, 0);

Cleaning Up:

After the sound has finished playing, we should free the memory used by the Mix_Chunk object and close the audio system when the game ends.

Mix_FreeChunk(swordSwing);

Mix_CloseAudio();

SDL_Quit();

Now, whenever the player performs an action, such as swinging a sword or shooting a bow, you can call this method to play the corresponding sound effect.

4. Adding Background Music

In addition to sound effects, background music adds another layer of immersion to your game. Background music can be a continuous loop that plays throughout a level or the entire game.

To handle background music in SDL, we use the Mix_Music structure, which allows us to load and play music files (typically in MP3, OGG, or WAV formats).

Example: Loading and Playing Background Music

Loading Music:

To load background music, we use the Mix_Music object and the Mix_LoadMUS() function.

Mix_Music* music = Mix_LoadMUS("background_music.ogg");

if (!music) {

std::cerr << "Error loading music: " << Mix_GetError() << std::endl;

return 1;

}

Playing Music:

To play the music in a loop, use the Mix_PlayMusic() function. The second argument defines the number of loops (use -1 for infinite loops).

Mix_PlayMusic(music, -1);

Stopping the Music:

If you need to stop the music (for example, when the player pauses or transitions to another scene), you can use the Mix_HaltMusic() function.

Mix_HaltMusic();

5. Playing Sound on Specific Events

One of the most powerful ways to enhance gameplay with sound is to trigger specific sound effects based on player actions or game events. Here are a few examples: Combat: When a player attacks an enemy, you could play a sword swing sound effect followed by a "hit" sound.

Movement: Every time the player moves, you could play a footstep sound, depending on the environment (e.g., grass, gravel, or stone).

Leveling Up: When the player reaches a new level, a short celebratory sound or music cue could be triggered.

In the context of your game, you can incorporate these sounds into your existing event system by calling the appropriate functions when certain actions occur. For example, when the player attacks an enemy: if (playerAttacksEnemy) {

Mix_PlayChannel(-1, swordSwing, 0); // Play the sword swing sound effect

Mix_PlayChannel(-1, hitSound, 0); // Play the hit sound effect

}

6. Platform Considerations (Optional)

While SDL is cross-platform, there are some platform-specific considerations when working with audio. For example:

	
On Windows, SDL uses DirectSound to handle audio, which should work well for most use cases.

	
On Linux, SDL relies on ALSA (Advanced Linux Sound Architecture) or PulseAudio.

	
On macOS, SDL uses CoreAudio, which is designed for high-quality audio playback on Apple devices.

If you are targeting a single platform or need specific audio features, you might also consider using platform-specific APIs or libraries, but SDL's cross-platform nature makes it a great choice for handling audio in a wide range of environments.

In this chapter, we’ve covered the essentials of adding sound and music to your console-based game using SDL and SDL_mixer. We demonstrated how to load and play both sound effects and background music, as well as how to trigger these sounds based on in-game events such as combat, movement, and leveling up. By enhancing your game with sound, you can significantly improve the player’s overall experience and create a more engaging and immersive world.

While this chapter focused on basic audio implementation, you can further expand your game’s audio system by adding voice acting, dynamic music that changes based on player actions, and more advanced sound techniques. In the next

Chapter 15

Building a Game Editor for Map and NPCs

In the world of game development, the process of building levels, designing environments, and populating them with characters and objects can be incredibly time-consuming. A game editor is a vital tool that simplifies this process, enabling developers and designers to create game worlds with efficiency and flexibility. In this chapter, we will guide you through the process of building your own game editor in C++ for creating maps, defining rooms, paths, and placing NPCs (Non-Playable Characters) within those maps. Additionally, we will delve into file-based map editing, validation, and exporting game-ready configuration files such as JSON to use within the game engine.

By the end of this chapter, you will have a functional game editor that can streamline the creation of game worlds and populate them with NPCs. You will also learn how to validate the created maps and ensure that they meet the necessary requirements before exporting them for use in your game.

1. Introduction to Game Editors and Their Importance

In traditional game development, the creation of maps and NPC placement is often done manually, which can be a tedious and error-prone process. A game editor, on the other hand, provides a graphical or text-based interface that allows developers to design and modify game levels quickly and efficiently. It enables you to: Design Environments: Create rooms, corridors, and other game areas.

Place NPCs: Position characters, enemies, or objects within the map.

Define Paths and Interactions: Create paths that NPCs or the player can follow, and set up triggers or interactions between the player and NPCs.

Export Configurations: Export maps and NPC data in a format that can be read by the game engine (e.g., JSON, XML, or a custom format).

For this chapter, we will focus on a text-based map editor that allows you to create rooms and paths within a simple 2D grid. The tool will also allow you to place NPCs at specified locations within the map. The final output will be a JSON configuration file, which can be easily integrated into your game engine.

2. Understanding the Data Structures for Maps and NPCs

To create a game editor, it’s crucial to understand the data structures that will store the map, rooms, paths, and NPCs. In this example, we will use a 2D grid to represent the game world, where each grid cell can contain a room, path, or NPC.

Let’s break down the key components:

Map Representation

A simple map can be represented as a 2D grid of cells, where each cell contains information about what it represents (room, path, empty space, or NPC). For this purpose, we will define a Cell structure to represent each grid element.

struct Cell {

enum Type { EMPTY, ROOM, PATH, NPC };

Type type;

int npcId; // If the cell contains an NPC, store the NPC's ID

Cell() : type(EMPTY), npcId(-1) {}

};

Room Representation

Each room can have properties like its name, description, and size (width and height). This can be represented using a Room class or structure.

cpp

struct Room {

std::string name;

std::string description;

int width;

int height;

Room(std::string n, std::string d, int w, int h)

: name(n), description(d), width(w), height(h) {}

};

NPC Representation

Each NPC can have a unique identifier, a name, and additional properties like dialogue or quest information. For simplicity, we will use a NPC structure to represent each character.

struct NPC {

int id;

std::string name;

std::string dialogue;

NPC(int id, std::string n, std::string d)

: id(id), name(n), dialogue(d) {}

};

Map Structure

The map itself will be a 2D array of Cell objects. It will have properties like the map’s width and height, and a collection of rooms and NPCs placed on the map.

class Map {

private:

int width, height;

std::vector<std::vector<Cell>> grid;

std::vector<Room> rooms;

std::vector<NPC> npcs;

public:

Map(int w, int h) : width(w), height(h) {

grid.resize(h, std::vector<Cell>(w));

}

void addRoom(int x, int y, Room room) {

// Logic to add room to the grid at position (x, y)

}

void addNPC(int x, int y, NPC npc) {

// Logic to place NPC on the map at (x, y)

}

// Additional methods for map manipulation

};

3. Designing the Game Editor

The game editor will be a simple console-based application that allows the user to:

Create Rooms: Define rooms with names, descriptions, and sizes.

Place NPCs: Place NPCs in specific locations within the rooms.

Define Paths: Draw paths to connect rooms or create movement areas for the player and NPCs.

The editor will provide options for the user to interact with the map grid, and the user can select from different tools like placing rooms, placing NPCs, and saving the map to a file.

Editor Interface

The console-based editor will allow the user to interact with the map grid by entering commands to place rooms, paths, and NPCs. The grid will be displayed as a 2D map, where each room and path will be shown with different characters or symbols.

For example, the user can place a room at a specified location on the grid with the following command:

Place Room: (x, y) -> Room Name: 'Main Hall' Size: 5x5

Similarly, NPCs can be placed by specifying the coordinates:

Place NPC: (x, y) -> NPC Name: 'Guard' Dialogue: 'Stay away from here!'

The editor will continuously update the map as the user makes changes, and a real-time preview will be shown on the console.

4. Validating the Map

Once the map has been created, we need to ensure that the map is valid before exporting it. This means checking the following conditions:

No Overlapping Rooms: Ensure that rooms do not overlap with each other.

Path Connectivity: Ensure that paths are connected and can lead from one room to another.

Valid NPC Placement: Ensure that NPCs are placed within valid room boundaries and not on paths or outside the grid.

The validation process can be implemented as a series of checks within the Map class. For example: bool Map::validate() {

// Check if rooms overlap

for (const auto& room : rooms) {

// Logic to check if room overlaps with any other room

}

// Check if paths are valid

// Logic to check if paths connect rooms and do not cross boundaries

// Check if NPCs are placed inside rooms

for (const auto& npc : npcs) {

// Ensure NPCs are inside the room boundaries

}

return true; // Return true if all checks pass, false otherwise

}

5. Exporting the Map to a File

Once the map is validated, the next step is to export the map data into a file format that can be loaded by the game engine. For this chapter, we will use JSON as the file format. We will use the nlohmann/json library, which provides an easy way to work with JSON in C++.

First, we will create a JSON representation of the map, including rooms, NPCs, and their positions. The following code demonstrates how to serialize the map data into JSON format: #include <nlohmann/json.hpp>

nlohmann::json Map::toJSON() {

nlohmann::json j;

// Add rooms to JSON

for (const auto& room : rooms) {

j["rooms"].push_back({{"name", room.name}, {"description", room.description}, {"width", room.width}, {"height", room.height}});

}

// Add NPCs to JSON

for (const auto& npc : npcs) {

j["npcs"].push_back({{"id", npc.id}, {"name", npc.name}, {"dialogue", npc.dialogue}});

}

// Add grid and other map details

j["width"] = width;

j["height"] = height;

return j;

}

void Map::saveToFile(const std::string& filename) {

nlohmann::json j = toJSON();

std::ofstream file(filename);

file << j.dump(4); // Pretty print with indentation of 4 spaces

}

To save the map, the user would call the saveToFile() method:

map.saveToFile("game_map.json");

The exported JSON file would look something like this:

{

"width": 10,

"height": 10,

"rooms": [

{

"name": "Main Hall",

"description": "The large main hall of the castle.",

"width": 5,

"height": 5

}

],

"npcs": [

{

"id": 1,

"name": "Guard",

"dialogue": "Stay away from here!"

}

]

}

This file can now be loaded by your game engine to recreate the map and NPCs.

In this chapter, we have walked through the process of building a simple game editor in C++ for designing maps and placing NPCs. You have learned how to create a 2D grid map, add rooms, paths, and NPCs, and validate the map before exporting it as a JSON file that can be used in your game engine. By building this editor, you now have the tools to design and modify your game worlds quickly, and you’ve gained valuable skills in

Chapter 16

Testing and Debugging the RPG Engine

Building an RPG engine is an exciting venture, but as you progress, the complexity of the system increases, and you must ensure that each component is working correctly and seamlessly with others. Testing and debugging are crucial skills that every developer must master, as they help identify and fix issues, ensure that the game functions as intended, and provide players with a bug-free and enjoyable experience. In this chapter, we will walk through structured testing techniques for the key components of your RPG engine—combat, inventory, movement, and save/load functionality—and demonstrate effective debugging practices using tools like GDB and built-in IDE debuggers. Additionally, we will discuss the importance of a test plan, introduce logging as a useful debugging tool, and provide hands-on examples of how to implement these strategies in your RPG engine.

By the end of this chapter, you will have a clear understanding of how to test and debug the core features of your RPG engine, ensuring that your game is both stable and fun to play.

1. Introduction to Testing and Debugging

Before we delve into the specifics of testing and debugging, it is important to understand the overarching goals of these processes. In game development, testing ensures that the game behaves as expected and that all components function properly. Debugging, on the other hand, is the process of finding and fixing issues (bugs) in the code.

Testing can be divided into different types:

Unit Testing: Focuses on testing individual components or functions in isolation, ensuring that each piece works independently before being integrated into the larger system.

Integration Testing: Tests how different components of the game work together when combined. For example, how the combat system interacts with the inventory or how movement mechanics affect the game world.

System Testing: Involves testing the entire game engine to ensure that all components function as expected in the final product.

Regression Testing: Ensures that new changes or features do not break existing functionality.

Debugging is the process of identifying, isolating, and fixing errors in the code. A good debugging strategy can make the development process more efficient by quickly pinpointing the source of the problem.

This chapter covers testing and debugging within the context of your RPG engine, focusing on testing core features such as combat, inventory, movement, and save/load functionality.

2. Testing the Combat System

The combat system is one of the most critical components in an RPG, as it directly impacts gameplay and player engagement. Testing the combat system involves verifying that all the mechanics are functioning correctly, from initiating combat to resolving attacks and displaying results. We will focus on testing key features like health damage calculation, attack accuracy, and enemy behavior.

Test Plan for Combat System

Unit Tests:

Damage Calculation: Verify that health damage is correctly calculated based on the player’s stats and weapon attributes.

Attack Resolution: Ensure that the system correctly checks if the player’s attack hits the target and if critical hits are applied.

Enemy AI: Test whether the enemy correctly responds to player actions (e.g., attacking, retreating, or using special abilities).

Integration Tests:

Combat Flow: Test the entire combat sequence from the initial encounter to the outcome. Ensure that after the player attacks, the enemy responds appropriately, and both entities update their health accordingly.

System Tests:

Scenario Testing: Test combat in a variety of scenarios, such as multiple enemies attacking the player or the player using healing items mid-combat.

Debugging Combat System with GDB

When a bug arises in the combat system, GDB (GNU Debugger) is an excellent tool to trace and fix issues. Here's an example of how you might use GDB to debug a combat system issue: Step 1: Compile the code with debugging symbols (-g flag).

g++ -g -o game main.cpp

Step 2: Run GDB to debug the program.

gdb ./game

Step 3: Set breakpoints at key points in the combat code to inspect variables.

break Combat::attack

run

Step 4: Step through the code to observe the flow and check for any discrepancies in health calculations or attack resolution.

step gdb

print playerHealth

print enemyHealth

Using GDB, you can monitor the values of important variables and track the flow of execution in the combat system to pinpoint errors and understand where things are going wrong.

3. Testing the Inventory System

The inventory system is another crucial feature that must be thoroughly tested to ensure smooth gameplay. Players should be able to manage items, equip weapons, use potions, and perform other inventory-related actions without encountering issues.

Test Plan for Inventory System

Unit Tests:

Item Addition: Ensure that items can be correctly added to the inventory.

Item Removal: Test the removal of items from the inventory and confirm that the correct items are removed.

Equipping Items: Test that weapons and armor can be correctly equipped, and stats are updated accordingly.

Integration Tests:

Inventory-Combat Interaction: Verify that the player can equip items from the inventory before entering combat and that equipped items affect combat results.

Item Use: Ensure that using consumable items (e.g., healing potions) updates the player’s stats correctly.

System Tests:

Inventory Overflow: Test how the system handles inventory overflows, such as when the player tries to carry more items than the inventory can hold.

Debugging Inventory System with IDE Debuggers

Modern IDEs come with built-in debuggers that allow you to set breakpoints, inspect variables, and step through the code. Let’s say you encounter an issue where an item is not being correctly removed from the inventory. You can use the debugger to set a breakpoint in the function that handles item removal: Step 1: Set a breakpoint at the function where the item removal is supposed to happen.

// Set breakpoint at inventory item removal function

break Inventory::removeItem

Step 2: Run the debugger and step through the code to check if the correct item is being removed from the inventory.

run

step

print itemID

Step 3: Examine the value of itemID and the internal data structures of the inventory to see if the item is being removed as expected.

This step-by-step inspection will help you identify where the code is going wrong and fix the issue.

4. Testing Movement Mechanics

The movement system ensures that players can navigate through the game world. Testing movement involves verifying that the player can move in all directions, detect obstacles, and interact with the environment appropriately.

Test Plan for Movement System

Unit Tests:

Movement Input: Ensure that the system correctly handles user input for movement (e.g., pressing arrow keys or WASD).

Boundary Checks: Verify that the player cannot move outside the map’s boundaries.

Collision Detection: Test whether the player stops when encountering walls or other obstacles.

Integration Tests:

Interaction with Other Systems: Test that movement interactions work correctly with other game systems, such as NPCs or environmental triggers.

Smooth Transition: Ensure that the player’s movement is smooth and visually consistent across different map tiles.

System Tests:

Large-Scale Movement: Test the movement system in large areas or dungeons to check performance and responsiveness.

Debugging Movement System

When movement bugs occur, using the debugger to track position and direction changes can help pinpoint where the issue lies. For example, if the player is not stopping at obstacles, you can inspect the collision detection function by setting breakpoints to watch the player’s position and the collision logic.

5. Testing Save/Load Functionality

Save/load functionality is essential for RPGs, as it allows players to save their progress and resume their game later. Testing save/load functionality involves ensuring that the game state is correctly saved to a file and that loading the saved state restores all relevant information, such as the player’s position, health, inventory, and progress.

Test Plan for Save/Load System

Unit Tests:

Save State: Test whether the game correctly saves the player’s state, including health, inventory, and position.

Load State: Verify that loading a saved game correctly restores all aspects of the player’s state.

Integration Tests:

Save/Load Interaction with Other Systems: Test whether loading a saved game works seamlessly with other game systems like combat and movement.

System Tests:

Corruption Testing: Test what happens if a saved file becomes corrupted and ensure the game handles such errors gracefully.

Debugging Save/Load System

You can use logging or breakpoints to track the save and load process. For example, if the player’s health is not being restored correctly upon loading a game, you could log the health value before and after saving and loading to see where the discrepancy occurs.

6. Writing a Test Plan

A well-structured test plan outlines the types of tests to be performed, the expected results, and the resources required. A test plan provides clarity and ensures that all aspects of the game are tested thoroughly. Here is a simple test plan format for testing the RPG engine:

	Component	Test Type	Description	Expected Outcome	Status
	Combat	Unit Test	Test damage calculation	Correct health reduction based on attack	Pass
	Inventory	Integration Test	Test item addition/removal	Items are added and removed correctly	Pass
	Movement	System Test	Test player movement and collision	Player moves correctly, stops at walls	Pass
	Save/Load	System Test	Test saving and loading game state	All player data is restored correctly	Pass

Each test should include a clear description of the expected behavior and the conditions under which the test is performed. In this chapter, we explored how to effectively test and debug the key components of your RPG engine, including combat, inventory, movement, and save/load functionality. We introduced structured testing methodologies like unit testing, integration testing, and system testing, and showed how to use debugging tools like GDB and IDE debuggers to fix issues in the code. We also demonstrated the importance of writing a test plan and using logging to track down problems. By applying these testing and debugging strategies, you can ensure that your RPG engine remains stable, reliable, and enjoyable for players. With careful testing, you can catch potential issues early in development and provide players with a seamless gaming experience.

Chapter 17

Polishing the Engine – Adding Final Features

At this stage in your game development journey, you've laid a solid foundation by building a basic RPG engine. However, to transform it into a captivating and engaging experience, you need to add several layers of gameplay features that will keep players coming back for more. In this chapter, we’ll explore how to polish your engine by adding optional yet essential features such as player leveling systems, skills and spells, random enemy encounters, rare item drops, condition-based rewards, and dynamic story paths.

These features are designed not only to make your game more immersive but also to give the player a sense of progression and interaction with the world. We’ll walk through the implementation of these systems, and provide hands-on examples so that you can understand how each of them works. By the end of this chapter, you'll have a much richer game engine, ready for further refinement or expansion.

Player Leveling System

The player leveling system is one of the cornerstones of RPGs. It provides a sense of progression and accomplishment as players gain experience points (XP) by completing quests, defeating enemies, or discovering hidden secrets. Leveling up usually results in increases to the player's health, mana, stats, and sometimes unlocks new abilities or skills.

To begin, you’ll need to implement a system that tracks the player’s experience points and level. The general idea is that players accumulate experience from various in-game actions, and once they reach a certain threshold, they "level up" and gain improved stats or abilities.

Step 1: Define the Leveling System

The simplest way to manage leveling is through a fixed experience threshold per level. For example, to reach level 2, a player needs 100 XP, and to reach level 3, they need an additional 200 XP. This threshold can increase in a linear or exponential fashion, depending on the difficulty and pacing you want for your game.

Here’s how you might define the player’s experience system in C++:

class Player {

public:

int level;

int xp;

int xpToLevelUp;

int health;

int mana;

Player() : level(1), xp(0), xpToLevelUp(100), health(100), mana(50) {}

void gainXP(int amount) {

xp += amount;

if (xp >= xpToLevelUp) {

levelUp();

}

}

void levelUp() {

level++;

xp = 0; // Reset XP after leveling up

xpToLevelUp *= 1.5; // Increase XP threshold for next level

health += 20; // Increase health

mana += 10; // Increase mana

cout << "You leveled up to level " << level << "!" << endl;

}

void displayStats() {

cout << "Level: " << level << " Health: " << health << " Mana: " << mana << endl;

}

};

In this example, the player starts at level 1, with 0 XP and needs 100 XP to reach level 2. When they level up, their health and mana increase, and the experience threshold for the next level is adjusted by multiplying it by 1.5. You can further customize this based on your game’s needs.

Step 2: Gain Experience

Now that we’ve defined the leveling system, we need a way to earn XP. Typically, XP is awarded for defeating enemies, completing quests, or discovering important locations. Here’s an example of how the player might gain experience from defeating an enemy: class Enemy {

public:

int health;

int xpReward;

Enemy(int h, int xp) : health(h), xpReward(xp) {}

void takeDamage(int damage) {

health -= damage;

if (health <= 0) {

cout << "You defeated the enemy!" << endl;

}

}

};

In this scenario, an enemy has health and a fixed XP reward. When the player defeats the enemy by dealing enough damage, the player gains XP.

void battle(Player &player, Enemy &enemy) {

enemy.takeDamage(50); // Example of player attacking

// If the enemy is defeated, the player gains XP

if (enemy.health <= 0) {

player.gainXP(enemy.xpReward);

}

}

When the player defeats an enemy, they are awarded the XP defined in the enemy class. The player’s experience is then checked, and if they have earned enough XP, they level up.

Skills and Spells

Skills and spells are critical to making the gameplay more strategic and interactive. In RPGs, these abilities can provide combat advantages, healing, utility, or even story progression. Let’s consider two categories of abilities: skills (which the player can use freely in combat) and spells (which typically consume resources like mana).

Step 1: Define Skills and Spells

Each spell or skill will have a name, cost, and effect. We’ll create a class to handle these abilities and implement the logic of casting them. Below is an example of a simple fireball spell that deals damage: class Spell {

public:

string name;

int manaCost;

int damage;

Spell(string n, int cost, int dmg) : name(n), manaCost(cost), damage(dmg) {}

void cast(Player &player, Enemy &enemy) {

if (player.mana >= manaCost) {

player.mana -= manaCost;

enemy.takeDamage(damage);

cout << name << " cast! Enemy takes " << damage << " damage!" << endl;

} else {

cout << "Not enough mana!" << endl;

}

}

};

In this example, the fireball spell has a name, mana cost, and damage value. The cast() function checks if the player has enough mana to use the spell. If so, the player’s mana is reduced, and the enemy takes damage.

Step 2: Allow the Player to Use Skills

To allow the player to use skills or spells, you can create a simple menu or action selection system. For example, the player might choose between a normal attack or casting a spell in battle: void performAction(Player &player, Enemy &enemy) {

int action;

cout << "Choose an action: 1) Attack 2) Cast Fireball" << endl;

cin >> action;

if (action == 1) {

// Perform a basic attack

enemy.takeDamage(10);

} else if (action == 2) {

Spell fireball("Fireball", 20, 50);

fireball.cast(player, enemy);

}

}

In this case, the player chooses between a normal attack and casting a fireball. This system can be expanded with more skills and spells, as well as cooldown times, resource costs, and effects.

Random Enemy Encounters

Random encounters are a staple of many RPGs, adding unpredictability and excitement to the game. These encounters can be triggered by events like walking through a specific area or reaching a certain time of day. To implement random encounters, we need to use random number generation.

Step 1: Random Encounter Generator

Let’s set up a simple random encounter system. Every time the player moves, there’s a chance of encountering an enemy. Here’s how you might implement it: #include <ctime>

#include <cstdlib>

void randomEncounter(Player &player) {

srand(time(0)); // Seed the random number generator

int chance = rand() % 100; // Generates a random number between 0 and 99

if (chance < 50) { // 50% chance of encountering an enemy

Enemy randomEnemy(50, 100);

cout << "A wild enemy appears!" << endl;

battle(player, randomEnemy);

} else {

cout << "No enemies in sight." << endl;

}

}

Here, the function generates a random number between 0 and 99. If the number is less than 50, the player will encounter an enemy; otherwise, nothing happens. This mechanic can be further expanded with more sophisticated logic, such as different encounter rates based on the player's level or location.

Rare Item Drops

Another exciting feature is the rare item drop system, which adds an element of luck and reward to gameplay. Rare items can be equipment, weapons, or consumables that provide advantages in combat or progression. You can create a system that checks whether a defeated enemy drops a rare item.

Step 1: Define the Item Class

Create a class to represent items in the game. For simplicity, let’s focus on a rare item drop that could happen when the player defeats an enemy:

class Item {

public:

string name;

string type;

Item(string n, string t) : name(n), type(t) {}

void display() {

cout << "You found a " << name << " (" << type << ")!" << endl;

}

};

Step 2: Implement Rare Item Drop

Now, let’s modify the battle system so that, after defeating an enemy, there is a chance for a rare item to drop:

void battle(Player &player, Enemy &enemy) {

enemy.takeDamage(50);

if (enemy.health <= 0) {

player.gainXP(enemy.xpReward);

// 20% chance to drop a rare item

int dropChance = rand() % 100;

if (dropChance < 20) {

Item rareItem("Golden Sword", "Weapon");

rareItem.display();

}

}

}

In this example, there is a 20% chance for a rare item (Golden Sword) to drop after defeating an enemy.

Condition-Based Rewards

Condition-based rewards are an excellent way to reward the player for completing specific challenges or meeting certain criteria. These rewards might include unlocking new abilities, gaining extra XP, or triggering unique events in the story.

Step 1: Define Reward Conditions

Let’s assume you want to give the player a bonus for defeating a boss enemy with a certain amount of health remaining:

void checkReward(Player &player, Enemy &enemy) {

if (enemy.health > 0 && enemy.health <= 10) {

cout << "You defeated the boss with low health! Extra reward granted." << endl;

player.gainXP(500); // Extra XP

Item bonusItem("Healing Potion", "Consumable");

bonusItem.display();

}

}

In this case, the player is rewarded for completing a challenge—defeating the boss with low health.

Dynamic Story Paths

Finally, dynamic story paths can make your game feel more interactive and responsive. The choices players make can affect the outcome of the game, opening up different scenarios, characters, or quests.

Step 1: Create a Branching Story

For dynamic story paths, you can use a system that tracks player choices and modifies the story accordingly. For example, after a battle or significant event, the player might choose between two different paths, which can lead to different outcomes.

void choosePath(Player &player) {

int choice;

cout << "Choose your path: 1) Help the village 2) Explore the ruins" << endl;

cin >> choice;

if (choice == 1) {

cout << "You chose to help the village. The villagers are grateful!" << endl;

// Trigger specific events or quests

} else {

cout << "You chose to explore the ruins. You discover a hidden treasure!" << endl;

// Trigger other events or quests

}

}

In this case, the player’s choice determines how the story unfolds. You can expand this system to have far-reaching consequences that affect gameplay and the world around the player.

By adding these advanced features to your RPG engine, you create a richer, more dynamic game that is not only more fun to play but also more rewarding for players. With systems like player leveling, skills and spells, random encounters, rare item drops, condition-based rewards, and dynamic story paths, your game will provide a deep and engaging experience.

As you continue to polish your engine, remember that the most important aspect is to make the game fun and rewarding. Keep experimenting, tweaking, and refining these systems to ensure that your game remains exciting and challenging.

Chapter 18

Packaging and Distributing Your RPG Game

As a developer, one of the most rewarding stages in the game development process is reaching the point where your game is complete, polished, and ready to be shared with the world. However, before you can start getting feedback or even allowing players to experience your game, you need to package and distribute it in a way that makes it accessible to others. This chapter will guide you through the process of packaging your RPG engine and game for distribution on various platforms such as Windows, Linux, and macOS, ensuring that your game is ready for players to download and play. You will also learn how to create essential documentation such as a README file and a modding guide, which will be useful for users and modders alike. Finally, we will cover how to use platforms like GitHub and itch.io to publish your game for public access.

1. Compiling and Packaging the Game for Different Platforms

Before distributing your RPG engine and game, you need to ensure that it is compiled properly for each target platform. This involves understanding the build process for each operating system and using appropriate tools to package your game.

Compiling the Game for Windows

On Windows, the most commonly used tools for compiling and packaging C++ games are IDEs like Microsoft Visual Studio or using a build system like CMake.

Setting up Visual Studio:

Open your game project in Visual Studio.

Set your project configuration to Release mode, which ensures that the game is compiled without debug information.

Ensure all dependencies (such as libraries like SDL, SFML, or others) are correctly linked in the project settings. You’ll usually set these under "Project Properties" -> "VC++ Directories" and "Linker" -> "Input" for additional dependencies.

Once your project is ready, click on Build -> Build Solution to compile your project.

Packaging the Game:

After compiling, navigate to your output directory (usually Debug or Release within your project folder).

Copy all the required DLLs, assets, and configuration files into a folder that will represent the packaged game.

To package the game, you’ll need a utility like Inno Setup or NSIS, which helps you create an installer. These tools allow you to bundle the compiled files into an installer, which users can then download and run.

The installer should set up everything for the user, including placing the game in the correct directory and setting up any necessary configurations.

Compiling the Game for Linux

For Linux, you can use a build system like CMake, which allows you to compile the game on various distributions, and package it using standard Linux tools.

Setting up the Build:

On Linux, you'll typically use a text editor and the terminal to set up your game.

First, ensure you have the necessary libraries installed (e.g., SDL2, OpenGL, etc.) using your distribution's package manager (e.g., apt, yum, or pacman).

Navigate to your game directory and create a build directory using the command mkdir build and then run cmake .. to configure the build environment.

Next, compile the game with the make command, which will generate the executable binary.

Packaging the Game:

After compiling, you need to package the game for distribution. Linux users often distribute games as .tar.gz archives or .deb packages for easier installation.

To create a .tar.gz archive, simply run the following command in the terminal:

tar -czvf your_game.tar.gz your_game_folder

For distribution via a .deb package, you can use a tool like dpkg to create a package that can be easily installed on Debian-based systems. The packaging process will involve setting up control files for the package and using dpkg-deb to create the .deb file.

Compiling the Game for macOS

On macOS, the process is similar to Linux, but with a few platform-specific tools.

Setting up the Build:

macOS uses the Xcode IDE or the command line tools for building applications.

You can create a new Xcode project or use CMake in the terminal to configure the build environment.

Ensure all dependencies (like SDL2) are installed using Homebrew (brew install sdl2).

Once you’ve set up the project, you can build the game using Xcode or the command xcodebuild in the terminal.

Packaging the Game:

To package the game on macOS, you typically create a .dmg (Disk Image) file that users can download and install.

After building your game, copy all necessary files (including assets, configuration files, and libraries) into a folder.

Use a tool like create-dmg or hdiutil to create a .dmg file. For example: hdiutil create -volname "Your Game" -srcfolder ./game_folder -ov -format UDZO your_game.dmg

2. Creating a README File

A well-written README file is an essential part of any game distribution, providing users with important information about the game, how to install it, and how to play it. A good README should include: Game Description: A brief summary of the game, including its genre, story, and key features.

Installation Instructions: Detailed steps on how to install and run the game on different platforms (Windows, Linux, macOS).

Gameplay Instructions: An overview of how the game works, including controls, objectives, and mechanics.

System Requirements: List the hardware and software specifications required to run the game smoothly, including operating system, processor, RAM, and graphics card.

Credits: Acknowledgements for contributors, tools used, and libraries integrated into the game.

Here is an example of a simple README format:

My RPG Game

Game Description:

A classic role-playing game where you explore a vast fantasy world, defeat enemies, and level up your character. Features include a rich storyline, complex combat, and deep customization options.

Installation

Windows:

1. Download the installer from the releases page.

2. Run the installer and follow the on-screen instructions.

Linux:

1. Download the `.tar.gz` file from the releases page.

2. Extract the contents and run the executable from the terminal:

./your_game_executable

macOS:

1. Download the `.dmg` file from the releases page.

2. Open the `.dmg` file and drag the game folder to your Applications directory.

Gameplay Instructions:

- Use the arrow keys to move.

- Press `Space` to attack.

- Use `I` to open your inventory.

System Requirements:

- **OS**: Windows 7/10, Ubuntu 18.04+, macOS 10.12+

- **Processor**: 2.0 GHz or faster

- **RAM**: 4 GB or more

- **Graphics**: OpenGL 3.2 or higher

Credits:

- Developed by: Your Name

- Sound effects by: SoundBible

- Music by: Kevin MacLeod

- Powered by: SDL2

3. Writing a Modding Guide

If you want to encourage community engagement and creativity, consider providing a modding guide that teaches users how to create and implement their own custom content in your game. This is especially important for RPGs, where players may want to modify or extend the game’s story, characters, or mechanics.

A modding guide should include the following key points:

Introduction to Modding: Explain what modding is, what kinds of modifications are possible (e.g., new NPCs, items, maps), and why modding can enhance the experience.

Setting Up the Modding Environment: Guide users through the process of setting up any necessary tools (e.g., text editors, file extraction utilities) to create mods.

Creating New Content: Provide instructions for adding new NPCs, quests, or locations, explaining how to use the game’s existing files (e.g., JSON or XML files) to create new data.

Modding APIs or Utilities: If you’ve provided any modding APIs or utility functions, explain how they work and how modders can use them.

Testing Mods: Teach users how to test their mods in the game to ensure they function correctly.

4. Publishing the Game Using GitHub or Itch.io

Once your game is ready to be shared, the next step is to publish it for the world to experience. Two popular platforms for publishing indie games are GitHub and itch.io, each with its own set of advantages.

Publishing on GitHub

GitHub is an excellent platform for hosting open-source games and sharing your code. Here’s how you can use GitHub to distribute your game:

Create a GitHub Repository: Go to GitHub, create a new repository, and name it after your game.

Upload Your Game Files: Use Git or the GitHub web interface to upload your compiled game files, README, and modding guide to the repository.

Release the Game: Once the files are uploaded, go to the "Releases" tab of your repository and create a new release. Upload the packaged game files (e.g., .exe, .tar.gz, .dmg) for players to download.

Publishing on itch.io

Itch.io is a popular platform for indie game developers to distribute their games, and it supports both free and paid distribution.

Create an Itch.io Account: Sign up for an account on itch.io.

Create a New Game Page: On your dashboard, click "Create New Project" and fill in the details for your game (title, description, screenshots, etc.).

Upload Your Game: Upload the packaged game files (e.g., .exe, .tar.gz, .dmg).

Set Pricing: You can choose to distribute your game for free or set a price.

Publish the Game: Once everything is set up, click "Publish" to make your game available for download on itch.io.

Packaging and distributing your RPG game is an exciting but essential part of the development process. By following the steps outlined in this chapter, you can ensure that your game is compiled, packaged, and ready for release on various platforms. Additionally, providing essential documentation like a README and modding guide can enhance the user experience and foster a community of players and modders. Finally, by publishing your game on platforms like GitHub or itch.io, you can share your work with the world and get the recognition your game deserves.

Chapter 19

Project: Build Your Own RPG Game Using the Engine

Building your own role-playing game (RPG) using the engine that you've developed throughout the previous chapters is one of the most rewarding experiences in game development. This chapter will guide you step-by-step through the process of creating a fully functional RPG game. By the end of this project, you'll have your very own game, crafted with your unique ideas, storylines, characters, quests, and custom logic, using the game engine you’ve created. We will also introduce a project planner and a detailed step-by-step build strategy to ensure that the process is organized and manageable.

1. Planning Your RPG Game

Before diving into coding or asset creation, it’s crucial to plan your game carefully. A solid plan will provide clear direction and ensure that you stay on track during development. This section outlines the steps you need to take in the planning stage, from defining the overall vision of your game to specifying the details for your story, characters, and quests.

Defining the Game Concept

The first step in creating your RPG is to decide on the overall concept of your game. What kind of story will it tell? Will it be a dark fantasy tale or a lighthearted adventure? What makes your game stand out from others in the genre? This stage is crucial for creating the foundation on which all other elements will be built.

Ask yourself questions like:

What is the setting of your game? Is it a medieval fantasy world, a post-apocalyptic wasteland, or a futuristic city? The setting will greatly influence the design of environments, characters, and quests.

What is the main conflict? Every good RPG needs a central conflict that drives the story. This could involve saving the world, overthrowing a tyrannical ruler, or uncovering a hidden mystery.

What themes will your game explore? Themes could include friendship, betrayal, survival, redemption, or the balance between good and evil. Having a clear theme will guide the emotional tone of your story and quests.

Creating the Story and World

Once you have your game concept, the next step is fleshing out the story and world. Your game’s narrative should not only be engaging but also provide opportunities for gameplay. RPGs are known for their complex, branching narratives that allow the player to make choices that influence the outcome of the game.

Write the Main Storyline: The main storyline is the overarching plot of the game. It should be structured in a way that drives the player to explore the world and complete quests. Break down the story into chapters or acts, each with a clear objective.

Side Quests: Alongside the main storyline, side quests add depth and variety to the game. These quests often revolve around optional characters, locations, or objectives. Side quests can offer players rewards such as new items, experience points, or lore, and they contribute to the overall world-building.

World-Building: The world in which your RPG takes place should feel alive and consistent. Create detailed locations, cities, villages, and dungeons. Think about how different regions of the world interact with each other and what makes each place unique. You can develop backstories for different factions or races, such as a group of elves in the forest or a powerful mage guild in the capital city.

Defining Characters and NPCs

Characters are the heart and soul of your RPG. Your game will feature both playable characters (PCs) and non-playable characters (NPCs). Here’s how to design and define them: Player Characters: Design your protagonist(s). Will your game have one main character or a party of characters? For each character, consider their backstory, personality, motivations, and goals. What are their strengths and weaknesses? How will they grow throughout the game? You should also define the character's abilities, skills, and level progression.

Non-Playable Characters: NPCs are crucial for storytelling. These characters can provide quests, sell items, offer advice, or drive the plot forward through interactions with the player. For each NPC, think about: Role in the Story: Is the NPC a mentor, a villain, or a quest giver?

Dialogue: Write dialogue that feels authentic to the character’s personality and backstory. NPC dialogue will help bring the world to life.

Interaction with the Player: Will NPCs offer rewards, advance the plot, or present moral choices to the player?

Designing Combat, Abilities, and Items

The combat system and abilities are some of the most important aspects of your RPG game. Consider what type of combat system you want to use—turn-based, real-time, or a hybrid system—and design it accordingly.

Combat System: Define how combat works in your game. Will it be turn-based, where the player and enemies take turns to attack? Or will it be action-oriented, where the player controls character movement and attacks in real-time? Each system has its pros and cons, so choose the one that fits your game best.

Abilities and Skills: Think about the abilities or skills that players can use in combat or exploration. These could include spells, special attacks, or buffs that affect gameplay. For each skill, define its effect, cost (e.g., mana, energy), and cooldown time.

Items and Equipment: RPGs often feature a wide array of items, from weapons and armor to consumables like potions. Decide on the types of items that can be found or purchased in your game. Define item attributes such as damage, defense, weight, and rarity. Items play a major role in character progression and provide the player with the tools to overcome challenges.

2. Setting Up Your Project

Once your game’s core elements are defined, it’s time to set up your project for development. This section will cover the essential tools and techniques you’ll need to structure your project and break it down into manageable tasks.

Creating the Project Files

Start by organizing the directories and files for your game project. This will help you keep track of all your assets, code, and data in an organized manner.

Directory Structure:

/assets: For storing images, sounds, and other media.

/code: For storing the C++ files that make up the game logic.

/maps: For storing your game’s world and level files (in formats like JSON or XML).

/scripts: For any scripting or quest-related files that define NPC interactions or events.

/docs: For your documentation, including the README and modding guide.

Version Control: Use a version control system like Git to keep track of changes to your codebase. GitHub or GitLab is a great place to host your project and collaborate with others, if applicable.

3. Step-by-Step Build Strategy

Now that your project is planned and structured, it’s time to begin the actual development process. This section will provide a step-by-step strategy to guide you through building your RPG, from setting up the environment to finalizing the game.

Step 1: Set Up the Game Engine

Ensure your RPG engine is set up and ready to go. If you followed the previous chapters, your engine should already have the core systems in place, such as character movement, inventory, combat, and save/load functionality. Now, test the engine and ensure that it runs smoothly without crashes or bugs.

Step 2: Implement the Core Mechanics

Begin by implementing the basic gameplay mechanics such as movement, combat, and inventory. These systems will form the foundation of your game and will be critical to the player’s experience.

Character Movement: Implement the player’s ability to move around the world. Make sure the player can navigate through different areas and interact with the environment.

Combat System: Implement your combat system according to the design you created earlier. This will likely involve handling player and enemy stats, attacks, and the turn-based or real-time combat mechanics.

Inventory System: Allow players to collect and manage items. This will require creating an interface to view and use items, along with logic for equipping weapons and armor.

Step 3: Develop the Story and Quests

With the core mechanics in place, it’s time to focus on the story and quests. Begin by creating the game’s main storyline and side quests. Use scripts or dialogue systems to allow for interactions with NPCs and progression through the story.

Story Progression: Create events that move the story forward. These could be triggered by player actions, like defeating a boss or completing a task.

Quests: Implement quest systems that involve completing objectives, gathering items, or defeating enemies. Add quest logs to keep track of the player’s progress.

Step 4: Build the World and Levels

Start building your game world by designing maps and levels. This may involve creating a world map, towns, dungeons, and other locations where the player can explore.

Map Design: Using your editor, design rooms, paths, and locations. Populate these areas with NPCs, items, and enemies.

Level Design: Create dungeon or town layouts, making sure they are engaging and provide challenges or rewards for the player.

Step 5: Test and Polish

As you build each part of the game, constantly test the mechanics to ensure everything works as expected. Look for bugs, inconsistencies, or places where the game could be improved.

Debugging: Use your debugging tools to fix any errors or issues in the code.

Balancing: Adjust the difficulty of enemies, quests, and combat to ensure that the game is both challenging and enjoyable.

Polish: Refine the game’s UI, sound effects, and visuals to make the overall experience more immersive and polished.

4. Final Steps: Publishing and Sharing Your Game

Once your game is complete, you can start thinking about packaging and distributing it. This chapter will help you with the final steps of compiling your game and sharing it with others.

Compiling the Game: Follow the steps outlined in Chapter 18 to compile and package your game for distribution across different platforms.

Publishing: Upload your game to platforms like itch.io, Steam, or your personal website. Create an appealing game page with screenshots, a description, and gameplay videos.

Community Engagement: Engage with your players, gather feedback, and consider releasing updates or mods to keep the community active.

By following this chapter and completing the hands-on project, you’ve taken the final steps in building your very own RPG game using the engine you’ve developed. You’ve learned how to plan, design, and implement every aspect of the game, from the story and characters to the mechanics and world. With this experience under your belt, you are now equipped to continue expanding your game development skills and tackle more complex projects in the future. Keep experimenting, refining, and sharing your work with others to continue growing as a developer.

Chapter 20

Where to Go From Here – Advanced Game Engines and C++

Congratulations! By completing this book, you have successfully developed a fundamental understanding of game development and have created your very own RPG engine. You've gained valuable experience in C++ programming, game mechanics, and the essentials of structuring an RPG game. But where do you go from here? What are the next steps in your game development journey?

The world of game development is vast and constantly evolving. In this chapter, we’ll explore advanced game engines, discuss graphical libraries, and provide guidance on how to expand your RPG project further by incorporating more advanced features. By the end of this chapter, you will have a clearer idea of how to take your skills to the next level, whether it’s by refining your game further, experimenting with more sophisticated engines, or embarking on new game development challenges.

1. Moving Toward Graphical Interfaces

Now that you’ve built the core of your RPG engine, one natural next step is to integrate graphical interfaces and visuals. You’ve already worked with the foundational gameplay mechanics, such as combat, inventory, and quests. But RPGs typically rely on rich visuals to immerse the player in the world you've created. Expanding your game engine with graphical elements will allow you to add visual effects, animations, sprites, and possibly even 3D models.

One way to achieve this is by integrating a graphical game engine or library into your project. While you've worked with the fundamentals of text-based RPG engines, you can now bring your game to life by transitioning to a more graphical experience. This can either mean a shift to a 2D graphical RPG or, if you are feeling adventurous, even trying your hand at 3D environments.

Here, we will suggest several tools that can help you advance your RPG game engine into a fully functional graphical RPG.

2. Graphical Game Engines for C++

As you venture into the world of graphical game development, C++ remains one of the most powerful languages for performance-intensive applications such as games. Several game engines and libraries built around C++ will allow you to create high-quality games with rich visual elements. Let's explore a few notable options.

SFML (Simple and Fast Multimedia Library)

SFML is a popular open-source multimedia library used for creating 2D games and graphics-heavy applications. It provides simple APIs for handling graphics, audio, and input devices, making it a great starting point for adding graphical elements to your RPG engine. If you are looking to create 2D games with real-time graphical rendering, SFML is a great option.

SFML is designed to be lightweight and easy to integrate into your existing C++ project. It allows you to work with textures, sprites, animations, and even create custom fonts. You’ll also be able to handle sound effects and background music. With SFML, you can create a windowed environment, manage user input from the keyboard or mouse, and draw 2D shapes or images in a graphical context.

To integrate SFML into your RPG project, you will need to:

	Set up the SFML development environment on your system.
	Link your project to the necessary SFML libraries for rendering and multimedia support.
	Create graphical assets (like backgrounds, character sprites, and item icons).
	Update your game loop to include graphical rendering of objects.

As a practical next step, you can begin to implement your characters and world as images, allowing your player to move around a visually represented game world. This step would significantly improve the player’s experience and add a professional level of polish to your game.

SDL (Simple DirectMedia Layer)

SDL is another powerful multimedia library used for building 2D games. Like SFML, SDL allows you to render graphics, manage input devices, and handle sound and music. One major advantage of SDL is that it’s cross-platform, meaning it works well across Windows, Linux, and macOS. It is also a widely used tool in both the indie and professional game development communities.

SDL gives you more control over the low-level aspects of rendering and input handling, which can be beneficial if you want to dive deeper into performance optimization or work with advanced graphical techniques. If you are looking for greater flexibility and don't mind spending more time on lower-level tasks, SDL may be a better fit than SFML.

The process of integrating SDL into your RPG engine involves similar steps to SFML but with more emphasis on manual control over the rendering process, input management, and window management. You would need to learn how to load and display images, handle animations, and process player input in the graphical context.

SDL is great for developers who want to expand beyond simple graphical displays and get closer to a more custom solution for their games.

Unreal Engine (UE4 or UE5)

If you are ready to tackle more advanced game development, including 3D graphics, Unreal Engine is the perfect choice. Unreal Engine, developed by Epic Games, is one of the most powerful game engines in the world. It provides everything you need to create a high-quality game, from rendering and physics to scripting and networking. Unreal Engine uses C++ as its main programming language, but it also comes with a powerful visual scripting system known as Blueprints, making it approachable for developers with varying levels of experience.

With Unreal Engine, you can elevate your RPG game from a simple 2D environment to a 3D world. You can create dynamic, immersive environments with complex lighting effects, physics interactions, and high-quality textures. The engine also supports advanced features like real-time ray tracing, particle effects, and AI-driven behavior, which can greatly enhance your game’s realism and player experience.

Unreal Engine also offers a comprehensive suite of tools for building complex worlds, from terrain generation to character modeling and animation. It also provides powerful networking capabilities, allowing you to create multiplayer RPG experiences if you wish to take your game to that level.

3. Converting Your Game to 2D or GUI Experience

As a developer, you have the freedom to enhance your game experience based on your goals and the kind of project you wish to build. If you feel that your current text-based game lacks the visual appeal necessary for engagement, you may want to focus on converting it into a 2D graphical RPG.

This can be done using one of the graphical libraries discussed earlier, such as SFML or SDL, where you can use sprite-based animations, dynamic backgrounds, and interactive menus. Transitioning from a text-based interface to a 2D graphical interface will enhance the overall player experience and give your game a fresh feel.

You can also introduce graphical user interfaces (GUI) for your game. GUI elements such as health bars, inventory windows, and dialogue boxes can be built easily using libraries like ImGui or native UI frameworks within the engine you choose. These elements will allow for a more intuitive and polished gameplay experience.

By adding visual elements like animated characters, environmental interactions, and combat animations, your game will feel much more alive and immersive.

4. Expanding the Game Further

Now that you have a graphical RPG, the next logical step is to add more advanced features. Below are some of the potential enhancements you could explore: World Building: You can continue to expand your game world by adding new towns, dungeons, or landscapes. You might create procedurally generated maps or explore more intricate level designs.

Multiplayer Support: Adding multiplayer capabilities to your game will allow players to interact with one another in a shared game world. Multiplayer games require a different level of design, especially when it comes to networking, syncing, and handling concurrent player actions.

Advanced AI and Behavior Systems: As you continue developing, you can delve deeper into AI. You might create complex NPC behaviors using finite state machines (FSM), pathfinding algorithms, and AI-driven combat strategies.

Customizable Quests: You can implement quest systems where players’ choices influence the world or story in different ways. This might include branching quest paths or quests that adapt to the player's decisions.

Sound and Music: Adding an immersive soundtrack or sound effects can vastly improve the atmosphere of your game. You could create dynamic music that changes based on the game’s events or the area the player is in.

Porting to Other Platforms: Once your game is polished, consider porting it to different platforms such as mobile devices, web browsers, or even consoles. Platforms like Steam, itch.io, or the Epic Games Store provide opportunities to distribute and monetize your game.

This chapter has outlined several powerful game engines and graphical libraries that can help you take your game development skills to the next level. From SFML and SDL for 2D games to the industry-leading Unreal Engine for 3D games, each of these tools can help you transform your project from a simple engine to a fully realized graphical experience.

As you progress with your RPG game, remember that game development is a journey of constant learning and improvement. There is no one-size-fits-all approach, and the best way to grow as a developer is to experiment with new technologies, expand your game’s scope, and embrace challenges. Continue refining your game, try new engines, and explore creative ways to add depth and polish to your project.

By learning to work with graphical libraries and game engines, you’re setting yourself up for an exciting future in game development. Keep building, experimenting, and most importantly, have fun creating the games of your dreams.

Appendices

The appendices of this book serve as additional resources to support your learning and development as you continue to build your RPG engine and delve deeper into the world of game development. These sections contain important reference materials that will help clarify key concepts, offer syntax shortcuts, introduce useful libraries, and provide some creative inspiration for your projects. The goal is to ensure that the information you need is readily accessible, so you can focus on building your projects with the confidence and tools required to succeed.

Appendix A

Full Engine Class Reference

This appendix provides an exhaustive reference for the classes used throughout the RPG engine you’ve been building in the book. These classes form the backbone of your game engine, enabling functionality like player movement, combat mechanics, inventory management, and the handling of non-player characters (NPCs).

A well-organized class reference ensures that you can quickly locate key methods and properties, understand how different components of the engine interact, and streamline your development process as you modify or extend your engine in the future. Here, you will find detailed explanations of each class, as well as the specific functions they serve within the overall architecture of your RPG engine.

For instance, the Player class contains essential methods for managing the player’s health, inventory, level, and experience points. Meanwhile, the Enemy class is responsible for defining the behavior of enemies, such as their movement patterns and combat stats. Each class will also be organized by category, with related classes grouped together for ease of understanding.

Below is an example of what this might look like in your class reference:

	
Class

	
Purpose

	
Key Methods

	
Example Usage

	
Player

	
Represents the player character

	
attack(), takeDamage(), addItem()

	
Used to track player stats and interact with NPCs

	
Enemy

	
Represents an enemy NPC

	
move(), attack(), takeDamage()

	
Defines enemy AI behavior and combat functionality

	
Inventory

	
Manages the player’s items and equipment

	
addItem(), removeItem(), useItem()

	
Handles the player's inventory system

	
CombatSystem

	
Handles combat mechanics between players and enemies

	
initiateCombat(), resolveDamage()

	
Manages combat logic for interactions between characters

In this appendix, you will find a comprehensive list of all the key classes in your engine, their functions, properties, and methods. This reference will serve as a useful tool when you need to quickly recall how to interact with the various parts of your engine.

Appendix B

C++ Syntax Cheat Sheet

C++ is a powerful language with a rich syntax that can be overwhelming at times, especially for new game developers. This cheat sheet serves as a quick reference guide to the core syntax rules and language features that you will most often use in game development.

The cheat sheet is organized into sections that cover the basics of the language, such as variables, operators, and data types, as well as more advanced topics such as object-oriented programming, memory management, and debugging techniques. Whether you're working on your RPG engine or exploring new game development concepts, this cheat sheet will help you get the job done faster.

For example, the cheat sheet includes:

Basic Data Types: Understanding fundamental types like int, float, char, and string is essential for any developer. You'll find their declarations and how to use them.

int playerHealth = 100; // Integer type

float playerSpeed = 3.5f; // Floating-point type

char playerClass = 'W'; // Character type

Control Structures: It’s important to master control structures, including loops (for, while), conditional statements (if, else), and switch statements.

if (playerHealth > 0) {

cout << "Player is alive!" << endl;

} else {

cout << "Player has died!" << endl;

}

Functions: A section explaining function declarations, calling functions, and passing arguments.

int add(int a, int b) {

return a + b;

}

cout << add(5, 7); // Output will be 12

Object-Oriented Programming (OOP): Key concepts like classes, inheritance, and polymorphism are covered with simple examples.

class Player {

public:

int health;

void attack() {

cout << "Player attacks!" << endl;

}

};

Memory Management: Using pointers and references, as well as understanding dynamic memory allocation (new, delete).

int* pHealth = new int(100); // Dynamically allocated memory

delete pHealth; // Free allocated memory

With this cheat sheet at your disposal, you’ll be able to refresh your memory on C++ syntax as you develop your game, without having to constantly look up code examples or documentation.

Appendix C

Useful C++ Libraries for Game Development

In this appendix, you will find a list of C++ libraries that can enhance your game development process by adding more functionality and streamlining development. Many of these libraries have been used throughout the book, and they can help with everything from graphics rendering to sound processing and file management.

Here are some key libraries that may prove useful in your game development endeavors:

SFML (Simple and Fast Multimedia Library): A great library for handling graphics, sound, and input. It simplifies the process of rendering 2D graphics and managing audio in your games.

SDL (Simple DirectMedia Layer): Similar to SFML, SDL is another library that helps with 2D graphics, audio, and input. It’s often used in both indie and professional game development.

Boost: This powerful collection of libraries adds functionality for threading, networking, and managing data structures. It’s especially useful when you need performance optimization or more complex operations in your game.

OpenGL: If you decide to explore 3D graphics, OpenGL is the go-to library for rendering 3D objects. It provides low-level access to graphics hardware and is widely used in both 2D and 3D game engines.

FMOD: A popular audio library for handling sound effects and music. FMOD provides sophisticated audio features like real-time sound mixing, 3D sound, and streaming audio, which can greatly enhance the audio experience in your game.

These libraries will provide you with a solid foundation for further developing your RPG game. They are all well-documented, and many have large online communities that can help answer questions and provide tutorials.

Appendix D

ASCII Art for Game UI

While your game engine may eventually transition to graphical interfaces, ASCII art can still play a significant role in the early stages of development. ASCII art is a form of drawing pictures using text characters, and it is commonly used in text-based games, especially during early development or in retro-style games.

In this appendix, we’ll explore how to create and implement ASCII art into your game’s user interface (UI). Whether it's for displaying characters, crafting maps, or providing stylized text-based menus, ASCII art can enhance the user experience even in games with minimal graphics.

Below is an example of an ASCII art character that could be used to represent your player or NPCs:

O

/|\

/ \

This simple character could be used in a text-based RPG to represent the player’s avatar. You can create more complex scenes, like towns, dungeons, and combat sequences, all using ASCII characters. Additionally, ASCII art is ideal for creating basic UI elements like health bars, inventory screens, or simple menus.

For example, a simple health bar could look like this:

Health: [##########------] 80%

This style of representation, while simple, adds a level of charm and uniqueness to your game, especially in a retro RPG.

Appendix E

Glossary of Game Development Terms

Game development, especially in the realm of RPGs, involves specialized terminology that can sometimes be confusing to beginners. This glossary serves as a quick reference guide for all the key terms and concepts you will encounter in your journey as a game developer.

This glossary will help you navigate the jargon of game development and ensure that you can fully comprehend the material presented in the book and apply it to your own projects.

By having access to these appendices, you now have a complete set of resources to help you with your ongoing development journey. Whether you're referencing a specific class in your RPG engine, brushing up on C++ syntax, or creating fun and quirky ASCII art for your game, these sections will prove to be indispensable tools in your game development toolkit. Keep them handy as you continue to build your skills and refine your craft.

THE END

OEBPS/image_rsrc3FN.jpg
MASTER
GAME

DEVELOPMENT

STEM SCHOOL

OEBPS/image_rsrc3FR.jpg
RPGEngine/

— CMakeLists.txt
configuration
—— README.md
— .gitignore

— src/
main.cpp
Game.cpp

— include/
L Game.h

— assets/
(maps, scripts)

L— puild/
(ignored by Git)

W= W e

= =

Top-level build

Project overview
Git exclusions

Source code
Entry point

Game loop, logic

Header files
Game class definition

Future asset files

Compiled output

cover.jpeg
MASTER
(*++GAME

DEVELOPMENT

STEM SCHOOL

N
% 4’
A e

OEBPS/image_rsrc3FU.jpg

OEBPS/image_rsrc3FV.jpg

OEBPS/image_rsrc3FP.jpg

OEBPS/image_rsrc3FT.jpg
RPG-Engine/

— include/

— GameEngine.hpp

— InputHandler.hpp
— StateManager.hpp
— RenderSystem.hpp
— BattleSystem.hpp
— SaveLoadSystem.hpp

— GameEngine.cpp

— InputHandler.cpp
— StateManager.cpp
— RenderSystem.cpp
— BattleSystem.cpp
— SaveLoadSystem.cpp

— main.cpp

OEBPS/image_rsrc3FW.jpg

OEBPS/image_rsrc3FS.jpg
RPG-Engine/

— include/

—— Character.hpp
—— Player.hpp
—— Enemy.hpp

— src/

—— Character.cpp
—— Player.cpp
—— Enemy.cpp

—— main.cpp

