

Site

Reliablity Engineers

Handbook

Understanding SRE core principles to
build and operate reliable systems

Anupam Singh

www.bpbonline.com

https://www.bpbonline.com/

First Edition 2025

Copyright © BPB Publications, India

eISBN: 978-93-65895-117

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but the
publisher cannot be held responsible for any loss or damage arising from any information in this
book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to

My husband

About the Author

Anupam Singh is a technology enthusiast and loves solving problems with
technology. She is currently working as an engineering director- SRE for an
international financial technology organisation. Anupam has around 16
years of experience working in the software industry across the globe, in
various domains and has successfully delivered solutions. She is an
experienced software developer and has a deep understanding of SDLC
from different facets. She obtained a master’s degree in management
information systems from W.P. Carey School of Business, Arizona State
University, in 2017. And she also holds a bachelor’s of technology degree
in information technology from G.B.P.U.A.T Pantnagar, India in 2008.
Anupam is a featured speaker for AnitaB.org India GHCI 2024 on
Eliminating anti-patterns to build reliable system. She is a mentor to fresh
graduates in her organisation, helping them excel in the corporate world.
Outside work, she is a volunteer of a global non-profit organisation,
AnitaB.org India and has organised various events for women in
technology. On the personal front, she loves travelling. In her free time, she
spent her time gardening. Anupam is also a health enthusiast and loves to
explore new adventures and activities.

About the Reviewers

❖ Ankit Sharma is a seasoned technical manager with extensive
experience managing large-scale applications. He is a generative AI
enthusiast and a passionate advocate for leveraging cutting-edge
technologies to solve complex business challenges. A postgraduate in
data science from Deakin University, Australia, he also wears the hat of
an author and enjoys exploring the evolving intersection of AI and
software development. An active reader, he regularly engages with
books across technology, data science, and innovation, and contributes
as a technical reviewer for works in the AI and software engineering
domains.

❖ Varun Verma is a seasoned full-stack engineer from India with 12
years of hands-on experience turning challenging business problems
into elegant, high-impact software. Equally at home in the browser and
the cloud, he builds end-to-end solutions with C#, .NET Core Web API,
Angular / React, and modern JWT-secured architectures.

Varun specializes in domain-driven design and CQRS, designing
systems that stay clean as they scale. On the infrastructure side, he is
fluent in Azure, utilizing services such as Functions, Service Bus,
Cosmos DB, Terraform, Docker, Kubernetes, GitHub Actions, and
Jenkins to ensure fast and repeatable delivery. He has authored custom
Terraform providers, automated golden-path GitHub templates, and
migrated petabytes of IoT data across global energy devices without a
hiccup.

A keen advocate of MLOps, he weaves machine learning pipelines and
NLP-driven chatbots into production workloads, transforming
unstructured sources such as PDFs into actionable insight. His code is
continuously scanned, tested, and linted long before it hits production,
reflecting his automate everything mantra.

Beyond client work, Varun blogs, contributes to open source, and
mentors teams on cloud-native best practices, always exploring what is
next and sharing what he learns.

Acknowledgement

Writing this book has been a journey filled with challenges and growth. I
would like to express my deepest gratitude to the editors, whose thoughtful
feedback and dedication helped this book take shape.

My heartfelt thanks to BPB Publications for their guidance and assistance
through the publishing process.

I am grateful to the technical reviewers whose valuable feedback and
insights have been instrumental in shaping the content and improving the
quality of this book.

I am thankful to my husband, Lokesh Sharma, for his unwavering support,
patience and encouragement.

Last but not the least, I want to express my gratitude to the readers who
have shown interest in the book, your support and encouragement is deeply
appreciated.

Thank you to everyone who contributed in making this book a reality.

Preface

SRE is a set of principles and practices that apply a software engineer’s
approach and help IT operations. SRE and DevOps follow similar
underlying principles; however, they differ in practice. SRE aims to deliver
a highly scalable and reliable software system; however, like any
technology and practice, some roadblocks can lead to pitfalls for SRE also.
It is not easy to build and deliver a highly available and reliable system. As
not one solution fits all, however, some of the best practices can help
achieve business goals.

This book will help readers identify and address roadblocks and find
solutions to those. The solutions can help organisations to boost their
development and quality delivery process.

This book will take readers through some real scenarios of SRE pitfalls and
solutions to overcome these pitfalls. And best practices to help build highly
reliable and scalable systems.

The key highlights of this book are various ways to avoid anti-patterns in
the SRE approach to scale, explained in Chapter 5, and the relation between
SRE and DevOps in Chapter 2. The book also highlights some of the best
practices of SRE to elevate IT operations, along with real industry
examples.

The book is designed to cater to software engineers, site reliability
engineers, DevOps engineers, software architects, product managers and all
those professionals working around technology and building software.

Chapter 1: Site Reliability Engineering: Beyond Scalability- This
chapter is an introduction to SRE. It describes the high-level meaning of
SRE, and emergence of SRE and its importance in today’s SDLC. This
chapter gives an understanding of how SRE is positioned in IT. The chapter
also covers the continuous need for SRE in the IT industry and how SRE

manages cloud-native complex problems to achieve business goals. The
chapter highlights the need for SRE, the role of SRE in the software
development lifecycle and various pillars of SRE. The chapter also explains
the significance of SRE in the cloud-native era.

Chapter 2: SRE and DevOps- This chapter explains the role of SRE and
how it’s related to DevOps. The chapter describes various common
practices between SRE and DevOps and also the differences between the
two methodologies. By the end of the chapter, readers will gain an
understanding of how SRE and DevOps are changing the software industry
and modernizing the software development lifecycle model.

Chapter 3: Build Effective Solutions with SRE- This chapter will help
readers understand various ways to deliver efficient and quality software
and how SRE methodology can help build this effective solution. This
chapter also explains some real-time scenarios of the SRE, DevOps and
Agile approach that delivered robust software and the specific techniques
SRE teams used to build efficient systems. Along with building scalable
software, the chapter also highlights capacity planning and cost
management. Readers will also get insights on some of the key features of
SRE, such as the importance of testing, monitoring and observability,
measuring the performance, incident management and automation. The
chapter also explains the CAMS model as an SRE essential.

Chapter 4: Understanding Anti-patterns- This chapter explains the
meaning of anti-pattern and what anti-patterns mean in software
development. It also describes how recurring problems of software
engineering and site reliability are related. The readers will gain insights on
some of the known anti-patterns in SRE.

Chapter 5: Types of Anti-patterns- This chapter describes the different
types of anti-patterns and ways to recognise these anti-patterns. It also
explains measures to overcome anti-patterns in order to have an efficient
SRE methodology. In this chapter, the reader will learn some of the hidden
roadblocks along with known anti-patterns that lead to pitfalls. The chapter
will help explain readers’ real-time scenarios of roadblocks impacting
software and solutions implemented to overcome roadblocks. The chapter
will help readers gain insights on how to identify the anti-patterns in an
ongoing software development project.

Chapter 6: Real-world Examples of Successful SRE- This chapter
provides various real-world scenarios for successful SRE implementation.
Readers will get insights on how various software organisations solved anti-
patterns and improved system reliability. The chapter will help readers
understand various phases of SRE practice and how these practices can help
achieve software reliability. Some of the highlights of these practices are
alert management, incident management, root cause analysis, defining
metrics, chaos engineering and automation.

Chapter 7: Best Practice for SRE- This chapter explains some of the best
practices for SRE. These practices are derived from real-world scenarios
from organisations following SRE path. The chapter also explain the
importance of good software design and software development for quality
delivery. By the end of this chapter, readers will gain a comprehensive
understanding of the approach to achieving quality delivery.

Chapter 8: Tool Kit for SRE- This chapter describes some of the best
tools available in the market and can be used as an SRE tool kit throughout
the book. This chapter gives readers a cheat sheet for successful SRE.
Readers will gain an understanding of the diverse skill sets required to be a
site reliability engineer. By the end of this chapter, readers will have a high-
level understanding of SRE tools available in the market. The toolkit also
helps readers design software systems.

Chapter 9: Day in the Life of SRE- The chapter explains the roles and
responsibilities of an SRE and gives a glimpse of the daily tasks of the SRE
team. The chapter also throws some light on SRE team skill sets. By the
end of the chapter, the reader will gain an understanding of how to start a
career in SRE and how an SRE team functions in today’s Agile throughout
the book approach.

Chapter 10: Future of SRE- This is the last chapter, which will conclude
with key SRE features that readers learned through this book. It also gives a
comprehensive SRE goal and some food for thought to readers on how and
where to begin the SRE journey. The objective of this chapter is to focus on
the SRE career path and how you can become an SRE.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/9da36d
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Site-Reliability-Engineers-
Handbook. In case there’s an update to the code, it will be updated on the
existing GitHub repository.

We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.bpbonline.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

https://rebrand.ly/9da36d
https://github.com/bpbpublications/Site-Reliability-Engineers-Handbook
https://github.com/bpbpublications
mailto:errata@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy
If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either writing or
contributing to a book, please visit www.bpbonline.com. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insights with the global
tech community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the site
that you purchased it from? Potential readers can then see and use your unbiased opinion to make
purchase decisions. We at BPB can understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
https://www.bpbonline.com/
https://discord.bpbonline.com/

Table of Contents

1. Site Reliability Engineering: Beyond Scalability
Introduction
Structure
Objectives
Understanding site reliability engineering
Site reliability engineering in SDLC
Need for site reliability engineering
Pillars of site reliability engineering
Significance of SRE in cloud-native era

Empowering developers with self-service
Conclusion

2. SRE and DevOps
Introduction
Structure
Objectives
Understanding SRE and DevOps
SRE and DevOps common practice

Structured approach
Automation
Quality control
Measuring
Change management

Difference between SRE and DevOps
New era SDLC model
Real-world examples of SRE and DevOps
Conclusion

3. Build Effective Solutions with SRE
Introduction
Structure
Objectives
Building scalable, reliable, and available systems

Scalability
Patterns used in scalability

Reliability
Delivery of a reliable system
Ways to measure the reliability of a system

Availability
Capacity planning and cost management
Importance of testing

Importance of testing
Real-world examples of different phases of testing

Using monitoring and observability tools
Build strong incident management process
Automate to reduce toil

Importance of automation to SRE
Ways to automate

CAMS model is an SRE essential
Culture
Automation
Measurement
Sharing

Agnostic approach
No measurement no improvement
Conclusion

4. Understanding Anti-patterns
Introduction
Structure
Objectives
Pattern and anti-pattern in software engineering

Spaghetti code
Golden hammer
Boat anchor
Dead code
God object
Copy and paste programming

Common anti-patterns in SRE
Misconfigured alerts
Incorrect ticketing
No automated remediation
No change management process
Unrealistic expectations or chasing nines
Pinpointing or no blameless post-mortem

Conclusion

5. Types of Anti-patterns
Introduction
Structure
Objectives
Types of anti-patterns

Anti-patterns in service design
Anti-patterns in monitoring and observability

Anti-patterns in release and deployment
Anti-patterns in change management
Operational anti-patterns in incident and defect management
Anti-patterns in error handling
Anti-patterns in communication and collaboration
Anti-patterns in culture and teamwork

Anti-patterns in system reliability and scalability
Hidden roadblocks to the SRE path

Culture
Measurement and choosing the right metric
Unrealistic SLO, SLI, and SLA
Reusing tools

Real time scenarios of anti-pattern and solutions
Single data input
Lack of incident management process
No control over changes

Key takeaways
Conclusion

6. Real-world Examples of Successful SRE
Introduction
Structure
Objectives
Common terminologies
Avoiding alert fatigue

Planning phase 1
Planning phase 2 (high level design)
Planning phase 3 (low level design)
Configuration phase
Implementation phase
Testing phase

Deployment phase (quarter 1)
Sanity testing phase
Maintenance phase

Improving observability
Planning phase
Maintenance phase
Implementation phase
Testing phase

Reducing human toil by automation
Planning phase
Implementation phase
Testing phase
Deployment/release phase
Maintenance phase

Implementing root cause analysis as key process
Monitoring and maintenance phase

Building strong incident management
Planning phase
Implementation phase
Testing phase
Monitoring phase

Improving defect analysis and management
Define SRE and ops roles to reduce burnout

Planning phase
Implementation phase
Testing phase
Deployment/release phase
Maintenance/monitoring phase

Implementing gatekeeping
Metrics identification

Early involvement of SRE in SDLC
SRE as chaos and performance engineer
Conclusion

7. Best Practice for SRE
Introduction
Structure
Objectives
Software design and software code
Core values of DevOps and SRE
Business and SRE
Conclusion

8. Tool Kit for SRE
Introduction
Structure
Objectives
SRE tool kit

Incident management
Change management
Alerting and monitoring tools
Release and deployment tools
Chaos testing tools

Cheat sheet for SRE
Conclusion

9. Day in the Life of SRE
Introduction
Structure
Objectives

Skillsets and technology background of SRE
Roles and responsibilities of SRE

Case 1
Case 2
Case 3
Case 4

Summary of key tasks and skills of an SRE
Conclusion

10. Future of SRE
Introduction
Structure
Objectives
Recap of SRE
Goals for SRE
SRE career path
Future of SRE
Conclusion

Index

CHAPTER 1
Site Reliability Engineering:

Beyond Scalability

Introduction
This chapter is an introduction to site reliability engineering (SRE). It will
cover the meaning and role of SRE in today’s software development. This
chapter will also highlight the emergence of SRE and its journey. We will
understand how and where SRE is positioned in the software development
lifecycle (SDLC). Along with this, the chapter will also cover the consistent
requirements for SRE in the IT industry. As part of the need for SRE, you
would learn how SRE principles manage to solve complex cloud-native
problems to achieve business goals.

Structure
The chapter covers the following topics:

Understanding site reliability engineering
Site reliability engineering in SDLC
Need for site reliability engineering
Pillars of site reliability engineering

Significance of SRE in the cloud-native era

Objectives
By the end of this chapter, you will understand the meaning of SRE and its
journey in the IT industry. This chapter will frame a baseline to help you
visualize the software development lifecycle model from an SRE
perspective. You will understand the need for site reliability engineering and
why site reliability is gaining importance in the IT industry.

Understanding site reliability engineering
SRE is a set of principles and practices that applies aspects of software
engineering to IT infrastructure and operations. SRE claims to create highly
reliable and scalable software systems. Though there are various versions of
these definitions, and they change as per the organization, type of software
project, and the type of software system, each definition leads to one goal for
the software system: high scalability and reliability.
The field of SRE was originated at Google in 2003. Since 2003, the concept
of site reliability spread across broader software development organizations.
Though not many organizations adopted SRE initially during the early
2000s, as there were no clear or defined principles, various organizations did
not even see the need for SRE due to their scale. Some organizations are
already running part of SRE in the name of production support. Over time,
software applications started to grow, and due to increasing demand, there
was a need to manage and speed up operations and development. So Google
also defined the SRE role, and the adoption of SRE increased. with the cloud
gaining popularity today, almost every IT organization has an SRE division
to manage operations and engineering for high-class reliability and
scalability.
SRE is the bridge between development and operations. DevOps is also
similar and shares some principles with SRE. However, they are two
different sets of practices. In some organizations, SRE and DevOps are two
separate teams, whereas in others, they share roles. The relationship between

SRE and DevOps is explained further in the next chapter of this book.
SRE is a set of practices that defines software reliability, availability, and
resiliency 24/7. It applies engineering principles where engineers identify
and fix problems before they go into real software applications, also known
as the production environment, and if any problem persists in production,
then identify, troubleshoot, and resolve it. SRE involves operations and
engineering, and the role of each SRE engineer is clearly defined as
managing large-scale software systems. Operations have always been an
integral part of software organizations, but with an increase in demand, there
was a need to scale up software systems, and that, in turn, put pressure on
organizations to have faster development and big operations teams to
support software. Operations are sometimes also referred to as production
support teams. Some organizations have SRE and production support teams,
where the support team acts as L1/L2 and SRE as L3 engineers. On the other
hand, some organizations have removed the production support team and
formed only SRE that manages support, troubleshoots problems and
provides solutions. The SRE team spent 50% time on operations and 50% of
the time on engineering tasks. However, any SRE team's goal is to ensure the
software system is always up and running.
Some fundamental principles and practices of SRE are as follows:

Observability: The monitoring system is one of the critical functions of
SRE. Unless you monitor and observe your system, you cannot identify
the gaps to be closed.
Automation: Eliminate manual and repetitive tasks by automating as
many as possible. Engineers should focus on developing new features
and tools and enhancing systems to avoid real-time failures.
Metrics service level objectives (SLO), service level agreements
(SLA): Set reasonable expectations for system performance to ensure
that end-users and stakeholders understand how the system is supposed
to perform at various levels.
Measure: Always define metrics for each service to measure how the
system is performing. If you cannot measure it, you cannot resolve
failures.
Risk management: No system is designed to perform perfectly, and no

system can be 100% available all the time. So, it is important to identify
potential failures and mitigate those failures with minimum impact.
Incident management: Defined clear standards and processes around
managing incidents for timely response and resolution of failures and
end-user requests.
Change management: Outline and document processes for developers
and testers to release changes in development and production
environments.

Site reliability engineering in SDLC
Software development lifecycle is a set of steps or processes for software
developers, software testers, requirement analysts, designers, and support
engineers. SDLC originated in the 1960s to help software developers,
designers, and testers follow a model to build and deliver large-scale
systems. Organizations follow various SDLC models, and Waterfall is one of
the well-known models that many organizations follow. However, with the
emergence of the cloud and increased demand and scalability, the Agile
methodology also came into the picture. In today’s technology world, Agile
methodology is commonly used by almost every software organization, and
SDLC and SRE principles are in accord with Agile principles. SRE,
following Agile practice, makes a robust SDLC model and help
organizations to run smooth development and delivery systems (refer to
Figure 1.1):

Figure 1.1: Waterfall SDLC model

The Waterfall SDLC model is a linear model where each phase depends on
the deliverables of the previous phase. This model worked very well for
organizations with small-scale and software systems that often do not change
requirements. However, with an increase in demand, user requirements
started to change, which in turn made software organizations deliver all new
features in less time and scale up fast. Along with that, various other gaps
were also identified with old SDLC models. To address these problems,
Agile methodology came into the picture. There were various other models
of SDLC, but with emerging technology, Agile methodology gained
popularity. Agile methodology was introduced in early 1970s however it got
highlighted around 2009s (refer to Figure 1.2):

Figure 1.2: Agile methodology in SDLC

Today’s SDLC follow Agile methodology that is basically a project
management approach emphasises on continuous collaboration,
communication and continuous improvement. Agile is not only set of
techniques but it is group of methodologies used to demonstrate continuous
development, strong feedback cycle and continuous improvement.
As described in Figure 1.2 above there are various phases in Agile
methodology similar to Waterfall. Nevertheless, each of these phases follow
sprint, where each phase is repeated every sprint till that project is
completed.
Let us take a real scenario of an e-commerce software project that follow
Agile. The sprint cycle followed in project is of 1 week. Team get
requirements including build modules to search, filter items and payment
module on e-commerce website.

First, is planning where business analyst team define and collect
requirements and create a high-level data flow for the software system.
Design phase is where designers create wireframes and design the user
interface, architects design architecture flow and outlook of that
software application. At this point there are other requirements in
pipeline so planning team start picking those from backlog.
Developers then start writing code, perform unit testing, package the
code and pass on to testing team.

Quality analyst then test the packaged code and handover to release
management team.
Release management team deploy the code to production environment.
Support team review and make sure system is up and running as
expected.

Once it is delivered and users started using the features in website, new
requirements from pipeline were picked up and started as soon as planning
team delivered their data flow to design team. Moreover, this process
repeats.
The major role of SRE comes at the end of the Agile model, is review. Some
organizations call that phase as support or monitoring or maintenance or
operations phase. This is the phase where SRE comes in to picture, where
SRE team support and own the production software application. They
review if code is behaving as expected, if there are any user complaints or
tickets, they review if infrastructure is able to handle the load of user
requests. Along with monitoring production environment SRE engineers
develop tools, controls and capabilities to help developers release their code
in production smoothly and identify any issues before it impact users.
Though it seems SRE fit in the last phase of Agile, but SRE roles also falls
throughout Agile process and it is sometimes hidden.
In continuation of above real time example for e-commerce website, SRE
falls in the last phase. Let us take same scenario with SRE as part of SDLC:

Project flow description: Once the requirement was rolled out to
production environment, SRE team monitor the website for spikes in
traffic, errors in websites, failures in application, also technical tickets
or complaints from users that customer support team of that
organizations could not solve as it needed technical expertise. For any
technical error reported, SRE is the first line of defence to troubleshoot
the problem and fix it.
Real scenario: during monitoring of application, SRE team noticed that
payment service was throwing http 500 error intermittently. Though
none of the customer reported but these are proactive monitoring alerts
configured by SRE teams. SRE team is skilled to troubleshoot and
identify the cause of error and fix it depend on their skill set. Some

cases SRE team pass on the problem to developers to fix the failure.
Although SRE here is positioned at the last phase, many organizations
involve the SRE from very beginning in SDLC, where planning of
application start. SRE is the team consist of skilled engineers who has
knowledge on architecture of actual software system aka production
environment from infrastructure and code perspective. SRE help business
analyst and designers by providing them real view of software application
also known as, production environment. SRE team has data on percentage of
traffic flow, scalability, fallback, load balancing, data replication and many
more.
If you take same example as above. Now, involve SREs during planning,
designing and testing all three phases and see how it helped the SDLC
process.
In the real scenario, after testing search module, quality analysis (QA) team
identified a bug in code where search module failed 1 time when requested.
As, this is only 1 request failure QA and development ignored the error.
Now, SRE is also a part of the testing review. QA, shared the results to SRE.
SRE provided the data on number of users access search module in a day
and also performed load and chaos testing. The testing result showed
multiple failures in search module due to system was not able to handle the
load. SRE provided that insight to QA, and QA, SRE, and the development
team collaborated to identify the fix for this problem. Either scaling up of
server is required, or the code has to be rewritten with a light query.
Consider this example, SRE is involved in the planning and designing phase.
During the design phase, SRE shared insights into the actual customer load
that helped the architect to include a database that only uses lightweight
queries. Also, SRE engineer added a recommendation for extra capacity for
servers to handle the load. Both of these two cases help businesses to
identify failure before production and save time and effort (refer to Figure
1.3):

Figure 1.3: SRE involvement in various phases of Agile

The following is a continuation of the above example with more details.
Detailed description of roles performed by different teams in each phase
(refer to Figure 1.4):

Plan: Requirement capture by analysts.
Design: Data flow, architecture diagram, tech stack by business
analysts, software architects, product leaders, designers, SRE and
DevOps SMEs.
Develop: Developers develop UI and backend. The DevOps team
creates CI/CD pipelines. In the earlier diagram, the DevOps team is
called the release engineering team. However, DevOps and release
engineers are sometimes the same team, and it also depends on the type
of project.
Environment readiness: The SRE team creates a monitoring
dashboard. The DevOps team prepares the development, testing, and
production environments using CI/CD pipelines, which are used to
install infrastructure.

Test: The testing team performs regression testing and progression
testing. The SRE team performs load testing and chaos testing.
SRE review: The SRE and testing and development teams review a few
high-impact bug fixes. The SRE team also performs a round of sanity on
production.
Deploy: DevOps team uses CI/CD pipelines to deploy code to
production

•	Monitoring: SRE monitoring system performance. SRE also manages
incidents and technical tickets from customer service.

Figure 1.4: Roles performed by various team in each phase

Need for site reliability engineering
So far you clearly understood what SRE is and its journey in SDLC. Also, a
high-level view of SRE roles and responsibilities. In this section, you will

understand the need for SRE in current software organizations and how SRE
contributes to bridging the gap between development and operations. Site
reliability engineering, as its name conveys, ensures the reliability of
software systems. However, various engineering and operational aspects are
involved in ensuring reliability, such as infrastructure management,
application support, observability, availability, scalability, tools, and
capabilities. We cannot deny Murphy’s law that anything that can go wrong
will go wrong and is also applicable to service. However, we can improve
and ensure a reliable user experience.
Let us take the real scenario of an e-commerce software project without SRE
but with just operations. A few considerations about this project:

Project follows the Agile methodology.
Tech stack hosted on public cloud, NoSQL databases, Redis, S3
Storage, Java backend, and all the latest tools.
Observability tools: ELK, Grafana, App Dynamics, Splunk
Technology team structure: Product management, UI designers, Agile
champions, developers, quality analysts, performance testers, DevOps
team, operations team, and customer service team.

Let us consider a use case in this project.
The product team finalized the new payment feature requirement. Product
and architects finalized data flow and design for the feature, developers built
the code, the tester tested the code, the DevOps team created a CI/CD
pipeline to create a production environment and deployed code in
production, and the DevOps team created alerting and monitoring
dashboards, operations team monitor production environment. After a few
days of the feature release in production, the customer service team got
complaints from users that they could not make payments. The ticket was
moved to the operations teams as part of the process. The operations team
did their level 1 troubleshooting but could not identify the real cause and
passed the ticket to the DevOps team. The DevOps team troubleshot and
identified that this was not an infrastructure issue, but they were still not able
to find the real cause, so they moved the ticket to the developer’s queue. As
the dev team developed the code, they were able to identify the root cause
and fix the bug in the code, and this hotfix was deployed to the production

environment.
This full process took around three days, and for three days, users were not
able to use the application, and it eventually a loss to the software
organization (refer to Figure 1.5):

Figure 1.5: SDLC phases without SRE (replaced by DevOps and L1 ops)

Take the same use case, but now with the SRE team as part of the project.
Everything remains the same, but the operations team is replaced with the
SRE team. This SRE team consists of developers and operations.
Let us consider a use case.
The new payment feature requirement was finalized by product team.
Product and architects finalized data flow and design for the feature;
developers built the code; tester tested the code. The DevOps team created
the CI/CD pipeline to create a production environment and deployed code in
production. The SRE team built alerting and monitoring dashboards that also
auto-heal, SRE teams built an in-house troubleshooting tool to identify and
simulate issues reported in the past for this application, and the SRE team
also monitored the production environment. After two days of feature

release in production, the SRE team got an alert for failure requests. As the
SRE team is also supporting production and building the alerting dashboard,
the team was able to catch the issue even before customers reported and
identified it. As soon as the SRE team got alert, they troubleshoot the error
and run through their in-house tool they built and identified that similar error
happened in past as well. Their tool provided the root cause and SRE
collaborated with the developer of the code and got the bug fixed in system
and the DevOps team deployed the hotfix. The issue got fixed within few
hours and customers did not notice any major failure.
The above-explained two scenarios with and without SRE explain the
importance of SRE teams in the software development lifecycle process.
Without an SRE team, it took almost 3 days to identify and fix the problem,
and that cost money, and the organization might lose its customers also.
However, with the SRE team in the picture, the project was able to identify
and fix the problem within a few hours. You can argue that DevOps and
operations teams can also build the same tools and dashboards and solve the
problem. Yes, this can happen, but when an organization works at a large
scale and builds something like an e-commerce project, it is better to have
separate teams and defined roles, else you will burn out people, and they will
not be able to meet any of the requirements.
Almost every software organization have operations team that manages and
support production environment, however SRE team has been formed to fill
the gaps between operations and development and to speed up development
and delivery of software. SRE team consist of team including developers,
infrastructure engineers, system engineers and support engineers. They are
multi skilled team trained to support and troubleshoot production
environment and have skill set to develop code, that is why they understand
both operations and development side of SLDC. Along with supporting
application and infrastructure, SRE team are developers who build tools and
capabilities that reduces toil, configure infrastructure, create observability
dashboards, implement auto-heal tools, and help developers to identify and
fix issues in code. With these skill sets SRE team can identify and fix issue
before it impacts software application. SRE teams are responsible for
maintaining reliability, scalability, and availability of system. Any change

going in production environment can impact running application, but SRE
team, with their tool kit make sure applications are always up and running
and end user do not face any problem while accessing software. This, in
turn, helps organizations to save application crashes, provide good service to
their customers, increase customer onboarding, and increase business.
The SRE team is an investment in any software industry. Sometimes,
organizations increase their IT budget to hire and form an SRE team due to
the demanding skillset. But if you consider ROI, there is a good return by
increasing the reliability and availability of software systems. Having said
that, not all organization have budget, and the project do not always require
a separate SRE team. So, organizations also extend DevOps team that
perform SRE functions. This is alright for small-scale projects; however, for
large-scale projects, it is better to have separate DevOps and SRE teams to
define clear roles and responsibilities and also save the burnout of team
members by working extra hours to meet the requirements.

Pillars of site reliability engineering
To understand SRE in depth, one needs first to know its pillars. However,
there is no one-size-fits-all way of achieving goals. You may use different
approaches to solve problems, but the end result and goal matter the most to
the end user and to the business. SRE gives confidence in achieving that
goal.
The following are the four golden pillars of SRE:

SLO and service level indicators (SLI): Objective and quantitative
metrics that defines successful service levels. It is simple, if you cannot
measure it, you cannot achieve it. SLO are the goals internal to the
organization to keep the system up and running as per standards. SLI
measure the reliability of service quantitively. These metrics are actual
numbers to be measured, such as throughput, latency, and correctness.
There is the third metric that also plays an important role, SLA. SLA is
an organization's promise to its customers on reliable delivery of service
that includes uptime, responsiveness, and responsibilities.
For example, as an organization, your SLA is defined as 99.9%

availability of your system for customers. Now, the SLO will be
99.999% availability. That means the internal goal for the team involved
in the project is to make sure the availability of the platform is 99.999%.
As you are committed to keep availability as 99.999%, even if it drops
you will still be able to meet your SLA. Now comes SLI, how you
actually measure the availability is defined by SLI. So when you
measure uptime and throughput, and it comes to 99.999%, that means
you meet your SLO and SLA.
This metric defined the goal for any service and help tracking SRE
teams. If your SLI, SLO and SLA are meeting that means right practice
and processes are being followed by the software project. SLA are the
top metrics for any organization to meet, without meeting SLA means
organization did not deliver what it promised to its end-user, customers
or clients.
Defining and understanding these metrics can be challenging. It is
important for organization’s product team to define SLA and SLO in
plain simple language that is easily comprehendible by engineers. More
clear and achievable the SLA, SLOs be, it will be easy for engineers to
define SLI. For example, you can never meet 100% SLA, as there will
always be some service that can go down.
Let us now look at an example. Take one month, SLA is 99.9%
availability of application. SLO is 99.999% availability. SLI is
measured by % of uptime in a month and % of throughput. There was
some issue in service where a few customers experienced intermittent
failure. SRE teams have configured alerting and auto-healing in place.
As soon as the application saw the error, auto-heal recovered the failure
by moving the service to another server, and only a handful of
customers intermittently experienced failure. At the backend, developers
and the SRE team collaborated on fixing the issue. So here, SLO and
SLI are impacted as service is down. However, SLA is not impacted.
Monitoring: Collecting metrics of the system to understand its
performance is another important aspect of SRE. One of the daily tasks
of SRE team is to monitor system. The quicker SRE reaction to failure
is, the better be the reliability of system. Monitoring means keeping an

eye on system performance by various metrics defined during initial
stages of SDLC. Generally, there are proactive and reactive monitoring
of system. However, proactive monitoring is preferred and also help
system perform better than reactive.
Metrics are defined during design of system and with past data
available. Some of the metrics to monitor are uptime (% of time the
system was available and functioning as expected), error rate (% of
requests that resulted an error), response time (amount of time it take for
a request to complete the transaction), mean time to recovery (MTTR
—average amount of time it take to fix system to recover), mean time
between failures (MTBF—average amount of time between failures or
outages), latency (amount of time it takes for a request to be processed
by system), resource utilization (CPU and memory utilization of various
services in system).
SRE teams configure various dashboards and alerting systems to
measure performance by these metrics. Alerting system notifies
engineers of any failure or outage in system that help them fix issue
faster. However, SRE teams uses dashboard to proactively monitor
system behaviour. Various automations are also build by these engineers
to auto-heal or auto-recover system during failures. To ensure project or
organization is meeting SLA, it is important to collect and monitor the
system performance. And defining and configuring multiple metrics for
each service help SRE teams to maintain SLA. There are few common
metrics being called out here that are important to measure, however,
every system is different and there can be multiple other metrics
required to monitor the system. It is advised to configure metrics for
every service in software application to help track system end to end.
But multiple metrics means multiple dashboards, so SRE role become
important to understand the system, prioritize the metrics on the basis of
SLA, and create easy monitoring dashboards.
There are various tools available today for monitoring dashboards. A
few commonly used tools across organizations are ELK, Prometheus,
Grafana, Splunk, Google Analytics, and Azure Insights.
Emergency response: These are a set of processes that help in

responding to incidents when they occur to reduce customer impact. It is
also referred to as an incident management system. Operations are an
important part of SRE, sometimes referred to as front-line technical
firefighters. So, managing and solving incidents is one of SRE's daily
tasks. An established incident management system is critical for any
organization to manage customer requests, complaints, and queries.
The incident management process helps prioritize the incidents
according to impact and risk. Then, as per priority, it defines the
resolution time. Along with defining the process, it is important to
configure incident management by using the appropriate tool. A tool
that will notify the team in real-time on any incident, help the team track
the timeline workflow, and also update the requester about resolution.
The goal for any project or organization is to deliver a smooth
experience to end user, so solving their queries on time is a critical piece
of that goal. And strong emergency response helps achieve that goal.
Incident management has 5 phases: incident identification, incident
logging, incident categorization, incident prioritization, and incident
response. These 5 phases help classify incidents with correct
information so that they can be routed to the respective team without
multiple follow-ups. Incident category and priority defined SLA for that
incident. An SLA is an acceptable time for any incident to be responded
to and resolved. There are multiple tools available today that help
automate incident management systems.
During the initial phase of SDLC that is designing, organizations also
finalize what tools to be used in order to complete the project. Tools that
will help software development teams to deliver their work. For
example, coding software, testing software, documentation software,
repositories, incident management tool, monitoring tool etc.
Change management: It is the process of planning, testing, and
deploying code or configuration changes to ensure quality and minimum
risk. It is a very popular saying within SRE and DevOps teams, if
nothing goes into production, nothing will break, but we have Murphy’s
law: Anything can go wrong, and it will. Change is inevitable and also
required for continuous improvement of software system. The more

changes applied; more are the chances for things going wrong. And that
is why change management was introduced as one of the SRE pillars.
To make reliable application, one need to know the services and
infrastructure behind it, and to know the service and infrastructure one
need to understand the code behind, various dependencies, and
communication between services on current infrastructure. Not
necessarily knowing every code but knowledge of components and flow
is critical to package services as one entity. And this is where SRE play
important role. As mentioned in the previos section, SRE team is
diverse skill set and the goal of their role involve providing reliable
service to end user. SRE is being involved in SDLC from beginning to
deploying to support, that is how they gain knowledge and
understanding of all aspects of software application.
Change management play important role to control what, when, how
changes can go in production. SRE and DevOps are the team who work
together to own change management process by getting involved during
initial phase of change planning, then change deployment for testing,
acting as gate keeper to control changes flow to production, and tracing
back if any change introduce issue in application. Let us take one real
organization scenario.
Take for example, an e-commerce application platform. Project got
requirement to introduce cash on delivery feature in application along
with other online payment features. Business analysts, product
management collected requirement. Next steps, involvement of
designers, SRE and software architect in deciding the flow and required
infrastructure and tools. Developers started coding. As part of change
management changes got deployed in lower environment and pass on
the code to QA for further testing. SRE was onboarded for performance
and chaos testing. QA published the testing reports and SRE team
analysed the report. As part of change management that is owed by SRE
team, they reviewed the code and identified a small bug in report
published by QA. The bug is, 2 times failure of COD screen and with
manual restart of service screen worked fine. It looked a small issue in
testing environment but consider live application where 1000+ users

will use application, this could result a huge failure. SRE team manages
production application they understand the impact of this small issue
could be huge. So, after review of testing result, the code was rejected
and moved to development team to fix this failure. Again the process
begin, developers fixed the code, QA tested and shared new results.
SRE reviewed and approved the code. As part of CI/CD this new feature
got deployed in production environment.

Aforementioned is a small example of how change management control
changes to ensure quality and reliability of system. It also explained the role
of SRE in change management cycle and its importance, as follows:

Figure 1.6: Pillars of SRE

Significance of SRE in cloud-native era
Today, there is a lot of focus on cloud applications, and you see and read a
lot of these terms, such as cloud computing, cloud-native era, the importance
of cloud application, and many more cloud-related terms in the software
world. Though all these topics have different meanings, they are all focused
on the importance and need of cloud applications with the advancement of
technology.
So, what does cloud-native mean? Cloud-native refers to services and
software applications built to run on environments that leverage cloud
computing technologies and methodologies. Today, almost every software
organization uses cloud technologies to host their software application. It
helps with continuous development and integration, quick and easy access to
information, centralized data security, geo-location agnostic, cost-effective,
and many more such benefits of using cloud technologies.

Cloud-native space has changed the way organizations look at the SDLC
model. Cloud has enabled continuous development and integration of
software, and this introduced the need to fix problems before they break.
SRE’s role has also changed across the journey, and SRE is now focused on
enablement rather than fire-fighting. Everything is fast-paced, and the SRE
role has also matured. With the advancement of developing methodologies,
SRE is focused on empowering developers with self-service. The idea of
fixing it before it breaks helps faster delivery and a reliable experience for
end users.

Empowering developers with self-service
Cloud-native space is a fast-moving, less-linear, and highly distributed
model. It provides the latest tools and technologies, speeds up development,
and offers quicker problem resolution. Cloud space has fundamentally
redefined the traditional role of developers, operations, and SRE. And
collaboration among these teams is the key to the successful delivery of any
software system. That is where SRE plays an important role, where SRE
brings developers and operations together. SRE’s job is to use cloud space to
configure tools and capabilities for development teams to improve overall
developer productivity.
For example, building a self-service tool to get production performance
metrics that help developers to understand how the service is behaving in
production and they can code as required. This will save developers time by
building standard code that do not need re-coding. In turn, this will save
SRE time as they will not have to respond to multiple repetitive requests
from developers. SRE methodology help business and technology to deliver
quality on time. Agile approach works best with cloud space. Agile says
continuous development and continuous integration and cloud provide the
required platform to practice Agile.
In this new cloud-native world, SRE teams empower developers by building
self-services to minimize toil. Another good example is SRE building
infrastructure and tools on cloud, so developer do not worry about
underlying platform and build their code cloud infra agnostic.
Along with developers, SRE also empowers business, product management

teams by building various self-service dashboards to pull required data from
live system. That will in turn help business in reporting the success of
software system.
SRE is a new approach introduced to address problems of modern
scalability-related applications. SRE methodology adopted on cloud
technology helps organizations to solve problems effectively. The idea of
cloud technology is that applications can be accessed from anywhere,
regardless of geography. One should not worry and depend on underlying
infrastructure while building software, as the cloud provides easy lift and
shift capability. Many development and testing tools today are built to
support applications running on the cloud. Cloud also promotes open-source
software configurations. SRE practices highlight quick scaling of
applications and fast resolution of failures. If software applications run on
the cloud, that will help provide advanced infrastructure that can be scaled
quickly. Tools supported on the cloud help the SRE team identify failures
faster and offer the capability to resolve them soon.
Let us take an example of a software application running on the AWS cloud
and see how the SRE role impacts system reliability in the cloud:

SRE used AWS-provided dashboards and customized them according to
project needs. This required the same effort and time as building
anything from scratch.
SRE installed open-source software as a plugin to add extra monitoring.
AWS supports this open-source software and is also good at
compatibility with it. This saves the organization money on purchasing
new software.
SRE can access applications irrespective of their location.
AWS cloud provides easy configuration for adding extra servers in case
of load increases. SRE can easily scale up the system whenever
required.

Cloud provides in-built tools to manage micro-services through containers
and multiple containers. SRE and DevOps teams save time configuring
container management tools from scratch.
One such example is the AWS cloud. However, all clouds today provide

these capabilities. Though this configuration can also be done on physical
servers, it takes time, money, and skill set, and resolving any configuration
error is also time time-consuming task (refer to Figure 1.7):

Figure 1.7: SRE positioned in cloud-native environment

Cloud-native development is taking over the traditional monolith, deploying,
releasing, and operating model. With the rise of cloud, the learning curve is
also increasing. Developers, testers, and operations all have to learn cloud
technology. SRE comes for the rescue as they are skilled engineers.
However, SRE is also new practice, and few engineers have the skill set to
bridge the gap between developers and operations. However, software
organizations can build such teams by hiring people with different skill sets,
including developers, system administrators, release engineers, and cloud
practitioners. Train them with SRE principles and best practices and create
an SRE team.

Conclusion
This chapter provides a high-level overview of SRE and its role in the

software industry. It also explains its history, the need for SRE in modern
systems, and its principles.
In the next chapter, we will cover the commonalities and differences
between SRE and DevOps approaches.

CHAPTER 2
SRE and DevOps

Introduction
Operations as a discipline is difficult. Though there are various best practices
to manage operations smoothly, and there is no one solution that fits all,
organizations still take operations as a cost center. The need to solve this
problem invented two newest solutions called SRE and DevOps.
This chapter explains the role of SRE and how it relates to DevOps. It will
describe various common practices between SRE and DevOps and how both
methodologies are different. We will cover some real examples from
software organizations to help you visualize and understand these two
practices. Additionally, the chapter also describes the importance of both
methodologies in today’s software development. As part of any software
organization, we will understand how SRE and DevOps collaborate with
each other and empower collaboration between other teams to deliver quality
and reliability.

Structure
The chapter covers the following topics:

Understanding SRE and DevOps

SRE and DevOps common practice
Difference between SRE and DevOps
New era SDLC model
Real-world examples of SRE and DevOps

Objectives
By the end of this chapter, we will understand the meaning of SRE and
DevOps and how these two methodologies change the SDLC model. We will
also explore the basics of SRE and DevOps, which will give us a vision of
the delivery of any software system.

Understanding SRE and DevOps
SRE is a set of principles and practices that applies aspects of software
engineering to IT infrastructure and operations. There are various definitions
of DevOps captured by organizations. Some of them are as follows:

DevOps is a methodology used as a set of practices and tools that
integrate and automate the work of software development and IT
operations to reduce toil and deliver fast.
DevOps is a set of practices, tools, and a culture philosophy that
automates and integrates the process between software development and
operations.
DevOps is a combination of development and operations. It is a
methodology that aims to integrate development and operations.
DevOps is a union of people, processes, and technologies to continually
provide value to the customers.
DevOps is a practice that defines continuous development and
integration to speed up the delivery and ensure higher quality.

These definitions have been accepted by all IT organizations that use SRE
and DevOps. In the previous chapter, you learned about SRE. As you
understand the aspects of SRE, it will help you understand DevOps in detail.

However, as is already mentioned, there is no one-size-fits-all. The definition
of DevOps also changes depending on the type of software project, the
domain of the IT industry, and business requirements.
SRE as a practice was introduced by Google in 2008 to address the scaling
problem of web-scaling. Soon after Google, many organizations that faced
similar challenges also started adopting SRE. Though DevOps as an
approach came before SRE, it was clear that DevOps alone cannot guarantee
an excellent user experience.
Let us go back to history lane and understand why SRE was introduced. In
the early 2000s when, Google faced significant challenges in maintaining the
reliability of the rapidly growing system. With the increase in users, the
company’s infrastructure had also grown to thousands of servers across
multiple locations (data centers), and managing this huge infrastructure
required a new approach. Ben Treynor Sloss is the person behind inventing
the SRE practice at Google. His vision was simple, apply engineering
principles to operations, emphasize automation, proactive root cause analysis
and its application and continuous improvement. SRE’s basic principle is to
build only the % of functionality system that you can easily manage and
have enough resources to scale up to foster increased user load.
When DevOps was introduced, the idea behind it was continuous integration
and continuous development to foster the need for growing user demand.
Their engineering teams automated the process and built tools that allow the
tight collaboration of the software development team and operations teams,
so the software delivery is faster. For example, software developers share
updates on upcoming feature development with the operations team in
advance. In turn, operations teams make sure the infrastructure is ready
before the software features are ready to be rolled on to users.
Though DevOps was introduced to solve the problem of faster delivery, it
did not solve the challenge of software failures due to an unmanageable
growing infrastructure. And that is why SRE was introduced to manage
reliability. SRE and DevOps in tandem are two sides of one coin that help
organizations achieve the goals of quality, reliability, and faster delivery.
When SRE and DevOps teams work in harmony, they complement each
other and help achieve the same goal of delivering modern applications. The

preceding definitions of DevOps differ when it comes to how to achieve that
goal. However, when they all talk about collaboration, automation, faster
delivery, and quality, the underlying goal for each one is the same. That
means deploying the code smoothly and at velocity in order for the business
to meet the end-user requirements.
DevOps methodology builds a culture of collaboration from the very
beginning. It focuses on teams coming together to build and deploy code to
development and production environments and maintain it.
The core principles of DevOps are:

Silos breakdown: The DevOps approach focuses on bringing
development and operations together and ensuring strong collaboration.
Collaboration in the form of transparent and regular communication
helps the teams empower each other. Here, both teams, dev and ops, are
aware of each other’s timelines, processes, and data flow.
Automation: The DevOps team automates the process of code
integration and deployment. They build various pipelines using
automation tools and automate various repetitive manual tasks. This
increases accuracy, removes toil, and saves the time of developers.
Continuous integration and continuous deployment (CI/CD): It is
one of the key practices in DevOps, where the DevOps team focuses on
building pipelines so that developers can use those automated pipelines
to build and integrate multiple codes and deploy them automatically.
Feedback loop: Collaboration is the key to DevOps, and feedback also
comes as part of that collaboration. Continuous feedback from
developers, testers, SRE, and businesses on the efficacy of their
automated tools and pipelines helps DevOps to identify gaps and issues
and quickly resolve them.
Measuring: DevOps team measures the outcome by defining various
metrics. These metrics help the team achieve success.

The following figure represents the various stages of DevOps and how each
stage is related:

Figure 2.1: Representation of stages in DevOps

SRE and DevOps common practice
SRE and DevOps both methodologies define collaboration between
development and operations to break silos. Though both use distinctive and
creative strategies to address different problems, the underlying aim is the
same: to deliver quality at velocity, in order to cater to the fast-paced
requirements of end-users.
Many organizations today have adopted SRE and DevOps as their main
strategies for building modern software applications. In the previous section,
you learned what SRE and DevOps are. Now, the question that arises is,
when these functions are similar then why do we need both, and how are
both functions different from each other?
SRE focuses on designing and implementing highly scalable and resilient
systems, and it also emphasizes operations. That means SRE will help speed
up operations, remove toil from operational functions, and support
developers.
DevOps focuses on collaboration between developers and the operations
team through communication and automated tools. That means DevOps, like
the SRE approach, also defines how to support developers in coding faster
while ensuring quality and deploying the code to production.
To better understand the need for DevOps along with SRE, let us take an

example of an e-commerce project running on cloud-native, with some latest
tools and technologies.
The following is the structure of the project:

Teams: Business analysts, designers, development, Agile champions,
product management team, testers, operations, system administration,
and customer support.
Technology stack: Java for backend, React for UI, high-performing
servers on the cloud, NoSQL database, S3 storage, Redis in memory,
monitoring, and logging tools.
SDLC flow between teams: Business analysts get requirements,
architects from the development team, and designers finalize the design.
Developers will then write the code, testers test the code, and the code is
deployed to production. The operations team then monitors and supports
the live applications for any technical failures.

The project follows an Agile approach for SDLC. This project does not have
DevOps and SRE teams. However, it has a traditional system admin for
operations teams.
Let us look at the scenario.
The requirement for a new payment platform was captured by this e-
commerce organization’s analysts as the existing platform is slow, and users
often experience failure while making payments.
This is how the organization implemented its SDLC model to code and
deliver this new feature:

1. The business analyst collects the requirements from user researchers and
creates a requirement document with all the details for technology
teams.

2. Architects from the existing development team, business analysts,
designers, and system admins collaborated and designed a data flow and
architecture of this new payment platform. This document includes
technical specifications of tools, data flow, and service communication,
and separate UI wireframes were also prepared.

3. The system administrator started configuring and installing
infrastructure and any ne w tool required to run this feature.

4. In parallel, developers got a high-level requirement analysis, and they
started designing a development model, identifying people in the team
with the required skill set, and preparing their machines to start coding.

5. The document was handed over to Agile champions (ACs), ones who
track the changes and create features for the development team, and
developers. There were multiple services and various modules to be
written as part of this new feature.

6. ACs defined tasks for each developer and the sprint cycle as part of the
Agile methodology. They also tracked development progress.

7. The development team is also responsible for building and integrating
their code and deploying it to the development environment. To remove
manual work, the dev team also automate some of the tasks.

8. As the dev finished the coding of a few modules, the code was deployed
to the testing environment by the developers.

9. The testing team already created a test suite and started testing the code.
They test and identify bugs and keep reporting the bugs to ACs.

10. ACs then identify dev capacity and assign defects to the dev plate for
fixing.

11. This process of coding, testing, and defect fixing continues till all the
modules are fully tested and the feature is bug-free. However, the
timelines were set by the product team in advance.

12. Once the code is ready, it is deployed to the production environment by
developers.

13. The operations team monitors the system for its performance.
The new era software development lifecycle model with SRE and DevOps.
It represents the replacement of system administration and operational tasks
by SRE and DevOps. System admin and operations are part of SRE and
DevOps.

Figure 2.2: Representation of SDLC: DevOps and SRE replaced by system admin and operation

The preceding example is a scenario where the Agile approach is followed,
and a new feature is ready in one month. As we know, nothing is perfect in
the technology world, so let us assume there were multiple defects identified
by testers in the last sprint cycle and one of the automations for building
code started failing and not running as expected. This will impact the
delivery timelines; hence, to meet timelines, developers might compromise
with the quality standard and might deploy bad code in the production
manually.
This problem can be solved by onboarding SRE and DevOps teams in their
SDLC journey. The new team has business analysts, designers, developers,
testers, DevOps, SRE, Agile champions, product management, and customer
service.
Let us see what the flow of SDLC looks like with SRE and DevOps also part
of this project:

1. Business analysts collect the requirements from user researchers and
create a requirement document with all the details for technology teams.

2. Architects from the existing development team, business analysts,
designers, DevOps SMEs, and SRE SMEs collaborated and designed a
data flow and architecture of this new payment platform. This document

includes technical specifications of tools, data flow, and service
communication. Separate UI wireframes were also prepared. The
document, this time, is more detailed and architecturally strong as it
includes historical insights from the SRE team of the old payment
model.

3. The DevOps team is already using an automation tool for creating
CI/CD pipelines. They re-used their tool and started creating pipelines
so that the developers could use these automated pipelines to build and
deploy their code. The DevOps team also automates the pipeline to
integrate testing with the same pipeline.

4. The DevOps team also created pipelines using tools to configure
infrastructure as per requirement for SRE teams.

5. In parallel, the SRE team started creating and monitoring dashboards
and alerting tools and preparing the existing production environment to
get this new feature released. For example, increasing CPU and memory
of underlying infra to deploy this payment module.

6. In parallel, developers have a high-level requirement analysis, and they
start designing the development model, identifying people in the team
with the required skill set, and preparing their machines to start coding.

7. The document was handed over to ACs and developers. There were
multiple services and various modules to be written as part of this new
feature.

8. ACs defined tasks for each developer and defined the sprint cycle as
part of Agile methodology. They also track development progress.

9. The development team is only responsible for writing the code and
using the pipeline built by DevOps to build, deploy code and test. This
saves them a lot of time and the dev can focus only on development.

10. As the dev finished coding a few modules, the code was deployed to the
testing environment automatically with just one click.

11. The testing team already created a test suite, and they started testing the
code. They test and identify bugs and keep reporting bugs to the ACs.

12. ACs then identify the dev capacity and assign defects to the dev plate
for fixing.

13. The DevOps team creates a channel between dev and SRE, where their
tools pull defect reports and share continuous change reports from AC
to SRE. SRE reviews changes and suggests solutions if required. For
example, one bug was an intermittent failure in a testing environment,
but any intermittent failure in production multiplies as there is more
traffic of requests, which can impact customers.

14. This process of coding, testing, and defect fixing is continuous till all
the modules are fully tested and the feature is bug-free. However,
timelines were set by the product team in advance.

15. Once the code is ready, it is deployed to the production environment by
the DevOps team after SRE approval.

16. The SRE team starts monitoring through dashboards and automated
alerting. When a bug is identified, SRE teams are skilled at routing
traffic to a working instance to avoid customer impact, and in parallel,
they troubleshoot the issue.

Let us see how the problem in the previous flow is solved by the SRE and
DevOps team. The testing team identified multiple bugs in the last cycle.
The developers’ team is focused on writing and fixing bugs. They have
enough capacity in this design as the DevOps team is taking care of all
automation. As things are automated, there are fewer chances of bugs in the
system. Even if any automation fails, teams are working in parallel. Dev and
DevOps teams have separate roles and fix different issues. As the bug was
fixed on time and delivered to production, SRE teams monitor that flow, and
if they still identify the bug, SRE teams have the option to disable the new
feature and move all customers to the old payment platform. By doing this,
though, customers will not be able to access new payment platforms, but
they can still shop on e-commerce applications without failure.
The following figure represents the SDLC process with SRE and DevOps,
including the root cause analysis phase, which is part of the SRE function:

Figure 2.3: Representation of onboarding SRE and DevOps to effectively deliver quality on time

This example explains the importance of SRE and DevOps teams for any
software project to deliver quality. DevOps creates CI/CD pipelines to help
developers focus on writing the code. DevOps creates a transparent
communication channel between developers and SRE through their tools.
The automated pipelines also share reports to SRE before changes get
released to production. This helps SRE gate-keep changes and ensure
quality. SRE helps design code from a production perspective. It also defines
the change management process (change management is a process of
defining and implementing changes without fail). DevOps team automates
this change management process through pipelines. That is how both teams
work in harmony towards one goal: to deliver a quality and bug-free system
with speed.
SRE and DevOps have various similarities. Some of the common practices
between both are:

Structured approach

DevOps and SRE both define processes with a structured approach to
monitor production. Both ensure the effectiveness of operational
management. A structured approach in software development means a clear
definition of each task in every phase of development, defined roles, clear
processes and standards, workflows, and data-flow diagrams. DevOps
follows a structured approach such as clear CI/CD standards, a change
management process, clear process of collaboration between dev and
ops/SRE.
Similarly, SRE follows a defined incident management process, clear change
management, gate controls process, and defined roles between automation
and operations model.

Automation
It is one of the key principles for both DevOps and SRE to automate as
much as they can to reduce toil and save time, effort, and human error. Both
teams focus on automating their day-to-day manual tasks with one goal, to
empower the dev to focus on building quality code with velocity. DevOps
automates CI/CD pipelines for dev to automatically build and deploy code.
They automate these pipelines to deploy infra and code in production for the
SRE/ops team to focus on monitoring rather than configuring the production
environment.
SRE daily automation includes automating monitoring and alerting via the
help of tools. SRE also automate an incident management system; the
automated system resolves and notifies issues to SRE automatically. SRE
teams also build tools that help dev to mimic production scenarios in a
development environment.

Quality control
Quality is one of the key metrics for businesses to measure system
performance, and DevOps and SRE inculcate this metric in their key
performance indicators (KPIs). Both functions focus on the quality of
code getting deployed in production, which overlaps with automation. They
automate tasks that put control at multiple steps, remove human intervention
during deployment, and save time.

DevOps ensures quality by creating CI/CD to avoid any manual code
commit and release. Multiple code reviews before it is integrated into the
main code. Automated infrastructure configuration keeps consistent versions
across.
SRE creates a strong quality control process, that defines what, when, and
how changes will go into production. SRE defines a change management
process to ensure DevOps implement controls in their pipeline that stop any
faulty code from going into production. SRE reviews bugs with dev and
testers before production as part of the quality check.

Measuring
Organizations need to create metrics at every level to measure how SDLC
performs, which in turn impacts the software performance. SRE and DevOps
both approach practice measurement. Each of these functions has its KPIs
defined that help them create metrics to measure how their model is
performing, as that has a direct impact on software performance.
DevOps metrics are the time taken to build, fix bugs, deploy the code,
frequency of development, lead time for changes, and change failure rate.
Some of the key SRE metrics are system availability, change failure rate in
production, mean time to resolve the issue and mean time between failures.
These metrics help teams and businesses to track performance and improve
if required. It also gives lead time early in SDLC to improve. Today,
organizations regularly measure their system and each team’s performance
ensuring delivery on time.

Change management
It is one of the components that bring SRE and DevOps together. Change
management processes are tightly coupled with DevOps continuous
integration and deployment approach.
SRE team defines the process for change, such as the timeline for change to
be deployed, what changes are allowed in the system, multiple approval
workflows before the change goes into production, the impact of change,
fallback or rollback option available with each change. The DevOps team
collects these processes, and guidelines and integrates them into the pipeline.

For example, the CD pipeline first validates change by comparing existing
production vs change configuration. For any change that impacts production
as per SRE guidelines, the pipeline will fail and not process the change
further. Another example is DevOps integrating the approval process in the
pipeline, where the leader has to review and approve the change; without the
approval, the pipeline will not proceed further.

Difference between SRE and DevOps
So far, you have learned the similarities between SRE and DevOps. In this
section, we will cover how these two approaches are different from each
other. As no one-size-fits-all, adopting SRE and DevOps approaches in
SDLC is solely the organization’s decision. These new methodologies help
with quality and faster delivery, and many organizations are also adopting
them for better performance of applications. SRE and DevOps were
introduced to address different problems in the SDLC model. Though a lot
of enhancements have been made to both approaches over many years, the
goal remains the same. Some organizations onboard both the SRE and
DevOps teams, and some organizations have only one, and that one team
performs both functions, shared with dev teams.
DevOps is an approach to managing the software development process that
collaborates between developers and the operations team. The DevOps team
focuses on CI and CD of code and infra. They use the latest tools to create
pipelines and automate CI/CD. This automation aims to save dev time by
manually integrating the code. As there can be multiple developers working
on a project, and each development can have a different timeline to
complete, so integration and testing become difficult without automation.
Automation also removes human intervention, so there are fewer chances of
configuration errors. DevOps also uses automation to configure
infrastructure. With just one click, the pipeline can scale up multiple similar
config infra if required.
DevOps aims to improve communication between dev, testers, and ops/SRE
teams through automation. As different teams involved in SDLC work
together, they become aware of the entire project lifecycle timelines, which

helps teams work effectively. Before the DevOps function, organizations
used to work in silos where developers were not aware of the production
system, and ops were not aware of the underlying code and timelines of
development. That, in turn, created issues such as more time to identify and
fix issues, a lot of time spent on manual tasks, and manual work leading to
errors that compromised the quality of the system. DevOps was introduced
to address these issues by opening a collaboration channel between teams.
SRE was invented to focus on designing and implementing highly scalable
and reliable systems. The SRE team is responsible for monitoring the
systems, automating, self-healing, alerting, and improving systems. These
responsibilities can also be called the advanced role of the old operation
model, which organizations sometimes refer to as L1 support. SRE teams are
engineers who build tools to automate and reduce toil. SREs practice
designing and implementing systems that can scale automatically, on-
demand, and that can failover automatically.
For example, DevOps used CI/CD to create infrastructure. SRE developed
tools that help infrastructure auto-heal in case of any failure to minimize
end-user impact. The focus of SRE is operations, where they build tools to
monitor the system to ensure 100% availability, and other operational
aspects such as incident management, quality control, and audit control.
To better understand the role of both teams, let us consider a real scenario of
an e-commerce project. The requirement of building a new payment feature
and integrating the UPI option. The following is the structure:

Team: analysts, architects, designers, developers, testers, product
management, ACs, SRE, DevOps, customer service
Latest tech stack on public cloud

Scenario:
A team of analyst gather requirements and passes on the detailed
information to architects and designers.
Architects, designers, and SRE collaborated to design the architecture
and data flow for this feature.
The design was shared with all teams involved along with DevOps.
DevOps team added new pipelines to integrate and deploy the code for

this new feature.
DevOps team also added a pipeline to scale up infra to support this new
feature.
Developers started to write code by using CI/CD for continuous
development and deployment.
The testing team started testing as part of CI/CD.
The testing team identified bugs and then moved them to dev.
ACs reviewed these bugs with SRE in case this can impact production
with respect to load.
Developers fix the bug, and the code gets deployed.
In parallel SRE team also added new dashboards for this feature.
After the code is deployed to production, SRE monitors the system
through dashboards and alerting.
SRE follows incident management to take any technical queries from
customer service.
SRE spent 50% of their time monitoring the production system and
getting the report of system performance, including bugs, if any,
problems and failures.
The same SRE engineer will spend 50% of the time as a developer with
the development team. As an engineer already has real-time scenarios of
failures in production, he/she will take that feedback, collaborate with
other developers, and start building solutions to solve these production
issues.

As per the definition of SRE from Google, engineering practice should be
incorporated into operations. SRE as the team was identified by Google,
where a dedicated team of engineers who directly work on production
applications (also called an operations team) should have access to
collaborate with developers and enough tools to build automation that helps
reduce errors in live software, providing seamless user experience. Google
says SRE engineer should spend only 50% of their time on operational
activities, and the remaining 50% should be spent on developing. In this
model, engineers spending time in operations get exposed to live software
and its problems. So that the remaining 50% of the engineer’s time can be

used to develop solutions to those problems. Unlike DevOps, where the
development and operations teams work very closely, they are still two
separate teams.
Each organization is different and has modified SRE and DevOps roles as
per their requirement. Other than Google, many of the organizations have
adopted the SRE and DevOps approach. Let us take a real scenario of how
other organizations adopted SRE and DevOps. This organization is in the
transition phase of adopting the SRE model, which is still not a mature
model. A big financial technology organization SRE model is:

The technology team structure is the same. Here are the teams: analysts,
design, development, testing, product, DevOps, and SRE teams.
This organization has separate SRE and DevOps teams.
The role of SRE here is 70% operations and 30% engineering.
As the organization is still in the nascent phase of adopting SRE. SRE
engineers invest 2 months on operations tasks. As part of operations, the
daily role is to support applications, support infrastructure, monitor
production systems, identify false alerting, create new alerting, create
dashboards, identify areas of automation, identify bugs in systems and
log those bugs, identify areas of system design improvements to
improve the overall performance of the system. After working for 2
months in operations, the same SRE engineer moves to a development
role. The daily tasks in the development role are automating the manual
tasks (identified during operations), building tools to support SRE and
development teams, fixing some of the bugs, and collaborating with
developers to re-design systems wherever required.
The DevOps team in this organization creates CI/CD pipelines to help
developers build and deploy their code to multiple environments
without many interventions. DevOps engineers also collaborate with
SRE and developers for change and release management, ensuring
correct and quality changes are merged into the main code. They act as a
bridge between development and SRE concerning continuous
development and deployment.

The following is a summary of the difference between SRE and DevOps
from different aspects:

SRE and DevOps Differences
Parameter DevOps SRE

Definition An approach to manage software development
process that collaborates between
development and operations team.

An approach to design system
that is highly reliable, scalable,
and resilient.

Focus It focuses is more on the development side of
SDLC. Where it defines how to speed up and
improve quality of development process.

It focuses on the operation side
of SDLC. Where it defines how
to improve operations by
automations, standards, and
process, ensuring quality and
availability.

Approach Cross-functional by opening collaboration
channel between development teams. Use
automation tool to implement collaboration.

Enabling strong observability
through dashboards and
automations. Empower
development teams to deliver
quality code.

Goal Improve communications between software
development groups to work together
effectively and break silos.

To ensure scalability and
reliability of system for
minimum customer impact
through various automations
and practices.

Tools CI/CD tools —Jenkins, Ansible, Chef,
Terraform
Container management software — Kubernets
Source code software —Git, Jira
Collaboration tools—Slack, Microsoft teams
Cloud is common with SRE

Monitoring tools—ELK,
Prometheus, Splunk, App
Dynamics, Grafana
Ticket management tools—
Service now, Jira, pager duty
Collaboration tools - (same as
DevOps).
Automation tools—Shell,
Python, Java, Jenkins. Cloud

The following figure represents the similarities and differences of SRE and
DevOps:

Figure 2.4: SRE and DevOps

New era SDLC model
Over a period, software organizations have adopted various SDLC models to
develop faster, quality, and reliable systems to give a smooth experience to
end-users. SRE and DevOps both were introduced to the software industry
around the ’90s and the early 2000s. Since then, both of these approaches
also matured as per the market demand. In the previous chapter, you learned
the importance of SRE in the SDLC model and how the SRE team helps
achieve business goals. There were a few examples demonstrated earlier that
also explained the importance of DevOps and gave you a basic
understanding of its role in SDLC.
SRE and DevOps working harmoniously with development teams is the
recipe for a successful software system. It depends on the type of software
project, software requirement, business need, type of organization, budget
assigned, and many other such factors for any organization to decide if they
need both SRE and DevOps as part of their SDCL or one of them or even
none of these approaches. And that is ok if the organization can achieve the
goal even without both functions. SRE and DevOps are the approaches for
modern applications and are proven methodologies for successful software

projects.
Earlier SDLC models did not find the need to invent or use any of these
SRE/DevOps approaches. However, with the increase in demand, the
requirements for technological advancements in business also changed.
Now, organizations need to deliver faster and to deliver fast; they need to
code fast and, in turn, must improve the SDLC process. There were various
gaps and problems identified in earlier SDLC models that blocked the pace
of development. To understand the importance of SRE and DevOps in
today’s SDLC, let us understand the problems faced by organizations in
earlier development lifecycle models.
The very known and tested SDLC model in Waterfall was used by many
organizations in the early 90’s. The Waterfall is a linear model where the
start of each phase depends on the success of the previous phase. The
problem with the Waterfall model is each team works in a silo. They are not
aware of the timeline and progress of other phases. This blurs the vision of
teams, and they face difficulties in visualizing the final product.
For example, the development team writes the code and does unit testing,
and they cannot send their code to the testing team unless all the services in
the application are built and integrated. Once the testing team gets the
packaged code, they start testing and identify bugs. But they cannot send a
few bugs back to development till the full application is tested. So, the dev
and the testing team sit ideally while others are working.
Let us take another example.
The timeline of Waterfall projects is around 6 months to 1 year, and
requirement gathering happens only at the start of the project. So, if the
customer or client wants new requirements to be added to the application,
the Waterfall model does not allow that. Any few requirements identified
mid-way must wait for the last phase of the Waterfall to complete. With fast-
paced technology, organizations started seeing blockers in the Waterfall
model. There was manual and repetitive work, the team was not able to code
faster, and it was a waste of time and effort.
The following is a representation of the Waterfall model, which is linear, as
explained. Each phase is input to the next phase, but teams in each phase
work in silos, and there is no collaboration between phases.

Figure 2.5: Waterfall model in software development lifecycle

To solve these problems, Agile methodology was invented. It is a set of best
practices that ensure continuous development and continuous delivery with a
small sprint cycle. Where development teams get requirements as a part of
multiple small features, they take one or two weeks to write the code for
features and deliver it to the testing team. So, coding and delivery happened
in a small chunk of features. This gives lead time to the development team to
react faster if anything goes wrong or if new requirements are published.
Agile also promotes micro-service architecture, where small independent
services are built, tested, and deployed without impacting the full
application.
Agile methodology worked best to address gaps in the Waterfall model, and
software teams were able to pace up the development. However, as
technology grows, customers also mature and advance in technology usage.
This leads to more usage of software applications and increased traffic. With
increased customer load on applications, organizations had to ensure the
scalability of the system. So, they need a strong operations team to manage
the production environment. The Agile approach faced some gaps where
developers and operations teams were working in silos, as dev and ops were
not communicating, and teams were not aware of each other practices and
approaches followed. Though they were a part of the same project, both

teams had different approaches and different tools. They might have the
same use case, but different tools were used to solve the use case. That is a
waste of time, effort, and money. Along with that, developers write code
without any perspective of production. For example, the dev does not know
how the system behaves with high traffic, and they never implemented auto-
run of service if any service fails.
The following is a representation of the Agile approach. It shows how SDLC
has grown from Waterfall to Agile. The Agile approach is where teams in all
these phases give input to the next phase, like a Waterfall, but there is a
closed loop between the first and last phases. The difference between Agile
and Waterfall is that the review phase gives input to the plan phase in a
repetitive manner. However, as explained, there are still teams that do not
collaborate directly with each other, and to solve this problem, the DevOps
methodology was introduced as follows:

Figure 2.6: Agile methodology in SDLC

To solve the problem in the Agile approach, DevOps was introduced. The
underlying approach for DevOps is a collaboration between dev and ops
using automation tools. DevOps, along with Agile, addressed a lot of gaps in

SDLC. Adopting DevOps helps dev and ops to collaborate regularly. It gives
visibility of timelines, approaches, tools used, and, if required, re-using the
tools. This increased the speed of development as ops were included during
development, and they could share their ideas and strategies during the early
development phase. It also ensures quality as developers are now focused on
writing code. Building and deploying ownership moved to DevOps. The
DevOps team was automated through pipelines that removed manual
intervention.
The following is a representation of the Agile approach with DevOps
methodology in software development:

Figure 2.7: Agile methodology with DevOps in SDLC

DevOps with Agile is one of the best approaches to follow for a successful
software project. However, with the accessibility of the internet and mobile
phones, there was a continuous increase in demand to scale up software
applications and ensure availability 24/7. The operations team is the soul of
any software application when it comes to live and production environments.
Organizations also needed to scale up operations teams to meet high
demand. SRE was introduced to address this problem. The goal of SRE is to

design and implement scalable systems and ensure reliability. Earlier, the
ops team was more focused on L1 and L2 support. However, SRE is a team
of engineers who develop tools, implement self-services, and auto-heal
functionality in production systems along with operations. SRE engineers
also build interactive dashboards and automated alerting systems to
proactively identify any problem in the system before the customers notice
it. As they are skilled engineers, they have the knowledge to resolve code
and infra issues in a production environment.
SRE and DevOps following the Agile SDLC approach are the recipe for
success for any software project. However, onboarding multiple teams with
different skill sets can be expensive, so organizations must decide depending
on their requirement. These new approaches help software development
teams to work effectively and focus on the end goal. Organizations can also
change the roles and responsibilities of DevOps and SRE teams as per their
requirements, but the underlying aim should be followed. SRE and DevOps
overlap in various phases of SDLC, but the role of each team is different.
Organizations are adopting both functions to effectively release their product
in the market.
The following is a representation of SDLC where Agile and SRE are both
part of the software development:

Figure 2.8: Agile methodology with SRE in SDLC

The following is a representation of Agile, DevOps, and SRE, all three in
SDLC:

Figure 2.9: Agile methodology with SRE and DevOps in SDLC

The aforementioned figure explains the combination of DevOps and SRE
working together in an Agile approach to software development.
All five aforementioned figures show the evolution of the software
development approach from Waterfall to Agile to DevOps to SRE.

Real-world examples of SRE and DevOps
Let us go through some real-world examples of how SRE and DevOps help
software development projects and what their role is, as follows:

Project: A financial technology organization decided to migrate its old
banking software to a new platform hosted on cloud technology and an
application that can run on the mobile devices of its customers.
Structure of project: The structure of the project is as follows:

Business allotted budget for this new project.
Technology teams got onboarded, i.e., analysts, developers,
designers, testers, product management, SRE, DevOps, and
customer service.
A high-level tech stack was planned, such as AWS cloud was
selected, databases were planned (NoSQL and RDBMS both), Java
as a backend language, React and Java Script as front-end language,
GitHub as source code repository, application monitoring tools,
Infrastructure monitoring tools, and other open-source tools required
to complete the application were planned.
The timeline for the project was planned for one year. Along with
that, milestones were decided, where the first batch of software
applications will be rolled out in 5 months.
The methodology for SDLC was decided as Agile.
Business and technology leadership planned the roadmap and
onboarded all the resources.

Software development flow: The following are the steps required:
1. Business analysts capture the requirements of projects. Such as high-

level functionality where a software application should have UI to
log in, customers can see their account details, transfer money,
invest through the app, purchase shares, and get real-time account
analysis.

2. Architects and subject matter experts from all the teams collaborate
to design data flow diagrams and architecture flow (including infra
design).

3. Steps 1 and 2 are also sometimes called the planning phase. All
leaders collaborate to design and plan the roadmap and the high-
level design of the software project, along with the timelines,
number of teams needed to be onboarded, skills required to complete
the project, hiring process, purchasing infrastructure, and all the
other planning.

4. From this step, the actual development starts:
a. The UI designers started building wireframes, and in parallel, the

development team started writing the code.
b. The product management and ACs designed the development

roadmap. As part of the Agile practice, the project was broken down
into multiple small services; each service was broken down into
modules. Then, these modules were assigned as tasks to each
developer.

c. Developers were given 2 weeks to complete one module
development.

5. The DevOps team started creating the CI/CD pipelines using automation
tools. They Prepared to configure environments through CI/CD, such as
installing software, databases, and other tools. They also created
pipelines to automatically pull code from GitHub (as soon as developers
commit their code) and build and deploy the code to development,
testing, and the production environment.

6. SRE teams start creating the skeleton of monitoring dashboards. As
soon as modules and services are complete, the SRE team collaborates
with the dev through the pipeline and adds monitoring modules to their
dashboards.

7. Steps 4 to 6 happen in parallel. These steps sometimes overlap, or there
is a gap of one or two weeks.

8. After DevOps configures their pipelines, the code automatically gets
deployed to the testing environment and testers start their testing.

9. The process of coding and testing happens in continuous mode. Dev
does not wait for all services code to complete. As it is micro-service
architecture and services are independent of each other, testing and
coding happen in parallel.

10. Once DevOps installs production infrastructure. The DevOps and SRE
teams collaborate to validate the environment by doing a sanity check.

11. Steps 9-10 happen in parallel.
12. As the full application is tested, environments are validated. With the

help of CI/CD, the DevOps team deploys the code to the production
environment after the SRE review.

13. SRE now monitors the production environment. If there is any failure in
the system, the SRE team resolves the failure. If a bug in code is
identified, the SRE team reports to the dev team to fix the code and
deploy the fix in production.

14. The first version of the application was released in 5 months as part of
the first milestone.

SDLC is an ongoing process. As part of these operations, the SRE team
monitors the application and identifies a few bugs in the code. Some
customers reported complaints through customer service. Customer service
logged the complaints in a ticket. The ticket was moved to the SRE queue
for further analysis. This process is called incident management. As part of
the SRE responsibilities, the incident management process was outlined,
where the priority of tickets, SLA to respond to tickets, workflow of tickets,
and response channel were planned.
Continuing the same project scenario, let us take another case. One of the
bugs in the system was that the customer was not able to generate statements
for more than six months.
The following is the breakdown of the events:

1. The SRE team analyzed the bug and identified a service that is failing

for memory. So, SRE scaled up the database, but that did not solve the
issue.

2. SRE then moved the ticket to the dev team queue. Dev was not able to
replicate the scenario as they do not have enough data in their dev
environment. To replicate, the dev wanted similar data in the
development environment.

3. The development team took 1 day to finally resolve the bug and fix it in
production.

4. It was a loss of 1 day to the business.
5. Financial technology companies are conservative about data, and as per

policy, sensitive data such as customer card numbers cannot be stored
locally.

6. SRE proactively addressed this gap and decided to build a tool for dev
teams to mimic production data and create sample data.

7. A few days later, another similar bug was identified in the application.
So, the dev used the tool built by SRE to create the sample data and
replicate the scenario within a few hours, and the fix went into
production on time.

The problem statement in the aforementioned scenario is that the monthly
statement customer journey is not working, decreasing the overall
availability of the system to 99.888% from 99.999%. Also, it increased the
MTTR and decreased MTBF. After SRE addressed the problem in the above
scenario, MTTR was decreased (as teams were able to quickly fix the
problem and recover systems). That, in turn, increased the overall
availability of the system. SRE involvement also solved decreased MTBF
determines the frequency of failures or time between two failures. This helps
understand software reliability. More time between failures means the
system is more reliable). To solve MTBF, SRE and development teams
collaborate and identify the root cause of the problem. As the SRE tool
helped replicate the scenario in a testing environment, software development
teams could pinpoint the root cause and fix the problem faster. A faster fix in
the system increased MTBF and improved overall reliability.
Let us explore every phase of SDLC via diagrammatic representation. The

following figure is a detailed version of the steps mentioned aforementioned:

Figure 2.10: SDLC flow for a software project

The preceding figure is a software development lifecycle after business
requirements. In the earlier examples, you have seen the plan as the first
phase of SDLC, where the analysts capture requirements from businesses
and share the recorded requirements with the software team for designing
the data flow and architecture. The aforementioned figure is the sub-flow in
SDLC where the actual coding and deployment happens.
The following steps are a brief description of this sub-flow:

1. This is the first swim lane in the figure, referred to as the planning
phase.

a. After product owners or Agile champions get the design and
requirements from the business, they break the design into multiple
features (a feature is a service/function that provides business value).

b. Features are divided into user stories (user stories are a way of
describing that service/function in plain language. It defines tasks
for developers).

c. All the user stories get stored in a task-tracking tool (Jira is one such
tool).

2. Developers are assigned to these user stories by the product owners.
3. Developers start writing code on their machine (referred to as local

code). Then once it completes, they commit their code to the source
repository (GitHub is one such repository tool).

4. The DevOps team creates the CI/CD pipeline and gives the pipeline to
the dev teams (Jenkins is one such tool).

5. The dev team uses the CI/CD pipeline for building and packaging the
code and the same pipeline to deploy the code to the development
environment.

6. At this step, the dev team performs multiple actions of testing and
deploying the code.

a. The dev team performs unit testing and deploys code to the testing
environment, also referred to as the QA environment.

b. The dev team also deploys the same code to the performance
environment.

7. The QA team (testing team) starts their testing. There are different types
of testing regression, progression, performance, etc.

8. This step is again multiple tasks as after multiple testing, code gets
merged, and it gets deployed to the UAT environment.

a. The SRE team did chaos and performance testing.
b. After the QA and SRE complete their testing, the final packaging of

code is done, and it is deployed in the UAT environment (user
acceptance environment- pre-production env to mimic production).

9. After the UAT testing is complete, the code gets deployed to production
via CI/CD pipelines created by DevOps.

10. SRE monitors system performance, takes care of any issues in the
system, and escalates to respective teams if required.

This process repeats depending on the sprint cycle timelines.
There are multiple such scenarios where the SRE and DevOps teams help
address and resolve issues. These approaches were introduced to empower

development and operations. Though they do not go and fix bugs in the
code, they help developers act fast to avoid impact on the application. Today,
software organizations are moving at a very high pace. Every day, some or
the other technology is getting introduced in some part of the world.
Everyone is working towards the goal of using technology to solve the
problems of end-users. The role of both SRE and DevOps is also changing
depending on the type of requirements.

Conclusion
In this chapter, we discussed the SRE and DevOps functions. Both these
functions are changing the SDLC model for modern software applications.
The adoption of these methodologies and Agile is a proven recipe for
success. Moreover, we covered some real examples from industries on
SDLC with various phases.
In the next chapter, we will explore SRE and how we can build effective
solutions using its principles. We will also discuss in detail the various ways
to achieve successful software building with the help of some scenarios
derived from various industries on how they solved challenges around
building reliability in their software system to give best-in-class user
experiences.

CHAPTER 3
Build Effective Solutions with SRE

Introduction
In the previous chapters, we discussed SRE and its importance in today’s IT
world.
In this chapter, we will understand how to deliver efficient software
solutions using the SRE methodology. We will also get a detailed description
of multiple facets of SRE and their specific techniques for a successful
software development project. Additionally, this chapter will also walk you
through real-time scenarios where the SRE approach helped software
organizations achieve their goals. Indeed, in a recent survey, 75% of
organizations using SRE have reported improved service reliability.

Structure
In this chapter, we will cover the following topics:

Building scalable, reliable, and available system
Capacity planning and cost management
Importance of testing
Using monitoring and observability tools
Build strong incident management process

Automate to reduce toil
CAMS model as an SRE essential
Agnostic approach
No measurement no improvement

Objectives
By the end of this chapter, you will be able to understand how to build
effective software systems by using SRE principles. The chapter also
highlights the importance of collaboration between all cross-functional
engineering teams, which will help you visualize software development as a
whole. Moreover, we will understand how these SRE principles help
advance software development. Along with the theory, the chapter explains
some examples to relate the actual use of the SRE approach.

Building scalable, reliable, and available systems
Every organization today aims to build a software solution that can scale on
demand, be always available to the end-users, and be reliable. These are the
key factors in the design and development of software systems, as these
factors decide its future. Any unavailable software that cannot fulfill user
requests can never sustain itself in today’s competitive world. These seem
simple factors, but they are not easy to implement. It requires detailed
architectural design and development to achieve them. Let us understand the
meaning of all the factors in detail.
Before we examine the factors of a reliable system in depth, let us discuss
the following summary of the key differences between traditional scaling
and modern SRE-driven scaling methods.
Difference between traditional and modern scaling is as follows:

Scaling speed Resource utilization Response time

Traditional scaling Manual and slow Inefficient and non-
balanced allocation

Delayed

Modern scaling Automated and real- Optimized by autoscaling Immediate

time

Table 3.1: Difference between traditional and modern scaling

Scalability
It refers to designing solutions that continue to function efficiently with a
growing number of end users. That is a system that can handle any number
of user requests. It handles the increased user requests by scaling itself.
Scaling in software engineering means a system increases its performance on
demand.
Scalability does not always mean increasing the performance on demand. It
also means that the system can scale down when not in use or when the end-
user requests to slow down. The scaling up and scaling down capability of a
system defines its scalability. Scaling up helps software meet customer’s
demands and load. Meanwhile, scaling down helps organizations save extra
costs by cutting down infrastructure resources not in use.
A system is composed of services and components. Each service or
component’s scaling has to be handled separately to scale the system as a
whole. Today, scalability is one of the key features to be considered as part
of any software product delivery. Since this is for a production environment
that is a real-time application, the SRE team comes into the picture.
Scalability is one of the objectives and key results for SRE teams, and it is
also one of their primary goals. They use tools and automations to
implement automated scalability in the system. To scale infrastructure, the
underlying service code should also be able to scale up along with the
infrastructure. Before SRE and DevOps were established, the system admin
teams in IT organizations used to scale up infrastructure (servers, databases,
etc.) as per the demand. However, the scale-up was not real-time. As part of
the scaling system, admin teams get requirements from operations and clone
existing services as per the requirements. Since cloning and creating a new
instance of a service takes time, organizations were unable to scale up in
real-time. The system admin teams started automating the scaling process to
overcome this challenge. For example, creating automation that will copy
the current configurations of service and application servers, create a new
server, and install the service on this new server. However, someone must

run this automation once they get a request from the operations teams. They
used to receive tickets on the basis of traffic from customers or end-users.
The automation of creating a new server is referred to as scaling; even with
automation, scaling was not real-time. This full process was time-consuming
and led to a decline in user usage of the system.
In the previous chapter, we discussed the reason for SRE’s introduction. This
section will address how SRE solves the problem of system performance.
The SRE team replaced old-fashioned operations and system admin roles.
Let us understand how SRE teams implement scalability.
After software organizations adopted cloud technology, they also changed
the software design from monolith architecture to microservice architecture,
as cloud technology complements the microservice architecture. As
mentioned earlier, for any system to scale up, the underlying code must also
scale up to support the entire system’s scaling. SRE teams use tools to
automate the process of scaling. Automation uses triggers on a threshold.
As soon as traffic exceeds the threshold limit, the automation gets triggered,
enabling another instance, which in turn adds a new server to handle the
incoming traffic load. This is called schedule-based scaling (depending on
the traffic pattern, it allows you to scale up or down). Let us understand this
in depth to compare it with the traditional model.
For example, consider a banking software system using ten application
servers across geographies. The traffic threshold defined is 80%. It has
microservices running on all ten servers.
In the software development lifecycle (SDLC) model, the following are the
implementation steps that SRE follows as part of production readiness:

Creating a metric dashboard to calculate traffic.
Configuring alerts on the metric dashboard.
Automating manual tasks using automation tools, for example, Ansible.
As part of automation, the team created playbooks defining trigger
points, various template creations, etc. Automation tools: you can write
playbooks to define what infrastructure to create, what configuration to
use, when to create, how to create, etc.

The following is a scenario based on the aforementioned example:

On a sale day, customer traffic hit 80%. That triggers automation through the
metric. Automation already had all the required configurations, and it just
added one more instance to the server. It also installed all the required
services on that new server along with configuration. That scaled up the
system, and the system was able to handle customer load. These playbooks
were written by SRE teams (or the DevOps team in some cases) as part of
system configuration. Playbooks consist of definitions of each service and
infrastructure, along with all dependencies and a master script that triggers
these paybooks based on requirements. The automation is also built to scale
down if customer traffic goes down to a certain limit. So, as the tool received
the trigger, it scaled down one of the servers.

Patterns used in scalability
The following are some patterns used in scalability:

Horizontal scaling: The cloning of existing services or applications can
be easily distributed across all the running instances. In simple
language, it is adding more machines or nodes to the current system.
Let us take an example of horizontal scaling of different components in
a system, such as a service and database. The following figure
represents the horizontal scaling of DB and application nodes:

Figure 3.1: Application node and DB node horizontal scaling

The preceding figure consists of services or applications running in four
nodes (also called application servers). There is a load balancer service
to balance the load, a database server with two nodes, and a monitoring
tool that monitors the system. The figure is a representation after scaling
up (dotted lines represent scaled-up infrastructure).
The sequential steps for scaling up are as follows:

1. The load balancer receives the request from end users. It measures the
traffic and sends the data to the monitoring tool.

2. As the traffic requests go beyond 80%, the load balancer sends a request
to the monitoring tool about high traffic load, and the monitoring tool
internally triggers the automation tool.

3. Along with high customer requests, the system also noticed high read-
write requests to the database. The high read-write requests triggered the
Automation tool via load balancer and monitoring. Then automation
tool further triggers the database to scale up the DB instance.

4. These playbooks or scripts clone the existing database node and create
another node.

5. It also then clones the existing application server. Install the application
in a new server and add this new node to the system.

6. As soon as new nodes are added, the load balancer identifies them via
IP address and starts sending requests to the new application node.

7. This new application node then identifies database nodes and sends a
request to the new nodes. One of the old application nodes also
identifies a new DB node, and to balance the load on the system, it also
moves its traffic to new DB nodes (load balancing algorithms are
configured during the initial phase of system designing. And the
DevOps team writes the infrastructure code and takes care of the load
balancing configuration).

Vertical scaling: This refers to adding more power/resources to an
existing system without adding any new machines or nodes. Adding a
CPU or memory to the existing machine is one such example of vertical
scaling.

Let us take the example of scenarios where vertical scaling works. SRE
gets an alert via the monitoring tools on one of the failing services in an
application, and the error displays out-of-memory logs for the failing
service. SRE has configured auto scale-up of underlying memory on
receiving out-of-memory alerts. The automation tool triggered the
memory configuration and increased the memory of the existing node or
application server on which the application was running. This is also
called CPU-based scaling.
There are multiple scenarios, and a decision needs to be taken
accordingly to choose between vertical and horizontal scaling. A few
cases are discussed as follows:

Horizontal: Used to distribute load evenly. Suppose resources are
already running at their maximum capacity. Also used if
maintenance is required by one of the nodes.
Vertical: Used when resources are running out of memory and
existing resources have capacity available.

To make the system scalable, some of the best practices to be used are as
follows:

Measuring: There are various tools available to measure these metrics.
However, performing chaos and load testing of the system helps identify
the baseline and threshold of the system.
Here are some metrics to monitor the scalability of the system:

Number of concurrent users a system can handle at a given point in
time.
Maximum RAM and CPU of each component the system can
handle.
Maximum volume of data that the system can handle without failure.
A number of new resources can be added with a high load.

Proactive automation: Create responsive scaling rules. Adding any
new resource or capacity can take time. So, SRE teams should always
keep n+1 capacity in the buffer. As soon as there is a spike in traffic,
your scaling configuration can instantly scale up resources.

Create separate scaling configurations of different components:
Each component in the system has different scale-up requirements. SRE
teams should write separate configurations for each component so that
they can be scaled up individually.

To understand better, let us take a brief case study of a well-known Netflix
on leveraging modern SRE practices to improve the scalability and
reliability of the system.
Netflix has some major challenges, such as scalability, accommodating
millions of users, reliability, uninterrupted service and minimal downtime,
and performance, high-quality video. To solve scalability, Netflix leverages
horizontal scaling using AWS auto-scaling to dynamically add/remove
instances based on traffic demand, ensuring seamless streaming.

Reliability
In theory, it means the percentage of failure-free systems for a specified
period of time. It is one of the measures of system quality. Achieving 100%
software reliability is hard, due to the complexity of today’s software
systems. However, there are software (tools) available to help organizations
achieve at least 99.9999% of reliability.
The name of SRE itself is site reliability engineering. Reliability is one of
the most important factors of SRE methodology. It defines the extent to
which a software system is reliable, i.e., performs as per requirement, on
request.
Let us see reliability and scalability through one lens as a part of the system.
Scalability is defined by how efficiently a system can perform and handle
the increasing demand of end-users without compromising the quality.
Reliability defines the extent to which any system can maintain its
functionality and service level without errors. Together, they define software
performance. For example, a software application that does not fail and is
functioning as per requirement, and customers are able to use the application
without any problem of failure, is reliable. Scalability of the system is when
the software application is able to run without any lag, not getting hung even
when multiple users are using the application. In the previous section, we
learned about the scalability of the system. Now, let us see how we add

reliability to the system.
Reliability is not a one-stop shop that can be added to software; it is a
process. The software should be designed with reliability from the
beginning. That means that while designing the software, you must include
techniques such as fault tolerance, redundancy, error handling, and rigorous
testing to identify errors. With time, software requirements changed, and that
led organizations to adopt modern software development approaches such as
Agile, DevOps, and SRE. The software’s architecture was changed from
monolith to micro-service, which helped the reliability of the system but also
increased complexity. With increased complexity, the reliability of the
system became more critical to deliver and manage. So, new approaches
were introduced for development and operations to help build reliable
systems.

Delivery of a reliable system

The approach that should be implemented in the SDLC process to ensure
reliability is as follows:

Design reviews: It involves examining proposed design changes or new
designs to ensure it does not impact the existing system. Also,
examining the new design covers all aspects of system failure recovery.
Design reviews are part of the initial phase of SDLC, and to have these
reviews covered from all aspects, you should involve development
architects, product managers, SRE, DevOps, and testing subject matter
experts (SMEs). The involvement of SMEs from different aspects of
SDLC brings diverse ideas and enables you to inspect any system
design from multiple directions. For example, a software architect
defines the data flow and identifies the underlying code dependencies
on infrastructure, product managers define the business flow and give
inputs on use cases for the business requirements to help architects build
data flow, SRE gives perspective on production flow, DevOps helps
define the implementation of the infrastructure required to run any
application, and testers help define the feasibility of test cases. The
initial discussion on review generally involves multiple brainstorming
sessions where these SME go through the design in detail and identify if

any of the flow can cause failure and how to handle that failure in the
system. The key to design review is to involve SMEs from all SDLC
teams, to have multiple perspectives, to improve quality, and to make
required changes in the software at the initial stage.
Code reviews for quality: Similar to design reviews, code reviews are
one of the important key factors in ensuring the reliability of the system.
Though code reviews are mostly considered software development’s
best practice approach, they indirectly impact the reliability of a system.
The better the code quality is, the lesser the chances of software defects.
The less defects mean that the system is error-free and stable. Code
review is one of the processes that helps improve code quality. There are
different processes organizations follow in SDLC to improve code
quality, such as advanced tools to catch any syntax or semantics errors
in code, implement best practices while writing code, and review of
these best practices to ensure the approaches are being followed. Code
review should be included in the development process, where
developers write their code, commit code in the central repository, for
example, GitHub, then create a pull request. This pull request should be
approved by SMEs after reviewing the code. Once approved, the code
gets merged into the main branch (this is the code repository that is the
source of truth, and all the latest code is merged to the main repository)
along with other code. This process should be part of any code version
control software. GitHub is one of the examples and is often used in
software organizations.
Testing: It involves testing the software system thoroughly before
releasing code to production or the live environment. Testing is one of
the key factors in software development. Software quality depends a lot
on the testing process. There are various types of testing that can be
implemented in the SDLC process. After code is developed by
developers, testers or quality analysts run multiple test cases to cover
the system from all aspects and identify any bug or defect in the system.
If any defect is identified during the testing process, the code is sent
back to the developer for fixing. Different types of testing that you
should include in your SDLC are as follows:

Unit testing (breaking code into smaller parts such as modules and
testing each small part).
Regression testing (testing to ensure new code does not break old
functionality).
Progression testing (testing each new code for any new defects).
Load testing (testing with increased load on the system, such as an
increased number of user requests hitting software).
Chaos testing (deliberate ingestion of failure into the system in a test
environment to assess how the system responds to failure and then
fixes accordingly).

All this testing helps run multiple test cases on software systems and
access system reliability and ability to respond to failures. Testing helps
identify bugs in the system before it is released to the production
environment and gives developers the opportunity to fix the issue.
Testing also includes infrastructure testing, such as Chaos testing.
DevOps and SRE, generally perform chaos testing to catch
infrastructure issues.

•	Self-healing: It involves the ability of the system to detect and remediate
issues without human intervention. Self-healing is one of the important
factors in increasing the reliability of the system. When the system
identifies issues and fixes them automatically, it means there is very
minimal impact on end-users, or end-users might not even notice this
failure, or in the next attempt, their request might be successful. To
ensure reliability in the system, you should implement self-healing
capabilities within the code and as part of observability. Implementing
self-healing in code is adding retries in code wherever possible.
However, self-healing capabilities are added on top of software
applications by SRE teams. Some of the self-healing examples are as
follows:
o	 Infrastructure self-healing: Automatically identifying

infrastructure issues, such as if the system encounters high CPU or
high memory, system will automatically increase the memory or add
another instance/server to the infrastructure. Another example: if one

service is down, move that service to another available node
automatically. This is a preventive approach, where we are
preventing the issue before the end-user sees any failure.

o	Code self-healing: This means automatically identifying known
code issues and implementing the solutions automatically to resolve
the code errors. For example, if one service fails to call the
dependent service at the first instance, then the service should be
able to call multiple times to that dependent service, referred to as
retries in code. If all retries are exhausted, then the service should be
automatically restarted. This is also called the reactive approach. In
this approach, the end-user might experience intermittent failure, but
they will still be able to use the software.

Ways to measure the reliability of a system
Following are some of the metrics you can use to measure how reliable your
system is.

Mean time between failures (MTBF): We use this metric to calculate
the mean time between failures. If there are multiple failures in the
system over a week, it will become difficult to identify the difference
between the time of the first failure and the next failure. The more time
between failures, the more your system is reliable and stable, and there
are not many failures. But if there is very little time between failures,
that means your system is not reliable.
Mean time to recover (MTTR): We use this metric to calculate how
much time your application takes to recover from any failure. The
shorter the time, the more reliable it will be. Self-healing also helps
reduce MTTR.
Rate of occurrence of failure (ROCOF): This metric is used to
calculate the number of failures in a system. To measure the reliability,
you can take the record of behavior of the software in certain timeframe.

Availability
It lets us know for how much time the system was available to be accessed

by end users. The difference between reliability and availability is that
availability measures the ability of the system to be operated if needed.
Reliability means the ability of the system to perform efficiently without
failure. The system can be available, but some of the components can fail,
which will impact reliability. If the full system is inaccessible, that impacts
the availability of the system. However, sometimes availability and
scalability are used interchangeably.
Availability is one of the key factors in building a robust software system. If
the systems are not available, then other factors, such as scalability or
reliability, are out of the picture. Today, organizations use various
infrastructures to ensure the 24*7 availability of their software across the
globe.
The following are some of the ways to implement availability:

Building distributed systems: As software applications are growing,
they are using a micro-service architecture. It is important that they are
deployed on distributed infrastructure. That means you should create
multiple servers in different locations as per your end-user’s needs. So
that even if one server faces any issue, your application can still run on
other available servers.
Implement replication: To maintain consistency in the system, use
replication so that if one server is unavailable, you can easily move the
load to the other without any data loss. Example: Keep multiple
database instances where data is replicated in all instances. If one DB
instance goes down, other DB nodes can fulfill the requests.
Geographic distribution: Having a multiple and distributed
architecture is not sufficient sometimes. For applications that have users
all over the world, geographic distribution is also required. That means
building software systems in different locations of the world. This could
be having physical data centers at different locations and then using
cloud applications on those data centers. Implement logic in your
infrastructure such that if the user makes any request to the application,
the request should go to the nearest data center for response to the end-
user.
Regular maintenance and updates: Regular maintenance and

upgrades are crucial for achieving high availability. By keeping the
system up-to-date with recent operating system (OS) upgrades,
patches, security enhancements, other bug fixes, and vulnerabilities, we
can mitigate the risk of failures. This increases the availability of the
system. It involves regular infrastructure and software inspections and
reviews them proactively.

One of the main metrics to measure availability is a percentage (%) of the
system’s uptime with respect to the total system time (uptime and
downtime). Availability is also dependent on underlying reliability and
scalability metrics.
Building a robust system that is highly available, reliable, and scalable is not
a straightforward task, and it involves a lot of planning and design review.
You cannot implement any of these features without understanding your
system as a whole. That is why it is important to include the right approach
in the initial phases of SDLC. Regularly measuring your system across these
three factors ensures high performance of the system and eliminates risks of
failures.

Capacity planning and cost management
To build any system software or hardware, planning plays a key role. If your
planning is good that means you have solved half of your battles as part of
any system development journey. However, it is not that easy. Planning
requires brainstorming and covering various aspects, and it is a source of
truth for an organization to start any project. There is planning involved in
SDLC in each phase. The initial planning phase is to create a roadmap of a
software system that defines and kick-starts software development.
However, capacity planning is one of the most crucial factors of SDLC.
Capacity planning is the process of determining the capacity of hardware
and software to meet application requirements. This is capacity planning
specific to software development; however, when it comes to SRE and
overall SDLC, it involves the process of determining the hardware, software,
time, and effort of each engineer involved to meet system needs. Today,
most organizations follow Agile. Agile teams need to be able to respond

quickly to the changing needs of customers. To do so, the SDLC team needs
to have a good understanding of capacity from engineers, hardware, and
software perspective.
Let us understand capacity planning in detail. There are three types of
capacity in SDLC:

Software and hardware capacity: This involves the process of
defining the configuration of hardware and software required to meet
application needs, such as the number of servers, CPU, Memory, what
software to use, etc.
Workforce capacity: This involves the process of determining how
many hours of effort are required from each team involved in the project
to meet the requirements, along with various skill sets.
Product capacity: This involves forecasting demands for products and
anticipating customers’ needs to ensure businesses have the resources to
meet them, such as changing customers’ needs to have particular
features in your software. The product should be built in a way that it
can add new features in demand in less time. To support future needs,
organizations should reserve the workforce's capacity and infrastructure.
Along with that, the product should be agnostic of demand. That means
the software application should be built keeping in mind that technology
can change in the future, but the underlying code should be able to lift
and shift to meet demand.

Organizations divide capacity into two broader categories: long-term and
short-term capacity planning. Let us look at them in detail as follows:

Long-term capacity planning: This involves high-level planning to
identify areas where the system may need changes in the future and how
the team needs to grow to meet the needs. Product capacity falls under
long-term planning.
Short-term capacity planning: This involves defining short milestones
and identifying the capacity of both the system and teams. Software or
hardware and workforce capacity are a part of short-term planning. It is
important to do short term capacity planning in each phase of SDLC.
The Agile model helps teams implement short-term capacity planning
depending on the planning interval (PI) cycle.

Typically, PIs are 8 to 12 weeks long. That means SDLC teams do planning
at the start of each PI. So, the organization has to plan capacity accordingly.
Capacity planning and cost management go hand-in-hand. When SDLC
teams plan for capacity, one of the important factors is cost. All capacity
drills down to the cost of running a project vs profit gained. For example, to
have the right workforce, the organization needs to hire people with the right
skill set; that is a cost to the organization. Then servers and software have to
be purchased to support the SDLC; that is also a cost to the organization.
Cost management is very critical and should be done at the planning stage.
Organizations have separate technology teams that assess the cost of running
a technology project, where they assess cost from all aspects such as
workforce, tools required, infrastructure required, virtual or physical office
locations, laptops or computers required, etc. You should also assess if open-
source software can be used to complete the project to save some money.
Let us see the different types of capacity planning models out there. Though
these strategies are more suitable for manufacturing organizations, you can
follow them for software development as well:

Lag strategy: It involves waiting until the actual demand increases
before adding further capacity. In this strategy, you plan the capacity
required to complete and support the project and keep a little buffer
budget. This strategy also reserves the cost for future demand. However,
workforce and infrastructure capacity are limited to what is required to
complete the project. With increased demand, organizations pull the
buffer budget and then plan for the new capacity required to meet the
increased demand. This strategy minimizes the cost of the project, but
when demand increases, there is a lag in fulfilling customer’s needs
since even though there is no extra cost involved, replanning is needed
to align the right capacity, which takes time.
The lag strategy works well for projects where increased demand
delivery has a fixed timeline and does not fluctuate significantly. For
example, consider banking software. The bank identified that with their
latest investment scheme, there is increased demand from customers for
investment functions. Existing and new customers are also onboarding
to the bank due to the new scheme. The bank defined a fixed timeline to

scale up the system to meet the demand. They can use the lag strategy as
there is a fixed timeline as baking customers have multiple options to
invest, such as physically visiting the bank’s branch, by customer care
support, etc. Unlike e-commerce applications where customers are
volatile, they switch between various similar e-commerce applications if
one app does not perform well.
Lead strategy: It involves the planning strategy that focuses on
proactive management of resources (human and infrastructure). In this
strategy, organizations anticipate customer demand from historical data
and research and make sure that the necessary resources are in place to
meet demand. During the initial planning phase, SDLC teams define the
capacity required to deliver the project. Also, extra capacity is reserved
for the future. In lead strategy, extra members are onboarded in the
workforce, and extra capacity is added to hardware and software from
the beginning. However, as this involves anticipation of future trends,
there can be chances that the organization does not see the increase in
demand as anticipated, and resources (adding workforce and
infrastructure) are not utilized, potentially leading to a waste of money.
Project where customer’s demand changes significantly follow lead
strategy. Such as retail applications. There are others external factors
also that play a role in defining future trends such as economic
conditions, competition, industry trends, etc.
Match strategy: This involves focusing on the right amount of capacity
that matches demand. It is a combination of lag and lead strategy
capacity planning.
This strategy defines analyzing current and future demands to determine
how much capacity is required to complete, deliver and maintain the
project and accordingly adjust their SDLC process. Organizations
reserve some budget (cost) for technology projects. They review
demand in various phases of SDLC. If an organization sees trends in
customer needs halfway through SDLC, they add workforce and
infrastructure capacity beforehand. Though it is also anticipation, these
are short-term future trends that help organizations scale up as per
demand.

Some of the best approaches and best practices for cost management that
help in capacity planning are as follows:

•	 Capacity reserve: Organizations should always keep a buffer for
capacity to meet future demands. If that buffer remains unused, it can be
utilized on other projects.

•	Development strategy:
o Build software applications, keeping future technology in mind, that

are easy to scale up horizontally and vertically. Underlying code
should be built in frameworks that can be easily extended and
integrated with other frameworks if demand increases.

o With the increase in cloud technology, software code should be
cloud-agnostic. That means, if in the future demand increases and
you are not able to meet the needs of customers on the current cloud,
you can lift and shift your application to another cloud.

•	Cost management:
o	Detailed design of software plan. Depending on the software design

and delivery requirement, plan where you can use open-source
software that is free to use.

o	 Scale down infrastructure when not in use to save the extra
subscription cost. Or if any servers’ tools are not in use after a while
(on SDLC), then reuse those servers for another project in the
organization.

o Consider virtual locations for workforces to avoid the extra cost of
an official location.

•	Workforce management: This involves reusing engineering skill sets.
For example, SRE teams have a highly diverse skill set. Depending on
the requirement of the role, engineers can be moved to different tasks
within SRE. 50% of the time, the SRE team is involved in operations,
and 50% of the time, SRE engineers can be used for development to
share the load of developers. Similarly, when customer load increases
and SRE teams need an extra hand to support the applications, then
developers can be moved to SRE teams to support the application.

•	 Observability: To plan capacity and reserve cost, forecasting is

important. Along with that, it is critical that the system has correct
alerting in place that notifies SDLC teams to scale up or scale down
their infrastructure. Over a period of time, these alerts can be used as
data points (historical trends) to analyze future trends.

Importance of testing
Testing is an integral part of SDLC. Even in traditional approaches, testing
has been given great importance when it comes to software development and
delivery. With changes in technology and an increase in demand, new
approaches in testing have been implemented within processes and within
tools or software used throughout SDLC. Testing is a process of identifying
bugs, errors, and defects in software supplication before the application is
launched in the market for end-users. And that is the reason testing and SRE
are tightly coupled. The more detailed and thorough testing performed on the
system, the more stable the software system will be, and that, in turn, helps
SRE to focus on other aspects of production rather than circumvent errors.
In this section, you will understand different types of testing and understand
how testing helps build ancient systems.
The following are the different types of testing:

Unit testing: It is the first and very low level of testing performed to
identify errors on smaller units or modules. This testing is mostly
performed by individual developers on their modules. After the
developer completes the code, they perform testing on their code. Once
it is passed, the code will be moved to a central repository. Unit tests are
easy to automate. Today, many development tools come with an in-built
unit test case that can be easily customized as per application. Unit test
cases are functional in nature but are limited to smaller modules.
Functional testing: It focuses on the business requirements, which are
also called functional requirements. This testing includes verifying the
output of an action and does not check the intermediate states of the
system when performing that action. For example, if service A is
supposed to send data to service B and all data is sent as expected, then
functional testing will approve that service. Now, if that service took, let

us say, 1 hour to send that data, this type of intermediate testing will not
be taken care of. There is another type of testing that should be used.
Functional testing is one of the critical tests in SDLC as it tests the
functionality of each service. There are two types of functional testing:

Regression testing: This is a type of testing conducted after every
new code is merged with existing code. This is to ensure no bugs
have been introduced by the new code that can break the existing
code’s functionality.
Progression testing: This is the type of testing conducted on a new
code to check if it has any bugs.

User testing: This involves simulating user behavior in the complete
application environment. This testing is conducted mostly from a user’s
perspective and how the user accesses the software. It verifies various
user flows for any errors. Though this testing involves more on the user
interface, in turn, the user interface communicates the backend code. So,
if any user flow fails, that will also help analyze the issue at the backend
functionality. Unit testing is also interlinked with functional testing.
Performance testing: This involves evaluating systems’ performance
under a particular workload. This testing ensures system performance
and reliability during high workload. Today, there are various
automation tools available that can help inject a high number of requests
into the system. Also helping testers determine bottlenecks, stability
during peak traffic, performance requirements, etc.
Chaos testing: This involves the deliberate injection of failures in a
controlled manner to test the stability of the system and its ability to
respond during failures. This is an effective testing approach to
minimize downtime and outages before they occur.
Smoke testing: This involves testing to check the basic functionality of
the system in its entirety. It is also referred to as shakedown testing.
Smoke testing is performed where test cases are executed end-to-end to
test if the system’s basic functionality is working. This testing is mostly
performed on a pre-production environment before going live to test
everything one last time. This ensures that the system is ready to be

launched in the market and is ready to perform basic functionality.
The following figure represents the various phases of testing and the
teams responsible for these tests in the software development lifecycle
(SDLC) model, such as unit testing, regression testing, progression
testing, chaos testing, and smoke testing:

Figure 3.2: Overview of various phases of testing

Different types of testing define how efficient a software system is. Testing
helps SDLC teams to identify errors and bugs in the system before launching
the final application. Testing is directly related to the reliability, stability, and
availability of the system. As explained in the previous figure, different
types of testing are performed through different phases of SDLC. It also
depends on the type of project. Some organizations combine a few testing
approaches in one phase.

Importance of testing
The following are some of the reasons why testing is essential:

Quality of product: All types of testing explained previously, if
performed as per the process, help determine various types of bugs

present in the system, if any. Unit testing helps identify bugs in smaller
modules. In some cases that are not caught during unit testing,
functional testing helps identify errors in functionality, performance
testing helps identify system scalability during load, chaos testing helps
identify how the system of service will behave if infrastructure fails, and
then smoke testing does end-to-end overall system testing. Once a
software application goes through all these types of testing, the issues
identified during these tests go back to the development team. The
development team fixes these errors and then does a re-testing of the
fixed code. This cycle repeats till the system becomes error-free. Testing
certifies that the product is ready to be used and stable enough to handle
end-user requests.
Security: It is another crucial reason that makes testing important in
SDLC. Today, organizations implement security testing during the
initial phases, such as unit testing and functional testing at times.
Testing helps identify security vulnerabilities present in code and any
sensitive data used in code. It also ensures the security of infrastructure,
not just code. Security testing for infrastructure ensures that the latest
versions of operating systems are being used, all firewalls are
configured, and other infrastructure vulnerabilities are taken care of. It
makes the system secure and helps prevent data breaches.
Cost-saving: Testing helps identify errors in the system in the early
phases. The sooner the issues are identified, the more teams can fix
them in a timely. This saves the extra cost of hiring developers to fix
these issues in later phases. There are various types of bugs that can be
identified during different tests that help the team to fix issues on time,
such as security vulnerabilities (these issues cost huge money to any
organization if identified in a live environment), capacity of
infrastructure, functional issues, etc. Organizations keep a budget for
engineering projects. The budget also includes costs that might be
incurred during the fixing of the issues, but if there are issues identified
after the system goes live, then extra cost is required to fix those issues.
That is how testing helps save this extra money.
Performance of system: Testing helps identify how the system will

perform during high loads and failures. With technological advancement
and an increase in demand, system performance has become one of the
key factors for any software application. Testing helps SRE to prepare
and be ready for the production environment as per the testing results.
Customer satisfaction: Testing helps catch errors before production.
This helps developers, SRE and DevOps teams to fix issues on time. A
system without issues or fewer issues increases customer satisfaction,
the goal of any software project.

Let us take one of the examples from a real industry scenario where not
following a good testing strategy can impact the software’s reliability. In
2017, there was a major outage on S3 storage across major AWS services,
impacting thousands of businesses worldwide using AWS S3. The root cause
was a typo in an S3 scaling command that inadvertently removed larger sets
of servers, impacting the S3 outage. The reason behind the typo is the lack of
testing the infra code in the lower environment before running it in the
production system. If a team could have tested the command in a lower
environment first, they could have easily caught the typo. The example
explains the importance of testing and correct planning in designing test
cases. It is not just software code testing; infrastructure code testing is
equally important to maintain the reliability of the system.

Real-world examples of different phases of testing
This example explains the scenario of different types of testing (explained
previously) in one project. Software development followed best practices,
completed the development, and is now entering the testing phase. Just
before the first version of the software is given to the testing team,
developers run unit tests on their individual services and functions. Unit
testing is the first testing phase. After development is completed, the code is
packaged by continuous integration and continuous deployment (CI/CD)
(this is one of the DevOps principles, which means code development and
deployment should be continuous to speed up the development process)
pipelines and gets deployed to the testing environment. Then, testers/quality
analysts (QA) start testing the code. There are multiple types of functional
testing that QA covers. For this example, consider progression testing and

then regression testing after QA’s tested code gets deployed to the pre-
production environment, where SRE performs chaos and performance
testing. Once these tests are completed, the code is finally ready for the
production environment.
Organizations should ensure testing is included in every phase of SDLC.
You should use tools that come with in-built testing to help developers
enhance development and focus on writing quality code. The testing team
should use automated test cases to ensure broader coverage of code and
infrastructure. This ensures the stability of the system and, in turn, increases
customer satisfaction.

Using monitoring and observability tools
Organizations today are moving towards distributed architectures to provide
software services. Highly distributed environments require advanced
observability and monitoring. To build sound observability and monitoring,
you need tools or software that provide this capability. Mostly, SRE or
operations teams are responsible for implementing observability and
monitoring software applications. SRE teams have skilled members who
have knowledge of various tools, automation, and knowledge about
production environments.
Monitoring and observability include catching issues in production or live
applications proactively and reactively. This helps SRE teams act and
resolve these issues accordingly. Monitoring comes in the last phase of
SDLC. When the software reaches the last phase, it has already been tested
thoroughly to remove errors and problems in a live application. However, no
system is 100% error-free. There are a lot of external factors involved in
causing errors when software is launched. So, to catch issues in live
applications, monitoring, and observability are two approaches used by SRE
teams. They help SRE to identify issues and fix them before customers
notice.
Monitoring means the process of watching and analyzing the data captured
through various metrics. And then providing certain results on the basis of
that data. For example: watching specific system metrics such as CPU,

memory, HTTP 500 errors, request/response ratio, etc., and watching the log
for errors and warnings. Then, collecting these metrics’ data and analyzing
and determining the impact on application. Example: high CPU is alarming,
so the SRE team can investigate the reason for the high CPU and what
actions need to be taken to resolve it.
Observability means the process of watching, collecting, and analyzing the
data captured not only via metrics but also through the detailed logs of each
service. Observability can also be considered as an advancement to
monitoring, where SRE teams implement observability in a system that will
continuously watch the system’s state automatically, proactively auto-heal
sometimes, and for any anomaly that cannot be auto-healed, it provides data
to SRE teams, which will help them investigate the root cause of the issue.
Both monitoring and observability go hand-in-hand. They use dashboards
and logging to collect the data. SRE teams analyze the data using both of
these approaches. This helps SDLC teams to fix errors and make the system
more stable and reliable. However, there is a difference between the two
approaches.
Let us consider the following example:

Consider an online travel booking software project. The project is in its
last stage and is planned to go live in two months.
The SRE team identified suitable monitoring tools that can be used to
measure the application and provided the list to technology leadership.
Once the monitoring tool is finalized by leadership, SRE teams build
various dashboards to capture system metrics, such as CPU, memory,
request/response time, uptime, or every service.
SRE bookmarked these dashboards so that the team can monitor them
regularly.
SRE teams build various alerts on logging (application logs are captured
by the logging tool). This will notify the SRE team as soon as
something goes wrong or exceeds the threshold. These alerts have a
detailed stack trace that helps teams identify the root cause. Sometimes,
these alerts are auto-healed, such as when services go down; the service
automatically restarts and resolves the error.

These examples explain the difference and importance of both monitoring
and observability in SRE’s world.
Some of the common tools for monitoring and observability are:
Prometheus, Grafana, Dynatrace, New Relic, Datadog, Dynatrace, VMware
Aria Operations, Application Insights by Microsoft.
There are various other tools available in the market: open source and
subscription. It depends on the type of project and organization needed and
is solely the organization’s decision to use a tool that is most suitable and
easy to customize as per their requirements. All these tools have multiple
uses, such as infrastructure monitoring, application monitoring, and also as
observability. For example, Prometheus and Grafana: if the input data source
for Prometheus is containers, then Prometheus and Grafana (UI dashboard)
can be used as infrastructure monitoring. If the input data source is
application logs, then Prometheus and Grafana can be used as an application
monitoring tool. Prometheus and Grafana can publish data in the form of
alerts, which can be integrated with any messaging tool used in the
organization.
It is not straightforward to decide what tool to use. During the SDLC
planning phase, subject matter experts should decide on the tool to be used
to monitor the software. Some of the best practices in deciding tools are as
follows:

Define metrics of your software system performance. Select the tool that
can pull data for those metrics.
Design an integration plan identifying how to integrate the tool with
your software architecture. Is there easy compatibility between the tool
and your application?
Identify the cost of purchasing the tool and integrating it. Assess what
skillset is required to use that tool and whether you need to hire people
with a special skillset.
Open-source or subscription-based tool to be used.
The tool’s ability to scale up easily along with the software application
to meet the requirement.
No tool will be perfect to meet the requirement. So, gather if the tool

provides customization and how easy it is to customize and build your
own automation on top of that tool.

Let us understand in detail with a real industry scenario how SRE teams
build monitoring and observability. In continuation of the previous example
of an online travel booking software project:

Tools like Elasticsearch, Logstash, Kibana (ELK) for logging,
Prometheus and Grafana for the dashboard, Slack as a messaging tool,
ServiceNow as an incident management tool, and PagerDuty for
incident reporting.
The SRE team collaborates with the development team to get metrics
introduced in code. Both teams define thresholds for each of the metrics.
After metric collection, the SRE team builds queries in Prometheus and
integrates them with Grafana for dashboards. Grafana dashboards
display data from Prometheus. Here, input data to Prometheus is metrics
exposed in code by developers.
Various dashboards are built to capture all services involved.
SRE teams also configured alerting in Grafana. And Grafana is
integrated with Slack. As soon as any metric goes beyond the threshold,
Grafana sends an alert to the Slack channel and notifies the SRE or
operation team about the anomaly.
SRE teams also configured alerting in Kibana. ELK stack helps capture
logs from code, and Kibana displays it (the DevOps team helps with
ELK integration). Alerting in Kibana is also integrated with Slack.
As an alert is generated, the Slack channel gets a message, and SRE
teams get to know the error in the system.
The flow of alerting is as follows:

Alerts set up in Kibana is HTTP 500 for all services in online travel
booking software.
Suddenly, the search service in the software started throwing HTTP
500 alerts.
Slack channel receives a message of HTTP 500 error. The SRE team
clicked on the message.

That alert message navigates SRE to Kibana logs with the stack
trace.
At the same time, the slack channel received a high memory alert on
the database server.
This infrastructure alert was configured to fire as an incident, too.
So, the incident gets created in ServiceNow.
ServiceNow is integrated with PagerDuty. PagerDuty notifies the
engineer on duty via phone SMS.
Within a few minutes, the SRE engineer was able to identify the root
cause as a full stack trace was available. HTTP 500 error stack trace
also highlighted the high memory alert in the database. So, the same
stack trace highlighted both errors.
SRE teams scaled up another database instance to handle a high
memory load (you can also automate this process).
Scaling happened within a minute, and alerts were fixed.

The following figure diagrammatically represents the flow of alerts from the
monitoring tool to the incident management tool and to the operations team:

Figure 3.3: Alert stages in operations

Advanced and next generation approaches to monitoring and observability
are automation, co-relation, and artificial intelligence. Today, with
distributed architecture, the stability and reliability of systems have become

critical. Every organization is moving towards building online applications
for their products. With increased competition in the market, customer
satisfaction is one of the key metrics to measure software performance. To
deliver and run stable software, you need advanced observability, and AI is
the next-generation approach. AI does not mean only automating SRE tasks;
it means automation that first identifies errors, takes appropriate decisions,
and resolves them before that error breaks any functionality in the system.
There are multiple tools available in the market that help you observe your
system, however, co-relating errors and resolving them automatically need
human intelligence (subject matter expertise).
For example, three errors were seen across two services, and these alerts
were generated due to one reason. However today, SRE teams have the
expertise to look at the stack trace and co-relate all three errors. Now, if you
must advance your software, you must build a machine learning (ML)
algorithm that will learn from these errors and decide how to resolve them.
SRE’s job should be to capture data points from production applications and
build such ML algorithms that can auto-heal errors, even before end users
notice them.

Build strong incident management process
The previous section explains the importance of observability in the system.
Incident management is tightly coupled with observability and is one of the
critical factors contributing to the stability of any software system. Incident
management is a process used by the development and SRE teams to
respond to an unplanned event or service interruption and restore the service.
Incident (INC) management is an integral part of operations. It helps in
tracking and managing tickets received from end users. This is a platform for
your customers to connect to your organization for queries or complaints.
SRE teams are the first point of contact for all technical queries. Hence,
having a process to track such queries from customers becomes critical.
An incident is defined as a disruption to any service in software that affects
users. So, anything that interrupts business continuity is referred to as an
incident.

Organizations follow best practices and do several tests before rolling out
software to production. However, software applications still see failures and
service disruptions. There are multiple factors for such disruptions; for
example, your application pulls some data from a third-party application,
which is down, in turn, impacts your application. That is where the
operations team comes into the picture, managing the disruptions in
production environments. Let us assume there is no incident management
process in the organization. Software applications see some service
disruptions that impact the customers, rendering them unable to use some
services in software. Customers will reach out to the organization’s customer
service and raise their complaints. Customer service will report this
complaint to the technology team (SRE) either via email or messages. As
there is no process to track these complaints, customer service does not have
a clear picture of whether the SRE team is working on that ticket. They will
always have to communicate via email or messages. This is a non-
transparent, time-consuming process, and there are chances that the
members will forget to action the complaints if the customer’s complaints
increase.
To avoid these issues, a process has been introduced to track incidents.
Today, we have various tools that help implement the INC management
process. The service desk, SRE, and dev teams can access the tool. The
service desk logs user complaints or queries in the tool as an incident. If they
cannot solve the user’s request or complaint, they assign the INC to SRE
teams. As soon as the SRE team gets this INC to their queue, they get a
notification. Since the tool is a central place to update all INCs, teams can
see the latest status and comments on INCs. If the SRE team adds their
investigation comments to the INC, the service desk can also view them and
respond to the customers accordingly. This is a basic INC management flow.
However, there are various phases in the incident management process. To
create a process, the following points are to be considered:

Incident logging: This involves the how, what, when, and where to log
any incident. During the initial phase of SDLC, organizations should
also decide on the tool to be used for incident management. That tool
will be used as a central repository that will log all incidents. Once you

have the tool configured, decide on how to log incidents. There are
various automation available in tools that create an incident
automatically on a user’s phone call request via chatbots. Also, the
service desk team can manually create an incident. Organizations should
clearly define the template for logging incidents. Anyone who is
creating an incident will have to follow the template while capturing the
details of any query. Today, tools have built-in templates in the INC
process. The service desk fills the template to create any incident. The
template defines what information is to be collected, the type of query,
the impact on the customer, etc.
Incident creation: This involves creating incidents after capturing
details. Incident logging and creation are interlinked. Tools are used to
capture details, fill templates, and create incidents.
Incident categorization: This involves defining categories of incidents.
Organizations should clearly identify all categories of incidents and the
template (what incident should fall in which category). In general, there
are three categories of incidents high, medium, and low. The category of
an incident depends on the type of the incident (is it a customer
complaint or internal error), the source of the incident (application,
infrastructure, UI, etc.), and its impact. Depending on these factors, you
can define the category of an incident.
Incident prioritization: This involves ranking the incident. The ranking
is done on the basis of business impact, % of the impact, and incident
category. Category and priority are both interrelated to each other, i.e.,
both of these processes go hand-in-hand. They help define the timeline
of the incident and give a clear picture to the operations team on
resolving the ticket. There are three or four types of priorities, P1, P2,
P3, and P4. Each priority has a timeline called service level agreement
(SLA) to resolve these incidents. For example, an incident for service
intermittent failure throwing page not found error for one page can be
categorized as medium (assume that the page is not critical functionality
of software). Once a category is defined, the incident is prioritized as P2
(it has a timeline to resolve in twelve hours). The service desk logs this
INC with category and priority. Then, they assign this INC to the SRE

team. They know the details and priority, and they will solve the ticket
accordingly. This will avoid a lot of back and forth between teams and
also with the customers. Today, there are tools that help define the
category and priority of INCs, such as ServiceNow ITSM, Jira Service
Management, PagerDuty, SolarWinds Service Desk, BigPanda.
Incident accepting: This involves acknowledging an incident as soon
as it is created. Depending on category and priority, each INC has an
SLA on acknowledging and accepting the incident. This helps other
members of the team to know that a particular INC is currently being
worked on by an engineer.
Incident resolution: This involves resolving the ticket as per the
timeline. Not all tickets and INCs can be of the same priority, and so
with priority, the timeline for solving is also defined. Such as, P1 is to
be solved within four hours, and P2 timelines are to be solved in eight
hours. It depends on the organization’s processes and standards on how
they prioritize their incidents. SRE teams build automation in the
incident management tool where they get regular alerts on new incidents
in their queue upon an incident approaching their resolution timeline.
This keeps the incident management process transparent and easy to
use.
Incident closure: This involves closing the incident, adding the
required details, and sending the incident to the requestor queue to
update on closure. Incident resolution and closure are interlinked. As
soon as the incident is resolved, the team should close it; once the
incident is closed, the requestor will get updated automatically.
Incident root cause: This is the last step of the process, where
respective teams identify the root cause of the incident and store details
in the central database. Once an incident is closed, teams create another
stage for the incident, but that stage is internal to the organization and
not for external customers. This internal stage is called the root cause
analysis stage. The incident is then assigned to the team who is
responsible for finding the root cause of the issue. This stage is not built
for customers. This stage is also referred to as problem management.
Though this is the incident management stage, however, in some

organizations, problem management is a separate process that works in
collaboration with incident management. The key difference between
the incident, and the problem is incident management circumventing the
immediate issue. And problem management is fixing the root cause.

The following are the stages in the incident management process:

Figure 3.4: Incident stages in operations

It is important that during the initial phase of SDLC, the organization define

the incident management process. There should be a clear definition of the
stages of incidents. Then, only operations teams will be able to act on
queries faster and resolve them in time. The quicker incidents are resolved,
the better will be the customer satisfaction. This defines the stability of the
system.
Some of the best practices for building intense incident management process
are as follows:

Use advanced tools that provide automation of incident management,
such as automatically linking any new incident with similar past
incidents to help teams in quick resolutions.
Implement alerting on the incident tool. As soon as any new incident
comes to the queue, teams are notified so that they do not miss any
incident.
Build automation to acknowledge incidents automatically. This is one of
the roles of SRE to automate acknowledging on INC so that there is no
confusion within a team in shift and helps avoid repetitive work.
Daily stand-up for operations teams to discuss the status of INC. If your
software application is huge, with 24*7 customers across the globe, then
it means there will be multiple queries you might receive from end-users
and other stakeholders who use your application. Even if you have
automated the INC management tool, sometimes it can be difficult to
keep track of all INCs. So, it is advised to have daily stand-ups and
discuss priority INC. For example, online travel booking. They can get
queries from customers, travel agents, third-party payment companies,
etc.
Define a clear correlation between application errors and incidents.
When you receive a query from a customer on service disruption, there
is a high chance that SRE teams might have also received an alerting
error. As a best practice, SRE teams should list down some high-impact
alerts, such as service down, and link those alerts to incidents. As
incidents are the first task for any operations team, such internal
incidents, if created automatically, will help SRE teams act on errors
before they create any major impact.

Let us look at a real-world example of how incident management enables

SRE and operations teams to act on time and circumvent problems. Take the
example of an online travel booking software. While booking the flight,
customers using the software suddenly saw an error on the web page display
page not found. When the error popped up on the web page, an internal
automated ticket was generated and logged into the operations teams’ queue.
Also, a customer service representative got a call from customers. The same
ticket was updated by the customer service representative with the
information provided by the customers. The incident management tool
automatically added the category as high and priority as p1 (the tool has an
in-built algorithm to decide on the type of errors). As part of automated
incident management, the ticket was automatically assigned to an operations
team member. Since the ticket has high priority, it was quickly picked by
operational engineers, application support, or SRE team members. They
started troubleshooting the error and initiated the circumvention of the
problem as per runbooks. During circumvention, the application support
engineer moved user traffic to another server. As a result, the customers
started getting responses on the web page, and they were able to book the
travel ticket. This whole process took less than five minutes. While traffic
was moved to another server, application support and SRE engineers
investigated the issue, found the problem, and worked on a solution to fix it
permanently. After fixing the issue, engineers updated the ticket with the
required root cause analysis (RCA) details and closed the ticket or incident.

Automate to reduce toil
Automation is the key for all organizations, irrespective of domain.
Software, manufacturing, medical all types of organizations seek automation
to reduce toil and repetitive work. You see automation in day-to-day life
also, for example, software in washing machines that operate automatically,
refrigerator software that operates automatically, car software, etc. Software
organizations focus a lot on automation. Automation is a key enabler for
SRE, helping them to streamline operations and achieve their goals.
The following is a snippet of the code that automatically self-heals the
service:

import os
import time
def check_service():
 status = os.system("systemctl is-active --quiet myservie")
 return status == 0
while True:
 if not chek_servie():
 print("Service is down! Restarting...")
 os.system("systemctl restart myservice")
 time.sleep(60)

Importance of automation to SRE
There are various benefits of automation. Some of them are automating
repetitive manual tasks (called toil), which saves time and effort and
prevents human errors; automating alerts, which helps quick turnaround for
error resolution by making it self-healing; and automating to improve the
system's performance.

Ways to automate
SREs are skilled engineers who work in a production environment and
automate manual tasks. Automation can be done by tools, where SRE
engineers use and customize these tools as per their requirements. The SRE
team also builds its own automation from scratch by writing code. Manual,
repetitive tasks that are tactical and do not need human intelligence are
referred to as toil. SRE’s key responsibility is to eliminate toil.
The following are the areas of automation opportunities:

Manual repetitive: Tasks such as running a job daily to pull reports.
Such tasks can be easily automated. Automating manual tasks saves the
time and effort of SRE engineers; they can use their time for other
important tasks. Manual tasks are also prone to human errors, so
automation removes these errors.
Automated alerting and monitoring: SRE teams should automate
alerting where any high-impact alert will notify the required team.

Automating resolution of certain errors such as traffic-increased system
auto scale-up, if traffic reduces system auto-scale down. This increases
the scalability and performance of the system.
Automated incident management: SRE teams should implement
automation around incident management where any incident that comes
to their queue is automatically acknowledged. It is automatically linked
to alerts that are fired in the system, co-relates errors, and notifies
respective teams.
Automating other tasks: Such as security vulnerability scanning, log
scanning, access management, and continuous health checks. This type
of automation helps enhance security.

Various ways automation helps in building stable and reliable systems:
Automation: Automation of manual tasks saves time and this helps
SRE and DevOps teams focus on other daily tasks. This, in turn, helps
save the cost of hiring an extra workforce.
Scalability: Automation built by the SRE and DevOps team allows
them to scale up and scale down the system automatically, when
required, without any manual trigger.
Reliability: Auto-healing and auto-restart of the service resolved the
errors before the customer noticed them.
Availability: Auto moving or diverting of customer traffic to available
servers, in case one server has issues, helps maintain the availability of
the system.

As mentioned earlier, one approach does not suit all. There are tools
available that help teams build automation. The following are some common
processes to consider when eliminating toil:

Identify automation opportunities areas, such as automated incident
management, auto alerting, self-healing, and auto-scaleup. These are
some known tasks that should be automated. Automation must be an
ongoing activity, where the team keeps on identifying opportunities to
automate and reduce toil.
Identify metrics and follow a metric-based approach to decide whether
the task needs to be automated. For example, a manual task is required

to be done only two times a year, and it takes only 30 minutes.
Automating this task will require one month of man-hours; hence, it is
not advisable to automate since the cost of automation is higher than
that of the manual task.
Once all the open manual tasks are identified, categorize them and then
decide on tools to be used for automation if required.
While selecting tools, list down your requirements, match the
functionality of the tool that it offers, and check if customization is
available for the tool.
Cost of the tool; questions like whether it is open-source or
subscription-based, whether it is a one-time purchase or a yearly
subscription, are important to assess. If the cost of purchasing the tool is
higher than that of hiring engineers who can automate by writing their
own code, then go for hiring engineers.
There are no one or two tools that can be used directly to automate.
However, first, identify the automation category, then select the tool.
For example, for monitoring, you have Prometheus and Grafana. While
selecting the monitoring tool, also check if it provides automation
customization. ServiceNow is chosen for incident management; it also
provides automation for notifying incidents automatically. The Ansible
tool is selected for configuration management to configure
infrastructure. It also provides auto infrastructure creation. These are
some examples of tools that come with in-built automation.
Feedback loop implements regular feedback sessions with various
SDLC teams including SRE, DevOps, developers, testers, and
businesses. Feedback sessions help identify the manual tasks that can be
automated to improve operations.

The previous topic of incident management is also one of the examples of
automation saving time for SRE and offering application support.
Automating incident creation, acknowledgment, assigning right priority and
category helped saved 80% time of the engineers and enabled them to work
on the circumvention of the problem, thereby ensuring minimal customer
impact.

CAMS model is an SRE essential
Before going in-depth into each phase of Culture, Automation,
Measurement, and Sharing (CAMS), let us understand the invention of
CAMS. Before DevOps and SRE were invented, many software
organizations were running in complete isolation, as there was no
collaboration between cross-functional teams. All the engineering teams
were responsible for their own tasks. Such an environment creates silos (a
silo is a team or a resource working in a vertical that is more or less cut from
other verticals in an organization), blame games, and impacts the
development and delivery of products.
In previous chapters, we understood the importance of SRE and DevOps and
how they break silos and help increase productivity. The CAMS model is
also derived from the approaches followed by new methodologies (Agile,
DevOps, and SRE). The framework that addresses the silo challenge, if
summarized, is CAMS.

Culture
In literal definition, it is defined as a group of people who practice the same
routine in their day-to-day lives. That means they follow the same norms and
standards daily. Similarly, in software organizations today, engineering
teams practice their own culture. This culture defines standards, processes,
and vision, which are the same across teams. This helps them achieve the
organization’s goals.
Let us assume that innovation and stability are the vision of any
organization. Then, one culture within SDLC teams means development
teams build their code while keeping innovation in mind, such as using the
latest languages, Python, Ruby, Java, etc. Developers also follow best
practices while building their code to ensure stability. SRE and DevOps
teams empower developers by creating automation that helps developers
focus on their innovation, creating strong monitoring to bring stability to the
product. Such collaboration is referred to as culture. Though the internal
processes might differ between teams, their objectives and vision remain the
same.

Some factors define the culture of any organization. You can build the
culture by defining the following factors:

Vision: This should be a top-down approach. An organization shares the
top vision, and all projects should follow that vision. It is the
responsibility of top leadership and management to clearly define the
vision of the company. All projects or teams should create their internal
standards, keeping the company’s vision in mind. For example, for an
online travel booking company, the vision is to become the world’s
leading online travel company.
Objectives and key results (OKR): This involves defining goals and
results on how to measure and assess whether they are achieved. Once
the vision is defined, organizations should define high-level goals for all
the teams to follow. Then, all the engineering teams should use these
goals and identify the milestones to achieve them. This is also a top-
down approach. For example, the objective is to improve the
performance of the application. The key results will be the metrics to
measure the performance. To achieve this goal, teams should define
milestones.
Standards and processes: This involves following the same standards
and processes across engineering teams, such as defect or bug
management process, incident management process, testing process,
deployment process, etc. These standards should be defined enterprise-
wise, and all teams should follow these processes. Teams can internally
create their own smaller processes, but the standards and key goals
should be the same. For example, developers, testers, SRE, and DevOps
all follow the Agile approach, where they build, test, and deliver the
system on the basis of program increment (PI). All teams follow this
PI model for their tasks; developers’ complete development in one PI,
and the SRE team also builds observability in the same PI. That will
have teams follow the same culture.
Tools and software: This involves using the same tools and software
for development and delivery. For example, developers use the JIRA
software to log defects and tasks, and SRE teams also use the JIRA tool
for defects and task logging. Re-using tools helps the team collaborate

more.

Automation
Automation eliminates toil by automating manual, repetitive, and routine
tasks. Automation saves time, effort, and cost for the organization.
Automation should be the enterprise’s goal, and teams should define their
OKR and key performance indicators (KPIs) that include automation.
Automation improves productivity by increasing collaboration between
teams.
Example of automation: The DevOps team creates a CI/CD pipeline to
integrate and deploy the code. This pipeline is used by developers, testers,
and SRE teams. As there is one pipeline used by all teams, it creates an open
communication platform between them.
There are various manual tasks that the engineering teams might have to do,
and sometimes these are repetitive across teams. Let us say one team created
a tool that automates a manual task, the same tool can be re-used by other
teams. They both can use and add advancements to this automation. As you
have learned the importance of automation in the previous section, it is one
of the key approaches for CAMS, DevOps, and SRE teams.

Measurement
It defines measuring your milestones and goals to achieve vision.
Measurement is one of the driving factors for the CAMS model as it helps
measure performance and improvement. Measurement, in general, is a key
factor for all organizations to improve. If you do not measure the
performance of your product, you will not be able to evaluate it.
Measurement plays an important role in operations, and it is one of the
essential practices for SRE and DevOps teams. It also helps in collaboration.
Let us first understand what measurement is. It is basically asking questions
on how well we performed. Engineering teams should define their goals at
the beginning of SDLC, that is, before development. They should create
regular achievable milestones, and with each milestone, an assessment needs
to be done to monitor the progress. If only a part of the milestone is
achieved, we need to check what the roadblocks are and how to overcome

these roadblocks. As part of assessing the performance for the milestone,
you should implement a feedback or retrospective process within and with
cross-functional teams. In the process of feedback, individual teams share
their ideas that help them explore opportunities for further improvement; that
is how measurement helps collaboration.
In the next section, you will observe a detailed explanation of measurement
and its importance.
The following are some of the metrics SRE should implement, considering
there is an operational milestone one month after releasing a new feature in
the application:

% of failures seen in applications for that month.
MTTR for various failures.
MTBF between various failures.
% of manual tasks automated.

All these questions will ultimately help the SRE team assess how well their
operations did. Did their automation help improve the system's
performance? Did alerting and monitoring help speed up recovery? Did self-
healing help increase stability? How was the collaboration with the
development team in identifying bugs and fixes? How well did SRE teams
deliver for a month?

Sharing
This is the last factor in the CAMS model, and also the most important but
often neglected. Sharing is not any technology that can be built or automated
in system, it is human preferences. Building a culture of sharing in
organizations is one of the most difficult tasks. Sharing help teams to
collaborate smoothly, increase productivity of individuals and the project.
There are two factors to sharing, and they are explained as follows:

Openness: It means the ability to extend and improve. This term is also
used in technical aspects, where openness in the distributed system
means its ability to extend and improve its hardware and software
components. Similarly, this practice has to be followed within team
members, where each team member is willing to help others. As an SRE

leader, one can implement some of these processes within the team so as
to help them to inculcate the practice. The following are some of these
processes that can be implemented to build a culture of openness in the
team:

Creating a process of regular knowledge transfer sessions within
team.
Regular mentorship sessions, where senior members mentor junior
members, and the leader takes the feedback.
Retrospective sessions to understand challenges better.
Regular acknowledgments and accolades.

Transparent: This means the leader and teams should be transparent on
the progress of the project along with team member’s progress.
Transparency allows the team to move towards a common goal. Some
transparency can be achieved through technology and implementing
processes. Some of the processes you can implement as a SRE leader
are as follows:

Using a central repository or tool to track the performance of
projects, where the full team can see and track.
A central tool to track the daily tasks of each team member so that it
gives transparency between the teams.
Daily meeting with the team to understand the status of their task. In
case anyone is stuck or is facing any challenge, others can help that
person.
Sessions with other teams to discuss challenges within SRE and
those between cross-functional teams. This allows engineering
teams to collaborate effectively and work towards a common goal.

CAMS model is a summary of various factors you learned in the chapter as
an SRE essential. The uniqueness of the CAMS model is the sharing factor,
which involves the human side, since to make SRE successful, you need
human resources. In order to achieve their goals, organizations should
consider the human factor along with implementing technology.

Agnostic approach
An agnostic approach in technology is one that is interoperable across the
system without any prejudices towards using specific technology, model, or
methodology. In software engineering teams, it means developing software
products without being tied to any specific framework or platform
technology.
Today, with increased demand and competition, organizations have to build
their software applications quickly. Requirements change frequently; new
technology also gets introduced in the market, and new tools are launched
faster now, putting pressure on software companies to deliver quickly while
also maintaining the quality of the product. In order to address fast-paced
development, the Agile approach was introduced. It helps the SDLC team to
divide their task into smaller sprints and deliver quality products promptly.
Then came the DevOps team, followed by SRE. All these methodologies
share some practices and principles with one vision: to deliver quality, stable
products on time. This sounds easy, however, completing SDLC for
delivering a product is not straightforward and is also a time-consuming
task. Organizations do a lot of planning before they start developing any
software. It involves tasks like deciding on technology, architecture,
framework, workforce, skillsets, timelines, etc. They also have to keep up
with the fast-changing demand. To address this challenge, the agnostic
approach was introduced.
Let us take an example to understand the agnostic approach in detail.
Consider a software organization planning to build a product for online
delivery of product.
The following SDLC steps are to be undertaken:

Planning phase to decide application architecture, framework,
underlying language, infrastructure, cloud provider, workforce, tools to
help teams in development, and the operational model.
Tool stack, Java, React, micro-service architecture, AWS cloud, NoSQL
database, Kubernetes for containerization, ELK for logging, Grafana
and Splunk for monitoring, Jenkins for CI/CD, testing automation tool.
The development team starts writing code. DevOps team creates CI/CD

pipeline. SRE teams develop monitoring dashboards.
Code gets deployed to the testing environment, and the testing team
starts testing. SRE team performs chaos testing.
Once testing is completed, bugs are identified and fixed. Then, the SRE
teams do smoke testing.
After all the testing, the code gets deployed to the production
environment. SRE teams start monitoring.
After a month, the business decided to move away from AWS Cloud
and start using Google Cloud. There could be multiple reasons for this
business decision. Now, engineering teams have to re-start their
planning.
Engineering teams already consider future changes and design
architecture that does not depend on the underlying infrastructure.
Java and React both languages are both cloud agnostic, and applications
can easily be moved to the Google Cloud. However, underlying
configurations have to be changed. Developers build applications to
keep the code and variables or configuration separate, which makes it
easy to move the applications to any infrastructure.

This is a small example of how the agnostic approach works in software
development. This approach has its own pros and cons, though this is also
considered as one of the factors for building stable and reliable system.
However, it depends on the type of project, duration of project, teams
involved, framework, and future anticipation.
There can be various ways in which a software company follows an agnostic
approach. To highlight, mentioned below are some of the examples are given
as follows:

Choose a coding language and framework that does not depend on a
particular infrastructure and can be run on any type of operating system
and server.
Designing system architecture in a way that it can be used with any
database and cloud provider.
Write code so that it is easily extensible if required, to run on new
infrastructure.

Design logging framework for software such that any logging tool can
be used.
Build your metrics in code so that the SRE teams can use any
monitoring tool to configure dashboards.
The application framework should not depend on any one of the CI/CD
tools. Backend and frontend languages can be made flexible. If, in the
future, there is a requirement to change the frontend coding language,
then the backend application should be agnostic of the frontend, which
means the backend application can be changed without impacting the
frontend application.

These examples do not fit all; each organization is different and has different
requirements, and organizations have to choose their approach according to
their requirement. There are pros and cons of using an agnostic approach,
and the next section will help you understand both.
The following are some of the pros of using an agnostic approach:

It can save an organization money over time. If, in the future, a software
product is required to be moved to another cloud or infrastructure, you
save cost by not having to build it from scratch.
Flexibility to choose your own tools, where you can even switch
between the tools.
Easy scalability of application and infrastructure. Since your application
is not dependent on one infrastructure, if scaling is required beyond
capacity, you can easily move your application to other servers or
infrastructure with scaled-up capacity.
It gives organizations more freedom and control. As you are not
dependent on one cloud infrastructure, you get the liberty to customize
and configure the application as per your requirements.
It can be a lower long-term investment. If your company anticipates a
future rise in demand, then investing in an agnostic approach can help
save costs long-term.

The following are some cons of using agnostic approach:
It may have high upfront cost of building the software. To choose your
own infrastructure, you might need to build everything from scratch.

Unlike a subscription-based cloud infrastructure where initial
configuration is taken care of by the cloud provider, here you might
have to take the complete responsibility of building and managing.
It also requires unique skill sets. Organizations will need to hire people
who have the required skills and knowledge to build a framework that is
agnostic in nature. This can be expensive.
Application might not take advantage of everything. Sometimes
organizations build their applications as cloud agnostic, so they do not
use all features provided by the cloud platform.

Considering the pros and cons, companies should decide the best approach
for them. Some of the factors to consider while deciding whether the
agnostic approach is for you or not, are as follows:

If organizations want flexibility and freedom and anticipate future
changes in their domain, it is better to use an agnostic approach. It will
help the team to lift and shift the software to a new platform as per the
requirement.
For software applications that have frequent customer onboards and
offboards, chances are high that they might need to choose a different
technology to compete in the market.
For software applications that are small products, there are chances that
they might be merged with some big players in the market. In such
cases if application is agnostic of platform, it provides easy merging.
If organization has enough budget allocated for software development,
they can consider investing into building an agnostic approach.

No measurement no improvement
The above phrase is right in all aspects, not just through the SRE lens.
Whether it is software, manufacturing, or medical, any institution or
organization wants to be productive and needs improvement. Measuring or
assessing your performance is one of the easiest ways to identify when and
how to improve. In previous sections, we learned briefly about measurement
as one of the essentials in the SRE world. In this section, we will learn the

importance of measurement in SRE in detail.
Measure is the quantification of attributes of an object or events, which can
be compared to other objects and events. That means, it helps in determining
how large or small a quantity is as compared to another. Measure in the case
of SRE is defining metrics. The SRE team has the responsibility of
managing the production environment and getting involved in other
operational activities. They monitor live applications, i.e., production, and
get involved in assessing the performance of the production environment.
The best way to measure the performance of software systems is by defining
metrics at different phases of SDLC.
The goal for all software organizations is to build a system that is scalable,
reliable, and available. All engineering teams involved work towards the
same goal. No software application is 100% bug-free or 100% scalable and
reliable, but engineering teams regularly seek improvement in software
systems and work towards achieving this goal. As SRE teams work more
closely with the production environment, they get access to the real-time
performance of software, and they work towards implementing solutions.
And SRE teams should define various metrics to measure all aspects of an
application. These metrics help the team understand if a particular milestone
is achieved, and they also help assess whether the software system is
performing as expected.
The following are some of the common and powerful metrics that the SRE
teams should use:

MTTR: It explains how much time your system takes to recover from
any failure. Analysis of this metric data helps teams to understand
various aspects of the system, such as follows:

How did the system actually recover?
Was the system auto-recovered, or was it manually recovered by
engineers? This question helps the team to evaluate the
observability.
Was there any alert generated for SRE teams to notify? This
question helps teams to evaluate alerting.
What tools were used to investigate the failure, and what tools

helped in recovery? This question access automation capability.
What was the root cause of the error? This helps evaluate code
quality and infrastructure quality.
Were the failures seen in the testing environment? This helps
evaluate testing models and gaps. If the failure was not caught in the
testing stage, or if it was caught in the testing stage, then we need to
figure out why the faulty code got promoted to production. The
failure, in turn, also raises the question for change in management
and SRE teams on how effective the code quality check process is.

By just one metric data, all the previous questions will help all teams (SRE,
developers, DevOps) to understand what the gaps in their system are, if any.

MTBF: It explains how much gap two failures in a system were there in
between. Meaning how frequent failures are seen in the software
system. This metric’s data helps answer the following questions:

What was the root cause of the failures? This helps understand code
quality and check if it is a code issue.
Are two failures the same? Once the root cause is identified, it helps
assess the quality of code or infrastructure. And if it is the same
failure, then we look at why there are repetitive failures in the
system.
Are failures different? This again helps us understand code and
infrastructure quality.
Was there any change in the system that caused the failure? This
helps assess the change management system and assess the CI/CD
pipeline that deploys code.
Was there any alert for failures? This again helps assess alerting.

Uptime of system: It explains the % availability of the system. This
metric is also dependent on various factors, such as:

If the uptime of the system was not 99%, then what caused system
downtime? The root cause analysis of this question helps evaluate
code and infrastructure quality.
Even with sound alerting and monitoring, what processes are

followed by development teams to measure code quality, and what
other processes are to be followed to ensure the quality of the code.
Are there any external factors that impacted system uptime? This
helps assess how much your system depends on other systems and
helps find areas for improvements, such as the unavailability of
another system that created downtime for you.

Latency of system: It explains the amount of time taken for a request to
be processed by the system. The data from this metric helps assess the
performance of the system. If latency is high, then we try to figure out
where the problem is; is it in the underlying code, a network problem, a
server issue, or a database issue?
Resource utilization: It explains the % of available resources that are
being used. However, we first need to understand the configuration of
the system. Configurational details will help create metrics that measure
the performance of the system. The following are some of the data that
you should collect to create the right metrics such as:

The CPU and memory are configured for your infrastructure.
The threshold is configured on CPU and memory utilization, with
auto-scaling on threshold breach.

o	The reason for high memory

The reason for high CPU.

Some of the other metrics that can be used to measure the performance of
the system are as follows:

Load balancing: The distribution of requests across multiple servers
so that no single server is overwhelmed, and the system is
performant.
Error rate: % of requests failing.
Response time: The amount of time it takes for a request to be
completed by your system.

In all these metrics, you will have to answer questions and find detailed
analysis. In this process of answering and analyzing, teams will have

opportunities to identify gaps in the system that need to be fixed. Hence,
measuring is important for any system to perform. If you do not know how
your system is performing, you will not be able to identify areas of
improvement. For any problem in the system that lowers the performance,
root cause analysis is the key. Only after the teams collaborate and perform a
root cause analysis will they be able to point to the direction of the gap and
work on the solution(s).
To summarize the solutions learned in this chapter, take an example of an
online booking travel software. The example will explain how the previously
mentioned best practices are interlinked and help the team build reliability in
the system. Let us continue the previous example where while booking a
flight, customers using the software suddenly saw an error on the web page,
displaying page not found.
Different solution categories that help in this scenario are explained as
follows:

Incident management: Due to automated incident management, as
soon as an error occurs, the incident is logged automatically and
assigned to the respective team. Also, as part of the root-cause analysis
in incident management, the team was able to identify the root cause
and pinpoint the error, and enhance some metrics too, such as response
time to user and check on the memory of service.
Automation: Automated incident management that creates and assigns
tickets automatically also defines the priority and category.
Monitoring: Due to the monitoring dashboard built by SRE teams, they
were able to capture the error within a few seconds. Though there were
incidents logged, due to monitoring and alerting application support,
teams were quickly able to co-relate the alerts and the created incident.
Measuring: The team has integrated metrics in the dashboard itself to
calculate failure requests or the total user requests. As it was integrated
into the dashboard, support teams were able to assess the impact on a
number of users facing the problem and take the required action
promptly.

Conclusion
Building an effective solution is a journey that involves a lot of planning.
Planning is the key to any effective system. The better processes and
standards you have, the better your system will perform.
In this chapter, we discussed various factors that play an important role in
building an effective solution and how SRE teams today are following these
factors. Additionally, we discussed collaboration and ways in which
collaboration helps achieve success.
In the next chapter, we will be introduced to anti-patterns and the impact of
anti-patterns on software development. We will also understand how anti-
patterns the reason for recurring problems in the software development
lifecycle are.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 4
Understanding Anti-patterns

Introduction
In this chapter, we will understand anti-patterns and their impact on SDLC.
We will discuss some common anti-patterns that act contrary to best
practices in software development. This chapter will also cover some of the
recurring problems in software engineering that interfere with the progress
of SRE and impact the final product.

Structure
We will cover the following topics in this chapter:

Pattern and anti-pattern in software engineering
Common anti-pattern in SRE

Objectives
By the end of this chapter, we will understand the recurring problems in
SDLC that impact SRE and product delivery. This chapter will frame the
baseline for the next chapter on how to find solutions for recurring
problems. You will understand what patterns and anti-patterns are and how

these anti-patterns are introduced into the system. To understand the pitfalls
in SRE, it is necessary to understand how anti-patterns in software
engineering impact development and SRE. After going through this chapter,
you will understand and be able to co-relate these anti-patterns between
SRE and developers.

Pattern and anti-pattern in software engineering
The pattern in software design is an effective and reusable solution that can
be applied to common problems in software engineering. Anti-patterns are
the opposite of patterns. They are some of the common problems that might
not be intentionally introduced by teams but fail the design as a whole. In
simple terms, patterns are known to design solutions or best practices used
in software engineering to solve recurring issues, and these patterns can be
applied to multiple issues. Anti-patterns are those designs that look correct
in the beginning as part of an effective solution but create bad consequences
later.
In this section, you will understand the various anti-patterns in software
engineering and their cause.
For example, a simple pattern uses code that can be reused across services
to solve a common problem. An anti-pattern is applying a quick fix in code
to solve the problem, but later, with a new service introduction, the quick
fix fails both services.
Let us discuss some of the common anti-patterns that you should avoid as a
software developer.

Spaghetti code
As the name suggests, spaghetti code is a mess of code that lacks structure.
It is derived by using old code and adding new code on top, applying quick
fixes without any planning and structure. That eventually makes it difficult
to manage even by the source code. Or when multiple developers work on a
piece of code for months or years, copy-paste multiple times without
defining the structure, leading to unmanageable and erroneous code.

Though this practice is not used by most developers and engineering teams
today, unknowingly, some part of the spaghetti code is sometimes
introduced in the system and becomes an anti-pattern.
Let us discuss some of the examples of the cause of this anti-pattern, as
follows:

Legacy code moved to any migration project. Developers insert their
code in legacy code, making it complicated to manage.
Lots of features are required by businesses to build in code, but the
delivery timeline is one year. Leading to a lot of code writing but not
delivering to production, causing a messy code without actual user
testing. When it gets released to users, it becomes difficult to
investigate the issues in the code, if any.
Short timelines to build and deliver a feature in code. The leading code
quality is compromised when developers do not follow the best
practices and compromise with coding standards to meet timelines.
Leading to a messy code.
Applying quick fixes to the huge code to meet the timelines.

The aforementioned are some examples where developers write messy code
that leads to anti-patterns in a system that impacts the product. Spaghetti
code is usually a result of a lack of planning and not following standards
and processes.

Golden hammer
This anti-pattern involves excessive dependency and overreliance on one
tool to solve multiple problems. It is a little different, as sometimes, if used
accordingly, it can be considered a best practice or pattern. However, in
some cases, it can lead to an anti-pattern where no one-size-fits-all
philosophy works. In other words, it is a result of a mismatch between a
problem and a solution.
The golden hammer occurs when the development teams do not plan
properly and use one tool or existing tool to solve multiple problems. In
some cases, this approach works when an organization is using any
enterprise suite that can fulfill multiple requirements; however, sometimes

developers do not explore much on the solution of a problem or
requirements, and they reuse the existing tool or code available. However,
that can lead to issues such as non-performant systems, non-reliability, and
not meeting the requirements of end users.
Let us discuss the following examples as causes of the golden hammer:

An organization is committed to one vendor and is using the vendor’s
tool. So, for any new requirements, without exploring other solutions,
they try to fit in the requirements within the existing tools, doing some
minimal customization.
Due to a lack of time, development teams do not explore other
solutions and, with minimal effort and planning, reuse the existing tool
to deliver a solution.
Lack of skill set. When SDLC teams do not have the right skill set for a
new requirement. And organizations, do not spend on hiring or training
developers. So developers still build the code with their existing
knowledge, but that can lead to an anti-pattern as the system might not
fulfill the requirement.

In general, SDLC teams have strong planning before deciding on any new
requirements, however, golden hammer anti-patterns are introduced
unknowingly due to some of the aforementioned reasons.
Let us understand Golden Hammer through a real industry scenario. The
healthcare technology planned to add new functionality and enhance their
software. To meet user’s demands, organizations migrated their software to
cloud-based solutions. In the initial 2 years, the healthcare software
platform performed very well. However, gradually, users started
complaining about the performance of the software. The software started
crashing frequently; the QA team also highlighted various issues in the
software during the testing phase. The SRE team analyzed the complaints
and multiple issues in the system. After collaboration with the software
development team, it was identified by teams that the cloud solution on
which the software is running cannot manage the users' load. Also, the
recent functionality of reporting based on big data technology is consuming
50% of the memory of the cloud infrastructure. Dependency on one cloud

solution is the reason for the low performance of healthcare software. Once
the organization realized the root cause of the problem, they migrated their
reporting feature to the cloud provider, a pioneer in big data technology.
Though it was an extra cost to the organization, in the long run, it improved
the reliability and performance of the software.
The idea is to not rely on only one solution for all problems. Sometimes,
organizations choose one solution for all their requirements, but that is
informed planning and decision-making based on certain criteria such as the
requirement aligning well, being short on budget, and having time
limitations.

Boat anchor
This anti-pattern happens when the developer leaves a piece of code in the
codebase that (a piece of code) might be used later. Leaving unwanted or
future codes in the code base is not a best practice in the software
development model. If the piece of code is not required in the near future,
let us say for another 3-4 months, this extra code can create bugs with
existing code, developers have to manage the code unnecessarily, and while
debugging, developers have to go through extra debugging, compiling and
building can also be slowed down, it can break build also if undefined code
is lying in the codebase.
Let us discuss some of the reasons why and how a boat anchor anti-pattern
is introduced in the system, as follows:

The developer got a new requirement, and they started writing code
and added it to the codebase, but later, the requirement was canceled.
So, developers not removing the piece of code can create issues in the
future.
The developers got an early requirement to build new functionality that
is required to be delivered six months later. They had bandwidth
available, so they built the code and added it to the codebase. Now, the
piece of code that is not required today is running in the live system.
This can create issues, such as if any bug is introduced, then debugging
and fixing is an extra effort. The live system can see defects due to this
unwanted code.

The developers got a requirement to deliver the functionality in 3
months. They added the feature in the code but made this feature as a
toggle enabled (new code/ functionality, developed in a way that will
work depending on this toggle/config implemented, and this toggle,
when disabled or enabled, will decide whether the code will work or
not), thinking that after 3 months, they would enable the toggle for this
code to start working in production. However, by mistake, one of the
developers enabled the toggle before the timeline, causing unwanted
delivery of the requirement.

The developer mostly unknowingly does the boat anchor, and when they do
not visualize holistically. From the developer’s perspective, they are
building a code required to be delivered a few months from their current
time as they have time and bandwidth, but they do not visualize the risk of
this code lying in the production environment.

Dead code
Dead code is any section of code that gets executed, but the output of the
code is not used by any other program. That means the code that has been
lying there for a long but is not required. This anti-pattern is also the
derivative of the boat anchor anti-pattern. As its name says, the code that
was used in the past as legacy code, however, is dead now, and no one is
aware of the functionality of the code, and the code is just lying there in the
code base. Similar to boat anchor, dead code can also break current
functionality.
Let us discuss some of the use cases where dead code anti-pattern can be
introduced, as follows:

A piece of code became obsolete or not required. However, developers
never removed that code from the codebase. Now, every time the
codebase is compiled, obsolete code also has to be compiled. Some
new developers introduced a code that encountered an issue due to the
old/obsolete code, as the developer was not aware of the old code. It is
an anti-pattern, as it impacts code and is time-consuming to debug.
A piece of code is not used anymore but is still sitting in the code base,
as this code is coupled with other codes, and the unwanted code is still

required to run other code unless it is decoupled. Now, developers do
not have enough confidence or time to decouple the code that is not in
use and remove it. Then, it became an anti-pattern, where the unwanted
code is getting compiled every time with the code base, which is,
again, time-consuming to debug.

Dead code anti-patterns are heavy. These codes do nothing but increase
build time, decrease the performance of code compilation, and be time-
consuming to debug.
Boat anchor and dead code are similar but different. Let us understand the
difference between the two through real industry scenarios. A financial
technology organization migrated its legacy software to a cloud-based
platform. New cloud-based software builds various new functionality along
with existing features. After a few months, the software started seeing
issues in performance; two such issues were frequent failures of search
functionality and intermittent failure of the buy stocks functionality. The
reason for the search functionality failing is the introduction of one of the
new features, AI-driven search functionality. This new AI-driven search
was supposed to go live in six months; however, developers built the
feature in advance and deployed the code in production (as one of the best
practice features/functionalities are built with toggles, which means any
piece of code is driven by toggle and as per need the toggle can be enabled
or disabled). Though the code was disabled, one of the AI-driven search
scenarios was not tested fully in the testing environment, which impacted
normal search functionality. This is an example of a boat anchor. Code that
is required for the future was deployed in production without full prod
testing and that impacted software. The second issue of the buy stocks
functionality failing is due to being out of memory. As it is, a legacy code
migrated to the cloud. One of the old codes in stock functionality, which is
not required, was also migrated. Developers ignored that old code,
assuming that code was harmless, but every time the service buy stocks is
used, the service triggers a Java Virtual Machine (JVM) runtime engine
that helps the Java program to execute). This JVM failed without memory
as the run time engine did not get enough memory to execute the code. The
underlying problem is that old code was compiled every time buy stocks

were used. This old code consumes all the memory of JVM. This is an
example of how dead code can impact software performance.

God object
God object is when any object or class is too good, such as when one object
is responsible for too many things. That means one object is responsible for
multiple functionalities in the code. Now, this also can be anti-pattern, as an
issue with just one object can bring down multiple other functionalities, and
this is against the best practice of object-oriented design. Sometimes,
developers design code where one object is treated like a master class that
takes care of the responsibility of other objects, too. Though developers can
break down this god object into multiple normal objects, they keep using
one object, leading to an anti-pattern.
Let us discuss the following examples and causes of the God object anti-
pattern:

Developers were getting similar requirements to build in code. They
saw that there is one object that can be extended and used by just
adding new parameters. This practice continued in the project. Now,
after a few years, this one object has become a God object that is taken
care of by multiple functionalities. For example, a payment project
where one object is a customer ID that is responsible for fetching
name, transaction, address, history spend, future enrolment, offers, etc.
Now, if the customer id is impacted, that will impact all these
parameters. However, transactions, history spent, and ennoblement can
be broken down and assigned to another object.
Developers started using one object as the master, which is responsible
for multiple functionalities. Developers are not confident in breaking
down this object, as this will require a change in design and effort. So,
they ignore this anti-pattern and keep on using one object as a master.
Though developers can argue that it is easy for them to manage the
code, this can slow down the performance. One object has to work on
lots of data that is not even required.

The other set of best practice principles is single responsibility,
open/closed, Liskov substitution, interface segregation, and dependency

inversion (SOLID) principles in programming. SOLID is five essential
guidelines that enhance software design, making code more maintainable
and scalable. Here, S of SOLID refers to the single responsibility principle.
As per this principle, the class should have a single purpose or single
responsibility. One function of a class is easy to maintain the code, easy to
change the code if requirements change in the future, and easy to debug.
However, this does not mean that all classes should have a single
responsibility. There should be a balance between classes that hold multiple
responsibilities and single responsibility. Following the single responsibility
principle can help solve the problem of God object.
God’s objects are against the best practices of software development and
should not be used. The planning team should review the code regularly to
identify such anti-patterns. By using one object for required functionality,
too much responsibility is added to one object that can break the
functionality and, again, can impact broader functionality.

Copy and paste programming
As the name implies, it is copying other codes and pasting them into the
source code as the functionality of the two codes matches. Copy and paste
is never a good practice in software development. Two code bases are
always different, even if they solve the same requirement. The
dependencies, language, infrastructure, underlying libraries, etc., all can
differ between two similar code bases, and copy-pasting one code into
another can introduce bugs.
Let us discuss how this anti-pattern is introduced in the system, as follows:

Developers working on two projects or developers move to new
projects that have the same functionality. They copy the piece of code
from one of the codes to another one. Though they tested the code
locally, it broke in production due to the non-availability of libraries.
This will make it an anti-pattern, as this impacts working applications.
Due to the lack of time, developers found one piece of code outside and
copied it into their existing code base. The code worked, but later,
when another developer worked on the code base, they introduced new
dependencies that were not compatible due to the old, copied code.

Here, developers are aware, but still, they copy and paste to save their
time and effort.

There cannot be any supporting argument for copy-pasting code, as this is
always done knowingly and is against the best practice of software
development. Organizations had to build standards and processes to bring
this into practice for developers not to copy-paste code.
The aforementioned explanations are some of the patterns and anti-patterns
that impact SRE positively and negatively, respectively. All the anti-
patterns in software development impact applications, eventually impacting
SRE and its process. Anti-patterns in a code slow down progress in
development, introduce bugs, impact application performance, and
compromise code quality. As SRE is coupled between development and
reliability, it becomes more difficult for SRE to manage the availability and
reliability of the system due to such issues.

Common anti-patterns in SRE
SRE plays a crucial role in the availability, reliability, and performance of
any software system. In the previous chapters, you learned the importance
of SRE for a smooth application experience. In the previous section, you
learned that anti-patterns in software engineering are the pitfall for
development, but they also impact SRE if these pitfalls are not caught on
time. These anti-patterns create issues in production that impact the
reliability and availability of the system. SRE also has its pitfalls that
impact the availability and reliability of the system and are called anti-
patterns. In this section, you will understand the high level of the types of
anti-patterns in SRE, and the next chapter will go in-depth to explain these
anti-patterns.
Anti-pattern solutions are a way to catch issues in the system at the last step
before it is ready to go live. So, if development fails to review and correct
their anti-pattern, SRE should be able to catch them. This section will
explain how to identify and avoid those anti-patterns in SRE.
The following are some of the common anti-patterns in SRE:

Misconfigured alerts
Alerts are one of the key components of observability. They help the SRE
and ops team to catch issues before end users notice them. That is why it is
critical to configure correct alerts. Misconfigured alerts can lead to
inaccurate or irrelevant information notifications to the ops team, leading to
critical service disruption or outage. The system that depends on alerting
can be impacted hugely due to such misconfigured alerts. Now, the question
is why the SRE teams will configure wrong alerts, so they might not
knowingly configure the wrong alert but unknowingly introduce this anti-
pattern to the system.
Let us discuss some of the misconfigured alerts and the causes of how alerts
can be misconfigured, as follows:

In a project where alert setting up is manual, SRE got the requirement
from the development team on a new service going to be deployed in
production. SRE, by mistake, set up alerts on an old service that has a
similar name. SRE did not validate the alert config, or the project does
not have an automated validation process for alerting. After the service
went live, production failed, but due to misconfiguration, SRE and ops
did not notice it, creating an outage.
Alerts are configured right on some services. Later, these services are
decommissioned. However, the alerts were not removed, creating
noise. Noise is an unwanted alert notification not required but populate
the system unnecessarily, which can lead to missing original alert
notifications.
SRE has a requirement to set up some customized alerts as the
automated system is not capable of creating and adding these
customizations. SRE created correct alerts but, by mistake, gave the
wrong channel, email, or contact to notify the alert. Now, the service
has an outage, but as the notification channel was not correct, it went
unnoticed.
Creating unwanted alerts just to notify the team. At the start of the
project, SRE created a few alerts as notifications and no action-
required alerts. However, over a few years, the application grew, and

SRE did not clean up those notification alerts. That can overwhelm and
exhaust SRE to respond to every alert and can lead to missing actual
alerts. This type of noise in alerting is also referred to as alert fatigue.

Incorrect ticketing
Alerting and ticketing go hand in hand for the ops team. Depending on the
SRE process, sometimes a few critical alerts are configured to create
incidents along with other outages and disruption-creating incidents.
Incorrect ticketing or incidents are not configuring the correct category in
tickets.
Let us discuss the following incorrect ticketing criteria:

Setting up incidents on low-priority alerts or issues that can be resolved
automatically. This can overwhelm and exhaust SRE by shifting their
focus from responding to other critical alerts.
Creating actionable tickets for routine work that can be easily
automated. Such as routine patching and upgrades where automated
validation can be integrated. Making such tickets manual and
actionable can again overwhelm SRE.

Incorrect ticketing is a practice that should be avoided, as over a period of
time, this can lead to anti-patterns for the SRE process.

No automated remediation
Automation is the heart of SRE and should be implemented in all required
areas to avoid human errors. Not automating the remediations of known
errors/issues leads to manual resolution and SRE burnout. This is a pitfall
that leads to human error and exhausting SRE or ops teams. Some of the
examples of this anti-pattern are:

Regular alerts such as high CPU and mem. The team is manually
scaling up. Such activities can be automated.
Service intermittent failure, where the team manually validates each
alert failure. Such alerts should be automated.

Manually resolving any alert is time-consuming and error-prone. It is an
anti-pattern that is the roadblock to SRE.

No change management process
The system will never break if no change is introduced to the system. But
you cannot advance your application without any changes. In any growing
organization, change is inevitable, and any change, small or big, comes with
a risk of breaking the system. If changes are not properly planned or
validated, they can break the system. Manual changes in the system are also
anti-pattern. Change can be infrastructure or application; both types of
changes, if not correctly planned and validated, can bring an outage to an
existing system. Moreover, SRE will have to spend their time investigating
and fixing the issue.
Let us discuss some examples of the changes that can impact SRE, as
follows:

The change was requested by developers to add one table to the
database. By mistake, the developer mentioned the change as creating a
new user and table. As there was no proper validation process for
change, the change got executed (the executor ran the force create
command) and re-created the existing user that changed the password,
and that failed multiple services with an authentication error.
Two changes were requested to upgrade the OS in two regions at the
same time. As there was no validation of changes, it impacted both
regions for an application that is the total outage.

Change management is a separate process that should be automated for
validation with the right approvers. If changes break the system, SRE will
have to spend hours to resolve such issues.

Unrealistic expectations or chasing nines
Fife-nine or 99.99999% is the percentage of time a service is accessible to a
user in a given period, probably in a year. This is one of the percentages that
software organization uses to measure software availability. Though
organizations aim for 100% availability of software, this is an unrealistic
goal as no software can always be up all the time. Various factors outside
software code cannot control the uptime, such as maintenance, upgrades,
natural disasters, etc. This is one of the anti-patterns that impact reliability.

That means you are quoting 100% of the availability and reliability of your
system, which is unrealistic.
As mentioned in the previous chapters, no system is perfect, and there will
be outages. Overquoting reliability as 100% is a false expectation to end
users and the teams involved in building and supporting. To maintain 100%
reliability, you need a fully automated system, no issues, and highly skilled
teams, which is impractical and unsustainable.

Pinpointing or no blameless post-mortem
SRE aims to ensure the system's reliability and availability. With recurring
issues in the system, SRE learns and trains its automation to fix issues
before they are noticed by end users. For issues occurring in the system, if
SRE teams started investing time in finding the team who impacted or
introduced the system, that wastes SRE’s time and effort; rather, this time
can be used to investigate and remediate. One of the best practices for the
SRE culture is blameless post-mortems, and not doing the same creates an
anti-pattern for SRE. Here, SRE does not focus on the cause of issues,
which can mislead the investigation and impact the solution for the issue.
The preceding few anti-patterns are some of the common anti-patterns in
the SRE world that impact the SRE's day-to-day job and, in turn, impact the
reliability of the system. There are various best practices for SRE to follow,
however, depending on the type of project and software system, not all
these practices can be incorporated in the system. However, all anti-patterns
should still be avoided to focus SRE on innovation and building a reliable
system.
Anti-patterns are like traps that might compromise the system’s stability.
Sometimes, the team knowingly introduces an anti-pattern, or other times; it
is a ripple effect of one process break. These pitfalls not only impact the
system's availability but also add extra cost to the project.

Conclusion
In this chapter, we understood what anti-patterns are and how anti-patterns

impact the system. This chapter also explained different anti-patterns in
software engineering that impact SRE and eventually impact system
reliability. This chapter is a baseline for the next chapter, which will provide
detailed descriptions of anti-patterns and how these anti-patterns can be
avoided.
In the next chapter, we will help you understand more about the solutions to
all the problems that you read in this chapter, such as anti-patterns that
impact the reliability of software.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 5
Types of Anti-patterns

Introduction
Patterns and anti-patterns are both part of the software development
lifecycle (SDLC). It is seen in planning, software development, and the site
reliability engineering (SRE) approach. It is essential to identify anti-
patterns so that appropriate actions can be taken to solve and avoid these
issues or gaps. The previous chapter helped us understand anti-patterns and
why they are bad for any software development organization.
In this chapter, we will discuss the different types of anti-patterns and how to
recognize them. The chapter will also explain the solutions to these anti-
patterns. Additionally, we will understand the various ways to overcome
challenges for efficient SRE practice. The chapter explains on the hidden
roadblocks to SRE practices. And how it impacts overall system
performance and resiliency.

Structure
The chapter covers the following topics:

Types of anti-patterns
Anti-patterns in system reliability and scalability

Hidden roadblocks to the SRE path
Real time scenarios of anti-patterns and solutions
Key takeaways

Objectives
By the end of this chapter, you will understand anti-patterns in SRE in detail
and how to overcome those anti-patterns to build and deliver effective
solutions through SRE practices. You will also learn some of the hidden anti-
patterns and challenges and how to identify those hidden gaps in the SRE
process. This chapter aims to help you understand the correct identification
of pitfalls and the solution. This chapter will help you implement some of
these solutions and best practices in the real-world SRE model for quality
and reliable product delivery. No solution fits all, but it can help you create
solutions. Though the chapter will explain anti-patterns across different
phases of the SDLC journey, it is presented from the lens of SRE.
The SRE team is responsible for maintaining the system's reliability; they
are owners of the production/live system. So, any anti-pattern or bad practice
as part of SDLC will ultimately impact the live system, affecting the SRE
journey.

Types of anti-patterns
Anti-patterns are some of the mistakes and unseen gaps that lead to
roadblocks in SRE best practices and methodology. It is essential to identify
and address the gaps. Also, find solutions to overcome and avoid such anti-
patterns in the future. Before moving ahead to understand more about anti-
patters, let us re-visit the SDLC model and SRE’s position in SDLC.
The following diagram explains the SRE landscape in SDLC:

Figure 5.1: Position of SRE in SDLC

Let us move forward and briefly review some of SRE's best practices. There
are multiple other best practices derived from the standard practices as
follows:

Analysis of changes holistically. This needs a robust change
management process.
Eliminate redundancy by automating redundant tasks. This will save
time and effort and remove human error.
Expanding skill sets is part of a strong culture and communication. This
can be followed only if the right technology and processes are used
within SRE.
Learn from failure. This means you need a good knowledge base tool,
strong defect management, strong incident management, and a defined
process.
Define clear service level objectives.

This is the process of SRE planning as shown in the following figure:

Figure 5.2: Best practice for SRE

Anti-patterns are sometimes attractive, accessible, happy paths but
eventually create roadblocks. So, in simple language, you can call it a short-
term quick fix that impacts your system in the long term.
Anti-patterns are not problems of just today’s modern software development
model; it is also common in legacy systems. Some organizations are still
using their legacy systems, and there can be multiple reasons for using the
legacy system in the era of cloud and AI, such as the system works well
enough, it is small software so easy to maintain, updating the system is
challenging, so no one wanted to do that, insufficient funding, limited
compatibility with new systems, etc.

The anti-patterns in legacy systems are:
Software systems are tightly tied to operating systems. That impacts its
capability to port or migrate to the new model.
Monolith architecture is a software application where all components
are integrated into a single unit. It might be good for smaller software
but can become an anti-pattern for large systems where it can be
difficult to scale and manage large systems.
Sequential flow (lack of request-response in service communication),
where an update in one service requires to hold full software
application.
Old business processes.

For some organizations, using legacy systems is a requirement, and it is no
harmful to use legacy systems. If organizations can identify some of the anti-

patterns and solve these, it can help them build performant systems with
legacy applications, too.
Let us discuss some of the anti-patterns in the SRE journey at different
phases as follows:

Anti-patterns in service design
Service design is one of the initial phases of SDLC, and design is the
backbone of any software application. The more time spent in planning and
designing any application, it helps build a reliable system. Addressing some
anti-patterns during the design phase can help you avoid many roadblocks in
the SDLC journey.
Let us discuss the following anti-patterns in service designs and how we can
identify them:

One service has multiple dependencies: One service where multiple
other service depend for input or output data. However, it does not seem
like a roadblock, and it is ok by design to have a service that can be
treated as a master service where multiple other services depend.
However, this can be turned into an anti-pattern when your system
grows. When the system grows, various other services are onboarded to
the existing application, and that one service still has a server master
role; that can become a bottleneck if some bug occurs in that service.
One service will lead to disruption to multiple other services.
Sometimes, during the initial design, developers or designers need to
visualize expandability, which leads to a roadblock. To avoid such anti-
patterns, developers should design services in a way that can be broken
down in the future if required.
To identify this anti-pattern, you must first list the repetitive issues; out
of those issues, identify the services failing frequently and the root
cause of failure. Suppose the frequent shortcomings are in the master
service. In that case, it is your first step towards identifying such a
service and taking appropriate action, for example, dividing the service
into two to share the load. One of the solutions to this problem is using
microservice architecture, where services are broken into smaller
independent purpose-specific services.

Single data source: All services depend on input data from one data
source that acts as a source of truth. This anti-pattern does not have any
pitfalls or roadblocks. However, any problem in data sources can be a
bottleneck for all services and applications. Let us assume there is one
database that feeds data to all services, and depending on that data, all
application services perform their functions. Now, issues in one data set
can also block further application processing.
To identify that a single data source can be an anti-pattern, first list
down the issues creating roadblocks or outages in the application, and if
issues are reoccurring due to data sources, then you need to either
redesign application data flow or correct wrong data.
Another way to identify this anti-pattern is a periodic review of
application design. If your application consists of multiple services and
is on the path of growing concerning data and new services, then you
should consider eliminating a single data source. Either break down into
two or three data sources or remove the dependency of one data source.

•	API versioning: It means maintaining different versions of your APIs.
Mostly, all software organizations follow best practices and version their
code. However, versioning APIs should not be overused. Sometimes, as
per requirements versioning API is required but versioning should be
limited. In ideal scenario even if the underlying service changes, the
API should never break and return the result with all service versions.
There can be a debate on whether APIs should be versioned, and here
are the reasons for limit the versioning of APIs. For large software with
microservice architecture that has multiple services with multiple APIs,
these APIs are interfaces built to pull or push data from underlying
services. Versioning API can create a cumbersome source code. If you
create different versions of API as per the underlying service version,
every time during deployment same version of API and service has to
be deployed. If changes are needed to the API, they should be
overwritten rather than maintained versions.
API versioning is considered an anti-pattern because it makes source
code challenging to manage and deploy, requiring developers to invest
unwanted effort and time, which is not the best practice. However, to

note versioning APIs is not always wrong. Creating various versions of
single APIs and versioning all APIs can be an anti-pattern for the reason
mentioned above. Versioning APIs can be useful in following scenarios:
o	 In a project where same APIs must return different data as per

requirement. In such cases maintaining different versions of API can
be a best practice.

o	If a software application has compatibility issues with one version of
API, so its ok to keep different versions of API but a temporary
solution until the underlying issues are fixed.

o	If a software application has grown large overtime and it already has
multiple versions of multiple APIs, then the solution is to use some
tool to maintain and manage those versions.

You should always incorporate best practices while designing services. As
mentioned, this is the initial and critical phase in SDLC. Even after
following best practices, you may see anti-patterns that impact the delivery
and reliability of software. These anti-patterns in service design can be the
root cause of compromised reliability. Above highlighted are some common
anti-patterns that affect the system’s overall performance and reliability. One
of the best practices is to regularly review your service and overall product
to identify any roadblocks and find solutions accordingly.

Anti-patterns in monitoring and observability
Observability is a backbone for efficient SRE practice. Without observability
organization can never achieve software reliability. Observability means
observing your system and reacting (or solving) to the anomalies or
problems before the end-user notices. There are various best practices SRE
teams should follow while designing their observability architecture, but
here, you will understand some of the anti-patterns that organizations should
avoid while implementing observability.
The following are some of those anti-patterns:

Excessive logs with no structure: This is one of the anti-patterns that
impact observability. Logs are an essential piece of observability and are
the first point of initiating root cause analysis. However, when your
application logs huge amounts of data, it becomes difficult to analyze

the logs and pull any useful insights. Then, it becomes an anti-pattern,
which creates a roadblock for SRE teams to investigate any error.
Excessive logs analysis is time-consuming; with proper structure in
logs, it becomes easier to identify any trigger events or errors in logs. To
avoid such a situation, developers should always add event codes to
analyze the mistakes or categorize them based on severity and
timestamp. As mentioned, anti-patterns in software development can
create roadblocks for SRE. It is essential to understand and remove
these anti-patterns, for example, categorizing logs.
Noise in alerts: It is similar to excessive logs, where excessive alerts are
considered noise and impact monitoring systems. Too many alerts only
sometimes mean better visibility; it can be overwhelming for SRE teams
to monitor too many alerts. It is an anti-pattern as these false alerts
misguide analysis and overload the system. If your application is
alerting every second and most of these alerts are not required, then it is
a signal that SRE teams should review their monitoring model. SRE
teams should collaborate with development teams and identify such
noise in the system. Some of the alerts can be improved by changing the
code, and some can be improved by correcting the configuration in the
alerting system. For example, repetitive sev4 alerts are firing, but the
application does not see any underlying issue. It is an example of a false
alert.
Multiple dashboards and monitoring tools: Using the latest tools to
monitor your system is helpful for the SRE team. However, using
multiple tools and different dashboards to monitor applications can
become an anti-pattern and a roadblock. Too many tools and dashboards
will confuse SRE teams and consume a lot of time, as SRE teams will
have to jump to multiple places to investigate any issue that can hinder
the analysis and delay the solution. It is also an added cost to the
organization. Sometimes, even after proper planning, organizations
onboard new tools, and teams create multiple monitoring dashboards as
the requirement grows. After some time, it becomes challenging to
maintain numerous dashboards. Tracking, managing, and keeping these
dashboards requires extra effort, time, and cost. So, the SRE team

should regularly review the requirements of tools and eliminate tools
that are not necessary. The team should always try to club multiple
dashboards to give a unified view for better observability. For example,
configuring multiple open-source monitoring tools is more expensive
and time-consuming than purchasing an enterprise tool that can fulfill
all requirements at a lower price.
Using wrong metrics to measure the system: Metrics are a critical part
of SRE. It helps you measure your system, so you must choose these
metrics carefully and adequately. The more metrics you have for every
service, the better you can measure and understand your system.
However, sometimes right metrics are used with wrong data sampling,
which can mislead the system's performance. Incorrect data sampling
means collecting data during the wrong window or collecting very few
samples that impact performance measurement. For example, a job runs
in a system that saves some data in the database. The job always takes 1
hour to complete. The anomaly detection tool takes data sampling of 30
minutes and generates anomalies if jobs run beyond 30 minutes. Though
the data model works fine for other jobs, this needs to be corrected for
data sampling. Various tools available in the market help automated data
sampling and anomaly detection.
No correlation in alerts: As your system grows, it means more
services, which means more logging and alerting. As a SRE team, you
will try to implement tools that help you monitor and self-heal alerting.
However, if your alerts are not co-related, they can lead to a roadblock
in investigation and analysis. Co-related alerts are different but
generated due to the same issue, or the system triggers multiple alerts
due to an outage in one service. If your monitoring system is not
advanced enough to identify these correlated alerts, you can miss some
vital information or be misguided. This is an anti-pattern as it impacts
SRE’s ability to identify the right alert on time and delay the required
action on that alert. Correlating alerts is not straightforward. As part of
the root cause analysis, the SRE team should list down the alerts
triggered by the system and feed this data to the monitoring system to
correlate the alerting. This is a reactive approach to solving problems.

SRE can also follow a proactive approach in collaboration with the
development team. Where identifying the errors or alerts a service and
dependent service will throw for any failure. That will help the SRE
team to determine the correlated alerts.
Ignoring upstream and downstream monitoring: To have a 360-
degree view of your system, you need to monitor the system from all
aspects. That means monitoring upstream and downstream systems
talking to your software application. Sometimes, upstream and
downstream systems do not fall under project or organization purview,
so you should consider monitoring incoming and outgoing data and
services. Organizations with mature SRE model pay a lot of attention to
monitoring; however, sometimes, they ignore systems that interact with
their system. Your software can encounter issues even due to impact on
downstream and upstream systems, so monitoring the interface between
your system and other upstream/downstream systems, data flowing, and
network traffic is crucial. This is also one of the hidden roadblocks that
SRE teams ignore unknowingly. Even after implementing monitoring,
applications fail reliability.

To solve some of the aforementioned quoted anti-patterns there are various
solutions, such as:

Excessive logs you can categories logs: Logs can be divided into info,
debug, error or warn at code level. Along with that there are various
tools today that help categorization of logs on top of what you already
did in code. Example Datadog it helps in log aggregation for effective
handling.
Noise in alerts: The actual fix for false alerts is in underlying code.
However, there are some tools that can help grouping alerts to reduce
the noise. Example ELK stack, Kibana can help creating expectations
rules in alert config to eliminate false alert firing
Co-related alerts: Where multiple alerts or events that are generated
due to one problem and all these alerts are grouped in single, this
method is co-relating alerts. This is very useful in monitoring and
observability. Using AI to corelate alert is one of the upcoming
solutions.

Anti-patterns in release and deployment
Release management and SRE go hand in hand and are tied together. A
defined release management process ensures the system's reliability,
empowering SRE to maintain the system through best practices. Due to their
dependencies, anti-patterns impact SRE in release and deployment.
Some of the common anti-patterns in release management are:

Environment inconsistency: Having different versions of code in the
test and production environment is an anti-pattern as it breaks the best
practice model of release management. Inconsistent environments make
it difficult for the team to investigate issues, and tracing back any issue
is time-consuming. Ideally, the test environment version should get
deployed to production; however, if you are testing a different version,
then what is running on production is different than the actual testing,
and you will not be able to catch issues on time. The release
management process should be able to identify version discrepancies
between testing and production environments and block anything in
production that is not tested. There are various tools that can help
maintain environment consistency across multiple environments. These
tools are called as infrastructure as a code (IaaC/IaC) tool. IaaC tools
are used to automate infrastructure provisioning and management.
Example Terraform, Ansible, AWS CloudFoundation, Puppet, Chef and
others, these tools can help automate configuration of infra and the same
configuration can be applied to all environments without any manual
intervention.
Lack of automation: After DevOps, release and deployment have
advanced from a traditional approach to a modern one, which is all
automated. However, sometimes projects still follow a manual
approach. Big projects with multiple services running on different
infrastructures sometimes land up into release and deployment, which is
a mix of automation and manual. There can be reasons for automation
and manual mixed approach, but this can lead to an anti-pattern.
Managing deployment manually for big projects can delay project
delivery, is challenging to manage, and is error-prone and time-
consuming. This can lead to issues in delivery in a production

environment. To solve this problem there are various tools available also
in-house automation works best.
No gating for changes: This anti-pattern is linked to the previous lack
of automation. Manually triggering the release and deployment pipeline
will lack automated gating, which means someone has to validate the
changes going into the system and approve them manually. Manual
validation always needs the knowledge and skill of the approving
person. This dependency on a SME is time- and effort-consuming and
can also be a roadblock. With fully automated release and deployment,
gating is built-in, and code is deployed into production after validation.
The most common and effective tools that can help automate CI/CD are
Jenkins and GitHub Actions.
Using multiple tools: It can lead to an anti-pattern if not planned
systematically. By nature of big projects, multiple tools are required for
release and deployment; however, if tools are not planned, it can lead to
a roadblock. Multiple tools require a lot of managing, as they follow
different standards for CI/CD, and this involves collaboration among
various teams developing the code. In an ideal scenario, an organization
uses one tool for release and deployment, but big software solutions that
run on different infrastructures require tools that support their
deployment. For example, an application with microservice architecture
consisting of various sub-systems/applications running on different
infrastructures. Though the application product is considered one,
underlying code and sub-systems are running on different infra and need
different tools to run the release and deployment pipeline. Having
multiple different tools for one project can create confusion and require
strong collaboration, extra cost of maintaining tools, time, and effort.
This can delay the delivery of the application and can compromise the
quality.

Anti-patterns in change management
It is often the unspoken aspects of organizational changes that lead to
software failures. Changes are inevitable and required for your software's
growth, so yes, if you do not make any changes in the system, it will never

break. Release management and change management go hand in hand.
Change management decides the changes to be applied in the system, and
release management executes those changes. As both impact the production
environment, any anti-pattern can create a roadblock for SRE. Change
management controls software application changes and is a critical part of
software delivery to end users. Any anti-pattern in change management can
disrupt running software and impact end users.
The following are some of the anti-patterns in change management:

Absence of documentation: Documentation is one of the critical parts
of change management, as it defines and categorizes changes.
Organizations always document changes as best practice; however, they
sometimes need to document ad-hoc changes, which is an anti-pattern.
If ad-hoc changes break the system, then it will be difficult to track
down the changes and what went into the system. If similar changes
come in the future, due to the absence of documentation, you cannot
track or pull evidence that the change created an issue in the system. It
is important to plan your change management tool that can document
planned, unplanned, and ad-hoc changes.
Lack of prioritization: One of the most fundamental yet impactful
parts is missed by teams, leading to a pitfall if no clear prioritization is
called out in the change process. This can continue to release and
deployment also. When your application is extensive with multiple sub-
systems, upstream and downstream, there will be various changes
required to go into the system. Some changes are priority over above,
but if change management does not have a clear process on how to
prioritize, it can lead to hours of discussions, misleading, and a waste of
time. There can be chances to miss high-priority change and let go of
priority change. These all are examples of anti-patterns in the change
management process. It is essential to clearly define the priority in the
process; you can solve this problem by using tools available today to
determine what priority is for your system. For example, there are ten
changes listed, including security vulnerabilities, code changes, and
version upgrades. Security vulnerability changes are a priority as if not
taken on time; it can compromise your software security. Your tool

should be able to identify the category of the change and approve it
without spending time on discussions.
Too many changes in a day: As discussed earlier, changes are
inevitable, and if your software is on a growth path, there will be
multiple changes. However, too many changes can sometimes lead to a
bottleneck for the software development team and SRE. Approving
various changes in a day, including operating system upgrades, security
patching, bug fixes, and certificate renewals, can conflict with each
other, and it sometimes becomes difficult to investigate the root cause if
any failure occurs by any of the changes. It also demands time and effort
from release and SRE teams as they must implement and validate the
changes. This anti-pattern is connected to prioritization. Prioritization
controls change and help DevOps and SRE teams plan changes. Several
changes in a day should be defined as part of the change management
planning phase, and you should always keep a window for ad hoc
changes.

Operational anti-patterns in incident and defect management
Incident and defect management are pillars of an SRE best practice. It would
be best to have planning and the tools to incorporate incident management.
Any anti-pattern can impact the SRE process and, in turn, impact software
application reliability. Though organizations follow best practices for
incident and defect management, however, there are some anti-patterns that
are sometimes hidden.
The following are some of the anti-patterns:

No correct prioritization of incidents and defects: Prioritization is
critical in any aspect of SDLC. When you have big projects, multiple
teams, and a huge customer base, prioritization of tasks becomes one of
the key factors. And missing the right priority is an anti-pattern. The
operations team receives multiple incidents and defects in a system
daily, and if SRE teams do not define the correct priority, it will lead to
a pitfall. Teams will not be able to identify what incident to pick first for
resolution, nor will they be able to identify the defect that needs to be
fixed by developers. Sometimes high-priority incidents will be lying in

the operation’s queue while the team is working on low ones. The same
is true for defects; if the ops team identifies defects and does not assign
the right priority, developers will not be able to fix the critical bug on
time. Prioritization also defines the escalation process, and no correct
priority will block that escalation. Priority has to be defined and
implemented at the very beginning of the SRE process.
No workforce assignment process for the incident: This is not an
important factor, but this is one of the biggest anti-patterns in big
projects. Tools must automate incident management and assignment, but
sometimes organizations ignore this part, creating an anti-pattern. When
there is no proper assignment of team members for incidents, it creates
chaos. Multiple members might work on the same incidents, or
incidents are not at all acknowledged by any of the team members; there
can be confusion in handing over incidents in operational shifts. This all
can lead to unattended issues in production that can impact end users.
Multiple channels for receiving incidents: Receiving incidents from
multiple channels can create chaos, making it difficult to focus on one
channel, and the chances of missing incidents are higher. If there are
multiple channels, such as email, incident management tools, SMS, etc.,
the ops team will not be able to focus on one of the channels, which can
lead to repetitive effort or might miss these incidents. If there are
multiple channels, then they should be linked to each other so that if the
ops team acknowledges an incident on one channel, there should be an
automated back to all the channels for that incident. The best practice is
to avoid multiple channels.
No automation for defect management: defect management is mostly
automated in organizations; however, creating defects when it is manual
leads to anti-pattern. When you have a big software application with
frequent code changes, it depends on the fast-moving requirements.
Code changes also lead to defects in the system. If you do not automate
the creation of defects, your ops teams can miss tracking those defects.
Let us take a scenario in a day of ops teams; during monitoring they
identified a significant bug in the system, and a few support members
started resolving or circumventing it. In parallel, other ops members

identified two more noncritical bugs. The team was busy monitoring
and circumventing significant bugs, so they forgot to create the low-
priority defect. After a few days, one new code change impacted this
former low-priority defect and created an outage. As the team forgot to
create and track defects, the issue was not caught on time and affected
end users. This is an example of anti-pattern impacting software
reliability.

There are some good tools available to solve the issues of automation in
incidents and defects, such as PagerDuty, ITSM, Opsgenie.

Anti-patterns in error handling
Error handling is mostly part of development best practices. However,
development teams sometimes do not handle errors correctly. Not planning
error handling can be an anti-pattern impacting SRE during an issue's
investigation.
The following are some of the common anti-patterns in error handling:

The common anti-pattern is incorrect categorization: Errors are not
correctly categorized in code, such as the error logs being printed as info
logs. SRE will not be able to monitor and catch these errors correctly.
Not handling errors: It is also an anti-pattern for software engineering.
It impacts the system in production, ultimately impacting reliability.
Not printing the correct message in logging: This will mislead the
operations team who is monitoring the system.

Errors and logs are the critical part for investigating any issue and not having
the right logs or lack of structure can consume lot of time in finding the
solution to any issue. Let us take an example where error logs are getting
printed in warn logs. SRE team started investigating one issue using logging
tool. In the tool SRE engineer filtered on error logs, as the actual error logs
were printing in WARN so engineer was not able to identify the actual log
and thus no solution to the issue.

Anti-patterns in communication and collaboration
Collaboration is the key to today’s SDLC model. DevOps and SRE are all

new methodologies based on collaboration and clear communication. Any
anti-pattern in collaboration can lead to real pitfalls and roadblocks in the
SRE journey. Some of the common anti-patterns are:

No clear channel for collaboration: All the teams in SDLC should use
technology and tools to communicate and collaborate. Not using a
transparent platform or channel can lead to an anti-pattern, as it creates
confusion, lacks proper tracking, and is time-consuming. Let us take a
scenario where the development team needs to collaborate with the SRE
and ops team. There is no explicit channel, so some team members are
using internal communication tools used in the organization, a few are
using email, and some are just using phone call options. Each of these
members is tracking conversation locally by their means. One of the
conversations is about updating certificates in code that are about to
expire. The SRE member tracking conversation went off, and the certs
were not updated on time, creating an outage in the system. This is just
one example of needing a clear channel for communication.
Not automating collaboration outcomes: Collaboration tools help
SDLC teams to break silos and work together. Though organizations
today use modern tools however, not tracking the outcomes of
collaboration can lead to anti-pattern. Teams are collaborating to solve
the problem, the problem is solved, but they need to track the steps
taken to solve the problem. The next time, the same issue happened, and
the team had to sit and find the solution again and invest their time in a
repetitive problem that was solved in the past. Teams collaborated to
create a new system design for a requirement; they created the design;
however, brainstorming points were not tracked down. When a similar
design requirement comes in, teams will have to start from scratch,
which is extra time and effort. Though this does not seem an anti-
pattern, it takes time and effort from SRE teams, which can be utilized
for other purposes.

Anti-patterns in culture and teamwork
Culture is an important factor; however it is difficult to build in teams.
Culture does not change overnight, and it requires planning and effort, which

takes time for any organization to reflect on. Having anti-patterns in culture
and teamwork can negatively impact the system. So, it is very important to
identify some of the common roadblocks in culture and teamwork as
follows:

Not using technology to instill culture: To follow a specific culture in
a team, leadership has to push teams to use best practices. However, if
organizations use technology to mandate best practices, they can have a
better chance to build a particular culture, as elaborated in the following
example:

Organizations want to build a blameless approach and teamwork
culture. The leadership defined the process of blaming, but only on
paper. When an outage occurred, SRE and three dev teams
collaborated to solve the problem. However, due to the absence of a
tool, no one tracked down the issue. During root cause analysis or
post-mortem sessions, teams started pointing out issues, but as no
evidence was captured, they were not able to identify the real root
cause. The issue rotates between different development teams, with
each team pointing out and blaming others for their code. It created
chaos and demotivation among teams, and there was no RCA. It is a
waste of time and energy for teams. On the contrary, if the tool is
being used to track all the points, teams can refer to that later and
find RCA without pinpointing.

No teamwork model: All organizations today function on teamwork. A
lack of teamwork can create uncertainty in the delivery of the project.
Not defining the teamwork model for a team is a big anti-pattern,
especially for SRE. When the teamwork model has not been specified,
that means there is no proper tracking of work, the load between team
members is not shared, few members are working in silos in the team,
others are in multiple groups, and there is no acknowledgment of
teamwork outcome, etc. Just asking your team to work on some tasks
together is insufficient in today’s fast-paced world. Leadership needs to
define when and on what tasks team members need to work together,
whether teamwork is required within teams or with external teams, what
the timelines for teamwork should be, and how the teams divide

individual vs. team effort. Not having this model can lead to a roadblock
for SRE as their model is based on solving problems, culture, and
teamwork.

Organizations should build strategies around building the right culture for a
blameless approach, better teamwork, and transparent communication. Some
of these strategies are:

Root cause analysis model- each issue should be closed only after RCA
is completed. This will help cross-functional teams to collaborate and
avoid blaming.
Feedback loop model- teams providing feedback to each other as a
regular process to ensure transparency.
Same metric model, all teams in software engineering should have the
same end goal, and their metrics should match. That will help the team
foster and work toward one goal and help avoid conflicts.

Anti-patterns in system reliability and scalability
Anti-patterns are roadblocks. Any roadblock in software development
impacts delivery, affecting system reliability and scalability. Some examples
are poor practices followed by a quick fix, bad design, and not following
processes, which might resolve the issues quickly but compromise quality
and impact long-term solutions. Such practices are anti-patterns and create
topics. In the previous section, you discussed identifying different anti-
patterns, and each of them establishes issues with scalability and reliability
as follows:

Anti-patterns in service design: It means not following best practices.
Design is the critical phase that defines a system’s baseline. Any
antipattern in design creates issues in software or interrupts software
development progress. Bad designs introduce bugs in code or make it
difficult to identify bugs that break systems. Even if solid monitoring is
implemented, if the underlying code is terrible, it will create defects and
outages, which decrease the system's reliability. If bugs are not caught
on time, it impacts software reliability as end users will be affected.

Anti-patterns in observability and monitoring: The impact of the
capability of SRE to observe and investigate issues in the system is as
follows:
o	 Observability is the key tool for SRE: Observability and

monitoring are tools that help the SRE team monitor alerts and
anomalies and catch issues on time. Sometimes, they resolve these
issues or collaborate with other technology teams to fix them. Any
anti-pattern in monitoring blocks the ability of SRE to monitor and
observe the system.

o	Multiple levels of gating in SDLC in the form of best practices:
Let us say you introduced an anti-pattern during service design, and
if you have best practices for observability, you can still catch issues
on time. However, if there are gaps in monitoring and observability,
you cannot identify and resolve issues on time. That will create an
outage in the system and impact the end user, blocking the system
from scaling.

Anti-pattern in release and deployment : Means not controlling bad
changes in the system. Bad changes in the system are the natural killer
of software reliability and scalability, and release management plays a
critical role in managing code releases in a system. Daily changes exist
for extensive systems with 1000 microservices, and an anti-pattern in
release management can negatively impact the system. Not following
best practices as part of release management can introduce bad code
deployment, and bad code in production can break the system or create
an outage. Let us tie this up with an anti-pattern in service design. Bad
design can introduce bugs in code, such as performance issues. With
strong release management, SRE teams can stop bad code deployment.
Some anti-patterns in release and deployment are created during the
release cycle only, for example, deploying the wrong version of code in
production. This is no issue with the underlying design, but we did not
follow best practices and released the wrong version, which had
problems. An evil code version can create issues in the system or an
outage that will, in turn, impact the system's reliability.
Anti-pattern in change management: It means not managing changes

correctly. Change and release management are tied together, impacting
software due to not controlling bad changes. Change management tracks
changes, and release management builds and deploys those changes into
the system. Anti-pattern in the change process means no control over
what is going on in the system and no prioritization. It might not
directly create bugs in the system, but it can mislead SREs and impact
their ability to invest their time in solving critical issues, indirectly
impacting reliability.
Anti-patterns in incident and defect management: They directly
impacts reliability as they are best practices for SRE and ops. These
anti-patterns might not create a bug in the system, but these are reactive
and proactive measures to catch and resolve issues in the system. Any
bad practices in the incident and defect management process will block
the ability of the SRE team to identify and fix defects or bugs early. This
impacts the two main metrics for reliability, MTTR and MTTD.

For example, there was no proper prioritization of incidents. Due to
this, one critical issue was not picked by the team for resolution,
which created an outage in the application, and end users could not
access the app. This decreased the reliability of the system.

Anti-patterns in error handling: They are purely the way software
developers handle errors in code. As mentioned in the previous section,
if errors are not logged correctly, they will mislead the SRE or ops team
in the investigation. Any issue that can be solved in less time will need
more time in troubleshooting and finding a solution without proper
logging.

For example, a developer logged an error in an info log. During the
issue investigation, SRE, ops, and dev teams did not look at info
logs; they focused on warning or error logs. This misled them, and
they could not identify the root cause or origin of the issue on time.
This brought down a few services in the system and impacted
reliability.

Anti-patterns in communication and culture: It is an overlooked but
high-impact roadblock in organizations today. The culture of following

best-practice, blameless post-mortem, not working in silo, collaborating,
transparency between teams, resolving issues proactively, and many
more. The tone and culture have to be set in the beginning, and leaders
in the team should initiate an ongoing process. Sometimes, technology
cannot solve the problem of culture, which impacts the daily activities
of team members and, in turn, has a broader impact on the system.

Hidden roadblocks to the SRE path
In this chapter, we discussed various roadblocks in the software development
lifecycle model that block the SRE path to maintain the system's reliability.
As said earlier, no one size fits all; all anti-patterns and their solution will
differ between organization projects. However, some of the best practice will
help achieve and maintain the reliability of your software. This section will
further help you with hidden roadblocks impacting the SRE journey. These
hidden anti-patterns are sometimes very lucrative and provide a quick fix to
the problem. However, in the long term, these become significant
roadblocks, and removing these roadblocks is way more challenging than
solving the issue in the beginning. We will discuss some of these roadblocks
in detail as follows:

Culture
The culture of an organization defines success. A good culture promotes
collaboration, empowerment, growth leadership, teamwork, continuous
learning, and work-life balance. Anti-patterns in culture are hidden
roadblocks that sometimes organizations overlook. Culture building is an
ongoing exercise; it takes time to build a certain culture and have all
members follow it. During the culture change process, sometimes, a few best
practices are ignored, impacting technology and business.
Let us take a scenario of an organization onboarded a project to modernize
its old e-commerce software and move to new technology. The project
started with all the latest tools stack, best practices for software design,
software development, and SRE. All teams involved in the project tried to
minimize anti-patterns, and they were able to implement some of that

successfully. However, the software started seeing multiple minor bugs. SRE
ops teams started circumventing all issues to avoid customer impact but did
not get time to do and follow RCA with the development team. Over a few
months, no RCA turned into a blameful approach within teams. SRE teams
used to move bugs to the development team’s queue and blame them for not
having quality code, and the development team got overwhelmed with
defects. And somewhere in this process, fixing and resolving issues were
lost. Customers started experiencing many problems with the application,
and the organization lost many customers to competitor applications. This is
an example of not having a blameless approach (this is a vital cultural pillar
for DevOps and SRE teams).
The example is a hidden anti-pattern in culture. Organizations followed best
practices but overlooked one critical RCA practice, which created a bad
culture among teams.
Culture is a critical factor that can positively or negatively impact if not paid
attention to. One small lousy practice can lead to other harmful practices and
ruin the good culture in the organization. If we take the above example,
where teams start blaming each other for system issues, they get frustrated
and do not get enough time to fix the problem, leading to a roadblock in
continuous learning. Not having continuous learning is another hidden anti-
pattern within the organization.
All these bad practices block growth, impact quality delivery, impact
software performance, and ultimately impact the end user.
The above scenario can be addressed by working together between the SRE
and developers to identify the issue and fix it rather than putting all the load
on just one team. Collaboration and transparency can help a lot. Involving
SRE in the beginning of functionality design gives a production perspective.
It also gives SRE visibility into the effort put in by development teams to
build any feature. It will help create a healthy culture of collaboration
between teams.

Measurement and choosing the right metric
If you cannot measure it, you cannot improve it. Metrics are an essential part
of any SDLC process, and for SRE, it is one of the pillars. As part of best

practice SRE, teams create metrics to measure the system's performance, but
if the right metrics are not chosen, it can be an anti-pattern. The hidden anti-
pattern is incorrect metrics. The SRE team uses two standard metrics to
measure the system's reliability, MTTD and MTTR. The key to using these
metrics is how you see issues in your system, and if you do not choose the
right underlying metric for these two, it can mislead the measurement.
Though you are measuring your system, sometimes the denominator,
baselines you choose, do not give you the actual measurement of system
performance. This impacts overall system reliability. For example, MTTD
measures the meantime taken to identify defects or bugs in the system that
impact the customer. You need to prioritize the correct defects to be able to
measure the meantime taken for actual impactful issues.

Unrealistic SLO, SLI, and SLA
SLA, SLO, and SLI measure the high-level performance of any application.
These are service level agreement, service level objectives, and service level
indicators that help organizations measure the system's performance from a
high level.
Note: MTTD and MTTR are more granular.

Each organization wants 100% availability and reliability as part of its SLA,
but systems will always have issues. Sometimes, that impacts the SLA badly,
even unnoticeable to end users (for example, one user sees the app hang
intermittently). However, keeping your SLA 100% availability will put a lot
of pressure on SDLC teams to follow it. These are unrealistic measurements
and sometimes turn into anti-patterns that you might be unable to identify.
For example,100% availability SLA. Dev teams are pressured to use best
practices and solve all the issues before the end user notices. The SRE team
should be able to catch problems and circumvent them, even if some are
minimal issues that the customer may overlook. However, this will put
pressure on teams and overwhelm them with work. They will end up
compromising the quality with a quick fix. All these compromises will
create a roadblock to the system’s performance.

Reusing tools

Reusing is always beneficial either in day-to-day life or in software
development organizations. Today, there is a lot of focus on reusing software
to avoid extra costs and effort. However, sometimes, organizations overlook
the reuse as the use cases do not match. Not reusing the
tools/services/software can create silos between teams, and that is one of the
significant anti-patterns in today’s software organizations.
Each team builds tools, services, and capabilities for big organizations with
multiple products. Being different products, the use cases between products
differ. So, to save time analyzing and identifying commonalities, training
teams choose patches built from scratch. It might save some time and give
more ownership to teams who are building. Still, in the end, organization
land up having multiple similar tools, no standardization, teams not
collaborating, and working in silos. However, this helps individual teams to
deliver the expected but is a roadblock to the overall organization from extra
cost effort. And if an organization suffers from technical debt, it will impact
software delivery.

Real time scenarios of anti-pattern and solutions
This section will explain some scenarios from real software projects that
block development and delivery. It will also provide solutions for
overcoming those roadblocks in the SDLC journey focused on SRE as
follows:

Single data input
A software organization picked a real estate project. The application will
manage viewing, renting, selling, and virtual tours of the property. The
organization already had legacy software that it wanted to migrate to the
cloud as part of this new real estate project.
The following steps explain the software development lifecycle (SDLC)
model and the problem in the model:

1. The technology teams were formed, and the planning phase started.
Some old services were moved to the new cloud, and others were built
from scratch. The decision on the tool stack was made.

2. As a further step, architecture designs were created. Various other
processes were outlined, such as agile, PI planning, release
management, and change management. Best practices across all the
phases and teams were followed to build and deliver the software
application.

3. The first version of the software was rolled out to customers, and the
rollout went well. The development team had a sprint model, where they
released new features in code every two weeks. After two weeks, the
second version of the feature rollout created some issues in the software
app, and customers could not search for the required data.

4. After investigation, it was identified that the data store service moved
from an old platform to the new one is creating the issue. The old
system was monolithic, and all data was entered manually into this data
store. The same data store was moved to the new system, too, but with a
manual process of updating data. So, engineers manually change the
data store whenever requested, and after the change, dependent services
use the updated data.

5. Eventually, the data store becomes a bottleneck and the reason for data
issues in software. SRE started seeing problems in the system, and this
data store became a pain point for SRE. This decreased the system's
reliability. Teams cannot even catch issues before failure in production.
As the data changes, validation is reflected only after the data is called
and referred to. Before that, monitoring tools could not catch any issues.
This is an example of an anti-pattern in which development teams
overlooked the data input service, which became the single point of
failure.

The following figure represents how data flows from data store to services:

Figure 5.3: Data store as an input source for services

The solution to the problem looks straightforward. Remove dependency on
the single data source. However, for systems that have legacy code and are
migrated from old to new platforms, just lifting and shifting sometimes does
not work.
The following are some of the solutions to the aforementioned problem:

1. A short-term solution is to automate manual data entry in the data store.
One option is to create an automation tool that will automatically update
the data in the store as soon as the business gets a requirement. The
business publishes the data requirement, and the tool triggers the data
update. Data updating will be automated, removing human typos and
errors and resolving some issues. Automation will remove the
dependency on engineers updating data manually, and business
requirements will be the source of truth. This will also resolve some of
the system issues caused by data.

2. The long-term solution is to break the data store service into two
services. As part of the design, the data store has one service that fetches
data. Breaking this one service into two will solve the problem of a
single point of failure. One service will fetch critical mandatory data.
Other services will fetch non-critical data. In such cases, if one of the
services fails to obtain data, other services using the data from no-
critical service would still be able to function.

The following is the diagrammatic representation of a long-term
solution of breaking down data store services into multiple services:

Figure 5.4: Breakdown of data store service into two services

Lack of incident management process
This is a banking organization software project. The software is old, and the
bank’s customers have used it for over ten years. The organization plans to
enhance its old software with technological advancements and increased
customer demand.
The following are the steps explaining the software development lifecycle
(SDLC) model, along with project onboarding and the problem in the
system:

1. The organization started planning a migration from the old to a new
platform. All technology teams, including architects, development,
analysis, designers, testers, DevOps, and SRE, were formed. New tools
were onboarded. The latest banking software was successfully launched
in two years in three versions (or three installments).

2. The first two versions of the software went smoothly. Issues were
identified in the software, but the team was able to fix them and roll out
the final version. The final version included multiple new features in the

software application and all the bug fixes of the previous version. This
was a bigger-bang release for customers.

3. After customers started using software, organizations started getting
tickets from customers. The tickets were daily general issues; there were
no major functionality failures. The team was also getting tickets from
the internal organization team and from upstream and downstream
systems communicating with this software. For example, banking
software sends reports to another system (another team maintains this).

4. Tickets such as how to use new software and tickets related to old data
sometimes need to be visible. There were also a few major issues where
customers intermittently needed help accessing some new software
features. As the software was new, development teams were still
building new features. The SRE team was managing operations and the
production environment. Getting tickets and having software issues is
expected. No software is 100% robust or free of failures.

5. However, after a few months, operations and SRE teams were
overwhelmed with the number of customer tickets they received. This
banking software team started seeing SLA miss in resolving tickets,
which sometimes impacted customers. This decreased the reliability of
software in the market. The problem was that there was no process for
incident management. There were no clear guidelines on how to define
the priority of tickets (as it was new software, new features teams were
getting new queries, and they were not able to decide the priority of
some of the tickets)

6. As the priority was unclear, operations teams missed high-priority
critical issues, creating outages. There needs to be a process for
determining which engineer on the shift will work on which tickets or
incidents. Operation engineers picked incidents based on their
understanding and knowledge. Sometimes, two engineers worked on the
exact tickets. This created a little chaos in operations teams, and as ops
teams could not prioritize, SRE teams could not resolve issues on time.

7. Incident management is a straightforward yet robust process. It defines
how your team will address and track problems in the system.
Sometimes, organizations need to pay more attention to the need for a

robust incident management process. In the above scenario, technology
was migrated, but the team used the same incident management process
as earlier. The old process worked fine for previous software, but that
does not mean the same process will work for newer ones. New
software, technology, and customers are advanced. So, the organization
should either revamp the old incident process to align with new software
or use a whole new process.

8. Organizations can incorporate some of the best practices from the old
incident management process into the new one to save time. Change the
priority and define a new prioritization process for tickets. For example,
a customer who cannot send money should have different priorities than
a customer who is opening a new deposit. The former is a high priority
compared to the latter. However, a customer who cannot open a new
deposit and a customer who is unable to update their address will have
different priorities. Here, the former is a high priority compared to the
latter.

9. Automate the incident or ticket acknowledgment and resolution process.
Instead of engineers manually pulling the tickets in their queue based on
understanding, the process should be automated. Automation will save
time, avoid confusion, and save rework.

The following diagram is the representation of incident management
workflow:

Figure 5.5: Incident management workflow best practice

No control over changes
In continuation to the previous scenario (use case of banking software),
assume that the incident management process is created and working fine.
Various infrastructures are being used, and the new software is based on the
latest cloud technology. The infrastructure stack includes a cloud platform,
NoSQL databases, Cache (in-memory storage), event stream processing
infra, CI/CD tool, monitoring tool, logging tool, alerting tool, and source
code tool.
With so much infrastructure and new code, multiple changes are required for
the platform, such as changes to security vulnerabilities, operating system
(underlying OS for infra) patching, other patching on infrastructure and code
changes, and hotfixes. As part of the change management process, all
changes are first created and logged in the system (details about the change
are logged).
The following are the steps explaining the problem:

1. Respective teams represent their changes in the Change Advisory
Board (CAB) meeting, and depending on alignment, the change is
approved by the CAB committee. Initial months went fine with the
process, but the number of changes grew exponentially over the period.

2. As the new system has a large amount of infrastructure and services,
multiple changes in a day were required to be implemented. After a few
months, CAB meeting timing extended beyond one hour. As part of the
process, all respective teams were supposed to join meetings and present
their change. Some changes depended on other changes, which is why
all teams were required to participate so that the CAB committee could
review and take appropriate approvals.

3. Change meetings were getting overwhelming, and much effort and time
could have been spent on these sessions. There was no window left for
ad-hoc or critical hotfixes changes. Sometimes, for ad-hoc changes, the
team used to re-review all dependent changes that were reworking what
was done at CAB meetings, which required a lot of extra effort. As ad-
hoc changes were not tracked in CAB, sometimes, these changes
created further issues in the system.

4. Over time, changes became uncontrollable and the reason for failure in

the system. This overwhelmed SRE teams, as they had to validate all
these changes in production and decide which could stay in the system
for a day. SRE teams spent more time reviewing changes than working
on production stability. One of the infrastructure changes required
subject matter expertise to review and approve. However, as the SRE
SME was occupied with other issues and available, the junior SRE
approved the change. On the day of the change, this change conflicted
with other changes, creating an issue in the system, which in turn caused
an outage. This decreased the reliability of the system. Change
management is one of the essential processes for DevOps and SRE.
During the planning phase, the SRE or release team should clearly
define the change management process.

5. The above problem is an example of an anti-pattern in change
management that creates issues. The scenario quotes two problems. The
first is too many changes. The solution to this is to automate the process
of change management. The first team should identify the tool that will
automate the process. Either use an existing tool and customize
automation or use a new one (if no tool exists). As part of automation,
respective teams should list details about the change at least two days
before creating the request. The change request should proceed with an
implementation step, validation step, and impact assessment. Once all
details are mentioned, the requestor should assign the change for review
to the SRE and CAB committee team.

6. The SRE and CAB team will select the list of changes in their queue
and review and approve accordingly. As the changes are approved
beforehand, this will save time in the CAB meeting. All regular changes
can easily be approved beforehand. As SREs are the production owners,
they always have visibility into the system and can help approve the
change. CAB calls can be used only for critical changes.

7. The second problem is the impact of change. This problem can also be
solved by automation. As part of automation, the requestor will have to
mention the impact clearly and mention dependency only after details of
the change can be submitted. After the request is submitted, the tool
runs it through other changes in the same timeline and will further

approve or decline it depending on what other changes are aligned for
the day.

The tool's automation should also validate how two changes can conflict
with each other so that only one should be approved. It should also be able to
put changes on hold if further validation is required. The CAB committee
should pull the report of all changes by tool and then discuss only changes
on hold with other teams. Automation will be able to control and track
changes in the system. As changes are validated thoroughly, they will help
reduce issues due to changes.
The following figure explains the high-level process for the CAB. The
process is sequential and should be performed in this manner to involve all
stakeholders as follows:

Figure 5.6: Change Advisory Board process

Key takeaways
Here is the takeaway and checklist to avoid anti-patterns and build
reliable systems:

Anti-patterns are small mistakes that look lucrative in beginning but
eventually impact later.
Use best practice in all phases of software development.
Use tools to help automate and streamline various process.
Tools are the best way to avoid various problems created due to manual
and human error.
Feedback loop and root cause analysis are two critical process to build
culture.
Measuring the system at each milestone and in each phase is the best
way to track the performance of the software.
There is no one solution fit all.
It is beneficial sometimes to look at the smaller problems and solve
them, to stabilize the system first. This help building quality product and
then implement big features on top.

Conclusion
In this chapter, we discussed different types of anti-patterns and how to
identify those. This chapter covers the solutions to these anti-patterns and
some industry examples, including anti-patterns. As discussed, you can
avoid these roadblocks as part of your SDLC by using different anti-patterns
and their identification. Additionally, this chapter helps you focus on best
practices to maintain the system's reliability.
In the next chapter, we will discuss real industry scenarios of software
organizations that will help us understand how SRE and its best practices
helped the software industry to deliver and maintain quality products.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 6
Real-world Examples of Successful

SRE

Introduction
The easy way to learn and understand any theory is through examples.
In this chapter, we will list some of the real-world scenarios for successful
SRE implementation. These cases are real-world examples from various
organizations of how IT organizations identified anti-patterns and solved
problems by implementing SRE practice. The chapter will cover scenarios in
all phases of the software development lifecycle that will help you
understand the approach to various solutions.

Structure
This chapter covers the following topics:

Common terminology
Avoiding alert fatigue
Improving observability
Reducing human toil by automation
Implementing root cause analysis as the key process

Building strong incident management
Improving defect analysis and management
Define SRE and ops roles to reduce burnout
Implementing gatekeeping
Metrics identification
Early involvement of SRE in SDLC
SRE as chaos and performance engineer

Objectives
By the end of this chapter, we will discuss real-world scenarios of SDLC.
All these examples are explained from the SRE perspective and how
organizations plan their approach to various phases of SRE. By the end of
this chapter, we will understand how organizations today solve some of the
anti-patterns using the best approaches.

Common terminologies
There are various acronyms and terms used in software development
organizations as part of the development cycle and daily tasks. These terms
are used industry wide. Before we start this chapter, let us discuss some
common terms used across organizations.
We will use the following terms to explain all the examples in the chapter:

SMEs: These are generally senior members of a team who have
knowledge about that system, technology, and business flow. Some of
the roles are architects, staff engineers, technical project managers, etc.
Engineering team: It consists of the development team, testing team,
and quality analyst. Some of the common roles are agile champions,
project managers, scrum masters, etc.
Product team: It consists of a business and analyst team that works
with the engineering team on the process.
Infrastructure: This means servers, databases, and other tools.

Resources: This term is used for human resources and with respect to
infrastructure also such as resource utilization for a server.
SRE: Site reliability engineering.
DevOps: In general, and in broader terms, this team is the bridge
between development and operations by technology, such as creating
CI/CD. Enabling both SRE and development.
CI/CD: Continuous integration/continuous deployment.

The first example has a detailed explanation of various phases in SDLC
along with the timeline, just to give you an idea. The same SDLC phases
will be used in all the examples. However, they are not especially called out,
but just for reference, these phases are briefly summarized.

Avoiding alert fatigue
This case is from an alert management perspective. This example explains
how SRE uses best practices in the initial phase to avoid alert fatigue later in
the process (alert fatigue means unwanted alerts and wrong information in
alerts that hinder the monitoring and detection of issues in the system on
time).
Let us take the scenario of an e-commerce software application that is built
from scratch.
The following are the planning and steps in the implementation of the
project. These steps are in sequential order based on the timeline. There is no
strict timeline called out in the example, as it solely depends on the
organization. However, we will discuss the timeline to understand the
process.

Planning phase 1
This phase is planning at a high level with senior leadership on the
feasibility of the product. And if we consider SDLC starting from the first
month of the year, then the planning phase is supposed to start in quarter 1.
Business and technology leadership decided to build an e-commerce project
on the latest technology. The business requirement is gathered, and the

feasibility of creating a product is finalized. A high-level business
requirement document is created.
Business and technology leadership outline revenue potential and cost of
production. And allocate a budget for the project.
This phase can take 2-5 months depending on the type of multiple factors
such as type of software, customer base, budget, and many others.

Planning phase 2 (high level design)
After the business document, subject matter experts from engineering +
infrastructure (DevOps) + product management, + SRE gathered to outline
the initial architecture of the project. This includes a data flow diagram and
an architecture diagram. This phase starts in quarter 2.
In this phase, SMEs make decisions on all tools and technology that will be
used in building the project, including the software used by SDLC teams to
develop the project, infrastructure, underlying coding language, and
framework.
In parallel to planning, various team formations also happen, such as the dev
team, QA team, DevOps team, and SRE team. Hiring resources as per
requirement also happens during this phase.
The tool stack here is:

Infrastructure:

Cloud: AWS web server and application servers from AWS. Load
balancers on AWS, and IIM on AWS
Database: AWS NoSQL database, AWD relational database
Storage: AWS in memory storage
Event streaming software
Content delivery network

Dev tools: GitHub, code development tool, Jira, Mural (data flow).
Testing tools.
DevOps tools: Jenkins (CI/CD), Terraform, Ansible.
SRE tools: AWS monitoring tool, Grafana, Prometheus, ELK (logging),
GitHub, ITSM tools.

Product management tools.

Planning phase 3 (low level design)
After all information is gathered during the planning phase, it is converted
into requirements. This phase also gets executed in quarter 2.
Low-level design documents are created. This describes how each feature
and component are tied with each other.
The product team creates features for development teams. This describes
further low-level bifurcation of each data flow. Various tools are available
that help the product team create and manage features. For example, Jira is
commonly used for tracking.
In parallel, the DevOps team started creating low-level designs for
infrastructure. This describes the design of creating and installing servers
and databases. Also, configuring other projects’ tools.

Configuration phase
This is the intermediary phase after planning and coding, and this starts in
quarter 3. In this phase, the DevOps/system admin/infrastructure team
configures the development tools required by engineering teams.
The DevOps team set up a development and testing environment for the dev
and QA teams for them to start writing code.
The DevOps team also creates CI/CD pipelines to build and deploy code.
All other tools and software are configured by the DevOps team, such as
GitHub, Jira, and ELK.

Implementation phase
This phase is the longest phase of SDLC, as the development of software
happens during this phase, and starts in quarter 3 itself. The dev team starts
building the code, and in parallel, the testing team tests the code.
Depending on the type of project, there can be multiple dev teams working
on the same code base. Projects follow agile methodology, and so
development and testing happen hand in hand. Dev build code, use CI/CD
pipeline to deploy code to the dev environment, do the unit test, and build

the code to merge into the main code branch.
In this phase, dev teams create their own branch and build and package code.
The DevOps team continues configuring the production environment.

Testing phase
The testing phase is one of the critical phases of SDLC. It overlaps with
quarter 4 and next year of quarter 1. In this phase, the quality analyst (QA)
team creates test cases to test the code developed by the development team.
Testing helps identify the quality of code.
The following are the sequential steps of the testing phase:

1. Once the code package is ready, the dev team also deploys the code to
the test environment.

2. The tester/QA team then tests the code for regression and progression.
3. In parallel to step 2, performance testing also happens in this phase,

where the application is loaded with data. This helps evaluate the
performance and scalability of the application.

4. As defects are identified, the code is sent back to the dev to fix the bug
and merge again into the test environment. Then, the testing team does
another round of testing. This is generally done in a sprint of 2 weeks
(the testing team takes 2 weeks to test regression).

5. The SRE team then does chaos testing on the regression-tested code.
This happens after the testing team completes its regression. The SRE
team uses various testing tools to mimic production scenarios to test
chaos.

6. The development team walks through SRE on the various features. The
SRE team will support the production environment. Walkthrough of
features is important for SRE to understand how data flow and user
journey happen from end to end. This is another best practice; the SRE
team takes the walkthrough from the development teams and reviews
the runbooks for each feature. Runbooks are manuals that explain how
the service works, what type of errors the service will throw in case of
any issues, and how to resolve errors if the service fails.

7. After the walkthrough of runbooks, the SRE team configures alerting

and monitoring dashboard templates based on error codes defined in
runbooks.

8. In this phase, SRE teams also create other tools and processes required
to support production applications, such as the production support
readiness manual, tooling, and capabilities required.

Deployment phase (quarter 1)
As year 2 start, deployment phase also started. In the deployment phase,
developers ensure that the software is ready and available to use. That means
the software is packed and deployed to the production environment. Once
the code is certified by testing and the SRE team for regression and chaos,
the dev team deploys code to the production environment using CI/CD
pipelines created by the DevOps team. After the successful deployment of
code in a production environment, the application is first tested for sanity by
SRE teams. Once the SRE team validates basic sanity and gives a go-ahead
for opening gates (taking the application live). After the application is live,
the SRE team also continues their alert and monitoring dashboard
configuration.

Sanity testing phase
As its name suggests, the sanity phase tests the sanity of the application.
With year 2, this phase moved to quarter 2. That means validating the basic
functionality of the overall application to certify that the software is running
ok. The deployment phase overlaps with the SRE sanity phase. As of the 2nd

month of quarter 2, SRE continues its alerting and monitoring tasks. Alerting
and monitoring are critical phases from an operational perspective. If wrong
and unwanted alerts are configured in the system, it will mislead the
SRE/ops team and hinder their ability to investigate any issue. So, the SRE
team follows best practices here, such as collecting alerting data from the
testing team as part of their testing phase. Then, the SRE team analyzes
those alerts along with alerts mentioned in runbooks (created by dev teams
for all features). Once the SRE team has all the data, they start incorporating
it into their alert and dashboard configuration. The data analysis is done by
tools available, or sometimes SRE teams build their own tooling and ML

algorithm to analyze data.
After alert and monitoring dashboard creation, the SRE team starts their
sanity testing on the production environment. This is another test that the
SRE team performs to make sure the application is working with basic
functionality. As part of sanity testing, the SRE team again validates alerts,
such as whether the right alerts are firing; they check if any unwanted alerts
are also firing, the channels of alert notification are configured correctly, and
self-healing is configured correctly. If SRE teams identify issues during their
sanity testing, depending on the type of issue, they collaborate with various
teams, such as the code issue dev team, to fix the code and redeploy it in
production. And the cycle of hotfix repeats (dev-test-prod). For infra issues,
the SRE team resolves on their own and retests the application.
Once the sanity test passes all validation criteria, the SRE team signs off the
application to go live. Generally, the go-live date is pre-planned by
leadership. In parallel, dev leadership again starts collecting requirements for
new features. The cycle starts with planning.

Maintenance phase
The maintenance phase in the agile and SRE world is more akin to a
monitoring application phase, also referred to as the operational phase.
Though this is an ongoing phase, it is considered the end phase, and as per
SDLC, this has moved to year 2, quarter 3. In this phase, the SRE and ops
team monitor the application, and if any bugs are identified, they either fix
or report them to developers. For the initial launch of the application, this
phase is treated as first-time maintenance. However, this is part of the
ongoing software development cycle. Where new requirements flow from
the business, and the software development team develops and deploys the
new code to the production environment. Then, the ops team monitors the
system with these new features.
Once the application is live, the SRE and ops team support the application
and infrastructure. The ops team takes care of daily tickets, queries from
end-users, and other issues. The ops team also collaborates with SRE teams
to resolve technical issues. In this phase, SRE and ops both have overlapping
responsibilities to monitor the performance of the system.

The following are two of the important roles of SRE and ops in this phase:
The ops team monitors the dashboards and alerts created by SRE. The
ops team then informs SRE about the technical issues they are seeing in
the system, and the SRE teams work on the resolution.
The ops team also solves some non-technical issues as per the runbooks
given to them. Technical issues are generally solved by SRE teams.

Let us take an example of technical issue, customer data not visible on the
customer’s account as the underlying service is throwing out of memory
error intermittently. As per the runbook, ops teams restarted the service, but
that also did not solve the problem, so the ops team reached out to SRE. The
SRE team checked the code and fixed the issue by increasing memory. Let
us assume that it also did not solve the problem, then SRE teams reached out
to the development team to change the logic in the code. Then the code was
changed and was deployed to production (this is again a cycle of
development, testing, deployment).
The SRE team continues to monitor the reliability and availability of the
system. They create various tools to reduce the toil for the operations team
so that ops do not spend time on manual tasks. Whenever any error occurs in
the system, the SRE team collects the data and root cause of the issue and
tries to build solutions for early recovery of the issue, early detection of the
issue, or if the issue can be fixed permanently. This is an ongoing exercise
for the SRE team.
As part of an ongoing exercise, the SRE team regularly collects data from
alerts and works on improving alerts.
The following figure gives you the high-level flow of the process:

The planning phase is the system design phase.
The development phase refers to the implementation phase.
Build and Package refers to the configuration phase.
The release phase is the deployment and maintenance phase.

The product owner is just a representation of architects and SMEs who
design the data flow and architecture of the system.
Then, as per the agile approach, product owners of the team divide this
architecture into various features for the development team to build the code.

SRE is involved in chaos and performance testing as follows:

Figure 6.1: SDLC process with all teams involved

Improving observability
This is an ongoing example of a previous case. Inspired by real-world
scenarios. In the previous example, you learned how using best practices
early in the SDLC phase can help improve the reliability of the system.
Where the SRE team used best practices for alerting and monitoring and was
able to solve alert fatigue anti-pattern, in continuation of the aforementioned
example, let us see how the application is working after its go-live. This
example will help you understand how improving observability will help
improve the performance and reliability of the system.
The e-commerce software application is live now and customers are using
the application. Businesses are getting new requirements, and to compete in
the market, organizations have to keep on updating their applications with
the latest technology and features, along with maintaining the high
performance of the software.
The following are the various phases of SDLC from an observability

perspective.

Planning phase
Businesses have new requirements for the application. The business and
technology team gathered requirements and passed on the requirements to
the technology team.
As tech teams were preparing for new requirements, the SRE team reported
multiple issues in the system.

Maintenance phase
SRE monitored the system for 3-4 months and collected data from alerting
and logging. We also made a list of all tickets received by the ops team from
customers and other downstream/upstream systems. The SRE team used data
analysis tools and analyzed the reported issues.
The result of the data analysis shows:

Few services do not have correct error and logging.
Few services do not have the right metrics added to the code to measure
the average response time.
One of the critical payments microservices does not have metrics to
measure performance.

The aforementioned issues impacted system performance and became a
blocker in observability. Due to the unavailability of the right logs, alerts,
and metrics, the SRE team was not able to resolve issues. They did not catch
the issues on time. For example, the payment service was failing
intermittently, and users were not able to pay during checkout of the product.
SRE teams had no data to capture the performance of payment service as the
metric was not built in code.
Now, in parallel, the SDLC process has started for new requirements.
Before SMEs start creating the design of new features, the SRE team
reached out to tech SMEs with the above analysis.
The SRE team shared the recommendation of creating metrics in code to
measure the performance, adding the right entry-exit points to capture
correct errors, and correcting logging.

Dev teams fixed the existing services as per SRE recommendation.
In parallel, technology SMEs incorporated the recommendation of SRE in
the design document for new features. This approach is called
observability-driven development.

Implementation phase
The development team got the architecture document. The document listed
data flow, business flow, services communication, and metrics to be added.
Dev teams started the development of these new features with an agile
approach.
As per process and standards, the dev builds the code, deploys the code to
the dev environment, and performs unit tests.
After unit testing of all features, the code is deployed to testing env. The
testing team starts their testing.

Testing phase
Along with testing, the SRE team also performs chaos testing and
performance testing on the new features. Tested code deployed to the
production environment. The SRE team started monitoring the new features
along with the application.
During monitoring, the SRE team captured a high response time for one of
the critical services. As the metric was integrated into the code, this helped
the SRE and dev team to observe the system proactively and catch issues on
time.
The ODD approach helped teams observe the system’s performance and
reduce MTTR. Capturing real-time data from metrics helps SRE teams
observe the system from an end-to-end perspective. So, adding the right
metrics in code rather than building on top of the code helps better in
observability. This is an example of how SRE teams improved system
reliability by improving observability.

Reducing human toil by automation

The example will explain how automation achieved organization reliability
and performance for their software system. Let us take a use case from the
healthcare industry. One of the big healthcare entities wanted to revamp their
old software application that is currently used in hospitals for electronic
health records, used by pharmacies, and used by doctors to view and track
patient health records. The software is running on old infrastructure and is
also not scalable and not performant with the current number of
customers/end-users, so leadership decided to migrate the software to new
technology and implement new features to help doctors and hospital staff
better manage the health records of patients.
The process of software development is the same as shown in Figure 6.1. To
give a brief recap of SDLC refer to Figure 6.1.
The following are various phases of SDLC from an automation perspective.

Planning phase
The business and technology team got the requirement to revamp old
software. They captured the requirement, finalized the budget, checked the
feasibility of the product, decided on high-level technology to be used, and
gathered % of the customer base to understand the scalability of the
software.
In part of this phase, SMEs get together to design the architecture of
software, create data flow diagrams, and business flow diagrams, listed all
tools and technology to be used.
Leadership started recruiting engineers on the basis of the new skills
required.

Implementation phase
Project and product management teams created standards and processes
following the agile approach.
The DevOps team started configuring the environment and CI/CD pipelines
for engineering teams to use. They started configuring other tools required.
Once DevOps completes the environment configuration. Then, development
teams were formed. All requirements were logged in the task tracking tool in

the form of features and user stories (these are agile terminology used for
development).
The development team got the requirements, and they started building the
software. Coding and unit testing and merging code using CI/CD pipelines
created by DevOps.
SRE teams started configuring monitoring dashboards and alerting
templates.

Testing phase
In this phase, the testing team tested the code for different types of testing.
After one round of testing by the testing team, SRE teams started chaos and
performance testing. There were a few issues identified in testing. The code
was sent back to developers for fixing and retesting.

Deployment/release phase
After the code was fully tested and certified by the testing and SRE teams, it
was packaged and deployed to the production environment. The SRE team
did sanity testing. Business users also tested the software before it was
launched to end-users. Once certified by business users, as per the live date,
the software was launched for end-users.

Maintenance phase
Ops teams and SRE teams started monitoring the system. After 4 months of
launch, ops teams started receiving multiple issues in the system, for which
they had to follow a manual workaround to circumvent the issues.
Two of the examples of issues:
A lot of the patient's historical data was not visible in the app. The ops teams
loaded the data manually in the new database and circumvented the issue.
However, this was not a one-time occurrence. In 2 months, the ops team had
to circumvent the issue around 10 times manually.
This is not an error or bug in the system, but the current configuration does
not have automated failover. So, the software runs on multiple regions to
support the load and increase performance. If there is a problem in one

region, traffic must be moved to another region without impacting end-users.
The current configuration of the system is such that automated failover is not
possible for the full system, as some validation has to be performed before
traffic moves. So, this started creating problems for the ops team. Any time
there is a planned outage, planned release, or unplanned issue, the ops team
has to spend time moving traffic manually. This is error-prone and time-
consuming, too.
Both of the aforementioned errors consume the time for the SRE and ops
team. More time to circumvent, meaning more time to recover from any
issue. That could lead to an impact on customers and decrease the reliability
of the software.
Let us see how the SRE team resolved this problem by automating using the
following examples:

The root cause of the issue: As part of data migration from the old to
the new DB, some of the data was not copied, and that is why the new
database has data missing.
To solve the problem permanently, the database team had to copy data
again, but it was tricky as they had to first identify the missing delta data
and then copy it to avoid duplicate data. And that needed some time to
plan and approach.
Meanwhile, the SRE team builds automation, where as soon as they get
an error of data missing, they check the old DB and copy the data from
the old to the new DB. And restart the service after the copy. Though
this was a temporary solution, it helped save downtime for customers.
After a few months, when the database team copied all delta data, SRE’s
automation still helped; after full migration, one of the errors came
where, by mistake, the team loaded data in the old database (there was a
requirement from the business to keep old database also for 2 years as
backup) and same error happened again. So, SRE automation helped the
team to solve the issue.
The root cause of the issue: Some of the services in software use flags
in properties that drive what region the service should run. This is not
part of the current load balancer, as this is an app configuration. So, the
load balancer cannot fully move traffic to one region, and the ops team

has to manually take care of failover.
To solve the problem, the SRE team built a tool that validates current
traffic, checks when the load balancer is moving traffic to another
region and triggers this tool automatically. This tool takes care of
moving the traffic for these few services automatically.
SRE teams used Python and integrated their code into a pipeline that ran
automatically. This saved a lot of time and no human error in changing
flags.
Resolving manual toil by automating the SRE team reduced MTTR,
increased the reliability of software, and helped create a seamless
experience for end-users.

Implementing root cause analysis as key process
Root cause analysis is the heart of software reliability. Unless you identify
the root cause of the problem, you will not be able to solve it permanently,
and unless you solve it permanently, the problem will reoccur. Reoccurring
problems create fatigue, decrease performance, and waste time. Even if you
try to solve reoccurring by automation, the underlying problem persists. So,
root cause analysis for any problem is very important
Let us extend the previous example to this scenario as well.
After healthcare software was live for end-users, it ran in maintenance mode.
Along with that, new requirements are also getting built into software. Now
we see two issues in the previous example where one of the issues was due
to data sync between the old and new databases. Let us examine that
scenario and explore how root cause analysis serves as a key process.
The following are the various phases of the SDLC from an RCA perspective.

Monitoring and maintenance phase
SRE builds automation to sync data whenever an error is received. However,
this is a temporary and reactive solution. It will remediate the problem but
not solve it.
To solve the problem, root cause analysis is required. The SRE team

collaborated with the database team. Created RCA document. After the root
cause, the SRE team worked with the database and application team and
synced all the data.
The application team built an auto-sync service between two databases. That
proactively checks the delta data and syncs. The dev team also implemented
a wait time in the service that calls the database. This means that if a service
does not find data in the database, it will wait for the data to sync up and
return the result.
Implementing the aforementioned fix at the database and service level fixed
the problem at the root level. The aforementioned scenario explained that
any problem in the production environment, if fixed at the root level, will
help solve it permanently and improve system resiliency.
Let us take another example.
There was an issue identified in the payment service, where it failed
intermittently, and end users were not able to pay for medicine purchases.
The SRE team identified the issue through an alert, and as per self-healing,
the service got restarted. After 2 days, another alert was identified in the
payment service again. Where the purchase receipt was not updated in the
database. To circumvent the issue, the SRE team restarted the service, and
the issue was resolved.
Then, SRE started the RCA process. Where the defect was raised to the dev
team with high priority. The dev team investigated the issue and identified
the root cause of failures in the payment service. Meanwhile, the SRE team
rolled back the service to the previous stable version till the issue was
resolved. Once RCA was done, the dev team fixed the issue in the code. The
testing team tested the issue, and the fix was deployed in production
environment. Now, the issue was fixed at the root level, and the payment
service did not see any failures after that.
This example explains that including root cause analysis in SDLC and SRE
methodology helps improve the resiliency of the system. Once the process is
set and integrated into the system, it will help the SRE team not to invest
time in operational work and circumvent issues as follows:

Figure 6.2: RCA process in SRE approach

The aforementioned figure represents the RCA process and how it is
integrated into the SRE approach. The figure raises the incident to the SRE
team, which investigated the incident and performed the workaround to
circumvent the issue. Then, the incident is moved to the development queue
to find the root cause of the issue. The root cause was reviewed by the dev
and SRE leadership on its effectiveness. Then, the issue was fixed in the
code and deployed in a production environment. This fixed the problem
permanently.
RCA process is ownership of SRE and development team both. In the
traditional SDLC approach, the RCA process was missing, but with the
modern framework and new technology, organization and thinking also
changed. They are focused on solving the issues at the root level and
implementing this feedback loop between SRE and dev teams.

Building strong incident management
Incident management is part of SRE and operations’ day-to-day life. In
previous chapters, we read about the importance of the incident management
process in the SRE lifecycle. Let us see the example of how a strong incident
management process helped improve the reliability of the system.

This organization has security software used by a lot of people who live in
high-gated apartments, where apartment management and residents use
software for visitor control, paying bills, grievances, and communication. It
is a good, reliable software; engineering teams build it with all the best
practices incorporated. One day, the business decided to acquire an online
grocery delivery organization and integrate the grocery app into the security
app. To give their customer a single platform for their daily tasks. SDLC
process was started on this project.
The following are the various phases of SDLC from incident management
perspective.

Planning phase
Business and technology collected requirements as the software was already
available, only integration on two software to be planned. Some of the teams
from this other organization were hired, too.
Engineering teams started creating designs for integration. We decided on
the tools to be used and what features to modify in the existing application to
integrate with the grocery application.

Implementation phase
Databases were synced to use a shared customer pool.
The DevOps team implemented new CI/CD pipelines to build and deploy
the integration service and reused the pipeline from the grocery organization
for their application.
SRE teams also reused some of their alerting and monitoring dashboards and
integrated them with existing ones to give a centralized view of dashboards.
Dev teams integrated two software, tested, and then deployed to production.

Testing phase
After the development, the code was merged with the existing code. The
testing team performed regression and progression testing. SRE executed
performance testing.

Monitoring phase
This is the phase where the SRE and ops team started monitoring the system.
The following is an example, with the problem and solution:

Problem: After a few months, the application started seeing multiple
bugs. SRE teams got 1000+ incidents in their queue, and they were not
able to address all incidents. That impacted the reliability of the
software, and customers started opting out of the application.
Solution: As the organization has SRE best practices and processes.
They started collecting the root cause of the problem.

After root cause analysis of some of the incidents, the SRE team identified
that these incidents reported are not impactful issues. Most of them are
queries and questions from end-users. The SRE team released the incident
management process that they had implemented earlier as the bottleneck and
overwhelming the SRE and ops team. Due to this, they are not able to focus
on the real high-priority issues.
After analysis, the SRE team identified that the current incident management
process is a real problem for SRE to not able to focus on another high
priority issue.
The current incident management process was introduced for security
software functionality. The security software customer base is only people
staying in rising apartments in metropolitan cities; the categorization of
tickets/incidents was different than online grocery software. Online grocery
software has a customer base of metro and non-metro cities customers. After
integration, security software is just an added functionality for customers
who do not live in apartments.
Also, the infrastructure for both applications was different. The incident
management process was built considering the customer base, infrastructure,
and design of security software.
As per the current process, the priority 1 incident was categorized as system
unavailability, customer queries, and critical service unavailability. SLA for
priority 1 was set to 10 hours. There was no automated assignment of
incidents as the security software was stable, and they used to receive fewer
incidents. The model was working fine with the security application.

With the integration of an online grocery application, the current design
failed. A high customer base means more tickets from customers, and having
a priority 1 category for simple queries is the wrong design. So, the SRE
team changed the category of incidents. Now, customers’ simple queries
were marked between P2 and P3.
Due to the volume of incidents, the SRE team builds an automated tool to
acknowledge, assign, and resolve incidents automatically.
After making changes and following best practices, the SRE team was able
to manage tickets/issues/incidents. All high-priority issues were addressed
first and were integrated into the root cause analysis process. The new
process helped resolve issues and improved reliability in a 4-month time
period.
The aforementioned example explains the importance of the correct incident
management process. And how just improving the process can help improve
the reliability and performance of the software. Though this will not solve
the defects/bugs in the system, it will empower SRE and other engineering
teams to focus on improving the reliability of the system.

Improving defect analysis and management
The defect management process is another pillar and a part of best practice
in the SRE approach. Like incident management, defect management
empowers not only SRE but also the development and testing teams to work
toward a failure-free system. Incident management is more operational tasks,
and defect management is development. However, both of these processes
go hand in hand for SRE.
Let us see how defect analysis and management helped SRE to achieve
reliability. Take the previous example and extend it to this example.
Let us discuss the maintenance or monitoring phase.
The following are the sequential steps for this phase:

1. After improving the incident management process, SRE teams are able
to focus on working towards improving reliability.

2. The software was running in the maintenance phase of SDLC, where

SRE teams monitored the system, worked on improving observability,
and reduced toil. Helped development teams provide them with the
required capabilities to replicate scenarios in a production environment.

3. The SDLC phase started again, where, in parallel, the business captured
new requirements to be implemented in the application.

4. SMEs created the architecture of new features and data flow and
integration with existing services. During this time, the DevOps team
focuses on improving their tasks, such as improving the CI/CD pipeline,
creating automation for quick infrastructure scaling, and helping the
development and testing team in their day-to-day needs related to
infrastructure (hardware and software).

5. The development team then developed new requirements and moved the
code to the test environment.

6. The testing team tested the new feature’s functionality with the existing
system. And identified bugs in the system. Some development team
members also focus on fixing defects reported in a production
environment by the SRE team.

Even after best practices, the software started getting multiple defects/bugs.
Some of the bugs were identified by SRE monitoring, and end users reported
a few. SRE teams started noticing the same defects occurring multiple times,
and eventually, it created problems.

Problem: reoccurring defects/bugs in the system impacting system
availability and overwhelming SRE teams, as their 100% of capacity
was getting involved in firefighting bugs to protect end-user impact.
Solution: Let us see the step-by-step approach to solving the
aforementioned problem as follows:

1. The SRE teams started analyzing the pattern of defects/bugs in the
system. Some incidents reported are also getting converted into defects
in the underlying code. Some alerts identified by proactive monitoring
are also converted into defects.

2. As part of the process, the SRE team used to create defects for any issue
seen in a production environment. And then, SRE and development
teams used to pick the defects as per categorization. All functional

defects fall under the development team bucket and non-functional
under SRE. Functional defects: end-user is not able to make a payment
as the online payment is not working. Non-functional defects, ex, warn
logs, are getting printed as info logs.

3. After analysis for a few weeks, the SRE team identified that though they
are creating defects and assigning them to the development team,
defects are still not picked up on time, and issues are still reoccurring in
the system. Sometimes, the SRE/ops team used to do a workaround by
restarting services. However, the problem was not solved at the root
level.

4. The SRE and development SMEs collaborated and identified the current
defect categorization is not correct in the process. That means SRE
teams are creating defects but not assigning the correct category, and so
development teams are not picking up the defects to fix. One example is
the payment service down defect, which was created by SRE with the
category as a normal priority, as there was a workaround to restart the
service. The current defect process is if the workaround is available,
then the defect will be marked as normal priority. Development teams
will first pick high-priority defects and then normal priority. Also, the
team analyzed that there is no ownership and regular connection within
development teams on defect discussion. So, few defects in critical
services were fixed without SME consultation, which introduced other
defects in the system.

5. After the analysis, SRE and development team leadership planned to
improve the current defect management process.

6. Defect categorization was redefined. All production defects impacting
end users are marked as resolved immediately.

7. After seeing a high number of production defects, development team
leadership allocated added capacity for dev teams where 20% of the
team will focus on solving production functional defects. Development
team names were redefined to give a clear indication of defects while
assigned by SRE teams. For example, the SRE team creates defects with
the correct priority and correct dev team name so that they can be
picked on time for fixing. Weekly SRE and Dev SME connect was set

up to discuss defects and tracking.
8. Once the process was implemented, SRE teams started seeing traction

on the defect fixes. Development teams were picking correct defects to
fix and test by testing the team and deploying the fix in a production
environment. Within 3 months of the new process implementation,
defects frequency was reduced. No issue occurred again in the
application. This, in turn, increased the performance and availability of
the system. Also, that gave back time to the SRE team to work on other
daily tasks rather than operations.

The aforementioned example explains the importance of the right defect
management process in SDLC. This is an ongoing process, and teams should
regularly review the old processes. As with time, when software grows, the
customer base grows, and the requirements of software also change. So, it is
very important to have flexibility in software and processes around SDLC.
Leadership should empower engineering teams to take a leap of faith and
change as per requirement.

Define SRE and ops roles to reduce burnout
SRE and operations in technology are used interchangeably sometimes.
Some organizations have different SRE and ops teams; on the other hand, in
some organizations, SRE teams also do ops tasks. However, it is very
important to define clear roles and responsibilities for SRE and ops to avoid
overlap, conflict, and burnout. Supporting live applications is referred to as
operations in technology terms. This can be overwhelming sometimes,
depending on the type of software, as the team must be available all the time.
For example, an application that is used by end-users 24*7 across the globe
needs to be monitored 24*7, and any outage can lead to losing customers, in
turn, losing business. Customer service, L1, L2, and L3 support come under
operations, and sometimes SRE performs L2 and L3 tasks, too.
Let us see one scenario. There is a travel company that wants to revamp its
old software. With time, they have grown and acquired a good customer
base across the globe. The SDLC process started for the project.
The following are various phases of SDLC from SRE perspective.

Planning phase
Business and technology leadership gathered requirements. Finalized
budget, the feasibility of the project, and high-level timeline.
Engineering SME designed high-level architecture and data flow model for
the new software.
Tools and technology were finalized. The team decided to use a public cloud
platform.
The underlying coding language and framework were decided.
Some services were planned to be reused in the new model.
Teams were decided, and new resources were hired per the required skillset.
As part of SDLC, dev, testing, analysis, SRE, and DevOps teams were
onboarded. Among these, dev, testing, and ops teams were reused.

Implementation phase
Ops team members of the DevOps team started creating CI/CD pipelines for
dev teams to start building and deploying the code. The dev team got the
features from the planning phase, and they started developing the code. The
dev team starts once the DevOps team builds the initial infra for the dev
team. The SRE team also started configuring dashboards and alerts. Started
creating metrics to be used to measure applications. SRE builds incident
management and defect management processes.

Testing phase
Once the code is ready by the dev teams, it is deployed in a testing
environment. The testing team started the progression and regression testing.
The SRE team started chaos testing and performance testing. The testing
team identified a few bugs in the system and sent back the code to the dev
team to fix them. Then, mini SDLC happened again here, where the dev
team fixed the code and deployed it in the testing environment so that testing
teams could retest.

Deployment/release phase
Once code is fully tested for functionality and performance, it is packaged

and deployed in a production environment.

Maintenance/monitoring phase
In this phase, the SRE monitor system is used. Identifying any issue and
reporting to the development team if a fix in code is required.
The software went live, and customers started using it. As this is a revamp of
old software, it is a kind of new software. That means issues are expected.
No software is 100% error-free. Though best practices were followed after 3
months, SRE and ops teams started getting multiple issues in the system, and
both of the teams were seen only firefighting the situation all the time. This
created burnout for the SRE team.

Problem: Not able to control issues in the system and missing SLA for
some of the issues.
Solution: The following is the step-wise approach for solutions.
1. SRE leadership started analyzing the errors in the system. The

incident and defect management process were re-reviewed, too.
2. After analysis, it was identified that even though there was good

capacity for SRE teams, they were overwhelmed as the team was
still following the old process of doing operations.

3. The SRE team was just renamed from the ops team, but there was no
clear role the SRE team defined. This means the SRE team was
doing L1, L2, and L3 support and had many automation tasks in the
backlog. To solve the problem, a few SRE skilled engineers were
hired for the team, and the team was internally divided between
operations and SRE. Where old ops team skills were utilized, the
role of ops was defined as a team that will do L1 and L2 support.
They will monitor the system, resolve low-level issues as per the
runbook, enhance alerts and monitoring dashboards, and create day-
to-day automation to reduce toil; for any technical help, they will
collaborate with SRE engineers.

4. SRE role was defined as L3 support, available as backup for ops
teams whenever required, creating tools and capability, fixing non-
functional defects in systems, participating in system design review

with dev teams, solve problems at the root level.
5. Once the roles of SRE and ops were clearly identified. The team was

able to handle the load in a shared manner. Now, ops are used to
solve low-level issues. They were also trained to implement alerting
and dashboards. As SRE was not involved in support for each and
every issue, they were able to focus on reducing toil. Help developer
to give them perspective from production to add in their while fixing
defects. For example, while fixing any code, SRE suggested
considering the self-heling scenario. That is, any failure in service
should be able to recover automatically without ops manually
restarting.

This problem does not look or sound that big, but if not solved on time, it
can create a problem for the SRE and ops team. As mentioned earlier, the
ops team is the front face of the organization, and that is direct contact with
customers and end-to-end visibility of software. Their job can be
overwhelming if the underlying processes are not defined clearly. Today,
many organizations also focus on moving towards automated operations,
such as implementing self-healing and auto resolutions of errors to reduce
human involvement and effort. However, this again needs skilled engineers
to build and depend on the complexity of the software.
The following figure shows the SRE and ops roles:

Figure 6.3: SRE and ops roles

The aforementioned figure shows the high-level roles of operations and SRE
teams and how the information flows from SRE to the development team. In
an organization where SRE and ops are two different streams, the ops team
takes care of L1 support customer care and also creates alerts and a
monitoring dashboard. The SRE team takes care of L2 and L3 support. The

ops team reaches out to SRE if they need further investigation on issues. The
SRE team also takes care of the development and automation of manual
work. Development teams collaborate with SRE to track the production
defects and fix them defects.

Implementing gatekeeping
Gatekeeping means making sure no erroneous code goes into production.
Gatekeeping is not always SRE’s best practice, and it can sometimes slow
down the speed of development. However, in some situations, having SRE
as gatekeeping helps achieve goals. Gatekeeping is reviewing what is going
on in production, and that does not mean having an engineer review each
change going on in the system. It means building tools as gatekeepers that
can review the change going on in production as an added step without
slowing the speed of development.
Let us first see the gatekeeping process. This is the flow of code review in
the SRE approach, where the SRE reviews all the changes and acts as a
gatekeeper before production.
Dev building code | tester testing code | CI/CD pipelines validated code |
SRE as gatekeeper review code | approve to deployment in production, as
shown in the following figure:

Figure 6.4: SRE as gatekeeper

In the aforementioned flow, as SRE is reviewing each change, it will delay
the code deployment in production. SRE and the dev engineer will have
back and forth as part of the review, which will further delay the code to
production. So, instead of the SRE engineer, there should be added
validation steps in the pipeline itself to certify the change/code/infra to be
ready for production.
This is the SRE review process for changes going into production.
Dev building code | tester testing code | CI/CD pipelines validated code |
added validation and review in pipeline | automated approval| approve to
deploy in production, as shown in the following figure:

Figure 6.5: Automated code review acting as gatekeeper

Let us take previous examples and see how gatekeeping helped SRE to
improve the performance of the system. The following is a list of some of
the pros of gatekeeping:

Software running in the maintenance phase. Ops and SRE team
monitoring system and reporting code issues to dev teams.
The SRE team is also working on enhancing their automation tools,
improving alerting and monitoring in collaboration with ops teams.
In parallel, new features are also being built by dev teams.
As the system grows, more changes are required to be implemented in
the system. Changes include infrastructure and application, such as
security vulnerability patching, underlying operating system upgrades
for servers, database server patching, and app code bug fixes. These all
are called changes.
More changes in the system mean more chances of errors and outages.

Problem: After a few months, the system started seeing many outages. Each
outage resulted due to the changes that were implemented in the system.
Solution: The following is the stepwise approach to solutions:

1. The SRE team reviewed all outages. Toot cause analysis of outages and
errors was identified.

2. After review, SRE noticed that 90% of the time, outages are related to
the change that went into production. For example, one of the code fixes
in the service was introduced out of memory, and services started
failing.

3. They reviewed the change management process and identified the gap
in there.

4. As there was no involvement of SRE in the review of change before
going into production. The SRE team worked with the DevOps team to
implement extra validation in the CI/CD pipeline. Such as the pipeline
will validate regression test case results, global configuration
correctness, underlying infrastructure configuration, etc. Only once the
change passes the validation will it be moved to production.

5. After implementing the gatekeeping in the pipeline, SRE noticed a
reduction in issues in the system. It also helped development and infra
teams to fix issues on time. Issues were identified before the customer
reported. This increased the overall reliability and performance of the
system.

Gatekeeping is not for every project, and it depends on how big the project
is. The bigger the software is, the more changes will be there. So, the team
should weigh in to see if it is worth implementing gating or using testing
team validation. Implementing gating in the pipeline requires skill, and
organizations might need to train or hire people accordingly.

Metrics identification
If you cannot measure it, you cannot improve it. This metric is one of the
pillars of the SRE methodology. It not only helps SRE but also all SDLC
teams to measure the performance of the system. The performance of the
system is the direct reflection of the effort and performance of all teams
involved in implementing any product. However, identifying the right metric
for your system is a very important and demanding task. Even if you
measure the system, if the metrics you choose are not right, that will not give
the right picture of the performance of your system.
Taking previous examples of travel software applications. After

implementing gatekeeping, SRE was able to control the outages caused by
the changes. New features were still coming in as new requirements. After
one year of the software's life with the end user, leadership reviewed the
system's performance. This data was provided by the SRE team, as the SRE
team pulled the measurement from the production environment, such as % of
availability of software, % of SLA breaches, MTTR, MTBF, and MTTD.
However, the results pulled by the SRE team did not match the data from
customer complaints.

Problem: SRE measurement showed 100% availability, but customer
data showed 95% availability. After seeing 100% availability, the
business reduced the tech budget as the system was stable enough and
only needed little maintenance.
Solution: The following are the steps for the solution:
1. As per SRE metrics, the system was 100% available, but we have

learned in previous examples that there were multiple issues
reported. There were various bugs also identified by SRE teams in
the system. However, the metrics were not showing the right result.
The problem here is that the metrics selected to measure the system
did not give the right picture. 100% availability means that even if
there were errors, they were auto-resolved, and the system never
went down.

2. Another metric, MTBF, showed that there was a 70% improvement
in failures. That is, the mean time was very high between the two
failures. However, during operational monitoring, SRE teams have
seen multiple failures within 3 months of time.

3. After analysis, the SRE team identified that they were not using the
right metrics to measure the system and that is giving the wrong
picture. The MTBF was set to only consider if the same failure
occurred again; they never measure different failures. The system
was mostly seeing different failures. The SRE tool to capture
availability was not set for the right data. The tool also took
customer tickets into consideration for availability. But that is the
wrong data to capture. Even if the customer did not reach out to the
service center, the service was still down, and that impacted the

availability of software.
4. The SRE removed the customer’s ticket logic from their availability

measurement tool.
5. The SRE also collaborated with the dev team to implement metrics

in their process of identifying defects as MTTD. Earlier, SRE just
calculated MTTD on the basis of alerts configured and how soon
alerts were identified by ops. However, the SRE team never
considers that alerts are coming from underlying error code logic
setup in the application. Due to this, the SRE metric was showing
good results, though SRE was missing detection of some failures
unless the customers reached out.

6. The SRE collaborated with the dev to improve the error code logic
for some of the services, and the dev team added MTTD to their
process. This helped the dev also to identify some of the defects in
their code before it reached the testing environment.

7. Once SRE redefined the metrics, leadership got a clear picture of the
performance of the system. It was reported that the system is still in
a nascent phase. Though overall performance is good, there are still
multiple areas to improve.

Choosing a metric is critical, but it can be difficult to define. It is not just the
job of the SRE team; it is a collaborative effort between all the SDLC teams.
Some of the commonly used metrics are MTTR, MTBF, MTTD, availability
%, and SLA %. MTTR, MTBF, and MTTD should be defined very clearly,
as every application will have a different flow, and sometimes, even within
an application, multiple services might differ in their measurement. For
example, 2 services, 1 of which functions to trigger multiple other jobs in the
system. And that service goes down automatically as soon as the function
ends. Service 2 has to be always up and running. Now, if MTTD is set up on
service health, then it will give wrong data for service 1, as service 1 does its
job and goes down. There is no error in service 1, but the metric will show
the wrong result, and SRE will have to spend the unwanted effort to
investigate the failure.
Other than the four golden metrics of SRE (latency, saturation, traffic, error),
some of the common metrics used are as follows:

MTTR: MTTR from any failure. Less time to recover from failure
reflects how efficient the systems are, as they can recover within a few
minutes from any failure. These metrics are for developers to measure
the self-healing of their code and for SRE to measure their tools and
observability that help recover the system faster.
MTTD: MTTD any failure. The time it takes to identify defects in the
system, the better the observability is. These metrics are for the SRE
and ops team to help measure observability and tool efficiency. The
efficient alerts and monitoring are fast, and SRE will be able to catch the
defect in the system.
MTBF: The more time between two failures reflects the efficiency of
the system. This metric is for both dev and SRE, as fewer failures means
efficient code as well as good self-healing.
% availability: what % of the system was available for end-users? This
is a direct reflection of reliability. High availability means high
reliability. The error rate metric is linked to MTBF as the higher % of
error rate means less MTBF.
Lead time to successfully implement the system change: This metric
is solely for the SRE team and reflects how good their tooling and
processes are. The less time it takes for a chance to go to production
shows the speed of the project. Some of the projects have new
requirements every month, and they follow a 1-week sprint cycle to
develop and release code.

Early involvement of SRE in SDLC
The SRE team is responsible for ensuring the reliability of the system. So,
they have a birds-eye view of a system that is live in the market. They
monitor the system from the user requests perspective, infrastructure health
perspective, and underlying application code perspective. SRE teams have
end-to-end visibility of how the system is performing, and using their
knowledge in the early stage of development can help development teams
build their system, keeping production aspects in mind, such as scaling,
auto-recovery, handling high loads, error handling, etc.

In continuation of the previous examples of online travel software, we will
understand how involving SRE in the early stage of SDLC helped this
organization achieve reliability in its application.

Scenario: Let us take one scenario involving SRE in the early phase.
After various improvements in a project, such as right metric
calculation, gatekeeping, and defining roles, the team improved the
performance of the system. They were able to manage defects
efficiently, and system recovery also improved. With new requirements,
the system started seeing more defects.
Some of the defects are as follows:

Search and compare hotels’ prices, service timing out as not getting
a response for dependent service of a downstream system (a system
that takes care of hotel details on the competitive platform).
Payment service fails whenever the database is down.
Reward service failing intermittently multiple times.

The development and testing team tested all the cases before moving the
code to production, but in the first defect, the service was timing out due to
another system in the same organization. The development team and testing
team simulated the defect with a dummy response from an external system.
A dummy response is not the exact replication of the scenario. But SRE has
visibility of the system end to end, and they can suggest that the dev and
testing teams design the functionality as per issues seen in production.
The following is the step-by-step process of how SRE involvement in the
early phase of SDLC helped solve the aforementioned problem:

Planning phase 1: Architects and analysts got requirements from
businesses on the new requirements. They divided these requirements
into different features for dev teams to build.
High level data flow diagram was created by SMEs for new features.
Planning phase 2: Dev SMEs started an architecture forum to discuss
the design of new features. And the SRE SME also participated in the
discussion.
The high-level design of search and compare service (consider it as
service1) is service calling to external service2, service2 responding

back, and service1 will wait for 5 secs, and if no response is received,
service1 time out.

The following is the diagrammatic representation of the search and compare
service:

Figure 6.6: Search and compare service data flow

The SRE team has the to-end visibility of the system and its dependent
system. So SRE suggested that the dev team implement a retry in service1,
where if after 5 seconds the service fails due to no response, there should be
a second retry. There can be network latency sometimes or some issue with
service 2 responding late. As service 2 is outside of the current project, we
cannot control their system, but we must improve our system. The dev team
incorporated this design change in the search and compare service to address
the first defect in the system: search and compare hotel price service timing
out as not getting a response for dependent service of the downstream
system (a system that takes care of hotel details on the competitive
platform).
The following is the high-level data flow for the payment service:

Figure 6.7: Payment service data flow

Before we jump into design, there are a few things to remember, it is a high-
availability system. All servers have multiple nodes to handle the load. The
application is running on multiple regions (also called data centers). Load
balancers are installed on top of applications that take care of managing load
by moving traffic between different servers and different regions. In this
design, the payment service is doing a health check on DB, so if one of the
nodes of the DB server is down, then the service will automatically move to
another available node.
However, the dev team did not consider the chaos case, where the full
database cluster is down. In that case, the payment service will fail, and the
customer will not be able to book any hotel or flight. The SRE team is also
responsible for performing chaos scenarios. The SRE team suggested a
design change where, in such cases, the payment service should get 400
responses from the database and automatically move the service to another
region so that customers do not see any impact. After incorporating auto
failover in the application, the problem of payment service failing whenever
the database is down will be solved.

The following is the high-level data flow of the reward service:

Figure 6.8: Reward service data flow

This is a slightly different case, where the reward service was still running
on an old platform, and all other features of the travel app were migrated to a
new platform. Initially, while planning, the technology team decided to take
this service next year in a plan to migrate. However, SRE started seeing
multiple issues with this service. As per design, the rewards service is
running on the old platform but calling the database from the new platform.
Due to the old framework, the service was not able to scale up enough and
was timing out while searching data in the database. SRE suggested dev
teams either plan to migrate reward also to a new platform or temporarily
create an overnight data sync service that will store data in the cache to be
available to reward service. This will not solve the problem permanently, but
it will increase the reliability of the application. In this scenario, as SRE has

visibility of all issues in the system, they were able to suggest design
changes to the dev team.

Implementation phase: All the implementation and development
happen in this phase. After planning was completed, dev teams built the
code. SRE teams added new alerting and monitoring for new features
before time. As they were involved in planning discussions, it helped
them to understand the flow better and create observability as per the
design.
Testing phase: After development, the software goes into the testing
phase. The testing team performed a round of testing for new features.
The SRE team performed chaos testing and added new chaos scenarios
for new features in their test suite. Being involved in planning helped
them get better information about the system design.
Deployment phase: This is the phase where tested code is packaged
and deployed/installed on the production environment (when software is
live to users). Once the code is certified, it is deployed in a production
environment.
Maintenance/monitoring phase: This is one of the important phases
where engineering teams monitor the performance of live software. SRE
teams started monitoring new features along with the existing app. The
SDLC cycle started again for new features. The following figure
represents the involvement of SRE in the planning phase.

The following figure shows the position of SRE in the planning phase and
how the software development lifecycle flows when SRE is involved in the
planning phase:

Figure 6.9: SRE involvement in the planning phase of SDLC

SRE as chaos and performance engineer
In all the previous examples, you have learned SREs’ involvement in chaos
and performance testing. In the traditional model of SDLC, performance
testing was performed by a dedicated performance team. They were either
part of a testing team or a new team hired only to perform performance and
load testing. Chaos was not part of any testing in the old SDLC model;
maybe a few test cases were covered as part of load testing. With modern
technology and modern frameworks, DevOps and SRE adoption increased.
Over the period of time, the roles and responsibilities of SRE also evolved,
and many organizations started involving SRE in chaos and performance
testing. SRE has end-to-end visibility of software; they have knowledge of
how systems perform in a production environment where various other
factors are also to be considered, such as system communication to other
systems over a network, network latency, % of real traffic, error rate in the
system, etc. This bird’s-eye view helps SRE to simulate the cases in the
lower environment to better catch bugs on time and fix them.

Take the previous example and online travel software. You have learned that
SRE was involved in chaos testing in a previous scenario, which is a defect;
Payment service failing whenever the database is down, how SRE helped the
development team in changing the design of the existing service to fix this
problem.
Consider another use case where a few members of the testing team were
hired to perform chaos testing. The testing team listed out chaos scenarios
and executed all scenarios. However, one of the chaos issues happened in a
production environment.

Problem: The hotel search service failed as it did not receive any
response from the database.
Solution: The solution to the aforementioned problem is explained with
two scenarios below, along with the diagrammatic representation.

The following is the data flow of the search service:

Figure 6.10: Search service data flow

The following are sequential steps for a chaos scenario:
1. Customers searched for hotels for particular date ranges and places.
2. The customer got page cannot be loaded in the first search. The

customer tried again and got the same error. Multiple customers
reported the same error to customer service.

3. The SRE team noticed http 400 error for service in the backend.
4. After an investigation by the SRE team, they identified that the

underlying database is not giving a response to the load balancer. After
further drilling down the issue, it was identified that one of the database
clusters was not available. When the load balancer tried to move the
load to another database instance, that request also failed. Though it
does not seem like a chaotic scenario, it is as in this case, the database is
not available, and the load balancer is not able to respond back to
service with the right error.

The following are the chaos scenario steps tested by the testing team:
1. Hotel search service requested to the database. As part of the test case,

one of the database instances was brought down.
2. The load balancer moved the load to another database instance. Service

got the response back, and the test case passed.
3. The testing team did not incorporate a database cluster-down scenario,

and that is why the load balancer was able to balance the traffic to one
instance.

In the aforementioned two scenarios, the testing team did not test the
scenario where the full database would be unavailable. So, the dev team did
not add this error handling in service. Now, SRE has real-time, throughout
the book visibility of production issues. So, if SRE had tested the chaos, they
should have included this scenario. The dev team cloud has added error
handling for the service, where the service could save data in the memory
cache and display results from the cache. An error can be displayed on the
screen that the app is under maintenance, so proactively inform customers.

Conclusion
By the end of this chapter, we discussed various examples of how SRE’s
best practices helped organizations to achieve reliability and performance of
the system. The chapter walks through examples from different domains of

software applications and their different problems. The solution explained
for each example will help you understand real world SRE. By now, you will
learn different SRE practices and how incorporating these practices helps
build better software.
In the next chapter, we will discuss some of SRE's best practices and the
core values that SRE and DevOps share. These practices are the foundation
of software development that will help build resilient and performant
systems.

CHAPTER 7
Best Practice for SRE

Introduction
This chapter will explain some of the best practices for SRE from a Business
perspective. In previous chapters, we discussed various best practices for
SRE. However, this chapter specifically focuses on the core values. These
practices are derived from real-world scenarios from organizations following
the SRE path.

Structure
This chapter covers the following topics:

Software design and software code
Core values of DevOps and SRE
Business and SRE

Objectives
By the end of this chapter, we will cover the best practices for successful
SRE teams and discuss some core values you should focus on for reliability.
This will help us understand that if the root of any methodology/approach is

strong, it can help you achieve good results.

Software design and software code
Quality of software is directly related to the reliability and performance of
the software. Best practices followed during software designing and coding
help deliver quality. These two pieces are the core of SDLC.
Software design has multiple phases. This is one of the initial phases of
SLDC after planning.
At a high level, software design is divided into three phases, interface
design, architectural design, and detailed design. Interface design is a high-
level design where internal systems are ignored, and only the input system
and end-user are focused. Architectural design is a layered system
architecture where all major components of the system are designed. The
communication of different components is also designed. As part of a
detailed design, every component is designed. Every specification of each
component is defined. Data flow and interface between every component are
also designed.
These three are internal phases of designing. As discussed in the previous
chapters, designing is the crucial phase of SDLC. Organizations also create
smaller strategies for software design, following best practices. This phase is
the link between the problem and the solution.
One of the best practices followed for software design to help fulfil the next
phase is software coding. So, best practices and standards followed during
design help build better software from a coding perspective, and quality
coding, in turn, increases software reliability and performance.
Some of the best practices for software design are:

Think about each component: Breaking down the system into smaller
components and listing every component. Then, you create
communication between these components. Breaking down your system
into components will help you understand the system better and how
data flows between each component. You also get to understand the
approach to be followed while coding the software. It helps you list

down the tools and technologies to be used as part of building the
software. Each component in software design here means services,
interface between services, data communication platforms (such as API
to API communication), storages, firewalls, load balancers,
communication to outside systems, and all such components.
There can be multiple designs in the process. As you progress in SDLC,
architecture also changes, so breaking down components helps change
your software design according to growing or changing requirements.
This proves to be a good practice for software design.
Platform agnostic: this means your software can run on multiple
platforms and technology. For example, your software was built to run
on the AWS cloud platform, but with a few changes, it can easily be
configured to run on the GCP cloud platform.
Making your software agnostic is not easy, and there will never be a lift
and shift of your software. However, during design, one of the best
practices is to design your system in a way that does not overlap with
the underlying architecture. It helps create a flexible system and can be
migrated to another platform if required
Creating a prototype: Building a prototype is a good way to see how
your system is performing. The prototype allows you to see the system;
if it fails, then repair it early on time. As part of failure, you would
know if any component in the system needed to be changed and as you
are early in your SDLC, it will help you to minimize the effort in
changing the design. The first few iterations of the prototype might not
be perfect, but that allows the creation of a perfect system (as no system
is perfect).
Though prototype creation is also part of development sometimes, it can
also be added as part of designing. In designing, you break down your
system into sub-systems and develop prototypes to validate the concepts
designed. Prototyping has disadvantages for big systems as it can
consume time and effort and add complexities.
Non-functional requirements: These are high-level requirements for
the overall project, which means outside the function of the software.
For example, the system's performance, scalability, profitability, and

extensibility. These are some of the non-functional requirements.
During the designing of software, you should also consider non-
functional requirements. The functionality of software directly impacts
non-functional requirements and defines the performance of software.

While designing all components and data flow, you should always consider
how each service will perform with load, how reliability works by defining
load balancing, how auto failover of software will work, etc. These non-
functional requirements drive the architecture of the system.
The following figure is a brief description of the best practices of software
design:

Figure 7.1: Software design best practice

Some of the best practices for software coding:
Design system architecture: Software design and coding are tightly
coupled. Right software design is one of the best practices for designing,
but it also impacts software development. The better and more detailed
the architecture, the more convenient for developers to understand and
write the code. Good design starts from the right understanding of the
requirement, functional and non-functional, and then maps these two.
Divide and rule policy wins here, that is, diving architecture into slices
will help plan and design software that meets the delivery outcome.
Code reviews: After the designing phase, development teams divide the

system into multiple features, and each feature is further broken into
smaller stories that are further broken into smaller microservices. These
stories are picked by developers, and they code into software. As best
practice, each code after development should be reviewed by peers. You
should clearly define the standards to be followed by development while
writing code, such as the naming convention of their service, no hard-
coded values, virializing dynamic values, etc. As part of code review, all
standards are reviewed, and if the code does not follow standards, then
it is rejected, and developers have to rewrite the code.
Develop test cases: As part of development, the team should create unit
test cases to increase code coverage. The more you test the code, the
more you will get visibility of the code’s functionality. Though unit tests
do not give enough visibility for end-to-end functionality, they give you
a view of the performance of smaller pieces of code. And it is easy to
fix the smaller code for any issues.
Performance testing: Include performance testing as part of your
testing. This best practice generally comes under SRE or QA teams, but
it is part of SDLC. This is one of the best practices to understand the
system performance end to end. Issues identified as part of this testing
can be fixed before deploying the code to production.
Documentation: This is one of the key best practices for developers.
Documenting defines detailed information on how the software works.
As part of designing, you should document each feature that will help
developers to understand and write the code. Along with this technical
documentation, developers should also document their services, such as
what the service does, input, output, data flow diagram, how to
troubleshoot the service, user manuals, etc. For example, adding brief
comments about the code during programming such as mentioning the
new function that was added as part of this feature. These comments
will help developers to track back in case of any troubleshooting.
Version control: Software versioning is important as it helps developers
and software keep track of different versions. When multiple developers
work on the same piece of software code, it becomes essential not to
conflict with and overwrite each other’s code changes. Keeping versions

of code will help avoid this conflict. If developers wanted to roll back
their changes, they could easily choose an older version. Various version
control software is available that can be used across organizations.

The performance and reliability of software depend on multiple factors.
However, the quality of the code is the core reason for the software’s
performance. Code quality improves the effectiveness, usability, and
reliability of the software. Software organizations follow various best
practices at each stage of SDLC to build performant and reliable systems. As
underlying code is one of the key variables for any software, best practices
followed for software design and code will help increase the reliability of the
system.
Best practices for software design and code will improve code quality; code
quality reduces bugs in the system, and bugs mean fewer outages and high
reliability.
The following are some of the best practices to improve code quality along
with the aforementioned explained best practices:

Practice designing each component with detail helps developers
understand data flow that, in turn, helps them to build quality code.
Practice adding code review to help catch issues on time before even it
is published to the repository.
Practice adding test cases will help code coverage and catch issues on
time. That gives developers time to fix these issues before the code is
published in the production environment.
Practice planning and designing non-functional requirements to help
understand the overall aspect of the system. This gives teams
perspective to look at software from outside and how other factors
impact code, such as load, failure in an external system, disaster
recovery situation, reaction to outages, impact of technology changes in
the market, etc.
Practice building a feedback loop between all SDLC teams helps
understand the system better, reduce turnaround time for bug fixes,
reduce recovery time, and, in turn, reduce impact on end users.

If you fix the core of the problem, the end results will eventually be positive.

So, the following described best practices during the initial phase of SDLC
will help build a quality software system:

Figure 7.2: Software development best practice summary

Let us take a real-world example of how software design best practices help
SRE achieve its goals.
A banking software organization is working on launching one of the big
features of its existing software available in the market.

The architect teams got the requirements from the business and started
designing the new feature.
The feature was broken down into multiple smaller components. The
architecture diagram was designed with data flow between all smaller
components.
The architecture was passed to the software development team. Detailed
component design helped development teams understand the design.
Design each component:

Breaking down into smaller components helped teams identify non-
functional requirements.
Engineering teams were able to design failovers within services and

add test cases for performance testing.
Detailed designing of all components helped development teams
divide features into multiple small services for clear development.

The development teams started building the code. As they build code, they
use the CI/CD pipelines built by the DevOps team to package it, deploy it,
and test it.

Code review:

As part of best practice, the senior developer reviewed each code
change, and only after their approval was the code merged into the
repository. As part of the code review, it was identified that one of
the codes is missing the critical configuration required to run in the
production environment. After the review, the configuration was
fixed and merged into the code.
During the code review, the SME identified that the wrong version
of the code (branch) was requested to be merged into the main code.
So, the SME rejected the code and asked the dev to correct the
version.
Code review helps developers identify and eliminate bugs in the
code at an early stage.

As part of the SDLC process and best practices followed by DevOps,
the dev team used automated test cases integrated into CI/CD and
identified bugs early in the phase. Devs fixed the bug, redeployed, and
retested.
Testing:

QA did their broader testing of the feature. Also, integration testing
is a whole application.
Bugs identified as part of QA testing were sent back to dev teams to
fix and retest.

After testing, the feature was deployed to production.
Monitoring:

As best practice was followed during software design, not many

issues were observed in the code for new features.
The service was also built as an auto-failover. There were retries
also implemented in the code.
Though SRE teams observed some issues, best practices followed
during software design and development helped the team deliver
quality code. That, in turn, helped maintain the application's
reliability even with new features. This also saved operational
overhead for SRE.

The following is the diagrammatic representation of the example explained,
where incorporating best practices helped build and deliver quality software:

Figure 7.3: SDLC process, including business and system designers

Core values of DevOps and SRE
DevOps and SRE are the most used approaches in today’s software
development and operations. Each organization has its own definition of
DevOps and SRE. Sometimes, they overlap with each other, sometimes also
used interchangeably; oftentimes, they are both used as two separate

divisions. However, an underlying principle for the two remains the same.
DevOps focuses on agility. The methodology is to unite the entire software
development journey, design, building, testing, and deploying; by breaking it
down into smaller pieces to increase the delivery of the product.
SRE focuses on resilience and reliability. The methodology is to collaborate
with the development team to design a system that runs smoothly even
during stress.
DevOps is a fusion of development and operations from a deployment
perspective. It focuses on deploying the code smoothly. Here, a team that
develops the code is also responsible for maintaining the code in production
using an automated cycle.
The core principles of DevOps are as follows:

Collaboration: Break down silos by connecting the development and
operations teams, using automation cycles for building and deploying.
Catch failures: Building automated CI/CD pipelines to build, test, and
deploy the code. Automation test cases catch failures on time and are
fixed before releasing them to production.
Control changes without slowing speed: The DevOps team builds
automated pipelines that help deploy changes in an incremental way
regularly. This helps break down big changes (such as big builds) into
smaller packages and deploy them. This helps faster deployment and
quick review of changes.
Automation: The DevOps team builds CI/CD pipelines using
automation tools. They add various controls and test cases as part of
CI/CD to catch issues on time.
Measurement: DevOps team always measures their outcome using
various metrics. Error rate, build failures, change failure rates, etc.
Feedback loop: give and seek feedback for continuous improvement.
Give feedback to development teams on errors encountered during the
build, test, and deployment of code. Seek feedback from dev teams on
how to improve CI/CD pipelines.

SRE is the team that makes sure to develop a system that is highly available
and reliable. It also brings development and operations together from an

operational perspective. It focuses on measuring and building the
performance and reliability of the system using various automation. The
SRE team develops various approaches to increase operational visibility for
the development team so that they can build quality code.
The core principles of SRE are:

Collaboration: Break down the silo between development and
operations teams focusing on operations. That helps developers give
more context to production performance.
Catch failures: The SRE team builds various monitoring dashboards,
alerting to catch failures. And feedback loop to share the information
back to developers. This helps developers fix the problem in code and
use DevOps’s pipelines to deploy fixes quickly, which in turn increases
reliability.
Automation: The SRE team builds various automation to reduce
operational overhead by reducing toil. Automation to identify issues in
the production system, failover system during any issue, and create an
RCA loop for developers.
Measurement: This is key for the SRE team. They create various
metrics to measure the performance and the availability of the system.
Three major metrics are SLA, SLO, and SLI.
Feedback loop: Give and seek feedback for continuous improvement.
Give feedback to development teams on types of errors encountered in
the production environment that impact reliability. The feedback helps
dev teams to analyse and fix it permanently. Seek feedback from dev
teams on tooling and how to help dev teams speed up their development
without compromising quality.

The following is the diagrammatic representation of the core values of
DevOps and SRE and how they overlap:

Figure 7.4: Core values of SRE and DevOps

The core values of both DevOps and SRE are the same, but both focus on
different aspects of SDLC. The goal of both teams is to create a stable and
reliable system.
Some of the differences between DevOps and SRE are:

Roles and responsibilities of both teams: The DevOps team works on
providing a platform for building, testing, and deploying the code. The
SRE team works on providing feedback to the development and testing
team. SRE manages operations.
Focus: SRE focuses on maintaining the availability of the system. They
focus on customers and end users. DevOps team focuses on faster
building and deploying code. They help the development team.
Metrics for measurements are different: SRE uses SLO, SLI and
SLA, MTTD, and MTTR. DevOps uses lead time for change,
deployment frequency, time to restore, and change failure rate.
Managing tickets: SRE focuses on customer-focused incidents.
DevOps focuses on internal tickets for development teams.
The best practices for DevOps are:
Agile methodology: Building pipelines that follow continuous
integration and continuous deployment. CI/CD pipelines that integrate

building, testing, and deploying code automatically.
Continuous monitoring: Implementing monitoring at various phases of
development and deployment. To catch failures and other issues on
time.
Feedback loop: Implement a feedback loop between development,
testing, and SRE teams. And also seek feedback from these teams to
continuously improve the services.
Collaboration: This is the key practice for the DevOps team. To break
silos and build transparent collaboration between teams. To give full
perspective to all teams about the software progress.
Automates testing: Testing is the key to measuring the quality of code.
The DevOps team integrates test cases in the CI/CD pipeline to help
automate testing. Automated pipeline to build infrastructure along with
code. This comes under automation as a best practice.
The best practices for SRE are:
Automation: Automate all manual work to reduce operational
overhead. Automate incident management process. Automate the RCA
loop. Automate change management process.
Define metrics: Define and create metrics to measure the performance
of the system. Metrics are one of the key practices for SRE. You cannot
improve your system without measuring its current performance.
Monitoring: Building dashboards and alerting to monitor the system in
real-time and passively. Dashboards are proactive, and they give an
overview of the system’s health. Alerting is reactive; engineers take
action after receiving alerts.
Collaboration: Collaboration is the best practice for any teamwork. For
SRE, collaborating with the development and product teams to give a
full perspective of system performance. Collaboration involves
understanding each team’s perspective, empowering them, and building
a system that considers all aspects of SDLC teams.
Engineering: Building tools and capabilities for non-functional
requirements to help the reliability of the system.

The following is the summary of DevOps vs. SRE that you learned above.

There are high-level differences and similarities between the two:

Figure 7.5: DevOps and SRE

Business and SRE
The goal for business and SRE is to build and deliver reliable and available
systems. Adopting the SRE approach has changed the business mindset
toward IT operations. By applying SRE principles, businesses can achieve
high availability, reduce incidents, and faster resolution. This helps increase
customer satisfaction and, in turn, increases productivity.
The best practices followed at SRE help businesses achieve their goals.
Though SRE is part of the technology domain, its methodology has
increased the visibility of the system for business. Business and SRE go
hand in hand. The organizational goals are defined by the business and
followed by technology teams, including dev and SRE. Then, the SRE team
builds a feedback loop about system stability from production to the
engineering team. The feedback goes back from engineering to product to
business, which gives visibility to the business about the real picture of
system performance. This loop helps business review their goals, keeping
operations in mind.

Let us see how SRE enables businesses to scale their system:
•	 Measurement: At the start of any project business, define high-level

goals for engineering teams with respect to software development and
delivery. And all SDLC teams follow those goals. Once the software is
delivered and used by end users, SRE creates various metrics to
measure system performance. This measurement helps businesses
understand the system better so that they can align how and when to add
new requirements and features.
SRE creates key metrics at the service level. These key metrics are
SLA, SLO, SLI, and error budget. Service level agreement defines the
availability of the system. The service level objective defines the desired
level of reliability of the system. Service level indicators are
measurements of the performance of the system. An error budget is a
measurement of the reliability or downtime of the system within
acceptable limits. By using these metrics, an organization can align its
engineering efforts with business objectives.

•	Incident management: It is part of the operational process, but it also
enables SRE to define the error budget. The error budget allows the
team to define the permissible error rate for the system. The feedback
loop within the SRE process allows engineering teams to visualize the
error rate. This helps the engineering team to prioritize production
reliability issues and also helps them balance between existing
production issues and new feature development. As the engineering
team gets the requirements from the business, they can give the error
rate back to the business, and then the business can balance out between
reliability and new requirements.
The error rate in the existing system also helps define the business IT
operational budget. This gives the business a 360 view of engineering
plus operations progress.

•	 Operations as a value creation: SRE’s key focus is to maintain the
system's reliability. In the process, they create multiple automations to
reduce operational overhead, faster system recovery, automated
failovers, quick capture of issues and solutions, and continuous
improvement. SRE contributes to the overall business strategy and helps

drive innovation. As SRE has 360 views of the production/live system,
they act as growth enablers, providing support to infrastructure and
application, providing visibility and support to the development team to
deliver high-quality software code, and building operational tools and
capabilities to help the development team focus on building code at
speed.
SRE empowers engineering/development teams to deliver quality, and
that helps the business meet its goals.

At a very high level, any software organization's business goal is to deliver a
quality experience to its customers in order to grow. Keeping this goal in
mind, the business breaks down into various measurable, smaller goals for
engineering teams. The overall strategy of an organization always flows
from top to bottom. Here, business is at the first level of this chain, and SRE
is at the last; this flow of goals into strategy changes multiple times in
between, but the end goal is the same: to make sure customers are satisfied.
That is why SRE plays a very critical role in achieving organizational
strategy. SRE measures the reliability and performance of the system; the
measurement gives visibility to businesses on where to improve in case
customers are not satisfied.
Let us look at the following real-world scenario on how SRE helps
businesses achieve organizational strategy:

Project: A software organization planned to build an e-commerce
platform.
Goal: To deliver seamless service to customers 24*7.
Timeline of project: 2 years.
Process:

Technology stack listing.
Budget allocation.
Teams onboarding.
Processes and standards creation.
For software building, consider the SDLC process with Agile
methodology. Multiple teams are involved in building, testing, and
delivering the product. (Refer to previous chapters for SDLC in

Agile.)

Engineering teams built the product keeping the organization’s strategy in
mind. The first version was launched after 2 years. Six months after the
launch, the SRE team shared their analysis of the system's performance. The
proactive and detailed analysis helped businesses avoid unforeseen
situations. Take a detailed look at this problem.
The following steps will walk you through finding the root of the problem:
1. As best practice, SRE created various metrics to measure the

performance of the system.
2. Availability of the system was measured as 99.999%. That means there

is no problem with the application’s availability to customers.
3. As part of the incident management system, operations teams were able

to resolve operational queries of customers on time. So, incident
management was also not the cause of customer dissatisfaction.

4. Data captured by SRE, as part of reliability and performance metrics,
showed some degradation of service. The two metrics were configured
to capture the request/response time of each service and the error rate
for each service. As part of these two metrics, the SRE team identified
that there is an intermittent failure in payment and search service. Also,
a pattern where at a particular period in a week, they see higher
response time from search service.

5. After initial analysis, SRE collaborated with infrastructure SMEs to
capture logs on the network side. As part of best practice, the network
team has also configured metrics for the latency. However, there was no
lag noticed in the network logs.

6. The analysis was further shared with engineering/development teams
(as part of the feedback look).

7. The engineering and SRE team collaborated and identified high
memory in logs during higher loads.

8. The SRE team re-reviewed their load test cases and found out that they
did not estimate the number as real live applications are seeing. So, the
application was never tested beyond a certain traffic.

9. The SRE team updated their test case and was able to replicate the

scenario.
10. Engineering teams identified the root cause of the issue and fixed the

underlying code by changing the multithreading and caching logic for
payment and search services.

11. This scenario also acted as a trigger point for the development team to
proactively review other services using similar logic in code.

12. The feedback loop was shared with the business, and they updated
their measurement to increase their customer’s traffic estimation.

13. This also helped businesses estimate the infrastructure's size for the
future and allocate respective budgets to onboard added capacity for the
infrastructure.

The aforementioned is one of the scenarios on how SRE best practices
helped organizations to quickly catch issues and resolve them on time. This
helped maintain the reliability of the system and, in turn, customer
satisfaction. Without SRE measurement, businesses might still be able to
identify the issue. However, that identification will be more reactive, that is
after the problem has impacted customers.
In some organizations, business works directly with SRE teams and involves
them in the initial planning and strategy of a product. This is also one of the
best practices for an organization to follow to get a 360 view of the product.
The aforementioned problem is the best example of if you cannot measure it,
you cannot improve it. Creating the right metrics at every level of software
building is one of the important steps that is also critical in choosing the
right metrics to measure your system.
Best practice for a business to follow:

Clearly defined objectives and goals for the organization.
Create a detailed roadmap with smaller achievable milestones and
timelines.
Conduct market research before starting to onboard any project. This
helps business to identify their target audience, too.
Keep a buffer for operational overhead. That means businesses should
always keep added capacity for operational tasks. Businesses should be
able to allocate resources effectively.

Risk management is one of the key factors when deciding an
organization’s strategy. No product is 100% reliable and available.
There will always be outages in the application. However, the business
should align its strategy, keeping these operational outages in mind.
Regular review of goals and strategy with engineering teams.
Businesses should split broader goals into smaller milestones. And
review those smaller milestones to track the performance of the
delivery.
The business and engineering team’s metrics should always match. For
example, if MTTR and MTBF are the metrics to measure the overall
system's performance, then the same should be followed by all SDLC
teams for their individual services and systems.
Prioritization of functional and non-function requirements based on
system performance and reliability. It also prioritizes non-functional
requirements to meet the system’s reliability.
Prioritization of features based on user needs and business goals.
Incorporate a feedback loop for continuous improvement.

The following is the diagrammatic representation of the aforementioned best
practices for businesses to follow in software development. It explains how
business and SRE collaborate through feedback loop that helps build and
deliver quality software:

Figure 7.6: Business to SRE and feedback loop

The aforementioned figure is the summary of the software development
lifecycle model. The data flows from top to down, business to engineering
teams. It shows various stages of information passing from the business to
the software development team, then to QA, and further to the SRE. The
system design stage is hidden to emphasize business and SRE
communication.
Stage 12 shows the feedback loop from SRE to developers and also
businesses.
This loop is a measurement of system performance, issues encountered, and
reliability of systems. These details help developers and businesses to gain
insight into production system performance.
Let us look at a real-world scenario of how a feedback loop helped an
organization build a reliable system and deliver a good product. Also,
highlight the importance of SRE teams and involvement in each phase of
SDLC.
For example, the health care product that is live in the market and is used by
various hospitals and direct customers to manage medical records, online
medicine delivery, patient data, doctor’s information, online booking for

consultation, and in-hospital emergency booking.
The following points show technology teams identified various problems in
software on time and solved those to give seamless experience to users.
The software's initiative was only for hospital usage, where hospital
representatives used the software to track and manage patient medical
records.
Over 1 year, the organization built and delivered two more capabilities in the
system, i.e., online booking and delivery of medicine and database search for
hospitals and doctors to direct users.
In 2nd year, the organization builds further capabilities for users, such as
online booking for consultation and in-hospital emergency booking.
Six months after the release of multiple features, the software started seeing
some performance lag. As part of performance metric capture, the SRE team
identified a 5% degradation in performance. However, this 5% did not
impact the availability of software. However, the operations or support team
received some 0.5% of queries from customers on the slowness of the
application.
The above point of performance degradation is an alarm for the organization
to re-examine the design of the software and take appropriate action to solve
the problem before it impacts the reliability of the platform. That, in turn,
impacts customer satisfaction.
Take the aforementioned figure, where SRE had a direct feedback loop to
the development, product, and business teams. The advantage of a direct
feedback loop is no loss of information and on-time information delivery to
the teams that plan delivery, i.e., business.
The performance data captured by SRE teams through their tools were
shared with development teams and businesses within 2 days (SRE took 1
day to analyse the data and shared initial analysis).
The organization had a regular cadence of meetings between all technology
team’s leadership. However, the data shared here was alarming to the
product, businesses got notified, and a meeting was called between the
development and SRE teams to discuss further solving the problem.
Teams analyzed that there was an increase in user requests concerning online

booking and that degraded the performance of the application. The current
booking module was not able to handle the load. A quick and easy fix to
increase the memory of the system was implemented with proper testing.
Again, 2 two-month analysis of the system shared by SRE to the business
team looked good and in control.
However, 3rd month, the SRE team captured 5% more degradation than last
time. That means even after increasing memory, the application was not able
to handle the load. As the customer request increased by 30% this time and
application load time increased by 10%, that is a red flag on the reliability of
the system.
The SRE team captured two instances of application crashes during high
load. However, due to the self-healing capability in the application, the
service was auto restarted, causing minimal impact on users.
The SRE team also captures the increase in customer compliance from the
support team on application slowness.
As part of the feedback loop, development teams were given data on open
bugs in the system. The business team identified the urgent need to fix the
current bug in the system and de-prioritize any feature in progress. The
development team paused the development of 2 new features, and the
engineer’s bandwidth was allocated to fix open production defects.
This gave visibility to the business, they stopped the new feature
requirement and shifted strategy to focus on improving the existing feature.
The timeline was defined as 2 weeks to fix all issues on system performance.
After 2 weeks, the technology team delivered the fix to the production
system. SRE closely monitored the system's performance and identified an
increase in the application's performance even during high load.
During defect fixing, engineering teams were also able to solve customer
queries.
This scenario is the best example of solving the reliability of the system
through a feedback loop and capturing the right data through metrics. This
also shows the importance of collaboration and transparency between the
product and technology teams that can solve big problems.

Conclusion
By the end of this chapter, we covered three major aspects of SRE best
practices. This chapter helped you understand how SRE helps businesses to
achieve their goals by aligning with organisational strategy. The mentioned
real industry scenario helps you visualize SRE’s role in various phases of
SDLC.
This chapter also helps you understand the importance of the feedback loop
and how it can be used as one of the best practices throughout the Agile
process to improve the reliability and delivery of software products. We also
understood how DevOps and SRE are helping businesses achieve their
goals.
In the next chapter, we will discuss about the tools available in the market
that help SRE to build and deliver reliable and quality software. The chapter
will also explain the cheat sheet for SRE, serving as a useful guide for those
starting their career in SRE as well those already working in the fields.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 8
Tool Kit for SRE

Introduction
In this chapter, we will discuss some of the best tools available on the
market that can be used as an SRE tool kit. This chapter will be a cheat
sheet for a successful SRE. The chapter will help you learn the high-level
daily tasks that SRE does to ensure successful reliability. Readers will
understand how an SRE team is formed by diverse skill sets.

Structure
This chapter covers the following topics:

SRE tool kit
Cheat sheet for SRE

Objectives
By the end of this chapter, you will have a high-level understanding of
SRE. Also, you will learn the tools available in the market today that the
SRE team uses. These tools might change in the future as technology
changes. Still, in current scenarios, they are some of the most used tools and

technologies by software organizations that have an SRE methodology.

SRE tool kit
There are multiple enterprises and open-source tools available in the market
today that are used by SRE teams. Some organizations also build their in-
house tools, and some of them use open-source tools and customize them as
per the requirements. Automation is at the heart of SRE teams, which
means they automate all the manual, repetitive work to reduce toil, and in
the process of automation, they also build their daily tools.
The following tools mentioned are some of the most used by organizations
today. These tools have been categorized according to their usage and
functionality.
Before shortlisting a tool, consider the following things that can help
choose the right tool:

The problems you are trying to solve: Start by identifying the gap or
problem. Once you have the problem, then try to see if the tool has the
required feature that can solve your problem.
Who will need to use the software: Evaluate cost and requirements
and consider who will be using the software.
Other tools required to be used along with the current tool: Can the
tool alone solve your requirement, or will you need another tool
integration? Or is there any other tool available that has all the
features?
Important outcomes: Once you have the problem or the gap, try to see
what tool will deliver along with solving your problems.
The learning curve: Will the tool require learning from scratch? Do
you have people on the team who already know the tool? Is ramping up
on the tool easy, or does it require any certification or learning course?
Implementing the tool: Will the tool require just installation and basic
configuration, or will you have to configure every feature of the tool?
What expertise do you need in configuring the tool, and what will be
the cost of installing/configuring?

Popularity of the tool: This can be misleading sometimes; however, if
other organizations similar to your business model are using the tool,
then it is worth considering the option.

The following are the service management tools.

Incident management
The following are the details:

ServiceNow IT service management: This tool aligns with IT service
management (ITIL) practice and is used for end-to-end management
of service delivery.

It is a cloud-based enterprise. It also has a dedicated cloud.
It has multiple and scalable workflows.
Easy user interface
Provide various dashboards for reporting
Paging: Notify the right people by identifying real-time issues
SRE teams mostly use the tool for incident management
Support on-call rotation for the team
Needs skill and time to configure

PagerDuty: This tool also manages operations.

It is a cloud-based tool.
It manages operations by collecting real-time data signals, applying
machine learning, and notifying the right people for faster
resolution.
Easy user interface.
SRE teams use the tool for incident management.
Support on-call rotation for the team.
Easy to configure.

OpsGenie: This tool also provides incident management systems.

It is based, but costs less than others.
Provide 24*7 on-call rotation.

Incident notification by collecting real-time data.
This tool has more flexibility, such as alert management and
deployment/rollbacks.
Very easy log tracing.
It is part of Atlassian products like Jira.
Easy to configure.

Jira service management:

It is cloud-based enterprise software.
Jira is mostly used for agile project management. Jira service
management is used for operational tasks.
It is a new software compared to ServiceNow. It is a rebranding of
its Jira software.
Lightweight and easy to configure.
Provide real-time incident management.
Provide detailed reporting.
Jira tasks (used in agile) can be linked to incidents in Jira service
management. This provides better tracing.

SolarWinds:

Its cloud-based.
The tool is mostly used as a network monitoring tool. But
SolarWinds ITSM is another functionality.
It provides incident management with ITIL best practices.
Configuration of alerts is easy.
On-call service.
Service monitor.

Zendesk:

One of the oldest cloud-based software.
Used as software as a service (SaaS).
Provide incident management.

Customer support and Live chat.
It is more of a ticketing system and a help center-focused tool.

TopDesk:

Well-renowned ITIL-compliant IT service management software.
Suitable for medium and large enterprises, it manages their
workflow, customer communications, and assets.
Good reporting and analytics. Gives insight into IT performance
and areas of improvement. Unique feature of the knowledge
management repository.
Cloud-based enterprise solution, and it is not open-source.

SymphonyAI IT service management:

Cloud-based enterprise solution.
One of the new software with advanced features such as AI-
enabled, analytics, a good dashboard, multi-language support, and a
persona-based user dashboard.
It is good for reporting and analytics. Organizations that need
extensive reports on the performance of their software can use this
tool.

There are various open-source software also available, such as Atlassian,
FreshService, SysAid, InvGate, Spiceworks, and Cherwell. The usage of
these tools solely depends on your project, budget, usage of the tool, data
security, compliance, and organizational decision.

Change management
ServiceNow:

This tool is also used for change management.
It is cloud-based enterprise.
Strong workflow integration with incidents.
Good report dashboards.

Jira management tool:

Jira is also used as a change management tool.
It is also the enterprise version.
It can also be integrated with Jira Agile and Jira service
management. This gives better tracing.

ChangeGear:

It is more of a service desk ITSM tool.
It has both on-premise and SaaS versions.
Easy and customizable dashboards with a single pane.

ChangeGrab:

Cost-effective tool. Its free version is also available.
Easy customization.
Better reporting and good integration with tools such as Slack and
Twitter.

SpeKit:

Real-time analytics to uncover insights.
It has the knowledge base to consolidate all data and remove
unwanted or poor-quality data.
Various customizable templates for change management features.
Real-time alerting.
Uses AI to translate calls and meetings transcripts and summarize
them.

Alerting and monitoring tools
ServiceNow, Jira, and PagerDuty can also be used as alerting tools. These
tools will alert users if they encounter any alerts as per the configuration.
However, organizations use tools that cater to all these functions for
tracking, logging, alerting, and monitoring. Choosing the right alerting and
monitoring tool is very important for SRE. The earlier you are notified
about any outage, the easier it is to trace, and the more it will help you
resolve the issue.

Elastic Search Logstash Kibana: Elastic Search Logstash Kibana
(ELK) is an observability tool stack

This is a stack of three tools that capture the data, log it, and alert
on issues.

Elastic search provides analytics on it
Logstash collects and aggregates the data
Kibana gives a user interface to monitor the logging

It is a cloud-based open-source software
Kibana is used to configure alerts and notifications on various
channels, such as Slack.
Elastic Search is based on indexing data to display on Kibana
Kibana has good monitoring dashboards that give a single view of
the health of the application.
Can be used for application and infrastructure monitoring.

Splunk:
This is a proprietary security and observability tool.
Splunk can be used to ingest various formats of machine data,
format it, and display it on the user interface.
It offers better and flexible monitoring dashboards.
It is a cloud-based paid software.
Can be used for application and infrastructure monitoring.

Dynatrace:
It is a cloud-based open-source tool
It is application performance monitoring (APM). Used mainly
for application logging and monitoring.
Dashboard creation.
Provide application log traces.

AppDynamics:

It is a cloud-based paid software.
It is also an application performance monitoring tool similar to
Dynatrace.
Easy dashboard creations.
Supports many platforms and is easy to set up.

Some of the other tools are NewRelic, Datadog, Prometheus, Grafana, and
Nagios.

Release and deployment tools
Ansible:

It is an application deployment, configuration management, and
continuous delivery tool.
It is mainly used as infrastructure as a code (IaaC).
It helps in the provision of target infrastructure and the deployment
of the application.
Mostly used by DevOps and SRE for their in-house tools.
An open-source tool.

Jenkins:

It is an IT automation and continuous integration/continuous
deployment (CI/CD) tool.
An open-source tool.
Used mainly by DevOps and SRE to build and deploy the
application.
It is also used extensively by SRE to automate manual tasks.
It has various plugins available to integrate multiple platforms.

AWS code deploy:

AWS in-house tool
Used for automated application deployment
Comes with an AWS purchase (no extra pricing for deploying apps
on AWS)

Easy pipeline creation and configuration
Provide monitoring of application health and easy rollbacks.

Azure DevOps:

Microsoft product for automated deployment, project management,
and release management
Easy integration with Microsoft-based software system
It is an end-to-end solution for the DevOps team. However, SRE is
also used for tracking and reviewing changes in production.

GitLab:

It is one of the powerful open-source tool.
It is based on git and a DevOps platform that helps developers
monitor, test, and deploy the code.
It has an in-built CI/CD pipeline.
Along with building and deploying code, it is also used to automate
using CI/CD.

Terraform:
It is an infrastructure-as-code software tool. It facilitates
provisioning and managing infrastructure on-prem and in the cloud.
It helps define infrastructure using declarative language.
It can be easily extended to a plugin-based architecture.

It is not open-source and is paid. However, for smaller project the free
version of the tool can be used.
GitHub Actions:

It is one of the upcoming CI/CD tools with integrated CI/CD
solutions coupled with GitHub repositories.
This tool works on workflows, where developers can easily create
workflows to run multiple jobs.
GitHub Actions and Jenkins can be used together, though they are
independent. But complement each other.

It is used to deploy applications to multiple clouds.
GitHub Actions is free for standard GitHub-hosted runners in
public repositories. But for private repositories, GitHub Actions is
paid.

Chaos testing tools
Litmus:

It is an open-source tool
Provide a library for testing containers, hosts, platforms for Azure,
AWS, GCP, and other cloud platform.
Web UI to review the test cases.
Good Integration with observability tools.

AWS Fault Ingestion Simulator:

The underlying platform is AWS
Works best with AWS applications and infrastructure
Easy to configure test cases

Azure Chaos Studio:

Similar to AWS FIS, this tool has an underlying platform, Azure
Works best with applications and infrastructure on the Azure cloud.
It has a learning curve to configure and use the tool

Chaos Monkey:

This is one of the oldest tools used for Chaos testing.
It has limited test cases compared to other tools.

The following are some development tools:
GitHub: Source code repository.
IntelliJ: For writing code.
Visual Studio Code: For writing code.
Sublime text: Writing code.
Eclipse: Used for code written in the Java language

Along with the aforementioned tools, there are various other tools and
technologies used by SRE for their day-to-day tasks. SRE teams are
developers who use various coding languages such as Python, Java, Golang,
and others to develop tools and capabilities for non-functional
requirements.
As part of the SRE tool kit, the skills required by engineers for day-to-day
tasks are:

Knowledge of containerization, such as Kubernetes and Docker.
Knowledge of cloud computing.
Software development for microservice architecture.
Networking.

As we know, no one size fits all. Each organization has different
requirements, and they should choose these tools based on their
requirement. However, some common things to consider before you choose
any tool are:

What % of your requirement will the tool cover.
The effort required to configure the tool, and the support required.
What type of customization is required in the tool.
Skill set required to configure the tool. Such is if you need to hire
people to just configure the tool, then what is the cost of hire vs cost
you will save in long term by using the tool?
Cost to configure. Open-Source vs. Enterprise version.
Can the same tool be used across organizations by other projects as
well.
Integration of the tool with other software used in an organization.

Cheat sheet for SRE
The cheat sheet is a concise note for site reliability engineers. It gives you a
high-level overview of the SRE role. In previous chapters, you learned in
depth about how organizations use various best practices to maintain the
reliability of software.

This topic is also a summary of the best practices the SRE team uses in each
of the various categories to excel in reliability and performance.
The following are the various categories for the SRE role:

Automation: It is the key to SRE and DevOps. Though identifying
manual tasks and their automation consumes time, it saves time for
SRE and DevOps teams to focus on other priority tasks in the long
term.
One of the top tasks for SRE is to automate tasks that take up a lot of
time, are repetitive, and are prone to human error.
The following are the key features of automation:

Automating manual tasks that are performed to keep the production
environment up and running.
Creating self-service tools for other cross-functional teams to help
them pull data from the production environment.
Automating alert resolution and incident resolution.
Automation can be any language. The most commonly used
software languages to automate are shell script, Python, and Java.
Automation is sometimes known as a description, depending on the
requirement. Sometimes, scripting can also automate and remove
the toil. Sometimes, you need to build a new tool to automate, and
you can choose any programming language to build the tool.

Service management: The management of any form is one of the key
features for any organization, irrespective of software, automobile,
bank, etc. Even if you have the best team and tools available to build
software, without good management, the processes fail and impact the
overall delivery of the product.
The following are the best practices to follow in service management:

Another task is to have strict standards and processes around ticket
tracking, such as:

Incident management includes handling incidents, resolving
incidents, and tracking them.

Defect management for production defects to raise defects for
production bugs, tracking defects with dev teams for fixes, and
validating fixes.

Root cause analysis (RCA)/ post mortem is another key to SRE to
fix the issue at the root. Embedding RCA into the incident
management process helps achieve good software reliability.
The goal is to prevent incidents from occurring and, if they occur,
prevent them from further occurring. Problem and incident
management are correlated and go hand in hand.

Alerting and monitoring: Monitoring a system is critical to ensure its
performance. If any lag in the performance of the system is identified,
then alerting on that lag is another critical step in the operational
process.
The following are some of the best practices to follow for alerting and
monitoring:

Creating metrics to measure the health and performance of the
application.
Collaborating with developers to identify the severity of alerts.
Configuring alerts.
Deciding on monitoring and alerting tools.
Creating monitoring dashboards for application health.
Continuous enhancements of alerting and monitoring with new
feature releases in the application
Integrating alerts with incident tools for notification to the right
people.

Observability: This is related to alert and monitoring; however, it is a
little more advanced, as shown:

Building machine learning to co-relate various signals and alerts for
production applications.
Building self-healing alerts. This helps the software to auto-heal

Security and compliance: This category is sometimes hidden or
ignored. However, when you are working in the production
environment, you should add this to your daily tasks suit.
The following are some of the factors to consider while building
software:

As SRE mostly takes care of production applications, security is
one of the key things the SRE team must take care of.
Access policies across applications and infrastructure
IAM policies for the application.
Credentials, password management, and automated renewal of
these credentials.
Audit control on application and infrastructure
Audit and compliance reports

Change management: Generally, organizations have separate teams
for change management, and SRE does not participate in it. However,
SREs who support production should know what change is going into
their system and how that change can impact them.

Review changes and implement changes sometimes.
Tracking changes in the production environment.

Release and deployment: This is also another important category for
SRE to keep in daily tasks. It is tied together in the SRE function along
with release management. Sometimes, release and deployment are part
of the SRE function; sometimes, they fall under the DevOps bucket. A
strong release and deployment strategy helps control poor quality
changes via reviews, automation, etc.
The following are some of the points on how a strong release
management process can help achieve reliability in the system:

Review code changes and bug fixes for the production environment
Build and release tools and capabilities used for non-functional
requirements.
Rollback changes in the production environment

Collaboration with the development and testing team on the release
cycle and hotfix cycle

Chaos engineering: In some organizations, this category is owned by a
dedicated team. However, for better chaos results, SRE should own
this, as they work on production in and out and understand various
chaos scenarios better.

Listing chaos test cases
Performing chaos testing to simulate production chaos scenarios
Collaborating with the development team and infrastructure team
on fixing the bugs identified as part of testing.

Capacity planning: Planning of capacity for human and infrastructure
resources is always a good practice in software development. Along
with planning your team size and skill sets, it is very important to plan
the capacity required to build and run your software. Also, capacity is
required to extend the software as per future demand.
The following are some of the best practices to follow in capacity
planning:

Collaborate with the development team on the capacity of the
infrastructure required for the application to run.
Requirement analysis for production applications such as CPU,
mem, number of instances, number of cross regions, etc.
Continuous monitoring and analysis of the usage of infrastructure
such as CPU, Mem.

Availability: This is the first tool to be picked from the SRE tool kit
when someone asks how SRE is performing. If the application is highly
available, that means the SRE team is doing their job well.
The following are the points to consider while measuring the
availability of software:

Identifying SLI, SLO, and SLA.
Identifying and configuring metrics to measure the performance of
the system

Measuring the availability of the system through various metrics

Non-functional development: This is the practice that means helping
your development team focus on coding the app, and the rest will be
taken care of by SRE. It gives back time to the dev team so they are not
stuck in operational tasks and increases trust between the two teams.
The following are some of the non-functional requirements:

Building tools and capabilities
Fixing non-functional bugs in a system, such as correcting wrong
alerts, removing false alerts, cleaning up extra logs in the system,
etc.
Performing sanity checks on production applications for new
features

New product onboarding and planning: This is one of the important
pieces, so have SRE as part of the initial planning process. As SREs are
generally involved during the end phases of SDLC, a mature SRE
organization keeps SREs in every phase of SDLC and involves them
from the first phase. This is one of the best practices for achieving
reliability in the system. The feedback loop from SRE is direct
problems in production and can provide great insights for designers,
planners, and business teams when they plan the architecture of any
new product.
The following are the points on how to involve SRE in the beginning:

Participate in architecture discussions with the development team
for new features
Collaborate with dev to build the system design for new features
Review the new service manual and sign off before releasing it to
the production environment.

Application production support: This is one of the key roles for SRE
teams. Though it is operational, SRE should spend 50% of their time in
development and another 50% in supporting the production system.
The following are some of the tasks SRE performs as a production

support engineer:

Troubleshooting issues/bugs in the system using tools
Performing circumventions for issues that impact live applications.
Incident management is part of operations and support
Perform root cause analysis of the problem, collaborating with
cross-functional teams.
Building an alerting and monitoring dashboard for daily
monitoring.
Creating standards and processes around incidents and defect
management.
Continuous feedback loop of production to other SRE engineers
and dev, test teams.
Collaborating with release, change management, and dev teams,
run-time, while circumventing issues.

Infrastructure production support: Application and infrastructure
production support go along. Both are part of one role for SRE. Some
big organizations divide SRE into various sub-functions; however, in
some organizations, it is one single SRE team that performs various
roles.

Monitoring infrastructure health
Troubleshooting and resolving infrastructure issues in a production
application
Upgrading infrastructure versions

Planning: There are multiple best practices called out for various types
of planning. It is very critical also.

Build best practices for each category
Create standards and processes to bring best practices into the
team’s culture
Build a transparent and blameless culture
Best practices around tools and technology

Collaboration: This is the baseline of SRE methodology. When SRE
and DevOps were formed as new process to build software, one of the
key problems was silos. Lack of collaboration between teams. In past
when each SDLC team used to work in silo, there was no clear
communication or collaboration between teams, big projects used to
fail a lot. Collaboration is the new culture for any organization that
wants to build high-performance and reliable software. The following
are some of the key points mentioned on how collaboration can be
included in daily tasks of SDLC teams:

Day-to-day collaboration with development teams for new features,
bug fixes, investigating, and postmortem.
Collaboration with testing team to review defects in lower env that
can occur in production
Collaboration with DevOps to configure CI/CD pipeline. Also, to
configure infrastructure
Collaboration with product management team for building best
practices for full SDLC
Collaborate with the business team to understand new requirements

Each of the categories defined earlier has best practices to follow. SRE
teams generally run on standards, processes, and best practices. To start
creating your own SRE team, you should first list the categories (such as
what role SRE will perform) and then build best practices around each
category. There can also be other categories depending on the project type,
size, budget, etc. It also depends on how granular you would like to go in
the SRE process while defining categories.
The following figure shows some of the top categories to start with while
creating an SRE team. It also helps redesign the existing SRE teams if
required:

Figure 8.1: SRE building blocks

Conclusion
By the end of this chapter, we get a high-level overview of the SRE role.
We discussed the various tools SRE uses across organizations and the
categorization of these tools. Moreover, we discussed the daily tasks that
SRE can follow.
In the next chapter, we will cover the daily roles and responsibilities of an
SRE engineer. Also, the chapter will describe the skill sets required to be an
SRE engineer.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 9
Day in the Life of SRE

Introduction
This chapter will explain the roles and responsibilities of SRE and give a
glimpse of the daily tasks of SRE teams. This chapter will help you
understand what skills to learn to become an SRE.

Structure
The chapter covers the following topics:

Skillsets and technology background of SRE
Roles and responsibilities of SRE

Objectives
By the end of this chapter, you will learn about various real-world scenarios
of SRE daily activities to give you a glimpse of the skill sets of SRE
engineers. This chapter aims to help you understand the starting point to
become an SRE and how an SRE team functions in today’s Agile approach.

Skillsets and technology background of SRE
As the name suggests, SRE is site reliability engineering, a team that builds
and maintains system reliability. The end goal for any organization is to
build and deliver a reliable product to satisfy customers. Though the SRE
team builds and maintains the reliability of the system, it is the
responsibility of each SDLC team to build a reliable system. Goals for
every function in the SDLC are designed to incorporate the reliability
aspect. For example, development teams follow best practices while
developing code, ensuring a reliable software code. The testing team
incorporates end-to-end data flow test cases to ensure full code coverage
during testing. The design team incorporates scalability in system design,
ensuring the reliability of the end product.
The question that arises is, why do we need a separate SRE team to build
reliability when reliability is incorporated in every phase of SDLC?
Sire reliability engineering falls at the end of the SDLC cycle, which means
more visibility of the end product and end user. The SRE team gets a 360-
degree view of the product/system just before its delivery and also after its
delivery to customers. Each SDLC team follows reliability as part of its
function, but the SRE team gets the view of reliability for the whole product
when all pieces are merged.
Consider the following example:
The design team builds the design of the system, incorporating scalability
and reliability. As part of development, multiple development teams are
involved in building different modules and software. These different
services are merged and tested as one product by the testing team. All three
teams follow best practices to ensure reliability in designing, coding, and
testing. However, various other factors need to be considered when the final
product is delivered, such as external system integrations, third-party
integrations, real customer load, the behavior of the system with customer
load, the system’s behavior during unwanted disasters, etc. The SRE team
monitors the system end to end, including upstream and downstream
systems impacting the product. This end-to-end monitoring gives 360-

degree visibility to the SRE team, which helps ensure reliability. They build
recovery tools for a seamless customer experience.
Let us extend the above example and take one scenario where a new feature
was developed by the development team. The code was tested by the dev
and testing teams. The new code was validated for scalability by SRE tools,
and it failed in one of the validation cases. So, the code was sent back for
redesigning and testing. This scenario explains how SRE controls the code
quality and ensures the reliability of the system by avoiding wrong code
changes going into the system. SRE teams take care of reliability on top of
the product by building tools.
The SRE team is a set of various skills. The site reliability engineering team
consists of members with different technology backgrounds and skills.
Let us look at some important site reliability engineering skills that we will
need to fulfill the role:

Software coding: As an SRE, you need to be proficient in coding. It
could be any coding language. SRE is required to code to build tools,
sometimes SRE teams are required to develop non-functional
requirements in the system, and sometimes SRE collaborates with
development teams to fix non-functional bugs in the system. The most
popular languages today are Python, Go, and Java.
Automation/scripting: As SRE, you will need to automate all the
manual tasks and reduce toil. Scripting is handy in automating daily
manual tasks such as writing scripts for health check servers, writing
scripts to alert for any anomalies, etc. The most popular scripting
languages today are Python, Linux/Unix Shell, and PowerShell (mainly
for Windows operating systems). Scripting is a little different than
coding. Coding involves building tools and non-functional
requirements. However, scripting involves automating smaller manual
daily tasks.
ITIL: Information Technology Infrastructure Library (ITIL) is a
framework designed to standardize the planning, design, delivery, and
maintenance of overall IT service within a business. Knowledge of
ITIL comes in very handy for SRE.

The two major aspects of ITIL are:

Release and change management: Understanding the release and
change management process is very important for SRE. As SRE,
you will have to collaborate with development teams to review and
release the changes; for that, you will need deep knowledge of the
release and change process. Change management implies managing
multiple changes in the system without interrupting business, and
release management is grouping all major features in one release
for faster rollout of production without interrupting business. As
SRE, you will have to participate in the process to review, validate,
and implement the changes in the system.
Incident management: As SRE, you will work on tickets and
incidents from customers. Sometimes, SRE will work with separate
operations teams, and sometimes, SRE themselves will take care of
incident management. As SRE, you are required to have an
understanding of how to manage incidents reported, how and when
to act on incidents, how to prioritize, how to define the severity of
incidents, and what actions to take to resolve these incidents. Some
of the common tools used are ServiceNow and Jira.

CI/CD pipeline designing: Continuous integration and continuous
deployment. Most DevOps teams are responsible for creating CI/CD
pipelines using tools such as Jenkins. However, as an SRE, you should
also know what the CI/CD process is and how to create a CI/CD
pipeline. In some organizations, SRE team is responsible for building
these pipelines. Sometimes, to automate daily manual tasks, SRE teams
build pipelines using CI/CD tools. Such as building pipelines for
display server configurations, so that you do not have to login into
multiple servers all the time to check configurations. CI/CD pipeline
creation involves a lot of scripting also. As SRE, you will have to
create pipelines to configure end-to-end infrastructure also, including
installing servers, databases, containers, and other software. Some of
the tools used for CI/CD for application and infrastructure are Jenkins,
Ansible, and Terraform.

Cloud computing: Today, most of the applications are designed to run
on cloud platforms such as AWS, Azure, and GCP (all are public cloud
providers). There are other private cloud providers also, such as Oracle
and Red Hat. As an SRE, you need to have knowledge of any one of
the cloud computing platforms, how cloud-native applications are
designed, and how to deploy these applications on the cloud. As SRE,
you will work on deploying and maintaining this application on the
cloud; you will monitor the infrastructure for this application that is
running on the cloud. For example, applications running on servers
configured on the AWS cloud platform. As SRE, you will monitor this
application on AWS, build pipelines on AWS, and build dashboards on
AWS.
Database management systems: Databases go hand in hand with
applications. As SRE, you will need to work on relational and non-
relational databases. Where you will monitor database performance,
run queries on the database to troubleshoot problems, update and insert
data in the database as part of any change, and many more such tasks.
For all these tasks, you need to have knowledge of databases. Most of
the used databases are non-relational, Couchbase, MongoDB, Apache
Cassandra, and Oracle NoSQL; and relational, Oracle, Postgres, DB2,
MySQL.
Distributed infrastructure engineering: Most organizations today
maintain distributed systems to achieve high availability and
scalability. Distributed systems mean applications using resources
across multiple infrastructures. Even if one infrastructure or node is
down, the application will use other resources and continue to perform
its function without impacting business. As an SRE, you need to have a
deep understanding of distributed architecture. This overlaps with an
understanding of cloud computing and operating systems. As an SRE,
you will monitor the system end to end, and to solve any problem in
the system, you need to know how the distributed system architecture
works.
System administration: As SRE, you will have to perform various
system administration tasks such as installing and configuring software

and networks, ensuring the security of the system, monitoring system
performance, identifying system requirements, and upgrading systems
with the latest versions. So, knowledge and hands-on experience in
system administration is one of the important skills for SRE.
Tools: As SRE, you will have to work on various tools. Day to day,
SRE will monitor the system, troubleshoot issues, solve app and
infrastructure issues, and do coding and scripting. To perform these
tasks, SRE will use various tools.
For example:

Monitoring tools: Grafana, Prometheus, AppDynamics, DataDog,
Dynatrace, Splunk, Nagios, NewRelic, etc.
Logging tools: Splunk, FluentD, Logstash, SumoLogic,
SolarWinds. Version Control tools – GitHub, GitLab, Bitbucket,
Azure DevOps, SourceForge, etc.

Communication skills: Communication is one of the key soft skills
required by SRE teams. SRE was formed on the lines of collaboration
and removing silos. To eliminate silos, you need to collaborate and
communicate with various cross-functional teams. As an SRE, you will
have to participate in designing discussions, reviewing processes,
defining metrics processes, and setting processes. For all these
discussions, you need to have great communication skills where you
can understand technical and business knowledge and convey your
message.
Problem solving: As SRE, every day, you will be involved in solving
problems. Problems related to system code, system designing, system
reliability, performance, collaboration problems, customer issues, etc.
So, the skill of being able to solve problems quickly and effectively is
essential for any site reliability engineer.

These are a handful of skills required if you are looking to be an SRE.
However, you do not necessarily need to have all the skills; if you have
50% of these skills in your portfolio, you can be SRE. SRE teams consist of
multiple team members having different backgrounds and skill sets. Team
members will also have different levels of experience, starting from entry-

level to senior to leadership.
The background of SRE engineers includes software developers, software
testers, DevOps people, system administrators, Infrastructure engineers,
production support engineers, and architects. If you have experience in any
of these skills, you can choose the SRE career path. For entry-level, if you
have a basic level of understanding of development, cloud computing, and
operating systems, you can choose the SRE path.

Roles and responsibilities of SRE
The SRE team consists of team members with diverse backgrounds, as
mentioned in the previous topic. It is a mix of skills within the SRE team,
and all team members perform different functions within the team.
To understand the roles and responsibilities of SREs, let us discuss their
daily lives. The following are the various roles SREs play daily. Before we
start, let us assume that this SRE team takes care of both engineering and
operations.

Case 1
The details are as follows:

Site reliability engineers start his/her day by logging into the ITSM
tool. Tools will automatically assign tickets to the engineer.
The engineer then logged into the monitoring dashboards and started
monitoring the health of the system.
In parallel, he/she keeps an eye on alert notifications received on the
collaborative platform.
Two new tickets were automatically assigned to the engineer. After
monitoring the dashboards, the engineer reviewed the tickets. After
initial review, the engineer identified that the ticket is low priority and
has an SLA of 4 hours to resolve.
The engineer noticed some HTTP 500 alerts in one of the services. As
the ticket was low priority, the engineer started investigating the http
500 alerts.

Then, he/she logged into the logging tool and started pulling the logs
for the service, throwing http 500 alerts.
As a part of the investigation, he/she logged into change management
software and reviewed any changes that went into the system for this
service in the last 24 hours.
He/she also logged into the knowledge base tool to check if any such
alert was reported in the past for this service.
The engineer identified one of the changes that went into the system
but for another downstream service but is still a potential candidate to
cause alerting.
The engineer logged into the source code and reviewed the change in
the code in production.
He/she clones the piece of code to his/her local system and debugs it.
As part of troubleshooting, it was identified that the latest code change
to the downstream system was causing http 500 alert for the upstream
system.
SRE collaborated with the development team to collect more
information about the change and used a CI/CD pipeline to roll back
the change.
Meanwhile, SRE used their in-built tool to move traffic to another
working region to avoid any interruption in business. Rolling back the
change circumvented the issue.
The SRE engineer then created a defect for the development team to fix
the new code.
Soon after resolving the http 500 alerts, he/she picked the tickets from
the queue and started working on them.
After half day, the engineer logged out from ITSM, and another
engineer was onboarded to take over operational tasks.
The former engineer then logged into the collaboration tool to start
working on the engineering tasks assigned in the queue.
He/she picked up automation of manual tasks. As part of automation,
he/she then logged into the development tool and started writing code

for the tool.
At the end of day, all the SRE team meet and discussed briefly the daily
tasks performed by each team member and added note to their
knowledge base for future.
Tools and skills used are development in Python using VisualCode,
ITSM, change management, monitoring and logging using Splunk and
Kibana, GitHub, Java debugging, Jenkins CI/CD

Case 2
The details are as follows:

Another SRE engineer started his/her day by logging into the ITSM
tool. And then started looking into the tickets assigned to the queue.
Similar to the previous case, this engineer also logged into the
monitoring dashboard to proactively monitor the health of the system.
Later, after some time, the engineer noticed that one high-priority ticket
was assigned.
He/she communicated to the team to keep an eye on the dashboard as
he/she will be working on the high-priority ticket.
The ticket was a customer complaint about not being able to access a
functionality in the app.
The engineer then started troubleshooting the issue by logging into the
monitoring and logging tool.
As part of troubleshooting, he/she enabled temporary debug logs for
the service (for which the customer raised a complaint) and collected
logs for the past 3 days.
He/she was able to identify the problem in the debug logs. But also
noticed that no alert was received for this error that the customer saw.
So, the engineer created a ticket for the SRE team to review and
configure alerting for this use case.
After identifying the problem in code, he/she informed the
development team to fix the issue on high priority and also informed
customer on the status.

He/she then picked the earlier ticket of alert configuration and started
working on creating a custom alert for this particular use case. Updated
the runbook for the service and added this newly created alert.
Engineer, then logged out from operational tasks and reviewed other
engineering tasks assigned to him/her.
From the engineering queue, he/she picked up the chaos engineering
tasks.
As chaos engineering, SRE started creating use cases and chaos, and
then using testing tools to configure these test cases in the tool.
SRE collaborated with the QA team to list down other chaos scenarios
noticed by the QA team in the testing environment. In order to
incorporate those scenarios too, in chaos engineering.
After creating new chaos test cases, he/she executed some chaos test
cases and identified that in one of the use case application is not able to
recover when one of the database node is down.
SRE shared the finding with the team, and the SRE team collaborated
with the development team to understand the connection configuration
for the service.
As part of the solution, the SRE engineer configured a health check on
the database from that service to fix the chaos case.
This case covers monitoring and alerting creation, chaos engineering,
troubleshooting, and coding.

Case 3
The details are as follows:

SRE engineer started his/her day with non-operational tasks. As part of
the daily activities of SRE, the engineer logged into the monitoring
dashboard to review system health.
He/she then checked the calendar for upcoming meetings. The first
meeting of the day was a collaboration with architects on designing
new features. SRE engineers and architects discussed this, and for SRE
recommendations, it was decided to incorporate auto failover of service
for this new feature.

Then, the SRE engineer joined another meeting for knowledge transfer
of new service getting onboarded in the upcoming month. The SRE
engineer participated in the meeting and reviewed this new service for
retries, alerting and logging. It is also recommended to add alerting and
metrics in code.
Then, the SRE engineer was notified by one of his/her team members
about an outage reported in a production environment.
Then, he/she, along with one other SRE engineer, joined the war room
to circumvent the outage.
He/she started troubleshooting the issue by looking at the logs. As part
of best practice, he/she looked for recent changes that went into the
system.
After investigating the issue, the SRE engineer identified the cause of
the outage and collaborated with the development team to fix the issue.
This use case covers system designing, new service review,
troubleshooting, collaboration, and coding knowledge

Case 4
The details are as follows:

Another SRE engineer started the day by looking at pending tasks in
the queue.
One of the tasks is to review all open issues in a production system that
are impacting the reliability of the system.
The engineer listed out all defects and started working on fixing non-
functional defects on the list. For example, adding an alert on the last
retry, changing the log level for services, or adding a health check on a
database from a service.
Then, the SRE team got a request to review one of the upcoming ad-
hoc changes. This SRE engineer participated in the review call and
validated the change. As a part of validation, SRE reviewed the change,
its impact, and what region change is planned. The change did not
mention the impact, so the SRE engineer rejected it and asked the
requestor to raise it again with rollback in case of impact.

After the review, the engineer went back to fixing defects.
For the day, he/she worked on completing defect fix tasks.
This use case covers change management, coding, and monitoring.

The aforementioned cases explain the daily activities of the SRE engineers.
They include various roles and responsibilities of the SRE team. The SRE
team is a mix of diverse skillsets, and each team member has a defined role
according to expertise. Some team members are more involved in
operational tasks such as monitoring, alerting, and automation. Others are
responsible for coding and infrastructure management. Some participate in
change, release management, and design review.
However, the core for each SRE is collaboration, problem solving, and
development. The level of coding may differ depend on the years and type
of experience.

Summary of key tasks and skills of an SRE

The roles and responsibilities of the SRE team are:
Monitoring and configuring dashboards.
Identifying bugs and resolving those bugs in the system, this is a very
broad role and includes fixing system design, architectural changes,
code changes, infra configurational changes, etc.
Infrastructure configuration and management.
CI/CD pipeline creation.
Chaos engineering.
Change review.
Incident management.
Collaboration.
Communication.
Planning.

The career path to becoming an SRE is the skills in your tech stack. It could
be a mix of the following 2-3 skills:

Software development

Software designing
Scripting
Infrastructure configuration
Cloud knowledge
System administration and database administration
Production support

Conclusion
This chapter will help you choose a path forward to SRE as a career.
By the end of this chapter, we discussed the various roles that SRE
engineers perform and their background experiences. This will help you
decide what technology to learn to become an SRE engineer.
In the next chapter, we will cover the future of SRE and help readers
understand how to begin a career in SRE. It will also help readers
understand how and what skills to ramp up as an SRE engineer.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 10
Future of SRE

Introduction
This chapter concludes with key SRE features that readers learned through
this book. It also gives comprehensive SRE goals and some food for
thought to readers on how and where to begin the SRE journey.

Structure
We will cover the following topics in this chapter:

Recap of SRE
Goals of SRE
SRE career path
Future of SRE

Objectives
This chapter aims to focus on the SRE career path and how you can become
an SRE. The chapter will start with a brief recap of SRE's key features and
move toward the tools and technology required to learn for a successful

SRE career.
In the previous chapter, we briefly discussed the roles required to choose to
be an SRE, and this chapter is a continuation of that in detail. In this
chapter, you will also learn about the future of SRE.

Recap of SRE
In the previous chapters, you learned various facets of SRE and SDLC. You
learned the importance of SRE and its evolution with technology. The
following are some highlights of SRE:

SRE is not a replacement for DevOps. They both follow different
approaches but share the same core values.
SRE and operations can be the same team but have different roles.
SRE engineers are strong developers who can develop code and also
manage production system performance.
SRE engineers build reliability in the system by adding scalability and
availability on top of functional code.
SDLC has grown a lot over the last 10 years. With new technology and
an agile approach, SRE has become the core function of SDLC.
SRE is not only taking care of production/live applications. The SRE
process starts from the very beginning in SDLC.
SRE is not only maintaining scalability on the already built app, it is
building that scalability in the code along with business functionality.
Development and SRE both focus on building reliable systems.
However, SRE focused more on long-term reliability, unlike feature
releases by development.
Planning is one of the important pieces in the SRE approach.
Collaboration and communication are core values of SRE. Without
these two pillars, we will go back to old school methodology of silos.
You should follow best practices to avoid any anti-pattern.
As best practice, you should always measure. This means SRE should
define metrics to measure the performance of the system at every level.

Also, SRE should collaborate with the development team to integrate
some of these metrics into the code.
SLA, SLO, SLI, and error budget are key metrics for SRE to measure
system performance.
Knowledge of ITIL comes in very handy within the SRE function.
Problem-solving is another key skill required for an SRE engineer.
Automation is key for SRE.

Goals for SRE
The main objective of SRE is to deliver a highly reliable and scalable
system. To achieve this goal, SRE needs to act as a bridge between
development and operations. SRE goals should always align with high-level
organization goals. In theory, all SDLC teams should follow and align with
high-level organisational goals.
Some internal SRE goals are:

Efficiency: Increase the efficiency of the system. To achieve this high-
level goal, the internal goal of SRE is to increase the efficiency of daily
tasks, such as building standards and processes, incident management,
defect management, and change management.
Automation: The key goal of SRE is to automate manual and
repetitive tasks. Automation increases the efficiency of SRE’s daily
work.
Give time back to the development team: By taking non-functional
development work, SRE gives time back to the development team to
focus on building new features.
Reliability: Another key goal for SRE is increasing the reliability of
the system. To increase reliability, SRE builds reliability in the system,
along with that, SRE standardises various processes to follow, such as
performing chaos engineering, performing root cause analysis, and
creating a feedback loop from production to QA to development.
Monitoring and alerting: These are key tools of SRE to reactive and

proactive identify issues and resolve them on time.

SRE career path
The previous chapter briefly explained various skill sets and toolkits
required to be an SRE. In this section, you will find some tools and
technologies that the SRE should know about.
For entry-level:

Data structure: SRE is an engineering role that requires coding and
system design. To perform these activities, it is important to understand
basic data structure concepts. As an entry-level, you might not perform
system designing but knowledge of data structure will help you
understand the system design flow and help you build the code. One of
the good books for learning data structure and algorithms is,
Introduction to Algorithms by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein.
Coding: This is one of the important aspects of SRE. As part of daily
activity, SRE develops code and builds tools and capabilities. If you are
starting fresh, start with learning data structure (as mentioned
previously), oops concept and hands-on any language. As an entry-
level, either backend or frontend programming language is sufficient to
start with. Some of the most used backend programming languages are
Java, Python, Go, Ruby, and .Net. Popular platforms for learning
coding and participating in challenges include HackerRank, LeetCode,
Codeforces, TopCoder, and CodeChef. You can create your account on
these websites and start using the platform to learn coding. This
platform enables you to code in multiple programming languages.
Scripting: Coding is the primary skill for SRE, however learning
scripting on top of coding will help you get the SRE role better.
Automation is the key for SRE engineers, where they automate manual
and repetitive tasks via scripting. Some of the most used scripting
languages are Bash, Perl and Python.
Operating system: Knowledge of operating systems is important if

you want to start your career as an SRE. Learning OS will help you
understand the interaction between users, software and hardware. This
knowledge will help you understand the system and infrastructure
architecture. Linux, Unix, and Windows are commonly used operating
systems for building servers and databases. As an entry-level, you
should know these features for any OS: memory management, file
management, security, user interface, and multiprogramming. One of
the good book available to read is, Operating System Concepts by
Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne: This
textbook provides a comprehensive introduction to operating systems
and is widely used.
Database management: No software runs without a database.
Knowledge of databases is one of the key skills for any engineering
role. If you want to get into the role of SRE, a database management
system comes in handy. As an entry-level, you should know the
fundamentals of databases and hands-on writing of database queries.
There are two types of databases used RDBMS (relational database)
and NoSQL database, and you need to learn the basics of both types.
You can pick any one of the following databases to begin with.
Some of the commonly used databases are:

RDBMS: Oracle, Postgres, MySQL, DB2, Amazon Aurora
NoSQL: Couchbase, Cassandra, MongoDB, Amazon DynamoDB,
Cosmos DB

Cloud technology: Today, many organisations rely on cloud
computing for their business need and running applications due to its
cost-efficiency, scalability, and collaborative technology. Cloud in itself
is huge with multiple tools and technologies. As a beginner, if you
know programming languages, databases, and operating systems, then
it will help you start learning cloud computing better. Once you learn
the aforementioned skills, you need to start learning about the
fundamentals of the cloud, such as:

What is cloud technology?

Different service models in the cloud.
Deployment model in the cloud.
Cloud architecture.
Basic cloud computing platform.

There are three major public cloud platforms available Amazon AWS,
Microsoft Azure, and GCP. To begin learning about cloud computing,
you can start with any of these platforms. You can also start with any
one of the following certifications:

AWS-certified cloud practitioner
Associate cloud engineer certificate GCP
Microsoft Azure Fundamental Certification

Communication skills: SRE approaches are based on clear
communication and collaboration. Irrespective of entry-level or
experienced professionals, you need to have good communication
skills. Good communication skills are active listening, the ability to
convey your message, confidence, giving and receiving feedback,
clarity and volume, and responsiveness.

For experienced professionals:
Coding: the ability to code and develop software is the core at SRE. If
you are an experienced software developer, then SRE is also one of
your career paths forward. Knowledge of development and its best
practices comes in handy for SRE functions. As an experienced
developer, it is good to have backend and frontend development
experience as a full-stack developer.

Backend languages are Java, Python, .Net, Golang
Frontend languages are JavaScript, React, Angular, Django

Scripting: the ability to script is also one of the core requirements for
the SRE role. SRE engineers automate daily manual and repetitive
tasks. As these tasks are small runtime programs scripting is mostly
used to automate. For example, automating regular health checks for
servers and alerts during any anomaly. There are various languages

used for scripting. Experience in any one of these can help you land an
SRE role.

Shell
Perl
Python

System administration: It focuses on servers and computers. System
administrators have various roles and responsibilities but if you know
some of these tasks as part of system admin you can move to SRE as
your path forward. Some of the system admin roles experience good to
have for SRE:

Backup and disaster recovery
Database administration
Installing and patching firmware or applications
Security administration
Network administration
System health monitoring
System maintenance
Cloud computing

Infrastructure engineering: it focuses on designing, building,
coordinating, and maintaining IT environments for organisations that
need to run their software and other applications. In today’s time
infrastructure engineering on the cloud is in great demand and someone
who has experience in designing and building infrastructure on the
cloud can choose SRE as a career path forward. System admin and
infrastructure engineering roles overlap in some functions.
Infrastructure engineering can be a path forward for system
administration too.
Some of the layers for infra engineering are:

Cloud infrastructure engineering: Design and build infra on the
cloud.
Network infrastructure engineering

Infrastructure architect: This role is designed for big projects,
where the architect is involved in planning and designing.

DevOps: DevOps and SRE are two different profiles, however, if you
are DevOps with development experience then SRE can be your best
next path forward. Some of the DevOps roles that are used in SRE are:

CI/CD: Creating CI/CD pipelines using tools like Jenkins, GitLab,
Azure DevOps, GitHub Actions, and TeamCity.
Infrastructure management automation: IAAS (Infrastructure as
a code. This is also one of the roles of infra engineering). Automate
infrastructure provisioning using tools such as Terraform and
Ansible.
Releasing code to production environment.
Collaboration with development and operations.

Change management: It is one of the key functions of SRE.
Knowledge of the change process is important. If you are in a DevOps
role, then you will have experience in change management, and that
can help you choose the SRE role. However, if you are a software
developer, then you might need to learn the change management
process to become an SRE.
Here are some of the change management certifications you can obtain:

ITIL: IT Service Management
Change management foundation certification
AIM Change Management certification

Cloud computing: all the above roles can be performed on the cloud
as well. So if you are a developer, developing applications cloud will
give you experience with cloud applications. If you are an infra
engineer provisioning infra on cloud that will help you learn how
servers and databases work on cloud. Similarly, system administration
on the cloud gets you knowledge of servers on the cloud.
Production support: If you are a production support engineer with L2
and L3 support model, SRE can be your career path forward. As an

L2/L3 production support person, you will have skill to troubleshoot,
incident management, change management, scripting and all these
comes in handy with SRE.
Collaboration and communication: If you are an entry-level or an
experienced person, collaboration and communication are key for the
SRE role. For experienced engineers, you are expected to have
collaboration experience and experience working in non-silos teams
and agile methodology. For example, if you are an experienced
developer, then collaboration with operations will come in very handy
to crack the SRE role. Collaboration gives you understanding of
different functions in SDLC.

The aforementioned are some of the key roles that fall into the SRE
domain. SRE teams have diverse backgrounds and experiences. It starts
from entry-level to 8+ years of experience. In the above roles defined the
experienced professionals are in range from 4-8 years of experience.

Future of SRE
In today’s cloud-native era, which is continuing to grow, SRE plays a very
important role in maintaining the reliability of the system. SRE as a role has
evolved over the last 10 years and will continue to evolve. The roles and
responsibilities might change in future however, the focus of SRE will be
on process, strategy and culture.
Large organisations are increasingly realising the value of SRE practices
that help faster software delivery, quality delivery, and claim high reliability
and availability, as follows:

Reliability will grow: Evolving technology will push organisations to
build more software applications. To be valuable to customers,
software needed to be reliable. Users will have high expectations from
software such as seamless experience, highly available, and highly
performant. With the increase in user demand for software reliability,
the SRE role will evolve. Organisations will need SRE engineers who
can build reliable systems.

Moreover, software systems are becoming distributed and complex,
and reliability has become a critical concern. SRE engineers have
acquired skills to help build reliability even for complex systems.
Evolving technology stack: The technology landscape will continue to
evolve and that will require building more tools, platforms and cloud-
native solutions. SRE will have the opportunity to grow, learn, and
build new tools.
DevOps and SRE collaboration: Many organisations have blurred
roles between DevOps and SRE. Sometimes they both overlap or
maybe SRE adopts DevOps roles and is still called as SRE. In the
future, DevOps and SRE roles will be blurred more and they might
work as one team that bridges the gap between development and
operations.
AI Ops: Though AI is predictive to automate all the jobs, it is a long
runway. Soon, AI engineers can build one-time automation for all
manual tasks. SRE can adopt AI engineering to revolutionise SRE
aspects such as identifying the root cause of failures, proactive
measures to identify failures, auto-healing, and quick incident
response, which will in turn increase the reliability and availability of
the system. As SRE's future, AI and SRE can work together to build
complex systems and also add intelligence to operations.
Focus on diversity: SRE today has various roles to perform to keep
complex systems up and running. In the future, organisations will focus
more on diversity and inclusion. Diversity of skill sets, regions,
ethnicities, and genders will help a team with a strong SRE skill set.
With complex systems, SDLC teams will also grow it all the way
become more important to collaborate and bring inclusion within
teams.
Cultural shift: Today also, we are in a cultural shift moving train. SRE
has brought a culture of collaboration, blameless post-mortem,
continuous improvement, and clear communication. It is still in the
nascent phase, with organisations adopting SRE. In future, all SDLC
teams will follow SRE practice to break all silos.

As a future career path, SRE will continue to evolve. Learn new tools and
new programming frameworks, in-depth knowledge of the cloud, learn
solution architecture, and enhance problem-solving.
Certifications that will help SRE to strengthen their skills professionals:

SRE Foundation Certification, will help beginners to learn and
understand SRE practices.
Any Cloud Professional certification
SRE Certified Professional
SRE Practitioner
Certified Kubernetes Administrator
Red Hat Certified System Administration
Certified Automation Professional Associate Certificate

Some tips on how to find the right skills for SRE in your career:

Clearly define your career goals: List down the skills you want to
learn and specialise in. Once you list down then determine the
certification or course you would like to achieve.
Understand the role and responsibility of SRE and then map it to
your current skill set.
Look for practical training available
Read and understand the SRE case studies available.

Conclusion
This chapter explained some of the key features of SRE very briefly. In all
previous chapters, you learned various facets of SRE and SDLC. This
chapter will help you choose SRE as your career path and path forward.
This being the last chapter of the book, we tried to visualise SRE in the real
world. As technology grows daily, new methodologies are also coming up
to enhance the software development process. SRE is also enhancing, and
as you learned, there is no one solution to a problem.
In the previous chapters, you learned that SRE practices and approaches

depend on various factors; however, by the end of this book, you will be
able to apply the best practices of SRE in building efficient and reliable
software.
To conclude, SRE is not just one team, and it is a methodology of best
practices. Keeping reliability in mind from the initial stage of software
building and measuring the performance at every milestone will help you
achieve the goal of reliable software.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Index
A

Agile Methodology 32
Agile Methodology, configuring 33-35
Agnostic Approach 73
Agnostic Approach, cons 75
Agnostic Approach, factors 75
Agnostic Approach, pros 75
Agnostic Approach, steps 73, 74
Agnostic Approach, ways 74
Alert Management 121
Alert Management, perspective

Configuration 122
Deployment 124
High Level Design 121
Implementation 123
Low Level Design 122
Maintenance 125
Planning 121
Sanity Testing 124
Testing 123

Anti-Patterns 94
Anti-Patterns, configuring 95
Anti-Patterns, issues 106-108
Anti-Patterns, phases

Change Management 101
Collaboration 104
Culture 105
Error Handling 104
Incident/Defect Management 103
Observability 98
Release Management 100
Service Design 96

Anti-Patterns, practices 94, 95
Anti-Patterns, scenarios

Data Store 112
Incident Management Process 113
No Control 115
Single Data Input 111

Anti-Patterns, takeaway 117
Automation 67

Automation, architecture 67
Automation, areas

Alerting/Monitoring 68
Incident Management 68
Manual Repetitive 68
Tasks, automating 68

Automation, implementing 68, 69
Automation, perspective

Deployment/Release 129
Implementation 129
Maintenance 129
Planning 129
Testing 129

Automation, ways
Availability 68
DevOps Teams 68
Reliability 68
Scalability 68

Availability 50
Availability, ways

Distributed Systems 50
Geographic Distribution 51
Maintenance/Updates 51
Replication, implementing 51

B
Blameless Post-Mortem 91
Boat Anchor 84
Boat Anchor, reasons 84, 85

C
CAMS 69
CAMS, concepts

Automation 71
Culture 70
Measurement 71
Sharing 72

Capacity Planning 51
Capacity Planning, categories

Long-Term 52
Short-Term 52

Capacity Planning, types
Product 52
Software/Hardware 52
Workforce 52

Change Management 90
Change Management, causes 90

Change Management, patterns 102
Chaos 149
Chaos, configuring 149
Chaos, steps 150
Cheat Sheet 178
Cheat Sheet, categories

Alerting/Monitoring 179
Application Production 181
Automation 178
Availability 181
Capacity Planning 180
Change Management 180
Chaos Engineering 180
Collaboration 182
Infrastructure Production 182
Non-Functional Development 181
Observability 179
Onboarding/Planning 181
Planning 182
Release/Deployment 180
Security/Compliance 179
Service Management 178

Cloud-Native 14
Cloud-Native, configuring 15, 16
Cloud-Native, role 15
Collaboration 104
Collaboration, patterns 104, 105
Copy/Paste Programming 87
Cost Management 52
Cost Management, practices

Capacity Reserve 54
Development Strategy 54
Observability 54
Software Design 54
Workforce Management 54

Cost Management, types
Lag Strategy 53
Lead Strategy 53
Match Strategy 53

Culture 70, 105
Culture, factors

Objectives Key Results (OKR) 70
Software 71
Standards/Processes 70
Vision 70

Culture, patterns 105, 106
Culture, strategies 106

D
Data Store 112
Data Store, solutions 112
Dead Code 85
Dead Code, causes 85
Defect Management 135
Defect Management, practices 136, 137
Defect Management, steps 135
DevOps 18
DevOps, architecture 20
DevOps, configuring 19
DevOps, demonstrating 23, 24
DevOps, history 18
DevOps, implementing 21, 22
DevOps, phase 24
DevOps, principles

Automation 19
CI/CD 19
Feedback Loop 20
Measuring 20
Silos Breakdown 19

DevOps, role 36, 37
DevOps/SRE, comparing 27
DevOps/SRE, difference 29
DevOps/SRE, scenario 28
DevOps/SRE, similarities

Automation 25
Change Management 26
Measuring 26
Quality 25, 26
Structured Approach 25

DevOps, terms
SDLC Flow 21
Teams 21
Technology Stack 21

DevOps With SRE, utilizing 157-159

E
Error Handling 104
Error Handling, patterns 104

G
Gatekeeping 140
Gatekeeping, configuring 140
Gatekeeping, pros 141
Gatekeeping, solutions 141, 142

God Object 86
God Object, causes 86
Golden Hammer 83
Golden Hammer, causes 83

H
Horizontal Scaling 44
Horizontal Scaling, steps 45, 46

I
Incident/Defect Management 103
Incident/Defect Management, patterns 103
Incident Management 63
Incident Management, configuring 63
Incident Management, perspective

Implementation 133
Monitoring 134
Planning 133
Testing 133

Incident Management, points
Incident Accepting 64
Incident Categorization 64
Incident Closure 65
Incident Creation 64
Incident Logging 63
Incident Prioritization 64
Incident Resolution 64
Incident Root Cause 65

Incident Management, practices 66
Incident Management Process 113
Incident Management Process, steps 113, 114
Incident Management, stages 65
Incorrect Ticketing 89
Incorrect Ticketing, causes 89

M
Measurement 71, 76
Measurement, architecture 76
Measurement, metrics

MTBF 77
MTTR 76
Resource Utilization 78
System Latency 78
Uptime System 77

Measurement, scenario
Automation 79

Incident Management 78
Measuring 79
Monitoring 79

Metrics 142
Reusing 110
SLA/SLO/SLI 110

Metrics, implementing 142, 143
Metrics, implementing, types

% Availability 144
MTBF 144
MTTD 144
MTTR 144

Misconfigured Alerts 88
Misconfigured Alerts, causes 88, 89

N
Not Automated Remediation 89

O
Observability 58
Observability, configuring 59
Observability, ensuring 60
Observability, operations 62
Observability, patterns 98, 99
Observability, perspective

Implementation 128
Maintenance 127
Planning 127
Testing 128

Observability, scenario 60, 61

R
RCA, configuring 131, 132
Release Management 100
Release Management, patterns

Big Projects 101
Environment Inconsistency 100
Lack Automation 101
No Gating 101

Reliability 47
Reliability, approach

Code Reviews 48
Design Reviews 48
Self-Healing 49
Testing 48, 49

Reliability, metrics

Mean Time Between Failures (MTBF) 50
Mean Time To Recover (MTTR) 50
Rate Of Occurrence Of Failure (ROCOF) 50

Root Cause Analysis (RCA) 131

S
Scalability 42
Scalability, configuring 43, 44
Scalability, patterns

Horizontal Scaling 44
Vertical Scaling 46

Scalability, practices
Measuring 46
Proactive Automation 46

Scalability, steps 44
SDLC, configuring 3-5
SDLC, perspective

Deployment/

Release 138

Implementation 138
Maintenance/

Monitoring 138, 139
Planning 137
Testing 138

SDLC, phase
Deploy 7
Design 7
Develop 7
Environment Readiness 7
Monitoring 7
Plan 7
SRE Review 7
Test 7

Service Design 96
Service Design, reasons

API Versioning 97
Multiple Dependencies 96
Single Data Source 96

Service Management 170
Service Management, tools

Alerting/Monitoring 173, 174
Change Management 173
Chaos Testing 176, 177
Incident Management 170-172
Release/Deployment 175

Sharing 72
Sharing, factors

Openness 72

Transparent 72
Single Data Input 111
Single Data Input, steps 111
Site Reliability Engineering (SRE) 2
Software Code, practices

Code Reviews 154
Design System 153
Documentation 154
Performance Testing 154
Test Cases 154
Version Control 154

Software Design 152
Software Design, architecture 152
Software Design, implementing 155-157
Software Design, practices 152, 153
Software Development Lifecycle (SDLC) 3
Software Development, terms 120
Software Engineering 82
Software Engineering, pattern

Boat Anchor 84
Copy/Paste Programming 87
Dead Code 85
God Object 86
Golden Hammer 83
Spaghetti Code 82

Spaghetti Code 82
Spaghetti Code, cause 82, 83
SRE, breakdown 38
SRE Business 161
SRE Business, implementing 164, 165
SRE Business, steps 163, 164
SRE Business, terms

Incident Management 162
Measurement 161
Operations 162

SRE, configuring 2
SRE, goals

Automation 197
Efficiency 197
Monitoring/Alerting 197
Reliability 197

SRE, highlights 196
SRE, history 2
SRE, implementing 8-10
SRE, pattern

Blameless Post-Mortem 91
Change Management 90
Incorrect Ticketing 89

Misconfigured Alerts 88
Not Automated Remediation 89
Unrealistic Expectation 90

SRE, pillars
Change Management 13, 14
Emergency Response 12, 13
Monitoring 11, 12
Service Level Indicators (SLI) 11

SRE, preventing 144-147
SRE, principles

Automation 3
Change Management 3
Incident Management 3
Measure 3
Metrics SLO 3
Observability 3
Risk Management 3

SRE, roadblock
Culture 108, 109
Metrics 109

SRE, roles 187-189
SRE, skills 197-200
SRE, steps 39, 40
SRE, trends 201, 202
SRE, use cases 189, 190

T
Testing 55
Testing, architecture 55
Testing, reasons

Cost-Saving 57
Customer Satisfaction 58
Performance System 57
Product Quality 57
Security 57

Testing, scenario 58
Testing, types

Chaos 56
Functional 55
Performance 56
Smoke 56
Unit 55
User 55

U
Unrealistic Expectation 90

V
Vertical Scaling 46

W
Waterfall Model 31
Waterfall Model, configuring 31, 32

	Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewers
	Acknowledgement
	Preface
	Table of Contents
	1. Site Reliability Engineering: Beyond Scalability
	Introduction
	Structure
	Objectives
	Understanding site reliability engineering
	Site reliability engineering in SDLC
	Need for site reliability engineering
	Pillars of site reliability engineering
	Significance of SRE in cloud-native era
	Empowering developers with self-service

	Conclusion

	2. SRE and DevOps
	Introduction
	Structure
	Objectives
	Understanding SRE and DevOps
	SRE and DevOps common practice
	Structured approach
	Automation
	Quality control
	Measuring
	Change management

	Difference between SRE and DevOps
	New era SDLC model
	Real-world examples of SRE and DevOps
	Conclusion

	3. Build Effective Solutions with SRE
	Introduction
	Structure
	Objectives
	Building scalable, reliable, and available systems
	Scalability
	Patterns used in scalability

	Reliability
	Delivery of a reliable system
	Ways to measure the reliability of a system

	Availability

	Capacity planning and cost management
	Importance of testing
	Importance of testing
	Real-world examples of different phases of testing

	Using monitoring and observability tools
	Build strong incident management process
	Automate to reduce toil
	Importance of automation to SRE
	Ways to automate

	CAMS model is an SRE essential
	Culture
	Automation
	Measurement
	Sharing

	Agnostic approach
	No measurement no improvement
	Conclusion

	4. Understanding Anti-patterns
	Introduction
	Structure
	Objectives
	Pattern and anti-pattern in software engineering
	Spaghetti code
	Golden hammer
	Boat anchor
	Dead code
	God object
	Copy and paste programming

	Common anti-patterns in SRE
	Misconfigured alerts
	Incorrect ticketing
	No automated remediation
	No change management process
	Unrealistic expectations or chasing nines
	Pinpointing or no blameless post-mortem

	Conclusion

	5. Types of Anti-patterns
	Introduction
	Structure
	Objectives
	Types of anti-patterns
	Anti-patterns in service design
	Anti-patterns in monitoring and observability
	Anti-patterns in release and deployment
	Anti-patterns in change management
	Operational anti-patterns in incident and defect management
	Anti-patterns in error handling
	Anti-patterns in communication and collaboration
	Anti-patterns in culture and teamwork

	Anti-patterns in system reliability and scalability
	Hidden roadblocks to the SRE path
	Culture
	Measurement and choosing the right metric
	Unrealistic SLO, SLI, and SLA
	Reusing tools

	Real time scenarios of anti-pattern and solutions
	Single data input
	Lack of incident management process
	No control over changes

	Key takeaways
	Conclusion

	6. Real-world Examples of Successful SRE
	Introduction
	Structure
	Objectives
	Common terminologies
	Avoiding alert fatigue
	Planning phase 1
	Planning phase 2 (high level design)
	Planning phase 3 (low level design)
	Configuration phase
	Implementation phase
	Testing phase
	Deployment phase (quarter 1)
	Sanity testing phase
	Maintenance phase

	Improving observability
	Planning phase
	Maintenance phase
	Implementation phase
	Testing phase

	Reducing human toil by automation
	Planning phase
	Implementation phase
	Testing phase
	Deployment/release phase
	Maintenance phase

	Implementing root cause analysis as key process
	Monitoring and maintenance phase

	Building strong incident management
	Planning phase
	Implementation phase
	Testing phase
	Monitoring phase

	Improving defect analysis and management
	Define SRE and ops roles to reduce burnout
	Planning phase
	Implementation phase
	Testing phase
	Deployment/release phase
	Maintenance/monitoring phase

	Implementing gatekeeping
	Metrics identification
	Early involvement of SRE in SDLC
	SRE as chaos and performance engineer
	Conclusion

	7. Best Practice for SRE
	Introduction
	Structure
	Objectives
	Software design and software code
	Core values of DevOps and SRE
	Business and SRE
	Conclusion

	8. Tool Kit for SRE
	Introduction
	Structure
	Objectives
	SRE tool kit
	Incident management
	Change management
	Alerting and monitoring tools
	Release and deployment tools
	Chaos testing tools

	Cheat sheet for SRE
	Conclusion

	9. Day in the Life of SRE
	Introduction
	Structure
	Objectives
	Skillsets and technology background of SRE
	Roles and responsibilities of SRE
	Case 1
	Case 2
	Case 3
	Case 4
	Summary of key tasks and skills of an SRE

	Conclusion

	10. Future of SRE
	Introduction
	Structure
	Objectives
	Recap of SRE
	Goals for SRE
	SRE career path
	Future of SRE
	Conclusion

	Index

