

1© Avirup Basu 2025
A. Basu, Building IoT Systems, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1212-5_1

CHAPTER 1

Internet of Things:
The Beginning
of a Smarter World
Smart devices surround the world we live in. From devices we use almost

regularly to highly complex systems, IoT (or the Internet of Things) is

everywhere. When discussing IoT, the first thing that comes to mind is

hardware, but if we look from a broader perspective, it’s not just hardware.

It combines many components, of which hardware is just one part.

Essentially, IoT is not just hardware.

Then, the first question that comes to our mind is what exactly is IoT,

or how do we define it?

To keep it simple, IoT is a system where devices communicate with

each other or with other systems like cell phones, servers or more. The

following terms are used throughout the book and will help put the

discussions in context:

•	 Thing: Any physical device that can connect to any

network and exchange information by sending or

receiving data.

•	 Edge device: A physical device that can perform some

form of processing. All edge devices are things, but not

all things are edge devices.

https://doi.org/10.1007/979-8-8688-1212-5_1#DOI

2

•	 Network: In the case of IoT, a network can be referred

to as a local network or a vast area network, or

sometimes we may refer to a simple RF network.

•	 Cloud computing: We can host applications and run

services on these platforms. It’s a key component and

will be used throughout the book.

Let’s start our journey on IoT by understanding the basics. These might

seem simple, but they will be the foundation for more advanced concepts

and implementations.

�Reviewing the Basics
Like any network-based application, the world of IoT revolves around the

general networking concept. IoT is not a specific technology; overall, it is

a group of methodologies and implementations that help make all these

“things” much smarter.

For example, the smartwatch you wear communicates with your

cell phone to exchange data. An app inside your cell phone helps users

extract information from a smart watch. The cell phone is also responsible

for uploading the data to the cloud. With this, we can easily say that the

“smartwatch” is a “thing” while the cellphone is an “edge device.”

Note that we are not reinventing the wheel to develop IoT solutions.

We are simply putting more elements on the wheel, which helps us explore

IoT-specific use cases, like how you will change the tires to drive on snow.

Now that we have an idea of IoT, let’s walk through an actual example of

how it is used daily.

Chapter 1 Internet of Things: The Beginning of a Smarter World

3

�Intelligent Vehicles
Nowadays, most cars we see on the road come with “connected tech.”

What this essentially means is that you can monitor your car and probably

control it regarding cooling, engine immobilization, etc., from your cell

phone. This is indeed one of the most useful implementations of IoT. But

how does it work? Simply speaking, the car has something called as an

ECU, which translates to electronic control unit. This ECU uses a protocol

called Controlled Area Network (CAN) to communicate with various

sensors and other key components. The ECU is also connected to the

Internet using an e-sim. The ECU sends those data collected via the

sensors. Thus, in this case, sensors send data to ECU, the ECU then sends

the data to a communication unit which in turns sends the data to an IoT

platform. What we see on our cell phones is essentially the data coming

from an IoT platform. We can get more clarity through Figure 1-1.

Chapter 1 Internet of Things: The Beginning of a Smarter World

4

Figure 1-1.  IoT process in intelligent cars

Typically speaking, an IoT system has a generic architecture, and we

can approach the problem in a modular way. Ideally, IoT contains the

following components:

•	 Sensors

•	 Actuators

•	 Controllers

Chapter 1 Internet of Things: The Beginning of a Smarter World

5

•	 Gateways

•	 Platforms

•	 Applications

Every IoT system will consist of most of these sub-systems. In the

world of IoT, another important concept to note is that “It’s not just about

hardware.” Most of the folks I interacted with have this misconception

that it’s just about the hardware. Yes, that’s an integral component, but

it’s not just the only component in IoT, and as a matter of fact, it’s an

amalgamation of both hardware and software systems. At a high level,

an IoT system can be broadly represented or segregated into two major

sub-systems:

	 1.	 Edge

	 2.	 Cloud

It’s not necessary that all IoT systems will consist of the cloud

component but they will definitely consist of the edge component. At a

high level, we can refer to Figure 1-2 for better understanding.

Figure 1-2.  High-level overview of an IoT system

Chapter 1 Internet of Things: The Beginning of a Smarter World

6

�A Closer Look…
Let’s walk through each component mentioned above and check out some

examples of each one.

�Sensors
Sensors are devices and systems that detect the present condition and

changes in an environment, such as temperature, humidity, ambient light,

pressure, etc. These devices can be analog or digital. Typically, an analog

sensor will report changes in voltage and current levels, which reflect a

physical change in the environment. However, a digital sensor will have

an onboard controller to send the actual digital value of the perceived

environmental parameter. Sensors are used all over the place in IoT as

that’s the only way we know a system’s present status.

We’re surrounded by sensors all around us. For example,

smartwatches have a heartbeat sensor to measure our pulse rate. At our

homes, we might have motion-activated washrooms or stairway lights. In

an industrial system, we have tons of sensors doing a specific thing, such

as temperature, pressure, contact point sensors, and more.

�Actuators
Actuators are components that convert electrical signals to mechanical

signals. They are the devices that interact with the actual physical

system. Unlike sensors, which help a system understand environmental

parameters, actuators help the system interact with the physical

environment. Usually, actuators are responsible for some kind of physical

motion. Some examples of actuators are electric motors and solenoids,

and there can be different types of actuators like pneumatic, hydraulic, etc.

Like sensors, these are also used widely in an IoT system.

Chapter 1 Internet of Things: The Beginning of a Smarter World

7

�Controllers
This is the most prominent component when it comes to the edge system

in general. It is usually the brain of the edge system. It is responsible to

collect data from sensors and perform some action in real time with the

help of actuators. Usually speaking, it has the following functions.

	 1.	 Control the edge system

	 2.	 Interact with sensors

	 3.	 Execute real-time actions

	 4.	 Process the data at an edge level

	 5.	 Communicate further in the upstream

The controllers are responsible to send the data to the upstream to

the gateway. An interesting thing to note is that sometimes controllers

and gateways are a single device, which means that the controller has

networking capabilities. This is very common in many hobby devices like

ESP series, more commonly known as NodeMCU. In industrial systems,

these are commonly referred to as a programmable logic controller (PLC)

device which reads the data from sensors and performs some actions with

the help of actuators. The PLC is then connected to another edge device,

and data exchange happens through protocols like Modbus or CAN.

�Gateways
Gateways, as the name suggest, are ideally responsible for handling all the

communication of an edge system. These receive data from controllers and

send it to the cloud upstream. These devices have networking components

and usually support various protocols to both receive data and send data.

Most of these devices are based on openWRT standard and can support

protocols like Wi-Fi and LTE for upstream, and Ethernet and LoRa (long

range) for receiving data from the controllers. Usually, these devices will

Chapter 1 Internet of Things: The Beginning of a Smarter World

8

have their own configuration portal which will enable these devices to be

configured and also package the data accordingly. These devices also have

the capability to send data back to the controller and support at least half-

duplex communication.

Thus, from the above discussion, we can see the various components

of an edge system at a high level. Let’s briefly overview what the cloud

system in IoT refers to.

�The “Cloud” Part in IoT
The cloud computing era has been transforming the way how we build

apps. With the advent of amazing cloud computing platforms available

for use, this technology is virtually present in any solutions that involve

software. When we develop any solution for the Internet of Things, it’s

in the best interest to make it cloud-friendly, and this means not only

using graphs and charts. The cloud part of IoT refers to a whole set of

functionalities and features needed to complete an IoT solution. It doesn’t

matter if you are a device manufacturer or some consumer; at the end

of the day, having a cloud platform definitely adds a lot of flavor to the

existing system. Some of the key components of the cloud in IoT are

mentioned below.

	 1.	 Device management, including provisioning and

over-the-air (OTA) updates

	 2.	 User management

	 3.	 Data management

We will discuss this in detail in a later chapter of this book. In addition

to cloud computing, another key component is the end-user application,

which may be available on web or mobile platforms. These are the

applications that a user uses to interact with the system.

Chapter 1 Internet of Things: The Beginning of a Smarter World

9

�Types of IoT Systems
In the world of IoT, there is no proper terminology for what exactly can be

termed an IoT system. Sometimes, a smart industrial automation system is

often termed an IoT system. Technically speaking, in IoT, the letter I stands

for Internet. However, in the greater schema, we can broadly classify IoT

systems into two types:

	 1.	 Local connected ecosystem (Intranet based)

	 2.	 Globally connected ecosystem (Internet based)

However, in 99% of the use cases, it’s usually a combination of both,

which is referred to as a hybrid system.

�High-level architecture
Now that we have a general idea about some of the basic components of an

IoT system and what each component does, let’s have a look at the basic

high-level architecture diagram (Figure 1-3) of a typical IoT system.

Figure 1-3.  A typical architecture of an IoT system

Chapter 1 Internet of Things: The Beginning of a Smarter World

10

You can broadly classify the above architecture into three stages.

	 1.	 Stage 1: Edge layer

	 a.	 Subsystems

	 b.	 Local gateways

	 2.	 Stage 2: Cloud layer

	 a.	 Streaming data

	 b.	 Cloud computing platforms

	 3.	 Stage 3: Application layer

	 a.	 API

	 b.	 Data intelligence

	 c.	 Notifications

Stage 3 and Stage 2 can exist inside a cloud layer, but typically, it’s the

end-user application that is being referred.

�The “Why” Factor
All this time, we have been focusing a lot on understanding what an IoT

system consists of. We’ve also checked out one of the use cases using

an intelligent vehicle scenario, but the question is why it is needed and

whether it is just about IoT.

In the world of IoT, we deal with data and like any other technology,

data is probably one of the most valuable assets in today’s world. These

data points are being generated from different sources and from different

devices, and it is extremely important to analyze and understand this

data. For example, if you have a smart watch that monitors your heart

rate, the data captured from it helps you analyze your health and monitor

your heart rate while resting or exercising. This will help you to plan your

Chapter 1 Internet of Things: The Beginning of a Smarter World

11

fitness routine accordingly. Similarly, in the case of a smart vehicle, vehicle

parameters like fuel efficiency, engine temperature, and tire pressure

help us to make decisions regarding the vehicle and whether servicing is

needed or not. Again, in the world of smart industries, data generated from

the factory floor helps to make intelligent decisions, optimize production,

and do predictive maintenance on equipment.

What IoT does is simply provide the framework and the set of

methodologies and protocols to achieve the same.

�Conclusion
We have reached the end of this introductory chapter, and by this time,

you should have a better sense of the basic idea of IoT. In the upcoming

chapters, we will discuss each component, methodology, and protocol

in detail.

Chapter 1 Internet of Things: The Beginning of a Smarter World

13© Avirup Basu 2025
A. Basu, Building IoT Systems, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1212-5_2

CHAPTER 2

Getting Started
with Edge Systems
Edge systems refer to all the hardware components of the Internet of

Things ecosystem. From sensors to gateways, edge systems are responsible

for data collection, forwarding it upstream, and taking some actions.

However, edge systems can be equally complex, and it depends on the use

case to determine their complexity.

This chapter will focus on the following, which will help us build the

foundation of edge systems:

•	 Sensing

•	 Processing

•	 Communication

We will also build some small systems based on open sourced

platforms to better understand the entire flow. These small systems will

feature examples that illustrate the following:

•	 How sensors capture data

•	 How the data can be processed by a controller

•	 The various architectures and the networking

concepts used

https://doi.org/10.1007/979-8-8688-1212-5_2#DOI

14

•	 How to enable networking privileges using non-IP-

based communication protocols

•	 How to connect a communication module to another

device using a decentralized approach

�Getting Grounded
Let's begin our journey on edge systems with one real-life example.

Figure 2-1 shows a smartwatch sending some information to a cell phone

using Bluetooth Low Energy (BLE), and the cell phone then syncs up with

the cloud.

Figure 2-1.  Smart watch/cell phone communication with BLE

The cell phone also sends control signals or notifications to the

smartwatch. In this example, the combined smartwatch and cell phone

will be called the edge system. There are a lot of strategies on how an edge

system can be designed. As discussed in the previous chapter, an edge

system will typically consist of the following:

•	 Sensors

•	 Actuators

•	 Controllers

•	 Communication unit

Chapter 2 Getting Started with Edge Systems

15

Industrial systems today consist of smart sensors, which are more

commonly referred to as “IoT Sensors.” These sensors consist of all the

components needed to perform the computation on board and directly

stream the values through a communication unit, which a gateway can

pick up.

�Defining Our System Specifications
To begin with, let’s start with a system we want to build.

Problem statement: Record soil humidity values and switch on or off

a pump based on those values. Please note that we aren't sending this data

anywhere; thus, this system will be standalone.

Solution: Before coming to the exact solution, let's break the problem

into different parts.

	 1.	 What parameters do we need to sense?

	 2.	 How will the sensor send the data, and where will it

be sent?

	 3.	 What will be the communication medium between

the sensor and controller?

	 4.	 What controller will we use?

	 5.	 How will the controller control the pump?

It seems like a complex problem, but it isn't. It's a straightforward

problem with a simple solution. However, for every edge problem in

IoT, it's essential to answer all these questions specific to the problem

statement, which will help simplify the problem. Let’s answer the above

questions first and then refer to Figure 2-2 for an in-depth solution.

Parameter to sense: Humidity percentage

Sensors to be used: Any generic humidity sensor with digital

output (DHT22)

Chapter 2 Getting Started with Edge Systems

16

Communication medium: Analog and digital channels

Controller to be used: Arduino platform or any other open sourced

platform

Pump: Any low-voltage DC pump

Figure 2-2.  System overview

We still are unsure about a few factors, like whether there isn't any

communication unit, whether it is even an IoT system, and how the

humidity sensor will send values. To answer these questions, we need to

break it down into three separate components (sensing, processing, and

communication) and explain how each one interacts.

Chapter 2 Getting Started with Edge Systems

17

�Sensing
We already had a brief overview of sensors in the previous chapter. Let's

do a deep dive into understanding how sensors work and what to look for

when considering an IoT sensor. Sensors in its simplest form convert raw

environmental parameters to either a digital or an analog output but how

does it work and what to look for in a sensor? When dealing with sensors,

we look into the following:

	 1.	 How it detects the parameter we are trying

to measure

	 2.	 What is the range of the sensor

	 3.	 What is the type of sensor

	 4.	 How to get data from the sensor

These four points help us select a sensor. Let's begin by understanding

how sensors work.

�Working of a Sensor
The working of a sensor may depend on the parameter it is trying to detect.

We will take the example of a temperature sensor here. A temperature

sensor essentially is a voltage-level sensor. It detects the temperature by

reading the voltage or resistance level. It’s usually directly proportional

to the temperature, and thus, by measuring voltage, we can detect the

temperature. These are typically called analog temperature sensor. Similarly,

by detecting voltage and resistance levels, a lot of sensors can be developed.

For example, an ambient light sensor uses a light-dependent resistor whose

value again changes based on the light intensity. These help us in identifying

the actual value by observing either voltage or current or resistance. Now,

usually speaking, these sensors are very cost effective and usually require a

lot less power, and thus, for the same reason, these sensors are used widely.

Chapter 2 Getting Started with Edge Systems

18

However, sometimes, the value can be directly obtained. Let's take

another example of an ultrasound proximity sensor.

�Ultrasound Proximity Sensors
As the name suggest, a proximity sensor measures the distance. There is

no direct way to measure distances. You need an indirect way to measure

the same. Ultrasound proximity sensor uses ultrasound waves to measure

the distances using ultrasonic waves. Figure 2-3 shows how this works.

Figure 2-3.  Using a sensor to calculate the distance to an object
indirectly

Chapter 2 Getting Started with Edge Systems

19

In Figure 2-3, there is a sensor that is used extensively by students

and hobbyists known as the HCSRO4 module, which does exactly

what is mentioned above. A similar methodology is applied while

detecting proximities using a laser or radio waves. These devices are

more commonly known as LIDAR (laser detection and ranging) and

RADAR (radio detection and ranging). LIDARs and RADARs are much

more complex devices, but the base methodology is still the same as

discussed above.

There are many more types of sensors that are available but one

common entity between all the different types of sensors is simply the

ability to detect a change in one parameter based on which we can get

the value.

�Additional Ways to Indirectly Detect

There are more ways to detect some parameters. For example, if we want

to detect if a door is open or closed, what can be the possible solution? It

can be done in many ways in fact. Let’s have a look.

One of the most common ways to check if a door is open or closed

is to use a specific sensor called “contact sensors.” These sensors use a

magnetic field to detect whether a door is open or closed. Based on the

magnetic field strength and whether the circuit is closed or open, the

inference can be drawn if the door is open or closed. Let's have a look at

the diagram below to understand it.

�Range of a Sensor

One important point to note while dealing with sensors is their range. A

sensor built to detect temperature ranging from -30 to +70 degrees Celsius

cannot be used in an environment to detect temperatures below -30 or

above +70. We will have strange values in those cases, or the sensor might

get out of order. Thus, it's crucial to know a sensor's range and understand

if it fits according to the use case.

Chapter 2 Getting Started with Edge Systems

20

�Getting Data Out from a Sensor

Using a sensor is one thing, but what do we do after we get the values and

how do we get the values from a sensor? This chapter section will walk

you through some of the high-level concepts of communication between

a sensor and a controller. There are many different ways how this can be

handled, and it all boils down to the fact of what the sensor supports. Let’s

have a look at the following scenarios:

	 1.	 Analog output

	 2.	 Digital output

	 3.	 Serial port communication

These three pointers are some of the most common ways to extract

data from a sensor. However, there are more complex methodologies for

advanced systems that will help us extract value from a sensor. These

include protocols like Modbus, CAN, etc., but those are reserved for

further chapters under industrial IoT.

In the case of analog output, we get a range of values and these depend

on the analog to digital converter (ADC).

The range of the values received will be directly or indirectly

proportional to the sensor value. For example, if we want to sense the

intensity of light, we use a sensor called LDR, which stands for light-

dependent resistor, and the value in resistance is what represents the

intensity of light. These values are as we mentioned earlier depends on the

ADC and its resolution. The next question that will come across our minds

is what exactly is the resolution of an ADC?

Figure 2-4 provides an example of an Arduino just for simplicity.

Chapter 2 Getting Started with Edge Systems

21

Figure 2-4.  Arduino analog channels

Here, we see an Arduino UNO that has a total of six analog input

channels. Thus, for the sensor, we can connect the output pin of the sensor

to any of the analog channels. Now, for this Arduino, the ADC resolution is

10 bits which means that, it will give values ranging from 0 to 1023 (2^10)

on these pins. When we are writing code on a controller to read these

values, we read digital values, and even from analog pins, we read digital

values which are the ADC-converted values. That is one way to read from

a sensor.

Chapter 2 Getting Started with Edge Systems

22

Another way is when the sensor directly outputs a digital value. We can

connect the sensor directly to any of the digital pins, which will give the

value directly. In the above case of an ultrasonic sensor used to measure

proximity, we read for pulses. Pulses are digital signals, and we can use

any of the digital pins to read the value. Yes, there are some calculations

involved to calculate the time, but at the core, it’s all about reading for the

pulses using digital signals.

That is how we use analog and digital signals to read from a sensor.

Serial port communication is the third basic way to read from a sensor. The

term serial port communication is a big term in itself, and we will discuss it

in detail in the next chapter, which deals with protocols. However, it simply

uses something called the universal asynchronous receiver-transmitter

(UART) to transfer data packets to the controller from the sensor. Most of

today’s smart sensors rely on it. On top of UART, sensors can have their

own software-based data formatting, which will wrap the actual data in

a specific format and then send it across. For example, data formats like

NMEA are used widely in GPS receivers. More formats like JSON can be

used. It can also be a format specific to the manufacturer. Other than

UART, there are additional ways through which a sensor can transmit

through protocols like CAN or I2C. More on this will be discussed in the

next chapter, which will discuss protocols.

�Processing the Data
The first step is to get data from a sensor. The next step is to process the

data and perform other critical decision-making tasks. These are done

by a controller. What exactly is a controller? Well, in simple terms, it's

the central brain of the edge part of an IoT system. There are easily more

than a thousand controllers available in the market, but the choice of a

controller depends on certain areas, and it’s very specific to the use case.

There might be a lot of situations where there can be more than one

Chapter 2 Getting Started with Edge Systems

23

controller involved. While a deeper discussion on controllers is not the

scope of this chapter, certain concepts must be discussed before moving

further. In the world of IoT, there are two broad types of systems:

	 1.	 Industrial IoT systems

	 2.	 Commercial/consumer IoT systems

Ideally speaking, in the case of industrial systems, we don't have a high

flexibility in the choice of hardware as the sensors and controllers are all

industrial grade. Simply speaking, these industrial systems are primarily

heavy-duty systems, and thus, a requirement exists to make the controllers

resilient and sturdy. One of the primary requirements is the necessity

of a real-time system. Now, getting to understand from a consumer/

commercial IoT systems, which also includes hobbyist IoT systems, many

options are available. The most widely used controller, as showcased

above in the sensor section, is an Arduino and its variations. For now, we

will focus totally on these types of systems. To choose a controller, we need

to understand the following specifications:

	 1.	 How many sensors need to send the data to the

controller

	 2.	 What is the choice of networking

	 3.	 Power requirement

	 4.	 What is the computation power needed

If we can answer the pointers as mentioned earlier, then the process

of selecting a controller to do a task also gets easier. In the most generic

case, a controller will receive signals from sensors and extract meaningful

information from those signals. A controller needs to be programmed, too,

and thus, the choice of the programming language and its compatibility with

the hardware also plays a vital role. However, most of the latest controllers

built for these type of use cases support a multitude of programming

Chapter 2 Getting Started with Edge Systems

24

languages, and thus, writing code to process the data is a lot easier. But, the

question remains, why do we need to process the data or what is the actual

reason behind it?

Let’s take an example. In the above case of an ultrasound proximity

sensor, we get the data in pulses. Some calculation needs to be done in a

controller to compute the distance. Let's look at a sample code using the

Arduino platform to see how it will be done if the sensor is connected to an

Arduino board.

The pseudo-code is showcased in Listing 2-1.

Listing 2-1.  Code overview

1. Initialize:
 - trigPin = 9
 - echoPin = 10
 - duration, distance

2. Setup:
 - Set pinMode of trigPin to OUTPUT
 - Set pinMode of echoPin to INPUT
 - Begin serial communication at 9600

3. Loop:
 - Set trigPin to LOW
 - Wait 2 microseconds
 - Set trigPin to HIGH
 - Wait 10 microseconds
 - Set trigPin to LOW

 - Measure duration of HIGH pulse on echoPin and store in
duration
 - Calculate distance = (duration * 0.0343) / 2
 - Print "Distance: " + distance to serial monitor
 - Wait 100 milliseconds

Chapter 2 Getting Started with Edge Systems

25

Let us walk through each step descriptively.

	 1.	 Initialise: Here, we initialize the pins to actual digital

pins on the Arduino board.

	 2.	 Setup: Here we need to define whether the pins

needs to be defined as input or output. In this case,

the trigger pin will be set to output whereas the echo

pin will be set to input. We also initialise the serial

port communication where we can observe the

values returned by the controller.

	 3.	 Loop: This is simply equivalent to an infinite loop.

Here, the main logic is written. In this case, we

send a pulse, wait for the echo pin to turn on, and

then calculate the duration. Finally, we calculate

the distance and print it out on the Serial monitor.

The entire process is repeated once every 100

milliseconds.

This is one of the examples where the distance is computed in the

controller. The same can be written in the Arduino framework (Listing 2-2).

Listing 2-2.  Arduino code for distance calculation

const int trigPin = 9;
const int echoPin = 10;

float duration, distance;

void setup()
{
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 Serial.begin(9600);
}

Chapter 2 Getting Started with Edge Systems

26

void loop()
{
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH);
 distance = (duration*.0343)/2;
 Serial.print("Distance: ");
 Serial.println(distance);
 delay(100);
}

This is a very simplistic example of a controller doing some calculation.

In ideal cases, it will be responsible for a variety of tasks and will handle a

variety of sensors. Here comes another important concept called as sensor

data fusion which will be discussed later on.

Controllers come in various forms and sizes, some of which are shown

in Figure 2-5.

Chapter 2 Getting Started with Edge Systems

27

Figure 2-5.  Some widely used controllers

There can be scenarios where you need to use a single-board

computer (SBC), something like a Rpi or other similar device, to work as a

controller. These situations normally arise whenever there is some heavy

processing involved like video or image processing. In these scenarios, the

focus is given to computation power, memory, and networking capability

of the devices.

Now that we have a generic understanding on controller, let’s look at

the networking and probably one of the key layers of IoT at an edge level.

�Networking Layer
The key to building an IoT system is using networks at multiple levels. We

have already seen some examples of how sensors capture data and how

the data can be processed by a controller.

Chapter 2 Getting Started with Edge Systems

28

In this section, we will look at various architectures and discuss each

in detail and some of the networking concept that is used. There are many

strategies that are applied while designing IoT systems at an edge level.

Some of these strategies involve direct communication to the Internet or

through some gateway. Sometimes, several local networks are used to

achieve connectivity. Whatever the scenario, a networking component

will be involved. This brings to the fact that how do we take care of all the

communication at an edge level. There are two major factors to consider:

	 1.	 The type of network needed for devices

	 2.	 The availability of IP-based connectivity devices

In the first section, we must understand how the devices can talk to

each other. We will cover some of the related concepts. The next section

will be a walkthrough of how the system as a whole or each device talks to

the Internet in a decentralized manner.

�How Devices Communicate with Each Other
Ideally, we can broadly divide a system into two major categories based on

how it is designed and deployed. Figure 2-6 shows a centralized approach.

Chapter 2 Getting Started with Edge Systems

29

Figure 2-6.  A centralized approach to IoT

Here, image sensors communicate with a gateway through any RF-

based network like LoRa, ZigBee, Sigfox, BLE, or anything similar and

the gateway then communicates to the Internet. This is a very common

methodology and widely used in a variety of use cases like industrial IoT

and home automation. If we do a deep dive of Figure 2-6, there are some

open-ended questions:

•	 What protocols to use and when?

•	 How to identify edge devices?

•	 What network layer to use?

•	 What is a gateway and what to use?

Chapter 2 Getting Started with Edge Systems

30

To answer these, the first thing to note is what these local networks are

and when to choose what.

Edge devices may contain either a sensor or a group of sensors

sending data to the controller. It can be like temperature, humidity, and

ambient light sensors sending data to a controller, let’s say to an STM32

controller. These controllers come in a PCB package that contains IO pins

that interact with the sensor. Ideally speaking, these controller packages

can only process the data. They can't communicate. To communicate to a

gateway, we can opt for any RF-based protocol, but to do the same, you do

need to use a communication module. These modules are built specifically

for transceiving data.

They receive the data and then use an RF protocol to send those data.

These devices or modules are very specific to the protocols. For example, a

chipset supporting LoRa may not support Wi-Fi, and a chipset supporting

Wi-Fi may not support ZigBee. Thus, in every IoT project, it's essential

to choose the protocol and the design at the very beginning. This way,

the development will be faster and many costs will be saved. But how do

we choose these devices, what criteria to look for, and what are the other

options available? There are several factors to consider, and more than

that, there are many modules available in the market. However, there are

some specific protocols like LoRa where only one company manufactures

the chipset and then a PCB is provided by other companies, which

functions as an abstraction layer. Figure 2-7 illustrates it.

Chapter 2 Getting Started with Edge Systems

31

Figure 2-7.  Abstraction example of LoRa – concept of breakout board

Essentially speaking, the actual LoRa module is manufactured

by a single company called Semtech, while many other companies

manufacture devices using LoRa silicon. These devices contain IO options

for receiving data and connecting to antennas, power, etc. An image of

a generic LoRa module is shown in Figure 2-8. It's manufactured by a

company called Ai-Thinker.

Figure 2-8.  Breakout board

Chapter 2 Getting Started with Edge Systems

32

This module internally uses Semtech’s SX1278 IC. If you notice the

image clearly, you will notice that there are options to connect IO pins

to a controller like an Arduino or Raspberry Pi. At the same time, we also

have an option to connect an external antenna. This is one example of a

communication module that can be hooked up to another device thus

enabling networking privileges. However, one important point to note here

is that these are non-IP-based communication protocols. Hence, there

needs to be a receiver that will act as a gateway in between to send the

messages to the Internet, as illustrated in Figure 2-8.

�Using a Decentralized Approach
Now, let's look at a concept using a decentralized approach. Here,

each device can communicate with the Internet directly. Figure 2-9

illustrates this.

Figure 2-9.  Decentralized approach to IoT

Chapter 2 Getting Started with Edge Systems

33

As you can see, it’s just a single device or a combination of more than

one device, but the most important point to note is that each controller

and sensors combined communicates to the Internet using its own on-

board communication module using either of the following ways:

	 1.	 Direct connectivity using e-sim or physical sim

	 2.	 Using Wi-Fi

Technically speaking, in case of Wi-Fi, the router works as a gateway

and the device communicates with the router. However, in cellular-based

communication, the device as a whole communicates to the Internet

directly. This method is used in cases where the number of devices is less

and the place where the devices are deployed has good connectivity. This

is not suitable for cases with low connectivity or where we are dealing with

a large number of devices as that would incur more costs. However, in the

former case, since the number of devices is less, the cost factor is low as we

don’t have to buy a dedicated IoT gateway.

Some key pointers that we can conclude based on the above

discussion are as follows:

	 1.	 If the number of devices is low, then using the

gateway method is not economical, as IoT gateways

are costly. In these cases, the single unit can directly

communicate to the cloud.

	 2.	 If the number of devices is large (industrial IoT and

home automation), then a centralized approach is

better suited as individual devices (with RF protocol

support) as it’s more economical and the range can

be extended using concepts like Mesh networks. A

gateway will essentially provide the connectivity.

Chapter 2 Getting Started with Edge Systems

34

	 3.	 The choice of a local network is dependent on a lot

of factors like range and the number of devices it

will connect to. If the range is extremely widespread,

LoRa provides a better approach. In other cases,

if it's confined within a small space like a house,

ZigBee offers a better solution.

	 4.	 Individual device power consumption is another

key element to consider, as that will decide what

to use and what to avoid. For example, cellular

communication consumes more power than LoRa-

based communication.

�Conclusion
This chapter focused on the following edge features:

•	 Sensors

•	 Controllers

•	 Communication

A key factor is choosing the right networking approach, and building

the solution depends on accessibility and cost. We did skip actuators

for now, but you should have a foundational grasp of how each of these

components works and what to consider while designing an edge system.

Chapter 2 Getting Started with Edge Systems

35© Avirup Basu 2025
A. Basu, Building IoT Systems, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1212-5_3

CHAPTER 3

Machine to
Machine (M2M)
Communication
Machine-to-machine (M2M) communication is one of the most

challenging parts of implementing IoT systems. The previous chapter

briefly discussed how the system communicates with the cloud. This

chapter’s prime focal point is how two or more devices talk to each other,

the methodologies involved, and how one can design such a system.

We will also walk you through some of the protocols involved in M2M

communication. If you recall the architecture of IoT systems, the part we

will focus on is at the edge level. An ideal IoT use case would involve a

lot of sensors and controllers all talking to each other via a local network.

Here, let’s dive deep into these networks and how devices can talk to each

other, what protocols are available, what the strategies are, what to use

when, and so on. A bunch of concepts will be clarified regarding M2M

communication by the end of this chapter.

https://doi.org/10.1007/979-8-8688-1212-5_3#DOI

36

�Communication
Many factors exist to enable communication between devices, which helps

us determine what technology or protocols to use. At a high level, we will

consider the following cases:

•	 Wireless non-IP-based technologies are widely used,

including ZigBee, LoRa, BLE, etc., whereas IP-based

technologies, which are used by almost everyone,

are Wi-Fi.

•	 There are wired technologies, too, used mainly

for communicating in a closed and constrained

environment, such as sensors to controllers or within

two or more controllers in the same system. These

include protocols like CAN, I2C, etc.

•	 Finally, we have communication to the cloud,

which is done either by Wi-Fi or through cellular

communication like LTE, LTE-M, 5G, etc.

We will cover each area in detail and walk through some of the

scenarios to get an understanding of what is supposed to be used where.

Before we do, though, let’s quickly review some key concepts.

�Modulation and Demodulation
We all use wireless communication in our daily activities. Whenever

we deal with any form of wireless communication, modulation and

demodulation are some of the key concepts that make this transmission of

signals possible. So, what exactly are modulation and demodulation?

Chapter 3 Machine to Machine (M2M) Communication

37

Modulation is the process of varying a carrier signal (such as a radio

wave) to encode information (data) and efficiently transfer the signal over

a medium, either wired or wirelessly. Demodulation, similarly, is how

we can extract the information (data) from the modulated signal. The

following are the types of modulation most commonly used:

•	 Amplitude modulation

•	 Frequency modulation

•	 Phase modulation

A simple example of amplitude modulation is shown in Figure 3-1.

Figure 3-1.  Amplitude modulation

Chapter 3 Machine to Machine (M2M) Communication

38

As shown here, the carrier wave carries information about the

information signal by varying its amplitude. Since the amplitude is

changing, this is called amplitude modulation. Thus, the frequency gets

modulated, and the phase gets modulated in case of frequency and phase

modulation, respectively.

�Simplex, Duplex Communication
Simplex is a one-way communication system in which data can flow only

in a single direction. Radio and television broadcasts are examples of this.

Duplex is a bidirectional communication system in which the data can

flow from one node to another node and vice versa. However, this can be

subdivided into subcategories:

	 a.	 Half duplex: It’s a type of communication where the

sender can receive signals but not at the same time.

An example of this will be walkie-talkie systems.

	 b.	 Full duplex: In this, a sender can transmit and

receive at the same time. The example of such

system is mobile communication systems.

�Selecting an M2M Communication System
What protocol to use and what system to opt for while designing an M2M

communication system is very important. There can be situations where

we need to focus on bandwidth, or in some cases, the focus can be on

network coverage. Sometimes, the network needs to be developed for

constrained systems or in some cases the traffic will be high, and reliability

may be a major consideration. There are many cases in which the proper

communication system needs to be selected. The following are some

important considerations to consider while designing such systems:

Chapter 3 Machine to Machine (M2M) Communication

39

•	 Power requirements

•	 Bandwidth requirements

•	 Frequency requirements

Power requirement is a major consideration in the world of

communication systems. For example, suppose you are developing

a system in which sensors must be placed in remote locations where

constant power is unavailable. In that case, a battery may be the

only option.

Now, some wireless technologies provide very good bandwidth but

are not very economical regarding power management while some others

may not be very good in terms of bandwidth but extremely efficient in

power management. Thus, it’s important to consider when selecting the

technology. Bandwidth is also another key factor to consider. Depending

on the network traffic, a decision needs to be made on the same.

Bandwidth refers to the amount of data that is sent or received over a

particular period of time. Some network may be good in bandwidth and

not much power efficient and vice versa.

Finally, one of the most important factors is the frequency

requirement. A network may operate under a certain frequency which

may not be legal or licensed in the geographical region or it may interfere

with other devices. Thus, making sure that the frequency selection follows

all the local wireless rules and regulations and doesn’t interfere with the

existing devices is crucial. Thus, from the above discussion, it should

be clear how the three pointers play a key role in selecting a wireless

communication technology.

Chapter 3 Machine to Machine (M2M) Communication

40

�Low-Power Wide-Area Network (LPWAN)
LPWAN as the name suggests is a class of low-powered networks

developed specifically to facilitate building of wireless network for the

purpose of IoT. This type of networking concept came into practice with

the launch of Sigfox and LoRa which was eventually followed by NB-IoT. As

of today, most of the IoT systems are based on LPWAN. Some of the key

characteristics of LPWAN are mentioned below.

�Long Range
This is the most significant feature of LPWAN and the reason why it is used

so widely. Unlike traditional technologies like Wi-Fi, LPWANs can cover a

distance ranging from a few meters to tens of kilometers. This makes them

a perfect choice to be deployed in rural and remote areas. However, in

case of an urban environment, the typical coverage area ranges from 1 to

5 km depending on a lot of factors including density of buildings and other

concrete obstacles.

�Low Power Consumption
These networks are designed for constrained systems, and thus, as

discussed earlier, power consumption is taken very seriously here. In

these networks, the power consumption is usually low. This allows it to be

used specifically with battery-operated devices. Ideally, devices that use

LPWANs can function from several months to years on a single battery

charge cycle. Thus, for this reason, the usability of this technology is high

in constrained devices. However, the battery consumption is extremely

dependent on how the device is being used or programmed. For example,

the battery life will be much more in case the device periodically transmits

signals rather than always transmitting.

Chapter 3 Machine to Machine (M2M) Communication

41

�Low Data Rate
A single network cannot always be this good. There has to be some trade-

off; in the case of LPWAN, that trade-off is its low data rates compared to

other technologies. This trade-off is acceptable, depending on the use

case. The low data rate is beneficial in cases where signal is transferred

infrequently over a certain period of time. In these scenarios, the data

packet is also on the lower side.

�Scalability
Another key advantage of LPWAN is that it can support a large number of

devices within a singular network infrastructure. This is beneficial for IoT

deployments involving thousands, perhaps millions, of connected devices.

These networks are designed to handle a high density of IoT devices,

making them robust for large-scale IoT applications.

�Examples of LPWAN Technologies
The following are some of the most commonly used LPWAN technologies:

•	 LoRa (Long Range): A protocol stack developed by

Semtech that is particularly popular when it comes

to devices spread across a large area. This network

operates on the ISM band.

•	 Sigfox: It’s a global network operator which uses

ultra-narrowband technology to provide long-range

connectivity with a minimalistic power consumption.

These are also based on the ISM band. This network is

known for its simplicity, and thus, it’s one of the most

popular choices for IoT projects.

Chapter 3 Machine to Machine (M2M) Communication

42

•	 NB-IoT (Narrowband IoT): NB-IoT is developed

by 3GPP (3rd Generation Partnership Project) and

is a standard based on LPWAN. It operates within

a licensed spectrum and is designed to work with

existing cellular networks.

There are more examples of LPWAN, such as RPMA (random phase

multiple access) and weightless.

Note I SM stands for Industrial Scientific Medical. This frequency
band is reserved specifically for these purposes and doesn’t require
licensing. Examples of wireless technology using the ISM bands are
LoRa, BLE, Wi-Fi, RFID, etc.

�Why LPWAN for M2M?
LPWAN has many characteristics that are well-suited for M2M

communication, as discussed earlier. However, in some cases, LPWAN

may not be useful, especially where the data rate needs to be on the higher

side. LPWAN is a set of technologies that were built with IoT in mind

as, in the world of IoT, we deal with constrained devices, and because

we usually don’t have to deal with a high data rate, LPWAN works out

great. However, LPWAN is not suited for cases where we need to deal

with real-time systems. LPWAN prioritizes on uplink (device to network)

communication and may have limited downlink capabilities. Real-time

systems on the other hand require a full-duplex communication in most

cases, and downlink is always a priority. In these cases, we prioritize low

latency, and for the same, a trade-off is perfectly fine in terms of power

and other advantages provided by LPWAN. LPWAN is mostly used in the

following cases:

Chapter 3 Machine to Machine (M2M) Communication

43

•	 Environmental monitoring: Monitoring of

environmental parameters such as air quality, soil

monitoring, etc.

•	 Smart metering: Used for monitoring utility meters and

sending data in regular intervals

•	 Asset tracking: Tracking location of assets over long

distances

In all of the above cases, a point to note is that we really don’t care

on the signal latency and the frequency of transmission is also low.

Thus, these are the perfect examples where LPWAN can actively be used.

However, for real-time systems like that of controlling an assembly line

(industrial automation) or that of a vehicle’s ECU (electronic control unit),

the delay in transmission can’t be considered. In these cases, we do need

minimal latency and high reliability, and thus, LPWAN can’t be used in

these cases. Wi-Fi, BLE, and ZigBee/Z-Wave are examples of such.

�Protocols for Real-Time Systems
What are real-time systems? To understand some of the protocols used in

real-time systems, which are an essential part of M2M communication,

let’s first understand what a real-time system is.

In the context of IoT and M2M communication, these are those

systems that require data to be transmitted and processed within a specific

time period strictly. These systems provide timely responses. Time is of the

key essence here. Here are some characteristics of such systems:

•	 Timeliness: These systems must respond to inputs or

events within a specific time period. This is extremely

crucial for applications where delays can’t be

considered.

Chapter 3 Machine to Machine (M2M) Communication

44

•	 Determinism: The system’s behavior should be

predictable to specific inputs. The output should be

expected and defined and should happen within a

defined time-frame.

•	 Reliability: High reliability is often required for these

systems as failures aren’t an option here, especially in

mission-critical systems like industrial automation and

healthcare.

•	 Concurrency: These types of systems handle multiple

events or data stream at the same time. Thus, the

network should be capable of handling it and have

effective ways of concurrency management.

In the case of these systems, let’s have a look at some of the protocols.

These protocols can be classified into wired and wireless. Under wireless,

we have the following:

•	 Wi-Fi: This requires no introduction, but it is used

in systems like smart appliances specific to home

automation and industrial monitoring. However, it is

not very efficient regarding power management and

has a limited range.

•	 Bluetooth Low Energy (BLE): It’s a short-range

communication protocol designed for low power

consumption. It is used mainly in wearable devices and

smart home devices. It’s mainly suited best for short-

range communication. However, the data rates are also

on the lower side.

Chapter 3 Machine to Machine (M2M) Communication

45

•	 Zigbee: Zigbee is a low-power, low-data-rate wireless

mesh protocol primarily used for home automation,

smart lighting, and, to some extent, industrial

automation. However, data rates are lower, and the

range is shorter than Wi-Fi. Its usability in a mesh

configuration is often advantageous in scenarios

similar to home automation.

Some of the wired communication protocols are widely used in the

industry.

•	 Modbus is a serial communication protocol built for

the industry based on the client-server architecture. It

is widely used with PLCs. However, Modbus can’t truly

guarantee real-time performance.

•	 CAN: It stands for Controlled Area Network. It was

developed by Bosch, and its specific purpose is to be

used in automobiles and vehicles. However, CAN is

also used in industrial automation. CAN allows two

or more controllers to talk to each other without a

hosted controller. It is very reliable and has real-time

capabilities.

There are more wired protocols that can be used for example, I2C

which are used to read sensor data. Figure 3-2 lists some of the widely used

protocols in the world of IoT.

Chapter 3 Machine to Machine (M2M) Communication

46

Figure 3-2.  Protocol list for IoT

�What Protocols or Technologies Do
You Use?
We have a fair understanding of some of the protocols used in

IoT. However, with such a large number of protocols and technologies, it’s

easy to get confused about what to use when. Let’s try to simplify this by

understanding how devices communicate at each layer. Based on specific

parameters, it will be simpler to determine the technology. Let’s have a

look at the following scenarios.

�Scenario 1: Building a Weather
Monitoring Station
Multiple strategies can be used, but for the sake of example, we will stick to

one. We want to build a wireless weather monitoring station powered by a

battery. In this case, we just want to deploy a single unit.

Chapter 3 Machine to Machine (M2M) Communication

47

We can immediately say that we need some form of cellular

communication here as a mesh or other wireless network may not be

economically viable. Thus, the following should be applied:

	 1.	 Cellular communication may be used.

	 2.	 Message needs to be sent periodically.

	 3.	 LPWAN like NB-IoT can be used if network

connectivity is available.

�Scenario 2: Monitoring Industrial Equipment
When it comes to monitoring industrial equipment, we often need near-

real-time data. For this reason, we always prefer a system with a constant

power source. Another important point is that most industrial sensors may

not be able to transmit data directly. They may need a gateway. Ideally, the

process illustrated in Figure 3-3 is normally followed.

Chapter 3 Machine to Machine (M2M) Communication

48

Figure 3-3.  High-level data flow from sensor to cloud

Here, we see that we use a combination of protocols:

•	 Serial port communication

•	 Modbus

•	 Wi-Fi or Ethernet

Chapter 3 Machine to Machine (M2M) Communication

49

The advantage of such a system is that multiple sensors can be

connected to the data recorder using a real-time protocol, and the data can

be transferred to a gateway using Modbus to an IoT gateway. The structure

in Figure 3-3 is used in most industrial monitoring systems.

�Scenario 3: Smart Agriculture Monitoring
When it comes to monitoring agricultural land, it is spread across a large

area, but at the same time, many sensors are present. In those cases,

adopting the first strategy, where individual systems communicate directly

to the Internet, may be inefficient. Thus, a mesh network or a network

consisting of LPWAN is a good choice here. In these cases, most of the

new modern-age sensors use LoRa. LoRa sensors communicate to a LoRa

gateway, and then, the gateway in a very similar way communicates to

the cloud.

Based on the discussion of the above three scenarios, we have a fair

idea of what wireless technology to use and when. That said, selecting

an M2M communication system generally needs to satisfy some generic

requirements irrespective of the technology we opt for.

•	 Message delivery for sleeping devices: In the case of

IoT, not all devices are always active. Some devices

may wake up periodically and then send data to the

cloud and then again go to sleep. This is usually done

to preserve power. When communicating with devices

that have an inbuilt sleep functionality, sending data

isn’t a problem. However, if you want to communicate

back to the device, that creates a challenge. This needs

to be looked into while selecting the network for M2M

communication.

Chapter 3 Machine to Machine (M2M) Communication

50

•	 Message acknowledgement techniques: In many

cases across the M2M communication ecosystem,

messages may get dropped, leading to data loss. Thus,

there needs to be an appropriate methodology for

confirming message delivery. In case of a failure, the

message can be resent.

•	 Algorithm for message routing: Another key aspect of

M2M communication especially with respect to mesh

networking is traffic routing. What it means is if there

are multiple devices spread across a network, how a

message is routed to a gateway is something that needs

to be looked into.

•	 Notification in case of communication failure: In these

cases of communication failure, we must consider how

the admin will be notified of a failed node or a failed

message. An efficient algorithm will prevent the loss of

data and handle duplicate records.

•	 Managing devices and OTA: We will discuss OTA in

detail later in this book, but at a high level, a process

should exist for managing devices and their firmware

remotely through the network or cloud.

•	 Scalability: It is a key factor especially in terms of

industrial or commercial deployment. The network

should be capable enough to scale up or scale down

based on devices and network traffic.

•	 Security: The network should be foolproof in terms

of network security and intelligent enough to handle

external attacks. Additionally, the aspect of data

encryption must also be considered while designing

the solution.

Chapter 3 Machine to Machine (M2M) Communication

51

In most cases as seen above, it’s a combination of multiple

technologies and protocols that constitutes an IoT system. You might use

LoRa or ZigBee or CAN and then use cellular or Wi-Fi to connect to cloud.

In almost every case, it’s a combination of multiple networks.

If you look at it from a different angle, we are also surrounded by a

similar gateway-based architecture in everyday life. For example, we

are connected to Wi-Fi routers, which are connected to the optical fiber

network. Similarly, when we use cellular connections, our cell phones are

connected to the nearest BTS – base transceiver station – and that actually

provides the network connectivity. Thus, in everyday life, we use devices

with different protocols to connect to a global network.

In the above discussion, we have seen the different wireless

technologies and protocols that are being used. The following list

summarizes them:

•	 Non-IP based (wireless):

	 a.	 LoRa

	 b.	 ZigBee

	 c.	 Sigfox

	 d.	 BLE

	 e.	 RFID

•	 Non-IP based (wired)

	 a.	 UART

	 b.	 USART

	 c.	 I2C

	 d.	 CAN

	 e.	 Modbus over the serial port

Chapter 3 Machine to Machine (M2M) Communication

52

•	 IP-based (wired)

	 a.	 Modbus over TCP/IP

	 b.	 Ethernet

•	 IP-based (wireless)

	 a.	 Wi-Fi

	 b.	 NB-IoT

Thus, in a typical M2M design, we might end up using multiple

technologies involved at each level.

�Conclusion
In this chapter, we had an overview and general understanding of an M2M

system. This will help you to design better IoT systems. Please note that

the list of technologies available keeps on changing and while designing

an IoT system, it’s best to opt for the best available technology and not

the latest available technology. Sometimes, the best may not be the latest.

Thus, depending on several factors like power, frequency, coverage, etc., as

discussed above, it’s best to do thorough research on the best technology

to opt for. In one of the upcoming chapters, when we deal with projects, we

will see how this is played out in real life.

Chapter 3 Machine to Machine (M2M) Communication

53© Avirup Basu 2025
A. Basu, Building IoT Systems, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1212-5_4

CHAPTER 4

IoT Data
Communication
Protocols
In the last chapter, we saw some of the technologies used and some

protocols for IoT communication. Here, we address a different section

of IoT communication protocols: the data section and protocols

implemented on TCP/IP or WebSockets. These are essentially different

ways of transferring data and are widely used in IoT and software

development in general. Figure 4-1 showcases our interest areas.

•	 Device to cloud (D2C): This refers to all kinds of

communication from a device to the cloud for sending

any kind of data. Telemetry data sent from a device to

the cloud is an example.

•	 Cloud to device (C2D): This refers to the cloud sending

data back to a device. This can be of any form like

sending responses to the device or sending control

signals.

https://doi.org/10.1007/979-8-8688-1212-5_4#DOI

54

Figure 4-1.  C2D and C2D process

In this chapter, we will cover some of the most widely used protocols in

the industry.

�HTTP REST API(s)
Representational State Transfer (REST) is an extremely flexible protocol

based on a design and software architecture style used to access data on

the web. It relays to IoT with devices sending data to the cloud (Figure 4-2).

In short, the devices send data to a remotely hosted web service.

R: Representational

S: State

T: Transfer

Chapter 4 IoT Data Communication Protocols

55

Together, it makes REST. This refers to a set of design and software

architecture style that is widely used in creating services based on the

web. It is very useful to access data on the web and is an extremely flexible

protocol.

But how does it relay to IoT? Well, in the case of IoT, we deal with

devices sending data to the cloud. What is a cloud? It is a set of machines

located remotely and hosting some services. Thus, essentially, the devices

send data to a remotely hosted web service.

Figure 4-2.  REST API high-level flow

Depending on the use case, there are other ways too; however, let’s

keep the focus on REST for now. This protocol is much more robust than

Simple Object Access Protocol (SOAP) as it uses less bandwidth and is

extremely flexible. Here are some of the key concepts of REST API:

•	 Resources: These represent entities or objects in your

system. Each resource in here is uniquely identified

by an URL.

•	 HTTP methods:

	 a.	 REST API uses some standard HTTP methods to

perform operations on resources:

	 i.	 GET: Retrieve data

	 ii.	 POST: Create a new resource or data point

	 iii.	 PUT: Update an existing resource or data point

	 iv.	 DELETE: Remove a resource

	 v.	 PATCH: Partially update a resource

Chapter 4 IoT Data Communication Protocols

56

•	 Statelessness: Each request made to the server should

contain all information. By default, the server doesn’t

maintain any information about the client. At an

application level, this can be made to retain some

information.

•	 Uniform interface: A consistent and standardized

interface is used to interact with all the resources.

These includes the use of standard HTTP methods and

status codes.

REST API has its own set of advantages:

•	 Scalability: The REST API structure is based on the

client server architecture. This means that it’s stateless,

which enables the server to handle a large number of

client requests.

•	 Flexibility: Clients and servers can be developed

independently. This means that different sets of

technologies can be used to do the same. (We will

discuss on this later.)

•	 Simplicity: The use of standard HTTP methods

and status codes like 200,500,400, etc., helps in the

development of applications using these protocols.

�Using REST in IoT
In the world of IoT, REST APIs are used actively in the following scenarios:

•	 Communication between edge devices and IoT

platforms: This is applicable when different devices

send data to IoT platforms, which are essentially web

services, and some IoT platforms support the use of

REST API.

Chapter 4 IoT Data Communication Protocols

57

•	 Configuration of a device - remote management: Some

of the devices need to communicate with the platform

to obtain the device configuration (more on this will be

discussed in the IoT Platform chapter). Usually, these

operations are done using REST APIs.

In a properly implemented IoT solution, devices send data to cloud

not using REST API but all other operations of the device communicating

with cloud services are done using REST APIs. Additionally, at the cloud

layer, almost everything happens over REST API calls as it provides a lot of

flexibility. Another important use case where REST API is actively used is

during an OTA update on the devices.

Essentially speaking, REST APIs are used actively in device-to-cloud

(D2C) communication. The reason why C2D or cloud to device is not

possible is that the devices normally do not have a fixed address; they

are just clients. Thus, hosting a publicly available web server on these

devices is not a very optimized way of achieving C2D. This is where we get

introduced to the pub-sub model; specifically, we are interested in MQTT.

�Message Queue Telemetry Transport (MQTT)
MQTT is a pub-sub model actively used in the Internet of Things. It’s a

lightweight protocol designed for constrained systems. MQTT is the go-to

protocol for all data-related communication protocols, including D2C and

C2D messaging. Figure 4-3 illustrates a simplified diagram, which consists

of the following components:

•	 MQTT broker

•	 MQTT clients (MQTT publisher and MQTT subscriber)

•	 MQTT topics

Chapter 4 IoT Data Communication Protocols

58

Figure 4-3.  MQTT architecture – high-level diagram

Figure 4-3 is one of the most simplified diagrams on MQTT. It consists

of the following components at a high level:

•	 MQTT broker

•	 MQTT clients

a.	 MQTT publisher

b.	 MQTT subscriber

•	 MQTT topics

As mentioned earlier, MQTT works on a pub-sub architecture, and like

all pub-sub architecture, the overall concept of what it is and how to use

it remains the same. In these cases, there is one centralized broker and

then there are clients. A client can again be a publisher, a subscriber or

both. MQTT sends messages in topics and these help to segregate out the

messages we are interested in. Let us dig a bit deeper and see what each of

these components refers to.

�Broker
MQTT broker is essentially a centrally hosted server which is the main

component. All MQTT clients are connected to the broker. It receives

messages from publishers and sends it to subscribers. It is responsible for

performing the following key responsibilities:

Chapter 4 IoT Data Communication Protocols

59

	 1.	 Message routing:

	 a.	 Receive and route messages: The broker receives messages

published by clients and routes them to all clients that have

subscribed to the corresponding topic.

	 b.	 Topic matching: The broker matches messages to

subscriptions using topics, which can include wildcard

characters for flexible subscription patterns.

	 2.	 Session management: Handling client connections,

disconnections, and maintaining session states.

	 3.	 Quality of Service (QoS): Ensuring messages are

delivered according to the specified QoS levels.

	 4.	 Security: Implementing authentication,

authorization, and encryption mechanisms.

�Topics
A topic is a UTF-8 string that represents a message route. Topics are

hierarchical, with levels separated by forward slashes (/), for example,

home/living room/temperature.

•	 Topic structure: Topics can have multiple levels,

allowing for organized and structured message routing.

For example, building/floor/room/sensor.

•	 Wildcards: MQTT supports two types of wildcards for

subscribing to multiple topics:

•	 Single level (+): Subscribes to one level of the

hierarchy. For example, home/+/temperature

matches home/livingroom/temperature and

home/kitchen/temperature.

Chapter 4 IoT Data Communication Protocols

60

•	 Multilevel (#): Subscribes to all subsequent levels.

For example, home/# matches home/livingroom/

temperature and home/kitchen/humidity.

Note  Wildcards are very important and are widely used to manage,
route and log messages. This will be clearer when we implement the
actual project later in this chapter.

�MQTT Clients
MQTT clients are applications that run in either a device or software which

connects to a MQTT broker. Clients can act as publishers, subscribers,

or both.

•	 Publisher: A client that sends messages to the broker

on specific topics.

•	 Subscriber: A client that receives messages from the

broker on topics it has subscribed to.

Clients are responsible for establishing a connection to the broker,

maintaining the connection, and handling messages appropriately. A lot

of libraries exist in different programming languages for connecting to

brokers.

�Quality of Service (QoS)
MQTT messages define a total of three QoS to ensure the reliability of

delivering the messages.

Chapter 4 IoT Data Communication Protocols

61

	 1.	 QoS 0 (at most once): The message is delivered at

most once, with no acknowledgement. This is the

fastest and least reliable level.

	 2.	 QoS 1 (at least once): The message is delivered

at least once, with the receiver required to

acknowledge receipt. This ensures the message is

received, but it may be delivered multiple times.

	 3.	 QoS 2 (exactly once): The message is delivered

exactly once, using a four-step handshake process to

ensure no duplication. This is the slowest and most

reliable level.

The QoS is essential, especially when it comes to telemetry data.

�Retained Messages
A retained message is a message that the broker stores and delivers to any

new subscriber to that topic. It ensures that new subscribers receive the

most recent message immediately upon subscribing.

�Last Will and Testament (LWT)

LWT allows clients to specify a message the broker will send if the client

disconnects unexpectedly. This feature is helpful for detecting failures and

taking corrective actions.

�Persistent Sessions

Persistent sessions allow clients to maintain their state between

connections. The broker stores the client’s subscriptions and any

undelivered messages, ensuring they are delivered when the client

reconnects.

Chapter 4 IoT Data Communication Protocols

62

�Security

MQTT includes various security mechanisms to protect communication:

•	 TLS/SSL: Transport Layer Security (TLS) or Secure

Sockets Layer (SSL) encrypts the data transmitted

between the client and broker, ensuring privacy and

data integrity.

•	 Authentication: Clients can verify their identity by

logging in with the broker using username/password,

certificates, or other methods.

•	 Authorization: The broker controls which clients can

publish or subscribe to specific topics, ensuring that

only authorized clients can access certain data.

There are more aspects to MQTT security but it’s usually broker-

specific. However, at a high level, just consider that authorization can be

done against a database.

�A Closer Look at Brokers
Let’s have a look at some of the most widely used MQTT brokers.

Eclipse Mosquitto

•	 Open source: A lightweight and widely used open

source MQTT broker.

•	 Features: Supports all MQTT versions, WebSockets,

TLS/SSL, and authentication mechanisms.

•	 Use cases: Suitable for small to medium-scale

applications and development environments.

Chapter 4 IoT Data Communication Protocols

63

HiveMQ

•	 Commercial and open source: Offers both open source

and enterprise versions.

•	 Features: High performance, clustering, enterprise

security, and extensive management tools.

•	 Use cases: Ideal for large-scale and mission-critical IoT

deployments.

EMQX

•	 Commercial and open source: A scalable and highly

available MQTT broker with clustering support.

•	 Features: Supports MQTT, MQTT-SN, CoAP, LwM2M,

WebSockets, and more.

•	 Use cases: Suitable for large-scale IoT applications with

high throughput and reliability requirements.

�Project Use Case: (Simulated
Smart Agriculture)
Now that we understand what REST APIs and MQTT do, let’s walk through

one small project and see how each component works. This will involve

simulated devices to get a generic understanding. Please note that the

point of this project is to understand how both REST APIs and MQTT are

used in a device to achieve desired results.

The following are a few things to consider:

	 1.	 We will use Python as a base language for the

following:

	 a.	 Web server to respond to request

Chapter 4 IoT Data Communication Protocols

64

	 b.	 Data logger to log the incoming telemetry data

	 c.	 Simulated device

	 2.	 We will use a globally hosted MQTT broker

(HiveMQ) to connect to MQTT.

So, let’s get started with the project.

We have the following requirements:

	 1.	 The cloud will configure the simulated device.

The configuration will include the MQTT details

and the parameters it needs to send as telemetry

information.

	 2.	 The simulated device will perform the following

actions:

	 a.	 Get MQTT-related data from the API

	 b.	 Get the parameters it needs to send to the MQTT

	 c.	 Send telemetry data to the MQTT broker

	 3.	 The API will perform the following actions:

	 a.	 Send MQTT and other configurable data points to the device

	 4.	 The logger will perform the following actions:

	 a.	 Receive telemetry data from MQTT

	 b.	 Update a JSON file with the data

Figure 4-4 represents the system.

Chapter 4 IoT Data Communication Protocols

65

Figure 4-4.  System diagram

Now, let’s have a look at the JSON data that will be saved in a JSON file.

�Saving the Data
In a real use case, we will have an actual database. The following JSON

represents the device-related information that will be shared by the web

service through REST API response.

{
 "device_id":"123AP09",
 "configuration":{
 "mqtt_config":{
 "host":"",
 "port":"",
 "publish_topic":"",
 "subscribe_topic":""

Chapter 4 IoT Data Communication Protocols

66

 },
 "parameter_config":["temperature","humidity"]
 }
}

In the above JSON, we have the following keys.

	 1.	 Device id

	 2.	 Configuration

	 a.	 Mqtt configuration

	 b.	 Parameter configuration (these are the parameters we want)

Now that we have the JSON, save the above JSON in a file named

“device_config.json”. Next, we will write a simple Python Flask code to

serve the requests.

Create a new file named “app.py” and keep it in the same folder. Here,

we are not going into the full details of the code but the code is simple

enough to understand. It’s a simple Python code that uses flask to serve

requests.

from flask import Flask, jsonify, abort
import json

app = Flask(__name__)

Read the configuration data from the JSON file
with open('device_config.json') as f:
 config_data = json.load(f)

@app.route("/config/<string:device_id>", methods=['GET'])
def get_config(device_id):
 if device_id == config_data["device_id"]:
 return jsonify(config_data)

Chapter 4 IoT Data Communication Protocols

67

 else:
 abort(404, description="Device not found")

if __name__ == "__main__":
 app.run(debug=True)

We have a method named get_config which checks if the incoming

device_id is same as the one in the configuration file, and based on this,

the API sends back the JSON as a response.

On executing the above codebase, we open any API testing toolkit

and trigger a GET request which is a REST API call. This is triggered by

the device to the web server. As a response, we will get the above JSON

mentioned before. Now, the question is, if the role of the API is just to send

back the config JSON, why do we even need it?

That is a valid question. To answer it, think of a situation where you

have deployed a total of 100 devices. All of these devices are connected

to a MQTT broker and send some data. The broker details are configured

within the devices. Now for some reason, the broker is changed, or the

configuration has changed. In that case, all 100 devices will be affected.

Thus, in these cases, we keep a centralized authentication server and we

use that server to pass on the configuration file-related information.

Figure 4-5 shows the response received as triggered from the

POSTMAN.

Chapter 4 IoT Data Communication Protocols

68

Figure 4-5.  POSTMAN response

Now, how do we use this information and its configuration? Let us

assume the following:

	 1.	 The simulated device can send the following

parameters as telemetry data:

	 a.	 Temperature

	 b.	 Humidity

	 c.	 Pressure

	 2.	 The simulated device contains the configuration

fetch URL, which is http://127.0.0.1:5000/
config/{dvcie_id}.

	 3.	 The device_id of the simulated device is “123AP09”.

Chapter 4 IoT Data Communication Protocols

69

Now, the following are the actions to be performed by the

simulated device:

	 1.	 To receive configuration parameters

	 2.	 To send telemetry data to the MQTT broker to the

publish topic

	 3.	 To receive control information, if any, through the

subscribed topic

Let’s write a Python code for the above simulated device:

import requests
import paho.mqtt.client as mqtt
import random
import time
import json

URL to get the config file
config_url = "http://127.0.0.1:5000/config/123AP09"

Get the configuration from the URL
response = requests.get(config_url)
if response.status_code == 200:
 config = response.json()
else:
 print("Failed to retrieve configuration.")
 exit(1)

Extract MQTT configuration
mqtt_config = config["configuration"]["mqtt_config"]
parameter_config = config["configuration"]["parameter_config"]

MQTT broker details
mqtt_host = mqtt_config["host"]

Chapter 4 IoT Data Communication Protocols

70

mqtt_port = int(mqtt_config["port"]) if mqtt_config["port"]
else 1883 # Default port 1883
publish_topic = mqtt_config["publish_topic"]

Callback when the client receives a CONNACK response from the
server def on_connect(client, userdata, flags, rc):
 client.subscribe(mqtt_config["subscribe_topic"])
 print("Connected with result code " + str(rc))

Callback when a message has been published
def on_publish(client, userdata, mid):
 print("Message Published with mid: " + str(mid))

Callback when a message is received
def on_message(client, userdata, msg):
 �print(f"Received message '{msg.payload.decode()}' on topic

'{msg.topic}' with QoS {msg.qos}")

Initialize MQTT client
client = mqtt.Client()
client.on_connect = on_connect
client.on_publish = on_publish
client.on_message = on_message

print(mqtt_config["subscribe_topic"])

Connect to the MQTT broker
print(mqtt_host)
client.connect(mqtt_host, mqtt_port, 60)

Start the loop
client.loop_start()

try:

Chapter 4 IoT Data Communication Protocols

71

 while True:
 �# Create a dictionary with random values for the

parameters data = {param: random.randint(10, 100) for
param in parameter_config}

 # Convert the dictionary to a JSON string
 payload = json.dumps(data)

 # Publish the message
 client.publish(publish_topic, payload)

 # Wait for a second before sending the next message
 time.sleep(1)

except KeyboardInterrupt:
 print("Script terminated by user.")

finally:
 # Stop the loop and disconnect
 print("Loop stopped")
 client.loop_stop()
 client.disconnect()

In the above code, we use the Paho MQTT library to connect to the

MQTT broker. We also use the requests module to trigger the HTTP GET

request to the server we showcased earlier. We are not going into the full

details of the code, but overall, we used methods as described in the Paho

MQTT to handle connection-related events.

Additionally, in the above code block, we are using an infinite while

loop to publish the messages to the topic. Interesting to note is the fact that

all the configuration-related details are fetched using the API call. This

includes the MQTT details and publish and subscribe topics.

The above code can be executed by typing

python simulated_device.py

Chapter 4 IoT Data Communication Protocols

72

This will publish the messages in the topic mentioned in the

configuration file. You can use any MQTT client to visualize the results.

Figure 4-6 shows the incoming stream of messages.

Figure 4-6.  mqttX used as an MQTT client

�Conclusion
Thus, from the above discussion, some of the concepts related to data

protocols are a bit clear, especially with respect to HTTP, REST, and

MQTT. More than the protocols in general, it’s important to understand

when to use what and when not to use what. There are other protocols too

like AMQP, but at a high level, we usually deal with these. In terms of actual

implementation, most IoT platforms release their own software packages

which implement these at a low level. However, the upcoming chapter

will be focused on the cloud side of IoT and we will eventually see how

platforms work.

Chapter 4 IoT Data Communication Protocols

73© Avirup Basu 2025
A. Basu, Building IoT Systems, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1212-5_5

CHAPTER 5

Cloud Computing
Up till now, we have focused on the edge layers and the communication

layers. As we move forward in the world of IoT, we now venture into the

world of cloud computing. Well, the fact is, without cloud computing,

IoT won’t be the Internet of Things but the Intranet of Things. The fact

that devices can be monitored and controlled remotely is all possible due

to cloud computing. This chapter will be focused on cloud computing

and some key concept areas. At the end, we will have a sneak peek into

building of an IoT data pipeline taking Azure as an example.

�Introduction to Cloud Computing
Cloud computing refers to the usage of computational services like servers

and databases over the Internet. It’s essentially using software which are

hosted remotely somewhere else. This approach allows developers and

businesses to access the technology and resources on demand remotely

without the necessity to use physical computation resources.

Let’s take a simple example to address this. For example, there are two

options when hosting a website:

	 1.	 You buy a dedicated PC and run the website on the

PC. The PC needs to be on 24×7 and must have a

static IP address.

	 2.	 You simply provision a VM in one cloud service and

deploy your website there.

https://doi.org/10.1007/979-8-8688-1212-5_5#DOI

74

Which one will you choose?

For the first, you need to do a considerable amount of investment

to maintain the above. In the second one, you just pay for the amount

of resources you consume. We would definitely go for the second one.

Similarly, in the case of IoT, devices need to send data to somewhere

upstream. In these cases, we provision some group of cloud services

and the device will send the data to those cloud services through some

methods.

Cloud computing is the base of IoT. However, one may argue that why

is it needed? Can’t we do the same as mentioned in the above point (1)?

That may be true, depending on the use case. However, ideally, we would

go for a cloud approach.

The following are some of the benefits of cloud computing:

•	 Cost savings

•	 Scalability

•	 Flexibility

•	 Improved collaboration

Based on the above, almost every application has something to do with

cloud computing.

The following are just a few of the cloud computing services:

•	 Infrastructure as a service

•	 Platform as a service

•	 Software as a service

•	 Function as a service

Let’s take a look at each of these now.

Chapter 5 Cloud Computing

75

�Infrastructure as a Service (IaaS)
This type of cloud computing provides virtualized computing resources

over the Internet. It is probably the most basic form of cloud computing,

and essentially, it’s the base of any cloud computing platform. With this,

businesses can rent IT infrastructure like servers, storage, and network

providers from a cloud provider on different payment models like pay as

you go model. The following are some of the IaaS providers:

•	 Azure Virtual Machine

•	 DigitalOcean Droplets

•	 Google Compute Engine

•	 Amazon Web Service Elastic Compute Cloud

�Platform as a Service (PaaS)
This type of cloud computing provides a platform allowing the users

to develop, run, and manage applications without dealing with the

underlying infrastructure. This saves a lot of time for developers to setup

the systems for their software(s) to run. Essentially, with PaaS, developers

can focus on the actual application than worrying about the deployment.

The following are some of the examples:

•	 Azure App Services

•	 Google App Engine

•	 Netlify

•	 Heroku

Chapter 5 Cloud Computing

76

�Software as a Service (SaaS)
This type of cloud computing provides virtualized computing resources

over the Internet. It is probably the most basic form of cloud computing

and essentially the base of any cloud computing platform. With SaaS,

you can work on the application side rather than developing it. We use

SaaS almost every day in one form or another. Some examples of SaaS are

Google G Suite, Microsoft Office 365, etc.

�Using Cloud Computing in IoT?
Cloud computing forms the backbone of IoT, and the IoT pipeline, which

is key to developing any solution, consists of the following (see Figure 5-1).

Therefore, each layer should be targeted accordingly.

•	 Edge layer (data generation)

•	 Processing layer (messaging hub)

•	 Storage layer (data sink)

Chapter 5 Cloud Computing

77

Figure 5-1.  IoT data pipeline

Chapter 5 Cloud Computing

78

This is what we call an “IoT Data Pipeline.” It will always be relevant

when developing solutions for IoT.

As discussed above, the major three components of an IoT data

pipeline consist of a data generation unit, which is the edge layer, and the

processing and storage layers, both of which are part of cloud computing.

We have already discussed in previous chapters how edge devices

send data. Here, let’s focus on the remaining two layers, which are the

processing and storage layers.

�Processing Layer
The processing layer is where all the data processing happens. It consists

of endpoints where the edge devices can connect to and send data, as well

as internal functions where we do the actual processing. In the previous

chapter, we talked about protocols like MQTT and REST. In the case of

IoT, this processing layer will internally consist of many subcomponents,

depending on the requirement. The main part of the processing layer is

business logic, which is very specific to use cases. It may involve simple

data write operations or it may also involve operations involving multiple

operations happening in parallel.

Let’s have a look at some components or key areas that are handled by

the processing layer:

•	 Data processing

•	 Data analytics

•	 Business logic orchestration

•	 Data visualization and reporting

•	 Integration with external services

Chapter 5 Cloud Computing

79

�Data Processing

In IoT, data processing refers to the set of operations that transform raw

data from IoT devices into meaningful insights, actions, and outcomes.

It plays a crucial role in any IoT system. Sensors generate vast streams of

data which needs to be processed before saving, and these are normally

a computation intensive process. These systems are based on cloud,

and ideally speaking, the main advantage of using it is that the device

dependency for processing is reduced. Let’s have a detailed outlook of how

it works. To begin with, let’s have a look at the types of data processing:

•	 Edge processing: This we have already covered in the

last chapter where we do the processing of data at the

edge level based on certain situations and then send

the data to the cloud. This is mainly done to reduce

the latency and obtain real-time processing. Edge

processing is common and is used widely in some form

or the other.

•	 Real-time processing: Real-time processing is essential

for applications that require an immediate response

such as industrial monitoring, healthcare systems,

smart cities, and more. The target is to reduce the

latency to a great extent. The data will be processed as

soon as it’s available downstream from the edge device.

There are a lot of technologies that can be applied

in real-time processing. Some of the examples are

mentioned below:

	 a.	 Apache Kafka

	 b.	 AWS Lambda

	 c.	 Azure functions

	 d.	 RabbitMQ

Chapter 5 Cloud Computing

80

Real-time processing is used widely and at the later part of this chapter,

we will see how this can be achieved using Azure.

•	 Batch processing: When the data volume is large

and there isn’t any need for real-time processing, we

would opt for batch processing. However, there are

a lot of scenarios, for example, data analytics, where

batch processing is the only option available. For

batch processing too, there are a lot of open source

technologies that are available for use.

•	 Hybrid processing: In 90% of IoT systems, we deal with

hybrid processing which is usually the combination

of more than one type. Some part of the system will

need real-time processing while others like predictive

maintenance will be dealt with batch processing. Thus,

whenever we design an IoT system, we primarily think

through what is the type of data and what is the type

of use case, and based on that, we decide what will be

real-time or what will be hybrid.

�Data Analytics ​​
In the world of IoT, we often deal with huge amounts of data and raw data

means nothing unless there is some form of meaning to it. Data analytics

is widely used to understand the raw meaning of data. This is where we

do a deeper analysis on the incoming stream of data and understand how

the system is performing. This usually involves several statistical methods,

data mining, or machine learning techniques.

•	 Descriptive analytics: This is just like a summary of the

data. An example of such will be average temperature

or humidity over a certain period of time.

Chapter 5 Cloud Computing

81

•	 Predictive analytics: It simply uses historical data to

predict future outcomes or trends.

•	 Prescriptive analytics: It again relies on the past data

and recommends possible actions.

In IoT, data analytics plays a key role, as without it, it’s difficult to

understand a system and how it will perform.

�Business Logic Orchestration

The implementation of business logic is another key important step. The

processed data is sent to this layer where business logic check happens.

Every single use case needs a business logic that drives automated

workflows and actions. Based on these, there can be two scenarios.

	 1.	 Event-driven architecture: Most of the IoT systems

follow an even-driven architecture, where specific

conditions or events trigger actions. For example,

sending an alert or changing the thermostat settings

of HVAC when the temperature changes beyond a

certain threshold.

	 2.	 Automated workflows: Based on some predefined

rules, the system can automate tasks like scheduling

maintenance, adjusting parameters, or sending

notifications.

Business logic layer is one of the most important elements in the

world of IoT.

Please note that business logic is defined across various layers, namely

edge and cloud. Real-time implementation goes into edge while non-real-

time implementation happens at cloud level.

Chapter 5 Cloud Computing

82

�Data Output and Visualization

Once data is processed and analyzed, it is often presented to users or

integrated into other systems for further action. Either the data can be

shown in real-time, or it can be shown in the form of historical charts

and graphs. Dashboards form a key role in the cloud computing part of

IoT. However, these are more application specific and rely on the use case.

For example, in the case of an industrial system, we do need real-time

monitoring. However, for others we might just rely on historical data.

�Integration with External Services

Data visualization is one part. However, we need capabilities in cloud

computing where data needs to be sent to external services like an ERP,

CRM, or any other third-party services. These usually mean the platform

we chose for the system or whatever we design must have capabilities to

send data. Usually, these are done through API calls. For example, we need

to send data to salesforce if an alert gets triggered. In this case, salesforce

will expose an API which the cloud computing platform will consume. This

integration is usually done at the business logic layer.

�Building an IoT Data Pipeline in Azure
We have a generic idea of cloud computing and its various components

specific to IoT. In this section, we will understand the flow of data from

edge to database through a cloud computing platform, Microsoft Azure.

Let’s get started with the basics, as in the components that are needed, but

before going there, what is Azure?

Azure is a cloud computing platform by Microsoft, which provides a lot

of out-of-the-box offerings. With respect to IoT, we are interested in some

of the services that will help us to send and save data upstream. Azure is

used in a variety of systems starting from application development to data

Chapter 5 Cloud Computing

83

engineering and from IoT to advanced AI and machine learning. Let’s

now take a closer look at the following components that are relevant to IoT

ecospace:

•	 IoT Hub

•	 IoT Edge

•	 Azure Functions

•	 Any PaaS DB offerings like PostgreSQL

•	 Azure Blob Storage

•	 Azure Stream Analytics

�Understanding the Components
Before deep diving into any solution, we must understand what we’re

dealing with in terms of individual components. At a very high level, the

entire solution can be divided into the following parts:

•	 Edge device

•	 Messaging broker

•	 Data processing

•	 Data sink

Data processing can be done both at edge and at cloud, and it’s usually

split between the two. Based on the above classification, we can architect

any IoT solution based on any cloud providers. In this case, we will

stick to Azure and see how each component fits in the abovementioned

classifications. The whole point is to understand the data flow from edge

to cloud.

Chapter 5 Cloud Computing

84

	 1.	 Azure IoT Hub: It is a messaging broker specifically

built for not only acting as a centralized messaging

hub but also enabling device management and

reliable communication at an extremely large scale.

	 2.	 Azure IoT edge: It is a device-focused runtime

that enables us to build, deploy, run, and monitor

containerized Linux workloads. As the name

suggests, it runs on supported edge devices and

everything is manageable from the Azure cloud.

The above two IoT Hub and IoT Edge runtime are IoT-specific offerings

of Azure. There are more offerings too like Azure IoT Central but that is not

within the scope of this chapter.

Let’s have a look at the other components that will be covered as a part

of this chapter.

Azure functions: These are managed microservices that does a

specific job. These have different triggers and can have different sinks too.

Many languages, like C#, Python, Java, JavaScript, and more, are supported

within function apps.

Azure stream analytics is a fully managed stream processing engine

designed to handle and process large volumes of streaming data. Different

scenarios can use ASA. It is also available at the edge, where it is known as

Azure Stream Analytics for Edge.

These two components are a part of the business layer to process

the data. Now, let’s have a look at the data sink or storage options. There

are multiple ways through which this can be achieved. Let’s have a look

at some.

Azure blob storage: It is a solution to store any kind of object. Most

importantly data which is mostly unstructured. It’s optimized to handle

massive amounts of data.

Chapter 5 Cloud Computing

85

Azure Cosmos DB: It’s a fully managed NoSQL and RDMS for modern

highly scalable application development. It’s highly scalable and offers

“single digit” milliseconds in response time.

Other managed solutions exist, too, like SQL and PostgreSQL, and

those operate in a similar way to how native solutions behave.

Now that we know the components and where they belong, let’s recap

through Figure 5-2.

Figure 5-2.  Azure data pipeline

�Conclusion
In this chapter, we had a generic understanding of how cloud computing

works and its role in the world of IoT. We have also seen how Azure can

be used to build an IoT data pipeline. These are the few concepts that are

used almost regularly in any IoT-based application.

Chapter 5 Cloud Computing

