COMPUTER SCIENCE

PRINCIPLES

The Foundational Concepts of Computer Science

-~ Kevin Flare:
. g 7‘-“. n N .‘.. . ‘ - x C
or PinaarVanwArma

 Fareword by CloudPainter €rea
i “ e : e & T ;

Computer Science Principles

The Foundational Concepts of Computer
Science

Kevin Hare
with a foreword by Pindar Van Arman
Yellow Dart Publishing
To Parker and Quinn,

4b6565702075702074686520677265617420776f726b21
-K.H.

Copyright © 2024 by Yellow Dart Publishing & CS++

All rights reserved. This book or any portion thereof may not be reproduced
or used in any manner whatsoever without the express written permission of
the publisher except for the use of brief quotations in a book review.

5th Edition

All inquiries should be addressed to: Yellow Dart Publishing/CS+ +
info@csplusplus.com

Microsoft product screenshots used with permission from Microsoft Adobe
product screenshots reprinted with permission from Adobe Systems
Incorporated.

Adobe®, Adobe® Dreamweaver®, and Adobe® Photoshop are either
registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

Google and the Google logo are registered trademarks of Google Inc., used
with permission ISBN:

Paperback: 978-1-7345549-6-0

Hardcover: 978-1-7345549-7-7

eBook: 978-1-7345549-8-4

Foreword

I envy readers of this computer science textbook. It's not like the textbook I
started out with. That book was filled with exercises that resembled math
problems. Algorithms were described along with demonstrations of the
most efficient way to use them. We were then challenged to solve these
problems in the most efficient way possible. It's not that these exercises
weren't fun, but they were very rigid and usually had a single correct
answer. This put creative types like me at a disadvantage. I wanted to
experiment with software and try different approaches, even if they were
not the best approaches. The textbook I remember was not designed for
that. It emphasized efficiency over creativity.

But this textbook is different. Computer science is a creative field, and this
textbook's approach celebrates this creativity. This textbook will put you
well on your way to understanding how to use modern software
applications, what makes them work, and how you can improve on them to
write your own applications.

As an artist, I think this creative approach is the most interesting way to
tackle any problem.

My art is a little unusual. I design creative algorithms then have several
custom robots use these algorithms to create paintings, one brushstroke at a
time. These Al generated paintings are a record of both how far I have
come in the discipline of computational creativity, and how far artificial
intelligence in general has developed.

My most recent painting robot project is called CloudPainter, and it can
paint some wonderful paintings. I named it CloudPainter not because every
new computer-related thing needs to have the word “cloud” in it, but
because I want my latest robots to be able to look into the clouds and be
inspired by them to create their artwork. We humans might notice that a
cloud resembles a dragon and use that as inspiration to let our imaginations
run wild. I wanted my robots to be able to do the exact same thing. I wanted
them to imagine the images they painted.

We have had some success toward that goal. While my earliest robots were
relatively simple machines that dipped a brush in paint and dragged the

brush around a canvas, my most recent robots use dozens of artificial
intelligence algorithms, a handful of deep-learning neural networks, and
continuous feedback loops to paint with increasing creative autonomy.

Exactly how far has their creativity come?

Famed New York magazine art critic Jerry Saltz recently reviewed one of
my robotic paintings. Speaking of the Portrait of Elle Reeve, he began it
“doesn’t look like this was made by a computer.” He then paused and
continued, “That doesn’t make it any good.” It sounds like a bad review, but
I loved it. A couple years ago, no one even considered our paintings to be
art. Now people at least think they're bad art. That's progress!

To make a portrait that didn’t look like a computer made it, my robots used
all their creative abilities to re-imagine Elle Reeve’s face in an abstract
impressionist style then painted it based on strokes modeled from a famous
Picasso.

Jerry Saltz’ admission that this painting could have been done by a human
hand was a major milestone in my artistic career. As I mentioned, few have
even acknowledged my art as art. Some looked at my painting robots and
called them over-engineered printers. Other naysayers complained that our
paintings were little more than images run through the equivalent of a
Photoshop filter.

Beyond the robots and their paintings, people often took offense at the very
idea of what I was trying to do, which was to create artistic robots. For
many it was a grotesque attempt to mimic the very essence of what makes
us human. My attempts threatened and worried people. I remember one
exhibition where an artist pulled me over and said “I don’t know whether to
be impressed or disgusted with your work.”

Over the years, however, there also have been many who understood
exactly what I was trying to accomplish. The author of this book, Kevin
Hare, was one of them. We first met while teaching in Washington, DC.
Kevin was a computer science teacher. I taught art. My friendship with
Kevin was unexpected. Our classrooms were on opposite sides of campus,
and one would think that there would be little overlap in our curriculum. As
we got to know each other, however, it quickly became apparent that we

were on similar wavelengths. We both realized the creative power of
software. We had many conversations where we discussed the similarities
between our creative processes. Both of us realized just how similar writing
code was to making art.

As I read this book, I was reminded of many things he shared with me
about the creative aspects of computer design. You will find it in his style as
well as in the exercises he provides. This book does not just ask you to
complete a task for the sake of completing it. It challenges you to have fun
with the code to do things that you are interested in.

His concern for keeping your interest can even be seen in the order in which
he covers the material. The book begins by introducing the basics, as would
be expected, but then it does something unusual. The second unit goes right
into the creative side of software by exploring photo editing. As an artist,
this made perfect sense to me. It even mirrored my own journey into
computer science. The first programs I used were photo editing tools like
Photoshop. As I needed these tools to do more than they were capable of, I
found myself writing my own. This got me started in computer science and
eventually led to my Al robots.

The truly fun part of computer science is learning how to use code to be
better at the things you love. Kevin Hare understands this perfectly and
goes out of his way to teach you things that have interesting practical
applications.

At its core, software is a tool that helps us do things much more efficiently.
Simple programs like word processors let us write more words per minute.
Spreadsheets let us do complex accounting and analysis. More complex
programs like Photoshop and Garage Band help us make art and compose
music. Those of us who take the time to understand and master these tools
have a great advantage over those who do not.

Do you like playing an instrument? Unit seven will help you make a
website for your band. Enjoy making art, like I do? Creative applications
are discussed in multiple units, beginning with unit two. Want to make
billions of dollars creating the hot new crypto-currency? Look no further
than unit five's discussion of cryptography.

Regardless of your interest, this book will get you started on the path to
writing software that helps you excel. Making yourself better at whatever
you want to be better at has never been easier.

Pindar Van Arman
Creator, CloudPainter
www.cloudpainter.com

Software Alternatives

This book discusses a wide variety of concepts but also explores a few
specific pieces of software. These programs may require a large one-time
payment or—more commonly today—a monthly fee. Other software, like
many smartphone apps, earn revenue from an advertising-based model.
Many applications discussed in this book offer a free-trial period that you
can use to try out a product before purchasing it.

Free and open-source software (FOSS, discussed in unit 9) allows users and
developers the freedom to share and improve upon software. FOSS allows
users to use software without charge, it also allows them to access and
modify the source code. The following FOSS applications can be used to
accomplish similar tasks and to open the same file types as Excel,
Photoshop, or Dreamweaver.

LibreOffice is similar to the Microsoft Office suite and includes
applications for word processing, spreadsheets, slideshows, databases and
more. It can be used in place of Excel in unit 4. Created from OpenOffice in
2010, it can be found at https://www.libreoffice.org/

GIMP (GNU Image Manipulation Program) can be used as an alternative
to Photoshop (discussed in unit 2.5). This free and open-source software is
used to manipulate raster images. More information can be found at
https://www.gimp.org/

Photopea, an ad-supported web-based image editor, has a very similar look,
feel, and workflow to Photoshop, including the ability to edit .PSD files.
Since nothing needs to be downloaded, Photopea makes a great substitute
for Photoshop, especially for Chrome Book users. Photopea can be found at
https://photopea.com

Brackets is a free and open-source text editor created by Adobe. It is an
excellent free solution for web development and can serve as an alternative
to Dreamweaver in unit 7.5. Although any text editor and web browser can
be used to create web pages, Brackets has a variety of tools to help with the
workflow. It can be downloaded at http://brackets.io/

Numerous other applications, both free and paid, can perform similar tasks,
and more are being created and updated every day. As you explore and dive

deeper into specific topics, research and explore the software that best fits
your needs.

1 - Hardware, Software, Number Systems,
and Boolean Expressions

“It’s hardware that makes a machine fast. It’s software that makes a fast
machine slow.” - Craig Bruce

Introduction

If you have ever turned on a phone or surfed the Internet then you have
used a computer and should have a basic understanding of what happens
when you click the mouse or touch the screen—and how fast it happens! A
computer is an electronic device that processes data according to a set of
instructions or commands, known as a program. Before creating
spreadsheets, manipulating images, understanding the Internet, making
websites, encrypting data, or learning how to code, it is important to
understand the basics of every computer. All computers—desktops, laptops,
tablets, and smartphones—convert data into ones and zeros and have the
same basic components: software and hardware. In this unit, we'll define
some of computing's most basic terms and explore how computers work at
the most elemental level.

Software

At the lowest level, computer software is just a series of ones and zeros. It
cannot be touched physically and is usually stored on the computer's hard
drive. We can consider software as belonging in two general categories: the
operating system and the applications.

The operating system (OS) includes the desktop, start menu, icons, file
manager, and common services shared by other programs. It manages
hardware and software resources and provides the visual (graphical or text-
based) representation of the computer. Again, at its most basic level, the
software is just a series of ones and zeros—usually billions of them at any
one time—that cannot usually be understood by a human, so the operating
system helps make these ones and zeros easy to read and understand. Some
popular operating systems include Windows 10, MacOS Catalina, and
GNU/Linux.

T

Software

i .!:\:! h".,
el
YT Aok

wil e B
LA

Peripherals Applicatioms Operating

i System
. o TOWe g
& Mes =22 g cee &0
Cenlral w ‘\? ﬂ ¢ f‘-‘

Mullerbnzicd Prarovasing
Linit

secnndary L% evicas

e Memary

Main Moooey

(RA Pavmer Supply

Pretty much everything else on your computer, except for saved files, are
applications, including word processors, photo editing software, web
browsers, games, and music players. A few popular applications include
Microsoft Office, Adobe Photoshop, Apple Music, Google Chrome, and
Fortnite.

Hardware

The physical parts of the computer are known as hardware. These devices
—such as the monitor, keyboard, speakers, wires, chips, cables, plugs,
disks, printers, mice, and many other items—can be touched. There are two
categories of hardware: the core and the peripherals. The core is made up
of the motherboard, the central processing unit (CPU), the main memory,
and the power supply. Peripherals consist of the input and output (I/O)
devices and the secondary memory.

Everything that happens on a computer goes through the core. Together, the
core components—motherboard, CPU, main memory, and power supply—

do all the heavy lifting in the computer.

Also called a logic board, a motherboard is the standardized printed circuit
board that connects the CPU, main memory, and peripherals to each other.
Since many different manufacturers make parts for computers, there are a
handful of standard form factors to ensure that circuits and hardware fit
together properly. Most motherboards also contain a small integrated chip
and firmware, which stores the BIOS—or basic input/output system—as a
way to communicate with the computer, especially before an operating
system is loaded.

In more recent designs, the traditional BIOS has been largely replaced by
UEFI (Unified Extensible Firmware Interface). UEFI offers a more
advanced and modern interface for firmware, enabling richer pre-boot
environments, enhanced system initialization, and improved security
features. It supports larger hard drives with more partitions and includes
networking capabilities for tasks such as firmware updates and remote
diagnostics. UEFTI also provides secure boot functionality, which ensures
that only trusted operating systems and bootloader software are executed
during startup, helping to prevent unauthorized software from running at
boot time.

The POST (or power-on self-test) process is also integrated into this
firmware. POST conducts basic checks to ensure that all core components
and peripherals are powering on correctly. This is usually verified by a
chime, a series of lights on the motherboard, or other visual and audible
indicators. The transition from BIOS to UEFT has brought about significant
enhancements in system boot processes, overall performance, and security,
making motherboards equipped with UEFI more capable and efficient than
their predecessors.

The Central Processing Unit (CPU) carries out every command or process
on a computer and is often referred to as the computer's brain. The CPU
operates at exceptional speeds, usually measured in gigahertz—a unit
representing billions of cycles per second. It can swiftly handle a multitude
of tasks, ranging from basic calculations to intricate data manipulations.

When information reaches the CPU, it undergoes processing by being
dissected into its core components: ones and zeros. This binary framework

underpins all computations within the computer. The CPU's speed,
architecture, and advanced instruction set, enables it to seamlessly interpret
and execute these binary instructions.

When it comes to graphics, simulations, and data-intensive tasks, a
specialized processor known as the Graphics Processing Unit (GPU) can
be used. In contrast to the CPU's role, the GPU is tailored to parallel
processing, specifically designed to manage a large amount of data
simultaneously. While the CPU is versatile, handling a broad spectrum of
functions, the GPU excels in tasks that require repetitive and data-parallel
computations.

The GPU's capabilities have been used for many applications benefiting
from its parallel processing. One such application is the GPU's
transformation of graphics rendering, creating lifelike visuals in domains
like video games, simulations, and computer-generated imagery (CGI). The
GPU's parallel computing power finds application in scientific simulations,
weather forecasting, financial modeling, and cryptographic operations as
well. The rise of machine learning and artificial intelligence further
harnesses the GPU for accelerated neural network training and extensive
data analysis.

The CPU’s cores prioritize single-threaded performance and general tasks,
making it adaptable across a wide range of computing needs. The GPU's
architecture boasts numerous smaller, highly parallel cores that deliver
exceptional performance for tasks that can be decomposed into numerous
simultaneous calculations. This is why the GPU is suited for handling large
datasets and performing repetitive computations.

At the heart of modern computing lies the remarkable innovation of
transistors. Transistors are microscopic electronic devices that act as
switches, capable of controlling the flow of electrical current. These
minuscule components are what empower the CPU's incredible processing
capabilities. By opening and closing these tiny switches, the CPU can
process binary data and perform complex calculations at lightning speed.

The creation of modern transistors is thanks to silicon, a semiconductor
material that possesses unique electrical properties. Silicon is derived from
silica, found in sand and quartz. To transform silicon into a functional

transistor, a process called photolithography is used. This involves coating a
silicon wafer with a light-sensitive material, followed by projecting a
pattern onto it using ultraviolet light. The exposed areas are chemically
altered, allowing for precise etching and the creation of intricate transistor
structures.

In contemporary times, CPUs incorporate a staggering number of
transistors, ranging from millions to billions, all neatly packed within their
compact designs. This remarkable trend of exponentially increasing
transistor density, doubling approximately every two years, is famously
known as Moore's Law. Named after Gordon Moore, the co-founder of
Intel, this "law" is essentially an analysis of historical trends that serves as a
predictive guide for the future of semiconductor technology. Nevertheless,
the momentum of Moore's Law has encountered recent deceleration due to
the constraints imposed by the fundamental limits of physics.

Main memory is often referred to as RAM, or random-access memory. In
other words, information can be retrieved from or written to any location in
the memory. The computer does not have to go through everything stored in
the memory to get to the information at the very end. Think about old
cassette tapes. To get to the next song, the current song either needs to be
played all the way through or fast forwarded through. This kind of memory
is called sequential memory. RAM is more like a CD. To get the next
song, just hit next.

Remember, the main memory temporarily holds information while the CPU
processes it. As a result, the more RAM a computer has, the less often it
needs to retrieve information and—all other things being equal—the faster
it can run programs and the more programs it can run simultaneously.

Dynamic Random-Access Memory (DRAM) and Static Random-Access
Memory (SRAM) are two types of RAM used in computer systems. DRAM
is characterized by its high storage density and lower cost per bit, making it
good for applications that require large amounts of memory, such as system
memory in personal computers and servers. However, DRAM cells need to
be frequently refreshed to maintain their data, which can lead to increased
latency.

SRAM offers faster access times and doesn't require constant refreshing,
making it the best choice for cache memory in processors, a special type of
fast and small memory located between the main memory and the CPU that
stores frequently used data and instructions allowing the CPU to access
them quickly. SRAM cells are built using a more complex structure,
utilizing multiple transistors per cell, which accounts for its faster
performance but also results in higher manufacturing costs and lower
storage density compared to DRAM.

The choice between DRAM and SRAM depends on the specific
requirements of the application. While DRAM is advantageous for its cost-
effectiveness and storage capacity, SRAM excels in scenarios where speed
and low-latency data access are critical. Both DRAM and SRAM play
pivotal roles in shaping the memory hierarchy within modern computing
systems, contributing to overall system performance and efficiency.

Just like the power adapter on other electronic devices, a computer’s power
supply converts AC power from the electrical grid to the lower voltage DC
power that is needed to power the computer's components. Most power
supplies contain a fan to keep them cool and a switch to change between
different voltages.

Nearly everything else in the computer is called a peripheral, which means
it operates at the outside edge of the computer. A user interacts with a
computer through peripherals—not the CPU or main memory. Peripherals
include the secondary memory, all input and output devices, video or
graphics cards, and more.

Secondary memory is all memory accessed by the computer, except the
main memory. It is used for long-term storage and is physically changed
whenever files are saved or deleted. This change makes secondary memory
slower than the main memory—although it is still very fast. Secondary
memory is much larger than the main memory, and changes are usually
only made when a user alters the information stored there, for instance
when saving or deleting a file. Common secondary memory devices include
hard drives, floppy disks, CD-ROMSs, USB storage devices, and flash
drives. These peripherals store the software (both OS and applications) that
the main memory will access.

A user interacts with a computer using input and output (I/O) devices.
Without them, computers would not be very useful. Input devices allow
users to send instructions or data to a computer. Keyboards and mice are the
most common input devices. They tell the computer when something is
typed or clicked. Other input devices include joysticks, microphones, and
scanners. Output devices take something from the computer and send it to
the user. Monitors and printers are the most common output devices. Others
include speakers and virtual reality goggles. Some devices provide both
input and output. A touchscreen, for example, takes input when touched and
also displays output as a monitor.

Main memory is usually volatile while secondary memory tends to be non-
volatile. The distinction here has to do with the stored information and the
power supply. In the case of velatile memory, information is lost when the
power is turned off whereas with non-volatile memory, the information
remains. So when you shut down your computer, the main memory is wiped
clean, but—thankfully—the secondary memory will remain as is!

Remember that a computer —at its lowest level—only reads zeros and
ones. You can think of a computer like a light switch: it is either on or off.
When it comes to RAM, a computer can just mark the “switch” on or off,
but floppy disks and CD-ROMs work a little differently. Floppy disks are
magnetic, and CDs and DVDs use light. A CD has a smooth surface with
pits. The smooth parts represent zeros, and the pits stand for ones. In the
case of CD-Rs and CD-RWs, the surface becomes reflective when heated to
one temperature and non-reflective when heated to another.

Computing Systems

There are several different models that computers can use to solve
problems. Sequential computing is a model in which operations are
performed in order, one at a time. This means that the total time it takes to
complete a sequential solution is the sum of all of its steps. While this
approach can be effective for certain types of problems, it can be limiting
when it comes to solving more complex issues.

Parallel computing, on the other hand, breaks a program into multiple
smaller sequential computing operations, some of which are performed
simultaneously. This allows for solutions to be completed more quickly
than with sequential computing, but there is still a limit to how much it can

scale. The efficiency of a parallel computing solution is still limited by the
sequential portion, which means that at some point, adding parallel portions
will no longer meaningfully increase efficiency.

Distributed computing is a model that involves using multiple devices to
run a program. This approach allows for problems to be solved that would
be too time-consuming or require too much storage to be solved on a single
computer. With distributed computing, much larger problems can be solved
more quickly than with a single computer.

Cloud computing is a type of distributed computing that has become
increasingly popular in recent years. It involves using a network of remote
servers to store, manage, and process data. Cloud computing allows for
greater flexibility and scalability, as resources can be quickly and easily
scaled up or down as needed. Additionally, cloud computing can be more
cost-effective than traditional computing models, as users only pay for the
resources they use. Overall, these models of computing have opened up
exciting new possibilities for solving complex problems, handling large
amounts of data, and have made collaboration more accessible.

Number Systems

In everyday use, we use a numeral system that uses numerals from zero to
nine, so for every number there are ten different options in each place. As in
decagon or decathlon, the prefix dec- means ten, so it makes sense that the
name of our numeral system starts with dec-. The numeral system we
ordinarily use is called base-ten, or decimal, and it uses ten numerals
ranging from zero to nine, which are also called digits. In base-two, or
binary, there are only two numerals used: zero and one. As in the words
bicycle, bifocal, or bipartisan, the prefix bi- means two, so each numeral in
binary is called a bit, which is the smallest unit of information that a
computer can process: zero or one, off or on. These bits are so small that it
is more practical to group them into bunches of eight, otherwise known as
bytes.

Each address in memory contains one byte of information, but all except the
most rudimentary units of information are larger than one byte, so storing
them requires multiple bytes. With today's computers, a byte is an

exceedingly small amount of memory, so instead of talking about them in
the millions or billions, we use the larger units below. Since the computer
only processes zeros and ones, everything is measured in base-two, so one
byte is two to the zeroth power, or one. The next unit is the kilobyte, which
is two to the tenth power, or 1,024. Notice that a kilobyte contains more
than one-thousand bytes, the usual meaning of the prefix kilo. A megabyte

is 220, a gigabyte 23Y, and a terabyte 2.

Unit # of bytes # of bytes ~bytes

byte 2 One

kilobyte 210 1,024 One-thousand
megabyte 220 1,048,576 One-million

gigabyte 230 1,073,741,824 One-billion

terabyte 240 1,099,511,627,776 One-trillion

Below is a list of common file types and their approximate sized to
illustrate the differences:

Text File (1 KB - 100 KB): A simple text document, like a short essay or a
few pages of a novel, could be around 10 to 100 kilobytes (KB) in size.

MP3 Audio File (3 MB - 5 MB): An average-length MP3 song, which is a
compressed audio format, might be around 3 to 5 megabytes (MB) in size.
This is the format commonly used for music streaming and storage.

High-Resolution Image (5 MB - 10 MB): A high-quality JPEG image from
a modern digital camera could range from 5 to 10 megabytes (MB) in size.

Standard-Definition Video (200 MB - 500 MB): A shorter standard-
definition video clip, like a 5-minute video in 480p resolution, might
occupy around 200 to 500 megabytes (MB) of space.

High-Definition Video (1 GB - 2 GB): A 15 to 20-minute high-definition
video at 1080p resolution could be around 1 to 2 gigabytes (GB) in size.

Software Application (1 GB - 10 GB): The size of software applications can
vary widely. A mid-sized software application, like a video editing
software, could range from 1 to 10 gigabytes (GB) in size.

Feature-Length Movie (4 GB - 10 GB): A full-length movie in high-
definition quality, suitable for streaming or local playback, could be around
4 to 10 gigabytes (GB) in size.

Large Video Game (20 GB - 50 GB): Modern video games with detailed
graphics and expansive worlds can require significant storage space. Games
often range from 20 to 50 gigabytes (GB) or more.

Blu-ray Disc Image (25 GB - 50 GB): A full Blu-ray disc image, which
contains high-definition video and audio, might occupy around 25 to 50
gigabytes (GB) of storage.

High-Resolution Image Database (100 GB - 1 TB): A collection of high-
resolution images for professional use, such as in graphic design or
photography, could range from 100 gigabytes (GB) to multiple terabytes
(TB) in size.

These examples highlight the wide range of file sizes associated with
different types of digital content. As technology advances, file sizes tend to
increase due to higher quality standards and more intricate content creation
processes. This emphasizes the importance of having ample storage space
and efficient data management practices.

Sometimes when companies release hardware, such as hard drives or
smartphones, they will consider a megabyte as one-million bytes instead of

220 bytes or a gigabyte as one-billion bytes instead of 239 bytes. If an mp3

player is advertised as having a capacity of twenty gigabytes, the company
will put only twenty-billion bytes of memory in it, when twenty gigabytes

actually means approximately 21.475 billion bytes. In this case, the

customer has been shorted and really bought fewer than 19 GB of storage
when they were expecting a full 20 GB.

Understanding the base-ten, or decimal, system will make understanding
the base-two, or binary, system easier. Binary works in the same exact way
as decimal, except that the digits range from zero to one. Therefore, instead
of using powers of ten, binary uses powers of two. For example, the first

digit is multiplied by 2%, not 10°, the second digit is multiplied by 2!, not
10!, and so forth. From right to left, the places in the decimal system go 1,
10, 100, 1000... (that is: 10°, 10!, 102, 103...). In binary, they go 1, 2, 4, 8,
16, 32, 64... (thatis: 20, 21, 22,23 24 25 26). Here is an example of a
binary number: 1101 0010.

Converting Binary — Decimal

To convert from binary to decimal, simply add the values in binary that are
“on” (1 represents on and O represents off).

1001=8+1=9
8421
1111=8+4+2+1=15
8421

=064 + 16 + 8 + 4 = 92

1 111
128 64 32 16 8 4

Converting Decimal - Binary

To convert decimal to binary, simply figure out (from left to right) if the
binary value needs to be “on” (or a 1). If turning the value on does not make
the sum of the number exceed the number, then it should be a 1 (otherwise
itis a 0).

11 - 16 is on since it is less than 23,
421 8 is off since 16 + 8 is greater than 23

81801 - 64 is on since it is less than 101,

0
64 3216 8 4 21 32 is on since 64+32 is less than 101

Hexadecimal (also known as base 16) is a common number system used in
computer science. Since there are only ten digits (0-9), the first six letters
are used to represent the remaining six characters (a-f). Each character in
hexadecimal represents four bits (or a half of a byte). To represent a full
byte, two hexadecimal characters are used. These range from 00
(representing 0) to ff (representing 255). The chart on the following page
shows what each hexadecimal digit represents:

Decimal Hexadecimal Binary
0 0 0000 0000
1 1 0000 0001
2 2 0000 0010
3 3 0000 0011
4 4 0000 0100
5 5 0000 0101

6 0000 0110
7 0000 0111
8 0000 1000
9 0000 1001
10 0000 1010
11 0000 1011
12 0000 1100
13 0000 1101
14 0000 1110
15 0000 1111

When a hexadecimal number is larger than a nybble (or half of a byte), the
left-most hex digit is worth more, as with any other base. In the decimal
number 123, the 3 is worth 3 since it is in the ones place, but the 1 is worth
100 since it is in the hundreds place.

Converting Hexadecimal — Binary

To convert a hexadecimal number into binary, look at each nybble

individually:

d3b - d = 1101, 3 = 0011, b = 1011 - 1101 0011 1011
40f - 4 = 0100, @ = 0000, f = 1111 - 0100 0000 1111

To convert these to decimal, just follow the steps to convert binary to
decimal from earlier in this unit.

Converting Binary — Hexadecimal

To convert from binary to hexadecimal, just follow the reverse of above:

1001 1100 0001 - 1001

9, 1100

c, 9001 = 1 - 9cl

0110 0011 1110 - 0110 e - 63e

6, 0011

3, 1110

We have ten fingers, so it makes sense that our society uses base-ten. It
makes early counting simple. Since all of us have been using base-ten since
preschool, we find it easy to work with. Some have argued, however, that
base-eight or octal would be the easiest system to use, especially in
computing. Since base-ten uses numerals 0-9, base-eight uses 0—7 (there is
no 8 or 9). These numerals could be eight symbols or emojis, as long as
everyone agreed on a standard. For this example, let’s stick with 0—7. The

ones place (10°) would still be the ones place (8%), but the tens place (10%)

would be the eights place (8'). Every place after that would increase by a
power of eight instead of by a power of ten (or a power of two in the case of
binary and a power of sixteen in the case of hexadecimal).

Converting Octal — Decimal

Converting base-eight is just like converting binary, but instead of the
places doubling, they increase by a power of eight:

174 - 17 4 - 1k64 + 748 + 41 = 64 + 56 + 4 = 124
64 8 1

520 -5 2 @ - 5%64 + 2%8 + 0%1 = 320 + 16 + 0 = 336
64 8 1

Converting Decimal - Octal

To convert a decimal number to octal, divide the decimal number by 8
successively while noting the remainders. The remainders, read in reverse
order, form the octal equivalent of the decimal number. To convert 213
from decimal to octal would look like this:

Divide 213 by 8: Quotient: 26, Remainder: 5

Divide 26 (the previous quotient) by 8: Quotient: 3, Remainder: 2
Divide 3 (the previous quotient) by 8: Quotient: 0, Remainder: 3
Now, read the remainders in reverse order: 325.

So, the decimal number 213 is equivalent to the octal number 325

Converting Other Number Systems

As in binary, hexadecimal, and octal, the process of converting from base-
10 to another number system involves dividing the base-10 number by the
desired base while keeping track of the remainders. To convert from any
other system to base-10, you multiply each digit of the given number by the
corresponding power of the base and then sum up these products. For
systems with digits beyond 9, like hexadecimal, use their corresponding
numerical values (A for 10, B for 11) in calculations. This process allows
you to seamlessly translate numbers between different bases and the
familiar base-10 system.

ASCII, Unicode, and Character Encoding

ASCII, an abbreviation for American Standard Code for Information
Interchange, is the basis of character encoding in computing. Since

computers comprehend numbers at the binary level, letters and symbols
must be converted into those numerical values. This protocol facilitates the
transformation of characters into corresponding numerical codes. Initially
designed as a 7-bit encoding scheme, ASCII allowed for the representation
of 128 characters which encompasses uppercase and lowercase letters,
symbols, spaces, tabs, delete, and backspace, among others. The initial 32
characters (0-31) primarily catered to teletype machines; a technology now
deemed obsolete. ASCII eventually expanded to an 8-bit encoding,
accommodating 256 characters and introducing additional variations for
different languages and regions, representing each of these characters with
1 byte.

Unicode built upon ASCII's foundation but increased its limitations to a 16-
bit encoding scheme, which is notably more expansive than the original 7-
bit ASCII. This expanded encoding capacity allows Unicode to encompass
an astonishing 65,536 characters. This increase allowed for a myriad of
additional characters, including diverse alphabets, historical scripts,
mathematical symbols, and even the ever-popular emojis.

Boolean Logic

Boolean algebra or Boolean logic is a branch of algebra where variables
can only have two values: true or false. Introduced in the mid-1800s by
George Boole and used in a variety of applications, Boolean logic has
become prevalent in digital electronics and programming.

There are three basic operations in Boolean logic: AND, OR, and NOT, also
known as conjunction, disjunction, and negation respectively. There are
several ways to represent each of these basic operations, which are also
known as gates, including using the words AND, OR, and NOT. AND

operations can also be represented with a conjunction symbol (A), an

ampersand (&), or several other methods including, as we will see in the
programming unit, two ampersands (&&). OR operations can use the
disjunction symbol (V), a pipe (|), an addition symbol (+), or a double pipe
(ID- NOT operations can use the negation symbol (-), a tilde (~), a caret (1),
an exclamation mark (!), or a horizontal bar above other expressions. For
the examples in this unit, we will use A, V, and —.

We will also use a fourth operation, exclusive or, that is a combination of
other basic operations. Symbolized as XOR, this operation can also be

represented by a plus sign inside a circle ().

Operation Symbol
AND A
OR \%
NOT -
XOR @

AND
When an expression uses an AND operation, then both sides of the
expression must be true in order for the entire expression to evaluate to true.

The expression A A B is only true if both A and B are true. Consider the

eligibility requirements for President of the United States. Two
requirements are that you must be at least 35-years old AND you must be a
natural born citizen. If you are younger than 35, you may not serve as
president even if you are a natural born citizen. Likewise, if you are 35 or
older but are not a natural born citizen, you cannot be president. Both
conditions must be true for the expression to be true.

OR

When the OR operation is used between two expressions, then only one
thing has to be true for the entire expression to evaluate to true. If both
things are true then the expression satisfies this requirement that at least one
thing be true, so it evaluates to true. The only way an expression containing
only OR operations can evaluate to false is if all included statements are

false. Therefore, in the expression A V B, if A is true the entire expression
is true regardless of what B is. It is also true if B is true, regardless of A's

truth or falsity. Think about the requirements to see an R-rated movie: You
must be 17-years old OR be accompanied by someone who is 21-years old
or older. If you are accompanied by a 21+ year old, your age doesn't matter.
If you are 17+, it doesn't matter whether or not you are accompanied by
someone over the age of 21.

NOT
The NOT operation simply reverses the associated expression. If the
expression evaluates to true, it becomes false and if it is false, it becomes

true. —A evaluates to false if A is true and vice versa. To evaluate = (A A
B), first follow the order of operations and evaluate the parenthesis first. So
if—and only if—A and B are both false then A A B would be false. The

entire expression would then be - false, and something that is NOT false is
true.

XOR

As we will see below, in actual logic gates, an exclusive or operator is made
up of AND and OR gates. But the idea behind them is as simple as basic
logic operations. If two expressions are separated by an XOR operator then
exactly one of those things must be true. If neither or both are true then the

whole expression is false. In A @ B, either A needs to be true and B needs

to be false or B needs to be true and A needs to be false for the expression
to be true. Think about having to choose between taking the bus or driving
to school. You cannot do both and if you do neither, you will miss computer
science class! To be at school, you must choose exactly one way to get
there. If an expression contains multiple XOR operators then it will be true
when it contains an odd number of true statements. To see this in action, try
drawing the gates and filling out a truth table with three, four, five, or more
XOR gates, as described in the next section.

Logic Gates

A logic gate is a physical device that can carry out logical operations by
taking one or more Boolean values as input and producing one Boolean
value as output. When talking about computers, these two Boolean values
are 0 and 1. In electronic circuits, a 0 represents no current running through
the wire and 1 represents current running through the wire.

The physical process of creating the basic gates and the XOR gate is outside
the scope of this book, but by adding a level of abstraction—reducing
information and detail to facilitate focus on relevant concepts—these gates
can be represented with the following symbols:

s B = D e o B g

The inputs are usually represented with A, B, C, D, etc. while the final
result is represented with an R. Notice that NOT gates only take one input.
XOR gates are not basic gates. Rather, they can be created by combining
the basic gates AND, OR, and NOT. There are several ways to construct
XOR gates, one of which is pictured below. These details can be abstracted
out and the XOR symbol used instead.

A

Other fundamental gates include NAND, NOR, and XNOR. A NAND gate
is essentially a combination of an AND gate followed by a NOT gate. It
produces a true output only when both of its inputs are false, making it
effectively an inverted AND gate. A NOR gate, on the other hand,
combines an OR gate with a NOT gate and generates a true output only
when both inputs are false, operating as an inverted OR gate. The XNOR
gate, short for exclusive-NOR, produces a true output when both inputs are
the same (either both true or both false). It's often used for comparing two

binary inputs to determine equality. These gates have widespread
application in digital circuits, play a crucial role in building complex digital
systems, and are essential tools for logical analysis and circuit design. Since
these are common expressions, they have gates that represent the NOT with
a “bubble” attached to the right side of the gate.

1 >0 >

XNOR

Truth Tables

When evaluating Boolean expressions, it is helpful to write out all possible
outcomes in a table where each column represents a variable or expression
being evaluated. This truth table will show possible values for inputs and a
true or false value for the overall expression’s result.

Examples
A NOT gate and truth table using false and true and one input:

A R

A R="A

true false

false true

An AND gate and truth table using false and true with two inputs:

B
| A B R=AAB
false talse false
false true false
true false false
true true true

An XOR gate and truth table using 0’s and 1’s with two inputs:

B
b
A B R=A@GB
0 0 0
0 1 1
1 0 1
1 1 0

A more complicated circuit with three inputs and multiple gates:

B —p)—-l)o—n
c S

A B C R=—((AVB)AC)
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 0
0 1 1 0
1 1 1 0

De Morgan's Theorem

De Morgan's Theorem is a fundamental concept in Boolean algebra that
provides a powerful tool for simplifying logical expressions. It offers a way
to transform complex expressions involving logical AND, OR, and NOT
operations into equivalent expressions that may be simpler and more
manageable. The theorem is composed of two parts: De Morgan's First
Theorem and De Morgan's Second Theorem. De Morgan's First Theorem
states that the complement of a logical AND operation is equivalent to a
logical OR operation of the complements of the individual terms. Similarly,
De Morgan's Second Theorem states that the complement of a logical OR
operation is equivalent to a logical AND operation of the complements of
the individual terms. These theorems are invaluable in optimizing logical
circuits, simplifying boolean equations, and enhancing the efficiency of

digital systems design by facilitating the reduction of complex logic
expressions to their simplest form.

Suppose we have two variables, A and B, and we're dealing with the
following expressions:

Expression 1: = (A A B)

Expression 2: -A V -B

De Morgan's theorem states that the negation of a logical AND is
equivalent to the logical OR of the negations of the individual terms, and
vice versa. Applying this theorem to our expressions, we can see the
equivalence:

In Expression 1, = (A A B) means "not both A and B." According to De
Morgan's theorem, this is the same as saying "either not A or not B," which
is expressed as —A V —B, as seen in Expression 2.

Conversely, in Expression 2, =A V =B means "not A or not B," which can

be interpreted as "not both A and B." This aligns with Expression 1, - (A A
B).

Here's the truth table for the expressions = (A A B) and —A V -B, along
with their equivalence to illustrate De Morgan's theorem:

AB/AAB|"(AAB)|"A|"B[(—-AV B

In this truth table:

e A and B represent the two variables.

e A A B represents the logical AND operation between A and B.
e - (A A B) is the negation of the logical AND.

e -A and —B are the individual negations of A and B.

e A V -B represents the logical OR of —=A and -B.

As you can see, the columns for = (A A B) and —A V -B are identical. This
confirms the equivalence between the two expressions, which follows De
Morgan's theorem. The theorem states that - (A A B) is equivalent to -A V

—B and vice versa. The truth table demonstrates this equivalence for all
possible combinations of A and B values.

Summary

As we've explored in this unit, a computer is a machine, and at its most
basic level, it is hardware—a physical thing that you can touch. On its own,
hardware isn't useful as much more than a paperweight, but once software
—the operating system, programs, and is added, it's a different story.
Software interacts with hardware as a series of ones and zeros—switches
being turned on and off—but these binary numerals can encode text,
pictures, sound, video, and the complicated programs that make computers
useful to human beings. Binary and decimal are not the only number
systems used in computer science, and other number systems, like
hexadecimal and octal can be even easier to work with than decimal.
Boolean algebra allows us to abstractly represent the logic of computers and
digital electronics. In the following unit, we'll have the chance to use
computers for creativity as we turn to one of the most popular and useful
applications ever created: Adobe Photoshop.

Important Vocabulary

Abstraction — reducing information and detail to facilitate focus on
relevant concepts

Application — almost everything on the computer except saved files
and the operating system, including word processors, photo editing
software, web browsers, games, and music programs

ASCII — American Standard Code for Information Interchange
Binary — base-two, numeral system that uses zero and one

BIOS - basic input/output system

Bit — each numeral in the binary system, zero or one

Boolean Logic — a branch of algebra where variables can only have
two values: true or false

Byte — eight bits

Central Processing Unit (CPU) — carries out every command or
process on the computer and can be thought of as the brain of the
computer

Cloud Computing — a type of distributed computing that involves
using a network of remote servers to store, manage, and process data

Computer — an electronic device that processes data according to a
set of instructions or commands, known as a program

Core — the central processing unit (CPU), the main memory, the
motherboard, and the power supply

Decimal — base-ten, numeral system that uses zero to nine

Digit — each number in the decimal system, zero to nine
Distributed Computing — a model that involves using multiple
devices to run a program

Graphics Processing Unit (GPU) — a processor specifically
designed to manage a large amount of data simultaneously
Hardware — the physical parts of the computer, including devices
such as the monitor, keyboard, speakers, wires, chips, cables, plugs,
disks, printers, and mice

Hexadecimal — base 16, number system that uses 0-9 and a—f
Input and output (I/0O) devices — how the user interacts with the
computer

Main memory — memory that temporarily stores information while
the CPU is actively processing it, also called RAM

Moore's Law — the trend of exponentially increasing transistor
density, doubling approximately every two years

Motherboard (logic board) — the standardized printed circuit board
that connects the CPU, main memory, and peripherals

Nonvolatile — does not need a power supply. Information is
physically written to the device

Nybble (or Nibble) — half byte, four bits

Operating System — software that provides common services to
other programs, manages hardware and software resources, and
provides the visual representation of the computer

Parallel Computing — breaks a program into multiple smaller
sequential computing operations, some of which are performed

simultaneously
Peripherals — the input and output (I/O) devices and the secondary
memory

POST - power-on self-test
Power Supply — converts AC electricity to the lower voltage DC
electricity that is needed to power the computer

Random Access Memory (RAM) — memory that can be retrieved
from or written to anywhere without having to go through all the
previous memory

Secondary Memory — used for long term storage and is physically
changed when files are saved or deleted

Sequential Computing — a model in which operations are performed
in order, one at a time

Silicon — a semiconductor material, derived from silica found in
sand, that possesses unique electrical properties

Sequential memory — memory used to store back-up data on a tape
Software — includes the operating system and the applications. It is
usually stored on a computer's hard drive and cannot physically be
touched. At the lowest level, it is a series of ones and zeros
Transistors — microscopic electronic devices that act as switches,
capable of controlling the flow of electrical current

Truth Table — a table made up of rows and columns of Boolean
variables and resulting Boolean expressions

UEFI — Unified Extensible Firmware Interface, a more advanced and
modern interface for firmware that largely replaced BIOS

Unicode — a 16-bit encoding scheme that built upon ASCII

Volatile — needs a power supply. Turning off the power deletes
information

2 — Pixels and Images

“Creativity is contagious. Pass it on.” - Albert Einstein

Introduction

The ability for anyone with a personal computer to easily and convincingly
manipulate images may be one of the most significant changes of the last
several decades, and the development of the graphical user interface was a
huge step forward for making computers accessible to non-specialists. In
this unit, we'll begin by introducing a couple of the ways in which images
can be represented digitally before moving on to one of the most popular
programs for manipulating these images, Adobe Photoshop. The ability of
computers to display, create, transmit, and alter images has transformed our
culture, not to mention the work lives of countless professionals. Programs
like Adobe Photoshop have been central to this transformation. By the end
of this unit, you should have a basic grasp of what digital images are and
how you can create and change them.

Digital Images

Since the invention of the graphical user interface (GUI) this method of
using visual icons to interact with an operating system has replaced most
text-based interfaces, such as command-line interfaces, which rely purely
on textual input from the user. Storing images and graphics as digital data
has thus become paramount. GUIs have paved the way for the mice and
touch-screen interfaces that have helped make computers more intuitive and
user friendly. Graphics range from simple icons and text to large
photographs and digital art. Adobe Photoshop and other software for
creating and editing images have contributed to these graphical advances.

A pixel, short for picture element, is the basic unit of color on a computer
display. The size of pixels on a screen varies depending on the display's
resolution. If a display has more pixels then these pixels will be smaller and
the image quality will be better. Scanning a picture or taking a digital photo
turns an image into millions of individual pixels. In order to be understood

by computers, these pixels are represented as binary numbers. Large pixels
can make an image look blocky, a phenomenon known as pixelation.
Contrary to what you may have seen in movies, there is no way to
“enhance” these images since they do not contain the binary information for
the missing pixels. When Al software, provided by Google and other
companies, produces an enhanced digital zoom effect, it is doing so by
combining digital information from multiple images taken at the same time.

All computers and digital televisions use these millions of pixels to produce
images. Images created by using pixels are considered to be raster images.
Sometimes, however, greater precision is needed, so vector images use
mathematical formulas to represent shapes. While this unit will deal with
raster images, you should be familiar with the basics of vector graphics as
well.

In a raster, a grid of pixels represents image data. Photoshop and many
other photo editing applications deal mainly with such images. By
modifying individual pixels, these applications can create effects, correct
color, touch up photos, and improve images in a seemingly endless amount
of ways. Photoshop can also deal with vector graphics, in which images are
made from a combination of points connected by lines and curves. Adobe
[lustrator was designed to create and edit vector images. In Photoshop two
main uses of vector graphics are seen in the pen tool and in text. Vector
graphics' advantage lies in their ability to scale. No matter how large an
image becomes, a vector file can simply recalculate the shapes. For this
reason, graphic designers work primarily in vector. They might need to
create an image that will be used as a tiny icon or be scaled up and placed
on a giant billboard. When raster images are scaled up, each pixel becomes
larger, potentially leading to unacceptable levels of pixelation.

Some of the most common file types associated with raster graphics include
the Joint Photographic Experts Group (.jpg/.jpeg), Portable Network
Graphics (.png), Bitmap (.bmp), Graphics Interchange Format (.gif), Tag
Image File Format (.tif/.tiff), and Photoshop Document (.psd). Popular
vector files include Adobe Illustrator (.ai), Scalable Vector Graphics (.svg),
Portable Document Format (.pdf), and Encapsulated PostScript (.eps).
Although PDF and ESP files are vector formats, they can also contain raster
images.

The simplest raster images are black and white. Each pixel in a black-and-
white image takes up only a single bit since only two distinct values (black
or white) are possible. A “0” could—and usually does—stand for black
while “1” could represent white. You can think of this as a light being
turned off (0) or on (1). Black-and-white images are therefore a fraction of
the size of other formats and are used mainly for small logos or icons. Text
could be stored as black-and-white raster images, but it would suffer from
pixelation when the text is scaled up. For this reason, fonts are stored as
vector files.

While black-and-white images have the advantage of size, they are limited
to simple applications, like images of text or basic icons. In order to make
shades of gray, different amounts of black and white can be mixed together.

Using 8 bits (1 byte) to represent shades of gray yields 28 or 256 different
possibilities. Even though these images only use one byte per pixel, they
still take up eight times as many bits as black-and-white images.

Color images usually use even more bits per pixel. Color pixels can take up
one byte, for a total of 256 colors (more on this in the next unit), but the
human eye can distinguish over 10 million colors, so realistic images need
to include at least that many possibilities. It is also important to know an
image's main medium. Colors for displaying images on a screen differ
slightly from those for printed images.

There are two main color models to consider: CMYK and RGB. CMYK is
used for printing and stands for cyan, magenta, yellow, and black (key),
where the number associated with each letter is the percentage of each color
used. This is the subtractive color model, meaning white is the color of the
paper and black is the combination of all the colors. Most printers have a
separate black ink cartridge since it is more cost effective than combining
the other three colors and then needing to replace these cartridges more
often.

RGB (which stands for red, green, and blue) refers to the color of light
used in most monitors and screens. RGB is an additive color model. This
means that no light is black and the combination of all light is white.
Instead of using a percentage from 0-100, RGB (the 8-bit version) uses one

byte (28 or 0-255) to represent each color. Since there are three colors, each

RGB value (1 pixel) is 3 bytes of data (24 bits), much larger than the single
bit each pixel in a black and white image uses. If the RGB value of a color
is (255, 0, 0), all the red light is on and no green or blue light is on, so it
would be a red pixel. Likewise, (0, 0, 255) would be blue. Using 24 bits to

represent color gives 224 possible combinations, that is 16,777,216 colors.

RGB color is often represented using decimal or hexadecimal. The decimal
representation, which is seen above, is often placed in parentheses and
sometimes preceded by the letters RGB: RGB (255, 255, 255). Converting
these three decimal values to hexadecimal is very common, especially in
web design. To represent 0 — 255 in hexadecimal, the values 00 (0) — ff
(255) are used. These 6-digit hex codes are usually preceded by the pound
(#) sign: #{fffff. At the lowest level, of course, the computer will read either
of these values as the 24-bit binary code: 1111 1111 1111 1111 1111 1111.

Subtractive Color No color = White
CMYK - Pigment

K = Key (Black) YE"OW

Value (0%-100%)

&-Bit Color G
i 2% = ~16.8 Million
(each color)

3 colors = 24 bits e possible colors

Decimal (0-255)
Hex (00-ff)

White:
(255,255,255) = ff ff ff

Blue

i

Addative Color ~ #0000T
RGB - Light No color = Black

With over sixteen million different colors, RGB has many similar shades.
So if a pixel has high red values, but still has low amounts of green or blue,
it would still be a shade of red, like #d2150b or RGB (150, 50, 50).
Likewise, shades of yellow could be made with higher amounts of red and
green, like #999900 or RGB (230, 240, 42). Tertiary colors, like orange, can
be created by having high values of one color and somewhere around 50%

of another color. Orange is similar to yellow, but with less green light. Two
shades of orange could be represented as #{f8000 or RGB (200,100,20).
You can use the color picker tools built in to all the popular photo editors or
available online to explore other colors. These tools will often display RGB
and hex values as well. Some will display the closest corresponding CMYK
color along with other color models such as HSB (hue, saturation,
brightness) or Lab color, which fall outside the scope of this book.

Gray

As we have seen, equal amounts of red, green, and blue light create the
illusion of white light, and equal amounts of no light create the color black.
Since shades of gray come between black and white, it makes sense that
approximately equal amounts of red, green, and blue light make gray. RGB
(33, 33, 33) or #d2d2d2 would both be gray. The first is a dark gray, since it
is closer to black (RGB (0, 0, 0)), and the second a lighter gray, since it
closer to white (#{fffff).

Motion

Computers display more than just static images. There is movement on the
screen, animations, and more. These effects are nothing more than pixels
changing at a rapid rate. Computer screens modulate light by changing each
one of millions of pixels many times per second. A display’s refresh rate,
measured in Hertz or cycles per second, determines how many times each
pixel changes each second. 60 Hz, 75 Hz, and 144 Hz are common refresh
rates, and higher end displays, such as those made for professional gamers,
can reach rates of 240 Hz to 300 Hz. Film and TV most often use 24 Hz and
29.97 Hz, respectively. When such content is displayed on a 60 Hz monitor,
for example, frames will need to be repeated or up-conversion applied by
interpolating synthesized frames. This effect can cause “motion
smoothing,” which looks great for scrolling but is less than ideal for action
movies or sports. Even good graphics cards cannot change millions of
individual pixels simultaneously. Rather, each pixel is changed individually,
usually from left to right and top to bottom. This happens so quickly that
our eyes cannot distinguish it.

Common Sizes

Monitors and televisions come in a variety of standard sizes with set aspect
ratios and numbers of rows and columns of pixels. HD and 4K refer to well-
known standards. When someone says, “HD”, they most likely mean Full
High Definition or a width of 1,920 pixels by a height of 1,080 pixels
(1920x1080). 4K usually refers to Ultra High Definition, which has four
times the resolution of HD: 3,840 pixels wide by 2,160 pixels tall
(3840x2160). HD adds up to 2,073,600 pixels while 4K displays four times
as many, 8,294,400 total pixels.

Summary

In this unit, we learned about two of the most important ways to store and
display graphics digitally, rasters and vectors. These graphic formats are
used to encode everything from the typefaces used in this book to the
images on your HDTV. We've also had a chance to start working with a
program that is indispensable to many creative people. Photographers,
graphic designers, magazine editors, and many, many other professionals
use Photoshop every day in their careers. By mastering the tasks introduced
above, you'll be well on your way to acquiring a set of skills with virtually
unlimited potential. All these images—along with video, audio, and other
information—can use massive amounts of data storage. In order to store
and transmit all this data efficiently, compression is necessary. In unit three,
we'll turn to this essential aspect of computing.

Important Vocabulary

Additive Color — a color model where no light is black and the
combination of all light is white, like RGB

CMYK - color model used for printing. Stands for cyan, magenta,
yellow, and black (key), where the number associated with each
letter is the percentage of each color used Graphical User Interface
(GUI) - an interface that uses images to represent a system's folders
and files Pixel — short for picture element. The basic unit of color on
a computer display Pixelation — when individual pixels are too large

and the image begins to look blocky Raster — an image format that
represents data in a grid of dots or pixels RGB — color model used
for most monitors or screens. Stands for red, green, and blue,
referring to the color of light Subtractive Color — a color model
where no light is white and the combination of all light is black, like
CMYK

Text-Based Interface — an interface purely made up of text input
from the user Vector — an image format that represents data through
a combination of points connected by lines and curves

2.5 — Adobe Photoshop

“You can hardly turn around and not see something that was done in
Photoshop.” - John Knoll

Introduction

First published in 1990, Adobe Photoshop is considered to be the industry
standard graphics editor and is the current market leader for commercial
bitmap and image manipulation. Along with Adobe Acrobat, it is one of the
most well-known pieces of software produced by Adobe Systems. It is used
in most jobs related to the use of visual elements and is usually simply
referred to as “Photoshop.” Indeed, this program is so ubiquitous that its
name is oftentimes used as verb, so you can “photoshop” a picture just as
you would xerox a document or google who played Willow on Buffy the
Vampire Slayer (although Adobe Systems would prefer that you didn't).

Y}
- - T EEEH s e

o

L=

J*
fu]
<
L.
E
fi o
A
LR
-
£,
T
B
(=
o
=5

BT s

With Photoshop, a user can create and modify digital images or—rather—
images in electronic form. Photoshop allows users to create original
artwork, modify or combine existing pictures, add text or special effects to a

webpage, and restore or touch up old photographs, among other tasks. The
images to be modified can come from many places, including the web,
digital cameras, or scanners. Once created or imported, the artwork can be
modified. Users can rotate or resize these images. They can add text or
change colors, and they can combine these images with others.

When you are ready to save an image, there are many possible file types to
choose from. The most common are .psd, .png, .jpg, and .gif. Photoshop's
native file format is .psd. Most other applications cannot read this format
but can read the other three file types, which are also significantly smaller
in size than the Photoshop format.

When modifying images in Photoshop, it's always a good idea to keep a
copy of the original image in case you need to reuse the image or correct a
mistake. To make sure the original image remains unaltered, use the Save
as... command as soon as the image has been opened then choose a different
name for the image that is going to be modified. This will create a copy of
the original that will remain untouched and can be opened if there is ever a
need to start from scratch.

g ppe— : i e e e e DT L AR
-, e TooL Or1ions BAR
-,::_ kf TDDL BAR

18

-
o,
s
I
-+,
o
v |
]
.. ¥
.:5'.
T
W
=

PALETTES

o Status Bar

The workspace is the area between the tool option bar and the status bar.
The workspace includes all the palettes, the toolbar, and the open document
windows.

The title bar contains the name of the program as well as the close,
minimize, and maximize buttons.

The tool options bar is located under the menu bar and shows more options
for the selected tool from the toolbox. When a new tool is selected, the tool
option bar will change to accommodate the selected tools. This option bar
contains very useful additions to the selected tool that vary from tool to
tool.

The palettes are small windows which start stacked up on the right side of
the workspace. These palettes may be moved anywhere in the workspace
and reordered as desired. The most useful palettes are the history palette
and the layer palette, which show the last twenty actions performed and
information about each layer in the image respectively.

Located at the bottom of the screen, the status bar displays information
about the file size and the active tool.

A layer is a part of the image that can be modified independently. They
work much like those anatomy books that use clear pages to show the
body's different systems, where each page can be folded back to show what
the layer underneath looks like. Photoshop supports up to 8000 layers.
Since the images that are blocked by other layers are still there, layers can
contribute to very large file sizes. Images can be flattened to decrease file
sizes. Flattening an image discards all image information that cannot be
seen or is blocked. Other than .psd, most formats do not support layers, so
saving in these formats will automatically flatten the image.

The layer palette shows the active layer by highlighting it. Multiple layers
can be selected by holding down shift or control/command. To make layers
easier to see, individual layers can be hidden. To do this, click the eye icon
to the left of the layer. Clicking the empty box where the eye used to be will
make the layer visible again. Changing the layer’s opacity to 0% from the
top of the layer palette will achieve the same effect.

The toolbar contains frequently used Photoshop commands. Each tool is
marked by a graphical representation of what the tool does. When the user
moves the pointer over a tool, a screen tip will appear stating the name of
the tool and the keyboard shortcut in parentheses. Some tools have other
tools hidden behind them, denoted by a small triangle at the bottom right
hand corner of the tool. To see the hidden tools, hold down the pointer on
the tool or right click.

When editing or combining images, you may need to take one piece of the

image and either move or edit it. Photoshop offers many ways to select
parts of images, including the marquee tool, the magic wand, and three
types of lasso tools.

-

3 r-

P

e

W

Move TooL
MARGQUEE TooLs
Lasso TooLs
Magic Wanp TooL

SET BACKGROUND/
ForReGrROUND COLORS

The marquee tool , which has
rectangular and elliptical
options, should be used when
the object is either a rectangular
or round shape.

128 Cror TooL

.

i HeaLing BrusH/PaTcH TooL

POl Paint BrusH/PENCIL TooLs The magic wand can be used
g CLONE TooL when the background is

5 significantly different from the
L3 ErASER TooLs . . .

W PAINT BUCKET/GRADIENT TooLs lmage. This tool automatlcally
(W BLUR/SHARPEN/SMUDGE detects changes in color, so it is
Pl Dooce/Burn/Sronce TooLs useful when an object is on a

el PEN Toot solid background. For other

il Type TooLs .

N irregular shapes, the best way to
= Hano Tool select them is to use the lasso
3 tools.

o8 Zoom TooL

The three lasso tools are
regular, polygonal, and
magnetic. The regular lasso
tool should be used for tracing
the entire image by hand. When
an object's edges are all
straight, use the polygonal

lasso. Like the magic wand tool, the magnetic lasso automatically detects
changes in color. To use this tool, trace the object roughly, and the lasso will
set anchors along the edges of the image.

In the tool option
bar for each of

these tools, there o) - & Lasso Tool L
y Polygonal Lasso Tool L

are three useful

) ++
options for / 23 Magnetic Lasso Tool L
making 1
selections. The)
new selection Vi >

tool is used when
starting from
scratch. The add to selection tool is used when a part is missing from the
original selection or when another object needs to be added. The subtract
from selection tool is used to remove part of the selection from the object.

e e

:'."F‘_;'j i [B sl Feathar: O pu Anti-aliag Select and Magk_..

There are also useful options in the select menu under the menu bar: all,
deselect, and inverse. All selects the whole layer, deselect gets rid of any
selections on the page, and inverse switches what is selected and unselected
so that anything selected becomes unselected and anything unselected
becomes selected. The modify option under this menu contains other useful
options, which allow the selection to be expanded or contracted.

Now that an object has been selected, use the move tool to drag the
selection from one image to another or to move it within the same image. If
the move tool is not selected, then dragging the selection will only move the
marquee or the dotted line, not the image selection itself. Right clicking
inside the selection also allows for a new layer to be created from the
selection, either by copying or cutting the selection.

Another way to select part of an image is to erase everything else. If an
error is made, however, it can be hard to restore the deleted portion. The
solution to this problem is masks. Masks allow you to crop out parts of a
picture without modifying the pixels, so if a mistake is made, you can easily

fix it by changing the mask,
not the picture itself.

If a layer is locked as a
background, double the
click the layer in the layer
palette, name it, and click ok
to create a new layer. To
begin masking, click the
mask button that looks like a
square with a circle cut out

Select Filter 3D View Wind

All

All Layers
Deselect Layers
Find Layers
Isolate Layers

Color Range...
Focus Area...
Subject

Select and Mask...

at the bottom of the layer
palette. You can also go to
the layer menu and select
layer mask and reveal all.
Once a mask is on the layer,
it can be effectively erased
by painting the mask black.

Edit in Quick Mask Mode

Load Selection...

Alternately, you can achieve
the opposite effect by
painting the mask white.

It is important to set the
paint brush being used to
100% hardness in order to create a perfect edge. Otherwise, the picture will
appear to have a glowing edge. While using masks, use the zoom tool to get
closer to the pixel level to get a crisp edge. Holding down shift and clicking
with the paint brush will cause the dots to connect in a straight line, making
the edges much crisper. See the list of useful shortcuts at the end of this
unit.

Once an image has been masked, it is a good idea to duplicate this layer and
lock the original as a master copy. If mistakes are made that cannot be
reversed then a new duplicate can be made from the master copy. One way
to create a duplicate of the masked layer is to hold down the ctrl key and
click on the thumbnail of the mask. This selects the white area of the mask.
Next make sure the thumbnail of the image is selected and select Layer...
New... Layer via Copy from the menu bar. Double click the name of the

original copy,
rename it
“master,”
then click the
padlock icon
at the top of
the layer
palette. Now
that the
master copy
is locked,
turn off the
layer’s
visibility and
drag it to the
bottom of the
layer palette.

Transformati
ons are a way
to scale,
skew, distort,
warp, flip,
rotate, and
shift the
perspective
on a layer.
The most

Edit Image Layar
Redo Move

Step Bacoward

Copy
Paste

Fasle Special

Search
Check Spelling...

Find and Replace Text...

Fill...
Stroke...

Ccntent-Aware Scale
Puppet Warp
Perspective Warp
Free Transform
Transform

Define Brush Praset...
Define Patlern...

Purge

Adobe PDF Presels...
Presets

Remote Connections...

Cuoler Setllings...
Assign Profile...
Caonvert to Profile...

Keyhoard Sharteuts. ..
Menus...
Toolbar...

Start Dictatior...

Fitar 3D View Window Help

Scale

Rotate

Skew

Distort

Perspective

Warp

Rotate 130°

Rotate 90° Clockwise

Rolale 90° Counter Clockwise

Flip Herizontal
Flip Vertical

useful of these is scale. Scaling up usually does not work well since the
layer can become pixelated. To scale down a layer select Edit...
Transform... Scale, or use the keyboard shortcut for free transform:
ctrl/command + t. To ensure that the dimensions of the layer do not get
distorted, hold down shift and grab the layer by a corner. When the
transformation is complete, press enter to accept the changes or esc to
cancel the transformation.

Filters are a way to edit an image's pixels to create a desired look or feel.
There are several filters built into Photoshop. A downside of filters is that

Layers Channels Paths

O Kind vvmeTORN®

Normal v Opacity: 100% v

Lock: J 4 D o Fill: 100% | v

is

to undo or step backwards. Smart filters store the original layer's
information allowing these filters to be easily removed or changed. If a
smart filter was not applied then there will be no way to recover the original
image once the file has been saved and closed. Categories of filters include
artistic filters, stylize filters, render filters, noise filters, blur filters, and
sketch filters. All the filters can be seen by selecting the filter menu in the
menu bar. Each category of filter includes many actual filters, such as
colored pencil, smudge stick, watercolor, pinch, ripple, wave, gaussian
blur, tiles, clouds, and glowing edges. Most of these filters have sub-

menus as well that are indicated with an ellipsis. To see most categories at
the same time, select Filter Gallery....

La

Layer Style

arcke

Ll Strmcture

Dlanding Datiane Siee: & |
Canga

Fewel B Frasass Porciticer: bpele o

e Hicnd Mode: | Hormsal . Muw Slyhe. .
Cacity: - i} 5%
Tedtue T B Predew

B Stroks
Fill Typs: Color
mowt Shakw

Imar Gl Ea

Sutin

Cobor Crverlmy

Gradlent Cverlay

Fatie= Draeriey maka Datault Ambit to Detault
Outer Gaw

[g Shecow

fects to a layer. Unlike filters, layer styles can be turned on or off and
changed as needed, even if the file has been saved and closed. Most of the
options in layer styles affect the edge of the layer, so if a layer takes up the
whole canvas, then layer styles might not be the best choice. A few useful
styles are the drop shadow, outer glow, bevel and emboss, and stroke. To
bring up the layer styles window, double click to the right of the layer name
on the layer palette or select Layer... Layer Styles from the menu bar. The
check boxes can turn the styles on and off, and more options can be seen by
clicking on the name of the style.

A gradient is a fill in which two or more colors blend together. The default
gradient colors are the current foreground and background, but infinite
possibilities can be selected by clicking on the preview of the gradient in
the tool option bar. Gradients can also use transparency to achieve certain
effects. In addition to colors, there are also five different types of gradients:
linear, radial, angle, reflected, and diamond.

u [@ ™ F @ Meds Mermal -~ Opacity: 1008 | - Revarse [Dither & Tranesarsncy

The type tool allows users to add text to Photoshop images, as in magazine
and newspaper advertisements, which use to text to help get a message
across to an audience. In such advertisements, many different fonts and
colors can be used to emphasize certain parts of the overall image. In most
cases, text or type should be used sparingly in Photoshop, as the overall file
should mostly be the image itself. Text can be used to reinforce or
complement an existing image. The text should be direct and large enough
to be easily seen without being so large as to detract from the image itself.

There are three
main font

families: serif,
sans serif, and

Character Paragraph

symbols. A serif BMATIal v Bold

is a tail, or stroke, A

at the end of a TT 7 pt v tA 9pt
haract d th

MNP V/A vetics v I o

translates to N

“without.” In IT 100% 41'; 100%

other words, serif ﬁ% 0 pt Color:

fonts contain a

tail or stroke on
most characters
while sans serif

T ITTTTr T T. T

fonts do not. i oot Aaa Tl
Symbols are

unique characters English: USA v 43 Sharp
such as $, #, &,

@, and *.

When the type tool is used, it automatically adds a new layer to the file.
Simply click and type to add text. To change the size, color, or font of the
text, highlight the text and change these things in the tool option bar at the
top of the window. Selecting all the text in a layer can be done by double
clicking on the thumbnail of the text layer in the layer palette. For more
options to adjust the font, such as tracking or kerning, use the character
palette, which looks like an A with a vertical bar to the right when

collapsed. Many characteristics of fonts can be changed. One aspect that
can be modified is the type spacing—the amount of space between
characters. The type spacing can be set to monotype or proportional
spacing. Monotype makes every character take up the same amount of
space (i takes up the same amount of space as w). With proportional
spacing, each letter takes up a different amount of space depending on the
letter (this book uses proportional spacing!).

Summary

In this sub-unit, we’ve had a chance to start working with a program that is
indispensable to many creative people. Photographers, graphic designers,
magazine editors, and many, many other professionals use Photoshop every
day in their careers. By mastering the tasks introduced above, you'll be well
on your way to acquiring a set of skills with virtually unlimited potential.

Shortcuts

Ctrl + N: New document

Ctrl + O: Open document

Ctrl + S: Save

Ctrl + A: Select All

Ctrl + D: Deselect

Ctrl + Z: Undo

Ctrl + Alt + Z: Step Backwards (Undo more than 1 step)
Ctrl + Shift + Z: Step Forward (Redo more than one step)
Alt + Mouse Scroll: Zoom in/out

Space Bar: Hand tool (move around zoomed picture)
V: Move tool

B: Brush tool

G: Paint Bucket/Gradient Tool

E: Eraser

T: Type Tool

M: Marquee tools (rectangular, elliptical)

L: Lasso tools (free lasso, polygonal, magnetic)

W: Magic wand tool

D: Set foreground/background to black/white

X: Flip foreground and background color

[: Make brush one size smaller

] : Make brush one size larger

Shift + click: Paint/draw straight lines

Ctrl + J: New layer via copy
Ctrl + Click: Select contents of the layer
(on layer thumbnail) (white part of masks)

3 - Compressing Data

“No physical quantity can continue to change exponentially forever. Your
job is delaying forever.” - Gordon Moore

Introduction

Today's world is filled with endless audio, images, videos, apps, and more.
We're saving, sending, and downloading more data than ever before. Hard
drive sizes may be increasing, but uncompressed files will still fill them up
quickly. For example, an uncompressed, ninety-minute, HD (1080p) movie
takes up approximately one terabyte of hard drive space. A common
compression format for video called H.264 allows the same movie to be
stored using only 65 gigabytes, fifteen times smaller than the uncompressed
version. By using a video space calculator, it is easy to see how different
formats (or numbers of frames per second) can result in dramatically
different file sizes.

And that's just referring to space on a personal hard drive. Today, most of
this digital information is sent over the Internet (which we will return to in
unit six). The larger the file size, the longer it takes to download. Or even
worse, streaming movies and TV shows may suffer from poor image quality
or buffering! Given the amount of data sent over the Internet every second,
it is important to keep file sizes small without compromising the quality of
the material.

The choice of how to compress data will be determined by the trade-off
between size and quality. If you aren't willing to sacrifice any quality then
size of the compressed file will not be much smaller than the original. But if
you just want a song to sound good on a personal speaker then some loss of
quality is acceptable. Enough data can be removed from an mp3 to
significantly reduce the file size without detracting from the listening
experience.

In some cases, when data storage and bandwidth are plentiful, there is no
need to shrink data, and files can be left uncompressed. That is, all the
information from the original file will be kept in the same format without
changing it a single—wait for it—bit. Anytime an analog signal is

converted into digital some data is, by definition, lost, so when we talk
about uncompressed data, we're referring to saving all the digital data that
was captured by analog-to-digital audio converters or digital cameras.

In other cases, when smaller size is more important than perfect fidelity, it
may be okay to lose some data. To achieve this smaller size, a codec, or a
computer program that encodes or decodes is used. When data is lost during
this process, it is known as lossy compression. Ideally, the human eye or ear
will not be able to detect this loss of data. An entire branch of psychology—
psychophysics—deals with this this issue. A sub-branch called
psychoacoustics focuses specifically on sound. These sciences study the
relationship between stimulation and sensation and are essential for lossy
compression techniques. To give an example, the human eye cannot see the
difference between very similar shades of green, so when compressing an
image, the computer may look at colors that are very similar and change
them all to the same color. When dealing with millions of colors, this
simplification could greatly reduce the file size, allowing it to load faster on
websites or to be sent faster through email. For an audio file, this might
mean a reduction in the sample rate (the number of values taken per second
when converting an analog signal to a digital one) or bit rate (the number of
total bits per second of audio). An audio file's sample rate could be reduced
from 96 kHz to 44.1 kHz without the human ear (or really the human brain)
being able to notice enough difference to justify the much larger file size.
We'll return to audio compression in a moment.

In situations where a decompressed file needs to maintain all the original
information it had before it was compressed then it is important not to lose
any bits. When compressing text files or emails, for example, it is necessary
to maintain all the original information, otherwise certain letters or words
might be missing. This kind of compression is known as lossless
compression, as it does not lose any data during compression. For some
people who work with audio or video, lossless compression is essential.
These professionals may need all the detailed information from the original
file when mixing tracks or making precise changes to images. When
working with most types of data, there are many options for both lossless
and lossy compression.

On its own, data itself may not be useful. Additional information about the
data is needed. This “data about the data” is known as metadata. Even

though the Greek prefix meta- means “after,” it usually comes at the very
beginning of the file. Most file types require metadata and have a strict set
of rules about where it is located and how long it needs to be. Metadata may
include title, author, keywords, date created, location where it was created,
file size, height, width, and so on. Examples of what this metadata could
look like will be discussed later in this unit.

Compressing Text

Given the rapidly falling costs of storage and bandwidth, large file sizes
might not seem like a big deal, but as we will see in unit six, smaller file
sizes are crucial when sending information thousands of miles over the
Internet. Images, audio files, and videos are much larger than text files,
generally speaking, but with the sheer number of emails and text messages
sent every day, text compression is just as important. When compressing
text, however, it is critical that no data is lost. Losing ten percent of an
email might make it unreadable, so text compression will almost always be
lossless.

As you'll recall from unit one, ASCII is a standard for encoding text in
binary. In ASCII, each character is represented by eight bits (one byte). To
figure out where any given character begins, just find bits that fall at an
index that is divisible by eight. Since every character must be a block of
eight bits, it is easy to locate one in the middle of a file. Fixed-length code
contains blocks of code that are always the same size. One issue with this
approach is wasted bits. For example, in ASCII, the letter “A” is 100 0001,
only seven bits. If the fixed length is 32 bits then all proceeding bits would
need to be 0. The character “A” would then be 0000 0000 0000 0000 0000
0000 0100 0001.

An alternative to all these leading zeros is variable-length code, where
each representation can be a different length. An early example of variable-
length code is Morse Code. Samuel Morse, one of the inventors of the
telegraph, realized that some letters, like “e” and “t”, were more common
than others, such as “j” or “z”. For this reason, Morse Code represents “e”
with a dot and “t” with a dash, while “j” and “z” are “dot-dash-dash-dash”

and “dash-dash-dot-dot,” respectively. Morse and others created this system

in the 1830s, long before the invention of the digital computer, and
telegraph operators could distinguish between letters by pausing between
each one.

Unlike nineteenth-century telegraph operators, modern computers do not
pause between commands. Instead, they use a specific type of variable-
length code called prefix-free code (sometimes called prefix code). As in
Morse Code, prefix-free code allows some characters' codes to be shorter
than others. This can be seen in Huffman trees (more in a moment), where
more common characters have shorter binary codes than infrequent ones.
Prefix-free code works by ensuring that the beginning of each character
does not match any other character. To see how this works, let's consider a
simplified alphabet with only three letters (A, B, and C). In this example, if
“A” starts with 0 and “B” with 1 then “C” could not start with 0 or 1 since
those codes already stand for “A” and “B”. Instead, “A” could be 0, “B”
could be 10, and “C” could be 11.

Since characters are not evenly distributed in English or other languages,
this creates the possibility of substantial data savings. It is more efficient to
use a few bits for commonly used characters even if that means that less
common characters need a dozen or more bits. For example, the letter “e”
(which is used 13% of the time) shows up approximately 21,000 times in
this book. The letter “j” (used less than .2%) only occurs about 250 times.
So if it takes five bits to represent “e”, that's 105,000 (5 x 21,000) bits total.
If “j” needs 15 bits (to avoid repeating any prefixes), that's 3,750 (15 x 250)
bits for a total of 108,750 (105,000 + 3,750). If we stuck with 8-bit ASCII
values then “e” would take up 168,000 (8 x 21,000) bits and “j” would use
2,000 (8 x 250) bits for a total of 170,000 (168,000 + 2,000) bits. In this
example, the fixed-length code is 56% larger than the variable-length
option!

Prefix-free code is not just for text. It can be used whenever frequencies or
patterns in code, known as redundancy, can be found. Finding redundancy
—whether frequent colors in images, repeated sounds in audio files, or
patterns of bits in applications—is the key to lossless compression.

In the early 1950s, an MIT doctoral student named David Huffman
discovered the most efficient way to generate prefix-free code. His method
uses binary trees (a tree that can have, at most, two nodes or “branches™)

sorted by frequency. Returning to the example above, this method does not
assume the letter “e” to be most frequent. Instead, the code first scans all
characters in the file and creates a tree starting with the least used characters
at the bottom and working up to the most used at the top. Since the resulting
tree has the most frequent characters on top, the “path” down the tree to get
to them is shortest. With only two options at each node, the path taken to
reach any character can be represented with a zero or one, ensuring that all
characters will be prefix free. The result of this process is known as a
Huffman tree.

The diagram below shows a Huffman tree created from the first paragraph
of this book's foreword by CloudPainter's Pindar Van Arman (ignoring
case).

299

F LN
128 | 171
L 1 i
&80 B8 | 78 %3
— i | ¥ 4 _F 1 L. _—
T | HE | SPACE | 48
| 28 KX 35 — | — | %
R Y A
H 14 X [o o v ~ [s]1w] [o]2] B
14 16 18 ! - 21 24
oy BV | L I , B R T
B|& | [c|s| [p]s]| [w]s] |] [m]e] [n]e L[w0 | 1 [alwe]| [R]e
| A 1 1 | g I I | i1 |
F r | 4
DOT | 4 |‘l KkTal =Te]
4 -] &
’ L1 ’ ’ |
[P]2 B Y | 2 G |3 ula FRE

Each node is either the sum of all the characters below it, or it is a character,
along with its frequency in the paragraph. To compress a character, locate it
in the tree and starting at the top (there are 299 total characters in the
paragraph) trace a path to it. Every time you take the left path, mark a zero.

Every time you take the right path, mark a one. So to compress the first
character, the letter “I”, start from the top, take the left path, then the right
twice, and finally the left to get 0110. The next character, “space,” would be
encoded as 110. Notice that “I”, which appears 17 times, uses four bits
while “space,” which shows up 48 times, uses three. The letter “P”, which
only appears twice, converts to 0011110 for seven total bits. To decompress
the resulting code, working in binary, simply follow the same pattern until a
character is reached then start back at the top with the next character.

Huffman coding has been proven to be the most efficient way to compress
text at the level of individual characters, but since this breakthrough, many
more compression algorithms have been developed, most building upon
Huffman’s original insight.

In the example above, redundancy can be found in the encoding of
individual characters, but redundancy can also be found in groups of
characters, such as common words or patterns of letters, which may then be
represented with a single character or symbol. Let’s assume that every time
the word “and” appeared in this book, it was replaced with a plus sign. The
word “and” appears approximately 780 times in this book, taking up 2340
characters. If each “and” was replaced with a plus sign, it would take up
only 780 characters. If the spaces before and after the word are included (
and) that represents 3900 characters. Using a plus sign could reduce these
3900 characters to only 780 (plus six characters of metadata to tell the next
user that the file was compressed). Imagine if other common words or letter
groupings were changed into symbols. The letters “th” appear almost 4500
times in this book. Just by swapping “and” and “th” for symbols, we can
reduce the length of this book by almost 8500 characters. That is more than
five full pages! However, a key or dictionary in the metadata is needed to
explain what words and letter groups were swapped. Otherwise, the result
would be useless gibberish.

Without a dictionary, a message such as, “How much & #a ¢¥if a ¢49&?” is
nearly meaningless, but by following the dictionary (or metadata) to the
right, the message can be decompressed to read: “How much wood could a
woodchuck chuck if a woodchuck could chuck wood?”

wood

L J

v chuck

o could

The original message contains 58 characters and the compressed message
contains 20 characters in the message and 20 characters in the key
(metadata). This might not seem like much, but this simple compression
made the file about 30% smaller. Imagine taking that uncompressed HD
movie from the beginning of this unit and making it 30% smaller. The
original file was a terabyte, so this would save about 300 gigabytes.
Obviously, video cannot be compressed in exactly this manner, but there are
even more ways to compress video to make it much smaller than the
original. But think of how much text is on a computer: Word documents,
emails, and more. If everyone tried to send dozens of uncompressed emails
every day, Internet speeds would be at risk, a topic we'll return to in unit
SiX.

In practice, however, even this simple compression could result in more
dramatic savings. Since computers only deal with binary, these four
symbols might actually be represented as 00, 01, 10, and 11. As seen earlier,
characters in ASCII take up eight bits, so the word “wood” would be
reduced from 32 bits to 2 bits. By combining this technique with Huffman
trees, we can create prefix-free code in which the most common patterns
have the shortest code.

Abraham Lempel and Jacob Ziv developed another kind of dictionary
coding in an algorithm published in 1977, known simply a L.Z77. Rather
than defining a new dictionary, this algorithm references previous instances
of the pattern in the code. So if “hello” (or rather the long string of bits that
represents “hello””) showed up earlier in the text, the algorithm would
specify how for to jump back in the code to repeat the five bytes (if in

ASCII) that made up “hello.” To give a simplified example, this algorithm
could use one byte to define first how far to go back in the code then how
may characters to repeat or copy. So if “hello” appeared 30 characters
before its subsequent instance, the binary code 11110101 could be used.
The first five bits (11110) indicate how far to go back (30 characters) and
the final three (101) indicate how may characters to repeat (the five
characters of “hello”). In actual practice, multiple bytes would most likely
be used to indicate a larger jump back.

Images use much more data than most text files. A 20,000-character
document (more than 15 pages of this book) contains approximately 20,000
bytes (ignoring metadata), or about 19.5 kilobytes. Even a small 400-pixel-
by-400-pixel image using 8-bit RGB color (that is eight bits per color per
pixel) contains 160,000 pixels, which each require three bytes. That's a total
of 480,000 bytes (ignoring metadata), or about 468.8 kilobytes. Most digital
images are much larger and have millions of pixels, so it is important to
compress them. There are two general ways to compress images. The first
method is to find patterns, as in the above examples of compressing text.
The second is to find unimportant information and toss it out. The first
method is an example of lossless compression, but the second discards
some data and is therefore lossy.

A simple example of converting binary code to a black and white image
will help clarify how ones and zeros can become an image on a monitor.
Black and white work well for this example, since they can be represented
by a single bit. In this example, we will use zero for white and one for black
(even though we know from unit two that black is represented as zero or off
while white is on or all RGB colors). In addition to the color data, there
must also be metadata to indicate such things as height and width.

00000110 0000101 10101010 10101110 10101010 10101000

width height pixel data

metadata
In this example, the metadata are two bytes (sixteen bits) long and represent
width and height, one byte for each. This kind of information is
predetermined by the file type, and every file of this type must follow the
same rules. If the first byte is converted from binary, it equals six, and the
height is five. So, this image is six pixels by five pixels. The remaining four

bytes of this file represent each pixel's color, black or white. Just like
reading, start at the top left and fill in the appropriate colors. Ones will be
black and zeros will be white. Continue to the next row when needed. The
result will say “Hi”.

The image encoded through this process is uncompressed and uses a total of
48 bits, or 6 bytes. Lossless compression could reduce the file size. One
way to reduce its size is to look for continuous streaks or runs of black or
white pixels. Looking at the pixels from left to right, there are not many
runs of black or white pixels since, most of the time, they alternate between
single black or white pixels. But there are runs of alternating black and
white pixels (one black then one white pixel), so, starting in the top left,
there is a run of nine black-then-white pixels, then two black pixels (or one
run of BB), then a run of eleven black-then-white pixels. Expressed simply:
9BW, 1BB, 11BW. This expression can be converted to binary by
specifying that six bits defines a run, where the first four bits indicate the
length of the run and the final two bits represent the pattern. So 9BW would
be 1001 01. 1BB would be 0001 00, and 11BW would be 1011 01. The
entire image could then be encoded as 10 0101 0001 0010 1110, a total of
18 bits. With 16 bits of metadata, this image can be stored in 34 bits, almost
thirty percent smaller than the uncompressed version.

This method of looking for redundancies or patterns as runs in the code is
known as run-length encoding. A simple example of applying run-length
encoding to text would be converting

AAAAAAAAAABBBBBBBBBBCCCCC to 10A,10B,5C. In an RGB
image, such encoding might specify that there are three-hundred red pixels
in a row instead of using the three-byte code for red three-hundred times.

Compressing Images

Psychophysics plays an integral role in compression. Extensive research has
been conducted on how humans see the color gray and how many shades
human perception can distinguish. Different studies have concluded that
humans can perceive anywhere from less than a dozen to several hundred
distinct shades of gray. In a 2012 article published in the Journal of the
Royal Society Interface, University of Cincinnati researchers found that
humans can detect only about thirty distinct shades of gray. If this is true
then what need is there to use a full byte to represent 256 shades? Thirty-
two unique shades can be represented in binary using only five bits, which
is 37.5% smaller. One way to compress a grayscale image, then, would be
to throw out all but 32 shades of gray. Discarding data, like those other
224 grays, is lossy compression. There is no way to get that data back. The
key to good lossy compression is finding the appropriate balance between
size and quality. This technique can be used alongside lossless compression
methods, such as run-length encoding to compress data even further.

Similarly, color images can be compressed by grouping similar colors and
discarding the rest. Using eight bits for each red, green, and blue value

yields over 16.3 (224) million possibilities, but the human eye can only
distinguish about ten-million colors. Two colors only a few bits away from
each other will appear identical, so compression algorithms for images take
these similar colors and save them all as the same color. Most of the time
this simplification should not change the quality of the image, but when
these algorithms are too aggressive, pixelation or color banding (which can
be seen in the .gif file below) can occur.

A few common file formats that compress images include: .png, .bmp, .gif,
and .jpg. Portable Network Graphics (.png) files use a lossless compression
algorithm called Deflate which is a combination of LZ77 and Huffman
Trees. Bitmaps (.bmp) use run-length encoding, which is also lossless.
Graphic Interchange Format (.gif) uses a dictionary algorithm based on
Terry Welch’s additions to LZ78 (the successor to LZ77). Finally, Joint
Photographic Experts Group (.jpg) files use lossy compression by breaking
images into eight-pixel by eight-pixel blocks and using a method based on

the mathematical operation discrete cosine transform. JPEGs remove high-
frequency information in a process called quantization.

Compressing Video

Video compression uses similar techniques as the above examples. Since
video is usually made up of 24 or 30 images displayed every second, one
technique is simply to compress each image. This method is known as
intraframe or spatial compression. If the frame-rate of a movie is 24
frames per second then 90 minutes of video would contain 2,160 individual
images or frames, and each of these images could be compressed
independently using the same algorithms applied to other images.

Similarities from one frame to the next can also be used to reduce file size.
Interframe or temporal compression reuses redundant pixels from one
frame to the next, so if eighty percent of the background barely changes,
interframe compression simply leaves those pixels as is (or slightly moves
or rotates them), only making changes to the twenty percent of pixels that
do need updating.

Video compression is extremely important for streaming video, especially
live video. Digital connections have a limited bit rate, the number of bits
that can be processed per second. A typical home wireless connection might
have a bit rate of twenty megabits per second (Mbps). As seen in unit one,

the prefix “mega-” is used here to mean million, not 22°, so twenty-million
bits can be transferred per second. A 4k television displays 3,840 pixels by
2,160 pixels, a total of 8,294,400 pixels per frame. At 24 frames per second,
one second of 4k video takes up 199,065,600 bits, requiring a dedicated
connection speed of about 200 Mbps, not counting audio. If there is not
enough bandwidth (the amount of bit rate available, discussed in unit six)
then some data will not be transferred, resulting in compromised image
quality or—even worse—buffering.

Compressing Audio

Lossless and lossy methods of compressing audio files use similar methods
to those discussed above. Two well-known uncompressed audio file formats

are .aiff in macOS and .wav in Windows. These formats are both actually
containers that may package pulse-code modulation (PCM) streams, one
method for converting analog signals into a digital form. Using metadata,
these formats can also be used to contain compressed audio formats.

The fidelity of the digital representation encoded in a PCM stream is
determined, in part, by the sample rate and the bit depth. As mentioned
earlier in the unit, sample rate refers to the process of taking many digital
representations of an analog signal. Sample rates in audio are generally
measured in kilohertz (thousands of cycles per second), and common rates
include 8 kHz for telephone calls, 44.1 kHz for CD and mp3 audio, 96 kHz
for DVD audio, and 192 kHz for Blu-ray audio. Most humans cannot
distinguish differences between sample rates that exceed 60 kHz, or 60,000
samples per second.

While sample rate refers to how often a digital representation is created, bit
depth refers specifically to the number of bits used for each sample taken
of the analog wave's amplitude. Common bit depths include 16 bit for CD

audio and 24 bit for DVD audio. A 16-bit depth allows 65,536 (216)
possible values for each sample and a 24-bit depth allows for about 16.8
million values.

The bit depth and sample rate of an audio file determine its bit rate. To
determine the bit rate of an audio file, multiply its sample rate by its bit
depth. A 44.1 kHz audio recording with a 16-bit bit depth translates to a
705,600 bits-per-second bit rate. Stereo audio uses two channels, so a stereo
CD track recorded at these levels would have double the bit rate, 1,411,200
bits per second.

The sub-branch of psychophysics that deals with how humans hear sound,
psychoacoustics, has found that humans can hear sound in a range from 20
Hz to 20,000 Hz (20 kHz), so there is little need to record frequencies
outside this range. One lossy way to compress audio is to discard redundant
data within this range, just like discarding color information when
compressing image files. Other compression methods include changing the
sample rate or bit depth, resulting in a lower bit rate. Two of the most
popular lossy compression formats are .mp3 and .aac (made popular by
Apple iTunes). The lossless methods discussed earlier can also be applied to

audio files. For example, run-length encoding can be applied to periods of
silence.

Summary

The modern world generates an enormous amount of information, and we
don't just store this data, we move it around, oftentimes from one side of the
planet to the other. Without compression, storing and moving all this
information would be prohibitively expensive if not impossible.
Compression, then, is one of the foundations of modern computing, and by
gaining an understanding of the basics of compression, you have taken
another step toward understanding how computers work—and work
together—today. The ability of computers to display, store, transmit, and
alter pictures and other forms of media is exciting, but an even more
fundamental role of computing is the storage and processing of information,
the subject of the next unit. Unit four will introduce two distinct ways of
dealing with information: spreadsheets and databases. You will have a
chance to begin learning Microsoft Excel, a program that anyone who has
ever worked in an office will be familiar with. Gaining familiarity with this
surprisingly powerful application will prepare you for an even more
surprising number of jobs.

Important Vocabulary

Binary Tree — a data structure that can, at most, have two nodes or
“branches”

Bit Depth — refers to the amplitude of the analog wave and
specifically to the number of bits used for each sample

Bit Rate — the number of bits that can be processed per second
Codec — a computer program that encodes or decodes

Dictionary — a key in metadata explaining the instructions to encode
or decode compressed data

Discarding Data — a type of lossy compression that removes
unneeded data with no way to get that data back

Fixed-length Code — blocks of code that are always the same size

Huffman Tree — a prefix-free binary tree that is the most efficient
way to compress individual characters

Interframe Compression —a video compression that re-uses
redundant pixels from one frame to the next, also known as temporal
compression

Intraframe Compression — a technique used by compressing each
frame of a video, also known as spatial compression

Lossless — data compression that does not lose data during
compression

Lossy — data compression that loses data during compression
Metadata — additional data about the main data, usually at the
beginning of a file

Prefix-Free Code — a specific type of variable-length code that does
not use pauses

Psychoacoustics — a sub-branch of psychophysics that deals
specifically with sound

Psychophysics — a branch of psychology that focuses on the fact that
the human eye or ear cannot perceive the loss of certain data
Redundancy — finding frequencies or patterns in code

Run-Length Encoding — looking for redundancy or patterns as runs
in the code

Sample Rate — how often an analog signal is used when converting
to digital, usually measured in kHz

Uncompressed — all the information from an original file in the
same format

Variable-length Code — each data block can be a different length

4 — Storing Data: Spreadsheets and
Databases

“The goal is to turn data into information, and information into insight.”
- Carly Fiorina

Introduction

Data is everywhere. People have always collected information for multiple
purposes. Data used to be relatively simple. Early humans recorded where
they could find food and tracked weather patterns. With advancing
technologies, however, data has become easier to collect and subsequently
used for many more purposes. During the last fifty years, tracking television
viewing habits has led to the current state of TV and targeted advertising.
With this data, companies and advertising agencies can better target the
consumers who are interested in their products. These companies save
millions of dollars by not wasting money on consumers who are unlikely to
buy their products while increasing sales by targeting their ads at more-
likely-to-buy consumers. The existence of countless data sets creates a need
for automated methods to store and retrieve information. This data could be
someone's personal finances, which could be stored in a spreadsheet, or it
could be a company's inventory and product details, for which a database
would be more appropriate. Some data sets are so large or complex that an
individual or small business alone could not gather, store, or analyze them
using traditional methods. The field that deals with such information has
come to be known as “big data.”

Gathering Data

In the age of the internet, crowdsourcing has become a popular tool for
gathering input or information from a large number of people. The practice
of crowdsourcing offers new models for collaboration, connecting
businesses or social causes with funding, and has even revolutionized the
way we approach scientific research. Crowdsourcing involves tapping into
the collective intelligence of a large group of people to achieve a specific

goal or solve a problem. With the help of technology, crowdsourcing has
made it possible to obtain input from a diverse range of people from all
over the world, in a matter of minutes.

One way that crowdsourcing has impacted scientific research is through the
emergence of citizen science. Citizen science is a type of scientific research
that is conducted, in whole or in part, by distributed individuals who
contribute relevant data to research using their own computing devices. The
individuals who participate in citizen science projects may not necessarily
be scientists themselves, but their contributions can be invaluable in solving
complex scientific problems. Citizen science projects have become
increasingly popular over the years, thanks to the growing accessibility of
technology and the internet.

While crowdsourcing and citizen science share some similarities, there are
key differences between the two. Crowdsourcing typically involves
obtaining input or information from a large number of people for a specific
goal or project, while citizen science is focused on scientific research and
the collection of relevant data. Additionally, the individuals who participate
in citizen science projects may have a more active role in the research
process, contributing to data collection and analysis, whereas
crowdsourcing may involve more passive participation, such as providing
feedback or suggestions. Nonetheless, both crowdsourcing and citizen
science have opened up exciting new avenues for collaboration and
problem-solving that were once unimaginable.

Visualizing data

Data is powerful, but humans cannot look at large datasets and immediately
see trends or extract information from them. Fortunately, we now have
powerful software and data libraries that can help us make sense of this
information. A few clicks of a mouse or a couple lines of code can turn
thousands of numbers on a spreadsheet into a line graph with trend lines, an
interactive 3-D model, or an animation. Visual display allows more
information to be displayed, and multiple datasets can be combined to
reveal the bigger picture. Modern computers make these tasks easier, but
data visualization long predates the transistor. Two celebrated, historical
examples of data visualization are Charles Minard’s map of Napoleon’s

1812-13 Russian Campaign and John Snow’s mapping of cholera outbreaks
in 1854.

Minard’s map skillfully displays several pieces of data: the size of the
French army, location using latitude and longitude, distance traveled,
direction traveled, relative dates, and temperature. The infographic shows
the size of the army with the line’s thickness and indicates where troops
broke off from the main force. As the line moves from left to right, the
thinning line shows the loss of troops from battles or the elements. Moscow
lies on the right side of the map, which is where the troops turn back and
make their way back west, as seen in the thinning black line. The sub-
freezing temperatures faced on the return trip can be seen at the bottom.
The black line briefly widens as troops rejoin from previous offshoots but
thins again at the crossing of the Berezina River. The contrast between the
original line and the black line on the left side of the map is devastatingly
effective at showing how this campaign ended. Viewed separately, map
coordinates, dates, temperatures, and troop numbers would not tell the same
story, and piecing together dates and locations with temperatures would be
tedious. It’s not the whole story, but this infographic displays an easy to
understand summary of the campaign, all without the help of a computer.

Infographic of Napoleon’s 1812 Russian campaign - Charles Minard, 1869

John Snow, an English Physician, knew something when he mapped the
locations of cholera cases, eventually showing that the cases stemmed from

a contaminated water supply. Before this discovery, cholera was not
understood to be water-borne, and for this reason, John Snow is now
considered to be one of the founders of modern epidemiology.

Mapping a cholera outbreak - John Snow, 1854.

Today both Minard and Snow might be called data scientists. Data science
is a relatively new field that uses a variety of methods, including
algorithms, to make sense of structured and unstructured data. Popular
programming languages like Python and R have libraries to assist in data
wrangling, visualization, and modeling.

Misleading Data

Data visualization is powerful, but it can be dangerous if misinterpreted,
misused, or manipulated. Countless examples of misleading charts can be
found in advertising, news outlets, politics and anywhere data is displayed.
One of the most common misinterpretations of data is the assumption that
correlation implies causation. Just because one set of data trends in similar
fashion to another does not mean that one caused the other or vice versa.
While causation may in fact be present, it cannot be found from this data
alone. One admittedly ridiculous example of this would be noticing that the
louder you sing in the shower, the higher the stock market rises. You could
measure and chart your singing volume on the same graph as the daily gain
or loss of the stock market, and they might look very similar. But does this
mean that your singing is causing fluctuations in the market? Depending on
who you are, probably not. Could it be that you’re singing more loudly
because you just made a lot of money? Maybe, but more evidence is
needed.

Singing Volume vs. Rise in Market

6.00% 120
4.00% 100
2.00%
80
0.00%
60
-2.00%
. a0
-4.00%
-6.00% % 20
-8.00% 0

<+« Rise in Market ==o==Singing Volume

Correlation does not imply causation

Another common way for charts, especially bar graphs, to mislead is
through manipulating the range of the axes. The two graphs below visualize
identical data. The only change is that the range of the left graph’s y-axis is
from 48.95% to 49.45% while the right graph’s y-axis ranges from 0% to
100%. In the left graph, B appears to be three times taller than A while the

right graph more honestly shows B as only 0.3% higher than A. Without
labels on the graph, people might overlook the values on the y-axis. Both
graphs are technically correct, but the left graph uses techniques that are
likely to deceive the viewer. When looking at data—assuming it is factual
—make sure to check the axis and labels to avoid making snap judgements
or assumptions.

Avs.B Avs.B
49.45% 100.0%
49.40% 90.0%
49.35% 80.0%
49.30% 70.0%
49,25% 60.0%
49.20% 50.0%
49.15% 40.0%
49,10% 30.0%
49.05% 20.0%
49,00% 10.0%
48,95% 0.0%
A B A B

The graph on the left makes it appear that B is 3x better than A The graph
on the right clearly shows that B is only .3% better than A

Simpson’s paradox can also lead to misinterpreted data. This phenomenon
occurs when groups of data individually trend in one direction, but when
they are combined, this trend disappears or is reversed. Simpson’s paradox
may be found in medical trials and the social sciences and can be the result
of poorly designed experiments or—as in the previous example—be
misused to mislead for personal or financial gains.

An example of Simpson’s paradox - Individually each set trends downwards
(left), but when plotted together the trend reverses (right)

Implying causation that is not supported by the evidence, manipulating the
values of an axis, and Simpson’s paradox can all lead to factual data being
incorrectly understood. It is therefore important to look deeper into the data
and not draw quick conclusions based on a glance at a pretty graph. It is
also important to consider data’s source. Who benefits from these results?
Unfortunately, completely fabricated data also exists, so it is essential to
find reputable sources. Does the latest viral infographic on Instagram
originate from a legitimate source? Can you even tell who created it before
it was shared around?

Spreadsheets

Prior to the introduction of electronic spreadsheets, accounting and
bookkeeping had to be done by hand on paper—a slow and laborious
process. With the introduction of VisiCalc on the Apple II (in 1979) and
Lotus 1-2-3 on the IBM PC (in 1983), these tasks quickly became
computerized. Since then, the use of spreadsheets has spread well beyond
financial record keeping. Microsoft Excel gradually supplanted Lotus 1-2-3
and—with the release of version five in 1993—became the overwhelmingly
dominant spreadsheet application. The program features an intuitive
interface and graphing tools and is capable of a high level of calculation.

These features—along with aggressive marketing and its bundling as part of
Microsoft Office—have made Excel one of the most popular computer
applications to date.

LA P EEREFENNEERYEEYINGESF

A spreadsheet is basically a grid used to store information, usually numbers.
This grid consists of rows and columns. Rows go from left to right like
rows of seats in a movie theater and are labeled using numbers starting at
one. In Excel, there are over one million possible rows. Columns go from
top to bottom like the columns that used to hold up Greek ruins. Columns
are labeled using letters starting with A. When more than 26 columns are
present, double letters are used, continuing with AA, AB, AC, AD, etc.,
then triple letters starting with AAA, AAB... all the way until XFD.

Each individual piece of the grid—where the rows and columns intersect—
is called a cell. Each cell is labelled with the column letter followed by the
row number so that A1 is the cell at the top left of the spreadsheet. Three
basic items can be placed into the cells: labels, constants, and formulas. A
label is text that describes some part of the spreadsheet, such as a name or
amount. Labels are not meant for the computer but rather for humans to
better understand the information in the cell. A constant is any number that
the user enters into the spreadsheet. It will not change unless the user

changes it manually. A formula is an equation that can perform
calculations on existing cells. All formulas must start with an equal sign.
Examples of formulas are: =5 + 6*5 or =2*F4 - A7. Notice that F4 and A7
are cells, so whatever numbers are in these cells will be subtracted or
multiplied. If this cell contains a label or has been left blank, then errors
may occur.

Functions

Excel has many built-in

‘ Formula Build
functions that can help ormula Builder

manipulate data. Some of these Q

functions include finding Most Recently Used

minimums or maximums, D AN

calculating averages or sums, m;

performing trig functions, and STDEV

carrying out conditional AVERAGE

statements. There are more ——

than two-hundred functions in izﬂ:fﬂp

Excel. They can be found COUNTA

either by knowing the name of IF

the function or by going to Al

Formulas... Insert Function... A8s _
A list of functions will then dcatdian
pop up that can be narrowed fx AVERAGE

dOWH by SearChing or SEIECting Returns the average (arithmetic mean) of its

a category. Notice that all arguments, which can be numbers or names, arrays,

or references that contain numbers.

functions (like formulas) begin

with an equal sign. s

AVERAGE(number1,number2,...)

= Number1: numberl number2,... are 1to 255
numeric arguments for which you want the

At the bottom of the window,

there will be a brief description average.

on What the function does. A = Number2: number1,number2,... are 1 to 255
numeric arguments for which you want the

more detailed description will average.

be given when the function is
selected.

The following chart shows some useful functions and how they look when
entered into the cell:

Name Description Sample Code Appears
in Cell
AVG Finds the average from a =AVG(AT, A4, A6, 4.75
list of numbers Ag)
MIN Finds the =MIN(D1:D9) 37
& minimum,/ maximum
MAX value of a list of numbers = MAX(B13:B23) 104
and returns that number
COUNT | Counts how many cells =COUNT{AT:K30) 29
have numerical data
COUNT | counts all data, text =COUNTA[A1:K30) 46
A included
COUNT | Counts the number of =COUNTIF(A1:A32, 23
IF cells that meet a given “>75")
condition
SUM Adds up all the values and =SUM(A1,45,B3,D5) 73
returns the answer
IF This function can return =IFB1<C1,"You win", You lose

different things depending
on whether the condition
is met. The first item after

the condition ig dienlaved

"You lose")

B it I

if it 15 true and the second

if false
IFS This function allows for =IFS(B1==90, “4", B
multiple if statements. B1>=80, “B")

The parameters alternate
between the condition
and the value to be
displayed. As soon as one
condition is true, the
function returns the value

and is complete.

Embedding Functions

Functions and formulas can work together. Some functions can even be
embedded—or inserted—into other functions. For example, if you wanted
to find what group of cells had the highest average, then you might write it
like this:

=max(average(A1:A20), average(B1:B20), average(C1:C20))

Formatting

Formatting is a way to make the data in a spreadsheet more visually
appealing. This can be done by changing the look of numbers; altering the
font, color, or size; adding borders; or aligning the text in different ways.
By right clicking on a cell, or selecting Formatting... Format Cells... under
the Home tab, the format cells window will appear. There will be six tabs to
choose from at the top of this window. These tabs can easily be mastered by
experimenting with the different options.

Format Cells
Number Alignment Font | Fill Protection

Line Style: Presets:

None ‘=-—-emeemeo—e D

MNone OQutline

Border:

Text

Line Color:

Automatic
2 (L hY

Click a line style and color, and then click a preset border pattern or individual border
buttons. You can also apply borders by clicking in the preview box.

Cancel

Condi
tional
Form
atting

Excel has
some
built-in
formatting
tools that
will
automatica
lly
perform
calculation

s for the user. Some of these tools can highlight cells that meet specific
criteria, such as equaling a value, being greater than a certain value, or
being less than a certain value. Other tools can highlight cells that are in the
top or bottom five or ten or that have any given value. It can also be done
with percentages. Conditional formatting can also turn cells into mini
graphs using data bars or different color schemes. These graphs are
determined by the highest and lowest values and can be modified by going

into more options.

To remove conditional formatting, highlight the cells and select Clear Rules

in the conditional formatting menu.

Auto Formatting

Excel also includes several pre-made templates that can change a
spreadsheet's look automatically, eliminating the need to change colors and
borders by hand. To use a template, select the cells that are to be formatted,
then select Formatting... Format as Table... from the Home menu bar.

Charts

E’, L‘%" _ﬁ'/’v ‘Hv *

(
{ | Highlight Cells Rules ~ »

Top/Bottom Rules >
Data Bars >
B color Scales >

lcon Sets >

| New Rule...

@ Clear Rules >
{=] Manage Rules...

Page Layolt Formulas Data Fenviews

= = — » [B ol e Ling Meps M i AP

PrdlTalie Feconunesces Tabke Picloces Slapes B ’ My Acckne T E Faopie Graph Recemrended -' h = PivolCharl Saarklivas
[E T R=T

Excel can create charts and graphs from the data in a spreadsheet. There are
several different charts that can be created, the most common being the bar,
pie, and line charts. Under each chart type, there are sub-types that can give
the graph more effects, such as making it three-dimensional or showing
relationships throughout the data. Remember that a line graph shows
change over time. To choose the desired type of chart, select it under the
Insert tab.

Before a chart type is selected, the data range needs to be chosen. This can
be done by highlighting the cells that contain the data. To select cells that
are not adjacent, choose the first set of cells, then hold down the ctrl key
and select the next set. Once you have selected the data, click on the type of

chart as shown in the picture above. The Design, Layout, and Format tabs
that will appear when you click on the chart can be used to add titles as well
as axes names, legends, and data labels. Some of these tabs are shown
below.

Home It Pagoloysut Formubs Daa Rewkes wiow Chan Besign [T

Printing
There are many options for printing an Excel document. These options can
all be found under File... Page Setup...

Under the Page tab, the orientation of the page can be set (either vertical or
horizontal). The spreadsheet may also be scaled to fit on a desired number
of pages. Another useful tab is the Sheet tab. The most useful item under
this tab is the Gridlines checkbox under the Print section. When checked,
this tab will display the lines in the spreadsheet. Excel does not show
gridlines by default.

Spreadsheet applications are essential tools for organizing and calculating.
As the most popular of these programs, Excel is ubiquitous in offices
around the world. Spreadsheets make calculating budgets, organizing large
events, or managing groups of people much more manageable. Mastering
the powerful features of Excel will serve you well in an enormous variety of
careers.

Databases

Another format for storing and processing data is the database. A database
is simply an organized collection of data stored in tables. Like spreadsheets,
these tables are made up of rows and columns. Throughout these tables, the
data is consistent. In a database, consistency refers to the fact that
information in one table does not contradict itself in any other table
throughout the database. So if one table in a bank's database states that you
have $5 in your account then any other tables with your information must
also state that you have $5.

In

Cco
ns Margins Header/Footer Chart

Page Setup

ist
en
ci T . Portrait T Landscape
es

Orientation

Scaling

Cco
m
m 100 % normal size
on
ly

oc

cu First page number: Auto

r

in

m

ut

ua

1

rel Cancel

ati

on

ships. For example, a school's database might have separate tables for
individual students and for class registrations. If a student's table indicates
that they are enrolled in CS301-3 then CS301-3's table of enrolled students
must also list this student. One cannot be true without the other. Fixing this
inconsistency should be pretty easy, but others may not be so simple.

Inconsistencies could be introduced in a database when a program
terminates before completing all transactions. The database might not know
which transactions it needs to run again when the program starts back up.
Let's say you try to buy something on Amazon but your transaction is
interrupted after your credit card is charged but before this information gets
sent to Amazon. On restart, the database might again seek to withdraw from
your account, double charging you. To prevent this issue, all transactions
must be idempotent. Idempotency means that an operation will result in the

same end result no matter how many times it is performed. This property is
seen in write-ahead logging, in which all changes are written and saved to
a log before they're applied to the database, so all the components involved
in a transaction need to be carried out before the entire transaction is
considered complete. Such transactions are known as atomic transactions
since they cannot be broken down while being executed. In the Amazon
example, the atomic transaction would be all the steps involved in making
the sale. If every part does not finish then none will. One way to prevent
such inconsistencies is to work backward in the write-ahead log. This
method is known as a rollback, returning back to the state before the write-
ahead log began.

Inconsistencies may also arise if multiple transactions modify data from the
same cell simultaneously. One way to prevent this error is to lock the cell
that needs to be modified. If, for example, an account balance needs to be
altered by two separate transactions then the first transaction would lock the
row, make its changes, and then unlock the row. After the row is unlocked,
the second transaction would then do the same. A deadlock can occur when
two transactions are trying to lock the same row and neither can continue
until the other is complete. In such cases, it is essential to have the ability to
rollback one transaction to let the other finish.

The two-phase commit protocol provides another way to check whether
multiple rows are free to use. This protocol is a standardized way to make
sure all data can be written without any inconsistencies. The first phase is a
check to see if all processes can be completed. If they can be written
without issue then the second phase will commit all processes. If not, this
phase will rollback.

When using databases, it is oftentimes convenient to use multiple tables to
store data that is connected in some way to other data. A relational
database can be used for this purpose. Relational databases have multiple
tables that are connected or related through the use of unique keys, a
column holding a unique value that distinguishes each record from all
others. A school's database might include one table that contains students,
using their unique student ID numbers as their keys. Another table might
contain courses, using unique course IDs as keys. A virtual table or view
could be created from this information using Structured Query Language or

SQL (more in a second). Virtual tables are temporary tables made up of
parts of other tables that help to reduce redundant data. In this example, a
student's record might contain the unique course ID of a class they are
taking, and this course ID might serve as a key in another table (perhaps
storing more detailed course information). A new virtual table could then
use the course ID to combine parts of the student's table, such as their
schedule, with parts of the courses table, like teacher, meeting location,
time, etc. This way the student record only needs the course ID to retrieve
all the data about the course without the need to independently store all
course data for each student. Course updates can then be made simply by
modifying the course's table. There is no need to separately update this
information for each and every enrolled student.

SQL

Structured Query Language (SQL) is the language used to manage, access,
and manipulate relational databases. Although tables can be modified, this
section focuses on creating virtual tables by accessing certain elements or
combining parts of multiple tables. SQL ignores white space and is not
case-sensitive. Statements can therefore be broken into several lines for
easier readability, and “SELECT” is equivalent to “select.” The lack of case
sensitivity refers only to keywords, not to table names, columns, or text
contained in an entry. Some of the most important keywords in SQL are
discussed here: SELECT, DISTINCT, FROM, WHERE, LIKE, ORDER,
BY, ASC, DESC, LIMIT, JOIN, and ON.

Assuming you are already connected to the proper database, you can access
the class_year of all students from a table called students with the following

query:

class_year students;

This would return every student’s class year, including duplicates, which
could become an issue for databases with hundreds, thousands, or even
millions of records. The result would also be unsorted. To get unique values
that are sorted in descending order, use DISTINCT to only list unique

values and ORDER BY to sort the data. Following that with DESC will put
the results in descending order while ASC will give you ascending order.

class_year
students
class_year -

In order to limit the results to a certain number of rows, use LIMIT. The
asterisk (*) can be used to specify all columns of a table. This example
returns all columns from the first twenty rows.

X

students
20

If you only need the columns first_name, last_name, and gpa from the 100
students with the lowest GPAs, this statement could be used:

first_name, last_name, gpa
students
gpa
100;

It is common to want only records that match specific criteria, which can be
achieved using the WHERE keyboard. If you only want the records from
students with the last name “Smith,” the equal sign can be used to check for
an exact match:

%
students
last _name = 'Smith';

The logical operators AND, OR, and NOT may also be used in conjunction
with the WHERE keyword. In the following example, only records of
students with the first name Sue who have a GPA of 4 will be shown:

%k

students
first name = 'Sue’

gpa = 4;

Often, when querying a database, you don’t want to match an exact string.
Rather, you’re seeking entries that contain a specific word or start with a
certain letter or letters. Such partial matches can be indicated using the
keyword LIKE paired with wildcard characters. Two common wildcard
characters are the percent sign (%) and the underscore (_). “%” represents
zero or more unknown characters, and “_” represents exactly one unknown
character. “LIKE “W%’” would return entries of any length that start with a
capital “W.” “LIKE ‘%ing’” would return only entries ending in “ing.”
“LIKE ‘%and%’” returns any string containing “and.” “LIKE ‘A%a’
returns entries that begin with capital “A” and end with lowercase “a.” The

following query shows all students with a first name beginning with “A”
and a last name ending in “y”:

%

students

first_name 'AS '
last_name 'Sy ' ;

The “_” wildcard is less commonly used but works in a similar fashion. It
represents exactly one character—not zero and not more than one. “LIKE
“T_m’” would return strings like “Tim,” “Tom,” and “Tum” but exclude
“Tram” and “Totem.” These wildcards can work in tandem. The following
query will show names like “Tim,” “Tom,” “Timmy,” and “Tomas”:

>

students
first _name '"T m':

To combine entries from two or more tables, use the JOIN keyword. There
are several kinds of join statements. The default type is the inner join,
which returns rows where both tables include the specified data. The ON
keyword indicates how the tables being joined are related. ON specifies the
column relationship between the original table and the one it is being
combined with. In the following example, the student table is joined with
the sports table using a common link, the student’s social security number.
Then only students on the dance team who are in the 10th grade are shown
in alphabetical order by their last name.

%
students
sports
students.ssn = sports.ssn
students.class_year = 10
sports.team = 'dance team'’
students. last_name -

Aliases can be used to shorten table names. In lines three and four of this
example, st and sp are created as aliases for students and sports,
respectively, so anytime the students table is referenced, the shorter st can
be used. Another way to make columns more user friendly is to rename
them in the new table. In this example, the keyword AS is used when
selecting columns to rename last_name to Last in the new table.

st.first_name First,
st.last_name Last, sp.team
students st
sports sp

st.ssn = sp.ssn

st.class_year = 10
sp.team = "dance team’
st. last_name ;

Aggregate functions in SQL can be applied to several values in a column.
Many of these will be familiar from the spreadsheet section above: min,

max, sum, avg, and count. For functions, parentheses are used to specify the
columns being aggregated. To find the average GPA of all students:

avg(gpa)
student;

Scalar functions return data from a single value. Useful scalar functions
include round, upper/ucase, and lower/lcase. Strings are case-sensitive, so a
search for “Bob” would not match to “bob.” lower or Icase provides a
solution to this problem. In this example, we use the lower function on the
entry than compare it to a lowercase string:

*
students
lower(first name) = 'bob';

This section only scratches the surface of what SQL can accomplish. These
keywords are useful when searching for data, sorting and filtering results,
and even renaming column headers. These functions can help with case-
sensitivity and rounding long decimals, and other tasks. There are many
other keywords and functions that can be used to create new data, modify
existing data, and remove unwanted data.

As with any computing system, fault-tolerance, the ability of a system to
continue to run properly even if one piece fails, is an imperative property
for databases. The protocols discussed above make sure that databases can
continue to work properly even when errors occur.

Big Data

Big data often refers to sets of data that are larger than a consumer software
application can handle. This could be data collected from hundreds of

sources, including mobile phones, software, web browser logs, cameras,
and wireless networks. A few key features of big data are the volume of the
data, the rate at which it is collected, the variety of types, and the fact
computers can “learn” from it. The volume is important since it is not a
sample of data from different groups of people: It is all the data from all the
people, so there is—in principle—less room for error. The rate at which
data is collected is also important since, given the speed of processors and
fiber optics, the data is in real-time. Big data's variety allows text, audio,
video, and more to be collected simultaneously and analyzed. This allows
the data to be seen from different angles, making the results even more
accurate. Finally, computers can see trends and patterns in this data that
would take humans many lifetimes to sift through. Not only can computers
see the trends, but they can also learn from them and use them when
analyzing similar data in the future. Big data is very powerful and
companies pay top dollar to obtain it.

In 2012 Facebook bought Instagram for one-billion dollars. That is billion
—with a “B.” Any programmer at Facebook easily could have designed an
app that did the exact same thing as Instagram, probably with
improvements. So why pay one-thousand-million dollars for an app? At the
time, Instagram had thirty-million users, and it had a lot of data about those
thirty-million users. This data included how often they were on the app,
how long they used the app per session, what profiles they looked at, what
pictures they liked, all their search results, and more. The app itself was not
worth one-billion dollars, but the large data set Instagram collected and the
site's daily active users were worth that much to Facebook.

Big data is seen in many other industries, including government, education,
media, healthcare, banking, real estate, retail, and more. The app Waze
(acquired by Google for almost one-billion dollars) used to collect every
user’s data, even when the app was not open. When installed, the user gave
permission to always use their location. If the user’s geolocation is on a
road then the app can record their speed. This information can be used to
predict traffic and help reroute other users in real-time.

Summary

It would be hard to underestimate the role data has come to play in our
economy and society. Spreadsheets have gone from being the cumbersome
physical tools of accountants to essential and flexible digital tools for most
office workers. Databases store untold amounts of data, replacing
everything from the library card catalog to student schedules to banking
records and making entirely new kinds of records possible. These tools and
their more sophisticated successors have made big data possible. In the final
unit, on the impact of computing, we'll discuss some of the social and
economic effects of this turn to big data. In the following unit, however,
we'll consider the available tools for keeping all this sensitive data secure,
including encryption and other defenses against malicious hackers.

Important Vocabulary

Atomic transaction — transaction where all components must be
carried out before the transaction is considered complete such that all
oCcur or none occur

Big Data — sets of data that are larger than a consumer software
application can handle

Citizen science — a type of scientific research that is conducted, in
whole or in part, by distributed individuals who contribute relevant
data to research using their own computing devices

Consistency — refers to the fact that information from one table does
not contradict itself in any other table throughout a database
Crowdsourcing — tapping into the collective intelligence of a large
group of people to achieve a specific goal or solve a problem
Deadlock — when, in a database, two transactions are trying to lock
the same row and neither can continue until the other is complete
Fault-tolerance — the ability for a system to continue to run properly
even if one piece fails

Idempotency — when an operation results in the same end result no
matter how many times it is performed

Keys — a database column that holds a unique value that
distinguishes each record from others

Relational Database — a database that has multiple tables that are
connected by the use of unique keys

Rollback — returning back to the state of a database before the write-
ahead log began

Simpson’s Paradox — a phenomenon that can occur when multiple
groups of data trend in one direction but when combined with other
sets the trend disappears or reverses

Structured Query Language (SQL) — the language used to manage,
access, and manipulate relational databases

Two-phase Commit Protocol — a standardized way for databases to
make sure all transactions are able to write without any
inconsistencies before committing

Virtual Tables — temporary tables that are made up of parts of other
tables that help in reducing redundant data

Write-ahead Logging — a method for avoiding inconsistencies in
which all transactions are written and saved to a log before they are
applied to a database

5 - Protecting Data: Heuristics, Security,
and Encryption

“If you put a key under the mat for the cops, a burglar can find it, too.
Criminals are using every technology tool at their disposal to hack into
people’s accounts. If they know there’s a key hidden somewhere, they
won’t stop until they find it.” - Tim Cook

Introduction

When it comes to using computers and networks, good security practices
are no longer optional. Data breaches, distributed denial of service attacks,
viruses, worms, Trojan horses, and ransomware have all been in the news in
recent years. Major cities, financial firms, hospital systems, and even
national militaries have all faced such attacks. Administrators of these
systems have an obligation to take appropriate measures to ensure their
security, but individual users should also take steps to secure their accounts
by adopting best practices, such as using strong and unique passwords. Of
course, the best password in the world won't keep data secure if it is stored
and transmitted in the clear. That's where encryption comes in. Encryption
can be a controversial topic, but it is essential for everything from secure
online banking to private communications, and it is a major topic of this
unit.

Heuristics

In programming, a heuristic approach is an approach that gives results that
are “good enough” when an exact answer is not necessary. This is seen in
the famous traveling salesman problem (TSP), in which a hypothetical
salesman is given a list of cities and the distances between them and is
tasked with mapping out the shortest route for visiting each city and
returning home to the original city. With only a few cities, the problem is
simple, but it becomes exponentially more difficult as more cities are
added. The TSP is computationally hard, meaning even a computer would
take too long to find the exact solution. An instance using 85,900 “cities”
was solved in 2006, but it took the equivalent of a computer running 24

hours a day for 136 years. The amount of time and computational power to
find this solution was out of proportion to the result. It would have been
more sensible to find a “good” route in a much shorter amount of time.

While calculating the best solution is difficult, it is easy to quickly check if
any given solution is best. For this reason, the TSP is an NP problem
(“nondeterministic polynomial time”—a concept which lies outside the
scope of this book), meaning it can be verified—but not solved—in
polynomial time (roughly meaning a feasible or efficient amount of time).
The greatest amount of time it would take to solve TSP (Big O notation, the
measurement of time complexity, another concept that lies beyond the
scope of this book) is exponential. Other NP problems include solving a
Sudoku puzzle and scheduling students' classes while minimizing conflicts.

A problem that can be both solved and verified in polynomial time is
classified as a P problem. Some common P problems in computer science
are multiplying numbers, sorting data, and finding factors. Does it then
follow that P and NP problems are not equal to each other? Maybe, but this
question has not been proven either way, and if you can prove it, you will
be the winner of one of the seven Millennium Prizes and one-million
dollars richer!

Security

With all this sensitive and valuable data being transferred every second, it is
important to keep it secure. You probably would not yell your social
security or credit card numbers across a crowded room. Similarly, you
should not send this data through insecure methods. There are several ways
that malicious security hackers—*“black hats” who exploit weaknesses on a
computer or network—can steal or disrupt data. Some of these hackers just
want to harm or break a network while others want to gather this data for
other purposes, including identity theft or obtaining credit card numbers.
Not all hackers seek to do harm. A hacker is any skilled user of technology
who uses their prowess to solve problems. “White hat” security hackers
explore the vulnerabilities on a computer or network—with the owner's
consent—in order to help fix weaknesses and make data more secure.

In information security (InfoSec) there is a model designed to guide policies
known as the CIA triad (not to be confused with the Central Intelligence
Agency). These letters stand for confidentiality, integrity, and availability.
Confidentiality means that private data should remain private and
companies should take steps to ensure that hackers do not access this
information. Integrity means that data should be protected from being
altered or deleted by hackers or non-human events. Finally, the availability
of data means that all data should be accessible by authorized parties at
appropriate times.

Malware is another name for malicious software. Hackers might carry out
harmful tasks by installing such software with the intention of causing
damage to a computer or network. Common types of malware include, but
are not limited to, viruses, worms, logic bombs, Trojan horses, and botnets.
A virus is a program that infects other programs and usually spreads to
other programs or computers by copying itself repeatedly. Most viruses
spread due to user behavior. Opening an email attachment from an
unknown source or plugging an infected USB drive into a computer can
cause a virus to be installed. Once installed, it can be hard to remove a virus
since it masks itself as another program. Luckily, today’s anti-virus
software can catch most of these threats. While viruses need an application
to use as a host, worms are standalone pieces of malware that can disrupt a
network. Like a virus, a worm spreads by copying itself repeatedly, but in
the case of worms, human interaction is not necessary.

Viruses and worms often contain malicious code that will not execute until
certain conditions are met. Such code is known as a logic bomb. A
common example is code that will delete or encrypt data after a fixed
amount of time. A developer might also add a logic bomb to their code
designed to trigger if they are ever fired from their job or after a set amount
of time. In such cases, their former employer might have to pay them to fix
this new “unknown” problem.

Malware can also be designed to hide its true intent. An app, advertisement,
email, or game may seem innocent but, once opened or installed, deliver a
malicious payload. In the Iliad, Homer tells of ancient Greek soldiers
pulling a similar stunt at the gates of Troy by hiding inside a giant wooden
horse, presented as a gift. This gift appeared innocent, but the payload was

malicious. This type of malware is therefore known as a Trojan horse.
Many Trojan horses serve as a backdoor to the infected computer,
providing attackers with a way to access a device or network without
permission. Not all backdoors are malicious, however. A company may
need to access its employees' devices to provide technical support and
security updates, for example.

Another way hackers can cause havoc for a website is the distributed
denial-of-service attack (DDoS). In this method, hackers flood a site with
fake requests, making the site’s resources unavailable for legitimate users.
This method does not steal any information or try to install any viruses, it
simply hurts the site’s business. Most websites can handle a lot of traffic, so
hackers need to use huge numbers of computers for these attacks, more than
a group of bad actors' computers can handle. Instead of trying to carry out
this attack manually, they deploy a large network of Internet robots (bots for
short), known as a botnet. To build a botnet, hackers distribute malware to
a user's computer (or smartphone, smart TV, router, or other connected
device), usually in the form of a Trojan horse. This Trojan horse's payload
is a malicious bet. Once installed, the bot connects to a central computer
called the command-and-control server that instructs the bot what to do
next. These botnets are commonly used for DDoS attacks, but they can also
be used for other malicious activities like spying and brute-force attacks,
among others. There are many possible motives for a DDoS attack
including spite, revenge, and blackmail. Defenses against DDoS attacks
include blocking certain IP addresses and firewalls.

Hackers also try to steal data through phishing—using “bait” to trick users
into entering sensitive information like usernames, passwords, or credit card
numbers. Hackers may create a fake site or email that looks identical to a
trustworthy website and try to get users to log in or update their
information. Instead of logging in to the real site, though, this information is
sent directly to the hackers, who can easily test these usernames and
passwords on hundreds of other sites in a matter of seconds. Spear
phishing targets a specific person or group using pre-existing knowledge. If
phishing is trawling with a wide net then spear phishing is going after one
particular fish. One way users can protect themselves against phishing is by
always making sure the URL is correct before entering sensitive
information. Any site can add a subdomain to the beginning of their URL,

so https://amazon.com and http://amazon.ft543ffj.com are completely
different domains (the actual site is ft543ffj.com—more about domains in
the next unit). Another way that users can protect themselves is by making
sure they never use the same password for more than one website.

Password strength is equally important. Many users think if they use a
number and a symbol in their password then it will be hard to crack. This is
not the case. The main way to increase the strength of a password is by
making it longer. Hackers compile a list of passwords they find every time
data is data stolen. If a user's password is on that list, it takes no time at all
to break into their accounts. Hackers can even test all these passwords to
see if there is an at sign (@) in place of an A or a dollar sign ($) in place of
an S, so these common substitutions do not increase password strength.
Since length is the main indicator of a strong password, something like
“Bhdiu3fbEieef$nei3rf’ would be great, but it is doubtful anyone would—
or could—memorize a password like that for every site they visit. Password
management sites—like 1Password.com, LastPass, and KeePass—can be
used to generate and store these random passwords. Another technique is to
combine four or more random words into one long word. If one of the
words is obscure, that's even better, so a great password that is easier to
remember than random characters could be
“paperelephantchartreusecoconut.” This is longer than the previous
example but much easier to remember. It's a good practice to use a
password like this one to log in to a password management site and to have
this site store different, long, and random sets of characters for all other
sites. This way, you only need to memorize one password. It should go
without saying that you should keep this password secret—and don't use the
example from this book!

A user can do everything right when it comes to creating a secure and
unique password, but that's not always enough. If a company fails to take
proper precautions when storing passwords, it does not matter how strong
an individual's password is. If a hacker gets access to a company's database
that stores user credentials in plaintext then the hacker would have a list of
human readable usernames and passwords. Yet another reason to never
reuse passwords! For this reason, passwords should not be stored in
plaintext. Instead, only hashed versions of passwords should be retained.
Hashing is the process of running data through a function—such as MD5,

SHA-256, or bcrypt—that takes data of various sizes and returns a fixed
length value, the hash. These functions are considered one-way functions
since they are easy to calculate but hard to undo. Regardless of passwords'
original lengths and complexities, all hashed value will look similar.
Companies that use hashed passwords never even need to know the original
passwords. They simply store the hashed values. When a user attempts to
log in, the attempted password is run through the same hash function used
to store the password, and the two values are compared to each other.

Using SHA256, the password hashes of
“paperelephantchartreusecoconut”, “123!”, and “grn734hdf$$fgdh!gs”
would be:
“90CESD24B12D0F33BBC3F920392A9AF0A7994A59543FFE844132EE29
8C547C1DE”

“58CC480580F302B31AC8C42D470DF5C3CC7ABEC35D99098288A5A
3AC3B56A449”

“6CAA73EFBC5E0B49C481D25A1D5F1ESES57EB63B30102977707CB92
57B34C5255”

respectively. All three hashed passwords contain the same number of
characters, and any change in the plaintext passwords would drastically
change their hashed values. It is not advisable to use SHA256 or MD?5 for
hashing passwords, however, since hackers can quickly compute them.
berypt is a safer choice when dealing with passwords.

Cybersecurity is a cat-and-mouse game where attackers are constantly
finding new ways to circumvent new safeguards, including hashing.
Besides brute force, hackers can thwart hashed passwords by using a kind
of dictionary attack known as lookup or rainbow tables. These attacks are
effective because a given password, say “123!”, will always return the same
hash. To protect against these attacks, passwords can be salted before they
are hashed. A salt is a random set of characters added to the password,
resulting is something like “123!34567fdh *gj4”. Now the hashed result
will look completely different every time “123!” is used. With a long and
random enough salt, lookup and rainbow tables are not useful for cracking
passwords.

Multi-factor authentication (MFA) offers a way to protect against hackers
who do phish or steal users' credentials. MFA combines two or more
methods of authentication. When exactly two methods are implemented,
MFA is more commonly known as two-factor authentication (2FA).
These methods can combine something the user knows, something the user
has, and something the user is. Something the user knows includes a
password, a social security number, security questions, or any other
knowledge that only the user should know. Something the user has includes
a phone, a physical ID card, a debit card, a physical authentication token
such as Yubikey or RSA SecurelD, or a software authentication token like
Authy or Duo. Something a user is includes fingerprints, a face scan, an iris
scan, voice recognition, or even DNA. Using an ATM provides a well-
known example of 2FA. The user needs their debit card (something they
have) and their PIN (personal identification number, something they know)
in order to access their bank account. If a bad actor steals your debit card,
they cannot take all your money since they do not know your PIN.
Likewise, if MFA is enabled and a hacker has your username and password,
they would not be able to access your account without an additional form of
authentication. This other form might be a six-digit code that changes every
thirty seconds on a keychain fob or a text message or call to your cell
phone. Either way, the hacker will not have this information, adding another
layer of security.

Encryption

The most basic form of cryptography—methods for sending data securely
in the presence of an adversary—is encryption, which is simply taking text
and converting it so that it is illegible. The reverse process—converting the
illegible text back into legible text—is known as decryption. To be able to
encrypt and decrypt data, a list of instructions is needed. A cipher is a pair
of algorithms—the lists of instructions—that give details on how to
encrypt and decrypt the data. There is also a shared secret—or key—that is
needed to make the encryption harder to crack.

One famous cipher is the Caesar cipher or Caesar shift where each letter is
shifted the same amount. So if the shift (or key) was set to 1, then “A”
would become “B”; “R” would become “S”; “X” would become “Y”’; and
“Z’” would loop around to the beginning of the alphabet and become “A.”

If the shift was 10, it would move each letter 10 places ahead and “A”
would become “K.” To decrypt the message, simply shift the key
backwards.
Example:
Key: 14
Plain text: Computer Science is fun Encrypted text: Qcadihsf
Ggwsbgs wg tib This is a very simple cipher to use, but patterns of
letters make it simple to crack or decipher. Using computers, this
cipher would be solved in a split second.

Another example of simple encryption is the random substitution cipher.
In this cipher, a letter is mapped or swapped with another letter in the
alphabet, so “A” could be mapped to “F”; “”’B” could be mapped to “Z”;
“C” could be mapped to “A” and so on until all 26 letters were mapped to
another letter.

Example:
ABCDEFGHIJKLMNOPQRSTUVWXY?Z

Key: SGPFNEYQUJKRCDVMIZAXHWOLBT Plain text: Computer
Science is fun Encrypted text: Pvcmhxnz Apundpn ua ehd This seems
much harder to crack than the Caesar cipher, but it also has patterns, which
makes it easy to break. This can be done quickly by a computer, but it can
also be done by hand by looking at reoccurring sets of letters and letter
frequency. The letter “E” is the most common letter in the English
language, so whatever letter shows up most in the encrypted text is
probably mapped to “E.” If the same three letters appear multiple times, this
could be the word “the,” solving three letters at once.

A more difficult cipher to crack is the Vigenére cipher, which has
similarities to the Caesar cipher and dates to the 1460s. As with the Caesar
cipher, the Vigenere cipher uses a key to set the amount of letters the
message will shift, but in the Vigenere cipher, the key is much longer and
not the same for every letter. If the key was a phrase like “applesaretasty”
then the first 14 characters would shift according to what letter was in the
key at that place. The first letter would shift by “A” or 0, the second and
third by “P” or 15, and so on. The fifteenth letter would start back at the
beginning of the key. This process would then repeat itself until the whole
text is encrypted.

Even though this cipher is difficult to crack, patterns and letter frequencies
can still be used to find the key. The only way to make it unbreakable
would be to have a key that was longer than the text itself, removing any
patterns that arise (one-time pads use this method).

Example (assuming “_” is the 27" letter): Key: APPLESARETASTY
Plain text: COMPUTER_SCIENCE_IS_FUN Encrypted text:
CDBAYLEI_WVIWGAE_XH_QYF

A famous example of breaking ciphers and decrypting messages can be
seen in the film The Imitation Game, which tells the true story of Alan
Turing, an English mathematician—he would be called a computer scientist
today—who helped crack the German Enigma machine during World War
I1, allowing the Allies to read encrypted German messages and shortening
the war by several years. A YouTube search will turn up videos that show
exactly how the machine worked and how it was eventually cracked.

When talking about encryption, it is common to refer to two people
communicating with each other while another tries to listen in.
Traditionally, these two people are named Alice and Bob while the
eavesdropper is called Eve (get it?). To use any of the previously discussed
cipher examples, a shared key is needed that no one else knows. This type
of key is called a secret or private key. If Alice and Bob both know the
private key and Eve does not then encryption and decryption are simple.
Eve will not be able to read the message between Alice and Bob, even if
she intercepts it. Without the private key, the message looks like jumbled
characters. Since Alice and Bob each use the same key both to encrypt and
decrypt the message, it is known as symmetric key encryption. This
method works well to send secret messages, but the problem is obtaining
the private key. What if Alice is in New York and Bob is in Tokyo? If they
try to send the key to each other then Eve may be able to intercept it en
route and decrypt any future messages.

Public key encryption is a system that allows Alice and Bob to publicly
publish a key that everyone, including Eve, can see. One way to think about
public keys is by considering padlocks. Encrypting a message using Bob’s
public key is like putting a padlock on the message that only Bob has the
key to, so if Alice wants to send an encrypted message to Bob, she encrypts

it using Bob’s public key. Only Bob has the information needed to unlock
the “padlock” and read the message. Since the encryption key is different
than the decryption key, public key encryption is also known as
asymmetric key encryption.

Public key encryption works by creating a problem that is computationally
hard, like the traveling Salesman dilemma described at the beginning of this
unit. A computer could crack the cipher, but it would take several super
computers hundreds or even thousands of years (Unless and until quantum
computers become widely available. These machines could theoretically
make cracking current encryption algorithms trivially easy). Even though
public key encryption is tough to break, it is very simple to use. A problem
that is easy in one direction and difficult in the other is known as a one-way
function. Another one-way function, which is used in public keys as well,
is clock or modular arithmetic. Imagine that an analog clock was set to
12:00 then someone moved the hour hand to 3:00. It might appear that the
hour hand was only moved ahead 3 hours, but it could have been moved
ahead a full rotation plus 3 hours which is 15 hours or 2 full rotations plus 3
hours which is 27 hours. It could have been moved ahead an infinite
number of rotations plus 3 hours. It is impossible to know. The only person
who has this information is the person who moved the clock ahead. This
problem is easy for the person moving the clock hand but impossible for
anyone who does not know how many rotations were made. In a very broad
way, this is how public key encryption works.

Two of the most commonly used public key encryption algorithms are
Diffie-Hellman (named after Whitefield Diffie and Martin Hellman) and
RSA (named after Ron Rivest, Adi Shamir, and Leonard Adleman). Diffie-
Hellman was one of the first public key encryption protocols and dates to
the mid-1970s. Diffie-Hellman is considered a key exchange algorithm, a
way to swap the private keys needed for other encryption algorithms.

RSA followed Diffie-Hellman. In addition to asymmetric encryption, it also
allows for digital signatures. The digital signature is an electronic
signature that, by using a public key, can be verified to be authentic. Both
these algorithms are integral to security today.

Another application of public key encryption can be seen when browsing
the web. It is important to trust the website being visited and also to have a

secure connection, so Eve cannot see—or alter—what is being
communicated between the user and the site. This happens every time
https:// is used. The “s” stands for secure and indicates that the Diffie-
Hellman key exchange, RSA, or other methods are being used to secure the
connection through a digital handshake. This process is called Transport
Layer Security (TLS). Its predecessor was Secure Sockets Layer (SSL).
TLS is the newer protocol, but this process is still referred to as SSL, even
though TLS is being used. SSL uses a public key by authenticating a
Digital Certificate, a trusted third-party file that verifies that the site is
controlled by the legitimate owner. The entity that stores, signs, and issues
these digital certificates is known as a certificate authority or CA. When
possible, always use SSL (https) to visit websites. HTTPS Everywhere is a
free and open source browser plug-in released by the Electronic Frontier
Foundation and the Tor Project that forces https over http whenever
possible.

Summary

Some of the largest and most profitable enterprises to ever exist in human
history are built on the foundation of big data. In order to keep all this
information secure, cryptography and other security practices are
indispensable. As this book goes to press, data security and privacy are
front-page news and the subject of heated congressional hearings. Given the
power and profits built on the control of this information, the debate over
who owns data, how it should be protected, and what it can be used for is
unlikely to be resolved anytime soon. A basic understanding of the
underlying technology is essential not just for computer users but for
citizens. Similarly, networks drive the modern economy. In the following
unit, we'll discuss the networks that connect computers to each other,
especially the network of networks that is foundational not just to computer
science but to modern life: The Internet.

Important Vocabulary

Asymmetric Key Encryption — element of the CIA triad stating that
data should be accessible by authorized parties at appropriate times
Availability — a different key is used to encrypt and decrypt a
message Backdoor — a secret way to bypass traditional access to a

device or network Botnet — a large network of internet-robots called
bots controlled by a command-and-control server, often used for
DDoS attacks Caesar Cipher — a shift cipher where each letter is
shifted the same amount Certificate authority (CA) — the entity that
stores, signs, and issues digital certificates CIA Triad — in
information security (InfoSec), the model designed to guide policies:
Confidentiality, Integrity, Availability Cipher — a pair of algorithms
that give details on how to encrypt and decrypt data
Computationally Hard — a problem that takes too long even for a
computer to find the exact solution Confidentiality — element of the
CIA triad stating that private data should remain private DDoS —
distributed denial-of-service attack, hackers flood a site with fake
requests, making all the site’s resources unavailable for legitimate
users Decryption — the reverse process of encryption Digital
Certificate — a trusted third-party file that verifies a site as legitimate
Digital Signature — an electronic signature that, by using a public
key, can be verified authentic Encryption — taking text and
converting it so it is illegible Hacker — anyone who uses their
technological skills to solve problems. A malicious security hacker
exploits weakness on a computer or network and can steal or disrupt
data Hashing — the process of running data through a one-way
function that takes data of varying sizes and returns a unique fixed
length value Heuristic Approach — an approach that gives results
that are “good enough” when an exact answer is not necessary
Integrity — element of the CIA triad stating that data should not be
altered or deleted by unauthorized methods Key — in cryptography, a
shared secret to make encryption harder to crack Logic Bomb — code
that has been placed into software that waits to run until specific
conditions are met Malware — malicious software intended to cause
damage to a computer or network Modular Arithmetic — using the
remainder when dividing, also known as clock arithmetic Multi-
factor Authentication (MFA) — using two or more methods for
verifying a user NP Problem — nondeterministic polynomial time, a
problem that can be verified, but not solved, in polynomial time
One-way Function — a problem that is easy in one direction and
difficult in the other P Problem — polynomial time, a problem that
can both be solved and verified in polynomial time Phishing — using

“bait” to trick a user into handing over sensitive information like
usernames, passwords, or credit card numbers Private Key — a
shared secret needed to decrypt a message Public Key — a system
that allows a key to be publicly published Salting — adding a random
set of characters to a password before it is hashed to protect against
rainbow table attacks Spear phishing — a type of phishing attack that
targets a specific person or group using pre-existing knowledge SSL
— Secure Sockets Layer, issues digital certificates for websites
Substitution Cipher — a cipher where a letter is mapped or swapped
with another letter in the alphabet Symmetric Key Encryption — the
same key is used both to encrypt and decrypt a message TLS —
Transport Layer Security, issues digital certificates for websites
Traveling Salesman Problem (TSP) — an NP-hard problem that,
when given distances between pairs of cities, seeks to map out the
shortest route between many cities and return back to the original
city Trojan Horse — malware disguised to hide its true intent Two-
factor Authentication (2FA) — a subset of MFA where exactly two
methods for verifying a user are implemented Virus — a program that
infects other programs and usually spreads to other programs or
computers by copying itself repeatedly Worm — a standalone piece
of malware that can disrupt a network by copying itself repeatedly
without human interaction

6 - The Internet

“The goal of the Web is to serve humanity. We build it now so that those
who come to it later will be able to create things that we cannot ourselves
imagine.” - Tim Berners-Lee

Introduction

On its own, a computer is a useful tool, but when connected to other
computers, its potential increases exponentially. As consequential as the
introduction of personal computers was, its impact on society was not as
significant as the introduction of many other technologies, such as the
telephone, radio, or the automobile. This changed with the rise of the
Internet. Is there any aspect of modern life that has not been altered by the
Internet?

A computer network is a group of computers that are connected so they can
share resources using a data link—either a cable or wireless connection.
Networks can vary in size from those serving large businesses with
thousands of computers that are all sharing files to a school with twenty
computers to a family with three computers all connecting to the same
home media server. The Internet is a network of these smaller networks
connected according to a specific set of rules that computers use to facilitate
their communications with each other. These rules are called protocols and
the one the Internet uses is aptly named Internet Protocol (IP), which
works closely with Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).

The Internet is not as new as it may seem. Its origins date to 1969 and an
agency of the U.S. Department of Defense called the Advanced Research
Projects Agency (ARPA), which added the word “Defense” to the
beginning of its name in 1972 to become DARPA. This agency created a
packet-switching network appropriately known as the Advanced Research
Projects Agency Network, or ARPANET. ARPANET was the first network
to use the TCP/IP protocols that make up the Internet Protocol Suite, which
is still used today (but which did not become the standard until 1982).
ARPANET broke data up into smaller, more manageable pieces called
packets (or datagrams in unreliable protocols, such as UDP), which

continue to be the basis for digital communication today. Even though it
was decommissioned on February 28, 1990, ARPANET is still considered
the foundation of today’s Internet.

The Internet Protocol Suite (TCP/IP
Model)

While the Internet uses several communication protocols, it is built on the
foundation of TCP/IP. In the early 1970s, DARPA researchers Bob Kahn
and Vint Cerf built on earlier protocols to invent the Transmission Control
Protocol (TCP). While it has been updated over the decades, TCP,
combined with Internet Protocol (IP), remains at the heart of the Internet
suite still used today. Because ARPA/DARPA originally funded the
development of this model, it is also known as the Department of Defense
Model (DoD Model). There are newer models that share the same name,
but this book uses “Internet Protocol Suite” to refer to this original model.
The Internet Protocol Suite contains four abstract layers. Abstraction—one
of this course’s “computation thinking practices”—is an important concept
in computer science. In this case, it means that each layer focuses on its
own functions and does not need to know what the other layers are doing.
These layers are the application layer, the transport layer, the Internet layer,
and the link layer.

The Application Layer

The application layer is the top layer of the Internet Protocol Suite. This
layer defines rules for different user application and works closely with the
transport layer to determine whether the data needs to be reliable or not.

One service that operates at the application layer is the World Wide Web.
While many people commonly refer to the Web as if it is the entire Internet,
they are not the same thing. The Internet has many services, which each use
separate protocols at the application layer. The Web is just one of them.
Other important application layer services and protocols include email
(Internet Message Access Protocol or IMAP, Post Office Protocol or POP,
and Simple Mail Transfer Protocol or SMTP), the Domain Name System

(DNS), Internet telephony (Voice over Internet Protocol or VoIP), and file
transfer (FTP or SFTP). Numerous protocols exist at the application layer
including The Onion Router (Tor), Bitcoin, BitTorrent, Secure Shell (SSH),
and Remote Desktop Protocol (RDP). These protocols, along with many
others, each provide specific services.

Websites display on browsers using the Hypertext Transfer Protocol
(HTTP) or Hypertext Transfer Protocol Secure (HTTPS), which provides
an encrypted connection between the browser and website (using SSL/TLS
or similar, as discussed in unit five). For this reason, website addresses
always begin with http:// or https://. Although, modern browsers sometimes
hide this part of the address.

Hypertext Transfer Protocol takes its name from Hypertext Markup
Language (HTML), the standard language for creating web pages. A
markup language is a way to format text so it stands out—changing colors,
fonts, alignment, etc. It is not a programming language. HTML uses tags
that are between angle brackets (< and >) and is usually paired with
Cascading Style Sheets (CSS) and JavaScript. We will return to HTML
and CSS in unit seven and JavaScript in unit eight.

A website is made up of files stored on a computer, also called a server. A
server could be a home computer, part of a large server farm, or anything in
between. When a computer requests a specific file (like a website) or
service from a server, it is known as the client. The Internet runs on this
client-server model. A client sends a request to a server then the server
sends the requested information back to the client. The client can request
the server by using its unique IP address (IPv4 or IPv6). It would be very
tedious to memorize every IP address of every webpage, so instead, domain
names are used.

A domain name is simply a name given or linked to an IP address. These
are the website names that are typed into the web browser, like google.com
or wordpress.org. Google’s IP address is 8.8.8.8 (not that hard to remember)
and WordPress's is 74.200.243.254 (among others). Domain names are
broken into the top-level domain (TLD) and subdomains (including the
second-level domain (SLD). Top-level domains are the highest level in the
DNS hierarchy. They are the letters which follow the last period in the
domain name, including .com, .org, .edu, .net, .co, and .eu. There are over

1,500 TLDs, which include countries and generic top-level domains, some
of which may be restricted for specific purposes. Domain name assignments
are managed by the Internet Assigned Number Authority (IANA), a non-
profit organization which is a department of the Internet Corporation for
Assigned Names and Numbers (ICANN).

Besides the home page, most websites contain many other pages or files.
These files and folders use a Uniform Resource Locator or URL to call or
locate specific files from the domain. An example of a URL is
https://www.youtube.com/watch ?v=dQw4w9WgXcQ. The domain name of
this file is youtube.com. When a domain name is used on its own, the URL
will usually default to opening a file called index.html or home.html, so
entering the domain name https://csplusplus.com into your browser's
address bar will cause it to open the URL

https://csplusplus.com/index.html. Any domain can also be preceded by a
subdomain, which is any domain that is part of another domain, so pages
like https://videos. csplusplus.com, https://www.csplusplus.com, and
https://mail. csplusplus.com are all owned by csplusplus.com. Organizations
usually use subdomains when they want to allocate unique names to distinct
parts of the organization, such as videos and mail in the examples above.
Every domain outside of the top-level domains are technically subdomains,
so csplusplus is both a second-level domain (immediately to the left of the
top-level domain) and a subdomain of com.

Other parts of the URL include the protocol (usually http or https), the path
to the file requested, and occasionally a port number. Paths dig deeper into
the folders that contain the document and follow the top-level domain using
slashes (/). A port number sometimes follows the top-level domain,
indicated by a colon. The default ports are 80 for http and 443 for https.
These ports do not need to be specified as they are used automatically for
these protocols.

subdomain port

— e — -
https:/ /top-secret.apcompsciprinciples.com:443 / passwords /crypto/ private-key.gif
S o

protocol tnp—]cwl domain path

When a client requests a file from a server, the first thing the client needs to
do is to determine the IP address of the URL's domain name, which is the
function of the Domain Name System (DNS), a protocol on the application
layer. The DNS is one of the smaller networks that make up the Internet and
contains many servers that act like phone books. These computers are
called name servers and contain many IP addresses and their matching
domain names. The first step of retrieving an IP address is a DNS resolver.
Many of these resolvers are owned by Internet Service Providers (ISPs),
such as Comcast, AT&T, Time Warner, Verizon, Cox, and others. There are
also other third parties who run resolvers, such as Google, Cloudflare, and
OpenDNS.

Since there are so many IP addresses and domain names, the DSN is broken
down into several steps. After the resolver check to see if the IP address is
in its cache, it asks one of thirteen Root Name Servers that contain
information about the appropriate TLD server to ask next. Most of the root
name servers are networks of computers, providing redundancy in case of
failure. They are named A—M and are maintained by a handful of different
companies, groups, and universities. A few of these are Verisign, University
of Maryland, U.S. Army Research Lab, and ICANN. The final step is to
obtain info on the authoritative name server that contains the site’s IP
address.

Root Marme

D N S ets IP address of LIRL »
{1] I R 0 i

099 TLD Sarumr TLD Name
. sohangu [5) < {3} ¥ Server

= Server
faapEd Y

Authoritative
Name
E-I_'f'h.'l_'l

—
-
i

-.I ": ..l:]P

Altaches -nJ-:I-'i.'".-s.{:'. to packets ”%}{E;‘E'r
The Transport Layer

After a website's IP address has been obtained, the client’s request can be
prepared for transmission to the server by using transport layer protocols.
The Transmission Control Protocol (TCP) breaks down the request into
smaller, more manageable pieces called packets. TCP also numbers these
packets, so when they are reassembled (on the server side), they will be in
the correct order. When TCP finishes, the packets are handed off to the
Internet Protocol found on the network layer of the Internet Protocol Suite.

The User Datagram Protocol (UDP) also breaks data down into packet-
like structures known as datagrams. UDP works much like TCP but
instead of numbering the packets, UDP sends the datagrams to the server
without verifying whether any or all datagrams reached their destination.
This protocol works best when time is of the essence, such as in video
games or real-time audio and video. These applications cannot afford to re-
request datagrams since the moment has already passed.

Since, TCP packets are numbered, it is easy to keep track of missing
packets. If the server or host sees that packet number 25 is missing, it will
request it again. Once the packet makes it to the destination, it is
reassembled into the original file. This ensures that all packets eventually

make it to the correct destination. Verifying that all packets are received
increases the total time to send all packets, so there is a trade-off. That
every packet will eventually arrive (or that their failure to arrive will be
known) makes TCP reliable. A reliable protocol is one that lets the client
know if all packets sent made it to the server. In contrast, when UDP drops
packets, they are neither re-requested nor resent, so this protocol is
generally faster but unreliable.

Overall, the Internet is fault-tolerant: Even if there is an error, the system
will still work properly. Without this property, the whole system could fail
if a single packet was misplaced, a cable was cut, or a router went down.

The Internet Layer

Once the data is ready to be transferred, the Internet Protocol (IP) creates
addresses and attaches them to each packet, creating a way to keep track of
packets as they travel across the physical Internet.

Just as every business and home has a unique address so the post office can
deliver mail, every computer and connected device has its own address,
known as an Internet Protocol address or IP address for short. Even though
everything on the computer is stored in binary, IP addresses are usually
written in a form that humans can understand, like telephone numbers.
Since every computer, printer, router, smartphone, and assorted device is
connected to the Internet, the number of IP addresses in use is growing fast.
Along with domain names, IP addresses are managed by IANA and
ICANN.

Internet Protocol has gone through many versions, but the fourth version
(IPv4) routes the most Internet traffic. IPv4 uses 32-bit addresses, which

allow for a possible 232 or 4,294,967,296 possible addresses. These
addresses are broken down into 4 bytes, each separated by a period and
displayed in decimal, giving a value from 0-255. An IPv4 address looks
something like: 34.203.4.189.

Four billion IP addresses seemed like more than enough back in the early
1980s when IPv4 was created, but with so many people on the Internet
using multiple devices today, they have run out. In the late 1990s the

Internet Engineering Task Force (IETF) came up with an addressing system
that uses 128-bits, called IPv6. This allows for 2128 possible addresses, that

is more than 3.4 x 1038 possibilities. This number is extremely large, much
larger than the number of grains of sand or even the number of atoms on the
planet. There will never be close to that many addresses. Since writing
these addresses in bits require 128 ones and zeros, they are written in
hexadecimal and might look like this:
2001:0db8:85a3:0000:0000:8a2e:0370:7334. Since there are so many
unused bytes, zeros can be omitted and replaced with a double colon:
2001:0db8:85a3::8a2e:0370:7334. Most sites have both an IPv4 and IPv6
address to prepare for a smooth transition to using IPv6 exclusively,
something that most people won’t even notice when it happens.

Since IP addresses are stored in software, they can change and be deleted.
For this reason, all devices that are connected to a network also have a
unique, physical address stored in the computer’s ROM. This address is
called the media access control address, or MAC address for short. Since
they are physically added by the manufacturer, a MAC address can also
indicate what brand of device is attached to the address. In practice, though,
malicious actors and others can easily mask or “spoof” MAC addresses.

The Link Layer

The link layer is the Internet Protocol Suite's lowest level. In the TCP/IP
Model, this layer includes the protocols that manage the interface between
physically connected nodes on a local network. The intricacies of the link
layer are outside the scope of this course, but protocols included in this
layer include the Address Resolution Protocol (ARP), the Reverse Address
Resolution Protocol (RARP), and the Neighbor Discovery Protocol (NDP).

The Physical Internet

Unlike some Internet Protocol Models, TCP/IP does not specifically name a
physical layer. Whether or not it's listed as a distinct layer, the next step in
the process is physically transferring binary data from the client to the
server.

Before any of this data can travel anywhere, it must first be converted (or
modulated) from ones and zeros to the appropriate signal (light, electricity,
or radio waves). A modem is the device that handles both the modulation,
for outgoing signals, and the demodulation, for incoming signals.

Once the other protocols have done their work, the data is sent to a
networking device used to direct Internet traffic called a router. In home
networks, routers are usually plugged into a modem, and it is common to
see consumer products that serve as both router and modem. The newly
made packets are sent to this router first. This personal router then sends the
packets to the ISP’s routers, and from here they are sent to many different
routers along the “route” to the client. These packets are trying to find the
fastest route possible using IP, so if there is high traffic at one router, they
will take a different path. Much like roadways in the US, if there is a major
accident or traffic jam, the cars (packets) will take a different road. The
TCP’s job of numbering and addressing the packets is important in case
some packets don’t make the trip. This is not uncommon. The client will
simply ask for the missing packets by number instead of repeating the entire
request. When the server receives these packets, it does the same process in
reverse.

The server first collects the bits and turns them into packets then TCP
arranges them in order and turns the packets back into a message. The
request is then processed and sent back to the client in the same manner.

The closest part of the Internet's physical infrastructure, as mentioned
above, is the first router that data is sent to. This router is usually a local
business or home router. The data then gets sent to the ISP’s router. For
Internet provided over a cell signal (4G, 5G, LTE, etc.), the router is stored
at the cell tower’s location. Once the data reaches the ISP’s initial point of
contact, the packets are then sent through several more routers that are
connected to the previous router by one of three mediums: electricity, light,
or radio waves.

Electricity

One way to send these packets from one router to the next is by using
copper wires. These copper wires send pulses that get converted to ones and

zeros. Copper wire is found in most of the wires seen when connecting
routers over a short distance and includes telephone wires (dial-up), DSL
(another way to use telephone lines), Ethernet (cat5/6 cables), and cable
Internet (coaxial). Category 5 and 6 cables are the predominant way to use
electricity for networking today. Referred to simply as cat5 or cat6, these
cables use twisted pairs (a method of twisting two wires together to reduce
interference) to send signals over copper wires. There are a few potential
downsides to using these cables. First, the signal can become degraded
when sent over a long distance. Second, these wires are affected by
electrical disturbances, such as lightning. Wired networking is usually much
faster and more reliable than wireless, since there is less interference, but it
is not nearly as fast as the speed of light.

Light

The fastest way to send packets, especially over long distances, is by using
infrared light in the form of hair thin, transparent fibers called fiber optic
cables (either single-mode or multimode). Not only is using fiber optic
cables faster, but they also have a higher bandwidth and are not disturbed
by electromagnetic interference. Fiber optic cables can consist of anywhere
from a single pair up to several hundred pairs of fibers that can transmit
light pulses that get converted back into ones and zeros by modems.

The two main types of fiber optic cable are single-mode and multimode
cables. Multimode cables are thicker (about 62.5 microns) than single-
mode (about 10 microns) and can send light at different wavelengths
through the same fiber. These extra wavelengths result in higher bandwidth
but cause distortion over long distances (more than a few miles). For longer
distances, single-mode cable is used. These are thinner and carry just one
wavelength or mode but can carry a signal across very long distances.

While fiber optic cables are becoming more prevalent in large cities, they
are most common in large underwater systems that connect continents. An
interactive map of the cables resting at the bottom of oceans and where they
connect to land can be seen on TeleGeography’s website
(https://www.submarinecablemap.com/). Once the data reaches land, it
travels from router to router until it arrives at the correct location. Since this
data is traveling at the speed of light, it takes a fraction of a second to travel

from Europe to the United States. Most of the cable's girth is used to protect
the hair-thin fibers that send the data thousands of miles in a split second.

Radio

The final way to transfer data is by radio waves. Radio waves are the part of
the electromagnetic (EM) spectrum from 3 Hz to 3000 GHz. Since these
waves exist on the EM spectrum, they travel at the speed of light—in
theory. However the Earth is not a vacuum, so some mediums (gas, water,
air, glass) slow the signal down while other things (cement, wood, humans)
absorb some of the signal.

Some frequencies on the electromagnetic spectrum are used for AM and
FM radio, broadcast television, satellite radio, microwaves, GPS, other
forms of communication, and of course many Internet related transmissions.
These frequencies are usually assigned by a branch of each country's
government, especially since some frequencies do not travel very far.
Lower frequencies travel farther since they face less electromagnetic
interference and can better pass through objects. With so many towers
available nowadays, high frequencies can be just as useful. US frequency
allocations are public and are provided by the US Department of
Commerce. Most television, cell phone, GPS, Wi-Fi, Bluetooth, walkie-
talkie, and cordless phone signals are found in the UHF (ultra-high
frequency) range, which spans 300 MHz to 3 GHz. Allocations are always
changing as old technology becomes obsolete and new technology becomes
more in-demand. The most popular wireless protocols have recently been
rebranded as Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), and Wi-Fi 6
(802.11ax). Wi-Fi 4 works in both the 2.4 GHz and 5 GHz bands and can
reach speeds up to 450 Mbps under perfect conditions. Wi-Fi 5 only uses
the 5 GHz band and can reach speeds up to several Gbps. The newest Wi-Fi
standard at the time of writing is Wi-Fi 6. This protocol debuted in late
2019 and can use all bands from 1 GHz up to 6 GHz, theoretically reaching
speeds up to 11 Gbps under perfect conditions.

Most current cellular devices use a fourth-generation technology called 4G,
and some are already moving to the fifth generation, aptly named 5G. 4G
uses bands on the spectrum ranging, depending on the cell carrier, from
600MHz to 2.5 GHz. 4G brought speeds over ten times faster than 3G and
paved the way for streaming video, ride-sharing apps, and more.

5G uses multiple bands of radio spectrum, but the most commonly
discussed type is called millimeter-wave 5G. Millimeter-wave 5G uses
frequencies from 24.25 GHz to 52.60 GHz and drastically improves not
only bandwidth but also latency in comparison to 4G. Unfortunately, these
speeds come at the cost of needing many more small cells to make up for
the shorter distance that these radio waves can travel without degradation.

Speed

When sending digital data, everything is broken down to ones and zeros—
or bits. The number of bits that can be processed per second is called the bit
rate. The broader term bandwidth refers to the amount of resources
available to transmit data and is usually measured in bit rate or frequency.
Latency is sometimes defined as the amount of delay when sending digital
data over a network but is more commonly understood as the round-trip
time information takes to get from the client to the server and back. Latency
is measured in milliseconds and can be found by pinging an IP address or
URL. Since this data is traveling at the speed of light, latency between
North America and Europe is less than 50 milliseconds, in other words, fast.

Summary

Since its origins as a communication tool for researchers, the Internet has
grown to encompass nearly every aspect of modern life. Built on protocols
—sets of rules—that allow computers on many different networks to
communicate with each other, the Internet can seem like an amorphous,
non-material thing: a cloud. But all this information is being sent through a
physical infrastructure made up of modems, routers, and servers, each
sending and receiving signals using electricity, light, and radio waves.
While the Internet includes numerous protocols and is more than just the
World Wide Web, for many, the Hypertext Transfer Protocol (HTTP)—the
set of rules for transmitting websites—is synonymous with the Internet. In
the following unit, we turn to the tools you need to create your own
websites: HTML and CSS.

Important Vocabulary

ARPANET - the Advanced Research Projects Agency Network, the
first network to use TCP/IP

Bandwidth — the amount of resources available to transmit data
Client — any computer that requests a service Cloud Computing —
using a remote server to store files Datagrams — Similar to packets,
used in unreliable protocols such as UDP

DNS — Domain Name System, one of the smaller networks that make
up the Internet. It contains many servers that act like phone books
Domain Name — a name given or linked to an IP address Fault-
Tolerant — a property of IP. If there is an error, it still works properly
FTP — File Transfer Protocol, used for transferring files between a
client and a server HTML — Hyper Text Markup Language, the
standard markup language for creating web pages HTTP — Hyper
Text Transfer Protocol, used for websites HTTPS — a secure version
of HTTP that uses SSL/TLS

IMAP - Internet Message Access Protocol, used for email Internet
— a network of smaller networks connected using specific sets of
rules that computers use to communicate with each other Internet
Protocol Suite — Often referred to as TCP/IP, the four abstract layers
in the DoD Model of the Internet IP — Internet protocol, a set of rules
for sending packets over the Internet IP Address — a unique
identifier for every device on the Internet IPv4 — the version of IP
that uses 32-bit addresses IPv6 — the version of IP that uses 128-bit
addresses ISP — Internet Service Provider Latency — the amount of
delay when sending digital data over the Internet or the round-trip
time information takes to get from the client to the server and back
MAC (media access control) Address — a unique, physical address
that is stored in the computer’s ROM

Modem - a device that handles both the modulation and the
demodulation of signals Name Server — a server that contains many
IP addresses and their matching domain names Network — a group
of computers that are connected so they can share resources using a
data link Packets — small chunks of data used in TCP/IP

POP - Post Office Protocol, used for email Protocel — a specific set
of rules Reliable — a protocol that lets the client know if the server

received all sent packets Root Name Server — one of thirteen servers
that contain every IP address and its matching domain name Router
— a networking device that routes Internet traffic to the destination
Second-Level Domain — the second highest level in the DNS
hierarchy, found directly to the left of the top-level domain in a
domain name Server — any computer that provides a service SMTP
— Simple Mail Transfer Protocol Subdomain — precedes the domain
name, owned by the domain https://subdomain.domain.com TCP —
Transmission Control Protocol, a set of rules for breaking down
requests into smaller, more manageable, numbered packets Top-
Level Domain — the highest level in the DNS hierarchy, found to the
right of the final period in a domain name UDP — User Datagram
Protocol, like TCP and usually used for streaming media URL —
Uniform Resource Locator, specifies where to find a file on a domain
VoIP - Voice over Internet Protocol, used for telephony Web
(World Wide Web) — the part of the Internet that uses HTTP and
HTTPS

7 — Web Design: HI'ML and CSS

“A successful website does three things: It attracts the right kinds of
visitors. Guides them to the main services or product you offer. Collect
Contact details for future ongoing relation.” - Mohamed Saad

Introduction

Since Tim Berners-Lee first deployed HTTP in 1989—more than thirty
years ago—the World Wide Web has grown to a previously unimaginable
scale, and websites have gained ever greater levels of complexity. There are
now many useful tools available to craft complex and aesthetically pleasing
websites, including HTML (Hypertext Markup Language) and CSS
(Cascading Style Sheets) editors. A few popular pieces of software for
writing and editing web pages are text editors (most are free or included
with operating systems), Adobe Brackets (a free download), and Adobe
Dreamweaver (not free). There are also free frameworks that can be used as
a starting point, such as Bootstrap.

Editors

HTML and CSS can both can be written with nothing more than a simple
text editor. That said, countless tools exist to make the process easier. Some
of these tools are built into editors and include features like color coding,
auto-complete, spell check, help finding bugs, and automatically closing
things that need to be closed. A few popular editors include Notepad++,
Sublime Text, TextPad, and Brackets.

Some editors also support WYSIWYG (what you see is what you get),
which is similar to changing fonts and colors on Microsoft Word.
Dreamweaver is a WYSIWYG editor that will be explored in the next sub-
unit.

HTML

Tim Berners-Lee created Hypertext Markup Language (HTML, currently in
version 5.2) while working as a physicist at CERN. Berners-Lee is credited

with creating HTML and the World Wide Web (not to be confused with the
Internet) when he sent a March 1989 memo to CERN management titled
Information Management: A Proposal. The original memo called this
hypertext system “Mesh,” but Berners-Lee renamed it “HTML” when
writing the code in 1990.

As the name suggests, markup languages like HTML are similar to a draft
term paper that an English teacher has marked up with a red pen. The
markups are easily distinguished from the text itself. Instead of a red pen,
HTML uses tags to add markup. These tags are contained inside angle
brackets (< and >). Tags can be used to directly insert content (like images)
into pages or can affect any text that is surrounded by an opening and a
closing tag (such as paragraphs and links).

Basic Structure

The file extension .html indicates HTML files, but .htm extensions may also
be seen. They're holdovers from the time when some systems could only
use three-letter file extensions. HTML files all follow a similar structure:

<!DOCTYPE html>
<html>
<head>
<title>Title Goes Here</title>
</head>
<body>
</body>
</html>

The first line defines the document type, which has become much simpler
in HTML 5: <!DOCTYPE htmi>. The next tag, which surrounds the rest of the
document, tells the document that anything between the opening <html> and
closing </html> tags should be read as HTML. This tag is useful since things
like CSS and JavaScript can also be embedded in an HTML file.

The next section is the header of the document, defined by the <head> and
</head> tags. This section includes various metadata and the title of the page
that will be displayed by a browser. The <title> and </itle> tags are used to
define the title.

The body of the webpage is the final part of the structure. Defined by
<body> and </body>, it includes all visible elements of the page. Many
other tags are used in this section. Here are some of the most common:

Heading Six sizes of headings, h1 being the largest and

most important: <hl>...<h6>

Paragraph <p=

Anchor used mainly for links: <a>

Image

Division Defines sections of a webpage: <div>
Emphasis Italicizes text and also emphasizes for screen

readers:

Strong Bolds text and also affects screen readers:

Inline Frame Used to embed other media into a webpage,

such as YouTube videos: <iframe>

Comment Used to add content that is not read by the

web browser: </-- ... -->

Attributes

Some tags contain attributes inside the opening tag's (or only tag's) angle
brackets. Each tag has specific attributes that it can use. The site
https://www.w3schools.com is a great resource for all available tags and
attributes (as well as for CSS and JavaScript help). A few common
attributes include id, class, src, and href. We will return to the id and class
attributes in the CSS sections, but these attributes can be added to HTML
tags as shown in these examples:

<p class="myClass” ></p>
<hl 1d="uniquelID” ></hl>

Notice that the name of the attribute is followed by an equals sign and the
value assigned to it is inside quotes. Also, multiple attributes can be used by
leaving a space between them. Other examples of attributes include:

My Link

These examples define the source of an image to display and a hyperlink to
reference, respectively.

CSS

Cascading Style Sheets (CSS) is a style sheet language used to describe the
presentation—that is the look and formatting—of a document written in a
markup language. The most common application is to style web pages
written in HTML. CSS is designed primarily to enable the separation of
document content (written in HTML or a similar markup language) from
document presentation, including elements such as the colors, fonts, and
layout. This separation can improve accessibility, provide more flexibility
and control over presentation characteristics, enable multiple pages to share
formatting, and reduce complexity and repetition in structural content, such
as by allowing for table-less web design. CSS also allows the same markup
page to be presented in different styles for different rendering methods,

such as on screen or in print, on a specific device, or depending on screen
width and resolution. While the author of a document typically links the
document to a specific CSS style sheet, readers can use a different style
sheet, perhaps one on their own computer, to override the one the author has
specified.

CSS specifies a priority scheme to determine which style rules apply in case
more than one rule applies to an element. In this so-called cascade,
priorities or weights are calculated and assigned to rules, so the results are
predictable.

To define CSS rules, an HTML file can either use the <link> tag to link to a
separate file with the extension .css or use the <style> and </style> tags.
When defining CSS rules, state the rule followed by braces ({ and }).
Within the braces, all properties can be refined by listing the name of the
property followed by a colon and the new desired effect. Each line inside
the braces ends with a semicolon:
body{

background: #fff;

color: #545454;

font-family: "Helvetica Neue", Helvetica, Arial, sans—serif;

font-size: 16px;

Line-height: 1.5;

Rules

There are three general types of CSS rules: tag, class, and ID. The first type
of rule is the tag rule which will redefine what an HTML tag looks like,
including body, h1, h2, h3, a, div, img, and many more. The word tag here
refers to the HTML tags in the document. There are over 90 available, but
only a handful of them will be used often. A few of the most common ones
are body, the heading tags (h1-h6), the anchor tag for links (a), div tags,
the paragraph tag (p), and the image tag for pictures (img). As websites
become more complex, more tags will be used.

imgA{
float: left;

The class rule will be applied to any HTML tag belonging to a specific
class. Their names always begin with a period. Class rules can be applied to
any type and any number of HTML elements. They can even be added to
small parts of elements like paragraphs or headings by automatically adding
the tags around the selection. Class tags can do countless other
things, such as putting borders on tags, changing fonts or background
colors, aligning elements, and adding padding or margins.

.standout{
color: #222;
font-weight: 600;

To add a rule to one specific element, ID rules are used. Since IDs are
unique names for elements, each ID must be different. To create the rule for
the ID, name it beginning with the pound/hash symbol (#).

#didYouKnow{
width: 400px;
margin: @ auto;
padding: 2em 2em 4em;

There are also pseudo class selector rules, which include link:, visited:,
:hover, and :active. They are usually preceded by the a tag (e.g. - a: visited)
but can be used on any tag (e.g. - h2: hover). The cascading nature of CSS
means that the rules at the bottom of the list happen last, so for links these
rules should be created in the above order. If hover were to be listed above
visited in the CSS, then hover would only work if the link had not been
visited yet.

a:hoverd{
text—-decoration: underline;

Rules inside of rules can also be used, such as div #container h1. This rule
would only be applied to an h1 tag inside a div tag with the ID “container.”
If the same property needs to be added to multiple elements, they can be
named and separated by commas: #container, h1, h2, .highlight.

div #container hl{
color: #181818;

#container, hl, h2, .highlight{
background-color: #b3b3b3;

Defining CSS Rules

So what kinds of things can these different CSS rules do?

Commonly used properties include margin and padding. These modify the
box, which is an invisible border around all tags and is very useful when
sizing and laying out a webpage. The box can easily be seen if a border or
background is added to the rule.

By default, a tag's width is 100% of the page, and its height is only as tall as
needed to fit the material. These proportions can be changed using width
and height properties. Float determines what side of the page the tag is
aligned to—left by default. Padding refers to the inside of the box and
controls how close things are to the inside edge (think of a padded cell,
which keeps the person inside away from the hard wall). Margin is the
outside of the box and sets how close other tags can come to the edge.

@Media Queries

In addition to using CSS to change the look of the page, it can also be used
to change the look of many other media queries. These queries include
conditions that will check to see if the user is looking at a print preview,
whether they are in landscape or portrait mode on a tablet or cell phone, and
their screen resolution. There are many other conditions, including the most
important one, max-width.

Max-width will check to see how wide the screen is and use the defined
styles for this width. This is important when designing websites that
respond to the device being used. Most websites should not look the same
on a large desktop display as on a mobile phone. For example, little or no
padding will be displayed on cell phones since real estate is scarce on such
a small screen. Also, images may be different sizes on cell phone screens or
even removed altogether.

To add these media queries, use @Media (min-width:1200px) {...}. The
specific type of media would replace the content inside the parentheses,
which is currently set for a minimum width of 1200 pixels. The rules for
that media type would be inserted in-between the braces. This feature is
useful when, for example, you need to define what a website looks like
when displayed both in landscape mode and at a specific aspect ratio. Once
the media query is added, add styles while the new media query is selected.

The cascading property of CSS will make sure the new styles take effect
since they are below the others on the style sheet.

When defining different styles based on width, a common set of break
points are devices larger than 1200 pixels (large desktops), between 992
pixels and 1199 pixels (regular desktops and tablets in landscape mode),
between 768 pixels and 991 pixels (most tablets in portrait mode), and
smaller than 767 pixels (most smart phones).

@media (max-width: 600px){
bodyA{
background-color: yellow;

On a desktop, website content will move when the size of the window is
changed. To avoid this, a container div tag (simply a div tag surrounding
everything in the site with the ID: container) with a set width is used on the
two largest screen sizes (e.g. width: 950px). Since tablet and smartphone
screen sizes cannot be changed, it is appropriate to use percent of the screen
when setting the width of a container div tag (e.g. width: 90%). It is also
important to note that margins and padding will affect the percentage of a
tag. This means that if a div tag is set to 100% and other elements around it
have padding or margin, the width may be more than 100% of the page. To
ensure that the page cannot scroll to the left or right, make sure that the total
width of the elements does not add up to more than 100%.

Summary

With the skills introduced in this unit, you will be able to start creating your
own websites that will adapt to whatever display they're viewed on, whether
that is a giant desktop monitor or a tiny smartphone. HTML and CSS serve
as the backbone of the World Wide Web, and you can write them using a

simple text editor or with sophisticated, specialized programs like
Dreamweaver. The original vision of the World Wide Web imagined a
decentralized space where anyone could have their own website, linked to
other websites through hyperlinks. With the rise of Facebook, Instagram,
Twitter, and other social media sites, much creative expression on the
Internet has moved into these corporate controlled “walled gardens,”
isolated from the wilds of the Web, but by creating our own websites
outside of these corporate silos, we can help to maintain some of this
original vision of the Web as a place where anyone can express themselves.
The World Wide Web is undeniably important for contemporary culture and
society, but at an even deeper level, code has come to define our modern
economy. Familiarity with the basics of programming—the topic of the
following unit—will provide you with important skills for navigating the
modern economy.

8 - Programming: JavaScript

“To me programming is more than an important practical art. It is also a
gigantic undertaking in the foundations of knowledge.” - Grace Hopper

Introduction

There are numerous programming languages in which software can be
written. Low-level languages (binary, assembly, machine language, etc.)
are considered “close to the metal” (that is the hardware) and have little or
no abstraction. While these languages interface directly with the computer,
which makes them run quickly, it is difficult for human beings to read or
write them. High-level languages (C, Java, Python, etc.) are easier for
humans to read, which makes them easier to debug. High-level languages
also rely on abstraction and already existing libraries. A compiler or
interpreter turns a high-level language into a low-level language before it
gets sent to the hardware.

Since JavaScript cannot stand alone—it needs a web browser to run—many
consider it a scripting language and not a true programming language, but
JavaScript should still be considered a high-level language. First introduced
in December 1995, JavaScript was originally developed by Brendan Eich of
Netscape Communications Corporation. Along with HTML and CSS,
JavaScript is one of the foundational technologies of the modern Web.
JavaScript is a scripting language with a syntax loosely based on C. Like C,
it has reserved keywords and no input or output constructs of its own.
Where C relies on standard I/O libraries, a JavaScript engine relies on the
host environment into which it is embedded, such as a web browser.

Debugging

Depending on the development environment, debugging can prove to be
quite difficult. Since errors in JavaScript only appear in run-time (i.e., there
is no way to check for errors without executing the code) and since
JavaScript is interpreted by the web browser as the page is viewed, it may
be difficult to track down an error's cause. Today's web browsers, however,

come with reasonably good debuggers. With the arrival of integrated
toolbars and plug-ins, an increasing amount of support for JavaScript
debugging has become readily available.

For inexperienced programmers, scripting languages are especially
susceptible to bugs. Because JavaScript is interpreted, loosely-typed, and
has varying environments (host applications), implementations, and
versions, programmers should take exceptional care to make sure the code
executes as expected.

Errors

Programming can be a complex process, and errors can occur at any stage
of development. There are several types of errors that can happen in
programming, each with its own characteristics. One type of error is a logic
error, which occurs when there is a mistake in the algorithm or program
that causes it to behave incorrectly or unexpectedly. This type of error can
be challenging to identify because the program may still run without
crashing, even though the results are incorrect. One example of a logic error
is adding when the programmer meant subtract, even the best debugger
couldn’t assume the intended intention.

Another type of error is a syntax error, which occurs when the rules of the
programming language are not followed. Syntax errors are usually easier to
identify because they typically result in the program not being able to run at
all. A few examples of a syntax error are casing keywords incorrectly,
spelling variables incorrectly, or forgetting a symbol; like a semicolon,
parenthesis, or quotation mark.

A run-time error is a mistake in the program that occurs during the
execution of the program. Programming languages define their own run-
time errors, which can include things like division by zero or accessing an
invalid memory location.

Overflow errors are a specific type of run-time error that occurs when a
computer attempts to handle a number that is outside of the defined range of
values. Many programming languages represent integers using a fixed
number of bits, which limits the range of values that can be represented.
This limitation can result in overflow or other errors. Many programming
languages use the most significant bit of a number to represent a positive or

negative. So, if a number gets too large it could unexpectedly switch from
positive to negative.

Round-off errors are another type of error that can occur when working
with real numbers in programming. Real numbers are represented as
approximations in computer storage, which can lead to limitations in the
range of values that can be represented and mathematical operations on
those values. This can result in round-off errors and other inaccuracies in
calculations. Overall, understanding the different types of errors that can
occur in programming is essential for developers to create efficient and
accurate programs.

Development Process

In computer programming, the process of creating and developing software
should be both iterative and incremental. It should be incremental in that it
is done in small chunks and iterative in that it continuously repeats these
steps. The main steps in this process are design — implement — test. The
design phase consists of brainstorming and prototyping and is the most
creative step in the process. The implement phase is putting the design into
code. Since the design is already set, this phase should be the least creative.
The test phase is checking to see if the code runs properly and finding
errors or debugging the program. Since this process is iterative, the design
phase is repeated after the test phase, and the program is constantly updated
and improved. This process takes place every time a new version of
software is released.

JavaScript

To insert JavaScript into HTML, you must use the <SCRIPT> tag. To close
this tag when the JavaScript is complete, use the </SCRIPT> tag.
JavaScript should be placed somewhere within the body of the HTML code,
depending upon when and where the programmer wants to display their
JavaScript program.

As with HTML, the computer does not read white space in JavaScript. Most
commands in JavaScript, therefore, need to end in a semicolon to tell the

computer when one command ends and another begins. JavaScript also uses
programming's three basic logic structures: sequence, selection, and
iteration. Sequence is the structure that runs one line after another, in order,
without skipping or repeating code. So, after line 1 comes line 2 and after
line 1001 comes line 1002. Selection uses if statements to select certain
values, and iteration means to repeat a process. In programming this is
accomplished by using loops. We will discuss selection and iteration in
more detail below.

Comments are used to let the programmer—and anyone who looks at their
code—know exactly what is going on. The programmer can use comments
to define variables more clearly and to specify what they are trying to
accomplish in certain areas of the program. Comments are especially
helpful when going back to older projects after not looking at them for an
extended period or when collaborating with others.

Using Variables

Variables are a way to store information. They can store many kinds of data,
including text and numbers. Before they can be used, variables must first be
defined. JavaScript uses the keyword var to set up a new variable. The word
following var is the name of the new variable. The programmer may name
this variable anything they would like. The name they choose should be
relevant to what is being stored. For example: if the programmer is storing a
string of text that says “Hello, how are you doing today?” then the variable
might be called greeting. If the variable is storing someone’s last name it
might be called lastName. Notice that lastName is one word: Variables
cannot have spaces nor can they start with anything except a letter. Also
notice that the letter I in lastName is lower case while the N is upper case.
This is called “camel casing” because the first letter is lower case and every
new word is upper case, somewhat resembling a camel's humps. This is one
way to avoid spaces. Using underscores is another way: last_name.

This line of code creates a variable named “greeting” that has nothing
stored to it yet.

var greeting;

The ‘let’ Keyword

In JavaScript, the ‘let’ keyword was introduced in the ECMAScript 6 (ES6)
specification in 2015 as a new way to declare variables. It differs from the
‘var’ keyword in several ways. Firstly, ‘let’ variables are block-scoped,
which means they are only accessible within the block they are declared in,
unlike “var’ variables which have function-level scope. Secondly, ‘let’
variables are not hoisted to the top of their scope like ‘var’ variables are, so
they cannot be accessed before they are declared. Finally, re-declaring a
variable using ‘let’ within the same scope is not allowed, whereas it is
allowed with ‘var’, although this can lead to unexpected behavior. Overall,
the ‘let’ keyword provides more control and predictability when declaring
variables in JavaScript. For all examples in this unit, the “var’ keyword will
be used.

Strings

One thing a variable can store is a string, which is another way of saying
text. A string may contain any character on the keyboard (even the space
bar counts as a character). A string can be identified because it is
surrounded by quotation marks. To create a string, the programmer must
use quotation marks. “Hello, how are you?” is an example of such a string.
Any input that is received from a prompt is in string form, even numbers.

greeting = “Hello, how are you?”;

This line of code assigns the string “Hello, how are you?” to the variable
“greeting.”

Both creating the variable and assigning the variable can be combined into
one step:

var greeting = “Hello, how are you?”

- e

Numbers

A number differs from a string in that a string cannot be multiplied,
rounded, or have any other mathematical operation applied to it. Another
important difference is that, unlike strings, numbers do not have quotation
marks around them.

var myAge = 17;

This command creates a variable named myAge and assigns it the value 17.

Alerts

The programmer can send a message to the user before they access the
webpage. In JavaScript, this is called an alert. An alert pops up in a dialog
box on the webpage. To make this happen, use the alert command:

alert(“This is an alert!”):

Notice that the parentheses contain a string. They could also contain a
number or a variable. Whatever is written in the parentheses will be
displayed in the alert. The command must end in a semicolon to let the
program know it is finished.

A variable can also be placed inside the parentheses. Remember that there
are no quotation marks around a variable!

This page says:

This is an alert!

OK

alert(greeting);

Prompts

Prompts are like alerts in that they pop up in a dialog box. The difference
between prompts and alerts is that prompts ask the user for input. Since
input is coming into the program, it needs to be stored somewhere. Recall
that variables are used to store information and that all inputs are stored as
strings. The prompt(“Enter input: ”, “Default Text”); returns whatever the
user enters into the prompt. To store this input, let’s assign a variable to this
prompt:

var userInput = prompt(“Enter your input”, “type here”);

This command stores the user's input with the variable userInput.

Concatenation

To combine two stings together, concatenation must be used. Concatenation
is the combination of two strings. To concatenate two strings in JavaScript,
use the “+” sign. This operator can be used as many times as needed in the

pro
gra

This page says:

Enter your input

Prevent this page from creating additional dialogs.

type here

Cancel OK

alert(“Hello ” + username + “how are you?”);

Converting Strings into Numbers

Remember that any input to the program is stored as a string, so whenever a
user inputs something into a prompt, it is stored as a string. This is a
problem if a number is entered into the prompt. For example, if 17 is
entered into the prompt, it will be stored as “17”, a string. In order to apply
math to a string, it must first be converted into a number. The command to
do this is parselnt(); and parseFloat(); for integers and decimals (i.e.
floating-point numbers) respectively. Again, this command returns a
number, which must be stored somewhere. The programmer probably does
not need to keep the string “17” stored, so whatever variable was used to
store it can be written over:

var userAge = prompt(“What is your age?”, “Enter age here”);
userAge = parselnt(userAge);

The first line prompts the user to enter their age, which takes the form of a
string. This string, which needs to be converted to a number, is inside the
parentheses on the second line. The userAge on the left side of the second
line is the new number.

Basic Math Operations

Now that there are numbers stored, mathematics can be applied to them.
First, set up a new variable to store the solution then assign the equation to
this variable. Addition (+), subtraction (-), multiplication (*), and division
(/) can all be used here.

var dogAge = userAge x 7/;

This line creates a new variable called dogAge and sets it to the user’s age
multiplied by 7.

Selection

Sometimes it is not necessary to run an entire script on a webpage. There
are times when certain conditions need to be met to run a block of code. For
example, if the user inputs their age, there could be a different alert for kids,
teenagers, and adults.

If the user inputs an age below thirteen, they get one message. People
between thirteen and seventeen get another message, and everyone eighteen
and older gets another. This allows the computer to decide between multiple
cases, called selection in computer programming. Selection, along with
sequence and iteration are the three logic structures in programming.

If Statements

The way to provide separate selections depending on the user’s age can be
accomplished by using if statements. An if statement begins with the word
“if” (notice the lowercase “i”). The condition that needs to be met follows
inside the parentheses. Conditions use the following symbols:

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
Equal to

Not equal to

After the parentheses are closed around the conditional statement, braces {
} are opened. Notice: There is no semicolon after the parentheses are
closed! If the conditional statement is true then anything that comes
between these braces will be executed. If the conditional statement is not
true, the code in the braces will be ignored.

A snippet of the code for the age program might look something like this:

if (age <= 12)

{
alert(“Enjoy your youth while it lasts!”);

Else If Statements

If another if statement follows the first (usually conditions with the same
variable), an else if can be used—this operator will connect the statements
together. If the first if statement is true then the else if statement will be
ignored. The order of the statements matters. These statements are exactly
like if statements except for the word else before them.

This example might follow the snippet above:

else if (age <= 17)
{
alert(“Not too long before you can vote!”);

Since the if statement above covers the ages twelve and below, this
statement will only cover the ages from thirteen to seventeen. Why you
ask? Well, if the age is twelve or below, the first if statement will be true, so
the program will never get to the else if statement. There can be unlimited
else if statements in the code.

Else Statements

The else statement can be used for any condition that is not met using the if
or else if statements. The else statement works a little differently than the
others because it does not need a conditional statement: It will only happen

if the other statements are not true. In the age example, the else statement
could look like this:

else

{

alert(“You are so old now!"”):

There can only be one else statement connected to each if statement, but the
else statement is not necessary, nor is the else if. But there can never be an
else if or else statement without an if statement!

Switch Statements

The switch statement is like the if statement, but rather than responding to
conditions, the switch statement runs a segment of code for different cases.
For example, the user might be asked to pick a number from a menu. The
switch statement lets the programmer run different code depending on the
user’s input. The same thing could be accomplished with if statements, but
it is much simpler with the switch.

The switch starts with the command:
switch(someVariable)

{

Notice: The block is opened with the open brace { (not a parenthesis)
someVariable is usually the variable that the user inputs. This variable can
be anything from a single letter or number to a word or phrase. After the
opening brace, the variable is compared to the available options and the
appropriate code is run. In the switch, each option the programmer
includes to be tested is called a case. To set up a case, simply write case
followed by the desired input. If this desired input is a word or letter then it
must be in quotation marks—unless you are using an existing variable.
Numbers do not need quotation marks. A colon follows, which tells the
computer that the code to run starts here. There can be as much or as little
code as is needed. To tell the computer that the code is ending, the line
break; is used. Without break;, the computer will not know the next case is

beginning. Here are a few examples:

//Example 1:
case 1:
alert(“You have picked choice number 1!");
alert(“You can have as much code as needed here..");
break;

//Example 2:
case “yes":
alert(“You enter yes.”);
//all the code needed
//even more code if necessary
break;

}
//when all cases are complete, make sure to close the
//switch statement with a close brace

If there is something that the programmer wants to happen if none of the
cases are met then the default case should be used. Instead of the word case
followed by a case, simply write the word default followed by a semicolon.
Remember JavaScript is case sensitive.

default:
alert(“None of the cases were met!”);

Notice that the default case is not followed by the line break;. Since this
case must be the last one, it does not need to tell the computer that a new
case is about to begin.

Iteration

Iteration means to repeat a process. In programming, it is accomplished by
using loops. A leop is a block of code that the programmer wants to run
more than once. The number of times a loop is run could be different in

each situation. A loop might need to be run an exact number of times (e.g.
ten, one-hundred, etc.), or a loop might need to be run until a certain
condition is met (e.g. until a counter reaches a number or until the user
picks the correct answer to a question). Two kinds of loops are for loops
and while loops.

For Loops

For loops are the loops that are used to run a loop an exact number of
times. For loops have three parts: The user must first initialize a counter
variable. They must set a condition for the loop to keep executing, and they
must set the increment by which the counter changes. The first part
initializes a counter variable. The most common name for this variable is i.
The next part is a condition that tells the loop how long to run: This
condition would include the variable that was just initialized. It might look
like this: i < 10. This means if i is less than ten, the loop will continue to
execute. The final part of this loop is the increment, which tells how much
to increase or decrease the counter variable. If the programmer wants to
increase the loop by five every time it executes, then they would type: i = i
+ 5;. To decrease by twenty every time, the programmer would use: i =i —
20; and so on. Since increasing and decreasing the counter by one is so
common, there is a shorthand way to write it: i++ and i--. These three steps
are contained in one set of parentheses, and each of the steps is separated by
semicolons.

The block of code that is to be run in every loop is contained in braces.
Together, the entire loop looks like this:

for(var 1 = 1; i < 10; i++)
{

Code to be run over and over goes here..

While Loops

A while loop is simpler than a for loop. While loops only have one part to
them: the condition. For this reason, the programmer must set up a variable
and make sure the condition is eventually met. An example of a while loop
is prompting the user for a password. If the user guesses the incorrect
password, the loop will continue to run, not letting user continue with the
rest of the code.

var myPassword = “12345";

var userGuess = “ ";

while(userGuess != myPassword)
{

userGuess = prompt(“Enter the password”);

This code sets up two variables, one for the actual password and one for the
user’s guess. Notice that the user’s guess is just set up as an empty string.
The user has not guessed anything yet. The while loop has a condition that
says, if the user’s guess and the password are not equal, the loop will
continue. Inside the loop is simply a prompt that asks the user to enter a
password, so the program will continue to present the prompt to the user
unless and until they enter the correct password.

Getting Stuck in Loops

The most common error with loops is using a condition that is always true.
One case of this is if the programmer sets up a for loop that starts at one,
whose condition is i < 10, and decreases i by one every time. If i loses one
every time then the condition of i < 10 will always be true. Therefore the
loop will never end. If the computer gets stuck in a loop, two things might
happen: (1) there might be an alert that never goes away, causing the user to
exit the program, or (2) the computer tries repeatedly to carry out something
that will never happen and tells the user that the program is not responding.
Make sure the loops are not endless before executing a program!

Multiple Conditions

Inside things with conditions, like if statements and loops, the programmer
might want to have a case where more than one condition needs to be met
or at least one condition of many is met. Here the && (AND) and || (OR)
symbols can be used. The & symbol is found above the 7 key (hold down
the shift key) and the | symbol is found above the \ key (which is found
between the backspace and enter keys). In a situation where a variable
called age needs to be between 18 and 25 then the code could look like this:

if (age >= 18 && age <= 25)

If the situation called for the age to be either younger than 18 or at least 55,
this code would be used:

if (age < 18 || age >= 55)

Many of these connectors can be used in a single conditional statement, as

in the following code:
while { age == 18 && weight < 408 5&& height > 42 && hair == "blonde” && eyes == "blue”)

Objects and Methods

JavaScript is an object-based programming language, which means that
certain items in the language are stored as objects and that each of these
objects has specific characteristics. Five important objects used in
JavaScript are the Math object, the document object, the string object, the
Date object, and the array object. Each of these objects has two features:
properties and methods.

There are two different kinds of objects: objects that need to be set up by
creating a new variable and those that can be used by simply saying the
name of the object. The new keyword is used to create a new object to store
in a variable, and this keyword needs to be used in the date and array

objects. These objects will be discussed later in detail. The string object
needs to be saved as a variable too, but the new keyword is not necessary.
No variable needs to be set up for the Math and the document objects.
Simply say Math or document when using these objects. Notice that Math is
capitalized and document is all lowercase, JavaScript is CASE SENSITIVE.

Properties hold information about the object. In the string and the array
objects, one property is length, which holds the length of the string or array.
In the Math object PI is a property that holds the value of IT (approximately
3.14159). In the document object, some properties are bgColor, fgColor,
and title. The document object deals with the webpage itself, so bgColor
holds the background color, fgColor holds the foreground color, and the
title is the title of the page. There are many other properties that can be
found using a simple web search.

Methods are things the object can do. In the Math object, there are many
methods, such as sin, cos, tan, round, random, abs, and floor. These
methods do something to a number. They don’t just hold information like
properties do. In the string object, methods include toUpperCase and
toLowerCase. These take a string and do something to them. They make
them either into all uppercase or all lowercase letters.

In the document object, there are the open, write, and close methods. Here
the open method does something by opening the HTML file so the file can
be written to using the write method. After the programmer is done writing
to the HTML document, it needs to be closed using the close method.

In the date object, the important methods are getDay, getDate, getMonth,
getHours, getMinutes, and getSeconds. These methods retrieve information,
in the form of a number, about the specified part of the date.

The array object, has many methods as well. Some of the common array
methods include join, sort, concat, and reverse. These methods will be
addressed deeper into this unit.

String Methods

Like numbers, strings may be manipulated in JavaScript. One common way
to manipulate a string is to change it to all uppercase letters. To do this, we

must call a method. Methods will be discussed in more detail later. To use
this method, there must first be a string variable, which is just a variable
with a string stored in it. stringVar will be the variable in this example. The
period (.) is the way to call, or carry out, a method. Here the programmer
would write the string variable, then a period, then the method. The output
could be saved as another variable, or it could be placed directly into an
alert. The method that is used to change strings to all CAPITAL LETTERS
is toUpperCase().

Notice that this method does not have anything between the parentheses:
var stringVar = “this is my string”
alert(stringVar.toUpperCase());

Si

lar
|
This page says: tﬁ,

15
er

Prevenl Lhis page Mom crealing addilional dialogs. e

oK is

jab]

to

ret

ur
n the length of a string. .length is the method that returns the number of
characters in a string. Recall that a character is anything inside the string,
including numbers, letters, symbols, and even spaces. This method can be
called the same way as toUpperCase(), and the result can also be stored as
a variable or placed directly into an alert. Here is an example that finds the

length of a greeting:
var greeting = "hello, how are you?";

alert(greeting.length);

Here is a project that combines all the concepts learned thus far:
<script>

var greeting = "Hello";

var firstName = prompt("What is your first name?");

var lastName = prompt("What is your last name?");

var namelLength = firstName.length + lastMame.length;

alert(greeting + " " + firstName.tolpperCase() + " " + lastName.tolpperCase());
alert("By the way, you have " + namelLength + " letters in your name");
</script>

This page says:

What is your first name?

Bob

Cancel OK

This page says:
Hello BOB SMITH

| Prevent this page from creating additional dialogs.

A oK

This page says:

By the way, you have B letters in your name

Prevent this page from creating additional dialogs.

oK

Math Methods

To use one of the Math methods—or any method—the object must be
called upon first. If the programmer wants to use the round method, first
they would have to say Math (the object) then use a period to separate the
object and the method. Together it looks like this:

Math. round(3.1415);

Here is a list of a few Math methods. More can be found in the appendix:

round(numVar); Rounds to the nearest integer
ceil(numVar); Rounds up to the nearest integer
floor(numVar); Rounds down to the nearest integer
abs(numVar); Returns the absolute value
sqrt(numVar); Finds the square root of the number
pow(numVar, numVar); Raises the 15t # to the 214 #’s power
min(numVar, numVar, ...); Returns the lowest of the numbers
max(numVar, numVar, ...); Returns the highest of the numbers
random(); Returns a random number between 0 and 1

Notice that the random method returns a number between 0 and 1. On its
own, the usefulness of this method is extremely limited. A programmer is
more likely to desire a random integer between, say, 1 and 10. To get this
result, some math needs to be performed on the new number. First, multiply
the random number by 10. Now it is a random number between 0 and 10—
still not an integer. Next take the floor of the number—this makes the
number an integer from 0 — 9. Finally, add 1 to the number to make it an
integer between 1 and 10. These steps can be combined into one:

Math. floor(Math.random()x10) + 1;

Note that the order of operations does matter here. To change how many
random numbers there can be, simply change the factor by which .random(
) is being multiplied. To change the first number, add the new starting
number where the 1 is.

Date Object

The Date object is a little different than the Math object in that it cannot be
used simply by saying the name of the object. Like the string object, this
object should be stored in a variable. In the string object, the assignment
operator was all that needed to be used. In the Date object, this is not the
case. To assign a new instance of an object to a variable, use the keyword
new. When setting up a new instance of an object, the new keyword
precedes the name of the object, which is followed by a set of parentheses,
usually empty. A line that causes all the Date object's information to be
stored in a variable called d would look like this:

var d = new Date();

Now the programmer can use the methods associated with the Date object
by placing the dot operator (a period) between the variable and the method:

var month = d.getMonth()

This line will store the number of the month in a variable called month. This
number will take the somewhat awkward form of a number from 0 — 11,
January being 0 and December being 11. A simple switch statement can fix
this to display the correct month number or name. Similar steps also need to
be taken for the day of the week and hour of the day.

An example of the code to make the date print out properly is on the
following pages.

The Date Object - Displaying Date and Time

<script>
var date
var dom =
var dow =

var month =

new Date();
date.getDate();
date.getDay();

date.getMonth();

//Create variables

var year = date.getFullYear(); //the top of code
date.getMinutes();
date.getHours();

"Sunday"; break;
"Monday"; break;
"Tuesday"; break;
"Wednesday"; break;
"Thursday"; break;
“"Friday"; break;
"Saturday"; break;

"January"; break;
"February"; break;
"March"; break:

= "April"; break;

"May"; break;

= "June": break:
= "July"; break;
= "August"; break;

var mins =

var hour =

var amPm = "a.m.";

switch(dow)

{
case 0: dow =
case 1: dow =
case 2: dow =
case 3: dow =
case 4: dow =
case 5: dow =
case 6: dow =

}

switch(month)

{
case @: month
case 1: month
case 2: month
case 3: month
case 4: month
case 5: month
case 6: month
case 7: month
case 8: month
case 9: month

"September"; break;
"October"; break;

case 18: month = "November"; break;

case 11: month =

"December"; break;

at

I

iflhour »>= 12)
1
hour = hour -12;
amPm = "p.m.";
}
if(hour == @)
hour = 12;
if(mins<10)
mins = "@" + mins:
alert("Today is " + dow + ", " + month + " " +
dom + ", " + year + ". The time is " + hour + ":" + mins + " " + amPm);

</script=

Arrays

As programs become more complex, more variables are needed. An easy
way to keep these variables neatly organized is with arrays. Programmers
can create their own arrays and place whatever they want into them. Once
an array is populated, more elements can be added without problems—
unlike other languages.

The first step is to create the array, name it, and define how large it should
be. The array itself should be a constant, this ensures that the identifier is
not accidentally replaced by an integer, for example. It looks like setting up
any other variable, except using the keyword const. Note, this does not
make the elements in the array constant, just the identifier. After naming the
array, use brackets to define an empty array:

const arrayName = [];

Now that you have created an array with nothing in it, each element can be
defined:

arrayName[0]
arrayName [1]

“something”;
“stuff”;

Remember that an array of size 2 has elements 0 and 1. In JavaScript, it is
okay to add more elements than the size of the array as the array will
automatically become one element larger. Another way to do the same thing
is to add all the elements when the array is created.

Instead of leaving the brackets empty, put the array's desired content in the
brackets:

const arrayName= [“something”, “stuff”,..];

Since arrays are objects, they contain properties and methods. An important
property of arrays is .length. As with string objects, length returns the
number of items in an object. The first index in an array is 0, so the last one
is always one less than total number of elements in the array. This can be

arrayName. length-1;

written as:

Knowing the length of an array is useful when an element needs to be
added to the end of an array and the exact size is unknown or has changed.
Since the last element in an array is length-1, the next element added would
be at length. This can be written as:

arrayName [arrayName. length] = someValue;

length is also used when using a loop to run through every element in an
array. A for loop starting at 0 and ending at the array's length-1 is best

suited for an array. The following code will add someValue to every element
in arrayName, regardless of the array's size.

for(var i = 0; i < arrayName.length; i++)

{

arrayName[i] += someValue;

Arrays also have methods, which are useful in many situations. They can
save time by eliminating the need to write code to perform these tasks.
Examples include the .sort() and .reverse() methods. Sort arranges the
elements in alphabetical order, and reverse flips the order of the elements in
the array. These methods can be used together to first alphabetize the array
and then flip it so the elements store in reverse alphabetical order, like this:

const newArray = arrayName.sort().reverse();

Other useful methods can be found in the gppendix. They can do things like
combine multiple arrays, add or subtract elements to the beginning or end
of an array while shifting the position of the other elements, remove
elements that have certain values, and so on.

Searches

An array can hold a large list of data, and it is useful to be able to search
through the entire list to see if it contains certain values. Linear search and
binary search are two popular search methods. A linear search starts are
the beginning and checks each element of the list one by one until it finds
the item it is searching for. This algorithm is simple to write and is
extremely fast if the list is small or the item is near the beginning of the list.
If the list is long and the item is either not in the list or near the end, it can
be “expensive,” meaning it takes up a lot of memory. An advantage of
linear search is that the list does not need to be in order.

A binary search works more like a game of higher or lower. By guessing
the middle value of a possible range, a player can reduce the possibilities by

half. Doing this repeatedly rapidly narrows down the possibilities, so
guessing 50 when trying to figure out a number between 1 and 100 will
eliminate half the range. If the solution is lower than 50 then 50 — 100 can
be taken out of consideration. Guessing 25 next will cut the range in half
again. A binary search works in the same way, so in order for it to function,
the list must already be sorted. Because it doesn't have to check each item
one by one, binary searches are usually less expensive than linear searches,
especially with large data sets. Sorting the arrays first can be expensive,
however, so there are tradeoffs between these two methods of searching.

Functions

There will be times when certain blocks of code might be used in different
places in a program. Instead of rewriting this code multiple times, a
function can be created. A function is like a method, except the programmer
sets up exactly what happens when a function runs. The best place to put
these functions is in the header of the HTML file. To create a function,
simply write the word function followed by the name you want to give the
function. Make sure the name is not already being used by any JavaScript
methods or keywords. The name is followed by parentheses, which can be
used to accept parameters. The function is then opened—Ilike loops and if
statements—with a brace. Inside the function there can be as much or as
little code as necessary. The function ends with a return statement and a
closing brace. The return statement is followed by whatever needs to be
sent back to the place where the function was called. For functions that do
not need to return anything, simply write the word return; followed by a
semicolon, or leave it out altogether. The function will automatically return
with no value when it hits the closing brace.

function nameTheFunc()

{
//as much code as needed..
return someValue;//optional if nothing is being returned

Now that the function has been created, it can be used whenever it's desired
by using the line: nameTheFunc(); or whatever the programmer named it.

function myFunc()

{

var firstName = “Bob”;
var lastName = “Smith”;
return firstName + lastName;

Like methods, functions can also take one or more parameters. Simply
name the parameters in the parentheses and separate them by commas if
needed. A local copy of this variable can then be used anywhere inside of
the function.

function anotherFunc(firstName, lastName)

{
var fullName = firstName + “ “ + lastName;

return lastName;

Note: all the variables in this example are considered local and can only be
used inside the function. If fullName is used outside this function then an
error will occur—unless there is another local variable somewhere with the
same name. This error can be avoided by using a global variable that can be
seen by the entire code. To make a variable global, define it at the top of the
JavaScript, above any functions.

var fullName;
function anotherFunc(firstName, lastName)

{
fullName = firstName + “ “ + lastName;
return lastName;

The only difference between these two examples is “var fullName” is
defined as a variable before the function in the second example. Therefore
“var fullName” does not need to be defined within the function. Because
the variable fullName is global in this example, any function in the
document can use and modify it.

Recursion

Recursion provides an alternative solution to an iterative problem. Any
function that uses an iterative approach can also be written using a recursive
function and vice versa. In programming, recursion is simply a function
that references itself. A recursive function consists of two parts: a recursive
call and a base call. The recursive call is the conditional statement that calls
the current method again. The base call is similar to a condition in the
iterative approach. It is the condition that, when met, causes recursive calls
to stop being called and functions to start returning. As with the iterative
approach, it is possible to get stuck in endless recursion, albeit resulting in a
slightly different error. The code to find the factorial of a number illustrates

how a function can be both iterative and recursive:
//recursive method
function factorialRecursive(var num)
{
if(num > 1) //recursive call
return num x factorial(n-1);
else //base case
return 1;

//1terative method
function factoriallterative(wvar num)

{

var answer = 1;

for(var i = num; i > 0; i—)
answer x= I;

return answer;

The Tower of Hanoi problem offers another popular example of recursion.
In this problem, disks of decreasing size must be moved from one of three
spots to another with the conditions that a larger disk may never be placed
on top of a smaller one and that only one disk may be moved at a time. A
quick Internet search will yield many interactive examples of this game.
This game poses the kind of problem that recursion is well suited to since
the solution involves unstacking a few disks then re-stacking them
somewhere else many times, each time increasing the size of the new stack.

When written out in code, Tower of Hanoi's recursive solution takes many
fewer lines than the iterative solution, but the tradeoff is that—depending
on the programming language—the recursive solution is slower due to the
way in which functions are called.

A Google search for the word “recursion” will return a link at the top of the
results that reads, “Did you mean: recursion,” which links back to a Google
search for “recursion.” Hopefully it is clear why this little joke is (or is not)
funny!

Events

Events are like messages or flags that objects can use to tell each other their
state. The events discussed here are ones that tell when an action, such as
clicking a button or moving the mouse over a picture, is performed by the
user. Events are used as attributes of HTML tags, where they allow the
programmer to run one line of JavaScript. There are many events, but the
ones that will be most useful now are onclick, onmouseover, onmouseout,
and ondblclick. The most common of these is the onclick event, which will
run one line of code when added to a button (or picture—it works with any
tag). This event is in the HTML code, not the JavaScript! In other words,
the programmer must manually go into the code and find where the button
is located. The easiest way to do this is by using the split view in the HTML
editor. When the button is clicked, it should highlight the button's HTML
code. Now, at the end of this opening tag (before the >) add the line onclick
= “yourFunction()”.

<input type = “button” .. onclick = “yourFunction()"” >

If a button has been added previously then this tag already exists. There is
no need to write it out again. The other three events work in much the same
way. ondblclick will run the code if the button is double clicked.
onmouseover and onmouseout will run the code when the mouse hovers
over the button and when the mouse leaves the button respectively. It is
possible to have more than one event on a single button, such as
onmouseover and onmouseout.

Event Listeners

Events work well in some situations, but the examples above use inline
elements, which won’t work well when applying or updating events to
multiple elements or pages. Another drawback of events, inline or
otherwise, is that only one of each type of event can be added to any given
element. For example, multiple onclick events might not lead to the desired
result, so for this reason, event listeners are more commonly used. Event
listeners can be triggered by any HTML DOM event (such as click, focus,
keydown, etc.) and can call a function (or anonymous function). They can
define the way elements are ordered when the event occurs by using
bubbling or capture, as well as other options, which are outside the scope of
this unit.

The addEventListener() function is used to add an event listener to an
element, such as a button. The parameters for this function are the DOM
event, the function to be run when the event is triggered, and whether
bubbling or capture are to be used (optional). The following example uses
the first two parameters.

var myBtn = document.getElementById("btn");
myBtn.addEventListener("click", myFunc)
//myFunc() already defined

In this example and the one below, the event listener is added to an element
with the ID of “btn”. In the example above a function named myFunc will
be called when the element is clicked. Notice this function does not (and
cannot) use parameters. It is a reference to a function. The function is not
yet being invoked or called. To use parameters, use an anonymous function:

var myBtn = document.getElementById("btn");
myBtn.addEventListener("click", function(){
//as much code to be run as needed
myOtherFunc(someParameter, anotherParameter);

})

Anonymous functions do not have a name and can include as much code as
needed, including calling other functions that take parameters, unlike the
first example. Arrow functions are shorthand syntax for defining functions
that were introduced in ES6, as an alternative to anonymous functions, but
fall outside the scope of this book.

Document Object

The document object, which is named document, is automatically loaded
when the HTML file is opened in a browser. A useful method in the
document object is getElementBylId(str); This method uses the id
attribute of any HTML tags in the document. For example, if there were an
image with the id: myPicture, it could be accessed using the following code:

document.getElementById(“myPicture”);

Element Objects Element objects refer to the HTML elements within
the document. Some elements are body, h1, p, and input. They are also
called tags. These elements are typically referred to by their unique ID,
as was seen above in the method getElementByld(). One important
property of events is innerHTML. This property refers to the text in
between the opening and closing tags of an element. In the HTML
code: <hl id="myH1”> My Heading </h1> the innerHTML is “My
Heading.” Depending on which side of the assignment operator this
property is on, it can either read or write to the document.

document.getElementById(“myH1“).innerHTML =
“I Just Changed My Heading”;

In this example, the h1 would change from “My Heading” to “I Just
Changed My Heading.”

To save the current text in the h1 tag with the id of myH1 in a variable, the
innerHTML would be on the right side of the assignment operator, as

demonstrated in the following example:
var textInHl = document.getElementById(“myH1").innerHTML;

Note: If there is text already existing in the innerHTML—as in the first
example—and a value is assigned to it then it will be replaced.

Forms

Another aspect of functions that makes them great tools is their ability to
change hundreds of lines of code into just one. As we've seen above, when
events are used, they can only trigger a single line of code. HTML employs
forms when using items such as text boxes, text areas, check boxes, radio
buttons, select (dropdown) boxes, buttons, and many other useful tools.
JavaScript can be used to add some functionality to these things. With
buttons, the most important thing is being able to tell the code that it has
been pressed. This is one place where events come into play. Functions
allow these events to trigger more complicated actions than a single line of
code would be able to carry out.

Form Options

Besides buttons, other items—such as radio buttons, check boxes, select
boxes, and text areas—can also go into forms. The programmer needs to
make sure that these items are in the forms and that the forms are named
with an ID. It would be simpler if there were only one form on any given
page. To name a form, just add an id attribute to the tag remembering that
JavaScript is case-sensitive. Most editors automatically give forms and
form elements a default ID. Make sure to check the tag so that there are not
two id attributes.

Without JavaScript, form elements do not have any functionality. Using
JavaScript, these buttons, boxes, and text areas can be used to gather
information from the webpage. Like forms, these items all need names, so
the programmer can reference them later using their id attributes. Usually,
these elements are automatically named upon insertion.

Once the forms and fields are all named with ids, functions can be created
in JavaScript to add functionality. In most cases, something will happen if
one of the checkboxes is checked. For example, if the user is purchasing
something, the function might add to a total. For this type of function, an if
statement could be used. First, tell the computer to look at the open
document. Next, tell the computer what element is being evaluated by using
getElementByld(). Now that the computer knows what it is looking at, ask
the computer if this box is checked or not. If the box is checked, the
computer will return true, and if the box is unchecked, the computer will
return false. Such an if statement would look something like this:

if(document.getElementById(“checkbox”).checked)

{
J/do this 1f the box 1s checked..

//.checked returns true of false so no need to
J/write == true

Radio buttons are like checkboxes except for one major difference: Radio
buttons are all linked together. In other words, when one radio button is
checked, no other button can be. To keep radio buttons connected, they are
stored in an array. If five radio buttons are added, they will probably have
names like R1[0], R1[1], R1[2], R1[3], and R1[4]. R1 is the name of the
array. Each button is stored as an element in this array, starting at zero. To
call on an element, square brackets are used []. To show these radio buttons
in an ID, they would be R1_0, R1_1, R1_2, R1_3, and R1_4. Even though
there are five buttons, the highest element is four because they start at zero.

The if statement for a radio button looks like this:

if(document.getElementById(“R1_0").checked)

{
//do this 1f the box 1s checked..

Select (dropdown) boxes work like radio buttons in that the input they
collect is saved in an array. The dropdown box itself is the array, and each

option is an element. One attribute of select boxes is selected, which can be
true or false. By using the method .selectedIndex, the index of the element
that is currently selected will be returned (it will return -1 if nothing is
selected). The .option property can be used to call attributes of the
individual options, but in most cases, simply using the .value property on
the array is enough:

document.getElementById(“select”).value;

.value returns the selected element's value. Each element's value needs to
be put in the array by adding an attribute or using the property pallet in an
editor.

In cases where information needs to be retrieved or sent to a text field,
simply assign a value to the text field or assign the text field to a new
variable. Remember that whatever is on the left-hand side of the equals sign
is being assigned a value. To save the content of the text field, type
something along the lines of:

var stuff = document.getElementById(“textfield”).value;

To put something into the text area:

document.getElementById(“textfield”).value = “This will show up in the text area!"”;

With the skills introduced above, you'll be ready to start making websites
that are more interactive than those made with HTML and CSS alone, but
the principles of programming—including the development process, the use
of variables, and iteration—will enable you to better grasp how computers
“think” and to understand how software developers approach a problem.

Summary

In this unit we've had a chance to dig into the nitty-gritty of coding.
Programming languages come in numerous flavors, including low-level
languages that interface directly with hardware and high-level languages

that are easier for humans to read, write, and debug. JavaScript is one such
high-level language—one of the foundational technologies of the modern
web—that you're now well on your way to mastering. While JavaScript is
just one language with its own distinct syntax (loosely based on C), the
basic principles of programming, introduced above, will serve you well no
matter which languages you choose to learn in the future. In this unit, we've
had a chance to spend some time with computers at their most technical. In
the following unit, we'll take a step back and examine the social, economic,
and cultural impacts of the computing revolution along with the ethical and
legal quandaries posed by these impacts.

Important Vocabulary

AND - basic logic gate where every part of a statement must be true
for the entire statement to be true Binary Search — a searching
algorithm, used on sorted lists, that divides the number of elements
to search in half until it is down to one element Constant — used in
coding to store a value that cannot be changed Debugging — finding
errors in code Design — Implement — Test — the three steps of the
iterative development process Incremental — done in small chunks
Iterative — continuously repeating steps, achieved in programming
by using loops Linear Search — a searching algorithm that starts at
the first index and checks each element of the list one by one until it
finds the item it is searching for Logic Error — a programming error
that occurs when there is a mistake in the algorithm or program that
causes it to behave incorrectly or unexpectedly OR — basic logic gate
where any part of a statement can be true for the entire statement to
be true Overflow Error — a specific type of run-time error that
occurs when a computer attempts to handle a number that is outside
of the defined range of values Recursion — a function that references
itself and consists of two parts: a recursive call and a base call
Round-off Error — a type of error that can occur when working with
real that are represented as approximations in computer storage Run-
time Error — a programming error that occurs during the execution
of the program, like dividing by zero Selection — the logic structure
in programming that uses if statements to select certain values
Sequence — the structure that runs one line after another in order

Syntax Error — a programming error which occurs when the rules of
the programming language are not followed Variable — used in
coding to store a value that can change

9 — Impact of Computing

“The Internet is not a luxury, it is a necessity.” - President Barack
Obama

Introduction

Just a few decades ago, computers were oddities, operated by specialists
and housed at universities, research facilities, and large corporations. With
the introduction of the personal computer in the 1970s and 1980s,
computing moved into homes, schools, and small businesses. During the
1990s the Internet became mainstream, connecting these computers—and
their users—to each other. The first decade of the twenty-first century saw
smartphones and other always-on devices make this digital connectivity
nearly ubiquitous. While there has long been debate about computing's
impact on society—note the Justice Department's 1990s investigation of
Microsoft—it is only during the last decade that society as a whole has
really started to grapple with computing's impact on society, both positive
and negative. The mantra of Silicon Valley developers—that they're making
the world a better place—began as a statement of optimistic faith in the
power of technology before becoming a cliché and then a punchline. The
beneficial effects of computing are impossible to deny, but it has become
increasingly difficult to ignore the harms that offset the benefits of
innovation. Additionally, computer networks have presented challenges to
existing laws, such as those around intellectual property, privacy, and child
protection. As computer users and programmers, we have an obligation to
consider the impacts of our actions. We must ask ourselves whether our
actions are ethical, not just legal, and we must learn about the steps we can
take to protect ourselves and others, particularly those who cannot protect
themselves, such as children.

Impact: Making the World a Better Place

Computers have provided exciting new tools for expressing creativity,
solving problems, and enabling communication. Two decades into the

twenty-first century, there is hardly an area of human activity that remains
untouched by the power of digital computing.

In the photo editing and web design units of this books, we learned specific
methods for using computers to showcase creativity. Many of today's most
popular applications—from TikTok and Instagram to GarageBand and
Canva—allow for the creation and sharing of images, videos, music, and
more. There is little doubt that these easy-to-use and inexpensive (or free)
tools have transformed popular culture.

As we saw in the compression, security, and programming units, computers
can be used to find solutions to previously intractable issues. From deciding
what song to listen to next to finding cures for diseases and sending humans
into space, algorithms have become indispensable for solving problems
both small and large.

The true power of computers only became apparent when they were
networked together. One of computing's most significant impacts has been
to enable communication and collaboration. Email, text messaging, and
video conferencing have changed how we talk to each other. Services like
Facebook and YouTube have transformed how we relate to our peers,
families, celebrities, and politicians.

Digital communication enables new forms of collaboration. Git repositories
like GitHub allow coders to work on programs simultaneously, while
students can use tools like Google's G-Suite to coordinate class projects.
Thanks to the Internet, such collaboration can take place among people who
live thousands of miles from each other.

Computers also foster innovation and creativity by providing more
opportunities for people to display and share their work more easily.
Platforms and software like WordPress, YouTube, and Instagram allow
artists and other creative workers to find audiences and engaged
communities that may not have even existed before the rise of ubiquitous
digital communication.

The benefits of easy communication, collaboration, and sharing can be seen
clearly in free and open source software (FOSS). Open source projects can
allow people to build on top of existing ideas, focusing on innovation

without the constant need to reinvent the wheel. According to a 2012
estimate, if the FOSS operating system Debian—including the Linux
Kernel, the GNU tools, and thousands of software packages—were to be
developed from scratch, it would cost over nineteen-billion dollars. Other
flavors of Linux, like Ubuntu, benefit from not having to redevelop all this
software, as does the commercial operating system MacOS, which shares
much of the underlying code. Projects like the Raspberry Pi, which includes
an optimized variant of Debian, and much of the Internet, which runs
disproportionately on Linux servers, would not exist without this spirit of
collaboration.

Obstacles: The Digital Divide

Free and open source software reflects some of the most utopian
possibilities of the computer revolution, but even here obstacles remain that
prevent certain groups from fully participating. Indeed, a digital divide
characterizes the computing field, holding people back along lines of
gender, race, socioeconomic status, geography, disability or accessibility
needs, and more.

One aspect of the digital divide has been access to the Internet itself.
Funding for schools to provide on-campus access has been growing, but
having access to the Internet at home seems to be an important indicator of
academic success. Having broadband at home is directly related to
socioeconomic status as well as geography since rural Internet access is
often nonexistent, prohibitively expensive, or unusably slow. More
affordable home Internet prices could help narrow this gap, but there are
deep political divides as to how to achieve this goal, with proposed
solutions including both decreased and increased regulation, public
investment in infrastructure, municipal broadband, and cooperatives.
Online censorship falls along similar lines as the digital divide in internet
access. Large online platforms have shown algorithmic racial bias when
deciding when to leave or remove content that has been flagged as hateful.
One study showed that white men receive more protection from hateful
speech than women or people of color! In policing content, these platforms
seem to deploy algorithms that negatively assess language more often used
by minority groups.

The digital divide affects people with disabilities in terms of both access to
information and greater online abuse. Laws exist that require websites and
applications to provide certain accessibility options, so for example, a
visually impaired person using a screen reader could still access the
resource. Many disabilities, however, are not addressed by these tools, and
compliance is far from universal. Online abuse can also discourage people
with disabilities from using the Internet. More and better tools to prevent
such abuse could improve the online experience for people with disabilities
and other groups facing targeted harassment.

Computer science faces a massive and growing gender gap. Only a quarter
of programming jobs are held by women. In 1984, 37 percent of computer
science majors were women, but as of 2014 only 18 percent were. A 2019
study predicted that if current trends hold it would take one-hundred years
for computer science researchers to achieve gender parity. This gender gap
cannot be explained through any one cause. STEM-related toys have been
marketed mainly to boys, and oftentimes boys have received more
encouragement in developing an interest in technology (programs like Girls
Who Code seek to close this early educational gap). And many women who
seek to enter the field have been discouraged by an unwelcoming or even
hostile climate, including outright discrimination and harassment. Whatever
the cause, the gender gap has been economically damaging as necessary
and lucrative jobs have gone unfilled. Moreover, engineers, like other
people, inevitably work from their own perspectives, which has
overwhelmingly meant male perspectives, leaving potential products
undeveloped and potential markets unserved.

Lack of home broadband along socioeconomic and geographic lines, racial
disparities in online censorship and protection against hateful conduct, lack
of accessibility, and the preponderance of male software engineers are only
a few aspects of the digital divide both in the United States and globally.
Recognizing these obstacles to everyone's full and equal participation in the
digital world is a first step toward ensuring that everyone can benefit from
the positive impacts of computing. As long as entire groups of people
remain underrepresented as creators and users of technology, the impact of
technological innovation will not be able to reach its full potential.

Effects: It's Complicated

In the sections above, we've considered some of technology's positive
impacts and the obstacles many face when trying to participate in the digital
realm. Technology's impacts have not, however, been entirely beneficial.
Technological innovation has had many effects on society, culture, and the
economy, some of which have been harmful, intentionally or otherwise.
Innovations that were created with the best intentions have had unintended
consequences. Finding the balance and considering the tradeoffs between
technology's beneficial and harmful effects can be tricky. Some recent or
emerging technologies that present us with a mix of beneficial and harmful
effects include social media, ride-sharing apps, and virtual reality.

Few technologies have impacted how we communicate in the twenty-first
century more than social media, and there is little doubt that social media
has brought many benefits. Sites like Facebook, Twitter, and Instagram
have enabled people to make and maintain connections with many more
people, even people who live thousands of miles away. These sites have
also helped introverts connect with people in ways that feel more
comfortable and have helped others to spread social awareness. On the
other hand, research has found that heavy social media use can lead to
anxiety, depression, and lower sleep quality. Social media can promote
unhealthy comparisons with others, oftentimes leading to body image issues
and cyberbullying. On a broader level, social media has been used to spread
misinformation and outright lies, threatening democratic discourse and
institutions throughout the world. Assessing whether the benefits are worth
the cost is no easy task, and there is an enormous amount of evidence to
stack up on either side. When making such assessments, though, it is
important to remember that innovations cannot be considered in isolation.
We need to weigh their impacts on society as a whole.

Just as social media has transformed how we communicate, ride-sharing
apps seek to transform how we get around. These apps, however, have both
positive and negative economic effects. Many drivers for companies such as
Uber and Lyft like the flexibility that these apps allow. They can set their
own hours and supplement income from other jobs, and more income
means more spending, potentially benefitting their communities. On the
other hand, if people choose to use ride-sharing apps rather than ride public

transportation, we are likely to see increased automobile emissions and
reduced government funding for transit, leaving those who rely on buses
and trains as their sole means of transportation vulnerable. A full tally of
the benefits (e.g., reduced drunk driving, less need for individual car
ownership) and harms (e.g. low wages, increased congestion, lack of
accessibility) of ride-sharing apps is outside the scope of this book and is
the subject of a vigorous public debate. As we develop our own
perspectives, though, it is important to consider both sides with a fair mind.

Along with technology's social and economic effects, its cultural impact
should not go unexamined. Virtual reality (VR) is an emerging technology
that could have a tremendous cultural effect. People could have the
opportunity to experience other cultures through simulations, broadening
their horizons without the need to travel thousands of miles. They could
learn the norms and traditions of other cultures without embarrassing
mistakes and satisfy their curiosity without risk of offending real people.
However, if VR becomes a replacement for rather than a supplement to real
cultural exchange then people would lose the kind of immersive experience
that enables a deeper understanding of other cultures. VR tourism could
enable hyper-realistic “visits” to historical landmarks without experiencing
the context of the countries where these landmarks are located. Many
residents of hyper-touristed cities like Barcelona or Paris might welcome
the reduced traffic, but others would lose the economic benefits of tourism.
Either way, VR offers both the possibility of enabling cultural experiences
that would not be possible otherwise and the threat of supplanting deeper
real-world culture exchange that cannot be simulated.

Beyond these three examples, there are countless ways in which new
technologies bring both positive and negative social, economic, and cultural
impacts. Smartphones have put powerful computers and the potential of the
entire Internet into our pockets but have also left us distracted, making it
difficult to focus. Self-driving trucks might reduce highway crashes and
increase efficiency while also putting millions of drivers out of work.
Streaming video and inexpensive audio-visual equipment allows us to enjoy
movies in the comfort of our own home but without the communal
experience of sitting with others in a theater. When we develop new
technologies—whether hardware or software—it is critical that we take a

deep look into all the different ways these innovations can affect the world
around us.

Intellectual Property

Let's say you've written the next hot app, recorded a song that you're sure is
going to be a smash hit, or written the great American novel? What stops
someone from coming along and copying your innovation? This issue is at
least as old as the printing press, but digital technology makes it even more
acute since one of the features of digital artifacts is that they are endlessly
reproducible without any loss of quality. Governments have legislated a
variety of solutions to this problem that are broadly grouped under the
umbrella of intellectual property (IP). These are rights granted to authors
and inventors for exclusive control of their creations, usually for a limited
period of time. IP rights seek to promote innovation through the promise of
financial gain, but when applied too broadly or for too long they can have
the effect of stifling innovation by preventing the next generation of
creators from building on the innovations of their predecessors. There is a
long-running societal debate underway on appropriate levels of IP
protections. What kinds of creations should receive what kinds of protection
and how long should these protections last?

IP rights apply to intangible goods, so navigating them can sometimes be
tricky. Following best practices and knowing existing laws can make it
easier to protect your IP while respecting others'.

A patent is one form of intellectual property. Patents allow inventors to
exclude others from using their inventions without permission and can last
up to twenty years. Although patents have historically been applied to
physical inventions, they can also be obtained for software. Legal and filing
fees for a patent can run to several thousand dollars, and they can be
difficult to defend in court.

Copyright is another form of intellectual property, which protects original
forms of expression. In the United States, software is legally considered as
a type of literary work for the purposes of copyright. In the U.S., copyright
applies once a work is fixed in tangible form. It is not strictly necessary to

register a work in order to receive copyright protections. However

copyright registration provides for stronger protections under U.S. law and
typically costs around $50. In the United States, copyright can last for the
life of the author plus up to seventy years. The law does not prohibit “fair
use” of a copyrighted work. Fair use allows certain exceptions to copyright
for purposes such as education, news, and reviews, among others.

Trademarks protect brand names and logos in order to distinguish one
company's product from other products on the market. Trademarks protect
the source of a product rather than the product itself, so as nearly every soft
drink manufacturer on the planet can tell you, there's no law against putting
brown bubbly sugar water in a bottle or can and selling it. If you label your
bottles as “Coca-Cola,” however, you can expect to hear from a certain
large corporation's lawyers very soon. It typically costs a few hundred
dollars to register a trademark, which can last for a decade with the option
to renew indefinitely.

IP can be a controversial topic. Mark Twain famously believed that
copyright should last forever, like other forms of property, while others
argue that high drug prices enabled by pharmaceutical patents lead to
countless unnecessary deaths and so should not exist at all (Drug companies
would respond that without the profits enabled by patents, these lifesaving
pharmaceuticals would never be developed in the first place). Many others
have staked out positions between these two extremes. With debates around
IP law unlikely to be resolved anytime soon, developers and artists have
worked together with lawyers to create licenses that promote cooperation
and sharing. Two examples of such licenses can be found in free and open
source software and Creative Commons.

Free and open source software allows you to use and build upon others'
work and to allow others to use and build upon your work. The original free
software license, the GNU General Public License (GPL), was written by
Richard Stallman in 1989. It allows anyone to use, modify, or sell the
licensed software for any purpose. The GPL is a “copyleft” license, which
means that any new software built by modifying the original source code
must also be licensed under the same terms. In this way, it uses copyright
not to restrict access to IP but to promote cooperation. Some newer FOSS
licenses, such as the BSD License and the Apache License are
“permissive,” that is they don't impose copyleft's share-alike conditions on

derivative works. Whatever license is used, having access to the source
code of free and open source software has security benefits since it is easier
find—and fix—backdoors and other vulnerabilities.

Creative Commons is a non-profit organization founded in 2001 by IP
lawyer Lawrence Lessig and others. It offers six main licenses that promote
sharing of copyrighted works. Creative Commons licenses allow creators to
permit others to use their work, subject to certain conditions, without the
need to seek permission. Creative Commons licenses function much like
open source licenses and give creators an array of options that include
allowing commercial or non-commercial use, permitting modifications of
the work with or without the requirement to share-alike (imposing the same
license on derivative works), and requiring or not requiring that attribution
be given to the original author. In this way, Creative Commons allows
creators to open up their work to be reused and remixed in a flexible and
easy-to-understand manner.

Ethics

When designing software and using computers—as in other aspects of life
—there are clear laws in place that prohibit certain actions. Using a
computer to steal, spread malicious software, or plagiarize others' work is
illegal, and breaking laws comes with consequences, including the
possibility of criminal prosecution or civil penalties. However, the law
provides, at best, a bare minimum standard of conduct. Just because
something is legal doesn't make it right.

Ethical computing demands that as users and developers we hold
ourselves to a higher standard. Ethics refers to the principles, values,
standards, and practices that guide individuals and groups in doing what is
right. Bullying, using data for nefarious purposes, or gaining access to
systems that you don't have authorization to access may or may not be
illegal, depending on the circumstances, but these activities are probably
not ethical. These examples are relatively clear but other ethical questions
can be more muddled, and philosophers have argued since ancient times
about which principles should guide moral values. Should we seek the
greatest good for the greatest number, as utilitarians insist, or should we
follow some version of the golden rule and do unto others as we would

have them do unto us? These questions are not easy to resolve, but by
weighing them we can develop our own personal and collective values.
With this moral framework, we will have a better capacity to design
innovations that take ethics into account.

Privacy and Security

The concepts of privacy and security are often confused, and they are often
violated simultaneously, as during a data breach. While related, they are
distinct concepts. Privacy deals with your personal information, how it is
stored, and how it is shared. Security, on the other hand, refers to the steps
companies take to protect your data. Protecting our privacy and security
online often comes with tradeoffs, such as loss of convenience, but
responsible computer users should not ignore these concerns.

How a company deals with personal data is usually spelled out in a lengthy
end-user license agreement (EULA) that most people agree to without a
second thought. Since EULAs are generally long, opaque, and purposely
confusing, insisting on reading each of these legally binding agreements
would make participating in online life virtually impossible. When you
click “agree,” however, you may be giving permission for a company to sell
your data or to use it for its own profitable activities, such as targeted
advertising, which may feel like a violation of your privacy. In other cases,
your data might be sold without even this nominal form of consent, or it
might be stolen in a data breach.

Even though many of these privacy violations are at least technically legal,
there are several steps you can take to help safeguard your privacy online.
These safeguards include taking action to limit sites from tracking you. One
way to limit such tracking is by using a private browser that does not store
cookies across sites. Another is by using a virtual private network (VPN)
or related service to hide your IP address. On mobile devices, you can
check your privacy settings to ensure that you have not given apps
permission to collect unnecessary data, including location, contact
information, or microphone and camera access. Both iOS and Android let
you specify these permissions at the app level and ask that you accept them
when the app is installed or first opened.

Deliberately long and confusing EULAs have done little to help consumers
make informed choices about their personal data online. For many
companies, protecting users' privacy is not a priority. Indeed, surveillance of
user behavior has in many cases become central to their business models.
As public opinion has begun to grapple with this reality, some laws have
been passed to help protect personal data. The Children's Online Privacy
Protection Act (COPPA), a U.S. federal law, protects children under the age
of 13. The California Consumer Privacy Act (CCPA) applies to the largest
state in the United States, where many tech companies are based, and the
European Union's General Data Protection Regulation (GDPR) protects
personal data both in and outside the world's largest single market. Each of
these laws are unique, but they all aim to protect users and to provide more
transparency into online companies' data collecting practices.

Corporate respect for user privacy is a necessary but not sufficient element
of protecting personal data. If bad actors steal your private data then a
company's best intentions are irrelevant. That's why security is also
important. As discussed in Unit Five, hackers have many ways to access
your data ranging from your mistakes (such as using weak passwords or
falling for phishing schemes) to companies' failures to provide proper
safeguards (such as storing sensitive data in plaintext). There are obvious
things you can do to improve your security, including not reusing
passwords, using multi-factor authentication where available, and learning
to recognize phishing attempts. Unfortunately, you don't have much control
over companies' practices. You can try to do business only with companies
that have a solid track record of effective security, and you can hope
companies follow existing laws and regulations intended to ensure that they
safeguard personal data. As the number of high-profile data breaches
increases, more companies are hiring Chief Information Security Officers
(CISOs) in order to avoid these embarrassing and sometimes costly
mistakes.

Storing data in “the cloud,” that is on distributed servers, raises its own
questions in terms of privacy and security. Cloud computing is definitely
convenient. It is easy to use, reliable, globally available, and cheaper to
scale, but it is important to consider potential risks to privacy and security.
There are tradeoffs between cloud storage and keeping data on machines
that you control. A few questions to think about when deciding whether to

use cloud-based storage are who owns the data, can the service provider
access the data, how often do they back up the data, what privacy and
security measures do they have in place, can they use the data to advertise,
and are you giving up privacy protections by putting your data into the
cloud.

Whenever we make such decisions we face tradeoffs between privacy,
security, convenience, and cost. Each person or group will feel comfortable
with a different balance—and this balance will change depending on what
kind of data we're dealing with. Many people will feel much more strongly
about the privacy of their medical data or the security of their bank accounts
than they will about a birthday message to their grandmother. Still, it is
impossible to find the balance that is right for you if you're not informed
about the available options and their tradeoffs.

Summary

Computers have become—for better or worse—an inescapable part of
modern life. The benefits of the computing revolution are impossible to
deny. Communication, sharing, and collaboration have been made easier
and richer by the presence of computers in our life. Still, in many areas of
life, the effects of computing have been murkier. The social, economic, and
cultural effects of networked computers have been both positive and
negative, and we would do well to keep these mixed effects in mind when
evaluating new technologies. IP law both protects and sometimes stifles
innovation, which has led to efforts to reform or add flexibility to copyright
and other forms of intellectual property. Ethical computing demands that
we, as users and developers, hold ourselves to a higher standard than what
is simply legal, and as users and developers, we have an obligation to
protect our own and others' security and privacy. In these areas, as in others,
there are not always easy answers. Our decisions involve tradeoffs, but if
we're informed and thoughtful about the impact of our actions, we can work
to find a balance that we're comfortable with.

In the preceding nine units, we've had the opportunity to become acquainted
with the foundations of computing and to learn a set of practical skills that
will enable you to use computers more creatively and effectively. If you've

made it this far, you have become a better informed and more skilled
computer user, but you have also gained skills and knowledge that could
make you a better artist, a more productive worker, and a more informed
citizen. Computers have become central to modern society in a way that
few imagined even a few decades ago. By mastering the principles of
computer science, you are now better equipped to navigate the society we
all share.

Important Vocabulary

Copyright — a form of intellectual property, which protects original
forms of expression

Digital Divide — the gap between those who have access to
technology and those who do not

Ethical Computing — demands that users and developers hold
themselves to a higher standard. Refers to the principles, values,
standards, and practices that guide individuals and groups in doing
what is right

EULA - end-user license agreement

Patents — allow inventors to exclude others from using their
inventions without permission, can last up to twenty years

Privacy — deals with your personal information, how it is stored, and
how it is shared

Security — refers to the steps companies take to protect your data
Trademarks — protect brand names and logos in order to distinguish
one company's product from other products on the market

VPN - virtual private network

Suggested Reading

Lawrence Lessig. Free Culture: How Big Media Uses Technology
and the Law to Lock Down Culture and Control Creativity. New
York: Penguin, 2004.

Steven Levy. Hackers: Heroes of the Computer Revolution.
Sebastopol, CA: O'Reilly Media, 2010.

Safiya Umoja Noble. Algorithms of Oppression: How Search
Engines Reinforce Racism. New York: NYU Press, 2018.

Jenny Odell. How to Do Nothing: Resisting the Attention Economy.
Brooklyn, NY: Melville House, 2019.

Cathy O’Neil. Weapons of Math Destruction. Largo, MD: Crown
Books, 2016.

Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary. Sebastopol, CA:
O'Reilly Media, 1999.

Astra Taylor. The People's Platform: Taking Back Power and Culture
in the Digital Age. New York: Metropolitan Books, 2014.

Siva Vaidhyanathan. Intellectual Property: A Very Short
Introduction. Oxford: Oxford University Press, 2017.

Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for
a Human Future at the New Frontier of Power. New York:
PublicAffairs, 2019.

Appendix - JavaScript Objects

String Object

var yourVar = “a string”; yourVar. METHOD();

String Object Properties

Property Description
length Returns the number of characters in the string
String Object Methods
Method Description
toUpperCase() Returns the string in all uppercase letters

toLowerCase()

Returns the string in all lowercase letters

charAt(int)

Returns what character is at the specified index

substring(intl, int2)

Returns the string from index int1 to index int2 -1

substring(int)

Returns the string from index int to the last character of the
string

concat(strl, str2, ...)

Combines two or more stings together

sup()

Changes the string into a superscript

sub() Changes the string into a subscript

parselnt(str) Changes the string into an integer

parseFloat(str) Changes the string into a floating-point number (decimal)

Math Object

Math. METHOD();
Math Object Properties
Property Description
E Returns Euler's constant (approx. 2.718)
LN2 Returns the natural logarithm of 2 (approx. 0.693)
LN10 Returns the natural logarithm of 10 (approx. 2.302)
LOG2E Returns the base-2 logarithm of E (approx. 1.414)
LOGI10E Returns the base-10 logarithm of E (approx. 0.434)
PI Returns PI (approx. 3.14159)
SQRT1_2 Returns the square root of 1/2 (approx. 0.707)
SQRT?2 Returns the square root of 2 (approx. 1.414)

Math Object Methods

Method Description
abs(num) Returns the absolute value of a number
. Returns the value of a number rounded upwards to the nearest
ceil(num)

integer

floor(num)

Returns the value of a number rounded downwards to the nearest
integer

round(num)

Rounds a number to the nearest integer

min(numl, num2, ...)

Returns the number with the lowest value of x and y

max(numl, num2, ...)

Returns the number with the highest value of x and y

sqrt(num)

Returns the square root of a number

pow(num, num)

Returns the value of x to the power of y

random()

Returns a random number between 0 and 1 (excluding 1)

sin(num)

Returns the sine of a number

cos(num)

Returns the cosine of a number

tan(num)

Returns the tangent of an angle

Document & HTML Objects

document. METHOD();
Document Object Properties
Property Description
bgColor Sets or returns the color of the background
fgColor Sets or returns the color of the foreground
title Returns the title of the current document
cookie Sets or returns all cookies associated with the current document
domain Returns the domain name for the current document
lastModified Returns the date and time a document was last modified
Returns the URL of the document that loaded the current
referrer
document

URL

Returns the URL of the current document

Document Object Methods

Method

Description

getElementByld(“id”)

Returns the element of a specific HTML tag using specified ID

blur() Takes focus off the element
focus() Gives focus to the element
click() Simulates a mouse click on the element

Element Object Properties

innerHTML

Sets text in between the opening and closing of specific HTML

tags
style Sets or returns the value of the style attribute of an element
className Sets or returns the value of the class attribute of an element

Date Object

var yourObj = new Date(); var newVar = yourObj.METHOD(); Date Methods

Method Description
Date() Returns today's date and time
getDate() Returns the day of the month from a Date object (from 1-31)
getDay() Returns the day of the week from a Date object (from 0-6)
getMonth() Returns the month from a Date object (from 0-11)
getFullYear() Returns the year, as a four-digit number, from a Date object
getHours() Returns the hour of a Date object (from 0-23)
getMinutes() Returns the minutes of a Date object (from 0-59)
getSeconds() Returns the seconds of a Date object (from 0-59)
getMilliseconds() Returns the milliseconds of a Date object (from 0-999)
getTime() Returns the number of milliseconds since rpidnight Jan 1, 1970.
Also, known as Internet Time.
Array Object

var yourArray = [|;

yourArray[0] = something;

yourArray[1] = somethingElse;

yourArray. METHOD();
Array Object Properties
Property Description
length Returns the number of elements in the array
Array Object Methods
Method Description
concat(Aq, Ap,...) Combines two or more arrays and returns an array
reverse() Reverses the order of the array and returns an array
join(str) Changes the array into a string and separates them with the
] specified string and returns a string
sort() Rearranges the array in alphabetical or numerical order and
returns an array
ush() Adds new elements to the end of an array, and returns the new
P length
pop() Removes the last element of an array, and returns that element
shift() Removes the first element of an array, and returns that element

unshift() Adds new elements to the beginning of an array, and returns the
new length

splice(num and/or str) Adds/Removes elements from an array

Selects a part of an array, and returns the new array from index

slice(int1 , int2) int1 to index int2-1

Events

Place the event followed by an equal sign and a function inside of an HTML tag.
<SOMETAG ... anEvent = “yourFunction()”>

Event Description
onclick When the mouse is clicked
ondblclick When the mouse is double clicked
onkeypress When a key on the keyboard is pressed
onkeydown When a key on the keyboard is pressed down
onkeyup When a key on the keyboard is released
onload When the page is loaded
onreset When the refresh button is pressed

onresize When the page is resized
onselect When text on the page is selected
onsubmit When the submit button is pressed
onunload When the page is closed
onmouseover When the mouse is over the element
onmouseout When the mouse is taken off an element
onmouseup When the mouse button is released
onmousedown When the mouse button is pressed down
onmousemove When the mouse moves
onerror When an error occurs on the page

Important Vocabulary

Abstraction — reducing information and detail to facilitate focus on
relevant concepts Additive Color — a color model where no light is black
and the combination of all light is white, like RGB

AND - basic logic gate where every part of a statement must be true for the
entire statement to be true Application — almost everything on the
computer except saved files and the operating system, including word
processors, photo editing software, web browsers, games, and music
programs ARPANET - the Advanced Research Projects Agency Network,
first agency to use TCP/IP

ASCII — American Standard Code for Information Interchange
Asymmetric Key Encryption — a different key is used to encrypt and
decrypt a message Atomic transaction — transaction where all components
must be carried out before the transaction is considered complete such that
all occur or none occur Availability — element of the CIA triad stating that
data should be accessible by authorized parties at appropriate times
Backdoor — a secret way to bypass traditional access to a device or network
Bandwidth — the amount of resources available to transmit the data

Big Data — sets of data that are larger than a consumer software application
can handle Binary — base 2, number system that uses 0, 1

Binary Search — a searching algorithm, used on sorted lists, that divides the
number of elements to search in half until it is down to one element Binary
Tree — a data structure that can, at the most, have two nodes or “branches”
BIOS — Basic input/output system

Bit — each number in the binary system, 0 or 1

Bit Depth — refers to the amplitude of the analog wave and specifically to
the number of bits used for each sample Bit Rate — the number of bits that
can be processed per second

Boolean Logic — a branch of algebra where variables can only have two
values: true or false Botnet — a large network of internet-robots called bots
controlled by a command-and-control server, often used for DDoS attacks
Byte — 8 bits

Caesar Cipher — a shift cipher where each letter is shifted the same amount
Central Processing Unit (CPU) — carries out every command or process
on the computer and can be thought of as the brain of the computer
Certificate Authority (CA) — the entity that stores, signs, and issues digital

certificates CIA triad — in information security (InfoSec), the model
designed to guide policies: Confidentiality, Integrity, Availability Cipher —
is a pair of algorithms that give details on how to encrypt and decrypt the
data Citizen Science — a type of scientific research that is conducted, in
whole or in part, by distributed individuals who contribute relevant data to
research using their own computing devices Client — any computer that
requests a service

Cloud Computing — a type of distributed computing that involves using a
network of remote servers to store, manage, and process data Cloud
Computing — using a remote server to store files

CMYK - color model used for printing. Stands for cyan, magenta, yellow,
and black (key), where the number associated with each letter is the
percentage of each color used Codec — a computer program that encodes or
decodes Computationally hard — a problem that takes too long even for a
computer to find the exact solution Computer — an electronic device that
processes data according to a set of instructions or commands, known as a
program Confidentiality — element of the CIA triad stating that private data
should remain private Consistency — in databases, refers to the fact that
information from one table does not contradict itself in any other table
throughout a database Constant — used in coding to store a value that
cannot be changed

Copyright — a form of intellectual property, which protects original forms
of expression Core — the central processing unit (CPU), the main memory,
the motherboard, and the power supply Crowdsourcing — tapping into the
collective intelligence of a large group of people to achieve a specific goal
or solve a problem CSS — Cascading Style Sheets, redefines mark-up in
HTML

Datagrams — Similar to packets, used in unreliable protocols such as UDP
DDoS — distributed denial-of-service attack, hackers flood a site with fake
request making all the site’s resources unavailable for legitimate users
Deadlock — when, in a database, two transactions are trying to lock the
same row and neither can continue until the other is complete Debugging —
finding errors in code

Decimal — base 10, number system that used 0-9

Decryption — the reverse process of encryption

Design — Implement — Test — the three steps of the iterative development
process

Dictionary — a key in metadata explaining the instructions to encode or
decode compressed data Digit — each number in the decimal system, 0-9
Digital Certificate — a trusted third-party file that verifies a site as
legitimate Digital Divide — the gap between those who have access to
technology and those who do not Digital signature — an electronic
signature that, by using public key, can be verified authentic Discarding
Data — a type of lossy compression that removes unneeded data with no
way to get that data back Distributed Computing — a model that involves
using multiple devices to run a program DNS — Domain Name System, one
of the smaller networks that make up the Internet. It contains many servers
that act like phone books Domain Name — a name given or linked to an IP
address

Encryption — taking text and converting it so it is illegible

Ethical computing — demands that users and developers hold themselves to
a higher standard. Refers to the principles, values, standards, and practices
that guide individuals and groups in doing what is right EULA — end-user
license agreement

Fault-tolerance — the ability for a system to continue to run properly even
if one piece fails Fault-Tolerant — a property of IP. If there is an error, it
still works properly

Fixed-length Code — blocks of code that are always the same size

FTP — File Transfer Protocol, used for transferring files between a client
and a server Graphics Processing Unit (GPU) — a processor specifically
designed to manage a large amount of data simultaneously Graphical User
Interface (GUI) — an interface that uses images to represent a system's
folders and files Hacker — anyone who uses their technological skills to
solve problems. A malicious security hacker exploits weaknesses on a
computer or network and can steal or disrupt data Hardware — the physical
parts of the computer, including devices such as the monitor, keyboard,
speakers, wires, chips, cables, plugs, disks, printers, and mice Hashing —
the process of running data through a one-way function that takes data of
varying sizes and returns a unique fixed length value Heuristic approach —
an approach that gives results that are “good enough” when an exact answer
is not necessary Hexadecimal — base 16, number system that uses 0-9 and
a-f

HTML - Hyper Text Markup Language, the standard for creating web
pages

HTTP — Hyper Text Transfer Protocol, used for websites

HTTPS — a secure version of HTTP that uses SSL/TLS

Huffman Tree — a prefix free binary tree that is the most efficient way to
compress individual characters Idempotency — when an operation results in
the same end result no matter how many times it is performed IMAP —
Internet Message Access Protocol, used for e-mail

Incremental — done in small chunks

Input and output (I/0) devices — how the user interacts with the computer
Integrity — element of the CIA triad stating that data should not be altered
or deleted by unauthorized methods Interframe Compression — a video
compression that re-uses redundant pixels from one frame to the next, also
known as temporal compression Internet — a network of smaller networks
connected using a specific set of rules that computers use to communicate
with each other Internet Protocol Suite — Often referred to as TCP/IP, the
four abstract layers in the DoD Model of the Internet Intraframe
Compression — a technique used by compressing each frame of a video,
also known as spatial compression IP — Internet protocol, a unique address
for every device connected to the Internet IP Address — a unique identifier
for every device on the Internet

IPv4 — the version of IP that uses 32-bit addresses

IPv6 — the version of IP that uses 128-bit addresses

ISP — Internet Service Provider

Iterative — continuously repeating steps, achieved in programming by using
loops

Key — in cryptography, a shared secret to make encryption harder to crack
Keys — a database column that holds a unique value that distinguishes each
record from others Latency — the amount of delay when sending digital
data over the Internet or the round-trip time information takes to get from
the client to the server and back Linear Search — a searching algorithm that
starts at the first index and checks each element of the list one by one until
it finds the item it is searching for Logic bomb — code that has been placed
into software that waits to run until specific conditions are met Logic Error
— a programming error that occurs when there is a mistake in the algorithm
or program that causes it to behave incorrectly or unexpectedly Lossless —
data compression that does not lose data during compression

Lossy — data compression that loses data during compression

MAC (media access control) Address — a unique, physical address that is
stored in the computer’s ROM

Main memory — memory that temporarily stores information while the
CPU is actively processing it, also called RAM

Malware — malicious software intended to cause damage to a computer or
network

Metadata — additional data about the main data, usually at the beginning of
a file Modem - a device that handles both the modulation and the
demodulation of signals

Modular arithmetic — using the remainder when dividing, also known as
clock arithmetic Moore's Law — the trend of exponentially increasing
transistor density, doubling approximately every two years Motherboard
(logic board) - the standardized printed circuit board that connects the CPU,
main memory, and peripherals Multi-factor authentication (MFA) — using
two or more methods for verifying a user Name Server — a server that
contains many IP addresses and their matching domain names Network — a
group of computers that are connected so they can share resources using a
data link Nonvolatile — does not need a power supply. Information is
physically written to the device NP problem — nondeterministic polynomial
time, a problem that can be verified, but not solved, in polynomial time
Nybble (or Nibble) — half of a byte, 4 bits

One-way Function - a problem that is easy in one direction and difficult in
the other Operating System — software that provides common services to
other programs, manages hardware and software resources, and provides
the visual representation of the computer OR — basic logic gate where any
part of a statement can be true for the entire statement to be true Overflow
Error — a specific type of run-time error that occurs when a computer
attempts to handle a number that is outside of the defined range of values P
problem — polynomial time, a problem that can both be solved and verified
in polynomial time Packets — small chunks of data used in TCP/IP

Parallel Computing — breaks a program into multiple smaller sequential
computing operations, some of which are performed simultaneously
Patents — allow inventors to exclude others from using their inventions
without permission, can last up to twenty years Peripherals — the input and
output (I/O) devices and the secondary memory

Phishing — using “bait” to trick the user into entering sensitive information
like usernames, passwords, or credit card numbers Pixel — short for picture

element. The basic unit of color on a computer display

Pixelation — when individual pixels are too large and the image begins to
look blocky POP — Post Office Protocol, used for e-mail

POST - Power-on self-test

Power Supply — converts AC electricity to the lower voltage DC electricity
that is needed to power the computer Prefix-Free Code — a specific type of
variable-length code that does not use pauses Privacy — deals with your
personal information, how it is stored, and how it is shared Private Key — a
shared secret needed to decrypt a message

Protocol — a specific set of rules

Psychoacoustics — a sub-branch of psychophysics that deals specifically
with sound Psychophysics — a branch of psychology that focuses on the
fact that the human eye or ear cannot perceive the loss of certain data
Public Key — a system that allows a key to be publicly published

Random Access Memory (RAM) — memory that can be retrieved or
written to anywhere without having to go through all the previous memory
Raster — an image format that represent data in a grid of dots or pixels
Recursion — a function that references itself and consists of two parts: a
recursive call and a base call Redundancy — finding frequencies or patterns
in code

Relational database — a database that has multiple tables that are
connected by the use of unique keys Reliable — a protocol that lets the
client know if the server received all sent packets RGB — color model used
for most monitors or screens. Stands for red, green, and blue, referring to
the color of light Rellback — returning back to the state of a database before
the write-ahead log began Root Name Server — one of thirteen servers that
contain every IP address and its matching domain name Round-off Error —
a type of error that can occur when working with real that are represented as
approximations in computer storage Router — a networking device that
routes Internet traffic to the destination Run-Length Encoding — looking
for redundancy or patterns as runs in the code

Run-time Error — a programming error that occurs during the execution of
the program, like dividing by zero Salting — adding a random set of
characters to a password before it is hashed to protect against rainbow table
attacks Sample Rate — how often an analog signal is used when converting
to digital, usually measured in kHz Secondary Memory — used for long
term storage and is physically changed when files are saved or deleted

Second-Level Domain — the second highest level in the DNS hierarchy,
found directly to the left of the top-level domain in a domain name Security
— refers to the steps companies take to protect your data

Selection — the logic structure in programming that uses if statements to
select certain values Sequence — the structure that runs one line after
another in order

Sequential Computing — a model in which operations are performed in
order, one at a time Sequential Memory — memory used to store back-up
data on a tape

Server — any computer that provides a service

Silicon — a semiconductor material, derived from silica found in sand, that
possesses unique electrical properties Simpson’s paradox — a phenomenon
that can occur when multiple groups of data trend in one direction but when
combined with other sets the, trend disappears or reverses SMTP — Simple
Mail Transfer Protocol

Software — includes the operating system and the applications. It is usually
stored on a computer's hard drive and cannot physically be touched. At the
lowest level, it is a series of ones and zeros Spear phishing — a type of
phishing attack that targets a specific person or group using pre-existing
knowledge SSL — Secure Sockets Layer, issues digital certificates for
websites

Structured Query Language (SQL) — the language used to manage,
access, and manipulate relational databases Subdomain — precedes the
domain name, owned by the domain https://subdomain.domain.com
Substitution Cipher — a cipher where a letter is mapped or swapped with
another letter in the alphabet Subtractive Color — a color model where no
light is white and the combination of all light is black, like CMYK
Symmetric Key Encryption — the same key is used to encrypt and decrypt
a message

Syntax Error — a programming error which occurs when the rules of the
programming language are not followed TCP — Transmission Control
Protocol, a set of rules for breaking down requests into smaller, more
manageable, numbered packets Text-Based Interface — an interface made
up of purely text input from the user

TLS — Transport Layer Security, issues digital certificates for websites
Top-Level Domain — the highest level in the DNS hierarchy, found to the
right of the final period in a domain name Trademarks — protect brand

names and logos in order to distinguish one company's product from other
products on the market Transistors — microscopic electronic devices that
act as switches, capable of controlling the flow of electrical current
Traveling Salesman Problem (TSP) — an NP-hard problem that, when
given distances between pairs of cities, seeks to map out the shortest route
between many cities and return back to the original city Trojan Horse —
malware disguised to hide its true intent

Truth Table — a table made up of rows and columns of Boolean variables
and resulting Boolean expressions Two-factor Authentication (2FA) — a
subset of MFA where exactly two methods for verifying a user are
implemented Two-phase Commit Protocol — a standardized way for
databases to

make sure all transactions are able to write without any inconsistencies
before committing

UDP — User Datagram Protocol, like TCP and usually used for streaming
audio/video

Uncompressed— all the information from an original file in the same format
Unicode — a 16-bit encoding scheme that built upon ASCII

UEFI — Unified Extensible Firmware Interface, a more advanced and
modern interface for firmware that largely replaced BIOS

URL - Uniform Resource Locator, specifies where to find a file on a
domain

Variable — used in coding to store a value that can change
Variable-length Code — each data block can be a different length

Vector — an image format that represents data through a combination of
points connected by lines and curves Virtual tables — temporary tables that
are made up of parts of other tables that help in reducing redundant data
Virus — a program that infects other programs and usually spreads to other
programs or computers by copying itself repeatedly VoIP — Voice over
Internet Protocol, used for telephony

Volatile — needs a power supply. Turning off the power deletes information
VPN - virtual private network

Web (World Wide Web) — the part of the Internet that uses HTTP and
HTTPS

Worm — a standalone piece of malware that can disrupt a network by
copying itself repeatedly without human interaction Write-ahead Logging

— a method for avoiding inconsistencies in which all transactions are written
and saved to a log before they are applied to a database

	Foreword
	Software Alternatives
	1 - Hardware, Software, Number Systems & Boolean Expressions
	2 - Pixels and Images
	2.5 - Adobe Photoshop
	3 - Compressing Data
	4 - Storing Data: Spreadsheets and Databases
	5 - Protecting Data: Heuristics, Security, and Encryption
	6 - The Internet
	7 - Web Design: HTML and CSS
	8 - Programming: JavaScript
	9 - Impact of Computing
	Appendix - JavaScript Objects
	Important Vocabulary

