

 Build a
 Database
 Server

 A step-by-step guide to building your own database server

 Created by Chris Zetter

 A special thanks to all the early reviewers that provided feedback for this book, including:
 Matt Bee, James Coglan, Nick Fraenkel and Pauline Richey.

 This book is written by Chris Zetter, also trading as Technical Deft.

 Edition v130

 Published 2025-07-06

 Copyright © 2025 Chris Zetter. All rights reserved.

 'the guide' refers to this book and all associated content, including any code, the rgSQL test suite and sample solutions.

 The contents of the guide are provided for educational purposes only. The software described in the guide and the software provided with the guide is not intended to be used in 'real' or 'production' systems.

 The guide is provided “as is”, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the guide or the use or other dealings in the guide.

 Preface

 What Makes SQL Special

 This guide will help you to build a database server that can run SQL statements.

But why choose to use SQL as the interface to a database? Over the last 50 years, SQL has become the dominant way to communicate with databases. Here are some of the characteristics that make SQL special and have contributed to its popularity:

Relational databases

In the 1970s, the relational model was introduced. The purpose of the model was to provide an abstraction so that you could query data without knowing how it was physically stored. This was done by representing data as tables made up of rows and having a defined set of operations that can transform this data.

SQL embraced the ideas of the relational model and became the language of relational databases. There are other query languages, but none have had the popularity and longevity of SQL.

[image: An example table containing orders. The table is made up of an id column containing integers, a customer_id column containing integers and a shipped column containing booleans.]

The relational model uses ideas from set theory to precisely describe relational databases and operations you can perform on them. The image above shows an ‘orders’ table made up of rows. Using the terminology from the relational model, you would call the ‘orders’ a relation made up of tuples. A tuple is a list of values, just like a row. A relation is a set of tuples with the same structure, just like a table is a set of rows.

These terms aren’t always equivalent. For example, In the relational model, tuples should be unique within a relation. In practice, rows in databases don’t usually enforce this constraint. You’re likely to see these terms in database research and in the source code of database implementations.

 DATABASES IN THE WILD

 Before SQL

 Before SQL databases became popular, navigational databases were often used. In a navigational database you can retrieve data by writing a program that navigates between linked records.

 Navigational databases were designed with specific use cases in mind. This made them fast, even on limited hardware. However, for a given structure of linked records, certain queries could be difficult to write or too inefficient to run. You could re-structure how the data is stored, but that would break programs that used the database.

 To query information in navigational databases you had to write a program. This program was often written in a general purpose imperative programming language that had methods available to interact with the database.

 Here’s the simplified example showing what a program might look like that retrieves records from a navigational database. In this example there is a company made up of many departments. Each department record is linked to the employee records for people that work in that department. This program prints the names of all employees:

 WHILE TRUE
 department = NEXT_RECORD('department')
 BREAK IF EMPTY(department)
 WHILE TRUE
 employee = NEXT_RECORD_WITHIN(department, 'employee')
 BREAK IF EMPTY(employee)
 PRINT(employee.name)
 END
END

 This program has a loop which loads through each department until it receives an empty record. For each department it finds, it loops through employees that are in that department and prints them. Due to the way the data is structured, you have to loop through departments even though you only want information about employees.

 This example is based on a sample program for the Integrated Database Management System (IDMS). IDMS is a database that runs on mainframes and can be programmed using COBOL.

 More

 CA IDMS Navigational DML Programming Guide

This is a modern guide for writing programs for IDMS.

 History of databases

A detailed history of databases with comparisons between models.

Designed for everyone

The authors of SQL (originally called SEQUEL) aimed to make a language that was easier to use by people who weren’t trained programmers. They did this by creating a language around the set of operations in the relational model and avoiding having to manage variables when writing queries.

 “… there is also a large class of users who, while they are not computer specialists, would be willing to learn to interact with a computer in a reasonably high-level, non-procedural query language. Examples of such users are accountants, engineers, architects, and urban planners. It is for this class of users that SEQUEL is intended. For this reason, SEQUEL emphasizes simple data structures and operations.”

 SEQUEL: A Structured English Query Language

There were other languages based on the relational model. QUEL is a query language used for the INGRES database that was made at a similar time to SQL. Here’s a QUEL query that computes the pay for an employee with a certain name:

RANGE OF E IS EMPLOYEE
RETRIEVE INTO W
(PAY = E.RATE*E.HOURS)
WHERE E.NAME = "Jones"

And an equivalent query in SQL:

SELECT RATE*HOURS AS PAY FROM EMPLOYEE
WHERE NAME = "Jones"

Both SQL and QUEL allow you to perform similar operations. In QUEL you need to explicitly define variables to represent rows of the employee table, for example the E variable for the EMPLOYEE table. While programmers are used to dealing with variables like this in code, the creators of SQL thought that it would be a barrier to wider use.

A declarative language

When writing SQL, you describe the data you want using high-level operations that are based on the relational model.

This gives databases the power to choose all the details of their implementations. For example, databases get to decide what sorting algorithm to use when ordering data. They also choose how to organize data they save to physical storage.

Implementations might make decisions so they can specialize for certain uses. They also might have multiple implementations of the same operation and will choose the one that might be fastest for an individual query.

This same power gives you a large amount of freedom in your own implementation.

Widespread implementations

Whatever you want to do with data, there’s probably an SQL database suited to your needs.

There are transactional databases (sometimes called OLTP databases for OnLine Transaction Processing) which are designed to quickly read and write data so are well suited to responding to user actions such as creating an account or paying for a purchase. MySQL, PostgreSQL, Oracle Database, Microsoft SQL Server are examples of transactional databases.

There are also analytical databases (sometimes called OLAP databases for OnLine Analytical Processing). These are optimized to run analytical queries across large amounts of data. Google’s BigQuery, Amazon’s RedShift, Clickhouse are all analytical databases.

Transactional and analytical databases are examples of two specializations. There are also databases that are designed to automatically scale in a cloud environment, or databases that are designed to run on resource-constrained devices. There’ll be more examples of specialized databases later.

Despite being built for different purposes, all these databases use SQL. This makes being able to write SQL and understand the concepts behind it a valuable skill.

 DATABASES IN THE WILD

 ISO/IEC 9075

 There’s a standard for SQL called ISO/IEC 9075 “Information technology - Database languages - SQL. This standard can help database implementations keep their behaviour consistent with each other, making it easier to switch between different implementations.

 The standard describes the syntax and behaviour of SQL. The standard doesn’t specify lower level implementation details such as in what format data should be stored.

 Database implementations don’t always follow the whole SQL standard. This might be because they disagree with specific decisions in the standard or have implemented a feature before it became standardized and want to keep backwards compatibility for their users. Implementations may be configurable to more closely follow the standard.

 Later in this guide there will be examples of where implementations have chosen not to follow the standard and behave differently to each other.

 More

 The SQL Standard – ISO/IEC 9075:2023 (ANSI X3.135)

A history of the SQL standard and links to the parts of the standard.

 PostgreSQL SQL Conformance

Many SQL databases have documentation explaining how they do/don’t conform to the standard. Also see documentation from Oracle, MySQL, and Apache Spark SQL.

 Further Reading

 A relational model of data for large shared data banks

The journal article from 1970 that introduced the relational model. It explains the model and how it saves people from having to know how data is stored.

 Relational Algebra

Relational algebra is a concise way of expressing operations in the relational model. This page explains the common relational operators and shows their SQL equivalent.

 SEQUEL: A structured English query language

The article that introduced SEQUEL from 1974 and explained its design decisions. The name was later changed to SQL.

 The Design and Implementation of INGRES

Article from 1976 that describes the INGRES database and QUEL query language.

 Database of Databases

A filterable collection of database implementations. The collection includes both SQL and non-SQL based databases.

 Your Implementation

 This is a practical guide which expects you to build your implementation as you’re going through the chapters. Each chapter will talk you through new functionality and have some ideas on how to implement it.

Test suite

To help you build your implementation, this guide comes with a test suite. The tests in the suite are organised to mirror the chapters in this guide. After you have read each chapter you should add to your implementation so that the tests for that chapter pass.

Most of the tests send SQL to your database server and check the response. You can view the test files at any time using a text editor.

When you run the tests they will stop at the first failure. The test will have a failure message that will describe what the test expected and what happened that caused it to fail.

Sometimes you might make multiple tests pass at once, this is great!

Sometimes you might cause an older test to fail again, this is also great! It means the test suite has caught a regression and you should fix it before continuing.

The first chapter will explain how to install and run the test suite. The Appendix has more information about running and extending the test suite.

Requirements

You will need a Linux or MacOS based system with Python 3.6 or later to run the tests. You can also use the Windows Subsystem for Linux to run the tests on WIndows.

rgSQL

The database server you’ll be building is called rgSQL. The rg is short for Red-Green, named so because as you are building it your tests will go from red (failing) to green (passing). You can rename your implementation if you want to.

Every database engine behaves differently. When choosing the behaviour of queries in rgSQL, this guide follows what PostgreSQL does. PostgresSQL was chosen because it’s a free, widely used and well documented database engine that mostly tries to follow the SQL standard.

This means that every query in the test suite will produce the same result in PostgreSQL. Also, if you want to decide behaviour in your implementation for a case that isn’t covered in the test suite, a good place to start would be to see what PostgreSQL does.

Through the guide, rgSQL will be compared to PostgreSQL and other database systems.

Picking a programming language

As this is a practical guide, you’ll need to choose what to build your implementation in.

Databases are often written in system programming languages such as C and C++. These languages give programmers more control over memory and system resources, allowing for optimized programs. This guide is more focused on functionality than performance so you don’t need to use a system language unless you want to.

Unless you are looking for a challenge, there’s a couple of features that your language should have in its standard library or installable packages:

 	Regular expressions to help parsing SQL

 	The ability to start a TCP server to communicate to clients

Pick the language you want to work in. Perhaps you can use writing your solution as an opportunity to learn a new language or explore different ways of writing code in a language you already know.

Getting help

If you’re stuck implementing a chapter, there’s hints in each chapter that contain ideas that might help. You can also join the discord-based discussion group to ask for help and look at the sample solution that’s written in Ruby.

 Sections in this Guide

Each chapter in this book is made up of similar sections. Here is an explanation of each of these sections.

Databases in the wild

‘Databases in the wild’ looks at how other database systems are built and their features. This section often has links to documentation, tools and research that you can explore.

You don’t have to use information from this section to complete your implementation unless you want to. Sometimes ideas from this section are referenced in extensions.

Hints

Chapters have hints that go into more detail for parts of the implementation. They often contain code snippets in the Ruby programming language that are based on the sample solution.

Each chapter has many possible solutions. The hints and sample solutions show just one approach.

There’s no penalty for looking at hints! Hints can help you progress if you are stuck. If you are still unsure how to make progress then you might find help by posting in the discussion group.

Reflections

The end of a chapter is a useful point to look at your implementation so far. By spending time improving your code, it will be easier to build on top of it in the next chapter.

Each chapter comes with prompts to encourage you to think about your code and how it could be refactored or changed to make it easier to work with.

It’s also a good time to save, commit and push your work if you haven’t already.

Extensions

Extensions are ideas for additional features to add to your implementation. Each extension has a ‘Small’, ‘Medium’ or ‘Large’ estimate for how complex it is to build compared to other extensions.

Extensions are optional. You can skip them and come back to complete them at any time.

There aren’t any included tests for extensions so you’re encouraged to create your own. See The Test Suite in the Appendix to learn how to write your own tests.

Some extensions change behaviour that can’t be verified with the test suite. There is a note when this is the case. You can choose to test these extensions in a different way or leave them untested.

Sample solution

The project has a sample solution written in Ruby that passes all the tests.

Each chapter links the changes made to the sample solutions for that chapter. These can be useful to look at if you are stuck or want to compare your solution. Sometimes there are multiple commits for a chapter. Each commit may make a set of tests pass or refactor the code.

There are many ways to build a database server. Don’t expect your solution to look the same.

 Running SQL

 Introduction

 In this part of the book you will build a database server that can run SQL statements.

Your server won’t be able to do everything that a database such as PostgreSQL can do, but it will be able to create tables, insert records and run complex select statements to query data.

Your implementation will need to grow each chapter to support new behaviour so it’s important that your code is easy to follow and change.

This guide introduces optimization techniques that other databases use to make queries run faster or use less memory. It’s up to you how much you want to optimize your implementation. If you start optimizing too early, you may find it harder to implement later functionality.

 1. The Server

The first part of building your database will be creating a server process that can run continually. The process will need to be able to send and receive data.

How to talk to a database server

Anything that communicates with your database server is called a client. Your database’s main client will be the test suite which will send it SQL statements to run.

A common way that clients communicate with a database is with a TCP connection. TCP (Transmission Control Protocol) is a standard that defines how data can be reliably transferred across a network.

Your server process should start a TCP server and wait for clients to connect. Databases will usually be able to handle many connections and clients at the same time. To start, your database will only need to manage a single client at a time.

Once a client is connected it might send the database SQL statements to run. Next chapter we’ll look at how to run and send the results back. For now, your database can send any response back.

 DATABASES IN THE WILD

 TCP in depth

 In TCP, data is broken up into packets to be sent across the network. Things can go wrong when sending each packet - it might get lost and never be received, packets might be received in a different order to the one that they were sent in, or they might get corrupted and the data changed.

 TCP has useful features that make it resilient to these problems:

 	Acknowledgment packets are sent back each time data is received. If an acknowledgement isn’t received within a certain time period the data will be resent.

 	Each packet is numbered so the receiver can tell if the data is in the correct order.

 	A checksum is sent with each packet that can be used to verify the data hasn’t been corrupted.

 By using a library that implements TCP, you won’t have to implement these features yourself.

 The advantage of a database server using TCP over a higher level protocol such as HTTP is that it gives the database more flexibility over how it manages connections. For example, once a client connects to the database, the connection can be kept open to make future communication quicker.

 There is no privacy or security built in to TCP. Any data sent across a network using TCP is visible and modifiable to anyone with access to that network. Networked database servers usually use SSL or a SSH tunnel to secure their connection.

 More

 TCP Standard

This is the standard that defines TCP and explains what makes up a TCP packet.

 An overview of HTTP

An explanation of the HTTP protocol, and how it uses TCP.

Are you finished talking?

TCP doesn’t record how big the data being sent is. This means the receiver of the data won’t know if it’s got all the data that’s been sent, or if there’s still more to come.

One way to solve this is for data for the sender to always say how long the data is in the data itself. This is what PostgreSQL’s messaging protocol does as well as some versions of HTTP.

Another way is by using a special character to denote the end of the message. Once the receiver sees this character it knows that the message is over. rgSQL will use the null byte character to denote the end of messages. The null byte is often expressed in strings using the escape sequence \0.

We don’t expect to have the null byte in any of our messages so it’s a convenient signal to use and avoids having to handle the varying byte length of character encodings.

Your implementation should add the null byte to the end of any message it sends. Messages received over TCP may be broken up into parts. Your server shouldn’t respond until it finds a null byte and knows it has received all the parts of a message.

 DATABASES IN THE WILD

 Does every database have a server process?

 Not all databases have server processes. Some databases are libraries that are designed to be embedded within another program.

 Embedded databases give programs a quick and reliable way to store and retrieve data.

 These databases are accessed by calling an embedded library instead of communicating over a network. SQLite is an example of a widely used embeddable database.

 More

 SQLite: past, present, and future

An article explaining this history, architecture and performance of SQLite.

 Appropriate Uses For SQLite

Suggestions of when you should consider using SQLite over a different data store.

 An Introduction To The SQLite C/C++ Interface

The main methods that you need to use SQLite. Note that ‘connection’ represents a connection to the local database file, not a network connection.

Implementation

Time to start your database adventure and build your version of rgSQL. Since this is the first chapter you’ll need to do some setup first.

If you haven’t already, you should read the Your Implementation section which gives an overview of rgSQL and explains how to choose a programming language to use.

Project setup

Make a copy of the rgSQL repository. This repository contains the tests that will help guide your implementation.

If you want to publish your implementation on GitHub you can follow the following steps:

 	Visit https://github.com/technicaldeft/rgsql/fork and create a fork.

 	Clone your fork to your local machine.

Alternatively, you can clone the repository by running the following:

git clone https://github.com/technicaldeft/rgsql.git

Run the tests

The tests will guide you to the next piece of behaviour you need to implement.

Run the tests with the ./run-tests command.

This will check you have a compatible version of Python 3 installed. If you need to install Python, you can follow the instructions on the Python wiki.

If the project has been set up, you’ll see that the first test has run and fails with an error message:

F

A test has failed in 1_the_server.py on line 9:
 Check that server command is configured

 You must configure the 'server_command' setting in settings.ini

Command to run only this test: ./run-tests tests/1_the_server.py:9

The ‘F’ indicates that a test has failed (a ‘.’ would show when it passes). The suite will run all the tests in order until the first failure it reaches.

The next line tells you the file name and line number of the test that has failed. The file name of the test matches the chapter name. This is followed by an error describing why the test has failed.

This particular failing test is telling you that you need to edit the server_command in the setting.ini file so the test suite knows how to start your server.

Start your implementation

You should add your code to the repository, organising it however you want.

If you want to run any commands before the test suite runs, you can add them to the run-tests script. This can be useful if you want to compile, type check or lint code every time the test suite is run.

The first set of tests make sure you have a database process that can be started and can send and receive messages using a TCP connection. It also ensures that there are no errors printed.

You should make use of a TCP server from an existing library or package. Many programming languages come with a ‘socket’ or ‘network’ package with a TCP server that you could use.

The test suite will stop your server by sending it a SIGTERM command. You may not need to handle this explicitly as many programming languages will automatically create programs that will exit when a SIGTERM is received.

You don’t need to run queries yet. When your server receives an SQL statement you can respond with any null-terminated string.

Hints

Chapters have hints to help you build your implementation. There’s no penalty for looking at the hints! Do make use of them if you aren’t sure how to continue.

Setting your server_command

 The server command is the same as the command you would run in a terminal to run your code.

 Your command will depend on the programming language you are using and how you have organised your code. If you are using Ruby, the command could look like the following:

 ruby server.rb

 This uses the Ruby interpreter to execute the code in the server.rb file.

 The files for the Ruby example solution are organised differently. The command for the Ruby sample solution is:

 ruby -I lib -r sql -e 'Sql::Server.start'

 The -I tells Ruby to try to load files from the lib folder, the -r is to require the sql.rb file, and the -e executes the Sql::Server.start method.

Starting a TCP server and receiving data

 You’ll need to start a TCP server on port 3003 and use a loop to repeatedly get data from the socket. When your program receives the null byte character, it should send a message back that also ends in the null byte.

 Make sure your program doesn’t exit after it sends a message back. It will need to keep looping to handle any more messages that it receives.

 Creating a TCP server can be quite different in each programming language. Look at the documentation for the language you are using to see how to start a TCP server.

 Here are examples for Ruby, Python and Node:

 Ruby

 Here’s an example written in Ruby:

 require 'socket'
server = TCPServer.new 3003
socket = server.accept

loop do
 data = socket.gets("\0")
 break if data.nil?
 socket.print("hello\0")
end

 It first starts a TCP Server on port 3003. Then it calls accept on the TCP server to wait for an incoming connection and return a socket object to represent the connection.

 Once a connection is started, calling gets with "\0" will wait until the socket receives a null byte and then return all data up to and including the null byte. If the connection has been closed then gets may return nil.

 Then using print the server returns data to the client. Then the loop repeats.

 Node

 Here is an example written in JavaScript for Node:

 const net = require('net');

var server = net.createServer((socket) => {
 var data = ""

 socket.on('data', (newData) => {
 data = data + newData
 if (data.endsWith('\0')) {
 data = ""
 socket.write('Hello\0');
 }
 })
});

server.listen(3003, '127.0.0.1');

 This uses the net library to create a TCP server. The createServer function takes a callback to run when a connection is received. Then the code uses the socket.on function to create a listener on the data event to run each time data is received.

 The listener won’t write to the socket until it’s received a full command that is terminated with the null byte.

 Python

 Here is a example written in Python:

 def start_server():
 server = socket.socket()
 server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 server.bind(('0.0.0.0', 3003))
 server.listen()
 client_socket, _address = server.accept()
 while True:
 data = receive_data(client_socket)
 client_socket.sendall('hello\0'.encode('utf-8'))

def receive_data(client_socket):
 buffer = b''
 while True:
 data = client_socket.recv(1024)
 if not data:
 break
 buffer += data
 if buffer.endswith(b'\0'):
 break

 return buffer.decode('utf-8')

if __name__ == "__main__":
 start_server()

 This example uses Python’s socket library. A TCP server is created with socket.socket() and then listens for connections. When a connection is received, the receive_data function is run.

 The receive_data function tries to load up to the next 1024 bytes of message with client_socket.recv() and adds it to the buffer. Once a null byte is reached, the data is decoded and returned. The response is sent back to the client with client_socket.sendall().

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

 2. Returning Values

 By the end of this chapter your database server will be able to run some tableless SELECT statements. To do this you’ll start parsing and running SQL queries. You’ll also need to put some plumbing in place to be able to receive queries and send results.

[image: A chart showing the flow of data through a database server. First the query is received, then parsed, then run, then a result is returned. If parsing fails a parse error is returned instead.]

Tableless SELECT statements

If you’ve ever used SQL, it’s likely you have written a SELECT statement to retrieve data from a table. But did you know you can use SELECT without any tables at all?

An example of this kind of query is SELECT 3, TRUE;. When you run this the server will return a single row containing 3, TRUE.

This style of select statement can be genuinely useful - you can use it as a way to check that you have a connection to your database server, to build rows to combine with other data, or to run functions that don’t depend on data from tables.

In any SELECT statement, the first part is the select list, a comma separated list of items of items which define what is in the result. In this chapter each select list item is restricted to:

 	The booleans TRUE and FALSE

 	Integers e.g. -12, 0, 31 or 106.

These are all literals. A literal is a single fixed value that appears in a statement. More complex expressions (such as 12 + 4) or references to columns are not literals.

Select list items can be given a name (called an alias) using the AS keyword. Aliases can be made up of letters, numbers and underscores but cannot start with a number.

SELECT -3 AS negative3, TRUE AS the_truth;

Parsing

In Chapter 1 you made your server able to send and receive data over TCP. The server will receive SQL statements to run as a null-terminated string of UTF-8 characters.

Once you have received your statement the next step is to parse it.

Parsing turns the data from a string of characters into a format that your server can more easily run. Language implementations often separate parsing from running code as they are quite different operations and separating them can make your implementation easier to understand. Doing the parsing as a separate step before execution will also mean the language will catch any syntax errors early and prevent it from running a partial program.

The output of a parser is often an abstract syntax tree (also known as an AST) which is a tree of nodes that represent the code. Abstract syntax trees can then be processed to run the statement.

There are two steps to writing a parser:

 	Understand how the code is structured and define your abstract syntax tree to be able to represent it.

 	Write methods to process statement strings bit-by-bit, transforming it into nodes in your abstract syntax tree.

Define your abstract syntax tree

Let’s start by building a parser that will understand queries like the following:

SELECT FALSE;
SELECT 100, TRUE;
SELECT 12, 52, 99, 0, 5;

These queries are all structured in a similar way; a ‘SELECT’, then has a comma separated list of values which might be an integer, TRUE or FALSE.

Abstract syntax trees are made up of nodes that may each have properties and reference to other nodes. Here’s a tree that could represent the statement SELECT 100, TRUE, 6;:

[image: A diagram showing a possible abstract syntax tree. At the top is the select node which is linked to a list node that represents the select list. The list node is linked to an integer with the value 100, a boolean with the value true and an integer with the value 6\.]

There is a Select node with a select_list attribute that contains a list of values. Each value is represented by a different kind of node. Your implementation could represent nodes by objects or structs. Choose whatever works best for the language you’re using.

It’s often a useful shortcut to rely on the features of your programming language to represent parts of an abstract syntax tree. For example, you could use your language’s equivalent of an Array to contain the select list items rather than create a new kind of node.

Integer and Boolean nodes can also be represented by equivalent types from your language. There are advantages to wrapping these primitive values in a node:

 	If you don’t wrap them it may be harder to understand parsing errors. For example, if you are using a false value to represent a SQL FALSE, you won’t know if a given false represents FALSE or is from an error in your parser.

 	Wrapping the primitive values can make them easier to extend if there are differences between how they work compared to the equivalent types in your language.

If you do create new nodes for primitive values, make sure its name doesn’t clash with a primitive type or keyword in the programming language you are using.

Throughout this guide you’ll need to extend your abstract syntax tree with new nodes and properties to be able to represent more queries.

Parse your input

A way to start parsing queries is with a recursive descent parser. A recursive descent parser breaks up parsing into different parsing methods which are each responsible for part of the language. The parsing methods may call themselves recursively or contain loops in order to parse lists and nested structures.

Each parsing method will ‘consume’ the input string bit-by-bit, transforming it into a node in your syntax tree. You can implement this by removing bits from the input string as they are parsed, or by keeping track of the position of the character in the input string that you have reached.

You will also need to handle any space characters that appear between different parts of the language. You could do this by removing any spaces at the start of the input string before consuming part of it.

For example, if the input string started as "SELECT 99;":

 	First the ‘SELECT’ is consumed, leaving the input string as " 99;".

 	Next any spaces are removed and the integer ‘99’ is consumed, leaving the string as ";".

 	Lastly, ‘;’ is consumed, leaving an empty string.

Example parser structure

Your parser can use the consume operation to transform input strings into an abstract syntax tree. Here is an example that shows how you could structure your parser to parse tableless SELECT statements.

[image: This is a flow diagram that shows how a parser can be organized into three methods. The full diagram is explained in the next section.]

This shows how a parser can be organized into three methods: one that parses SELECT statements, one that parses the select list, and one that parses literals.

To parse select statements you first need to consume the ‘SELECT’ keyword. If the keyword isn’t found then you can return a parsing error. If it is found, you can call the method to parse the select list. Then you can check that the statement ends in a ‘;’ and return a Select node built with the select list.

To parse the select list, you can call the method to parse the next value. Then if you can consume the ‘,’ symbol you know that there will be another value so can repeat for the next value. If you can’t parse a ‘,’ then you know there shouldn’t be another value and you can return the list of values you have parsed so far.

To parse literals you will need to see if you can consume each of the literal values. Since integers can be made up of a varying number of digits you could use a regular expression to consume them. /-?\d+/ will match an optional ‘-‘ followed by one or more digits.

The parser described here is enough for the first few tests for this chapter. Later tests check other cases you will need to handle such as statements having an empty select list.

This is just one way you can structure your parser and there are many different choices you could make in the design of your parser and abstract syntax tree.

 DATABASES IN THE WILD

 How the professionals parse

 MySQL, PostgreSQL and SQLite all use parser generators to help them parse queries. A parser generator lets you define the rules of your langage (called the grammar) and then will generate a parser for you. Parser generators can safely handle complex parsing rules and are optimized to produce parsers that run quickly.

 Both MySQL and PostgreSQL use the Bison parser generator. You can see the grammar definition for MySQL and PostgreSQL.

 SQLite decided to use its own parser generator called Lemon and you can view SQLite’s grammar definition.

 The grammar definitions for these databases are quite long to handle the full range of SQL these databases support. rgSQL will support a limited set of SQL to make the parsing easier to manage. This guide will explain how to write a parser from scratch but you can use a parser generator if you prefer.

Running your statement

Once you have parsed your abstract syntax tree you can run the statement!

To start with this means getting the select list item values from the abstract syntax tree. For later tests in this chapter you’ll also need to return the column names.

Returning results

The SQL standard doesn’t specify how database clients and servers should communicate so each database server is responsible for defining its own communication protocol and result format.

Your server should respond with null-terminated JSON. The JSON should have the following properties:

 	status: This will be ‘ok’ if the statement ran successfully and ‘error’ if not.

If the statement ran successful and returned data:

 	rows: The result of running the statement as an array of rows. Each row is an array of values.

 	column_names: The name of each column as an array of strings.

If the statement errored:

 	error_type: a string of the type of error that it was, e.g. ‘parsing_error’

 	error_message: a string containing a more specific description of the error message. This is optional, but will help you debug your implementation as this message will be printed by the tests if an unexpected error occurs.

For example, the result from running SELECT 4 AS a, FALSE AS b; would be:

{
 "status": "ok",
 "rows": [[4, false]],
 "column_names": ["a", "b"],
}

And the result of running BANANA 6; would be:

{
 "status": "error",
 "error_type": "parsing_error",
 "error_message": "Unexpected statement type 'BANANA'"
}

 DATABASES IN THE WILD

 How PostgreSQL sends data

 PostgreSQL defines its own messaging protocol for sending data back to the client. It uses a custom format that allows the data to be sent in a smaller number of bytes compared to a more human-readable format such as JSON.

 Each response can be made up of multiple message types, for example the result of a SELECT statement will be a RowDescription message which returns the field name and type of each column, then a DataRow message for each row in the result, followed by a CommandComplete message. Having a message for each row makes it easier for the client to start parsing and processing large results while they are still being received.

Implementation

Add to your implementation so that the chapter two tests pass. You’ll need to parse and execute the table-less select statements and format the response correctly before sending it back to the client.

To get all of the tests in this chapter passing, you’ll have to do more work to implement aliases. Some of the tests make sure parsing errors due to badly-formed queries are handled correctly, make sure you set the status and error_type keys of the response for these cases.

If you’re finding it hard to make progress, focus on making one test pass at a time in the simplest way you can think of. Don’t worry about cases not covered by the tests as they may come up in later chapters.

Hints

Defining an abstract syntax tree

 Here’s an example definition of all the nodes needed for the first few tests:

 Int = Data.define(:value)
Bool = Data.define(:value)
Select = Data.define(:select_list)

 Note that Data.define is a shorthand for defining a class with the listed properties.

 The Select node represents the SELECT statement and has an array of select list items. Each select list item can be one of our value nodes: Int or Bool.

 This means our example before of SELECT 100,TRUE would be represented by:

 Select.new(select_list: [Int.new(100), Bool.new(true)])

 For the later tests in the chapter you will need to add to your abstract syntax tree to be able to give names to select list items

Parsing queries

 These examples use the abstract syntax tree defined in the previous hint, your nodes may be different.

 To make parsing easier, this is a class that wraps the statement string to provide a consume method. The method can check if the start of the input matches a regular expression. If it does it it consumes the match, returning it and removing it from the input string.

 class Statement
 attr_reader :rest

 def initialize(string)
 @rest = string.strip
 end

 def consume(pattern)
 if (match = rest.match(/\A#{pattern}\s*/))
 @rest = match.post_match
 match.to_a.first
 end
 end
end

 Here is a class to do the parsing, including a parse_statement method that looks at the first part of the input and creates a node for that type of statement:

 class Parse
 attr_reader :rest

 def initialize(sql)
 @statement = Statement.new(sql)
 end

 def parse_statement
 if statement.consume(/SELECT/)
 Select.new(select_list: parse_select_list)
 else
 raise "Unexpected statement #{statement.rest}"
 end
 end
end

 The parse_select_list method parses a value, and then if there’s a comma to indicate another item, recursively calls itself to parse the rest of the select list.

 def parse_select_list
 value = parse_value
 rest = statement.consume(/,/) ? parse_select_list : []
 [value] + rest
end

 Even though it’s called a recursive descent parser, you don’t have to use recursive methods. Here’s an equivalent iterative version of parse_select_list:

 def parse_select_list
 values = []

 loop do
 values << parse_value
 return values unless statement.consume(/,/)
 end
end

 The parse_value method is responsible for turning literal values into individual nodes:

 def parse_value
 if statement.consume(/TRUE/)
 Bool.new(true)
 elsif statement.consume(/FALSE/)
 Bool.new(false)
 elsif (integer = statement.consume(/-?\d+/))
 Int.new(integer)
 else
 raise "Unexpected value #{statement.rest}"
 end
end

Running queries

 These examples use the abstract syntax tree defined in the previous hints, your node may be different.

 For example, you might have a run method that takes an abstract syntax tree:

 def run(ast)
 case ast
 when Select
 run_select(ast)
 else
 raise 'unknown statement type: #{ast.class}'
 end
end

def run_select(select)
 select.select_list.map{|item| get_value(item) }
end

def get_value(item)
 case item
 when Int, Bool
 item.value
 else
 raise "Unexpected type #{item.class}"
 end
end

 You will need to build a JSON response from the result of running the statement.

Named select list items

 You’ll need to modify your abstract tree to support named select list items. This could be done by introducing a SelectListItem node that has a name property:

 SelectListItem = Data.define(:name, :value)

 You can parse select list item names by trying to parse an identifier after the item value. If there isn’t one you can return any name (such as ‘???’).

 IDENTIFIER = /[a-z_][a-z\d_]*/

def parse_select_list_name
 if statement.consume('AS')
 statement.consume(IDENTIFIER)
 else
 '???'
 end
end

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Reflections

Is there a clear separation between your code that receives messages, parses queries and runs queries? These are quite different tasks that can happen sequentially so it might be clearer if their code is separated.

If your parser finds something unexpected will it error or try to continue? It’s often useful for parsers to error as soon as they find something unexpected (called failing fast) otherwise they can get into an unexpected state which can be hard to debug.

Are the names that you are using in your code clear and unambiguous?

Extensions

Support quoted identifiers (medium)

So far you’ve only seen unquoted identifiers used as aliases. As they only allow the letters a-z, underscores and numbers they are quite restrictive as to what you can name things.

SQL also supports quoted identifiers. These start and end in a double quote (") and can contain any character in the UTF-8 encoding that rgSQL uses. You can represent a double quote within a quoted identifier with two double quote characters.

Add support for quoted identifiers that will allow you to run queries like the following:

SELECT 56 AS "fifty six!", FALSE AS "🚫", 0 AS "this is ""nothing""?";

Build an interactive console (medium)

Many programming languages and databases come with a command line program that lets you run commands in a terminal and see the result - MySQL has the mysql command, PostgreSQL has psql, Ruby has irb, Python has python/python3.

These interactive consoles are useful for testing the output of certain commands and would give you a way of interacting with your database outside of the test suite. They are also known as REPLs (Read-Evaluation-Print-Loop) which might give you a hint on how to implement one.

Build an interactive console for your database. This could be a separate command that connects to your running database server, or a way of running the server in an interactive mode.

You won’t be able to use the test suite to help you build this extension.

 3. Tables

 Tables are the way that databases organize and store data. By the end of this chapter your database will be able to create and delete tables. It will also be able to insert data into tables and then read it back.

Managing tables

Tables can be created with a CREATE TABLE statement that defines the name of the table as well as the name and type of each of its columns. Here’s an example creating a table that can be used to keep track of bicycles sold by a shop:

CREATE TABLE bicycles(model_code INTEGER, electric BOOLEAN);

This would create a table called bicycles with a column model_code that can contain integers and a column electric which can contain booleans.

You can then destroy the table with the following:

DROP TABLE bicycles;

If the table doesn’t exist, this will return a validation_error. There’s another form that won’t return an error if the table doesn’t exist:

DROP TABLE IF EXISTS bicycles;

Reading and writing data

Tables have rows of data. You can create new rows with an INSERT statement, and retrieve them with SELECT. For example, to insert two rows into the bicycles table:

INSERT INTO bicycles VALUES (4, FALSE), (3, TRUE);

This shows that the order that columns are defined on a table is important - the quantity value has to be supplied before the perishable value to match the column order of the table.

Once rows are inserted, you can use a SELECT statement to return them. The select list can contain identifiers that are references to columns:

SELECT model_code, electric FROM bicycles;

In relational algebra, the operation for returning data from certain columns is called a projection. Because of this, select list items are also called projections.

Storing tables

There are two type of data you will need to store for each table:

 	Data about the table itself, such as the table name and column names. This is called the table metadata or the table descriptor.

 	Rows of data inserted into the table.

[image: An example stock items table. The table is made up of metadata and rows. The metadata contains the name and type of each column. The rows contain data. The rows and the metadata both have values for each column so are the same length.]

The list of column names and types apply to all the rows in the table so databases will store a single copy of this in the table metadata.

Many databases will default to storing data on persistent storage. This way if the database server stops running or the machine it is on is restarted your data won’t be lost.

To begin with, you should store data in memory. In Part II we’ll look at persisting data as files on a hard drive.

 DATABASES IN THE WILD

 Do all databases store tables in the same way?

 There’s a wide variety of database servers out there, and many can be configured to use different storage mechanisms.

 SQLite supports an ‘in memory’ store which will allow you store tables in memory. MySQL has a similar ‘memory’ engine that will let you store individual tables in memory. You might choose to store your tables in memory because it will be quicker to access than on disk. If your tables are temporary or can be recomputed you might not mind the risk of losing them.

 Distributed and cloud-based databases might store their data distributed across many machines.

Referencing columns

For a given row, you will need a way to convert the name of a column in the select list (such as price) into a value.

If you are storing the table metadata separately to the rows you can translate the column name to an offset and then use this to look up the item in the row.

[image: An example stock items table that numbers the four columns from 0 to 3\. The name and type of the price column is at offset 2 in the metadata. The data for the price column is at offset 2 in each row.]

For example, if you wanted to look up the value of the price column, you would:

 	Search the table metadata for a column with the name ‘price’

 	Find the offset for that column, in this case 2

 	Use that offset to index the value in the row of data.

In this example, each value takes up the same amount of space in the row array, causing the offset to go up by one for each column. This won’t be the case if you are storing values in a data structure where values might use a different amount of space.

Implementation

Add to your implementation so the tests for this chapter pass.

You’ll need to implement the new CREATE TABLE, DROP TABLE, and INSERT statements. You’ll also need to adapt your SELECT statement so it can return data from tables.

Think about how to represent each of these statements with your abstract syntax tree. When you execute these statements you’ll need to decide how you’ll model tables and rows. It’s fine to store your tables in memory as your server won’t be restarted within a test case.

There are a few more tests that catch parsing edge cases and make sure your parser can handle missing brackets and commas.

Hints

Adapting your abstract syntax tree

 Here is a definition of nodes that could be used to represent the statements in this chapter:

 Int = Data.define(:value)
Bool = Data.define(:value)
Reference = Data.define(:name)

Select = Data.define(:select_list, :table)
SelectListItem = Data.define(:value, :name)

CreateTable = Data.define(:table, :columns)
Column = Data.define(:name, :type)

DropTable = Data.define(:table, :if_exists)

Insert = Data.define(:table, :rows)

 A table name attribute has been added to the Select node. A select list item may now contain a reference to a column in a table or a literal value.

 So SELECT age AS age_in_years, TRUE AS feline FROM cats would be represented by:

 Select.new(
 select_list: [
 SelectListItem.new(
 value: Reference.new(name: 'age'),
 name: 'age_in_years'
),
 SelectListItem.new(
 value: Boolean.new(value: true),
 name: 'feline'
)
],
 table: 'cats'
)

 CREATE TABLE cats(age INTEGER) would be represented by:

 CreateTable.new(
 table: 'cats',
 columns: [
 Column.new(name: 'age', type: Int)
]
)

 DROP TABLE vegetables IF EXISTS would be represented by:

 DropTable.new(
 table: 'vegetables',
 if_exists: true
)

 And INSERT INTO t1 VALUES (2, 1), (3, 4) would be represented by:

 Insert.new(
 table: 't1',
 rows: [
 [Int.new(value: 2), Int.new(value: 1)],
 [Int.new(value: 3), Int.new(value: 4)]
]
)

Storing tables

 In the first set of tests you need to know what tables have been created so you can return errors at the right time.

 This Database class uses an in memory hash to keep track of what tables have been created:

 class Database
 def initialize
 @tables = {}
 end

 def create_table(name, columns)
 validate_new_table_name(name)
 column_names = columns.map(&:name)
 validate_column_names(column_names)
 @tables[name] = true
 end

 def drop_table(name, if_exists)
 validate_table_exists(name) unless if_exists
 @tables.delete(name)
 end

 private

 def validate_new_table_name(name)
 if @tables[name]
 raise ValidationError, "'#{name}' already exists"
 end
 end

 def validate_column_names(column_names)
 if column_names.uniq.count < column_names.count
 raise ValidationError, 'duplicate column name'
 end
 end

 def validate_table_exists(name)
 unless @tables[name]
 raise ValidationError, "table '#{name}' does not exist"
 end
 end
end

 Later on you will need to modify this to save any rows in the table. The column types won’t need to be saved until later chapters.

Retrieving references

 This is how you can get a value from a row for a given column name. First, introduce an object that represents tables in your database. This object should store the table metadata including the names of the columns that make up the table:

 class Table
 attr_reader :name, :column_definitions, :rows

 def initialize(name, column_definitions, rows = [])
 @name = name
 @column_definitions = column_definitions
 @rows = rows
 end

 def insert(new_rows)
 @rows.concat(new_rows)
 end

 def column_index(name)
 column_names.index(name)
 end

 private

 def column_names
 column_definitions.keys
 end
end

 The column_index method converts a column name into the index of that column for a row of the table. For example, if a table is made up of an id and a price column, column_index('id') would return 0 and column_index('price') would return 1.

 Then when you run your query you can use column index to convert a reference to a value:

 def evaluate(item, row)
 case item.value
 when Reference
 index = @table.column_index(item.value.name)
 row[index].value
 else
 item.value.value
 end
end

 This evaluate method is called with each select list item for every row of data from the table. If the select list item is a Reference node then the column_index method is used to convert the reference name into a value from the row.

 If the item is not a reference then it must be a literal value such as an integer or boolean.

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Reflections

Are each of the different statement types clear in your parser and runner? Now there are a few different statements, having a separate method that is responsible for parsing or running each one might make the code easier to follow.

Do you have a consistent way to parse literals and identifiers? There are now a few different places where you might need to parse a literal (such as the integer 8), or an identifier (such as the column name sausages). Having a shared definition or method to parse these will make sure the same kind of value will be allowed everywhere it should.

Extensions

Insert with a different column order (medium)

An INSERT INTO statement will create rows with values in the same order they are provided. For example, if a table t1 has columns a and b then INSERT INTO t1 VALUES (1, 2); will set column a to 1 and column b to 2.

You can specify a different column order after the table name:

INSERT INTO t1 (b, a) VALUES (1, 2);

This example will set column a to 2 and column b to 1.

Add support for running INSERT INTO statements that specify a column order. For now you can assume all columns in the table will appear in the list.

Selecting all columns (medium)

SELECT * FROM t1 is a shorthand for selecting all columns in a table. You can still add additional select list items after the *, for example:

SELECT *, a AS age, TRUE AS feline FROM cats;

 4. Resilient Parsing

 Having a resilient parser is important. If your parser can’t handle all the programs it should, users of your database might spend a long time trying to get their statements to run. If your parser doesn’t spot badly formed statements then their statement may be interpreted differently to what they expect.

By the end of this chapter your parser should be able to parse different ways of writing statements and return an error when given an invalid statement.

Elements of a statement

So far we’ve seen how a statement is made up of different elements:

 	Keywords such as SELECT, VALUES or INTO. You can consider words that always appear together (such as INSERT and INTO) as separate keywords.

 	Literals such as -1, 6 and TRUE.

 	Identifiers such as the name given to a table or column.

 	Symbols such as semicolons, commas and brackets.

Each of these elements can be considered a token. Tokens are the smallest useful part that a programming language should be split up into so it can be parsed.

Write it how you want

SQL gives some freedom to users to format their queries how they want.

SQL is whitespace insensitive. This means that whitespace doesn’t need to be converted into tokens and your parser can ignore extra whitespace characters between tokens.

This doesn’t mean statements don’t need any whitespace. Keywords, literals and identifiers need at least one whitespace character to separate them from each other. For example, you can’t write SELECT1FROMt1;. Symbols don’t need whitespace between them and other tokens so you can write INSERT INTO t1 VALUES(1,TRUE);.

Keywords in SQL are case insensitive. This means you can write SELECT as select or even as sElEcT.

Confusing keywords

It’s easy to get tripped up when parsing keywords and mix them up with identifiers. Keywords cannot be used as identifiers, so the following would cause a parsing error because SELECT should be treated as a keyword in an invalid location:

CREATE TABLE SELECT(a INTEGER);

Parsing error

Parsing error

But you can start identifiers with keywords:

CREATE TABLE SELECTED_ITEMS(a INTEGER);

In this example you need to look at the whole run of characters (SELECTED_ITEMS) to tell if it’s a keyword.

Note that you can use keywords in quoted identifiers if you have implemented them. See the ‘Support quoted identifiers’ extension in Chapter 2.

A similar case applies when parsing a keyword. For example:

SELECTa FROM t1

Parsing error

Parsing error

A simple parser might incorrectly treat SELECT as a keyword, and a as an identifier. However since there is a missing space, SELECTa should be parsed as an identifier. This should cause a parsing error when the abstract syntax tree is constructed as statements need to start with one of a few keywords.

Here you also look at the whole run of characters (SELECTa) before you know if it is a keyword or not.

Managing parsing complexity

All these requirements make parsing harder. Now each time you consume the next part of the input, you’ll need to consider the it’s capitalization, the whitespace around it and ensure you are consuming whole words.

One way to manage this complexity is to process the input using a tokenizer. Tokenizers can split up and categorize your input into tokens. Tokenization happens before building an abstract syntax tree.

Tokenizers let you define all of your keywords, symbols and parsing rules in one place which can make the rest of your parser simpler. They can also normalize input into a single representation that is easier to work with. This might mean upcasing keywords so select will always appear as SELECT in the tokens list.

Creating a tokenizer

You’ll first need to decide how to represent your tokens. Each token might contain information about its value and categorization.

You can categorize tokens in whatever way is most useful for your parser. For example, you could categorize TRUE as either a keyword, a boolean or a literal.

As an example, if each of your tokens could be an array containing the tokens categorization and value. This would mean "SELECT 1, TRUE"; could be represented as:

[
 ['keyword', 'SELECT'],
 ['literal', '1'],
 ['symbol', ','],
 ['literal', 'TRUE'],
 ['symbol', ';']
]

Just like your parser, your tokenizer can consume your input bit-by-bit until it reaches the end. You’ll need to adapt the rest of your parser to consume the list of tokens instead of the input string.

Keywords, boolean literals and identifiers can look similar - they are all sequences of characters that start with a letter. To categorize them correctly you can consume the sequence of characters first and then categorize it by checking it against a list of keywords and literals. If it is neither you can assume it is an identifier.

It’s up to you to decide what should be the responsibility of the tokenizer and what should happen in the rest of the parser. For example, you could choose for your tokenizer to parse strings of digits into integers.

 DATABASES IN THE WILD

 Passing the parser

 Building a reliable parser for a language with as many features as SQL can take time. Instead of writing your own parser, why not use someone else’s?

 The libpg_query project makes it easier to use the PostgreSQL parser elsewhere. It’s become a popular tool for projects that aren’t databases themselves, but need to parse SQL statements to analyse, transform or compare them.

 The DuckDB database uses a parser based on libpg_query too.

 More

 Introducing pg_query: Parse PostgreSQL queries in Ruby

About libpg_query and a Ruby wrapper for it.

 Introducing pg_query 2.0: The easiest way to parse Postgres queries

The changes made for pg_query 2, including a list of other projects using it.

 DuckDB: an Embeddable Analytical Database

Paper describing the goals and design of DuckDB.

Implementation

Add to your implementation so the tests from this chapter pass.

Depending on how you’ve written your parser so far some of the tests might already pass. You may even already be tokenizing the input in some way.

To make the tests pass, you could add a tokenization step to your parser before constructing your abstract syntax tree. This isn’t the only way of making these tests pass. For example, you could normalize and check your input as you are building your abstract syntax tree.

Hints

Implementing a tokenizer

 This describes a tokenizer that separates input into keywords, symbols, identifiers, booleans and integers. I found that it was helpful when building the abstract syntax tree to already have literals classified into booleans and integers.

 The tokenizer has patterns to identify the different kinds of tokens. You should already have a pattern for integers from your parser. You can also use your pattern for identifiers to match words if it is made case insensitive to match keywords too:

 WORD_PATTERN = /\A[a-z_][a-z_\d]*/i
INTEGER_PATTERN = /\A-?\d+/
SYMBOLS_PATTERN = /\A\(|\)|,|;/

 Any symbols that have a special meaning in regular expressions will need to be escaped.

 It stores tokens as an object with type and value attributes:

 Token = Data.define(:type, :value)

 The tokenize method is used to keep consuming tokens until the input string (@rest) is empty:

 def tokenize
 consume_token until @rest.empty?
 tokens
end

 The consume_token method turns words, integers and symbols into tokens:

 def consume_token
 @tokens << if (match = rest.match(WORD_PATTERN))
 tokenize_word(match.to_a.first)
 elsif (match = rest.match(INTEGER_PATTERN))
 Token.new(:integer, match.to_a.first.to_i)
 elsif (match = rest.match(SYMBOLS_PATTERN))
 Token.new(:symbol, match.to_a.first)
 else
 raise ParsingError, "Unexpected token: '#{rest}'"
 end

 @rest = match.post_match.lstrip
end

 tokenize_word is a helper method that categorizes a word based on if it appears in the KEYWORDS or BOOLEANS arrays. Everything else is assumed to be an identifier. This method also makes sure to normalize keywords before and after comparing them.

 KEYWORDS = %w[
 SELECT FROM AS BOOLEAN INTEGER CREATE DROP TABLE IF EXISTS INSERT INTO VALUES
].freeze
BOOLEANS = %w[TRUE FALSE].freeze

def tokenize_word(word)
 if KEYWORDS.include?(word.upcase)
 Token.new(:keyword, word.upcase)
 elsif BOOLEANS.include?(word.upcase)
 Token.new(:boolean, word.upcase)
 else
 Token.new(:identifier, word)
 end
end

 In Ruby %w[TRUE FALSE] is a space-separated array that is equivalent to ['TRUE', 'FALSE'].

Using tokens to build your abstract syntax tree

 Once the input is tokenized, the parser needs to consume the tokens to build the abstract syntax tree.

 If you previously had a wrapper around the input to make it easier to consume, you could adapt it to work with tokens:

 class Statement
 def initialize(sql)
 @sql = sql
 @tokens = Tokenizer.new(sql).tokenize
 end

 def next_token
 @tokens.first
 end

 def consume(type, value = nil)
 return unless next_token && next_token.type == type

 if value.nil? || next_token.value == value
 token = next_token
 @tokens.shift
 token.value
 end
 end
end

 This provides a way to consume a specific token, such as consume(:keyword, 'SELECT'), or a specific type of token, such as consume(:identifer).

 Not shown here is a consume! method which calls consume and then raises a parsing error if the expected token is not found.

 Now calls to consume will need the type of token expected. Also since CREATE and TABLE are separate tokens, they need two separate calls to consume them:

 if statement.consume(:keyword, 'SELECT')
 parse_select
elsif statement.consume(:keyword, 'CREATE')
 statement.consume!(:keyword, 'TABLE')
 parse_create_table
#...

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Reflections

Is it easy to extend your parser if you need to handle new keywords? You might want there to be a single place you need to change to recognize new keywords.

If you have a tokenizer, do you like the interface between it and your abstract syntax tree builder? Consider how easy it is to get new tokens and produce errors for unexpected tokens.

Is it easy to debug your parser when things go wrong? If an error is caused later because a token is incorrectly categorized, it might be helpful to be able to inspect your list of tokens or your abstract syntax tree.

Extensions

Naming select list items without ‘AS’ (small)

In Chapter 2 we saw that you can use AS to give names to select list items. In SQL you can even leave out the AS. For example:

SELECT id cat_id, age FROM cats;

Will return two columns with the names ‘cat_id’ and ‘age’.

Previously this might have been harder to implement because your parser may have mistaken the FROM keyword as a name for ‘age’. Now your implementation should be able to tell apart keywords from identifiers.

Improve parsing error messages (small to large)

Many databases have detailed error messages for parsing problems to make them easier to understand and fix. For example, when running CREATE TABLE from(a INTEGER); in PostgreSQL you’ll see the error:

ERROR: syntax error at or near "from"
LINE 1: CREATE TABLE from(a INTEGER);
 ^

This message says what token has caused the error with the same capitalization as in the original statement. It also says what line the error occurred on and has a visual pointer to from token using ^.

Add some of these features to your parsing errors. If you are tokenizing your input, storing additional information with your tokens such as their line and character number may help you to build error messages.

You won’t be able to use the test suite to help you build this extension.

 5. Expressions

 In this chapter you’ll implement expressions. Expressions are a combination of literals, references, operators and functions that can perform complex calculations such as 10 + (ABS(amount) * 2).

What is an expression

Until now your implementation has only dealt with literals (such as 7, FALSE) or references (such as amount).

Expressions use operators and functions to combine literals, references and other expressions. When evaluated, expressions can return a value.

Expressions can appear in the select list of a SELECT or a value list of an INSERT statement. In later chapters you’ll see them appear in other parts of statements too.

Operators

Operators are represented by symbols or a keyword (such as * or NOT) and may appear before, between or after the values they act on (called operands). An operator is prefix when it appears before its operands, infix if between and postfix if after.

An operator’s arity is the number of operands it works on. If an operator works on two operands we can call it a binary operator, and if it only works on one operand we can call it a unary operator

Mathematical operators

Here are all the mathematical operators that rgSQL will support.

Note that the same ‘-’ symbol is used to represent different operations in different contexts. It can represent subtraction when used as an infix operator (e.g. 6 - 2 will evaluate to 4) and negation when used as an prefix operator (e.g. -(4 + 2) will evaluate to -6).

As we are dealing with integers, / will be rounded down to the nearest whole number (e.g. 13 / 4 will evaluate to 3).

 	Symbol
 	Operation
 	Arity
 	Position

 	+
 	Addition
 	2
 	Infix

 	-
 	Subtraction
 	2
 	Infix

 	-
 	Negation
 	1
 	Prefix

 	*
 	Multiplication
 	2
 	Infix

 	/
 	Division
 	2
 	Infix

Evaluation order

Every operator has a precedence which tells you when it should be evaluated in comparison to other operators. In the expression 1 + 2 * 3, multiplication has a higher precedence than addition so 2 * 3 has to be evaluated first, causing the whole expression to evaluate to 7. If it was just evaluated left-to-right the result would be an incorrect 9

Expressions can include brackets, such as (1 + 2) * 3. Brackets can change the order of evaluation, here causing 1 + 2 evaluated before the multiplication.

Both precedence rules and bracketing affect the shape of the abstract syntax tree produced which will in turn affect the order of evaluation.

Here’s abstract syntax tree for different ways of bracketing an expression:

[image: This shows abstract syntax trees for expressions with different bracketing. The first abstract syntax tree is for the expression (1 \+ 2\) * 3\. The root node is for the * operator. Then the left side of the abstract syntax tree represents (1+2) and the right side represents 3\. The second abstract syntax tree is for the expression 1 \+ (2 * 3). The root node is for the \+ operator. Then the left side represents 1 and the right side represents (2 * 3).]

The operators that will be evaluated last are at the top of the tree. Also note that the brackets themselves don’t need to be turned into nodes.

Simplifying expressions

Handling all the precedence rules correctly does make parsing more complex.

To keep parsing simple in rgSQL, all the test cases with multiple operators have explicit bracketing. This means you don’t need to handle operator precedence rules. For example, in the test cases 1 + 2 * 3 will always appear as 1 + (2 * 3) and 4 * 3 + 3 * 9 * 3 will appear as (4 * 3) + ((3 * 9) * 3).

If you want to write a parser that can take operator precedence into account then look at the extensions at the end of this chapter.

Parsing expressions

Handling binary operators is a tricky part of parsing expressions

As an example, imagine you are parsing the expression 5:

 	Consume the 5

 	Return abstract syntax tree node, such as: Integer(5)

That was an easier example. What about the expression 5 + 3:

 	Consume the 5

 	Consume the binary operator +

 	Consume the 3

 	Return the node for the binary operator, such as:

BinaryOperator('+', Integer(5), Integer(3))

Until you have reached the + you won’t know the type of node you need to return. In this example there is just a 5 before the + but there could be a much more complex expression that you will need to parse first.

You can solve this problem by separating parsing into expressions and terms. A term is any part of an expression that may appear around a binary operator, so in (5 + 7) + 2, both (5 + 7) and 2 are terms.

Here’s an example of how a parser could be structured to transform expressions containing unary and binary operators:

[image: This is a flow diagram showing that you can parse an expression with two methods. One for parsing the expression and one for parsing terms. The full diagram is explained in the next section.]

This shows that to parse an expression you first try to parse the first term. You then check for a binary operator. If there isn’t one, the term is all there is and you’re done. If there is a binary operator you parse the second term and then construct an Operator node with both terms.

To parse a term, you can go through the different possible types of term:

 	If you can consume an opening round bracket, you can then use the parse expression method to parse the expression that follows. Once you have parsed the expression you can consume the closing round bracket and return the expression. If you can’t consume a closing round bracket you should return an error.

 	If you can consume a unary prefix operator (such as ‘-‘), you can then call the parse term method again to parse the term that follows it. You can then return the term wrapped in a unary operator node.

 	If you can consume an identifier, return it.

 	Otherwise you can attempt to parse a literal the same way as in Chapter 2. If no literal is found then an error should be returned.

Both of these parts of the parser can recursively call each other which is how more complex nested expressions are parsed.

Evaluating expressions

Once you have an abstract syntax tree representing your expression, you can evaluate it to produce a result.

Your evaluator should decide what to do based on the current abstract syntax tree node. To evaluate a literal such as TRUE or 27 you can return it. To evaluate an operator, you can use recursion to evaluate each of its operands before performing the calculation and returning the value.

If the expression is a select list item in a SELECT … FROM query, you will need to call the evaluate function for every row in the table. Your evaluate function will need a way to get the value of references that refer to columns in a row.

You may have decided to wrap primitive values from your programming language when creating your abstract syntax tree. If dealing with wrapped values you may need to ‘unwrap’ them to get the value out of them so you can perform an operation. You can wrap them again after. For example, to add Int(4) and Int(2) nodes:

 	Unwrap them to get 4 and 2

 	Add them to get 6

 	Wrap them again to get Int(6)

Logical operators

These operators take booleans as operands and return a boolean. See the test cases for examples.

 	Keyword
 	Operation
 	Arity
 	Position

 	AND
 	Logical and
 	2
 	Infix

 	OR
 	Logical or
 	2
 	Infix

 	NOT
 	Logical not
 	1
 	Prefix

Comparisons

The comparison operators work on comparable values of the same type.

Many databases also allow you to use != as the inequality operator.

 	Operator
 	Operation
 	Arity
 	Position

 	<
 	Less than
 	2
 	Infix

 	<=
 	Less than or equal
 	2
 	Infix

 	>
 	Greater than
 	2
 	Infix

 	>=
 	Greater than or equal
 	2
 	Infix

 	=
 	Equality
 	2
 	Infix

 	<>
 	Inequality
 	2
 	Infix

If you are using regular expressions for parsing, be careful how you parse comparison operators that start with the same character (such as >= and >). If you used the regular expression />|>=/ this will only ever match >. This is because the first matching term in the | pattern will match, even if there is a longer term after. Instead you could put the longer term first (e.g />=|>/) or combine them (e.g. />=?/).

Functions

rgSQL will support two functions:

 	Function
 	Operation
 	Arity

 	ABS
 	Absolute value
 	1

 	MOD
 	Modulus (remainder after division)
 	2

Function names follow the same rules as identifiers. They are invoked by providing a list of arguments in brackets after the function name, e.g. MOD(10, 5).

Unlike operators, all functions have the same precedence. The SQL standard also says how additional user-defined functions can be added. Some databases allow you to create custom operators too.

 DATABASES IN THE WILD

 How to specify a language

 This guide makes use of test cases to show the kinds of expressions you need to parse. Programming languages use different approaches to specify their syntax.

 One approach is to use a notation to specify the language. BNF (Backus–Naur Form) is a commonly used notation for this. A BNF specification is made up of a set of rules that can refer to each other to show what structure the syntax has to follow.

 The parser generators we saw in Chapter 2 use variants of BNF. So does the SQL standard.

 If you wanted to use BNF to specify rgSQLs expressions you might end up with something like this:

 letter ::= [a-zA-Z]
digit ::= [0-9]

identifier ::= letter (letter | digit | '_')*

integer ::= '-'? digit digit*
literal ::= 'TRUE' | 'FALSE' | integer

unary_operator ::= '-' | 'NOT'
binary_operator ::= '+' | '-' | '*' | '/' |
 '>' | '>=' | '<' | '<=' | '<>' | '=' |
 'AND' | 'OR'

expression ::= term (binary_operator term)?
term ::= unary_operator* (
 '(' expression ')' |
 identifier |
 literal ('(' expression ')')?
)

 This uses a BNF variant that the W3C uses in the XML specification and shares some syntax with regular expressions. A ? means the preceding term is optional, * means that the previous term can repeated 0 or more times, and | means that either the left or the right term matches. You can also represent ranges of characters in square brackets.

 Syntax diagrams (also called railroad diagrams) are a visual way to specify a syntax. The SQLite documentation makes use of these as does the JSON specification.

 The best choice will depend on the audience. People implementing parsers may be used to interpreting BNF, while users of a language looking at documentation might find it easier to see examples or use syntax diagrams.

 More

 Extensible Markup Language (XML) - Notation

Description of the notation used to describe XML. It is based on Extended Backus-Naur Form (EBNF).

 PostgreSQL documentation - Conventions

PostgreSQL’s documentation uses its own notation which has some similarities to documentation for command line programs and BNF.

 Lua 5.4 Reference Manual - The Complete Syntax of Lua

The Lua programming uses the Extended Backus-Naur to specify the language.

 BNF-Style Notation as It Is Actually Used

Article comparing the different variants of BNF.

Implementation

Add to your implementation so the tests for this chapter pass.

First decide how to represent expressions using your abstract syntax tree and then start parsing and evaluating them.

Make sure you implement operations and functions one-by-one as you see them in the tests rather than trying to do them all at once.

Don’t worry about handling inputs with unexpected types (7 * FALSE), that will be covered in the next chapter.

Hints

Parsing expressions

 Here is part of an expression parser that follows the structure described earlier in the chapter:

 def parse
 term = parse_term
 if (operator = statement.consume(:operator))
 Operator.new(operator, [term, parse_term])
 else
 term
 end
end

def parse_term
 if (identifier = statement.consume(:identifier))
 parse_identifier(identifier)
 elsif (boolean = statement.consume(:boolean))
 Bool.new(boolean == 'TRUE')
 elsif (integer = statement.consume(:integer))
 Int.new(integer)
 elsif (operator = statement.consume(:operator))
 parse_prefix_operator(operator)
 elsif statement.consume(:symbol, '(')
 term = parse
 statement.consume!(:symbol, ')')
 term
 else
 raise ParsingError, "unexpected token '#{statement.next_token}'"
 end
end

 The parse method parses the first term. If the term is followed by an infix operator it parses the operator and its remaining operand.

 The parse_term method parses identifiers, booleans, integers, prefix operators and bracketed expressions. The parse method is used to handle the bracketed expressions.

 The parse_identifer method (not shown here) treats the identifier as a function if it is followed by a bracketed list of arguments.

Evaluating expressions

 Here is part of an expression evaluator:

 def evaluate(expression, row = [], table = nil)
 case expression
 when Operator
 operands = evaluate_list(expression.operands, row, table)
 evaluate_operator(expression.operator, operands)
 when Function
 arguments = evaluate_list(expression.arguments, row, table)
 evaluate_function(expression.name, arguments)
 when Reference
 table.get_reference(row, expression.name)
 when Int, Bool
 expression
 else
 raise "unknown expression type #{expression.class}"
 end
end

def evaluate_list(expressions, row, table)
 expressions.map { |expression| evaluate(expression, row, table) }
end

def evaluate_operator(operator, operands)
 op1 = operands[0]
 op2 = operands[1]

 case operator
 when '+'
 Int.new(op1.value + op2.value)
 when '-'
 #...
end

 The evaluate method will choose what to do based on the type of the abstract syntax tree node. It uses the evaluate_operator and evaluate_function methods to calculate the result of a function or operator. Part of evaluate_operator is shown as an example.

 The evaluate_list helps to evaluate a list of operands or arguments and calls evaluate to do this.

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Reflections

What would you need to do to define new operators or functions? There are a few operators and functions in this chapter and you might want to define more later. If so, there might be a benefit in making it easy to add more functions without having to update multiple places in the code.

Is it easy to parse and evaluate expressions? Expressions might occur in multiple places in a statement, if there is a single function you can call from different places to parse expressions you can be sure to parse them consistently. The same applies to evaluating expressions.

Extensions

Add another operator or function (small)

Pick another operator or function and add support for it. This could be a function in SQL that you’ve used before, or one you’ve made up.

You should choose an operator or function that takes and returns types that your database already supports (integers and booleans).

Some ideas:

 	The exponent operator ^. For example, 10 ^ 2 should evaluate to 100.

 	The FACTORIAL function. For example, FACTORIAL(5) should evaluate to 120 (equivalent to 1 * 2 * 3 * 4 * 5).

Handle the precedence of operators (large)

Adapt your parser to correctly handle operator precedence. This will let you evaluate expressions such as 2 * 3 + 1.

There are a few operator precedence parsing algorithms you could research and implement. I recommend using Pratt Parsing, but you could also look at the shunting yard algorithm or bracket-insertion algorithms.

Here’s a list of operators ordered by precedence:

 	Operators
 	Description

 	-
 	Unary minus

 	^
 	Exponent (Chapter 5 extension)

 	*, /
 	Multiplication, division

 	+, -
 	Addition, subtraction

 	<, >, <=, >=, =, <>
 	Comparisons

 	IS NULL, IS NOT NULL
 	Comparison predicates (Chapter 7 extension)

 	NOT
 	Logical not

 	AND
 	Logical and

 	OR
 	Logical or

The highest precedence items are at the top of the table. If you have implemented other operators, you can see what their precedence is in PostgreSQL.

 6. Finding Errors

 We’ve seen queries that can cause parsing errors and errors that can happen when creating and dropping tables. This chapter introduces more kinds of errors and how they should be handled.

All or nothing

In SQL, statements are atomic. This means that either the whole statement is successful or the whole statement fails and has no side effects.

One situation where this is important is when running an INSERT statement to add multiple rows. If an error occurs when inserting one row, no new rows at all should be inserted.

Finding errors before running statements

There are many different errors that might occur when evaluating statements, including:

 	Using an operator with unsupported types such as 8 * TRUE

 	Inserting the wrong type into a column

 	Calling a function with the incorrect number of arguments

 	Calling a function with arguments of the wrong type

These are kinds of type errors that are caused by a mismatch between the expected type of a column, function or operator and the provided type.

Databases can check for type errors before running queries with a type checker. Type errors can be spotted by looking at the statement, table definitions, available operators and functions. You don’t need to read any rows from tables to find type errors.

Type checkers can also alert to reference errors when they find a reference to a table, column or function that doesn’t exist.

Type checking expressions

You will need to create a type checker to validate expressions.

Your type checker should decide what to do based on the current abstract syntax tree node. If the node is an operator, you can use recursion to check the type of each of the operands. Then you can verify that the operand types match what the operator expects. Typing functions can work in a similar way to operators.

Your expression type checker should return a validation error if it encounters a mismatch between the provided and expected types of an operator or function. You should also raise a validation error if there is a reference that can’t be matched to a column or table.

You will also need to validate that the values in an INSERT statement match the table’s column types. You can do this by comparing the type that your checker returns with the expected column types.

You should decide how to represent types in your system. You could use strings such as 'integer' and 'boolean' or use other constants.

 DATABASES IN THE WILD

 Flexible typing

 Databases will automatically convert certain types (called type coercion). For example PostgreSQL will convert a floating point number (such as 2.64) into a whole number before storing in an integer column for convenience.

 SQLite has chosen to be more flexible with types than other databases. With SQLite you can store any type of value in any type of column. The value will either be automatically converted into the type of the column, or stored as its original type.

 Operators are similarly flexible and will perform type coercion, for example SELECT "Hello" / TRUE; will return 0.

 This behavior can make it easier to work with SQLite from dynamic programming languages or untyped data sources at the expense of hiding possible errors.

 More

 The Advantages Of Flexible Typing

Advantages and some disadvantages of flexible typing in SQLite.

 SQLite: past, present, and future

An article about SQLite which also explains its approach to flexible typing.

Errors when running statements

There are certain errors that are only possible to catch when executing the statement and looking at the data in the table. One of these errors is a division by zero error. Many programming languages, including SQL, return an error when an integer is divided by zero.

For example, given this table named items:

 	quantity (Integer)
 	restock (Boolean)

 	12
 	FALSE

 	20
 	TRUE

 	0
 	FALSE

This query will fail with a division by zero error:

SELECT 10/quantity from items;

Division by zero error

Division by zero error

The database can’t know that this query will error until it is evaluating the expression for the last row in the table. If the quantity column didn’t have any zeros, the statement would have been successful.

 DATABASES IN THE WILD

 Return codes

 So far we’ve seen three categories of errors: parsing, validation and dividing by zero.

 The SQL standard defines a set of codes called SQLSTATE which model common success, warning and error states. These codes allow database clients to tell the result of a statement without having to parse human-readable error messages.

 For example, the code 22012 is a data exception for division by zero errors.

 Codes starting with 42 are in a category of errors called ‘syntax error or access rule violation’. This category covers most of the errors described in this guide.

 Database implementations can add their own codes, often within a category defined by SQLSTATE. If you drop a table that doesn’t exist in PostgreSQL, you will get an error code of 42P01, while MySQL uses the code 42S02.

 If you are using psql to access a PostgreSQL database you can increase the verbosity to see the SQLSTATE code of errors by running \set VERBOSITY verbose.

 More

 SQLSTATE

A full list of SQLSTATE codes from a recent SQL standard.

Implementation

Add to your implementation so that this chapter’s tests pass.

You will need to validate your queries with a type checker. When you detect an incorrect type is used with an operator or function or operator, return a validation error.

Then you will need to check the type of data used in SELECT and INSERT statements against the column type.

There are also tests that check for errors from dividing by zero.

Hints

Writing a type checker

 Here is a type method that returns a type of an expression. This code uses classes from the abstract syntax tree to represent types and has a similar structure to the evaluate method.

 def type(expression, table)
 case expression
 when Operator
 type_operator(expression, type_list(expression.operands, table))
 when Function
 type_function(expression, type_list(expression.arguments, table))
 when Int, Bool
 expression.class
 when Reference
 table.column_type(expression.name)
 end
end

def type_operator(expression, operand_types)
 operator = Callable.find_operator(expression.operator)
 unless operator.accepts_types?(operand_types)
 raise(ValidationError, "Incorrect types for #{expression.operator}")
 end
 operator.output_type
end

def type_list(expressions, table)
 expressions.map { |expression| type(expression, table) }
end

 The type method chooses what to do depending on the kind of abstract syntax tree node. For operators it calls a type_operator method. There is a similar type_function method for functions (not shown here). For integer and boolean literals, the node class (Int or Bool) is returned. For references, the type of the column that is referenced is found using the colum_type method.

 The type_operator method finds an object that represents the operator based on its name from the abstract syntax tree. It then verifies that the expected types of each operand matches the provided types. Lastly, it returns the output type of the operator.

 type_list is a helper method that returns the types for a list of operands or arguments by calling the type method on each of them.

Reflections

Is it still easy to add new operators and functions? You could choose to keep the type information about operators and functions close to their implementation as both may need to change if you are adding or extending an operator or function.

Is there enough information to debug validation errors? Having information in the error about the part of the statement that caused the error might help you debug any unexpected behaviour. For type errors you could also add the actual and expected types to the error message.

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Extensions

Casting (medium)

Add the CAST function to allow you to convert a value to another type.

 	CAST(0 AS BOOLEAN) will evaluate to FALSE and all other integers will be cast to TRUE.

 	CAST(TRUE AS INTEGER) will evaluate to 1 and FALSE will be cast to 0.

Normally types (BOOLEAN and INTEGER) aren’t allowed in function calls as they aren’t values. CAST uses a special form with AS which allows a type to be provided.

User-defined functions (large)

SQL allows users to define functions that can be used elsewhere using CREATE FUNCTION. You need to supply a function name, parameter names and types, the return type and an expression that implements a function.

The following creates an add function that adds two integers together using the + operator:

CREATE FUNCTION add(a integer, b integer) RETURNS integer
 LANGUAGE SQL
 RETURN a + b;

You can see more examples and behavior of CREATE FUNCTION in the PostgreSQL documentation.

If you add tests for CREATE FUNCTION function, make sure each test uses a different function name otherwise the created functions may clash. Alternatively you could implement DROP FUNCTION to cleanup functions.

 7. Null

 In this chapter you’ll learn about NULL in SQL, including how NULL affects operators.

What is null?

In SQL, NULL isn’t considered a value itself and represents the absence of a value. A value can be absent if it isn’t known or it isn’t applicable.

This is different from many programming languages that have a value called null/nil/undefined/none. In these languages it’s often up to the programmer how to use this value and what meaning to give to it.

NULL may appear in rows of data from tables or as the result of evaluating expressions.

Working with the unknown

SQL uses 3-valued logic (also known as ternary logic). In other programming languages it’s common for comparisons and logical operators to either return TRUE or FALSE. In SQL they might return a third value - NULL.

For example, the expression 6 > NULL will return NULL. The value 6 is being compared to an unknown value so the result is unknown too.

Similarly NULL = NULL returns NULL instead of TRUE . Null doesn’t represent one value so isn’t equal to itself. Instead null represents an unknown value which may or may not be equal to another unknown value. NULL <> NULL also returns NULL.

Null propagation

Most expressions that contain a NULL will evaluate to NULL. For example 3 + NULL is NULL. This is called null propagation as nulls will spread up nested expressions as they are evaluated.

Null propagation doesn’t apply to every function and operator. TRUE OR NULL is TRUE. Here regardless of what NULL may be, the left operand is still true as there is no value NULL could be that would make the expression false.

Other programming languages often error when you try to use operations on a missing value. Using null propagation means that the statements will still run without having to add lots of checks for null. A disadvantage to null propagation is that it might be harder to debug a statement to find out where an unexpected null is coming from.

Type checking null

All the functions and operators implemented so far should pass a type check if any inputs are literal nulls instead of the expected types.

NULL can be inserted into any column of any type, either by explicitly inserting a NULL or by not giving a value for that column.

Implementation

Add to your implementation so that the tests for this chapter pass.

You will need to change your parser and statement runner so you can select null and insert it into tables.

Then you should make sure operators and functions handle null propagation correctly.

Hints

Checking if types match

 Previously when checking an actual type matched an expected type we could compare them to see if they were equal. Now we also have to check if the type being compared is null:

 def self.match?(expected_type, actual_type)
 actual_type == Nodes::Null || actual_type == expected_type
end

Reflections

All operators and functions other than AND and OR return null if any of their inputs are null. Is it easy to implement new operators and functions with this behaviour? Is it clear from your code that AND and OR behave differently?

You may need to verify that two types match in a few places in your code. Is it easy to check if types match without forgetting to check if a type is null?

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Extensions

Default column values (small)

In a create table statement you can set default values to columns using the DEFAULT keyword. For example:

CREATE TABLE stock_items (code INTEGER, quantity INTEGER DEFAULT 0);

This will mean when new rows are inserted without a quantity value, it will be set to 0 rather than NULL.

Add the coalesce function (medium)

The COALESCE function which takes a variable number of arguments and returns the first non-NULL result. For example COALESCE(NULL, 5, TRUE) will return 5.

COALESCE is interesting because unlike other functions we’ve seen so far, it shouldn’t evaluate its arguments until it needs them. This is called lazy evaluation. For example COALESCE(1, 1/0) should return 1 rather than a ‘division by 0’ error.

Add IS NULL and IS NOT NULL comparison predicates (medium)

IS NULL is a comparison that returns a TRUE when its argument is NULL and FALSE otherwise. It is a postfix operation so goes after the value it is testing, for example 7 IS NULL would return FALSE.

IS NOT NULL is the inverse and will return TRUE when the argument is not NULL.

 8. Filtering, Ordering and Limiting

 This chapter adds to SELECT queries so you can add filtering using WHERE, ordering using ORDER BY, and limiting using LIMIT and OFFSET.

Filtering

SELECT id
FROM stock_items
WHERE quantity < 10

You can filter rows returned using WHERE. The WHERE must be followed by an expression which should be evaluated against every row and can refer to column names in the table that the statement selects from.

The type of the expression after the WHERE statement should be checked to make sure it doesn’t have any type errors and to make sure it evaluates to a boolean or null.

Ordering

SELECT id, price
FROM stock_items
ORDER BY price DESC

ORDER BY lets you order results by a column.

You can follow ORDER BY with an order direction. ASC is used to sort rows ascending (smallest first) and DESC sorts rows descending (largest first). If a direction isn’t specified then rows are sorted ascending.

If the order by expression is a single reference that is the name of a select list item, then that item is used to order the rows.

SELECT id, price + postage_price AS total_price
FROM orders
ORDER BY total_price

If a SELECT statement doesn’t have an ORDER BY then you can return the rows in any order. Some databases default to returning rows in the order they were inserted.

Limiting

SELECT id, price
FROM stock_items
LIMIT 5

With LIMIT you can limit the number of rows returned by your query.

You can also add an OFFSET to skip rows. OFFSET is often used with LIMIT with ORDER BY and OFFSET to break up large results into smaller chunks. For example, the following query will return the stock items with the 11th through to 20th lowest ids:

SELECT id, price
FROM stock_items
ORDER BY id
LIMIT 10 OFFSET 10

Evaluating SELECT queries

With more parts to SELECT queries, evaluating them becomes more complex.

Evaluation order

The parts of a SELECT statement aren’t run in the order they appear in the query. Instead they should run in the following order:

 	Filtering with WHERE

 	Evaluating the select list

 	Ordering with ORDER BY

 	Limiting with LIMIT and OFFSET

You can think about each of these steps as creating a new set of rows that are used by the next step.

The select list is evaluated after values are filtered. This is why you can’t refer to a select list alias within a WHERE expression, but you can in an ORDER BY.

 DATABASES IN THE WILD

 Evaluating a different way

 The evaluation order described above is just the order that queries must appear to be run in. Database servers may evaluate queries and expressions differently so they can return results faster.

 For example, imagine a query with a complex expression in:

 SELECT a, ((a + 10) / 2) + (a * a) as complex_expression FROM t1
ORDER BY a
LIMIT 1

 A database could evaluate the expression in the select list for every row, but doing so would be wasteful as only one result of an evaluation will be used.

 Instead, the evaluation of the expression may be delayed until after the ORDER BY and LIMIT has been applied. If the ORDER BY query had a reference to complex_expression it would need to be evaluated sooner.

Building metadata

We’ve seen how you can use metadata to keep track of a table’s column names and types.

Now the ORDER BY expression can refer to data created in a select list expression, it can be useful to create metadata for queries. This metadata will store the names and types of columns in a query.

You can then use this metadata for:

 	Type checking expressions. The metadata has all the type information needed to check expressions in the query. The metadata isn’t needed for type checking the LIMIT and OFFSET expressions as they can’t refer to columns.

 	Evaluating expressions. You can use the query metadata to convert the name of a reference to an array offset when evaluating expressions. The offset will point to a value in a row of data.

 	Building the query result. The metadata can remember what columns are select list items that should be returned.

Some databases call this metadata a row descriptor as it describes the structure of a row.

A worked example

Each can have different columns available to use. Consider the query:

SELECT id, quantity * price AS total
FROM stock_items
ORDER BY total

First build the query metadata. This can be done from the table metadata and the names and types of the select list items.

[image: This shows an example set of query metadata. First there is the table metadata for the id, quantity and price columns in the table, then there is the select list item metadata for the id and total columns. Each metadata item has a name and type.]

Next, execute the query in steps.

[image: This shows three stages of running the query with sample data. First the data is loaded from the table. This shows two rows of data, each with 3 columns. Next the select list is built. This adds two new columns to each row, one for each of the two select list items. Lastly, the rows are ordered by the total column. This shows the same rows as the previous stage but now in a different order.]

First, the data from the stock_items table is loaded.

Next, the select list is evaluated. This creates a new set of rows with new columns for each of the select list items.

Then the ORDER BY uses total to sort the data and creates a new ordered set of rows.

Lastly, the select list items are turned into the query result.

In this example the id column appears twice in each row as a table column and a select list item. Your implementation could recognise when a select list item is just a reference to another column and avoid creating a new column in this case.

 DATABASES IN THE WILD

 Rows or columns?

 This guide describes a row-oriented database. Row oriented databases store each row of data together and work with rows when running queries. Working with rows often lets you retrieve or update rows of a table quickly to respond to user actions making them well suited for transactional databases.

 Some databases are column-oriented. These databases store the data in columns and may process columns of data together.

 Organising data into columns can mean that less data needs to be read in order to run a query that only looks at a few columns in a table. Storing data in columns can take up less space than using rows. This is because compression algorithms can be more effective across columns of data. When data is of the same type it is more likely to contain repeated values and patterns that can be compressed.

 Processing data in columns can make it quicker to perform certain operations, such as multiplying every value in a column by 10. This is due to it being easier for compilers and CPUs to optimize and parallelize operations that are repeated in succession.

 Column-oriented databases can perform well as analytical databases where queries often need to look at data across many rows. BigQuery, Redshift and DuckDB are all column-oriented databases.

 Some databases are hybrid and have options that allow you to use row or column oriented data. For example, MariaDB has a ColumnStore storage backend that lets you get some of the benefits of column-oriented databases. Both pg_mooncake and Crunchy Data Warehouse embed the column-oriented DuckDB within PostgreSQL to improve the performance of analytical queries.

 More

 MonetDB: Two Decades of Research in Column-oriented Database Architectures

An overview of MonetDB, an open source column based database.

 C-store: a column-oriented DBMS

An overview of the C-store research database including how it is optimized for writing as well as reading data.

 Column-stores vs. row-stores: how different are they really?

Comparing the performance of column and row oriented databases.

 Integrating compression and execution in column-oriented database systems

A comparison of different ways to compress column-oriented data.

Implementation

Add to your implementation so that the tests for this chapter pass.

You will need to think about how to parse WHERE, ORDER BY and LIMIT clauses and model them in your abstract syntax tree.

There are lots of different ways you could choose to implement filtering, sorting and limiting. For your first attempt, focus on getting the tests to pass rather than trying to optimize performance.

Introducing a way to represent the query metadata may help you validate and evaluate queries.

Hints

Introducing WHERE

 There are two parts to introducing WHERE. First you will need to validate the WHERE expression and then you can filter rows by evaluating it.

 Here is an updated validate method that checks the WHERE expression as well as the select list:

 def validate
 unless Types.match?(Bool, Expression.type(select.where, @table))
 raise ValidationError, 'WHERE must evaluate to a boolean'
 end

 select.select_list.each do |item|
 Expression.type(item.expression, @table)
 end
end

 This uses Expression.type to find the type that the WHERE expression evaluates to. Types.match? is then used to make sure that the type is a boolean.

 Here is an updated run method that filters rows and evaluates the select list:

 def run
 rows = @table.rows.select do |row|
 evaluate(select.where, row) == Bool.new(true)
 end

 rows = rows.map do |row|
 select.select_list.map do |item|
 evaluate(item.expression, row).value
 end
 end
end

def evaluate(expression, row)
 Expression.evaluate(expression, row, @table)
end

 The run method uses Ruby’s select method to filter out rows. The WHERE expression is evaluated for every row and checked to see if the result is the true boolean. After the rows are filtered, every select list expression is evaluated to create the result rows.

Introducing query metadata

 Here is an object that can represent the metadata for the query. It keeps track of all of the columns and types for a row in a query:

 class RowMetadata
 def initialize(table)
 @table = table
 @select_list_offset = table.column_definitions.size
 @select_list = {}
 end

 def reference_type(name)
 type = @table.column_type(name)
 type ||= @select_list[name]
 type || raise(ValidationError, "unknown column #{name}")
 end

 def add_select_list_item(name, type)
 @select_list[name] = type
 end

 def get_reference(row, name)
 if (column_index = column_index(name))
 row[column_index]
 elsif (item_index = select_list_item_index(name))
 row[@select_list_offset + item_index]
 else
 raise "item with name #{name} not found"
 end
 end

 def get_select_list(row)
 row[@select_list_offset..]
 end

 private

 def column_index(name)
 @table.column_index(name)
 end

 def select_list_item_index(name)
 @select_list.keys.index(name)
 end
end

 The RowMetadata object is built while the query is being validated. It has a few methods for updating and accessing query data.

 	reference_type returns the type for a reference and is used by the type checker. If the reference can’t be found then a validation error is raised.

 	add_select_list_item adds a select list item to the metadata so it can be referred to later. This method is called when the select list items are validated.

 	get_reference takes a row of data and a reference name. It converts the reference name to an offset and returns the value for that reference. It errors if the reference can’t be found, however this should never happen if the expression has been correctly validated.

 	get_select_list returns all select list items for a row, making it easier to return the output rows for a query.

 Previously, the methods to type and evaluate expressions used an object representing a table to keep track of columns and types. Now they can be updated to use the new metadata object. For example, here is the updated type method:

 def type(expression, metadata)
 case expression
 when Operator
 type_operator(expression, type_list(expression.operands, metadata))
 when Function
 type_function(expression, type_list(expression.arguments, metadata))
 when Int, Bool, Null
 expression.class
 when Reference
 metadata.reference_type(expression.name)
 end
end

Ordering rows

 When implementing ORDER BY, any nulls need to appear in the correct position relative to other values.

 Here is a new part of the run method to order rows:

 def run
 #...
 if select.order
 rows = rows.sort do |row_a, row_b|
 comparison_value(row_a, row_b)
 end
 end
 #...
end

private

def comparison_value(row_a, row_b)
 value_a = evaluate(select.order.expression, row_a)
 value_b = evaluate(select.order.expression, row_b)

 if select.order.ascending
 value_a <=> value_b
 else
 value_b <=> value_a
 end
end

 This uses Ruby’s sort method. sort lets you sort an array based on the result of a comparison. In Ruby (and some other languages) comparisons are run using the <=> operator which is also known as the spaceship operator.

 So values can be sorted, the sample implementation defines a comparison operator on each of the types. Here is how comparisons are defined for integers:

 Int = Data.define(:value) do
 def to_i
 value
 end

 def <=>(other)
 if other.is_a? Null
 -1
 else
 value <=> other.value
 end
 end
end

 When the value is being compared to null, -1 is returned. The negative value tells the sort that null is larger than integers and should appear last when the sort is ascending. When the value is being compared to another integer the comparison operator that Ruby provides for integers can be used.

 Comparisons also needs to be defined for null:

 Null = Data.define do
 def <=>(other)
 if other.is_a? Null
 0
 else
 1
 end
 end
end

 When the other value is a null too, a 0 is returned to tell the sort the values are equal. When the value is another type, a 1 is returned to tell the sort that the null is larger and should appear last when the sort is ascending.

Reflections

Are the steps needed to validate and run queries clear? Now queries are more complex, there are multiple steps needed to validate and run them. The next chapter will look at a way to structure the code that runs queries.

If you have introduced a way to represent the metadata for the query, does it have a clear interface that’s easy to use from different places in your code?

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Extensions

Allow ordering by column positions (small)

SQL provides a useful shorthand for ordering columns in the select list. You can use an integer with ORDER BY to refer to a column in the select list. For example:

SELECT a, b FROM t1 ORDER BY 2;

This will order the results by column b. The index starts from 1 and if an integer is used that’s larger than the number of select list items an error should be raised.

More complex expressions (such as 1 + 1) do not refer to a column position, even if they evaluate to an integer.

Breaking ordering ties (medium)

Imagine you have a table containing details about cats with the year and month of their birth:

 	id
 	birth_year
 	birth_month

 	1
 	2022
 	2

 	2
 	2020
 	10

 	3
 	2020
 	8

If you want to find the oldest cat, ordering by birth year isn’t enough as there are multiple cats that were born the same year.

You can add multiple sort expressions after the ORDER BY to get the order you want:

SELECT id, birth_year, birth_month FROM cats
ORDER BY birth_year ASC, birth_month ASC;

The additional sort expressions are separated by commas and each sort can have its own direction.

 9. Query Plans

 This chapter describes how you create a query plan that can be executed using iterators

What is a query plan?

This query returns 5 highly rated recipes and how long they will take to make:

SELECT id, length_in_minutes / 60 AS length_in_hours FROM recipes
WHERE rating >= 9
LIMIT 5

You can break this down into separate operations:

 	Loading rows from the recipes table

 	Filtering rows to ones that have a rating of 9 or more

 	Evaluating the select list items for a row

 	Taking the first 5 rows that match the table

This is a query plan. It’s a sequence of operations that can be run to evaluate the query. In this example each part of the SELECT query is one step in the plan but this doesn’t have to be the case. Operations can be combined into one step or split up.

Once a database has decided on a query plan, it might use a pipeline of iterators to implement it.

 DATABASES IN THE WILD

 Planning for success

 Query plans try to find the fastest way to run the query that minimizes the processing time and memory needed. To choose a plan, the database may look at the query, the size of queried tables and statistics about the data in the tables. The chosen plan is just a prediction of what the optimal plan might be, not a guarantee.

 As an example, if there is a orders table with a id and price columns and you run the following query:

 SELECT id FROM orders
ORDER BY price
LIMIT 10;

 When there are 100 rows in the table, PostgreSQL produces the following query plan:

 Limit (cost=118.98..119.23 rows=100 width=8)
 -> Sort (cost=118.98..124.63 rows=2260 width=8)
 Sort Key: price
 -> Seq Scan on orders (cost=0.00..32.60 rows=2260 width=8)

 This shows the limit step that is applied to the data last at the top, and steps it depends on nested underneath. Limit, Sort, and Seq Scan are the operations in the query plan. Here Seq Scan means it’s scanning every row in the table.

 Now when there are 10,000,000 rows in the table PostgreSQL chooses a different plan:

 Limit (cost=176955.50..176956.67 rows=10 width=8)
 -> Gather Merge (cost=176955.50..1149250.35 rows=8333374 width=8)
 Workers Planned: 2
 -> Sort (cost=175955.47..186372.19 rows=4166687 width=8)
 Sort Key: price
 -> Parallel Seq Scan on orders (cost=0.00..85914.87 rows=4166687 width=8)

 Because there are many more rows that need to be sorted the query plan has chosen to parallelize sorting by price into two workers and uses the ‘Gather merge’ step to merge the two sorted results.

 In many databases you can see a query plan by adding EXPLAIN to the start of the query.

 More

 Using EXPLAIN

How to use EXPLAIN with PostgreSQL with examples.

 Statistics Used by the Planner

What statistics PostgreSQL collects and how to view them.

 Access path selection in a relational database management system

How to choose between different evaluation plans by assigning scores.

What are iterators?

Iterators are a programming pattern for processing a list of items. They have a next method that returns the next item in the list to process.

Here’s an example of an iterator in Ruby that returns a number each time next is called up to one thousand.

class NumberIterator
 def initialize
 @current = 0
 end

 def next
 return nil if @current > 1000

 number = @current
 @current += 1

 return number
 end
end

This stores its state in the @current variable so it knows what number it has reached between calls to next. When it reaches 1000, it returns nil to show that it has no more items to return.

Chaining iterators

Iterators can be chained together in a pipeline. Here’s an iterator that uses the NumberIterator to return multiple of threes:

class MultipleOfThreeIterator
 def initialize(previous_iterator)
 @previous_iterator = previous_iterator
 end

 def next
 while (number = @previous_iterator.next)
 if number % 3 == 0
 return number
 end
 end
 return nil
 end
end

This iterator can be initialized with another iterator such as the NumberIterator above. The iterator uses a while loop to go through numbers returned by the previous iterator. It will keep asking for the next number until it finds a multiple of 3 or there are no more numbers for the previous iterator to return.

This is an example of a pull-based iterator because it pulls the next item from the previous iterator when it needs it.

Loading everything before processing

Sometimes iterators need to load all rows from the previous iterator before they can return one. These iterators are called pipeline breakers as they prevent any following operations from running until they complete. For example, this is an iterator that returns results from the previous iterator in reverse:

class ReverseIterator
 def initialize(previous_iterator)
 @previous_iterator = previous_iterator
 End

 def open
 @stored_numbers = []
 while (number = @previous_iterator.next)
 @stored_numbers << number
 end
 end

 def next
 @stored_numbers.pop
 end
end

Here there is a new open method that should be called once after the iterator is created. open loads all the numbers from the previous iterator and stores them in state. The next method then removes and returns the last stored number with the pop method.

Alternatively, the code in the open method could be put in the next method if it is wrapped in a conditional so it only runs once. It could also be put in the initialize method if you don’t mind the processing happening when constructing your iterators.

Iterators may also have a close method that can be used to release any resources after they have been used.

Advantages of iterators

The use of iterators is widespread across database implementations for a few reasons.

Composability

Because iterators all have the same interface, different iterators can be used in different orders by the query planner and still work together to process results.

For example, you might have two different algorithms for sorting rows when a query with ORDER BY and when building the query plan you could choose which one to use.

Preventing redundant processing

Imagine the following query to find 5 customers from a certain area:

SELECT id, order_count FROM customers
WHERE area_id = 4
LIMIT 5;

One way of processing this would be to load all the customers, filter all the customers, and then take the first 10. If there are a lot of customers this would be inefficient as you have to load all of the customers and check each one even if you have already found 5 that match.

Iterators can work one row at a time. If the limiting is done at the end of the iterator chain, it will keep requesting new records until it has found 10 and then it will stop the query.

Reducing memory usage

A database may have tables that are too large to fit entirely in memory. By working with one row at a time, iterators can avoid having to load a whole table into memory at once.

 DATABASES IN THE WILD

 When one row at a time isn’t fast enough

 Earlier in this chapter we saw in an example query plan how queries can be executed faster by running iterators in parallel and then combining the results.

 Another optimization strategy is to change the shape of data that iterators work on.

 Rather than processing one row at a time in an iterator, it can be more efficient to process several rows at once in a batch. This is because every function call has a small overhead so calling ‘next’ with multiple rows at a time instead of just one is more efficient. Working with larger chunks of data can also allow processors to more efficiently access data in memory.

 Column-based databases might split columns into groups called vectors for similar benefits. Here a vector means a list of data of the same type. This is not to be confused with vector databases which are databases specialized in storing and processing vectors.

 More

 Volcano—an extensible and parallel query evaluation system

Paper describing how the experimental Volcano database used iterators and parallelism. This was so influential that using a query plan with iterators is often referred to as the Volcano model.

 Block oriented processing of relational database operations in modern computer architectures

A paper about using blocks of records for speed improvements.

 MonetDB/X100: Hyper-Pipelining Query Execution

Paper about vector based processing.

 DuckDB: an Embeddable Analytical Database

Paper describing how DuckDB uses the ‘Vector volcano’ model.

Implementation

Implementing this chapter is optional. If you think query plans and iterators are useful patterns, change your implementation to make use of them.

When constructing your query plan you will need to decide what iterators are needed to process a given SELECT statement and chain them together.

You do not need to create a query optimizer that looks at different query plans and chooses between them.

This chapter doesn’t have any tests because the use of iterators may not change the results of any statements run with your database. If you choose to change your implementation you can use tests from the previous chapters to make sure everything is still working.

If you choose not to implement iterators, you can always come back later if you change your mind.

Hints

What iterators to use

 I recommend starting with six iterators that can:

 	load rows from a table

 	filter rows using the WHERE expression

 	project rows using select list expressions

 	order rows using the ORDER BY expression

 	offset rows using the OFFSET expression

 	limit rows using the LIMIT expression.

 You can organize your iterators differently. For example, you could apply the offset and limit into a single iterator.

Writing the filter iterator

 Here is an example filter iterator:

 class Filter
 def initialize(previous_iterator, metadata, expression)
 @previous_iterator = previous_iterator
 @metadata = metadata
 @expression = expression
 end

 def next
 while (row = @previous_iterator.next)
 result = Expression.evaluate(@expression, row, @metadata)
 return row if result == Nodes::Bool.new(true)
 end
 end
end

 This iterator is initialized with the previous iterator, the query metadata and the WHERE expression.

 When next is called, a row is retrieved from the previous iterator. If the expression evaluates to true then that row is returned. If the row does not evaluate to true, then the next row is fetched from the previous iterator. This repeats until the expression evaluates to true or there are no rows left.

Writing an order iterator

 Ordering rows is a pipeline breaking operation. Here is an iterator that can order rows:

 class Order
 def initialize(previous_iterator, metadata, order)
 @previous_iterator = previous_iterator
 @metadata = metadata
 @order = order
 end

 def next
 sort_rows unless @rows
 @rows.shift
 end

 private

 def sort_rows
 @rows = []
 while (row = @previous_iterator.next)
 @rows << row
 end
 @rows.sort! do |row_a, row_b|
 comparison_value(row_a, row_b)
 end
 end

 def comparison_value(row_a, row_b)
 # ...
 end
end

 When next is called for the first time, the sort_rows method is called to perform the sorting. This method loads all rows from the previous iterator and then sorts them. Using shift the first ordered row is removed from @rows and returned.

 The implementation of comparison_value is similar to the description in the previous chapter.

Building the iterator chain

 Here is a way you can build a chain of iterators:

 def build_iterator_chain
 chain = Loader.new(@table)
 chain = Filter.new(chain, metadata, select.where) if select.where
 chain = Project.new(chain, metadata, select.select_list)
 chain = Order.new(chain, metadata, select.order) if select.order
 chain = Offset.new(chain, select.offset) if select.offset
 chain = Limit.new(chain, select.limit) if select.limit
 chain
end

 Each new iterator is initialized with the details it needs such as the metadata and information from the abstract syntax tree. The first iterator retrieves rows from a table. The remaining iterators retrieve rows from the previous iterator in the chain.

 Iterators are only created if the query needs them. The chain variable always contains the last iterator to be created.

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Reflections

Are your iterators interchangeable? By following the same interface you create different combinations of your iterators to execute queries. Your iterators shouldn’t need to referer to each other or know what kind of iterator is before or after them.

 10. Qualified References

This chapter explains how your database can work with different reference formats.

The many forms of references

Before we start joining tables in the next chapter we need to get serious about references.

So far all the column references we’ve seen have just been the name of the column:

SELECT id, price FROM orders
WHERE shipped;

In the above query, id refers to the id column in the orders table. This isn’t the only way to write a reference.

First, references may not all be all lowercase. So you could use ID or Id in the query for the same result.

Second, column references can be qualified with the name of a table that the column originally came from. This would look like orders.id in the above query.

Resolving references

Before typing or evaluating expressions, your database needs to know what each reference refers to.

To make this easier, databases may have a step where they resolve references. Resolving a reference means associating it with a specific column and table.

One way to resolve references is to go through each expression in your abstract syntax tree and update or replace reference nodes with something that links a reference to a particular column. This could be done by adding a normalized column and table name for every reference, or by associating a reference to an object that represents a particular column in the query metadata.

For example, for the query:

SELECT PRICE + orders.tax AS total_price FROM orders;

[image: This shows an abstract syntax for the query and how references in the tree can link to columns in the query metadata. At the top of the tree is a select node for the orders table. This links to a select list item, which links to a \+ operator, which links to reference nodes for PRICE and orders.tax. The PRICE reference has a property called 'resolved' which links to the price item in the query metadata. The orders.tax reference has a property called 'resolved' which links to the tax item in the query metadata. As well as the column name and type, the query metadata also shows the table name.]

The above diagram shows what an abstract syntax tree might look like after resolving references for the query. Each reference node in the abstract syntax tree has a ‘resolved’ property which is updated to point to the object representing the column in the query metadata.

Resolving references for an expression needs to be done after it is parsed but before it is type checked. If a reference can’t be resolved because it doesn’t exist then an error should be returned.

 DATABASES IN THE WILD

 The portability of SQL

 Given there is a single SQL standard can you run the same statements in any SQL database? Not always.

 Identifiers are one example where slight differences between implementations can make it harder to write SQL that can be run on different databases.

 The SQL standard says that identifiers should be converted to uppercase. Some databases follow this rule, while others do the opposite and convert to lowercase instead.

 CREATE TABLE orders(id INTEGER);
SELECT id FROM orders;
SELECT ID FROM orders;

 The above statement will work regardless of how identifiers are treated as the identifiers in CREATE and SELECT will be converted to upper or lower case the same way.

 SELECT "id" FROM orders; -- lowercase databases only
SELECT "ID" FROM orders; -- uppercase databases only

 Quoted identifiers don’t get case converted. So the first query above will only work with databases that convert identifiers to lowercase, the second query only on ones that convert identifiers to uppercase. If you want to write portable SQL you should avoid mixing quoted and unquoted identifiers.

 These inconsistencies can make it harder if you ever switch database servers or want to reuse a statement from one database in another.

 More

 Lexical Structure - Identifiers and Key Words

PostgreSQL documentation explaining how identifier cases are treated.

Implementation

Update your implementation to be able to use qualified references. Think about how you want to model a resolved reference.

You should resolve references before you type each expression and use the resolved reference when typing and evaluating expressions.

Hints

Modeling resolved references

 Up until now, references were represented in the abstract syntax tree by a node with an immutable name attribute. This is the updated node to represent references:

 class Reference
 attr_reader :name
 attr_accessor :resolved

 def initialize(name)
 @name = name
 end
end

 This node adds a resolved attribute that can be set later to point to a column in the query metadata.

Resolving references

 Similar to typing and evaluating expressions, you can use recursion to find any reference nodes within an expression that need to be resolved:

def resolve_references(expression, metadata)
 case expression
 when Operator
 expression.operands.each { |o| resolve_references(o, metadata) }
 when Function
 expression.arguments.each { |a| resolve_references(a, metadata) }
 when Reference
 metadata.resolve_reference(expression)
 end
end

 The sample solution resolves references to point to a column in the query metadata. So the resolved reference has an object it can point to, the metadata has been changed to model each column as a new object.

 class RowMetadata
 TableColumn = Data.define(:full_name, :type, :table_name, :column_name)
 SelectListItem = Data.define(:name, :type)

 def initialize(table)
 @columns = table.column_definitions.map do |name, type|
 full_name = "#{table.name}.#{name}"
 TableColumn.new(full_name, type, table.name, name)
 end
 end

 def add_select_list_item(name, type)
 @columns << SelectListItem.new(name, type)
 end

 def resolve_reference(reference)
 name = reference.name.downcase
 column = resolved_qualified(name) || resolve_unqualified(name)
 raise ValidationError, "unknown column #{name}" unless column
 reference.resolved = column
 end

 private

 def resolve_unqualified(name)
 @columns.find { |c| c.is_a?(TableColumn) && c.column_name == name }
 end

 def resolved_qualified(name)
 @columns.find { |c| c.is_a?(TableColumn) && c.full_name == name }
 end
end

 In the code above there are two objects that represent columns. TableColumn is used to represent columns from a table and SelectListItem is used to represent a column added by the select list.

 Reference nodes are resolved with the resolve_reference method. This method normalizes the reference by converting it to lower case.

 There are two strategies used to resolve the reference. resolved_qualified is used to try to resolve a qualified reference by seeing if the reference name matches the qualified name of a column in the metadata (e.g. cats.id). If this fails, resolve_unqualified is used to see if the reference name matches an unqualified column name in the metadata (e.g. id). If this fails too then a validation error is raised, Otherwise, the reference node is updated.

 When evaluating resolved references, the column that the reference points to can be converted to an offset. The offset can then be used to index the column within the row of data.

Resolving references in ORDER BY expression

 Resolving references in an ORDER BY expression is a special case as it’s the only place where select list items can be referenced. The following methods in the RowMetadata class can be used instead:

 def resolve_order_by_reference(reference)
 name = reference.name.downcase
 reference.resolved = resolve_select_list_item(name)
 reference.resolved || resolve_reference(reference)
end

private

def resolve_select_list_item(name)
 @columns.find { |c| c.is_a?(SelectListItem) && c.name == name }
end

 The resolve_order_by_reference method tries to find a matching select list item. If no select list item is found, it falls back to using resolve_reference.

 The query validator should call resolve_order_by_reference when the ORDER BY expression is a single reference node. Otherwise the query validator should use resolve_reference instead.

Reflections

You may have needed to introduce or change the way you represent the metadata for the query. Does the query metadata have a clear interface that’s easy to use from different places in your code?

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Extensions

Aliasing tables (small)

Just like you can rename tables in a join, you can also rename tables after a FROM. For example:

SELECT animals.name FROM cats AS animals;

The new name replaces the original name for the query, so the original name cannot be used elsewhere in the query.

The AS is optional and can be omitted. For example:

SELECT animals.name FROM cats animals;

Creating schemas (large)

Schemas are a way to namespace items in a database such as tables and user-defined functions.

Schemas can prevent name clashes and make it easier to manage permissions. This can be useful to allow multiple users or tools to use the same database without interfering with each other.

You can create a schema by running:

CREATE SCHEMA animals;

You can then use qualified references with the name of the schema to create tables in the schema and refer to columns in that schema.

CREATE TABLE animals.cats(INTEGER id, INTEGER age);
SELECT cats.id, animals.cats.age FROM animals.cats;

Databases often have a default schema that tables are added to unless another schema is specified. In PostgreSQL, the default schema is called ‘public’ and you can reference tables in this schema without needing to qualify them with ‘public’.

Referencing a table outside of the public schema without a qualified reference should return a validation error:

SELECT id FROM cats;

Validation error

Validation error

You can also remove a schema with:

DROP SCHEMA animals CASCADE;

The optional CASCADE drops all items within the schema. The statement should error if CASCADE is not used and the schema still contains items.

Implement CREATE SCHEMA, DROP SCHEMA. You should also make sure that table and column references containing schemas are resolved correctly.

 11. Joins

 So far each query in this guide has retrieved data from a single table. After this chapter your implementation will be able to use joins to combine data from different tables.

The different kinds of joins

Joins are a way to combine data from multiple tables in a query. They are the first part of the query to be processed, running before the WHERE clause.

SELECT orders.id, customers.active FROM orders
INNER JOIN customers ON orders.customer_id = customers.id

The data produced by the query before the join is referred to as the left dataset (the orders table in above example). The table you are joining to is the right dataset (the customers table).

Inner joins only return rows when there are rows in both tables that match the join condition. Outer joins may return rows from one table even if there is no matching row in the other table. Put another way, inner joins only return rows inside the set of matching rows while outer joins return rows outside the set of matching rows.

When multiple rows match the condition in the join, the data will be duplicated in the result.

rgSQL will have four kinds of joins:

Inner join

Referred to with INNER JOIN (or just JOIN in other databases).

Inner joins return all combinations of rows from the left and right datasets that match the join condition. If there are no matches for a given row, it won’t be returned.

Left outer join

Referred to with LEFT OUTER JOIN or just LEFT JOIN

Left outer joins return all the rows from the left dataset combined with any rows from the right dataset that match the join condition.

If there are no matching row in the right dataset, the row from the left will still be returned with NULL in the place of the missing data.

Right outer join

Referred to with RIGHT OUTER JOIN or just RIGHT JOIN

Right outer joins return all the rows from the right dataset combined with any rows from the left dataset that match the join condition.

If there are no matching rows in the left dataset, the row from the right will still be returned with NULL in the place of the missing data.

Full outer join

Referred to with FULL OUTER JOIN or just FULL JOIN

Full outer joins return all combinations of rows that match the join condition. If there is no matching row in the other dataset, the row will still be returned with NULL in the place of the missing data.

Join examples

This shows results for each of the joins for the condition lefty.id = righty.lefty_id.

[image: The result of different joins for example lefty and righty tables. The lefty and righty table both have two rows and only one row from each matches the join condition. The left outer join has the two rows from lefty, one of which has matching data from righty. The row from lefty that doesn't match to righty is padded with nulls. The inner join has the one row built from the matching data from lefty and righty. The right outer join has the two rows from righty, one of which has matching data from lefty. The row from righty that doesn't match with lefty is padded with nulls. The full outer join has 3 rows, one row containing data from both tables and a row from each table that is padded with nulls.]

How to join

There are a few different ways to join data together. The simplest is a nested loop join. This is implemented by looping (or iterating) over every row of the first table. Inside this loop, is another loop that checks the join condition against every row of the second table.

If you are using iterators, you may find that managing two iterators at once can be complex. One reason for this is that you will need to repeatedly ‘rewind’ the iterator for the table in the inner loop once it reaches the end. You can avoid this complexity by loading all of the rows of the inner table into an array in the iterator state.

When doing outer joins, you will need to keep track of ‘unmatched rows’ so your iterator can return them.

 DATABASES IN THE WILD

 More join algorithms

 There are two other join algorithms commonly used - a sort-merge join and a hash join.

 These algorithms can be used then when the join condition checks if two columns are equal (e.g. a = b). Joins in this form are called equi join and each side of the expression is a join key. Join keys are constant for the given row.

 Query planners will decide what type of join algorithm to use and what data to use as the left and the right input to the join.

 Sort-merge joins

 Sort-merge joins (also just called merge joins) work when tables are ordered by the join key. The ordering means that you don’t need to check every combination of rows for a match and instead only have to consider rows up until you reach a join key in one table that’s greater than the other.

 [image: An example lefty and righty table each with a single column. Lefty has 3 rows with values 1, 2 and 3\. Righty has 3 rows with values 1, 3 and 3\. Comparison 1: the first row of lefty and righty are compared, since 1 \= 1 there is a match and the next value in righty is checked. Comparison 2: since 1 \< 3, there is no match and the next value in lefty is checked. Comparison 3: since 2 \< 3, there is no match and the next value in lefty is checked. Comparison 4: since 3 \= 3, there is a match and the next value in righty is checked. Comparison 5: since 3 \= 3, there is a match and there are more rows to check.]

 The example above uses 5 comparisons. This example assumes that values in the lefty.id column are unique. If the column contained duplicate values then more comparisons between rows would need to be made.

 A nested loop join on the same data would use 9 comparisons.

 Hash joins

 A hash join works by building a hash table for table rows for one of the tables. You can then lookup a join key in the hash table to find any matching rows. Building the hash takes some time, but finding matching rows in a hash table is faster than checking every row in a table.

 [image: An example lefty and righty table each with a single column. Lefty has 3 rows with values 1, 2 and 3\. Righty has 3 rows with values 1, 3 and 3\. There is a hash table containing two values 'FC9D' which references the row containing 1 in the righty table and '3ABC' which references the two rows in the righty table that contain 3\. Lookup 1: the value 1 in lefty is hashed to 'FC9D' and the result followed to the 1 matching row the righty table. Lookup 2: the value 2 in lefty is hashed to 'D12A' which is not in the hash table so no matching rows are found. Lookup 3: the value 3 in left is hashed to '3ABC' which is followed to the two matching rows in righty.]

 In this example 3 lookups are made in the hash table, one for each row.

 More

 Visualized nested, merge and hash joins

Video series showing the different join algorithms.

 A Look at How Postgres Executes a Tiny Join

How PostgreSQL executes a join using the hash join algorithm, including how it hashes values.

 Join Processing in Relational Databases

Article about the different join algorithms and their performance.

Implementation

Add support for the four kinds of join to your implementation using a nested loop algorithm.

You will need to add to the query metadata so you can reference the columns in the joined table.

Hints

Writing an iterator for inner joins

 Here is an iterator that can perform an inner join on two tables:

 class Join
 def initialize(previous_iterator, metadata, join, database)
 @left_iterator = previous_iterator
 @right_table = database.get_table(join.table_name)
 @join = join
 @found_rows = []
 @metadata = metadata
 end

 def next
 return next_found_row if @found_rows.any?

 while (left_row = @left_iterator.next)
 @found_rows = find_matching_rows(left_row)
 return next_found_row if @found_rows.any?
 end
 end

 private

 def next_found_row
 @found_rows.shift
 end

 def find_matching_rows(left_row)
 @right_table.rows.filter_map do |right_row|
 row = left_row + right_row
 result = Expression.evaluate(@join.expression, row, @metadata)
 row if result == Nodes::Bool.new(true)
 end
 end
end

 When next is called, the iterator returns any matching rows it has already found. If there are no found rows then it retrieves the next row from the left table and finds all the matching rows in the right table with the find_matching_rows method. If any matching rows are found it returns the first one and saves the remaining matching rows in state to return later. If no matching rows are found it repeats until there are no more rows in the left table.

 The find_matching_rows method works by combining the left and right rows to make a new row. The join expression is then evaluated against the new row to see if it evaluates to true.

 To keep the implementation simple, find_matching_rows loops directly over the rows in the right table rather than using another iterator. Alternatively, you could use an iterator as long as you can ‘reset’ it each time you have looped over the right table.

Adding support for left joins

 Left joins are similar to an inner join. In the case where there are no matching rows found the row from the left table should be returned. The returned row may need to be padded with null so it’s the same length as a row that has matched.

Adding support for right and full joins

 Right joins also need to return any unmatched rows from the right table. This can be done by keeping a list of every right row that has matched. Once all matching rows have been returned you can then loop through the right table once more and return any rows that aren’t in the list of matching rows.

 As an alternative to storing the full matching row, you could store just the index of the matching row.

 Full joins can be implemented by combining the behaviour of left and right joins.

Reflections

There’s now a few places where your parser may need to consume chains of keywords such as ‘LEFT OUTER JOIN’ and ‘CREATE TABLE’. Is it easy for you to consume chains of keywords and consistently handle when there is a missing or unexpected keyword in the chain?

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Extensions

Multiple joins (medium)

If you want to work with more than two tables you chain multiple joins:

SELECT t1.a, t2.b, t3.r FROM t1
INNER JOIN t2 ON a = b
INNER JOIN t3 ON q = r;

The joins are run in the order they are listed. References to a table before that table is joined should return a validation error. For example, the following query errors because t2.q is from a table that isn’t joined until the next line:

SELECT t1.a, t2.b, t3.r FROM t1
INNER JOIN t3 ON t2.q = t3.r
INNER JOIN t2 ON t1.a = t2.b;

Validation error

Validation error

Validation should also make sure that each joined table has a unique name.

Select from multiple tables (medium)

SQL allows you to select from multiple tables, e.g. SELECT t1.a, t2.b FROM t1, t2;

This is equivalent to performing an inner join with TRUE as the condition so will result in all the combinations of rows from t1 with t2. You can add restrictions with WHERE to model other types of join.

This method of combining tables existed before the JOIN keyword. Using JOIN is usually preferred as having the table and the join condition together is easier to read. It also can be easier for databases to optimize.

Selecting all columns from a table (medium)

In chapter 3 there was an extension to add support for * in the select list to allow you to select all the columns from the query. Just like column references, * can be scoped to a table. For example:

SELECT t1.*, t2.c FROM t1 INNER JOIN t2 ON a = b;

Implement support for selecting all columns from a table.

Implement another join algorithm (large)

Implement a sort-merge join or hash join algorithm.

These algorithms will only work for equi joins. You can pick between the algorithms when building your query plan.

 12. Grouping

 In this chapter you’ll use GROUP BY to group rows together in a query. Grouping is complex to implement because it changes the structure of the data the query works with and restricts what references can be used.

Using GROUP BY

Here’s an example showing data before and after it’s grouped:

SELECT customer_id FROM orders GROUP BY customer_id;

[image: An example 'orders' table with four columns showing the table metadata and 3 example rows. The rows have 10, 10 and 20 in the customer_id column. The result of grouping is a new set of metadata which has one column for customer_id. The result also has rows for each of the unique customer_id values (10 and 20).]

Grouping has the effect of removing any duplicate rows. The query in the example above could be used to find all the customers that have placed at least one order.

You can think of grouping as replacing the ungrouped columns with a new grouped column that is generated by the GROUP BY expression.

Grouping happens after rows are filtered, but before the select list is generated. This means you can refer to ungrouped columns in a WHERE expression but not in a select list item or ORDER BY expression.

Once the data is grouped, you can’t refer to ungrouped columns. This is because an ungrouped column might have many different values. For example, the following query is invalid:

SELECT id, customer_id FROM orders
GROUP BY customer_id;

Validation error

Validation error

The above query should return an error because the id column is ungrouped and can’t be used in the select list items.

Grouping by complex expressions

You can group by more complex expressions than just a reference. For example:

SELECT price < 300 FROM orders GROUP BY price < 300;

[image: An example 'orders' table with four columns showing the table metadata and 3 example rows. The rows have 200, 400, and 300 in the price column. The result of grouping is a new set of metadata which has one column for 'price \< 300' with type boolean. The result also has rows for each unique result of evaluating the expression (true and false).]

Expressions in the select list can only refer to grouped columns. Here are examples of what is and isn’t valid in the select list in a query grouped by price < 300:

 	Expression
 	Valid?
 	Notes

 	price < 300
 	✅
 	uses the grouped column

 	price
 	❌
 	uses the ungrouped column price

 	price < 6
 	❌
 	uses the ungrouped column price

 	orders.price < 300
 	✅
 	equivalent to the grouped column

 	NOT (price < 300)
 	✅
 	uses the grouped column and there are no references to ungrouped columns

 	shipped OR (price < 300)
 	❌
 	references the ungrouped column shipped

 DATABASES IN THE WILD

 Referring to ungrouped columns

 You can refer to ungrouped data when that data is functionally dependent on the GROUP BY expression. A functionally dependent column is guaranteed to contain a single value for a given GROUP BY expression.

 The valid expressions in the table above are all functionally dependent on the GROUP BY expression.

 If a table has a unique primary key, then all other rows in that table are functionally dependent on the primary key. This means that any column can appear in the select list when the table is grouped by the primary key. This is true when grouping by any columns with a unique index.

 Some databases don’t follow the functionally dependent rule and allow you to use any ungrouped columns. For example, for the following table of orders and query:

 	item_id
 	customer_id

 	1
 	10

 	2
 	10

 SELECT item_id, customer_id FROM orders
GROUP BY customer_id;

 This query would error in databases that follow the SQL standard. In SQLite the query will succeed and return a single row. The value returned for item_id may be 1 or 2.

 More

 SQLite Documentation - Bare columns in an aggregate query

The behaviour of GROUP BY in SQLite. Here ‘bare’ means an ungrouped column.

 MySQL Documentation - MySQL Handling of GROUP BY

How GROUP BY works in MySQL relative to the SQL standard and how it can be configured with the ONLY_FULL_GROUP_BY setting.

Metadata for grouped queries

Queries have a different set of columns after grouping. Because of this, your query will need to contain metadata that represent both the ungrouped and grouped states of your query.

The ungrouped metadata can be used to validate and evaluate any expressions that run before the grouping and can refer to ungrouped columns. This includes the WHERE expression and the GROUP BY expressions themselves.

The grouped metadata is created from the GROUP BY by expressions. Expressions in the select list and ORDER BY expressions should use the grouped metadata.

Each column in grouped metadata should represent one GROUP BY expression. Instead of being identified by a name as previous columns have, the columns could be identified by the abstract syntax tree of the GROUP BY expression.

Validating expressions after grouping

You can use your type checker to make sure expressions don’t refer to ungrouped columns when they aren’t allowed to.

Think about how you would type the select list for this query:

SELECT price < 300 FROM orders
GROUP BY price < 300;

In this example the select list expression is the same as the grouping expression so the type check will succeed. Your implementation will need a way of checking if two expressions are the same.

A more difficult query to validate would be:

SELECT PRICE < 300 FROM orders
GROUP BY price < 300;

Here the expressions are equivalent but are formatted differently. If you compared the abstract syntax tree for these expressions they wouldn’t match because ‘price’ is not equal to ‘PRICE’.

This is why it is necessary to normalize expressions first by resolving references and comparing their resolved value when checking if two expressions are equal.

Another tricky query to validate would be:

SELECT NOT (price < 300) FROM orders
GROUP BY price < 300;

This expression is allowed in the select list, but it isn’t equal to the grouping expression.

One way to simplify this problem is to replace any occurrences of grouping expressions with a reference to the grouping column before type checking. This can be done by recursively checking the abstract syntax tree to see if any part of it matches the expression grouped column expression. When a match is found you can replace the match with a reference-like node that is resolved to the grouping column. Unlike the other reference nodes, this node doesn’t need to have a name.

A worked example

Here is an example that shows how to validate the following query:

SELECT price < 300 FROM orders
GROUP BY price < 300;

After parsing the query you might have the following abstract syntax tree:

[image: An abstract syntax tree for the query. At the root is a select node. The select node has a select list, which has a single select list item node that has an abstract syntax tree for the expression price \< 300\. The select node also has a grouping list, which also has an abstract syntax tree for the depression price \< 300\.]

To validate the query, first process the GROUP BY expression:

 	Resolve references and normalize.

 	Type the expression.

 	Add a new column in the metadata for the expression.

Then process the select list expression:

 	Resolve references and normalize using the ungrouped metadata.

 	Replace occurrences of the GROUP BY expression with a Reference node that links to the grouped column in the query metadata.

 	Type the expression using the grouped metadata.

After these steps, the abstract syntax tree might look like this:

@IMAGE sql/chapter_12/grouping_resolved_ast.png

An abstract syntax tree for the query and how it relates to the query metadata. At the root of the tree is a select node. The select node has a grouping list which has the abstract syntax tree for the expression price < 300. The reference node for price in the expression has an attribute named ‘resolved’ which is linked to the price column in the ungrouped metadata.

The grouped metadata has a single column which, instead of having a name, is linked to the abstract syntax tree representation of expression ‘price < 300’ in the grouping list. The select node also has a select list item which has an expression. Instead of a full abstract syntax tree of the expression, it is a reference node which has a property with the name ‘resolved’ which is linked to the grouped metadata column.

</div>

Evaluating grouped queries

You can group rows by evaluating the grouping expressions for every row. If the resulting row hasn’t been seen before, it can be returned. If it has been seen before it should be skipped.

You may need to keep track of what rows have been seen before. Databases often use a hash table for this purpose as it makes it quick to look up values.

Implementation

Add support for queries that use GROUP BY to your implementation.

You should add to your implementation in steps, starting with adding support for grouping by a column.

Think carefully how you manage the way that GROUP BY changes the columns that queries work with. Make sure each expression is validated and evaluated against the correct set of columns. Also make sure you are resolving, typing and modifying expressions in the correct order.

When grouping by expressions, you may need to make changes to nodes in your abstract syntax tree so you can check if two expressions are equal. You might also need to make changes to allow you to replace nodes in your abstract syntax tree.

Hints

Managing metadata

 You can use two sets of query metadata to validate and run grouped queries. One metadata is for the ungrouped state of the query and the other is for the grouped state.

 To make it easier to manage the metadata, two methods are added to the RowMetadata class:

 class RowMetadata
 # ...

 def add_grouping(grouping)
 @before_grouping = RowMetadata.new(@columns)

 if grouping.is_a?(Nodes::Reference)
 @columns = [grouping.resolved]
 else
 raise 'Not yet implemented expressions'
 end
 end

 def before_grouping
 @before_grouping || self
 end
end

 The add_grouping method is called when validating the GROUP BY expression if there is one. It replaces the current metadata with metadata that represents the grouped query. The metadata has a single column for the GROUP BY expression.

 A copy of the previous metadata is saved as state in @before_grouping. The before_grouping method can be used to access this. For convenience, the current metadata is returned if no grouping has happened.

 Now when building the iterator chain you can provide the correct metadata to each part of the chain:

 def build_iterator_chain
 chain = Loader.new(@table)
 chain = Join.new(chain, metadata.before_grouping, select.join, database)
 chain = Filter.new(chain, metadata.before_grouping, select.where) if select.where
 chain = Group.new(chain, metadata.before_grouping, select.grouping) if select.grouping
 chain = Project.new(chain, metadata, select.select_list)
 chain = Order.new(chain, metadata, select.order) if select.order
 chain = Offset.new(chain, select.offset) if select.offset
 chain = Limit.new(chain, select.limit) if select.limit
 chain
end

 The join, filter and group iterators all run before the data has been grouped so they use the metadata that represents the query before grouping. The project, order and offset iterators run after grouping so use the grouped metadata.

Grouping by a column

 This is an iterator that can group rows by a single column:

 class Group
 def initialize(previous_iterator, metadata, grouping)
 @previous_iterator = previous_iterator
 @metadata = metadata
 @grouping = grouping
 end

 def next
 build_grouping_hash unless @grouping_hash
 _key, row = @grouping_hash.shift
 row
 end

 private

 def build_grouping_hash
 @grouping_hash = {}
 while (row = @previous_iterator.next)
 evaluated_grouping = Expression.evaluate(@grouping, row, @metadata)
 @grouping_hash[evaluated_grouping.value] ||= [evaluated_grouping]
 end
 end
end

 The first time next is called, the iterator uses build_grouping_hash to go through all the rows from the previous iterator and build the groups. The evaluated grouping expression is used as a key in a hash table to ensure each value only appears once.

 Then next removes and returns a row from the grouping hash.

Modifying expressions

 One strategy to make it easier to group by expressions, is to modify expressions in the select list to replace any parts that are equivalent to the GROUP BY expression.

 Depending on how you have built your abstract syntax tree, you may need to make some changes to be able to replace parts of it. This is necessary in the sample solution because it uses immutable objects to build the abstract syntax tree that cannot be changed.

 The sample solution introduces a new object that wraps expressions. The wrapper provides convenience methods for typing and evaluating expressions:

 class ExpressionWrapper
 def initialize(expression)
 @expression = expression
 End

 def contents
 @expression
 end

 def ==(other)
 @expression == other
 end

 def evaluate(...)
 Expression.evaluate(@expression, ...)
 end

 def type(...)
 Expression.type(@expression, ...)
 end

 def resolve_references(...)
 Expression.resolve_references(@expression, ...)
 end

 def resolve_order_by_reference(metadata)
 metadata.resolve_order_by_reference(@expression) if reference?
 end

 def name
 @expression.name if reference?
 end

 def reference?
 @expression.is_a?(Nodes::Reference)
 end
end

 Abstract syntax tree nodes that were previously created with an expression node (such as a Reference, Operator, or Function) are now created with an ExpressionWrapper instead.

 There is also a method that can replace the expression within the wrapper:

 def replace_stored_expressions(metadata)
 @expression = Expression.replace_stored_expressions(@expression, metadata)
end

 The replace_stored_expressions method uses recursion to build a new expression and is explained in the next hint.

Grouping by expressions

 The sample solution saves the GROUP BY expression in the metadata as a ‘stored expression’ column. When part of a select list expression matches a stored expression, the matching part is replaced with a reference that resolves to the stored expression.

 Stored expressions are replaced when the select list is validated:

 def validate_select_list(select_list)
 select_list.each do |item|
 expression = item.expression
 expression.resolve_references(metadata.before_grouping)
 expression.replace_stored_expressions(metadata)
 type = expression.type(metadata)
 metadata.add_select_list_item(item.name, type)
 end
end

 Each select list expression is replaced after it is resolved, but before it is typed

 This uses the expression wrapper to replace the expression. A new expression is built using the replace_stored_expressions method which uses recursion to replace any occurrences of the GROUP BY expressions that are in the metadata with references to those expressions:

 def replace_stored_expressions(expression, metadata)
 if (stored_expression = metadata.resolve_stored_expression(expression))
 Reference.for_stored_expression(stored_expression)
 elsif expression.is_a?(Operator)
 Operator.new(expression.operator, replace_list(expression.operands, metadata))
 elsif expression.is_a?(Function)
 Function.new(expression.name, replace_list(expression.arguments, metadata))
 else
 expression
 end
end

def replace_list(expressions, metadata)
 expressions.map { |expression| replace_stored_expressions(expression, metadata) }
end

 The RowMetada class has changed to add the new kind of column. The new StoredExpression column is used to record the GROUP BY expression in the metadata.

 class RowMetadata
 TableColumn = Data.define(:full_name, :type, :table_name, :column_name)
 SelectListItem = Data.define(:name, :type)
 StoredExpression = Data.define(:expression, :type)

 # ...

 def add_grouping(grouping, type)
 @before_grouping = RowMetadata.new(@columns)
 @columns = [StoredExpression.new(grouping.contents, type)]
 end

 def resolve_stored_expression(expression)
 @columns.find { |c| c.is_a?(StoredExpression) && c.expression == expression }
 end

 def reference_type(reference)
 offset = reference_offset(reference)
 raise ValidationError, "unknown column" unless offset
 @columns[offset].type
 end
end

 The add_grouping method has changed to create a new StoredExpression column with the grouping expression.

 The new resolve_stored_expression method returns a matching stored expression if there is one.

 The reference_type method has been added so the type checker can get the type of the column directly from the metadata.

 This code relies on an updated reference node:

 class Reference
 attr_reader :name
 attr_accessor :resolved

 def self.for_stored_expression(expression)
 reference = new('[stored_expression]')
 reference.resolved = expression
 reference
 end

 def initialize(name)
 @name = name
 end

 def ==(other)
 other.is_a?(Reference) && resolved && other.resolved == resolved
 end
end

 The reference node has a new for_stored_expression constructor which creates a new reference with a placeholder name that resolves to a stored expression.

 The new == method also provides a definition of equality. Two references are equal if they are both reference nodes that are resolved and are resolved to the same column in the metadata.

Reflections

If someone else wanted to make a change to your implementation, how hard do you think it would be for them to follow your code? Consider if there is anything you could do that could make it easier for someone to understand your code such as adding documentation, diagrams or using clearer naming and abstractions. This might also make it easier for you to pick up the project again after not working on it for a while.

Can you see the state of your database when things go wrong? When you need to investigate why code isn’t working, it can be helpful to inspect the current state of a system to make sure it is what you expect. Having a way to view the state of your database (including metadata and rows) when you need to might make it easier to debug your implementation.

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Extensions

Allow grouped columns to be used with ORDER BY (small)

Make sure you can use grouped columns in ORDER BY. For example:

SELECT ABS(a) FROM t1
GROUP BY ABS(a)
ORDER BY ABS(a) DESC;

Allow grouping by column positions (small)

If GROUP BY is followed by an integer, it’s treated as an index to the select list.

For example, the following will group results by column a:

SELECT a FROM t1 GROUP BY 1;

This is similar to the extension in Chapter 8 that allowed you to use ORDER BY with a column index. The same rules apply:

 	The index starts from 1 and if an integer is used that’s larger than the number of items in a select list an error should be raised.

 	More complex expressions (such as 1 + 1) do not refer to a column position, even if they evaluate to an integer.

Multiple GROUP BY expressions (medium)

You can also group by multiple expressions. Grouping expressions should be separated by commas. Rows are replaced with a new row for every unique combination of grouped expressions. For example:

SELECT customer_id, shipped FROM orders GROUP BY customer_id, shipped;

[image: An example 'orders' table with four columns showing the table metadata and 3 example rows. The rows have (10, TRUE) (10, FALSE), and (20, TRUE) in the customer_id and shipped columns. The result of grouping is a new set of metadata which has the two columns customer_id and shipped. Each pair of customer_id and shipped is unique so the result has one row for each of them]

In this example both customer_id and shipped are grouped so both can be used in the select list.

 13. Aggregate Functions

 This chapter introduces aggregate functions that work on all values in a group.

Count

COUNT is our first aggregate function. COUNT returns the number of rows for which its argument is not null.

For example, this is a customers table that records which area the customer is in and what account manager they have assigned:

 	id
 	area_id
 	account_manager_id

 	1
 	10
 	20

 	2
 	10
 	20

 	3
 	11
 	NULL

 	4
 	11
 	NULL

 	5
 	11
 	40

If you wanted to find out which areas had the most customers, and how many of them in that area were assigned account managers, you could use the following query:

SELECT
 area_id,
 COUNT(customers.id) AS cust_count,
 COUNT(customers.account_manager_id) AS manager_count
FROM customers
GROUP BY customers.area_id

Which would result in:

 	area_id
 	cust_count
 	manager_count

 	10
 	2
 	2

 	11
 	3
 	1

Sum

SUM adds up its argument for every row in the group.

For example, given a lap times table that records runners times around a track:

 	id
 	runner_id
 	lap_number
 	time

 	1
 	1
 	1
 	310

 	2
 	1
 	2
 	305

 	3
 	1
 	3
 	340

 	4
 	2
 	1
 	350

 	5
 	2
 	2
 	470

You could write the following query to find out how many laps each runner has completed and their total time:

SELECT
 runner_id,
 SUM(1) AS laps_completed,
 SUM(time) AS total_time
FROM lap_times
GROUP BY runner_id

This query uses SUM(1) to count the number of rows which produces the same result COUNT(1) would. The result of running this query is:

 	runner_id
 	laps_completed
 	total_time

 	1
 	3
 	955

 	2
 	2
 	820

Aggregate functions rules

Aggregate functions can only appear in expressions that are evaluated after a query has been grouped. This means that they can appear in the select list but can’t appear in a WHERE or GROUP BY expression.

Expressions inside aggregate functions can refer to ungrouped columns so should be evaluated with the ungrouped metadata. You can use normal functions and expressions within aggregate functions, but you can’t use other aggregate functions. For example, SUM(x * 2) is allowed but SUM(COUNT(id)) should return an error.

You can check that aggregate functions only appear where expected when validating or typing a query.

Accumulating results

You could calculate the result of an aggregate function by loading all the data it needs and calling the aggregate function once with that data as an argument.

To avoid loading large amounts of rows into memory, databases often apply aggregate functions incrementally. This means they call a function for each row of data. The function stores the result in an accumulator which becomes an input to the next function call.

[image: The accumulator starts at 0\. The value 2 is added so the accumulator is now set to 2\. Next the value 4 is added so the accumulator is now set to 6\. Lastly the value 3 is added to it so the accumulator is now set to 9\.]

Above shows how you can calculate the sum of 2, 4 and 3 using addition and an accumulator. First, the accumulator is initialized to zero. Then, the accumulator is repeatedly set to the result of adding each number to the accumulator. After all the numbers are added, the accumulator holds the sum.

Working with aggregate functions

One way of implementing aggregate functions is to create a new column for every aggregate function in the query. You can then use these columns to accumulate the result of each aggregate function when grouping data. You can break this into two parts - setting up accumulators and then applying the aggregate function.

Setting up accumulators

You can create a new accumulator column for every aggregate function that appears in the select list. This column should be added to the grouped data and can be identified by the abstract syntax tree for the aggregate function.

Each select list expression might have multiple aggregate functions. For example the expression COUNT(TRUE) + 2 + SUM(4) would need two accumulator columns, one for COUNT(TRUE) and another for SUM(4).

Later when evaluating a select list item that contains aggregate expressions, you need to be able to retrieve the result from the accumulator. One way to make this easier is to replace any aggregate functions in the select list with references to the accumulator column while validating the query. Then when evaluating the query you can look up the values in accumulators in a similar way to how you look up values for other references.

Creating new columns for aggregate functions and replacing parts of the abstract syntax tree with a reference is similar to the technique described in the previous chapter for handling GROUP BY expressions.

Applying

You can apply the aggregate function when grouping rows. To do this, loop through each aggregate function column in the query metadata. For each aggregate function, incrementally apply the function using values from the current ungrouped row and the accumulated value from the grouped row. The new accumulated value should be saved in the grouped row. If the accumulated value hasn’t been set yet, it may need to be initialized.

When the select list items are evaluated, the value in the accumulator can be retrieved.

Worked example

This example is based on the process described above. Here is a table of orderitems which records the price of each item in an order:

 	order_id
 	price

 	10
 	100

 	11
 	200

 	10
 	300

This is a query to calculate the total price of every order after adding on a fixed 500 postage cost:

SELECT SUM(price) + 500 AS total_price FROM order_items
GROUP BY order_id

All the aggregate functions in the select list are found and added to the grouped metadata. The grouped metadata will have three columns:

 	order_id for the result of the GROUP BY expression.

 	SUM(price) to accumulate the result of the aggregate function.

 	total_price to store the select list item.

The SUM(price) expression in the abstract syntax tree can be replaced with a reference to the new SUM(price) column.

[image: The ungrouped metadata has columns for order_id and price. The grouped metadata has columns for order_id, SUM(price) and total_price.]

Then when each row is grouped, the aggregate function stored in the metadata is run for the data in that row.

[image: This shows how the grouped rows change as each row is processed. See the explanation in the following section for details.]

The image shows that when grouping the first row, a new row is created with an order id of 10. Running the aggregate function on the row causes the accumulator to be set to 100, leaving the row as (10, 100).

Then when grouping the second row, a new row is created with an order id of 11. Running the aggregate function on the row causes the column on the accumulator to be set to 200, leaving the row as (11, 200).

When grouping the third row, the existing row with the order id of 10 is found. The SUM function is then applied to that row, adding 300 to 100 to make 400.

When the select list is evaluated, total_price can be calculated using the value in the SUM(price) accumulator.

Implicit grouping

You can also use aggregate functions without GROUP BY. This is called implicit grouping and causes all rows to be treated as a single group.

Implicit grouping always creates a single group. When there are no rows to group, implicit grouping creates one group with no rows.

This is a subtle difference to grouping by a constant (such as GROUP BY TRUE). Grouping by a constant usually creates a single group. However, if there are no rows to group, no groups will be created.

You can see the difference in the following queries:

SELECT COUNT(id) FROM orders;
SELECT COUNT(id) FROM orders GROUP BY TRUE;

If there are no rows in the orders table, the first query will return one row with a 0 and the second query will return no rows.

 DATABASES IN THE WILD

 Compiling queries

 One way to execute queries is to use general purpose code that can run any query. This is how many databases work, including the implementation described in this guide.

 Another way is to use the query to generate code that can then be compiled into optimized machine code. This technique is called Just In Time (JIT) compilation because the code is compiled just before it is executed. Just in time compilation is sometimes used for interpreted programming languages to make programs run faster.

 Compiled machine code can run faster because it can take advantage of techniques that compilers use such as inlining functions, unrolling loops and using CPU instructions that can parallelize data processing. The compilation step does take time so may not be worth it for every query.

 PostgreSQL can use just in time compilation for some parts of a query, including WHERE expressions, select lists and aggregate functions. These parts of a query perform the same calculation on many rows of data so can be compiled once to give a repeated benefit.

 More

 ​​Efficiently Compiling Efficient Query Plans for Modern Hardware

Describing using the LLVM compiler framework to add just in time compilation to the HyPer database. Includes example generated code and benchmarks.

 The Umbra Database System

A research database from the creators of HyPer that makes use of code generation. Includes links to papers that expand on code generation capabilities.

 PostgreSQL documentation - What Is JIT compilation?

How PostgreSQL uses just in time compilation and when it gives the most benefit.

Implementation

Add the SUM and COUNT aggregate functions to your implementation. You will also need to be able to type check aggregate functions and support implicit grouping.

You only have to handle aggregate functions in select list items. See the extensions for an example of handling aggregate functions in ORDER BY expressions.

Getting to the end

You’re nearly at the end of this guide. Well done for getting this far!

At the end of the test file for this chapter there is a complex query that uses many of the features that you have implemented in the previous chapters.

Remember to publish and share your implementation if you want other people to see it.

If you want ideas for more you can add to your implementation, look at the More Extensions section in the Appendix.

Hints

Setting up accumulators for aggregate functions

 You can create accumulator columns for any aggregate functions after references are resolved. Find aggregate functions in the abstract syntax tree and create columns for them in the grouped metadata.

 Note that the sample solution adds accumulator columns before any select list items as it assumes the select list items are always together at the end of the row.

 def store_aggregate_parts(expression)
 expression.aggregate_parts.each do |agg_expression|
 type = Expression.type(agg_expression, metadata.before_grouping)
 metadata.store_aggregate_expression(agg_expression, type)
 end
end

 The store_aggregate_parts method shown above finds each aggregate function in an expression, types it, and then stores it in the grouped metadata.

 The aggregate_parts method uses recursion to find all the uses of aggregate functions in an expression:

 def aggregate_parts(expression)
 case expression
 when Function
 function = Callable.find_function(expression.name)
 if function.aggregate?
 [expression]
 else
 expression.arguments.flat_map { |arg| aggregate_parts(arg) }
 end
 when Operator
 expression.operands.flat_map { |op| aggregate_parts(op) }
 else
 []
 end
end

 If the aggregate_parts method finds an aggregate function, it returns the abstract syntax tree for the function in an array. If it finds a non-aggregate function or an operator then it will recursively check all of its inputs.

 There is a new method in the RowMetadata to store aggregate expressions:

 class RowMetadata
 TableColumn = Data.define(:full_name, :type, :table_name, :column_name)
 SelectListItem = Data.define(:name, :type)
 StoredExpression = Data.define(:expression, :type)
 StoredAggregateExpression = Class.new(StoredExpression)

 def store_aggregate_expression(expression, type)
 @columns << StoredAggregateExpression.new(expression, type)
 end

 # ...
end

 The store_aggregate_expression method adds a new StoredAggregateExpression column to the list of columns in the metadata.

 StoredAggregateExpression is a new type of column which subclasses the existing StoredExpression column that was added to support grouping in the previous chapter. This means that the existing replace_stored_expressions method will replace stored aggregate expressions with references without needing additional changes.

Applying aggregate functions

 Applying aggregate functions requires changes to the Group iterator. Previously the only iterator added rows to the grouping hash. Now it also needs to apply any aggregate functions.

 class Group
 def initialize(previous_iterator, metadata, grouping)
 @previous_iterator = previous_iterator
 @grouped_metadata = metadata
 @ungrouped_metadata = metadata.before_grouping
 @grouping = grouping
 end

 def next
 build_grouping_hash unless @grouping_hash
 _key, row = @grouping_hash.shift
 row
 end

 private

 def build_grouping_hash
 @grouping_hash = {}
 while (row = @previous_iterator.next)
 add_grouped_row(row)
 end
 end

 def add_grouped_row(row)
 key, grouped_row = evaluate_grouping(row)
 if @grouping_hash.key?(key)
 grouped_row = @grouping_hash[key]
 else
 @grouping_hash[key] = grouped_row
 end
 partially_apply_aggregates(row, grouped_row)
 end

 def evaluate_grouping(row)
 evaluated = @grouping.evaluate(row, @ungrouped_metadata)
 [evaluated.value, [evaluated]]
 end

 def partially_apply_aggregates(row, grouped_row)
 @grouped_metadata.update_each_aggregate_state(grouped_row) do |aggregate, state|
 Expression.partially_evaluate(aggregate, row, state, @ungrouped_metadata)
 end
 end
end

 Now the new add_grouped_row method is called for every ungrouped row. If the grouping key already exists then the existing grouped row is found. If it doesn’t, the grouped row is set.

 Both the ungrouped row and the grouped row are then passed to partially_apply_aggregates. This method uses update_each_aggregate_state to run the code in the block (between the do and end) for every aggregate function and save the result in the accumulator for that function. The aggregate variable is set to the abstract syntax tree for the aggregate function and state is set to the current value in the accumulator.

 def update_each_aggregate_state(row)
 @columns.each.with_index do |column, offset|
 next unless column.is_a?(StoredAggregateExpression)

 row[offset] = yield(column.expression, row[offset])
 end
end

 The update_each_aggregate_state method above in the RowMetadata class loops through every StoredAggregateExpression column. For each column it runs the provided block of code using Ruby’s yield keyword. This could instead be implemented with separate methods to find aggregates, get the state of aggregates and update the state of aggregates.

 The partially_evaluate method on Expression is used to calculate the new accumulator value:

 def partially_evaluate(aggregate_expression, row, state, metadata)
 evaluated_arguments = evaluate_list(
 aggregate_expression.arguments,
 row,
 metadata.before_grouping
)

 function = Callable.find_function(aggregate_expression.name)
 function.call_aggregate(state, *evaluated_arguments)
end

 The partially_evaluate method calculates the new value for the accumulator. It first uses evaluate_list to evaluate any arguments to the aggregate function with the ungrouped row and metadata. Next it calls the aggregate function.

 See the sample solution for the implementation of the partial count and sum functions.

Reflections

Did you choose to extend functions to support aggregate functions? Was it the right choice? Aggregate functions have some similarities and differences to the functions in previous chapters. Extending existing code to support something new can save time and keep behaviour in sync, but it can also increase complexity and introduce bugs if the two items don’t always behave the same.

Sample solution

You can view changes made to the sample solution for this chapter or browse the code after the changes.

Extensions

Add more aggregate functions (small)

 	MIN works on integers and returns the smallest argument.

 	MAX works on integers and returns the largest arguments.

 	BOOL_OR works on booleans and returns TRUE when any arguments are TRUE.

 	BOOL_AND works on booleans and returns TRUE when all arguments are TRUE.

These functions all handle NULL in a similar way. If all the rows contain NULL or there are no rows in the group, they will return NULL. Otherwise they will ignore NULL.

Implement any of these functions.

Add AVG aggregate function (medium)

Add an AVG function that works on integers to calculate the arithmetic mean.

If you are using accumulators to calculate aggregate functions, this will be different to the other aggregate functions in this chapter in two ways:

 	You need to store two items, the sum of the values, and the count of values.

 	After all the rows in a group are processed there is an extra step needed to divide the sum by the count. This is called a finalization step.

AVG will normally return numbers with decimals. Since rgSQL can only represent integers you should make sure your result is rounded to the nearest whole number.

If all the rows contain NULL or there are no rows in the group, AVG will return NULL. Otherwise NULL will be ignored.

Introduce HAVING (medium)

The WHERE keyword filters rows before rows are grouped so can’t contain aggregate functions.

The HAVING keyword runs after rows are grouped so can contain aggregate functions.

Using the example lap_times table and data from earlier in the chapter, you could use the following query to only show results for people that had completed 3 laps:

SELECT
 runner_id,
 SUM(1) AS laps_completed,
 SUM(time) AS total_time
FROM lap_times
GROUP BY runner_id
HAVING SUM(1) = 3

Implement HAVING. Make sure the HAVING expression is validated using the grouped metadata before it is evaluated for every row. When there is no GROUP BY clause, the presence of a HAVING expression should cause implicit grouping.

 Appendix

 The Test Suite

 The test suite is made up of:

 	A test runner that is written in Python and is located in the test_runner directory.

 	Server tests for Chapter 1 located in tests/1_the_server.py. These tests are written in Python and check if the server can be started and can respond to messages.

 	Query tests for all other chapters located in the tests directory. These tests are made up of SQL queries that run against your implementation.

Debugging

You may need to debug your implementation when it doesn’t work as you expect. The test suite has a few ways to help you do this:

Focused running

You can run the tests for a single chapter by providing the name of the test file to run-tests:

$./run-tests tests/3_tables.sql

You can also choose to just run the test on a certain line in a file:

$./run-tests tests/3_tables.sql:8

Monitoring output

The test suite monitors what your program prints to the standard output and error streams. Anything printed by your implementation during a test will be displayed after that test. It will also log all output to the server_output.log and server_errors.log files. These log files are cleared each time the test suite starts.

Some programs buffer their output before printing it which may cause it not to appear until the test suite stops the server process. If this is the case, you may be able to ‘flush’ your output so it is printed sooner. Alternatively, some programming languages can be run in an ‘unbuffered’ mode.

Manually starting the server

By default the test suite starts and stops the server. If you would prefer to do this yourself you can do this with the -m flag:

$./run-tests -m

You will need to start the server first before you run tests in this mode. You may need to restart the server between test runs to clear any tables.

This is useful if you want to run an interactive debugger or be able to monitor output as the tests are running.

Configuring

There is a settings.ini file that allows you to configure the test suite. Here is what the settings do:

 	Setting name
 	Description

 	server_command
 	The command needed to run your server.

 	server_startup_timeout
 	How long the test suite waits for your server to be ready to accept connections.

 	server_port
 	The port the test suite connects to your server on.

 	response_timeout
 	How long the test suite waits for a response after running queries.

 	test_colors
 	If the test results should use colors. Colors are also off if the CI environment variable is set.

Server tests

The server tests are written in python and are in the tests/1_the_server.py file. The server tests check that the server can be started and stopped. They also check that messages can be sent and received.

The server test file can take longer to run than other tests. Once they are passing, you can choose to skip them by starting the tests with the -s option.

$./run-tests -s

SQL test format

Here’s an example test:

--- can insert multiple rows
CREATE TABLE t1(a INTEGER, b INTEGER);
INSERT INTO t1 VALUES (1, 2), (3, 4);
SELECT a, b FROM t1;
--- returns:
1, 2
3, 4

This test is made up of three parts: a title, a list of statements to run and an expectation.

Expectations check the result of the last statement that was run. The following expectations are available to use:

 	‘returns:’ checks the expected rows are returned in any order.

 	‘returns in order:’ checks the expected rows are returned in the same order.

 	‘with columns:’ checks that the column names match.

 	‘returns status ok’ checks that the returned status is ‘ok’.

 	‘returns error:’ checks that the returned status is ‘error’ and the error type matches.

Every statement that isn’t followed by a ‘return error’ expectation is expected to return a status of ‘ok’.

Combining expectations

You can add ‘with_columns:’ expectation after a returns expectation, for example:

--- can give names to multiple columns with AS
SELECT 1 AS col_1, 2 AS col_2;
--- returns:
1, 2
--- with columns:
col_1, col_2

Running statements after expectations

You can add more statements and expectations after an expectation if they are separated by an empty line.

This isn’t recommended as it can make the test harder to follow, but is sometimes necessary to test certain cases. For example:

--- does not insert any rows when there is a division by zero error
CREATE TABLE t1(a INTEGER);
INSERT INTO t1 values (1), (2 / 0);
--- returns error:
division_by_zero_error

SELECT a FROM t1;
--- returns no rows

Grouping tests

Tests combine to make a test group. Test groups start with a title that is prefixed by four dashes. For example this is a test group with two tests:

---- Using SELECT without a table ----

--- can select an integer
SELECT 1;
--- returns:
1

--- can select a larger integer
SELECT 37;
--- returns:
37

Writing your own tests

You can either add tests to an existing test file, or create a new file.

The test files are in an order that is based on their file name. You can start the file name with the chapter number to make it run after a given chapter. For example, 3b_table_extensions.sql would run after 3_tables.sql.

Automatic table clearing

The tables t1, t2, t3, t4 and t5 are automatically dropped before each test runs from the Chapter 4 tests onwards. The Chapter 3 tests also automatically drop these tables after the ‘Creating and dropping tables’ test group has run.

To prevent conflicts between tests you can use these tables. Alternatively, you can start your tests by dropping any tables that you use. For example:

--- can select a column from dogs table
DROP TABLE IF EXISTS dogs;
CREATE TABLE dogs(num INTEGER);
INSERT INTO dogs VALUES(23);
SELECT num FROM dogs;
--- returns:
23

Testing against PostgreSQL

Every expectation in the included tests also describes the behaviour of PostgreSQL. You can validate this by running the tests against PostgreSQL instead of rgSQL.

To do this you first need to install the psycopg2 Python package. You can then use the -p option with a connection URL for a PostgreSQL database:

$./run-tests -p postgres://localhost/mydb

This is useful if you have added new tests and want to keep the behaviour of your implementation matching the behaviour of PostgreSQL.

Changing the test runner

If you are comfortable writing Python, you can modify the test runner to support new kinds of tests.

The test runner has tests to check it parses the SQL test cases correctly. You can run these tests using Python:

$ python3 -m unittest

Running with GitHub Actions

rgSQL comes with a workflow that can run the tests in a GitHub Action. The workflow is defined in the .github/workflows/test_suite.yml file.

If you have forked the repository, the workflow will not run until you visit the ‘Actions’ tab for the repository on GitHub and then follow the instructions to enable the workflow. Once enabled, the workflow will run when new code is pushed or a pull request is opened.

You may need to configure the workflow to install any dependencies your implementation needs. GitHub has guides that explain how to set up dependencies for some programming languages.

There is a ‘PostgreSQL compatibility test’ job that runs the test suite against PostgreSQL. You can enable this job by setting the TEST_POSTGRESQL environment variable to true.

There is also a ‘Test runner test’ job that runs the tests against different versions of Python. You can enable this job by setting the TEST_RUNNER_TEST environment variable to true.

 More Extensions

 Here are more ideas for ways to extend your implementation. These are generally more complex to implement than the extensions at the end of chapters.

Additional types

Add support for more types to rgSQL so you can represent values such as text, dates and numbers which aren’t integers. You can also add functions and operators that work with any types you add.

You may want to add type coercion rules for the new types so they can be automatically converted to other types when needed.

For inspiration, you can look at all the inbuilt types that PostgreSQL supports and documentation for PostgresSQL’s functions and operators.

You will need to extend your parser and type checker to support additional types.

Set operators

SQL has three set operators: UNION, INTERSECT and EXCEPT. Set operators are used to combine data from multiple queries. The following examples will use a book_shops table that contains locations that sell books:

 	id
 	location_id

 	1
 	1

 	2
 	2

And a game_shops table that lists locations that sell games:

 	id
 	location_id

 	10
 	2

 	11
 	3

You can use UNION to get a list of locations that sell book or sell games:

SELECT location_id FROM book_shops
UNION
SELECT location_id FROM game_shops
-- returns location_id 1, 2 and 3

You can use INTERSECT to get a list of locations that sell book and sell games:

SELECT location_id FROM book_shops
INTERSECT
SELECT location_id FROM game_shops
-- returns location_id 2

You can use EXCEPT to find a list of locations the sell books but don’t sell games:

SELECT location_id FROM book_shops
EXCEPT
SELECT location_id FROM game_shops
-- returns location_id 1

All of the set operations remove duplicate rows. They should return a validation error if the data being combined doesn’t have the same number and type of columns. The names of columns don’t need to match.

Set operators can be chained. The set operators in the chain should be evaluated in the same order they appear unless brackets are used to define a different order.

Subqueries

There are some places in queries where you can nest whole other queries.

For example, instead of selecting from a table, you can select from another query:

SELECT my_subquery.a FROM
 (SELECT 1 AS a) AS my_subquery;

In the example above, the subquery is just SELECT 1 AS a, but this could be a more complex query that references other tables.

Subqueries must be bracketed and given a name when being used in the place of a table.

You can also join to subqueries. For example, the following query adds a ‘featured’ column that is set to TRUE for the item with the id 99:

SELECT items.id, featured FROM items
 LEFT JOIN
 (SELECT 99 AS id, TRUE AS featured) AS featured_items
 ON featured_items.id = items.id;

In all of these examples, the result from the subquery could be computed once before the outer query is run. Alternatively, rows from the subquery could be fed into the main query as they are needed using iterators.

Subqueries within expressions

Expressions can also contain subqueries. This query returns all the authors in a bookshops catalog along with the percentage of books in the whole catalog by that author:

SELECT
 (COUNT(TRUE) * 100) / (SELECT COUNT(TRUE) FROM books)
FROM books;
GROUP BY author_id

Here the subquery is allowed in the expression because it returns a single column and row. The column count can be checked during query validation, but the row count cannot be checked until the subquery is executed.

Correlated subqueries

A subquery can depend on data from rows in the outer query. These are called a correlated subquery. Correlated subqueries are often inefficient because they need to be executed for every row of data. For example, this query returns the ids of stock items with the number of orders that have contained that item:

SELECT
 id,
 (SELECT COUNT(TRUE) FROM order_items
 WHERE order_items.stock_item_id = stock_items.id)
FROM stock_items;

SELECT COUNT(TRUE) FROM order_items… is a correlated subquery because it uses stock_items.id from the outer query.

Subquery operators

There are operators that work on subqueries. For example, this query returns ids for all the products that are in the offers table:

SELECT id FROM products
WHERE id IN (SELECT offers.product_id FROM offers);

The above query uses IN to filter product ids to ones that appear in the offers table. The IN operator will error if the subquery returns results with more than one column.

You can see other subquery operators in the PostgreSQL documentation.

Common table expressions

Common table expressions (CTEs) provide an alternative way to write many queries containing subqueries by using the WITH keyword. For example, this is another way of writing a query that adds a ‘featured’ column that is set to TRUE for the item with the id 99:

WITH featured_items AS (
 SELECT 99 AS id, TRUE AS featured
)
SELECT items.id, featured FROM items
 LEFT JOIN featured_items
 ON featured_items.id = items.id;

You can think of this query as creating a temporary featured_items table that can be used later.

Common table expressions can be used to break up complex queries into more readable chunks. The tables they define can be used multiple times in the query that follows them.

You can chain common table expressions by separating them with commas. Common table expressions can refer to any table that was defined in a previous expression.

See more examples of common table expressions in the PostgreSQL documentation.

Views

Views use a query to define data that can be queried like a table.

This example creates an in_stock_items view based on the items table:

CREATE VIEW in_stock_items AS
 SELECT id, price FROM items WHERE in_stock;

Only items that have in_stock set to TRUE will be in the view.

The ‘SELECT…` statement can be any SELECT query, including one that loads data from a table or another view. The columns the query returns must have unique names.

When querying a view, databases effectively replace the view with a subquery. For example, running the query:

SELECT id
FROM in_stock_items
WHERE price < 1000

Is equivalent to:

SELECT id
FROM (SELECT id, price FROM items WHERE in_stock) in_stock_items
WHERE price < 1000

You can read more about how PostgreSQL queries views.

Materialized views

Databases also have materialized views. Materialized views run a query to make a copy of the data. Materialized views won’t have any rows that were added to the source table after the view was created. You can create a materialized view with:

CREATE MATERIALIZED VIEW in_stock_items AS
 SELECT id, price FROM items WHERE in_stock;

You can refresh the data in a materialized view with:

REFRESH MATERIALIZED VIEW;

This re-runs the query that was used to create the view.

More clients

The test suite includes a client for rgSQL that is written in Python.

Write another client for rgSQL that you can use from another programming language or framework.

Alternatively, you could add a new messaging protocol to rgSQL so it’s compatible with an existing client for another database. For example, you could look at the messaging protocol that PostgreSQL uses and try to make your implementation work with an existing PostgreSQL client such as Python’s psycopg or Ruby’s pg.

Once you have a new client, you could try using rgSQL to power an application built with a web framework such as Django or Ruby on Rails. You may need to parse and implement many more features to get a simple application to work.

rgSQL isn’t intended to be a reliable or secure data store. Don’t use rgSQL to store sensitive information or make rgSQL publicly accessible on a network.

Query pipelines

SQL may be popular but isn’t the only query language. Other query languages might extend or replace SQL to make it easier to write queries.

One feature that is popular in other query languages, is the ability to break queries up into a set of steps in a pipeline. Each step in a pipeline transforms the data from the previous step. Pipelines can make it easier to write and understand queries by giving query writers more control on how to order the steps in a query. Query pipelines can also avoid the need for subqueries and common table expressions in complex queries.

Google BigQuery has extended SQL to support pipelines. It uses |> to separate steps in a pipeline. Some pipeline steps use similar keywords and structures to parts of an SQL query so will look familiar.

PRQL is a query language that has different keywords and syntax to SQL. In PRQL each line in a query is a step in a pipeline. You can also use the | character to separate pipeline steps. Many PRQL implementations convert PRQL queries into SQL so the queries can be run on existing SQL databases.

Add pipelines to rgSQL. You can create your own syntax to support this or use ideas from BigQuery or PRQL. You could extend your implementation to be able to run pipelined queries or your parser could convert the queries to an equivalent query in SQL.

 The End

 I hope you have enjoyed the book. I would love to hear from you to know what you liked about it and if you have any ideas that could make it better.

 Remember to join the discussion group if you want to share your implementation.

 -Chris

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]
 OEBPS/img/parsing_expressions-2db6efd63287d1d6548818e22e301bb055f5a234f49a9c9bc89c8394e181c641.png
Parse expression

parse term

consume
binary infix
operator

- return node
failure

for term

parse term

return binary

operator node

consume '(’

consume unary
prefix operator

consume
identifier

parse
Literal

Parse term

parse
expression

parse
term

consume ')’

error

return node

for term

OEBPS/img/joins-868d1f9c368e88949013391445fc4366f1be43d50acb508c959a95d9535de51c.png
Left outer join Inner join

OEBPS/img/offset-2c178db516cabd394d9bd6e344efeac9cf15064e90bd5860b89e8272378e8fcd.png
stock_items

offset

quantity price on_sale
integer integer | boolean

metadata

OEBPS/img/multiple_groups-eca43f3194cbf498b527a1d00cab3822237b8260cb7a18593e8a2128b9769e85.png
customer_id i shipped customer_id | shipped
integer boolean integer boolean

metadata

Yows

OEBPS/img/cover.png
L E
Database
Server

Created by Chris Zetter

OEBPS/img/building_table_example-ce68ffc8083ffa6e66379f462e22cd657dd100435ee7912fc69ef4db70489369.png
After loading table data

After building select List

After ordering

OEBPS/img/grouping-6a734855e69d873163d1acdef7ead88bd6922de24751729cdca33849613677be.png
customer_id i shipped customer_id
integer boolean integer

metadata

Yows

OEBPS/img/grouping_ast-424aad2d0af48a7fcb2199f7f2b5c97595e6e31deb3eb330551591278564463a.png
Select
table: 'orders’

select list Projection
name: '???'

grouping List

expression
v
Operator Operator
symbol: '<’ symbol: '<’
operand Llist operand Llist

Reference Integer Reference Integer

name: 'price’ valve: 300 name: 'price’ valve: 300

OEBPS/nav.xhtml

 Table of Contents

 		

 Cover

 		

 Preface

 		

 What Makes SQL Special

 		

 Your Implementation

 		

 Sections in this Guide

 		

 Running SQL

 		

 Introduction

 		

 The Server

 		

 Returning Values

 		

 Tables

 		

 Resilient Parsing

 		

 Expressions

 		

 Finding Errors

 		

 Null

 		

 Filtering, Ordering and Limiting

 		

 Query Plans

 		

 Qualified References

 		

 Joins

 		

 Grouping

 		

 Aggregate Functions

 		

 Appendix

 		

 The Test Suite

 		

 More Extensions

OEBPS/img/accumulator-e58b99ea5185abd18e56746304d6ed65e47ea9818c74e8cce690ff97a6d04f97.png
accumulator value

OEBPS/img/parse_trees-34b6392e752b0042dbf535e2d6daa253198f7a76872341d4e3777366f03c8d3d.png
(1+2)*3 1+ (2*3)

Binary Operator
name: '+'

Binary Operator
name: ¥

Binary Operator
name: '+'

Binary Operator

Integer Integer

value: 3 valve: 1

Integer Integer Integer Integer

value: 1 valve: 2 value: 2 valve: 3

OEBPS/img/aggregate_data_example-0a1171192b2986339e995206838adfdb49df0d1663659e6a4082d4e9764dc9a3.png
current row grouped rows

@
@ n
m

OREIE RN
ENE

OEBPS/img/aggregate_metadata_example-69584aab4687c4055afa63d5a47e4f46622f545b1b4bed6a3b03ffd22bfecf87.png
ungrouped metadata grouped metadata

order_id price order_id | suM(price) | total_price

integer integer integer integer integer

OEBPS/img/merge_join-ee775382d1df81c5dbd90c6af09dfd2d44787e3fcecf0619f6d9aeb4a3ba6e7c.png
lefty righty

lefty_id

id = lefty_id

look at next
value in right

lefty righty

id < lefty_id

look at next
value in lefty

lefty righty

id < lefty_id

look at next
value in lefty

lefty righty

id = lefty_id

look at next
value in right

lefty righty

i | [ety

id = lefty_id

no more
values

OEBPS/img/metadata_example-90a733a1bb6e985a37d5d680c09d0e7690c56e1884348cb5d0e11704af0b417b.png
table data select list items

integer integer integer || integer | integer

OEBPS/img/table-74b9232a67973091032e52f30b71633c6b96be2dca4b457a06a3f8c1d4901c9f.png
orders

OEBPS/img/stock_items-4a244eca4d9fcb42fb0a82616fb49ed32b8d04fc94efe6b6db74f590ebf5dea2.png
stock_items

id quantity price | on_sale
integer integer integer | boolean

metadata

rows

OEBPS/img/pipeline-79f18f2f0713f6c3f9c046c7dc4ccd0b8836dba65e884046f36c3a3f9c083a90.png
Receive -_ Return
Run
query result

Return

parse error

OEBPS/img/simple_ast-66476d2f58f0ee218702d98d0f0c813980fca60f60521c7a1aa4ed4945fbf828.png
Boolean
value: true

Integer
value: 6

Integer
value: 100

OEBPS/img/grouping_by_expressions-4a99957ea9c32caa70cf54a2395c66e93dae4702e20a19c4e7e4011609b59581.png
customer_id i shipped price < 300
metadata integer boolean boolean
rows FALSE

OEBPS/img/gradient.jpg

OEBPS/img/resolving_example-c3c94305610045e9b0afd7dbe7d439264fd45b6f7b920a8bb3e5e5ea5ce58613.png
Select

table: 'orders’

select list
v

SelectListItem
name: 'total_price’

expression

i

Operator
symbol: '+’

operand Llist

Reference Reference
name: 'PRICE’ name: ‘orders.tax’

resolved resolved

N\ !

id price tax

integer | integer | integer

query metadata

OEBPS/img/parsing_methods-b1bc3549b3034b42bd6ab7c8617599587285644b9698ca0b3c1c64c4e88e16f3.png
Parse select

]

consume
'SELECT’

suvccess

!

parse

select list

suvccess

|

return

select node

failure >

failure —

unexpected
statement

expected '’
error

Parse select list

parse

/ Literal

success

!

failure

y

return list

of literals

Parse literal

!

consume
'TRUE'

success

return node

failure
7 for boolean

—>
success

consume
'FALSE’

failure

v

return node

consume

. success >
integer

for integer

failure

unexpected
value

OEBPS/img/hash_join-f5a5209da69a02303d558a2839373c8034263139025a8a9e05e10b27e00057f1.png
lefty righty

1 hashes to
'FCaD’ which

finds one row

lefty

righty

2 hashes to
'D12A' which

finds no rows

lefty

hash table

3 hashes to
'3A8C’' which

finds two rows

righty

