
 [image: cover.jpg]

Bioinformatics with Python Cookbook

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Early Access Publication: Bioinformatics with Python Cookbook

Early Access Production Reference: B32056

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK

ISBN: 978-1-83664-275-6

www.packt.com

Table of Contents

 	Bioinformatics with Python Cookbook, Fourth Edition: Solve advanced computational biology problems and build production pipelines with Python & AI tools

 	Chapter 1: Computer Specifications and Python Setup

 	Join our book community on Discord

 	Technical requirements

 	Installing the required basic software with Anaconda

 	Getting ready

 	How to do it...

 	There’s more...

 	See Also

 	Installing the required software with Docker

 	Getting ready

 	How to do it...

 	See also

 	Introduction to Jupyter Notebook

 	How to do it…

 	Jupytext

 	See also

 	Chapter 2: Basics of Data Manipulation

 	Join our book community on Discord

 	Using pandas to process vaccine-adverse events

 	Getting ready

 	How to do it...

 	There’s more...

 	See also

 	Dealing with the pitfalls of joining pandas DataFrames

 	Getting ready

 	How to do it...

 	There’s more...

 	Reducing the memory usage of pandas DataFrames

 	Getting ready

 	How to do it…

 	See also

 	Chapter 3: Modern Coding Practices and AI-generated coding

 	Join our book community on Discord

 	Technical requirements

 	Using linting tools and style guides to write accurate, well-formed code

 	Getting ready

 	How To Do It ...

 	There's more …

 	See also …

 	Writing a simple bioinformatics file parser using AI

 	Getting ready

 	How to do it...

 	There’s More...

 	See also

 	Read Alignment

 	How to do it...

 	See also

 	Writing Tests with AI-assisted coding

 	How to do it...

 	There’s More...

 	See also

 	Code Review with AI

 	How to do it...

 	There’s More...

 	See also

 	Chapter 4: Data Science and Graphing

 	Join our book community on Discord

 	Technical requirements

 	Understanding NumPy as the engine behind Python data science and bioinformatics

 	Getting ready

 	How to do it…

 	See also

 	Introducing scikit-learn with PCA

 	Getting ready

 	How to do it...

 	There’s more...

 	See Also

 	K-means clustering

 	Getting ready

 	How to do it...

 	There’s more...

 	See Also

 	Exploring breast cancer traits using Decision Trees

 	Getting ready

 	How to do it...

 	See Also

 	Learning more about matplotlib for Chart Generation

 	Getting ready

 	How to do it...

 	There’s more...

 	Building a UMAP using Seaborn

 	Getting Started

 	How to Do It...

 	There’s More ...

 	See Also

 	Chapter 5: Alignment and Variant Calling

 	Join our book community on Discord

 	Technical requirements

 	Quality control for sequencing data

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Tools for sequence manipulation

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Sequence alignment with BWA

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Variant calling with FreeBayes

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Chapter 6: Annotation and Biological Interpretation

 	Join our book community on Discord

 	Technical requirements

 	Parsing and filtering variant files

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Annotating a prokaryotic genome

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Interpreting variants on gene structures

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Annotating proteins

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Chapter 7: Genomes and Genome Assembly

 	Join our book community on Discord

 	Technical requirements

 	Accessing genome assemblies

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Working with graph genomes

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Long-read assembly with Raven

 	Getting started

 	How to do it...

 	There’s more...

 	See also

 	Assessing genome quality with QUAST

 	Getting started

 	How to do It...

 	There’s more...

 	See also

 	Chapter 8: Accessing Public Databases

 	Join our book community on Discord

 	Technical requirements

 	Accessing GenBank and navigating NCBI databases

 	Getting ready

 	How to do it...

 	There’s more...

 	See also

 	Using the Sequence Read Archive

 	Getting ready

 	How to do it...

 	There’s more...

 	See also

 	How to do it...

 	There’s more...

 	See also

 	Chapter 9: Protein Structure and Proteomics

 	Join our book community on Discord

 	Technical requirements

 	Extracting information from PDB files

 	Getting ready

 	How to do it...

 	There’s more...

 	Computing molecular distances on a PDB file

 	Getting ready

 	How to do it...

 	There’s more...

 	Performing geometric operations

 	Getting ready

 	How to do it...

 	There’s more...

 	Animating proteins

 	Getting ready

 	How to do it...

 	There’s more...

 	See also

 	Performing proteomics analysis

 	Getting ready

 	How to do it...

 	There’s more...

 	See also

 	Chapter 10: Phylogenetics

 	Join our book community on Discord

 	Technical requirements

 	Preparing a dataset for phylogenetic analysis

 	Getting ready

 	How to do it...

 	There’s more...

 	See also

 	Aligning genetic and genomic data

 	Getting ready

 	How to do it...

 	Comparing sequences

 	Getting ready

 	How to do it...

 	Reconstructing phylogenetic trees

 	Getting ready

 	How to do it...

 	There’s more...

 	See also

 	Playing recursively with trees

 	Getting ready

 	How to do it...

 	There’s more...

 	Visualizing phylogenetic data

 	Getting ready

 	How to do it...

 	There’s more...

 	Chapter 11: Population Genetics

 	Join our book community on Discord

 	Technical requirements

 	Managing datasets with PLINK

 	Getting ready

 	How to do it...

 	There’s more...

 	See also

 	Using sgkit for population genetics analysis with xarray

 	Getting ready

 	How to do it...

 	There’s more...

 	Exploring a dataset with sgkit

 	Getting ready

 	How to do it...

 	There’s more...

 	See also

 	Analyzing population structure

 	Getting ready

 	How to do it...

 	See also

 	Chapter 12: Mectabolic Modeling and Other Applications

 	Join our book community on Discord

 	Technical requirements

 	Metabolic modelling with COBRAPy

 	Getting started

 	How To Do It...

 	There’s more...

 	See Also

 	Designing siRNAs with BioPython and ViennaRNA

 	Getting Started

 	How To Do It...

 	There’s more...

 	See Also

 	Predicting food properties using BioInformatics

 	Getting started

 	How To Do It...

 	There’s More...

 	Discovering genes to make novel molecules

 	Getting Started

 	How To Do It...

 	There’s more...

 	See Also

 	Chapter 13: Genome Editing

 	Join our book community on Discord

 	Technical requirements

 	Designing guide RNAs for Genome Editing

 	Getting started

 	How To Do It...

 	There’s more...

 	See also

 	Counting barcodes in a genomic library

 	Getting Started

 	How To Do It...

 	There’s more...

 	See also

 	Using Nanopore data to resolve Genome Edits

 	Getting Started

 	How To Do It...

 	There’s more...

 	See also

 	Cover

 	Table of contents

Bioinformatics with Python Cookbook, Fourth Edition: Solve advanced computational biology problems and build production pipelines with Python & AI tools

Welcome to Packt Early Access. We’re giving you an exclusive preview of this book before it goes on sale. It can take many months to write a book, but our authors have cutting-edge information to share with you today. Early Access gives you an insight into the latest developments by making chapter drafts available. The chapters may be a little rough around the edges right now, but our authors will update them over time.You can dip in and out of this book or follow along from start to finish; Early Access is designed to be flexible. We hope you enjoy getting to know more about the process of writing a Packt book.

	Chapter 1: Computer Specification and Python Setup

	Chapter 2: Basics of Data Manipulation

	Chapter 3: Modern Coding Practices and AI generated Coding

	Chapter 4: Data Science and Graphing

	Chapter 5: Alignment and Variant Calling

	Chapter 6: Annotation and Biological Interpretation

	Chapter 7: Genomes and Genome Assembly

	Chapter 8: Nucleic Acid Database

	Chapter 9: Protein Databases

	Chapter 10: Phylogenetics

	Chapter 11: Population Genomics

	Chapter 12: Metabolic Modeling and Other Applications

	Chapter 13: Genome Editing

	Chapter 14: Cloud Basics, Infrastructure as Code, and Containers

	Chapter 15: Workflow Systems

	Chapter 16: Machine Learning, Deep Learning, and LLMs for Nucleic Acid and Protein Design

	Chapter 17: Single Cell Technology and Imaging Data

Chapter 1: Computer Specifications and Python Setup

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

We will start by installing the basic software that is required for most of this book. This will include the Python distribution, some fundamental Python libraries, and our Jupyter Notebook environment. We will also set up our GitHub environment and gain access to the repository for the book. As different users have different requirements, we will cover two different approaches for installing the software. One approach is using the Anaconda Python (http://docs.continuum.io/anaconda/) distribution and the other is via Docker (a server virtualization method based on containers sharing the same operating system kernel; please refer to https://www.docker.com/). This will still install Anaconda for you but inside a container.If you are using a Windows-based operating system, you are strongly encouraged to consider changing your operating system or using Docker via some of the existing options on Windows. On macOS, you should be able to install most of the software natively, though Docker is also available. Learning using a local distribution (Anaconda or something else) is easier than Docker, but given that package management can be complex in Python, Docker images provide a level of stability.Most modern data scientists use a Mac due to the ease with which you can interact with a native Linux-style operating system. We recommend using a similar computer for this book. In the Technical requirements section, we provide the specifications of the computer and libraries used to develop this book. In most cases, deviations from such a system should work fine with minimal modifications, but if you have trouble, you can try the Docker container. Another alternative could be to use a cloud workstation (some options follow).In this chapter, we will cover the following recipes:

	Installing the required software with Anaconda

	Installing the required software with Docker

	Introduction to Jupyter Notebook

In this chapter, we will first install some prerequisite software – details of which are given in the Technical requirements section. Each recipe will then take you through the software and the steps that are needed to install it. Each chapter and section might have extra requirements on top of these – we will make those clear as the book progresses. An alternative way to start is to use the Installing the required software with Docker recipe, after which everything will be taken care of for you via a Docker container.

Technical requirements

It is important to note that, starting around 2020, Apple came out with its own chips instead of using Intel chips – these are referred to as Apple silicon chips. This change caused issues with older versions of Python and with some Python libraries. We should not encounter these in this book since we are using newer versions, but it is something to keep in mind if you ever run into issues. This book was developed on an Apple M2 Pro chip, which is an Apple silicon chip.The code in this book was developed and tested on a computer with the following specifications:

	MacBook Pro

	Chip: Apple M2 Pro

	RAM: 16 GB

	OS: Sequoia 15.1

	Python version: 3.12.2

If you do not have a MacBook, there are several options you could explore using cloud workstations. These options will give you a handy alternative where you can set up the appropriate environment.If you have an AWS account, you can set up a macOS EC2 instance to use as a cloud workstation. They offer an M2 Mac Pro option matching the computer this book was developed on.Here are some additional sites you can check out if you want to use a Mac workstation on the cloud:

	Mac In Cloud: https://www.macincloud.com/

	Mac Stadium: https://www.macstadium.com/vdi

In the next section, we’ll walk through setting up your system and making sure you have Python and some of the basic libraries you need (we’ll install more libraries as we go).

Installing the required basic software with Anaconda

Next, we will begin setting up your required software libraries, including Python itself. If you are already using a different Python distribution, you are strongly encouraged to consider Anaconda, as it has become the de facto standard for data science and bioinformatics. Also, it is the distribution that will allow you to install software from bioconda (https://bioconda.github.io/).

Getting ready

Python can be run on top of different environments. For instance, you can use Python inside the Java Virtual Machine (JVM) (via Jython or with .NET via IronPython). However, here, we are not only concerned with Python but also with the complete software ecology around it. Therefore, we will use the standard (CPython) implementation, since the JVM and .NET versions exist mostly to interact with the native libraries of these platforms.For our code, we will be using Python 3.12. If you were starting with Python and bioinformatics, any operating system would work. But here, we are mostly concerned with intermediate to advanced usage, and so we will focus on macOS.If you are on Windows and do not have easy access to macOS or Linux, don’t worry. Modern virtualization software (such as VirtualBox and Docker) will come to your rescue, which will allow you to install a virtual OS on your operating system. Another option is to use Windows Subsystem for Linux (WSL2), which allows you to run Linux on Windows. For documentation on WSL2, look here:

	https://learn.microsoft.com/en-us/windows/wsl/install

	https://www.windowscentral.com/how-install-wsl2-windows-10

	https://docs.docker.com/desktop/features/wsl/

Another option for you will be to use a cloud workstation (see the Technical requirements section).Bioinformatics and data science are moving at breakneck speed; this is not just hype, it’s a reality. When installing software libraries, choosing a version might be tricky. Depending on the code that you have, it might not work with some old versions or perhaps not even work with a newer version. Hopefully, any code that you use will indicate the correct dependencies – though this is not guaranteed. In this book, we will fix the precise versions of all software packages, and we will make sure that the code will work with them. It is quite natural that the code might need tweaking with other package versions.The software developed for this book is available at https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-fourth-edition. To access it, you will need to install Git. First, make sure HomeBrew is installed (https://brew.sh/):

brew install git

You can go to the GitHub page for the book and get the HTTPS link for downloading the source:

git clone https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition.git

This will download the source code to your computer.Before you install the Python stack, you will need to install all of the external non-Python software that you will be interoperating with. The list will vary from chapter to chapter, and all chapter-specific packages will be explained in their respective chapters. Most of the software is available via bioconda (https://bioconda.github.io/) (also called conda for short) or is pip installable (https://pypi.org/project/pip/).).Where possible in this book, we will allow you to do everything from your Jupyter notebook, even installing the software. To do this, we will use the ! command, which allows you to run a command that you would normally run from your Terminal from the notebook instead – for example:

! ls

This will run the ls or list directory command as if it had been run from the Terminal.In some cases, for more involved installations, you will need to go into the Terminal, but we’ll advise you on how to do those steps as we go through the relevant recipes.You will need to install some development compilers and libraries, all of which are free. On Ubuntu, consider installing the build-essential package (apt-get install build-essential), and on macOS, consider Xcode (https://developer.apple.com/xcode/).We will mention many amazing Python libraries in this book, but here is a brief overview of some of the most important ones:

	Name
	Application
	URL
	Purpose

	Biopython
	All chapters
	https://biopython.org/
	Bioinformatics library

	Biotite
	Protein Design
	https://www.biotite-python.org/latest/index.html
	MultiTool and Protein Structure

	Cython
	Big data
	http://cython.org/
	High performance

	Dask
	Big data
	http://dask.pydata.org
	Parallel processing

	DendroPY
	Phylogenetics
	https://dendropy.org/
	Phylogenetics

	HTSeq
	NGS/Genomes
	https://htseq.readthedocs.io
	NGS processing

	jupytext
	Notebook conversion
	https://jupytext.readthedocs.io/en/latest/
	Convert your notebook to Python text

	Keras
	Deep Learning
	https://keras.io/
	Higher-level library for ML

	Matplotlib
	Visualization
	https://matplotlib.org/
	Graphing library

	NumPy
	All chapters
	http://www.numpy.org/
	Array/matrix processing

	Numba
	Big data
	https://numba.pydata.org/
	High performance

	Project Jupyter
	All chapters
	https://jupyter.org/
	Interactive computing

	PyMol
	Proteomics
	https://pymol.org
	Molecular visualization

	PyVCF
	NGS
	https://pyvcf.readthedocs.io
	VCF processing

	Pysam
	NGS
	https://github.com/pysam-developers/pysam
	SAM/BAM processing

	SciPy
	All chapters
	https://www.scipy.org/
	Scientific computing

	TensorFlow
	Machine learning
	https://www.tensorflow.org/
	Machine learning library

	pandas
	All chapters
	https://pandas.pydata.org/
	Data processing

	scikit-learn
	Machine learning
	http://scikit-learn.org
	Machine learning library

	seaborn
	All chapters
	http://seaborn.pydata.org/
	Statistical chart library

Table 1.1 – Major Python packages that are useful in bioinformaticsWe will use pandas to process most table data.

How to do it...

To get started, take a look at the following steps:

	Start by downloading the Anaconda distribution from https://www.anaconda.com/products/individual. We will be using version 2024.06, although you will probably be fine with the most recent one. You can accept all the installation’s default settings, but you might want to make sure that the conda binaries are in your path (do not forget to open a new window so that the path can be updated).

	As an alternative to downloading from the website, you can use this command:

curl -O https://repo.anaconda.com/archive/Anaconda3-2024.06-1-MacOSX-x86_64.sh

	If you have another Python distribution, be careful with PYTHONPATH and existing Python libraries. It’s probably better to unset PYTHONPATH. As much as possible, uninstall all other Python versions and installed Python libraries. These steps will help reduce future confusion about which installation of Python you are pointing to.

	Let’s go ahead with the libraries. We will now create a new conda environment called bioinformatics_base with biopython=1.84, as shown in the following command (type it in your Terminal):

conda create -n bioinformatics_base python=3.12

	Let’s activate the environment, as follows:

conda activate bioinformatics_base

	Let’s add the bioconda and conda-forge channels to our source list:

conda config --add channels bioconda
conda config --add channels conda-forge
Note: Conda channels are remote hosting locations that store common packages we may need.

	Also, install the basic packages:

! conda install biopython==1.84 jupyterlab==4.3.0 matplotlib==3.9.2 numpy==2.1.0 pandas==2.2.3 scipy==1.14.1
As an alternative to the above, you can also set up your conda environment using a file that specifies the packages needed. It is provided as bioinformatics_base.yml. It is a YAML file, which stands for “YAML Ain’t Markup Language" (https://yaml.org/
To use the file run this command:
conda env create –f ~/work/CookBook/Ch01/bioinformatics_base.yml
This will install the required packages for you.

Tip

We often install the latest version of the package by just typing something like conda install biopython, but in this book, we do something called “pinning the version.” This means we write an explicit version to help with the reproducibility of the code.

	Now, let’s save our environment so that we can reuse it later to create new environments in other machines or if you need to clean up the base environment:

conda list –e > bioinformatics_base.txt

Tip

On the left side of your Terminal, you will see what Anaconda environment you are in so you can always tell where you are at. For instance, right now, it should say (bioinformatics_base).

One thing that can be confusing is that using the python -V command in this environment could show an older version. This is because Python 3 is referred to via the python3 command. To fix this, you want to alias the Python command. Typically, it is easiest to put this in your shell file, which is a file that is always run when you open a Terminal window. In Linux, it was .bashrc, but on macOS, you will use the .zshrc file (often pronounced z-shark).Solution: Open your ~/.zshrc file in a text editorAdd the following line to the end of the file:

alias python=python3

Now save it.To run it, you can type source ~/.zshrc.Now, when you run python -V or python --version, you should see that it is 3.12. If you are in a notebook and want to double-check your version, you can run ! python -V in a cell.

There’s more...

If you prefer not to use Anaconda, you will be able to install many of the Python libraries via pip using whatever distribution you choose. You can go through the book and keep installing packages in bioinformatics_base if you want. But you may, at times, find that you want to create an environment specific to a particular chapter to help isolate any complexity in package installations. Let’s look at how to do that real quick:For example, imagine you want to create an environment for machine learning with scikit-learn. You can do the following:

	First, we need to deactivate our current environment:

conda deactivate

	Create a clone of the original environment with the following:

conda create -n scikit-learn --clone bioinformatics_base

	Add scikit-learn:

conda activate scikit-learn
conda install scikit-learn

See Also

	For more information on Git, see: https://git-scm.com/docs

	For an excellent course on using Git and GitHub, see: https://www.udemy.com/course/git-and-github-bootcamp/

	For a review of the differences between Python 3 and Python 2, see: https://powerfulpython.com/blog/whats-really-new-in-python-3/

	For more background on Anaconda, see: https://www.edureka.co/blog/python-anaconda-tutorial/

	For a course on Anaconda, see: https://www.udemy.com/course/anaconda-tutorial/

Installing the required software with Docker

Docker is the most widely used framework for implementing operating system-level virtualization. This technology allows you to have an independent container: a layer that is lighter than a virtual machine but still allows you to compartmentalize software. This mostly isolates all processes, making it feel like each container is a virtual machine. Containers will be discussed in more detail in Chapter 14, Cloud Basics.Docker works quite well at both extremes of the development spectrum: it’s an expedient way to set up the content of this book for learning purposes and could become your platform of choice for deploying your applications in complex environments.Conda and Docker are key tools to help maintain software compatibility and reproducibility across different systems and libraries. We’ll discuss reproducibility more in Chapter 15, Workflow Systems.

Note

This recipe is an alternative to the previous recipe. Normally, if you have a Mac and are using it for your Jupyter notebooks, you will not need the Docker container. If you have a Windows machine or cannot get certain code to work in your environment, the Docker container can be useful to provide you with an environment that is set up properly already for you.

Getting ready

The first thing you have to do is install Docker. Go to https://www.docker.com/ . Install Docker Desktop for your appropriate operating system (remember to check the Apple versus Intel silicon discussion in the Technical requirements section if you are using macOS).

How to do it...

To get started, follow these steps:

	Use the following command from your Terminal:

docker build -t bio https://raw.githubusercontent.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-fourth-edition/main/docker/main/Dockerfile

	Now you are ready to run the container, as follows:

docker run -ti -p 9875:9875 -v YOUR_DIRECTORY:/data bio

	Replace YOUR_DIRECTORY with a directory on your operating system. This will be shared between your host operating system and the Docker container. YOUR_DIRECTORY will be seen in the container in /data and vice versa.

In this case, -p 9875:9875 will expose the container’s TCP port 9875 on the host computer port, 9875.Especially on Windows (and maybe on macOS), make sure that your directory is actually visible inside the Docker shell environment. If not, check the official Docker documentation on how to expose directories.

	Now you are ready to use the system. Point your browser to http://localhost:9875 and you should get the Jupyter environment.

If this does not work on Windows, check the official Docker documentation (https://docs.docker.com/manuals/) on how to expose ports.

See also

	Docker is the most widely used containerization software and has seen enormous growth in usage in recent times. You can read more about it at https://www.docker.com/.

	A security-minded alternative to Docker is Red Hat Openshift, which can be found at https://www.redhat.com/en/technologies/cloud-computing/openshift.

	If you are not able to use Docker, for example, if you do not have the necessary permissions, as will be the case for most compute clusters, then take a look at Singularity at https://www.sylabs.io/singularity/.

	For a good course on Docker, see: https://www.udemy.com/course/docker-and-kubernetes-the-complete-guide/.

Introduction to Jupyter Notebook

All of our work will be developed inside Jupyter Notebook. Jupyter has become the de facto standard for writing interactive data analysis scripts. Unfortunately, the default format for Jupyter notebooks is based on JSON. JSON is JavaScript Object Notation (https://www.json.org/json-en.html). This format is difficult to read, difficult to compare, and needs exporting to be fed into a normal Python interpreter. To obviate that problem, we will extend Jupyter with jupytext (https://jupytext.readthedocs.io/), which allows us to save Jupyter notebooks as normal Python programs. We will start with an overview of Jupyter Notebook, and then look into jupytext. Recall that we installed Jupyter Notebook in the first recipe of this chapter, when we installed the jupyterlab package using conda.

How to do it…

	To run Jupyter, on the Terminal, type the following:

jupyter notebook

This will open the Jupyter browser, and you will see a home page that looks something like this:

[image: Figure 1.1 – The Jupyter browser home page]Figure 1.1 – The Jupyter browser home page

This home page gives you an overview of your files, so you can open, rename, and download them, and so on.

	Let’s click on one of the files and open it. We will see something like this:

[image: Figure 1.2 – An example of a notebook]Figure 1.2 – An example of a notebook

Here, we see a menu that allows us to save or download files and perform other actions. Each cell can be executed by clicking the play button. You can also run multiple cells. When you run a cell, you will see its output below.In some cases, you may need to restart your kernel – use the Kernel | Restart Kernel... method.

Jupyter notebook resources

This would be a good time to pause and take some time to learn more about Jupyter notebooks. There are numerous keyboard shortcuts that are worth learning to speed up your development:

Tutorial: https://www.datacamp.com/tutorial/tutorial-jupyter-notebook

Keyboard Shortcuts: https://towardsdatascience.com/jypyter-notebook-shortcuts-bf0101a98330

Now that we have set up our Jupyter Notebook environment, let’s take a look at a handy tool called Jupytext.

Jupytext

Sometimes, you will want to convert your notebooks into formats other than ipynb – for example, you might want to get them into .py format. For this, we can use jupytext - https://github.com/mwouts/jupytext This handy plugin will allow us to save Jupyter notebooks in formats other than .ipynb. Remember to get out of the Jupyter browser first. To do this on a Mac, you would close the Jupyter browser window, then go to the Terminal where you started it. Then, click Ctrl + Z to kill the process.To install jupytext, we will run the following:

pip install jupytext

Now let’s start up the Jupyter browser again:

jupyter notebook

Now we’ve launched the Jupyter browser again, open the Welcome notebook. Go to the File | Jupytext menu. Here is what it looks like:

[image: Figure 1.3 – The Jupytext menu within the Jupyter browser]Figure 1.3 – The Jupytext menu within the Jupyter browser

To save your notebook in another format, you pair it and choose a format. For instance, if you choose to pair it with the light format, you will get a regular Python (.py) formatted file in your current working directory.Here is what our Welcome.py file looks like in our working directory when paired with the light format:

[image: Figure 1.4 – The Welcome.py notebook in the Light format produced by Jupytext]Figure 1.4 – The Welcome.py notebook in the Light format produced by Jupytext

There are several other popular formats supported by Jupytext. You can read more about them here: https://jupytext.readthedocs.io/en/latest/index.html.

Warning

Remember that the recipes in this book are normally meant to be run inside Jupyter notebooks. This means, typically, we will not always use print to output content. In a notebook, if you simply put the name of a variable and run it, it will print out the result for you. If you are not using notebooks (e.g. you are writing Python scripts and executing them from the terminal), you may want to add print statements to your code. Even within a notebook, you may find it useful at times to add your own print statements to inspect variables and debug code.

In addition to the Jupyter browser, there is a more integrated environment called JupyterLab: https://jupyterlab.readthedocs.io/en/latest/. It allows you to run Terminals and other widgets inside the same environment as your notebook. To get to it, you can click View | Open JupyterLab. You can check it out if you are interested, but it is not necessary to get through the book.A welcome notebook called Welcome.ipynb has been placed in the GitHub repository for this book in the Ch01 folder. You can use it to test out your notebook environment. This notebook also contains many handy links to help you learn Python and explore bioinformatics!To recap everything, here are your main options for performing the recipes in this book:

	System
	Components
	Pros
	Cons

	MacBook Pro Laptop
	Anaconda; pip; brew; Jupyter
	Best system for compatibility and ease of use
	You may not own one

	Mac Cloud Workstation or Mac AWS EC2 Instance
	Anaconda; pip; brew; Jupyter
	Convenient solution; identical to Mac laptop
	May incur some costs

	Windows Machine + Docker
	Docker
	Portable solution
	Some increased overhead

	Windows + VirtualBox or WSL2
	Anaconda; pip; brew; Jupyter
	Let’s you interact with a Linux OS
	Some installation or compatibility issues may arise

	Linux Machine
	Anaconda; pip; brew; Jupyter
	Let’s you interact with a Linux OS
	Some installation or compatibility issues may arise

Table 1.2 – System and OS options for use with this book

See also

	Python Introductory Course: https://www.udemy.com/course/python-for-absolute-beginners-u/

	Intermediate Python Course: https://www.udemy.com/course/100-days-of-code/

	For basic instructions on IPython magics, see: https://ipython.readthedocs.io/en/stable/interactive/magics.html

	A list of third-party extensions for IPython, including magic ones can be found at https://github.com/ipython/ipython/wiki/Extensions-Index

	For a list of JupyterLab widgets, see: https://github.com/search?q=topic%3Ajupyterlab-extension&type=Repositories

	For a deep dive into modern Python 3.12, check out Modern Python Cookbook by Steven F. Lott (Packt Publishing): https://www.amazon.com/Modern-Python-Cookbook-updated-techniques/dp/1835466389

Chapter 2: Basics of Data Manipulation

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

In this chapter, we will look at some of the basic aspects of data manipulation in Python. pandas is the de facto standard for processing tabled data. It is used extensively in bioinformatics and so it is a good core library to become comfortable with.We will start by looking at the basics of pandas as it provides a high-level library with very broad practical applicability. We will then discuss how to join tables in pandas and perform database-like operations. Finally, we’ll briefly touch on some strategies to reduce memory usage in pandas.In this chapter, we will cover the following recipes:

	Using pandas to process vaccine-adverse events

	Dealing with the pitfalls of joining pandas DataFrames

	Reducing the memory usage of pandas DataFrames

Using pandas to process vaccine-adverse events

We will be introducing pandas with a concrete bioinformatics data analysis example: we will be studying data from the Vaccine Adverse Event Reporting System (VAERS, https://vaers.hhs.gov/). VAERS, which is maintained by the US Department of Health and Human Services, includes a database of vaccine-adverse events going back to 1990.

COVID-19

The COVID-19 pandemic, at its height in 2020-2022, took an estimated 7 million lives globally. The rapid development of COVID vaccines using messenger RiboNucleic Acid (mRNA) technology represented a technological turning point and stemmed the tide of the pandemic. In this approach, mRNA, which is the code for proteins, is introduced into our cells to teach them to make a harmless piece of the protein in the virus, triggering an immune response. In some cases, vaccines can lead to adverse events themselves, in which side effects may cause problems for some individuals. The VAERS database records such adverse events in a public health database. In this recipe, we will study this database and learn how to process, analyze, and graph the data using Python.

VAERS makes data available in comma-separated values (CSV) format. The CSV format is quite simple and can even be opened with a simple text editor or a spreadsheet such as Excel. pandas can work very easily with this format.

Getting ready

First, we need to download the data. It is available at https://vaers.hhs.gov/data/datasets.html. Please download the ZIP file for 2021: we will be using the 2021 file; do not download a single CSV file only. You will download a file called 2021VAERSData.zip. After downloading the file, unzip it with this command:

unzip 2021VAERSData.zip

Then, recompress all the files individually with gzip –9 *csv to save disk space. This should leave you with files such as 2021VAERSDATA.csv.gz, which you will load into your notebook using pandas.

Tip on data files and locations

Our notebooks are written expecting the files to be in a data folder under the respective chapter folder, that is, Ch02/data. If you put your data in another place, just make sure you change the path in your notebook to point there. For convenience, we have also provided the data files in the data folder in the GitHub repo, in case you have any trouble with downloading from the link.

Feel free to have a look at the files with a text editor, or preferably with a tool such as less (zless for compressed files). You can find documentation for the content of the files at https://vaers.hhs.gov/docs/VAERSDataUseGuide_en_September2021.pdf.If you are using the notebooks, the code is provided at the beginning so that you can take care of the necessary processing. If you are using Docker, the base image is enough.If you are going to write the code in a notebook, remember to activate your environment:

conda activate bioinformatics_base

And then enter this:

juptyer notebook

The code can be found in Ch02/Ch02-1-pandas-basic.py.

Tip

Remember to start your notebook environment from within the Ch02 directory. That way, you can see the notebooks, and any paths such as data/filename will be relative to that directory.

How to do it...

Follow these steps:

	Let’s start by loading the main data file and gathering the basic statistics:

import pandas as pd
vdata = pd.read_csv(
 "2021VAERSDATA.csv.gz", encoding="iso-8859-1"
)
vdata.columns
vdata.dtypes
vdata.shape

Tip

If you get a Dtype error when loading the data, you can ignore it. Each of the commands in the preceding code can be run in an individual cell to see outputs about the data. You can also add the clause low_memory=False when you read in the CSV file to avoid this error.

We start by loading the data. For most text files, the default encoding of UTF-8 will work. UTF-8 is a Unicode encoding style that can use 1-4 bytes per character. However, this file is in a style called Latin-1, or ISO-8859-1, which uses a single byte per character. So, here we use the encoding parameter of the read_csv() function to specify the type of text encoding. If you don’t do this, you will get an error.

	Next, we print the column names, which start with VAERS_ID, RECVDATE, STATE, AGE_YRS, and so on. They include 35 entries corresponding to each of the columns. Then, we print the types of each column. Here are the first few entries:

[image: Figure 2.1 – Data types for columns in the dataset]Figure 2.1 – Data types for columns in the dataset

We next print vdata.shape. By doing this, we get the shape of the data: (753040, 35). This means 753,040 rows and 35 columns. You can use any of the preceding strategies to get the information you need regarding the metadata of the table.To recap, we used the following:

	vdata.columns: To get the names of the columns

	vdata.dtypes: To get the data types of the columns

	vdata.shape: To find out the number of rows and columns we have in the table

	Now, let’s explore the data:

vdata.iloc[0]
vdata = vdata.set_index("VAERS_ID")
vdata.loc[916600]
vdata.head(3)
vdata.iloc[:3]
vdata.iloc[:5, 2:4]

There are many ways we can look at the data:

	Using the iloc function to specify an integer location

	Using the loc function to specify a location based on a key

	Using the head function to get the first few rows

	Using the iloc function to specify particular rows or even slices of rows and columns

We will start by inspecting the first row, based on location. Here is an abridged version:

[image: Figure 2.2 – Inspecting the first row of the dataset]Figure 2.2 – Inspecting the first row of the dataset

After we index by VAERS_ID, we can use one ID to get a row. We can use 916600 (which is the ID from the preceding record) and get the same result.Then, we retrieve the first three rows. Notice the two different ways we can do so:

	Using the head method

	Using the more general array specification; that is, iloc[:3]

	Finally, we retrieve the first five rows, but only the second and third columns –iloc[:5, 2:4]. Here is the output:

[image: Figure 2.3 – Restricting the output to certain columns]Figure 2.3 – Restricting the output to certain columns

	Let’s do some basic computations now, namely computing the maximum age in the dataset:

vdata["AGE_YRS"].max()
vdata.AGE_YRS.max()

The maximum value is 119 years. More importantly than the result, notice the two dialects for accessing AGE_YRS (as a dictionary key and as an object field) for the access columns.

	Now, let’s plot the ages involved:

vdata["AGE_YRS"].sort_values().plot(use_index=False)
vdata["AGE_YRS"].plot.hist(bins=20)

This generates two separate plots (in the next step, we’ll put both plots side by side). We use pandas plotting machinery here, which uses matplotlib underneath.

	Let’s have a sneak peek at matplotlib here by using it directly:

import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2, sharey=True)
fig.suptitle("Age of adverse events")
vdata["AGE_YRS"].sort_values().plot(
 use_index=False, ax=ax[0],
 xlabel="Obervation", ylabel="Age"
)
vdata["AGE_YRS"].plot.hist(
 bins=20, orientation="horizontal"
)

This includes both figures from the previous steps. Here is the output:

[image: Figure 2.4 – Left – the age for each observation of adverse effect; right – a histogram showing the distribution of ages]Figure 2.4 – Left – the age for each observation of adverse effect; right – a histogram showing the distribution of ages

	We can also take a non-graphical, more analytical approach, such as counting the events per year:

vdata["AGE_YRS"].dropna().apply(
 lambda x: int(x)
).value_counts()

The output will be as follows:

[image: Figure 2.5 – Counting events per year]Figure 2.5 – Counting events per year

	Now, let’s see how many people died:

vdata.DIED.value_counts(dropna=False)
vdata["is_dead"] = (vdata.DIED == "Y")

The output of the count is as follows:

[image: Figure 2.6 – The number of people who died]Figure 2.6 – The number of people who died

Note that the type of DIED is not a Boolean. It’s more declarative to have a Boolean representation of a Boolean characteristic, so we create is_dead for it.

Tip

Here, we are assuming that NaN is to be interpreted as False. In general, we must be careful with the interpretation of NaN. It may mean False or it may simply mean – as in most cases – a lack of data. If that were the case, it should not be converted into False.

	Now, let’s associate the individual data about deaths with the type of vaccine involved:

dead = vdata[vdata.is_dead]
vax = pd.read_csv(
 "2021VAERSVAX.csv.gz",
 encoding="iso-8859-1"
).set_index("VAERS_ID")
vax.groupby("VAX_TYPE").size().sort_values()
vax19 = vax[vax.VAX_TYPE == "COVID19"]
vax19_dead = dead.join(vax19)

After we get a DataFrame containing just deaths, we must read the data that contains vaccine information. First, we must do some exploratory analysis of the types of vaccines and their adverse events. Here is the abridged output:

 …
HPV9 1506
FLU4 3342
UNK 7941
VARZOS 11034
COVID19 648723

After that, we must choose just the COVID-related vaccines and join them with individual data.

[image: Figure 2.7 – Partial output of the vax19_dead DataFrame]Figure 2.7 – Partial output of the vax19_dead DataFrame

	Finally, let’s see the top 10 COVID vaccine lots that are overrepresented in terms of deaths and how many US states were affected by each lot:

baddies = (
 vax19_dead.groupby("VAX_LOT")
 .size()
 .sort_values(ascending=False)
)
for i, (lot,cnt) in enumerate(baddies.items()):
 print(
 lot, cnt, len(
 vax19_dead[
 vax19_dead.VAX_LOT == lot
].groupby("STATE")
)
)
 if i == 10:
 break

The output is as follows:

[image: Figure 2.8 – Top COVID-19 lots]Figure 2.8 – Top COVID-19 lots

That concludes this recipe!

There’s more...

The preceding data about vaccines and lots is not completely correct; we will cover some data analysis pitfalls in the next recipe.In the Learning more about matplotlib for Chart Generation recipe of Chapter 4, Data Science and Graphing, we will go into more depth on matplotlib, a chart library that provides the backend for pandas plotting. It is a fundamental component of Python’s data analysis ecosystem.

See also

The following is some extra information that may be useful:

	Pandas Tutorial: https://www.w3schools.com/python/pandas/default.asp

	For a course on pandas, see “Data Analysis with Pandas and Python,” Udemy: https://www.udemy.com/course/data-analysis-with-pandas/

Dealing with the pitfalls of joining pandas DataFrames

The previous recipe was a whirlwind tour that introduced pandas and exposed most of the features that we will use in this book. While an exhaustive discussion about pandas would require a complete book, in this recipe – and in the next one – we are going to discuss topics that impact data analysis and are seldom discussed in the literature but are very important.In this recipe, we are going to discuss some pitfalls that deal with relating DataFrames through joins: it turns out that many data analysis errors are introduced by carelessly joining data. We will introduce techniques to reduce such problems here.

Getting ready

We will be using the same data as in the previous recipe, but we will jumble it a bit so that we can discuss typical data analysis pitfalls. Once again, we will be joining the main adverse events table with the vaccination table, but we will randomly sample 90% of the data from each. This mimics, for example, the scenario where you only have incomplete information. This is one of the many examples where joins between tables do not have intuitively obvious results.Use the following code to prepare our files by randomly sampling 90% of the data:

vdata = pd.read_csv(
 "2021VAERSDATA.csv.gz", encoding="iso-8859-1")
vdata.sample(frac=0.9).to_csv(
 "vdata_sample.csv.gz", index=False)
vax = pd.read_csv(
 "2021VAERSVAX.csv.gz", encoding="iso-8859-1")
vax.sample(frac=0.9).to_csv(
 "vax_sample.csv.gz", index=False)

Because this code involves random sampling, the results that you will get will be different from the ones reported in this recipe. The code for this recipe can be found in Ch02/Ch02-2-pandas-pitfalls.py.

How to do it...

Follow these steps:

	Let’s start by doing an inner join of the individual and vaccine tables:

vdata = pd.read_csv(
 "vdata_sample.csv.gz", low_memory=False)
vax = pd.read_csv(
 "vax_sample.csv.gz", low_memory=False)
vdata_with_vax = vdata.join(
 vax.set_index("VAERS_ID"),
 on="VAERS_ID",
 how="inner"
)
len(vdata), len(vax), len(vdata_with_vax)

The len output for this code is 589,487 for the individual data, 620,361 for the vaccination data, and 558,220 for the join. This suggests that some individual and vaccine data was not captured.

	Let’s find the data that was not captured with the following join:

lost_vdata = vdata.loc[
 ~vdata.index.isin(vdata_with_vax.index)
]
lost_vdata
lost_vax = vax[~vax["VAERS_ID"].isin(vdata.index)]
lost_vax

You will see that 56,524 rows of individual data aren’t joined and that there are 62,141 rows of vaccine data.

	There are other ways to join data. The default way is by performing a left outer join:

vdata_with_vax_left = vdata.join(
 vax.set_index("VAERS_ID"),
 on="VAERS_ID"
)
vdata_with_vax_left.groupby(
 "VAERS_ID"
).size().sort_values()

A left outer join ensures that all the rows on the left table are always represented. If there are no rows on the right, then all the right columns will be filled with None values.

Warning

There is a caveat that you should be careful with. Remember that the left table – vdata – had one entry per VAERS_ID. When you left join, you may end up with a case where the left-hand side is repeated several times. For example, the groupby operation that we did previously shows that VAERS_ID of 962303 has 11 entries. This is correct, but it’s not uncommon to have the incorrect expectation that you will still have a single row on the output per row on the left-hand side. This is because the left join returns 1 or more left entries, whereas the inner join above returns 0 or 1 entries, where sometimes, we would like to have precisely 1 entry. Be sure to always test the output for what you want in terms of the number of entries.

	There is a right join as well. Let’s right join COVID vaccines—the left table—with death events—the right table:

dead = vdata[vdata.DIED == "Y"]
vax19 = vax[vax.VAX_TYPE == "COVID19"]
vax19_dead = vax19.join(
 dead.set_index("VAERS_ID"),
 on="VAERS_ID", how="right"
)
len(vax19), len(dead), len(vax19_dead)
len(vax19_dead[vax19_dead.VAERS_ID.duplicated()])
len(vax19_dead) - len(dead)

As you may expect, a right join will ensure that all the rows on the right table are represented. So, we end up with 583,817 COVID entries, 7,670 dead entries, and a right join of 8,624 entries.We also check the number of duplicated entries on the joined table and we get 954. If we subtract the length of the dead table from the joined table, we also get, as expected, 954. Make sure you do checks like this when you’re using joins.Example sanity checks for joins:

	Are you using the correct join direction (left, right, inner outer)?

	Are you missing entries you expected?

	Are row counts what you expected when looking at the size of the respective tables?

	Are you getting duplicates? If this is unexpected, you may want to use a GROUP BY clause and aggregations or calculations on other columns

	Finally, we are going to revisit the problematic COVID lot calculations since we now understand that we might be overcounting lots:

vax19_dead["STATE"] = vax19_dead["STATE"].str.upper()
dead_lot = vax19_dead[
 ["VAERS_ID", "VAX_LOT", "STATE"]
].set_index(["VAERS_ID", "VAX_LOT"])
dead_lot_clean = dead_lot[
 ~dead_lot.index.duplicated()
]
dead_lot_clean = dead_lot_clean.reset_index()
dead_lot_clean[dead_lot_clean.VAERS_ID.isna()]
baddies = dead_lot_clean.groupby(
 "VAX_LOT"
).size().sort_values(ascending=False)
for i, (lot, cnt) in enumerate(baddies.items()):
 print(
 lot, cnt, len(
 dead_lot_clean[
 dead_lot_clean.VAX_LOT == lot
].groupby("STATE")
)
)
 if i == 10:
 break

Note that the strategies that we’ve used here ensure that we don’t get repeats: first, we limit the number of columns to the ones we will be using, then we remove repeated indexes and empty VAERS_ID. This ensures no repetition of the VAERS_ID, VAX_LOT pair, and that no lots are associated with no IDs.

There’s more...

There are other types of joins other than left, inner, and right. Most notably, there is the outer join, which ensures all entries from both tables have representation.Make sure you have tests and assertions for your joins: a very common bug is having the wrong expectations for how joins behave. You should also make sure that there are no empty values on the columns where you are joining, as they can produce a lot of excess tuples.

Reducing the memory usage of pandas DataFrames

When you are dealing with lots of information – for example, when analyzing whole genome sequencing data – memory usage may become a limitation for your analysis. It turns out that naïve pandas is not very efficient from a memory perspective, and we can substantially reduce its consumption. One major reason is that pandas tends to assign data types that are larger than are really needed. For more background on pandas memory usage, see https://medium.com/@gautamrajotya/how-to-reduce-memory-usage-in-python-pandas-158427a99001.In this recipe, we are going to revisit our VAERS data and look at several ways to reduce pandas' memory usage. The impact of these changes can be massive: in many cases, reducing memory consumption may mean the difference between being able to use pandas or requiring a more alternative and complex approach, such as Dask or Spark.

Getting ready

We will be using the data from the first recipe. If you have run it, you are all set; if not, please follow the steps discussed there. You can find this code in Ch02/Ch02-3-pandas-memory.py.

How to do it…

Follow these steps:

	First, let’s load the data and inspect the size of the DataFrame:

import numpy as np
import pandas as pd
vdata = pd.read_csv(
 "2021VAERSDATA.csv.gz",
 encoding="iso-8859-1"
)
vdata.info(memory_usage="deep")

Here is an abridged version of the output:

[image: Figure 2.9 – Memory usage of the initial DataFrame]Figure 2.9 – Memory usage of the initial DataFrame

Here, we have information about the number of rows and the type and non-null values of each row. Finally, we can see that the DataFrame requires a whopping 1.3 GB. Most modern computers have 16 GB of RAM or more, but this means you are already taking up an appreciable fraction of that just with this one data table! In a real, large-scale application, you would need to be very careful about memory efficiency in your code.

	We can also inspect the size of each column:

for name in vdata.columns:
 col_bytes = vdata[name].memory_usage(
 index=False, deep=True)
 col_type = vdata[name].dtype
 print(
 name,
 col_type, col_bytes // (1024 ** 2))

Here is an abridged version of the output:

[image: Figure 2.10 – Column sizes]Figure 2.10 – Column sizes

SYMPTOM_TEXT occupies 442 MB, so one-third of our entire table.

	Now, let’s look at the DIED column. Can we find a more efficient representation?

vdata.DIED.memory_usage(index=False, deep=True)
vdata.DIED.fillna(False).astype(bool).memory_usage(
 index=False, deep=True)

The original column takes 21,181,488 bytes, whereas our compact representation takes 656,986 bytes. That’s 32 times less!

	What about the STATE column? Can we do better?

vdata["STATE"] = vdata.STATE.str.upper()
states = list(vdata["STATE"].unique())
vdata["encoded_state"] = vdata.STATE.apply(
 lambda state: states.index(state))
vdata["encoded_state"] = vdata["encoded_state"].astype(np.uint8)
vdata["STATE"].memory_usage(index=False, deep=True)
vdata["encoded_state"].memory_usage(
 index=False, deep=True)

Here, we convert the STATE column, which is text, into encoded_state, which is a number. This number is the position of the state’s name in the list state. We use this number to look up the list of states. The original column takes around 36 MB, whereas the encoded column takes 0.6 MB.As an alternative to this approach, you can look at categorical variables in pandas. I prefer to use them as they have wider applications. Categorical variables take on a certain number of fixed values (e.g. Male, Female, or a list of states) and are stored more efficiently than the corresponding text. This approach can be very intuitive when performing statistics and using data visualization libraries.

	We can apply most of these optimizations when we load the data, so let’s prepare for that. But now, we have a chicken-and-egg problem: to be able to know the content of the state table, we have to do a first pass to get the list of states, like so:

states = list(pd.read_csv(
 "vdata_sample.csv.gz",
 converters={
 "STATE": lambda state: state.upper()
 },
 usecols=["STATE"]
)["STATE"].unique())

We have a converter that simply returns the uppercase version of the state. We only return the STATE column to save memory and processing time. Finally, we get the STATE column from the DataFrame and load it into the states array. In this way, we have created an array of just the states, already pre-processed to save memory.

	The ultimate optimization is not to load the data. Imagine that we don’t need SYMPTOM_TEXT – that is around one-third of the data. In that case, we can just skip it. Here is the final version:

vdata = pd.read_csv(
 "vdata_sample.csv.gz",
 index_col="VAERS_ID",
 converters={
 "DIED": lambda died: died == "Y",
 "STATE": lambda state: states.index(
 state.upper()
)
 },
 usecols=lambda name: name != "SYMPTOM_TEXT"
)
vdata["STATE"] = vdata["STATE"].astype(np.uint8)
vdata.info(memory_usage="deep")

We are now at 714 MB, which is a bit over half of the original. This could be still substantially reduced by applying the methods we used for STATE and DIED to all other columns.

See also

The following is some extra information that may be useful:

	There is plenty of content available on the web to help you understand pandas. You can start with the main user guide, which is available at https://pandas.pydata.org/docs/user_guide/index.html.

	If you need to plot data, do not forget to check the visualization part of the guide since it is especially helpful: https://pandas.pydata.org/docs/user_guide/visualization.html.

	If you are willing to use a support library to help with Python processing, check out Apache Arrow, which will allow you to have extra memory savings for more memory efficiency: https://arrow.apache.org/.

	Dask and Zarr allow you to work with larger-than-memory datasets using a pandas-like interface:

	https://www.dask.org/

	https://zarr.dev/

Chapter 3: Modern Coding Practices and AI-generated coding

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

In this chapter we’ll learn about key tools that help us write good code and follow solid software engineering practices. First, we’ll learn about linting tools that help you automatically format your code and catch a variety of errors. You’ll also see how to standardize your code against style guides. Next, we’ll learn about using AI for coding, starting with a simple example that manipulates a sequence file. Then we’ll try a more complex example and learn how to write code for alignment using AI.We will then discuss the importance of test-writing in your code and how AI can assist you in writing unit tests. Finally, we will go over the importance of code review and use a simulated pull request process to show you how this practice improves your code.This chapter will give you a solid grounding in some basic software engineering practices that will serve you well as you go through the book and learn to utilize Python for bioinformatics tasks. You will also get a solid introduction to AI-assisted coding which can be helpful to you throughout the book for learning and debugging. We’ll then provide tips throughout the book about how to use AI tools to take your learning further!In this Chapter you will learn:

	Using linting tools and style guides to write accurate, well-formed code

	Writing a simple bioinformatics file parser using AI

	Read alignment

	Writing tests with AI-assisted coding

	Code review with AI

Technical requirements

The code for this chapter can be found in:https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch03You will want to make a folder for Ch03 and start your Jupyter environment.

Using linting tools and style guides to write accurate, well-formed code

A variety of tools exist for the modern Python programmer to use to improve their code and ensure consistency of style. Many times, these tools are run automatically when checking code as part of CI/CD (continuous integration/continuous deployment). Many organizations also adopt style guides that go beyond just “does the code work” to specify how code would be written to be understandable and visually clear. Linting is a process for analyzing code syntax and style inconsistencies. PyLint is a popular Python tool for this.One of the most popular style guides to know about for Python is PEP8. This style is enforced by many programs such as PyLint, and PyCodeStyle which we will use in our Jupyter notebook.In this recipe we will learn about a few common tools for style enforcement in Python and learn to run them both from the terminal and from within our notebooks.

Getting ready

	First, we’ll install pylint. From the terminal, type:

conda install pylint
You can check it is working by typing:
pylint –h

	Next let’s install flake8. This tool is fundamental for Python style enforcement. It can be run by itself, but it is also used by pycodestyle. We say that flake8 is a dependency of pycodestyle, which we will use within our notebooks, so we will need to install that first.

pip install pycodestyle pycodestyle_magic

	We also install pycodestyle_magic which is a module that enables the magic commands for pycodestyle in Jupyter.

	Finally, we will install black which is a comprehensive code formatter for Python:

pip install black

We will begin the recipe by trying out pylint on a traditional python file (.py file). This is as opposed to running something on a notebook, which has the .ipynb extension. You could use any .py file, but for the purpose of this recipe you can use the sample.py file (Ch03/sample.py) provided with this recipe.

How To Do It ...

Here are the steps to try this recipe

	Put the file sample.py in your current directory.

	Now from the terminal run:

pylint sample.py

You will see some output like this:

[image: Figure 3.1 – pylint output for sample.py]Figure 3.1 – pylint output for sample.py

This gives you a series of informative messages about potential issues with your code:

	On line 1 we are missing a module docstring – a method used for documenting Python code, see: https://www.geeksforgeeks.org/python-docstrings/

	On line 3 we see that we have multiple imports on one line; it is typically better form to write each import separately

	On line 6 we have a missing docstring for the function

	On line 6 we also see variables that do not conform to the case naming style. Typically, you should use snake case with meaningful variable names using lower case letters joined by underscores – see: https://realpython.com/ref/glossary/snake-case/#:~:text=In%20programming%2C%20snake%20case%20is,in%20an%20identifier%20improves%20readability

	On line 13, 18 & 21 we are again missing a docstring

	On line 26 we see a variable that does not conform to naming conventions. Typically, an all-upper case naming convention is used for constants.

	Finally, we see that we are importing libraries that are unused.

The last thing we see from the pylint output is the score. The score is calculated by taking the number 10 and subtracting off points based on the number and severity of errors you have. So, the closer the score is to 10 the better. We can see this code got a pretty low score of 3.12 and has room for improvement!

	Next let’s learn about a handy tool called pycodestyle which is like pylint but can be run inside a Jupyter notebook. Start a new notebook.

	First load pycodestyle to use it in your notebook:

%load_ext pycodestyle_magic

	Now you can check out your coding style by including the %pycodestyle decorator in a code block and then running it. Let’s try out an example

	First run a cell to load the magic extension:

%load_ext pycodestyle_magic

	Now in the next cell, run a block of code with the %%pycodestyle decorator:

%%pycodestyle
import os, sys
def example_function(a, b):
 if a > b:
 print("a is greater than b")
 else:
 print("b is greater or equal to a")
Long line exceeding 80 characters
print("This is a really, really, really, really, really, really, really long line of code.")
example_function(10, 5)

You will see some output with coding suggestions. It looks like this:

[image: Figure 3.2 – pycodestyle output]Figure 3.2 – pycodestyle output

This gives us a few warnings similar to what we saw with pylint. You can use this technique throughout the book to help you find issues in your code.Black is a tool that can be used to automatically format a Python file based on standard conventions. It is often used by programming teams to enforce universal style.

	You can run black from your terminal like this:

black sample.py

This will automatically reformat your code. You can try it on a file by saving a backup copy of the file first and then running black on the main copy. Next run diff on the files and see what the differences are.

	You can also run black on your Jupyter notebooks. To do that, first we need to install the black for jupyter dependency. Run this from the terminal:

pip install "black[jupyter]"

	Now you can run black on a notebook from your terminal like this:

black Ch02-1-pandas-basics.ipynb

There's more …

Many other linting and formatting tools exist for Python. Let’s take a quick look at some of them here:

	Tool
	URL
	Description

	AutoPep8
	https://github.com/hhatto/autopep8
	This tool will format your code in PEP8 style

	Yet Another Python Formatter (yapf)
	https://github.com/google/yapf
	The Yet Another Python Formatter tool can format in both PEP8 and Google styles

	Code Beautifier
	https://codebeautify.org/python-formatter-beautifier
	This tool has an online interface you can paste your code into

	MyPy
	https://mypy-lang.org/
	This tool enforces static typing in which we ensure variables have explicit data types

Table 3.1 – Formatting tools for Python

See also …

	For installation details and an in-depth guide to PyLint, look here: https://pypi.org/project/pylint/

	Information on the PEP8 Style Guide is here: https://peps.python.org/pep-0008/

	To learn more about installing and using Flake8 as a tool for style guide enforcement, check here: https://flake8.pycqa.org/en/latest/

	A great review of how and why you should use code quality tools can be found here: https://realpython.com/python-code-quality/

	For more information on docstrings, see: https://peps.python.org/pep-0257/

Writing a simple bioinformatics file parser using AI

Manipulating sequences is one of the most basic functions in Bioinformatics. It involves formatting and file type conversion, compression, and manipulation of biological sequences such as reverse complementation or translation of DNA into protein. and We’ll be looking at this in Chapter 5, Recipe 2, “Tools for Sequence Manipulation”. But first we’ll take a quick look at how AI is impacting bioinformatics and coding.In the past several years, Large Language Models (LLMs) have taken the AI world by storm. These models use machine learning to model relationships between text. They have become very powerful and can write code and unit tests for you among other things. In Bioinformatics, LLMs are being used to create new proteins and even design entire genomes. For example, ProGen can generate functional proteins of many types (Madani et al, “Large Language Models generate functional protein sequences across diverse families”, Nature Biotechnology, Jan 2023 - https://www.nature.com/articles/s41587-022-01618-2)Let’s look at an example of how we could use a tool like ChatGPT to write some code for basic sequence file manipulation.

Getting ready

	First you will want to get set up with ChatGPT and familiarize yourself with the interface. You can find it at: https://chatgpt.com/

You can use ChatGPT for free. If you want to get a paid account, it will cost $20/month and will give you access to the latest models and faster response times. For this book, I used the professional version of ChatGPT 4-o.

	We will learn more about bioinformatics file formats in Chapter 5-2, “Tools for Sequence Manipulation”, but let’s briefly review the FASTA format. FASTA is short for “FAST-All” and is a way to represent both DNA and protein sequences. It allows us to easily store and transmit genomic information in a standardized way. You can find more information on it here: https://www.bioinformatics.nl/tools/crab_fasta.html

Here is what our example file will look like:

>Seq-1
ATTGGGGTAACGGTTGGGCT

This format consists of a header that always starts with a greater-than symbol “>“ and then a line feed. Next comes one or more lines of sequence data. These can be DNA or Protein (amino acid) characters. You can follow this with another header and another sequence. When you have multiple sequences, we typically call this a multi-FASTA file.

Tip

Line break characters can differ between operating systems, e.g. Mac and Windows. This is one of the first things to check if you are having trouble with parsing or opening files.

How to do it...

Here are the steps to try this recipe:

	Let’s go into ChatGPT and type a simple prompt:

 Write code to parse records from a fasta file

You will see that ChatGPT prints out some helpful background information, code for a handy function parse_fasta() which will read and parse your file, and an example of how to use that function. It then discusses what the code does for you and provides the expected input and output. It even documents the functions using a docstring (the text in triple quotes).

[image: Figure 3.3 – Example partial output from ChatGPT]Figure 3.3 – Example partial output from ChatGPT

	Let’s try out this code. Paste the code example into your Jupyter notebook. We will use one cell for the parse_fasta() function and one for the test example. You can use the handy Copy code button in the top right on ChatGPT.

	We will also need a simple file to play with called example.fasta. You can use any text editor (e.g. vi, vim, nano) to make a file like this and copy the example input from the ChatGPT window into the file and save it. Make sure to keep the file in the same directory you are working out of for your Jupyter notebook so it can see the file. You can also use the file that is in the GitHub repository for this course or any other sample fasta file. In Recipe 8-1, “Accessing Genbank and moving around NCBI Databases” we’ll learn how to retrieve files like this programmatically from public data sources.

	Here is an example of our code being run in the Jupyter notebook:

[image: Figure 3.4 – Code from ChatGPT used within the Jupyter notebook]Figure 3.4 – Code from ChatGPT used within the Jupyter notebook

	After you run the code, you will see the output which shows the parsed header and sequence information:

[image: Figure 3.5 – Output of the parse_fasta() function]Figure 3.5 – Output of the parse_fasta() function

To recap, this code:

	Defines a parse_fasta() function using the def keyword.

	Defines a dictionary for the results. A dictionary is a set of key/value pairs. In this case the key will be the sequence name, and the value will be the sequence.

	Uses the with keyword to open the file and utilize it

	Uses a for loop to parse the lines in the file

	Stores and returns the dictionary of results

	Finally, we utilize the function to set an example file to parse, run the function, store the results, and print them out

As you can see ChatGPT is very powerful. Throughout this book you are encouraged to write and understand your own code. But you should also feel free to turn to ChatGPT to help you write code or debug problems you are having as you go!

There’s More...

The field of AI-driven coding is rapidly advancing. In the next few years, it will radically transform how people write and debug code. LLMs are also impacting science, genomics, and bioinformatics in many critical ways. As a bioinformatician, it is worth your time to learn AI-assisted coding tools and stay abreast of the advancements in the field.Each year new models that are more powerful or specialized for certain tasks are being built. For instance, ChatGPT now has various model flavors. ChatGPT 4o is the current flagship general model at the time of this writing. 4o-mini is a faster, lighter weight model. o1-preview and o1-mini have more extensive reasoning, meaning they can be useful when you want to think through a problem more extensively, using the algorithm as a helper. At this time, o1-mini is planned to be released free to users, whereas 01-preview is part of the paid subscription. Within ChatGPT, the DALL-E model is used to provide image generation capabilities, also for free. Canvas, another free tool, is used to assist with writing larger documents or code projects.Let’s see an example of a typical ChatGPT session:

[image: Figure 3.6 – Selecting a model subtype in ChatGPT]Figure 3.6 – Selecting a model subtype in ChatGPT

In the upper left, you can see the model type selection, currently set to GPT-4o.There are many other popular sites that offer AI-assisted coding, and more are coming out all the time. As of this writing, some people feel that Claude has a slight edge on coding while ChatGPT is better are writing text. One thing we can be sure of though is that this will keep changing and that significant advances will occur in the next few years in this area. This is an important area for you to keep abreast of.Here are a few popular sites for AI-Assisted coding:

	Name
	Site
	Description

	ChatGPT
	https://openai.com/index/chatgpt/
	Popular general-purpose chatbot

	Claude
	https://claude.ai
	Excels at editing

	GitHub Co-Pilot
	https://github.com/copilot/features
	Coding assistant that integrates well with popular Python IDEs

	Gemini
	https://gemini.google.com/app
	Google’s AI assistant, integrated with their search engine

	WatsonX
	https://www.ibm.com/products/watsonx-code-assistant
	IBM’s coding assistant

See also

	Review on FASTA format: https://en.wikipedia.org/wiki/FASTA_format

	Information on docstrings: https://peps.python.org/pep-0257/

	Some text editors for Mac: https://www.geeksforgeeks.org/best-code-text-editors-for-mac/

	Vi Reference Card: https://www.ks.uiuc.edu/Training/Tutorials/Reference/virefcard.pdf

	ChatGPT Pricing: https://openai.com/chatgpt/pricing/

Read Alignment

Next let’s look at building a little more sophisticated example using ChatGPT. In this recipe we will write code to align two reads together, a common bioinformatics task.A core algorithm in bioinformatics is Alignment. This is the task of taking two or more sequences and seeing how the sequences can optimally line up with each other. Alignment is used in many bioinformatics tasks, for example to see how different species may relate to each other (phylogenetics), how proteins may have evolved, or to take many sequencing reads and align them to a reference to do variant calling.

How to do it...

Here are the steps to try this recipe:

	Go into ChatGPT and get ready to give it the following prompt: Write an example that aligns two DNA sequences

	This will write example code that uses Biopython’s Bio.Align module. The code will work; however, we notice that it uses the pairwise2 algorithm. When you paste this code into your notebook and run it, you will get a message saying that this method will soon be deprecated.

	We would like to ask ChatGPT to further improve its code and get rid of this warning message. Let’s see how we can easily update ChatGPT’s previous code with an additional prompt. Note that ChatGPT can remember and refer to the previous work and modify it.

	Here’s the next prompt: Change the above code to use PairWiseAligner instead of pairwise2. Now we get code that uses the more modern PairWiseAligner module instead.

	Paste this code into your notebook and run it.

[image: Figure 3.7 – Results of Pairwise Alignment code]Figure 3.7 – Results of Pairwise Alignment code

As you can see, the code worked and printed out both a local and global alignment (more on Alignment will be covered in Chapter 5, “Alignment & Variant Calling”).

Tip

Different AI tools, or even future versions of ChatGPT, may give you slightly different results for the prompts we present in the book. In most cases they will give you something very similar to work with. But if you ever need to refer back to the exact code discussed here, it is available in the notebooks from the GitHub repository.

To recap, this code:

	Defines two example DNA sequences (seq1 and seq2)

	Initializes the PairwiseAligner() class

	Sets default parameters for match penalties, gap opening penalties, etc.

	Performs a global alignment of seq1 and seq2

	Prints out the alignment and score

See also

	For more background on Sequence Alignment, see: https://www.ncbi.nlm.nih.gov/books/NBK464187/

	For an exciting journey into how AI will transform our society in the coming decades, check out “The Singularity is Nearer” by Ray Kurzweil https://www.amazon.com/Singularity-Nearer-Ray-Kurzweil-ebook/dp/B08Y6FYJVY

Writing Tests with AI-assisted coding

In this recipe we will try out a really useful function of AI-Assisted coding: test writing. Tools like ChatGPT can help you write a variety of tests automatically for your code. This helps ensure completeness and accuracy. We will take the code from read alignment work in Recipe 3-3, Read Alignment and write some tests for it.Go into ChatGPT and get ready to write a prompt to add testing code for the alignment function that we just wrote in Recipe 3.3

How to do it...

Here are the steps to try this recipe:

	We’ll begin by writing a prompt to develop testing code for the alignment code we wrote in the previous recipe (make sure it is still available in ChatGPT, if it’s not then run the examples from the Sequence manipulation and Read alignment recipes first). Here’s the prompt: Write test code for the above

Note

We can be very generic with our instructions with ChatGPT. We could have said “write unit tests” or given other instructions, but ChatGPT will understand what is needed, refer to the previous function, and write test code.

	Now, cut and paste the code into your notebook.

	When we first write this code, we get an error because it is designed to run on the command line. Let’s update this to run it in a Jupyter Notebook: Write the above test code so I can run it in a Jupyter notebook

	Now we can run the code. The following image shows the results of running the code in the notebook:

[image: Figure 3.8 – Results of the Test code]Figure 3.8 – Results of the Test code

The above result looks like an error, but it is the output of the testing code, which has in fact shown that the tests failed. This is good, this is what we want – when the test results do not match what is expected, we want it to fail so that we can catch errors. ChatGPT tried to guess some of the outputs of the alignment here and wrote some example tests asserting the results, which in this case did not match. If we wanted to, we could run the alignments with the proper scores and adjust this code so that it should pass.To review, this code:

	Imports the unittest library

	Creates a class called TestPairwiseAligner()

	Defines the setUp() function with initial parameters

	Defines a test_global_alignment() function to test the global alignment

	Defines a test_local_alignment() function to test the local alignment

	Uses assert functions to test that the outputs match expected results

	Runs the tests

There’s More...

This is just a start at showing you how to use ChatGPT to write test code. You could say things like “write additional tests” or “write a test for the gap penalty” to provide additional testing code.You can even write something like “what is the coverage over the above test code?”. This will use the coverage library to see how thoroughly the provided tests exercise the different elements of the code. In general, you want to aim for something like ninety percent or higher test coverage for your code before you declare it ready. This can be a great way to help you in your software engineering career by always delivering code that is well-covered by tests from the get-go!

See also

	For a guide to unit testing, look at: https://www.dataquest.io/blog/unit-tests-python/

	For further discussion of the coverage library, see: https://coverage.readthedocs.io/en/7.6.8/

Code Review with AI

One of the most important jobs of a software engineer is to review the code of other engineers. This is typically done at modern companies to ensure code quality and can be as important and demanding as writing the code itself.Typically, one or more engineers, often someone more senior, may review your code and make comments to improve the code further, add more tests, or “nits” that can be just small format improvements. You will be expected to address these comments before the code is ready.Here is an example of a typical pull request in GitHub, where someone has requested additional changes to the code:

[image: Figure 3.9 – An example of the code review process in Github]Figure 3.9 – An example of the code review process in Github

In this recipe, we will use AI to help us simulate a typical Code Review process and get a feel for how we would use it to improve our code further.

How to do it...

Here are the steps to try this recipe:

	Let’s use ChatGPT to simulate a Pull Request process. First, grab the parse_fasta() function from your Ch03-3-sequence-manipulation notebook (also available in the book’s GitHub repository). Paste it into ChatGPT. It will automatically summarize the function for you without even being prompted.

	You will notice that one of the first handy things it does for you is to summarize the parse_fasta() function. Here is what the response looks like:

[image: Figure 3.10 – ChatGPT summarizes the parse_fasta() function]Figure 3.10 – ChatGPT summarizes the parse_fasta() function

	Next let’s try and have ChatGPT simulate a pull request process with this prompt: Review the above code and simulate a pull request review process with me

Here are the suggestions we get:

	Area
	Comment
	Suggestion

	Error Handling
	Right now, if the file doesn't exist or can't be read, the function will crash with a Python FileNotFoundError.
	Wrap the open() statement in a try/except block to gracefully catch file errors and inform the user.

	Blank Line Handling
	Some FASTA files might have occasional blank lines between sequences. Your current code would incorrectly treat them as sequence lines.
	Add a if not line: continue after stripping whitespace to skip blank lines.

	Code Structure (Minor)
	Slight duplication in saving the previous sequence inside the loop and after the loop.
	This is okay, but you could refactor slightly for elegance (optional).

	Testing
	No unit tests provided to verify functionality on various input types.
	Provide a few basic test cases using Python's unittest or pytest.

	Read through the entire response. As you will see, ChatGPT responds with helpful comments and suggestions to improve the code. For example, the first comment exemplifies what should be done if a file does not exist or cannot be opened. It suggests that we consider using a try..except block to catch and handle File I/O errors. We see the details of the suggested improvement in Figure 3.11:

[image: Figure 3.11 – One of the suggested improvements]Figure 3.11 – One of the suggested improvements

Several other suggestions are provided that you can review. We can even ask ChatGPT to help us update the code with some of the suggested improvements. Here’s a prompt: update the parse_fasta function above to include a try except block for catching a missing file on the file open command

	The code is now updated to add the exception handling. This is what the updated code looks like:

def parse_fasta(file_path):
fasta_dict = {}
try:
with open(file_path, 'r') as file:
header = None
sequence = []
for line in file:
line = line.strip()
if not line:
continue
if line.startswith(">"):
if header:
fasta_dict[header] = ''.join(sequence)
header = line[1:] # Remove ">" sequence = []
else:
sequence.append(line)
if header:
fasta_dict[header] = ''.join(sequence)
except FileNotFoundError:
print(f"Error: File '{file_path}' not found.") return fasta_dict

We can see now that our function has been updated to include a try..except block to handle the FileNotFoundError.Of course, in real life you would often be submitting the code yourself and working with a Human reviewer making comments on the code. But this gives you a very good understanding of the process and how it works in a modern workplace. And you can always use ChatGPT to review your code as well!

There’s More...

There are many tools and coding assistants that can be used to help make your code better. For example, SonarQube integrates with your CI/CD pipelines and monitors your code quality. Korbit provides AI-powered code review and helps you write pull requests. You will want to be careful to look at the terms and conditions of each tool and understand whether your data will be shared if you use the tool (details on the tools listed below in the See Also section.).You are encouraged to explore this quickly growing space. Future developers will be leveraging these tools so you should too!

Agile Methodology

Another important thing to learn about on your software engineering journey is Agile methodology and related practices. More and more employers are using these approaches to be effective in their projects. At its core, Agile is about using short sprints to achieve goals and being iterative in feature development. Teams typically work with Product Managers to define requirements and use ticketing systems like JIRA to track the work. These approaches tend to lead to faster, more reliable, and more predictable software delivery. The core elements of Agile sprints, also referred to as Agile Ceremonies are:

	Daily Scrum – This term originally comes from Rugby where players huddle up. It is also called Daily Standup or Standup. It is a quick meeting for the team to check in, discuss what they are doing that day, and most importantly, let the team know about any Blockers, or areas where they cannot make progress

	Sprint Planning – In this meeting, tasks that are ready and on deck are pulled into the next sprint cycle (typically 2 weeks) and assigned to engineers. The team discusses the details of the work and how it may impact others.

	Sprint Review – In this ceremony, engineers show of their work to stakeholders and discuss whether the features meet the requirements.

	Sprint Retrospective – This meeting is focused around the mechanics of the previous sprint. Engineers have a chance to discuss what went wrong and what went well.

	Backlog Grooming – This is focused on going into detail on tickets and discussing what needs to be done. Tickets are pointed to estimate the amount of time and work each should take.

AI Tips

Now that we’ve seen how powerful AI can be for assisting you in writing code and debugging, we will introduce a great new feature in this edition of the book! In addition to the code you’ll be working through yourself, periodically we’ll provide an AI Tip. These callouts will give you some ideas on prompts to use for topics related to that section!

See also

	To learn more about Pull Requests read: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request

	A handy overview showing the Lifecycle of a Pull Request: https://devguide.python.org/getting-started/pull-request-lifecycle/

	For more details on SonarQube: https://www.sonarsource.com/

	Korbit is here: https://www.korbit.ai/

	Read the Agile Manifesto: https://agilemanifesto.org/

	For Background on Agile: https://asana.com/resources/agile-methodology

	To Become a Scrum Master: https://www.scrum.org/courses/recommended-courses-scrum-masters

	For a good general background on software design, pick up “A Philosophy of Software Design” by John Ousterhout https://www.amazon.com/Philosophy-Software-Design-John-Ousterhout/dp/1732102201

	“The Missing Readme” by Chris Riccomini & Dmitry Ryaboy provides a great sense of what it is like to be a modern software engineer and how to handle your first workplace experiences

	A Python library for working in JIRA: https://jira.readthedocs.io/

	For a great book on working in team environments, check out “Team Topologies” by Skelton and Pais (IT Revolution Press) https://teamtopologies.com/

Chapter 4: Data Science and Graphing

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

In this chapter we will extend our use of Pandas from Chapter 2 and dive more deeply into Data Science techniques. Then we’ll go over some important graphing tools.Data Science and Bioinformatics are closely related fields, and so many times bioinformaticians are called upon to get involved in traditional data science tasks. As such, it is important to have a solid grounding in data science techniques. In this chapter we’ll go over Numpy, a critical scientific library for Python. We’ll also get a quick introduction to some key Data Science techniques like Principal Components Analysis (PCA) and Decision Trees. In doing so, we’ll learn about an amazing toolkit called scikit-learn. We’ll also develop some basic graphing skills that we’ll use throughout the book.

	In this chapter we’re going to cover the following main topics:

	NumPy – the Engine behind Python data science

	PCA using scikit-learn

	Decision Trees

	Graphing in Matplotlib

	UMAP analysis in Seaborn

Technical requirements

The code for this chapter can be found in: https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch04You will want to create a Ch04 folder and set up your notebooks there. You’ll also need to get the data files from Ch02.Remember to activate your conda environment before beginning the recipes, like this:

conda activate bioinformatics_base

OR - If you would like to set up a conda environment specific to this chapter, before activating bioinformatics_base, run:

conda create -n ch04-data-science --clone bioinformatics_base
conda activate ch04-data-science

You will be able to install the packages for the chapter as you go, or you can use the YAML file provided in the repository:

conda env update --file ch04-data-science.yml

Understanding NumPy as the engine behind Python data science and bioinformatics

In this recipe, we’ll learn about a critical numerical library in Python and explore it using a dataset on adverse responses to vaccines.Most of your analysis will make use of NumPy, even if you don’t use it explicitly. NumPy is an array manipulation library that is behind libraries such as pandas, matplotlib, BioPython, and scikit-learn, among many others. While much of your bioinformatics work may not require explicit direct use of NumPy, you should be aware of its existence as it underpins almost everything you do, even if only indirectly via the other libraries.You should take a moment now to learn more about arrays in Python. Arrays are sets of data that can be one or more dimensional. For example:

arr1 = [“a”, “b”, c”]

... would give you a one-dimensional array with 3 elements, the letters a, b, and c.

arr1[0]

...would give you the zeroeth element of the array, in this chase the letter a.

len(Arr1)

...gives you the length of the array, which is 3 in this case.Technically Python does not use arrays, it uses Lists, but these can be used as arrays. Before continuing, you should familiarize yourself with this tutorial: https://www.w3schools.com/python/python_arrays.aspThe main way people use arrays in Python, even if indirectly, is via NumPy. When we get into pandas, we will discuss DataFrames, which are essentially structured wrappers around arrays that include additional information like labels and metadata. So, it is important to understand NumPy arrays first. Read more here: https://www.geeksforgeeks.org/basics-of-numpy-arrays/In this recipe, we will use VAERS data from Chapter 2 to demonstrate how NumPy is behind many of the core libraries that we use. Our example will extract the number of cases from the five US states with more adverse effects, splitting them into age bins: 0 to 19 years, 20 to 39, up to 100 to 119.

Getting ready

First grab the data from the Using pandas to process vaccine-adverse events (VAERSDATA.csv.gz) recipe and make sure it is available. You can put it under a “data” subdirectory in your Ch04 folder to put it in the right place relative to your notebook.

How to do it…

	Let’s start by loading the data with pandas and reducing the data so that it’s related to the top five US states only:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
vdata = pd.read_csv(
 "data/2021VAERSDATA.csv.gz", encoding="iso-8859-1", low_memory=False)
vdata["STATE"] = vdata["STATE"].str.upper()
top_states = pd.DataFrame({
 "size": vdata.groupby("STATE").size().sort_values(ascending=False).head(5)
}).reset_index()
top_states["rank"] = top_states.index
top_states = top_states.set_index("STATE")
top_vdata = vdata[vdata["STATE"].isin(top_states.index)].copy()
top_vdata["state_code"] = top_vdata["STATE"].apply(
 lambda state: top_states["rank"].at[state]
).astype(np.uint8)
top_vdata = top_vdata[top_vdata["AGE_YRS"].notna()].copy()
top_vdata.loc[:,"AGE_YRS"] = top_vdata["AGE_YRS"].astype(int)
top_states

To recap, this code:

	Imports our libraries and loads the data

	Creates a DataFrame called top_states, grouping by the size of the data for each state and selecting the top 5

	Creates a rank column for the states

	Creates a DataFrame called top_vdata, and copies over the VAERS data relevant to the top 5 states only

	Cleans up top_vdata little by removing any entries with a blank age

	Prints out the top_states DataFrame

This rank will be used later to construct a NumPy matrix. The top states are as follows:

[image: Figure 4.1 – US states with largest numbers of adverse effects]Figure 4.1 – US states with largest numbers of adverse effects

	Now, let’s extract the two NumPy arrays that contain age and state data:

age_state = top_vdata[["state_code", "AGE_YRS"]]
age_state["state_code"]
state_code_arr = age_state["state_code"].values
type(state_code_arr), state_code_arr.shape, state_code_arr.dtype
age_arr = age_state["AGE_YRS"].values
type(age_arr), age_arr.shape, age_arr.dtype

This Code:

	Gets just the state code and age into a DataFrame called age_state

	Creates a numpy array state_code_arr with just the state code values

	Creates a numpy array age_arr with the age values

	Prints the data types of the arrays

Note that the data that underlies pandas is NumPy data (the values call for both Series returns NumPy types). Also, you may recall that pandas has properties such as .shape or .dtype: these were inspired by NumPy and behave the same.

	Next, we need to get our data arranged so that we have states with their corresponding age groups. Let’s create a NumPy matrix from scratch (a 2D array), where each row is a state and each column represents an age group:

age_state_mat = np.zeros((5, 6), dtype=np.uint64)
for row in age_state.itertuples(index=False):
 state_code = int(row.state_code)
 age_bin = min(int(row.AGE_YRS // 20), 5)
 if 0 <= state_code < 5 and 0 <= age_bin < 6:
 age_state_mat[state_code, age_bin] += 1
age_state_mat

The array has five rows – one for each state – and six columns – one for each age group. All the cells in the array must have the same type.We initialize the array with zeros. There are many ways to initialize arrays, but if you have a very large array, initializing it may take a lot of time. Sometimes, depending on your task, it might be OK that the array is empty at the beginning (meaning it was initialized with random trash). In that case, using np.empty will be much faster.

	We can extract a single row – in our case, the data for a state – very easily. The same applies to a column. Let’s take California data and then the 0-19 age group:

cal = age_state_mat[0,:]
kids = age_state_mat[:,0]

Note the syntax to extract a row or a column. It should be familiar to you, given that pandas copied the syntax from NumPy and we encountered it in previous recipes.

	Now, let’s compute a new matrix where we have the fraction of cases per age group:

def compute_frac(arr_1d):
 return arr_1d / arr_1d.sum()
frac_age_stat_mat = np.apply_along_axis(compute_frac, 1, age_state_mat)

The last line applies the compute_frac function to all rows. compute_frac takes a single row and returns a new row where all the elements are divided by the total sum.

	Now, let’s create a new matrix that acts as a percentage instead of a fraction – simply because it reads better:

perc_age_stat_mat = frac_age_stat_mat * 100
perc_age_stat_mat = perc_age_stat_mat.astype(np.uint8)
perc_age_stat_mat

Here we simply multiply all the elements of the 2D array by 100 to get percentages.Here is the result:

[image: Figure 4.2 – A matrix representing the distribution of vaccine-adverse effects in the five US states with the most cases]Figure 4.2 – A matrix representing the distribution of vaccine-adverse effects in the five US states with the most cases

	Finally, let’s create a graphical representation of the matrix using Matplotlib:

fig = plt.figure()
ax = fig.add_subplot()
ax.matshow(perc_age_stat_mat, cmap=plt.get_cmap("Greys"))
ax.set_yticks(range(5))
ax.set_yticklabels(top_states.index)
ax.set_xticks(range(6))
ax.set_xticklabels(["0-19", "20-39", "40-59", "60-79", "80-99", "100-119"])
fig.savefig("matrix.png")

This code:Initializes a new figureCreate a plot within that figureDisplay a greyscale matrixSet the tick marks and labels for the axesSaves the figure You can pass NumPy data structures directly to Matplotlib. Matplotlib, like pandas, is based on NumPy. We’ll cover Matplotlib more in Learning More about matplotlib for Chart Generation.In this section, we tried to understand how the NumPy library is behind some of the most important data analysis tasks. We started by importing our libraries and loading the data.Then we created a DataFrame called top_states, grouping by the size of the data for each state and selecting the top 5 and a rank column for the states. We also created a DataFrame called top_vdata, and copied over the VAERS data relevant to the top 5 states only. Finally, we cleaned up top_vdata a little by removing any entries with a blank age and printed out the top_states DataFrame. That was step 1. Next, we extracted two NumPy arrays by putting just the state code and age into a DataFrame called age_state followed by creating a NumPy array state_code_arr with just the state code values and a NumPy array age_arr with the age values. After creating these arrays, we printed their data types.

See also

The following is some extra information that may be useful:

	NumPy has many more features than the ones we’ve discussed here. There are plenty of books and tutorials on them. The official documentation is a good place to start: https://numpy.org/doc/stable/

	There are many important issues to discover with NumPy, but probably one of the most important is broadcasting: NumPy’s ability to take arrays of different structures and get the operations right. For details, go to https://numpy.org/doc/stable/user/basics.broadcasting.html

Introducing scikit-learn with PCA

In this recipe we’ll use an important data science technique to analyze the key factors in a sample breast cancer dataset.PCA is a statistical procedure that’s used to linearly uncorrelated components that explain as much of the variation in a dataset as possible. In this way it performs dimensionality reduction, meaning that we find a simpler or lower-dimensional representation of a more complex, or higher-dimensional dataset, thereby giving us a handle on key features that help explain the data in a powerful way. This step of finding explanatory features is a key first step in machine learning.In this recipe, we will implement PCA using the scikit-learn library. Scikit-learn is one of the fundamental Python libraries for machine learning. PCA is a form of unsupervised machine learning – meaning we don’t provide information about the class of the sample. We will discuss supervised techniques in the other recipes of this chapter see – Recipe 4, Exploring breast cancer traits using decision trees.

Getting ready

Before we move any further here is some background on Supervised vs. Unsupervised Learning:

	Supervised Learning
	Unsupervised Learning

	Input Data is labeled with the correct answer
	Input data has no labels, we are just trying to find patterns in the data

	Outputs Predictions for new data
	Tries to cluster new data into groups

	Methods include Linear Regression, Decision Trees
	Methods include PCA, K-Means, UMAP

	Example: Classifying emails as Spam
	Example: Finding traits that cluster from tissue samples

Table 4.1 - Supervised vs. Unsupervised Learning

Let’s also learn a little about scikit-learn and the datasets that come with it.Scikit-learn (https://scikit-learn.org/stable/) is a popular machine learning library built on numpy, scipy, and matplotilb. It is also referred to as sklearn.It comes with some handy toy datasets that you can easily bring into your notebook (https://scikit-learn.org/1.5/datasets/toy_dataset.html). In this recipe, we will work with the Breast Cancer dataset. This dataset contains 30 predictive attributes that summarize an image from a breast cancer tissue sample, with two potential outcomes: Benign and Malignant.The code for this recipe is in the Ch04/Ch04-2-PCA.ipynb notebook. Without any further delay, let’s get into it.

How to do it...

	First, we will import our libraries:

from sklearn.datasets import load_breast_cancer
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import pandas as pd

You can see here that we import the Breast Cancer dataset by using the sklearn.datasets package. We also bring in the PCA model from the sklearn.decomposition package. This package contains several other variations of matrix decomposition or dimensionality reduction techniques, such as FastICA or truncated Singular Value Decomposition. Next, we bring in the StandardScaler from the preprocessing package. Most machine learning algorithms expect features to be on a standard scale that looks like a Gaussian, with a mean of 0 and a variance of 1 – this is what we use StandardScaler for.

	Next, we’ll load in our dataset:

bc_data = load_breast_cancer()
X = bc_data.data
y = bc_data.target

This uses a loading function from the datasets package to put the data into bc_data. We put our features into array X and our targets (the outcomes) into array Y. If you want you can print out the type of bc_data like this:

type(bc_data)

You will see that it is an sklearn Bunch type. Bunch objects are an extension of dictionaries that are used to bundle data and related metadata (https://scikit-learn.org/stable/modules/generated/sklearn.utils.Bunch.html).

	Now we will normalize the data with the StandardScaler as we discussed before:

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

	Now we have our normalized data in the X_scaled array. Next, we’ll perform the PCA:

bc_pca = PCA(n_components=3)
X_bc_pca = bc_pca.fit_transform(X_scaled)

	We used the PCA function of scikit-learn to perform a Principal Components Analysis on the data. We initialize the PCA and then perform the fit on our scaled X data. Note the number of components is an important parameter that you can play with. In this case, we set it to 3. Three components is just a standard number that is easy to think about and visualize in 3 dimensions – you could pick any number, but the more components you choose the harder it will be to interpret the meaning of the results. With many components, you can always fit your data, but this can lead to what is called OverFitting, in which we simply fit our data by being overly specific and providing too much detail in our model. Such models are harder to interpret and will not perform well on future datasets that the model has not yet seen. ’Let’s use the pandas DataFrame function to turn our PCA results array into a DataFrame:

bc_pca_df = pd.DataFrame(X_bc_pca, columns=['PC1', 'PC2', 'PC3'])
bc_pca_df['label'] = y

	We also set a label for the data based on the result class (Benign or Malignant). Now let’s plot the results!

fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
for label, color, marker in zip([0, 1], ['red', 'blue'], ['o', '^']):
 subset = bc_pca_df[bc_pca_df['label'] == label]
 ax.scatter(subset['PC1'], subset['PC2'], subset['PC3'], c=color, label=data.target_names[label], marker=marker, alpha=0.7)
ax.set_title('PCA on Breast Cancer Dataset (3D View: PC1, PC2, PC3)')
ax.set_xlabel('Principal Component 1')
ax.set_ylabel('Principal Component 2')
ax.set_zlabel('Principal Component 3')
ax.legend()
plt.show()

This code:

	Creates a new figure

	Adds a 3D plot to the figure

	Assigns colors to the Benign and Malignant classes

	Creates subsets of the components

	Builds a 3-D Scatter plot with the principal components as the X, Y, and Z axes

	Sets the titles, axes labels, and shows the plot

Here is a plot of the 3 Principal Components:

[image: Figure 4.2 – PCA Results for Breast Cancer dataset]Figure 4.2 – PCA Results for Breast Cancer dataset

We can see the results in Figure 4.2. You can definitely notice that Principal Component 1 explains a lot of the data – as we move along that axis, we can see a correlation with Malignant vs. Benign status pretty clearly.

	Let’s also look at how well the principal components explain the data in a more numeric fashion:

explained_variance = bc_pca.explained_variance_ratio_
for i, variance in enumerate(explained_variance, 1):
 print(f"Explained variance for PC{i}: {variance:.2f}")
cumulative_variance = explained_variance.sum()
print(f"Total variance explained by the first 3 components: {cumulative_variance:.2f}")

This code uses the explained_variance_ratio_ parameter of the PCA class to return an array with the percentage variance in the data explained by each component.It is worth taking a moment here to explain formatting in Python print() statements. In the print statement above, we use something called a Python f-string, which is a formatting convention. The f and double quote start it off. We use curly braces around the string we want to print, and a special formatting code which tells us how to display that variable. In this case, “2f” means to display this as a floating-point number to decimal places of accuracy.Take a moment to learn more about Python f-strings here: https://www.geeksforgeeks.org/formatted-string-literals-f-strings-python/And brush up on your print formatting codes here: https://www.geeksforgeeks.org/python-output-formatting/Here is the output:

Explained variance for PC1: 0.44
Explained variance for PC2: 0.19
Explained variance for PC3: 0.09
Total variance explained by the first 3 components: 0.73

We can see that PC1 is indeed the most powerful and explains 44% of the variance. With three components working together, we can explain 73% of the variance in this dataset. Note here that PC1 stands for Principal Component 1 and is the main set of features that drives most of the variance in the data. For example, it might represent the mean radius or texture score of the tumor, or some combination thereof.

	Finally, we can graph the cumulative variance explained by the components

cumulative_variance = explained_variance.cumsum()
plt.figure(figsize=(8, 6))
plt.plot(range(1, len(cumulative_variance) + 1), cumulative_variance, marker='o', linestyle='--')
plt.title('Cumulative Explained Variance by Principal Components')
plt.xlabel('Number of Principal Components')
plt.ylabel('Cumulative Explained Variance')
plt.grid(True)
plt.show()

This code uses NumPy cumsum function to add up the sums from the explained variances and then creates a plot with the components on the X axis and the cumulative explained variance on the Y axis.The figure below shows the amount of accumulating variance that we can explain as we add more principal components into our model:

[image: Figure 4.3 – Increasing variance in the dataset is explained as we add more components]Figure 4.3 – Increasing variance in the dataset is explained as we add more components

As you can see, PCA is a powerful tool for exploring and explaining your data. Scikit-learn is a great toolbox for data science with numerous models and features. In the next recipe, we’ll learn about an unsupervised clustering approach called K-means!

There’s more...

While we certainly covered some important features, there is a lot more you can do with scikit-learn:

	Preprocess your data with a rich toolbox of functions

	Build a multi-layer Perceptron (a type of neural network) to classify data

	Perform image recognition using the sample datasets

	Explore numerous clustering algorithms such as DBSCAN, Agglomerative Clustering, Spectral Clustering and more

See Also

	Check out Human-learn, a tool that makes scikit-learn easier: https://koaning.github.io/human-learn/index.html

	To learn more about scikit-learn you can read “Machine Learning with PyTorch and SciKit-Learn: Develop machine learning and deep learning models with Python” (Packt Publishing)

K-means clustering

In this recipe, we’ll learn about another data science technique called clustering and revisit our breast cancer dataset.K-Means clustering is an example of an unsupervised algorithm. In these types of algorithms, we need a training dataset so that the algorithm is able to learn. After training the algorithm, it will be able to predict a certain outcome for new samples. In our case, we are hoping that we can predict the main classes in the population.K-Means comes from the idea of creating K centers. Points are assigned to centroids based on their Euclidean distance from the center. We then adjust the centers until we have more and more data points falling nearby with minimal distance. In this way we can attempt to classify our data into approximately K groups.

Getting ready

We will be using the same data as in the previous recipe. The code for this recipe can be found in Ch04/Ch04-3-k-means.py.

How to do it...

	First, we’ll set up our libraries:

from sklearn.datasets import load_breast_cancer
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

We will use the breast cancer dataset from scikit-learn as before and import the KMeans class from the cluster package.

	Next, we load the breast cancer dataset:

data = load_breast_cancer()
X = data.data
y = data.target

This loads our features into array X and labels into y.

	Next, we’ll normalize our data.

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

	Next, we perform K-means clustering:

kmeans = KMeans(n_clusters=2, random_state=42, n_init=10)
clusters = kmeans.fit_predict(X_scaled)

We use two clusters. We set the random state explicitly because this helps us have a more reproducible result – but normally you would not set this. We also use the n_init parameter to re-initialize the clustering ten times for better results.

	Next, we’ll build a DataFrame to hold the results:

bc_kmeans_df = pd.DataFrame(X_scaled, columns=data.feature_names)
bc_kmeans_df['Cluster'] = clusters
bc_kmeans_df['True Label'] = y

	Next, we will evaluate the accuracy of our clustering. But first we need to ensure that we calculate the accuracy using a consistent clustering. K-means cannot be forced to assign specific labels to specific clusters. So, in some cases you may run the algorithm and get Cluster 0 as Benign and Cluster 1 as Malignant, and in other runs you may get Cluster 0 as Malignant and Cluster 1 as Benign. And so, we are going to write a short function align_labels() to ensure consistency.

def align_labels(true_labels, cluster_labels):
new_labels = np.zeros_like(cluster_labels)
for cluster in np.unique(cluster_labels):
mask = cluster_labels == cluster
new_labels[mask] = mode(true_labels[mask], keepdims=False)[0]
return new_labels
aligned_clusters = align_labels(y, clusters)

This function makes sure the cluster assignment matches the actual labels as closely as possible. It initializes new_labels to hold the updated labels. It then loops over the clusters and sets up a mask to hold the samples belonging to the current cluster. It then uses the mode() function to find the most common true label in the cluster. This effectively reassigns the clusters to match the true labels, ensuring consistency across runs.

	Now let’s look at the accuracy of our clustering:

accuracy = accuracy_score(y, aligned_clusters)
print(f"Accuracy of clustering: {accuracy:.2f}")

Here is the output:

Accuracy of clustering: 0.91

We see that these two clusters can categorize the samples 91% of the time!Note that in the above print statement we used the formatting string “.2f”. This is a Python print formatting string which specifies that we should print a floating-point number to 2 decimal places of accuracy (two significant digits).

	Next, we will use PCA again to reduce the dimensionality of the data so that we can graph the clusters along two components, to make it easier to visualize.

pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
bc_kmeans_df['PC1'] = X_pca[:, 0]
bc_kmeans_df['PC2'] = X_pca[:, 1]

This assigns groupings in our clustering results to one principal component or the other.

	Now we can plot the results.

plt.figure(figsize=(8, 6))
for cluster, color, marker in zip([0, 1], ['red', 'blue'], ['o', '^']):
 subset = bc_kmeans_df[bc_kmeans_df['Cluster'] == cluster]
 plt.scatter(subset['PC1'], subset['PC2'], c=color, label=f'Cluster {cluster}', marker=marker, alpha=0.7)
plt.title('K-Means Clustering on Breast Cancer Dataset')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend()
plt.grid()
plt.show()

Here are the results:

[image: Figure 4.4 – Results of K-means clustering]Figure 4.4 – Results of K-means clustering

As you can see, K-means clustering can be a powerful way to find patterns in your data.

AI Tip

To make our display simpler above, we only chose 2 of our main 3 Principal Components. But we can extend our code even further to handle the 3D case!

Prepare: First cut and paste the entire notebook code in for Recipe 3. Alternatively, you can try uploading your entire notebook. ChatGPT can upload your notebook, alter it, and provide a new notebook for you to download.

Prompt: Update the above to provide a 3D visualization as well as the 2D plot

Prompt: Update the above notebook (or code) to use PCA and animate the clusters

You should see: Updated code to perform PCA dimension reduction with 3 components and then plot and visualize the results. If you used the approach above to upload your notebook, you will also get a fully functional notebook to download. You will see that a 3D toolkit is imported called mpl_toolkits.mplot3d. To animate the clusters, the code will use the IPython HTML and matplotlib animation modules. You will be able to view a rotating 3D plot of the Principal Components!

The example result of this AI Tip is available in the GitHub repository as: Ch04-3-k-means-PCA-animated.ipynb.

There’s more...

K-means is just one type of clustering algorithm included in scikit-learn. For instance, DBSCAN or Density-Based Spatial Clustering of Applications with Noise can identify clusters of any shape and hence can be more versatile than k-means. For example, the DBSCAN-CellX software (Kuchenhoff et al, see reference below) can be used to classify cell populations.

See Also

	Go deeper by reading “Deep-learning based Clustering approaches for BioInformatics”, Karim et al, Briefings in BioInformatics 2021 https://academic.oup.com/bib/article/22/1/393/5721075

	Kuchenhoff et al, “Extended methods of Spatial Cell Classification”, Nature Scientific Reports Nov 2023 https://www.nature.com/articles/s41598-023-45190-4

Exploring breast cancer traits using Decision Trees

Next, we will discuss exploratory analysis based on Decision Trees. Decision trees are a set of rules that classify our data – they may sound simple at first, but they can be very powerful. The big advantage of Decision Trees is that they will give us the rules that constructed the decision tree, providing some understanding of what is going on with our data.

Getting ready

We’ll use the sklearn Breast Cancer dataset as before. The code for this recipe can be found in Ch04/Ch04-4-decision-trees.ipynb.

How to do it...

	First, we’ll import our libraries:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.metrics import (
 accuracy_score,
 confusion_matrix,
 classification_report,
 precision_score,
 recall_score,
 f1_score
)
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

We brought in some additional libraries this time including the sklearn model_selection package. This package contains several useful tools for things like splitting up your data into test and training sets or performing Cross Validation.We also import the DecisionTreeClassifier model and several metrics.

	Now we will load our breast cancer dataset:

data = load_breast_cancer()
X, y = data.data, data.target

Now we have our features and labels in the X and y arrays respectively.

	Next let’s split our data into training and test sets. We will use the train_test_split() function from the model_selection package for this.

X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=42)

	The next step is to actually train the Decision Tree Classifier:

dt_classifier = DecisionTreeClassifier(
 random_state=42,
 max_depth=5,
 criterion='gini')
dt_classifier.fit(X_train, y_train)

This initializes the classifier. Again, we set random_state explicitly to help with reproducibility. We also limit the tree depth to help avoid overfitting, a common problem in machine learning – if you are allowed to keep making more and more precise trees, it would be easy to fit this dataset as much as we’d like – however, it would then become very poor at predicting any future dataset, which is what we want it to do. We use the default model called gini which is for the Gini Importance, a measure of how much each feature we add improves the model. We then use the fit function of the classifier to fit the data.

	To test the classifier, we now make predictions:

y_pred = dt_classifier.predict(X_test)

We use our test dataset from the earlier splitting to make predictions.

	Now let’s examine the performance of our model:

print("Decision Tree Performance Metrics:")
print("-" * 30)
print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
print(f"Precision: {precision_score(y_test, y_pred):.4f}")
print(f"Recall: {recall_score(y_test, y_pred):.4f}")
print(f"F1 Score: {f1_score(y_test, y_pred):.4f}")

We see the Accuracy, Precision, Recall and F1 score of the model.

	We can also print a detailed Classification Report using:

print("\nDetailed Classification Report:")
print(classification_report(y_test, y_pred,
target_names=data.target_names))

	And we can build a Confusion Matrix with the following code:

plt.figure(figsize=(8, 6))
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
 xticklabels=data.target_names,
 yticklabels=data.target_names)
plt.title('Confusion Matrix for Decision Tree')
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.tight_layout()
plt.show()

Here’s the confusion matrix:

[image: Figure 4.5 – Confusion Matrix]Figure 4.5 – Confusion Matrix

A Confusion Matrix shows the True Positives in the upper left and True Negatives in the lower right. On the lower left we have the False Positives, and on the upper right we have the False Negatives.

	Now let’s build another visualization which shows the importance of various Features:

plt.figure(figsize=(10, 6))
feature_importance = dt_classifier.feature_importances_
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, [data.feature_names[i] for i in sorted_idx])
plt.xlabel('Feature Importance')
plt.title('Decision Tree Feature Importance')
plt.tight_layout()
plt.show()

This code uses the feature_importances_ parameter from the classifier and builds a bar chart:

[image: Figure 4.6 – Feature Importances in the Decision Tree]Figure 4.6 – Feature Importances in the Decision Tree

We can see that certain aspects of the tissue sample, such as the “mean concave points” lend the most explainability to our model.

	This code uses the plot_tree function to show use the features of the Decision Tree:

plt.figure(figsize=(20,10))
plot_tree(dt_classifier,
 feature_names=data.feature_names,
 class_names=data.target_names,
 filled=True,
 rounded=True)
plt.title('Decision Tree Classifier')
plt.show()

Now let’s take a look at our actual Decision Tree:

[image: Figure 4.7 – Decision Tree]Figure 4.7 – Decision Tree

This shows us an outline of our decision tree. You can see some interesting things about how it is making decisions. For instance, if the mean concave points feature is less than a certain number, we go down the left side of the tree, otherwise we go to the right. This continues until we make a decision, or classification, of the sample as Malignant or Benign.Already you can see how useful this is. As we mentioned in the introduction, one nice thing about Decision Trees is that a Human can interpret their results. This is part of a trend called Explainable AI in which machine learning models are meant to be understood and interpreted in ways that could be meaningful to a Human. A more complex model, like a neural network, might be very hard to visualize and explain.

	Finally, let’s try a Cross Validation.

from sklearn.model_selection import cross_val_score
cv_scores = cross_val_score(dt_classifier, X, y, cv=5)
print("\nCross-Validation Scores:")
print(f"Mean CV Score: {cv_scores.mean():.4f}")
print(f"Standard Deviation: {cv_scores.std():.4f}")

This method trains the model on subsets of the data and tests it iteratively to provide a more meaningful test of model accurately – as opposed to just training and testing on the same dataset, which can lead to overfitting and poor predictive accuracy.We can see that our model has an overall Mean CV score of ~91%. This is the model's average score over multiple tests in the cross-validation, and a measure of how well it generalized to new data. Our model is pretty good!

See Also

	Check out iTree - which allows you to interactively build a decision tree on a web site. (Sokolowski et al, “ITree: a user-driven tool for interactive decision-making with classification trees”, BioInformatics, April 2024) - https://academic.oup.com/bioinformatics/article/40/5/btae273/7651198

	Su et al, “Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis”, Computers in Biology and Medicine, June 2022 - https://www.sciencedirect.com/science/article/abs/pii/S0010482522002013

Learning more about matplotlib for Chart Generation

In this recipe, we will dive deeper into a core charting library in Python. We’ll revisit our vaccine data and make some beautiful charts!

Matplotlib is the most common Python library for generating charts. There are more modern alternatives, such as Bokeh, which is web-centred, but the advantage of matplotlib is not only that it is the most widely available and widely documented chart library but also, in the computational biology world, we want a chart library that is both web- and paper-centric. This is because many of our charts will be submitted to scientific journals, which are equally concerned with both formats. Matplotlib can handle this for us.

Many of the examples in this recipe could also be done directly with pandas (hence indirectly with matplotlib), but the point here is to exercise matplotlib.

Once again, we are going to use VAERS data to plot some information about the DataFrame’s metadata and summarize the epidemiological data.

Getting ready

Again, we will be using the data from the first recipe and the code can be found in /Ch04/Ch04-5-matplotlib.ipynb.

How to do it...

	The first thing that we will do is plot the fraction of nulls per column:

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
vdata = pd.read_csv(
 "2021VAERSDATA.csv.gz", encoding="iso-8859-1",
 usecols=lambda name: name != "SYMPTOM_TEXT")
num_rows = len(vdata)
perc_nan = {}
for col_name in vdata.columns:
 num_nans = len(vdata[col_name][vdata[col_name].isna()])
 perc_nan[col_name] = 100 * num_nans / num_rows
labels = perc_nan.keys()
bar_values = list(perc_nan.values())
x_positions = np.arange(len(labels))

The labels variable contains the column names that we are analyzing, bar_values is the fraction of null values, and x_positions is the location of the bars on the bar chart that we are going to plot next.

	Here is the code for the first version of the bar plot:

fig = plt.figure()
fig.suptitle("Fraction of empty values per column")
ax = fig.add_subplot()
ax.bar(x_positions, bar_values)
ax.set_ylabel("Percent of empty values")
ax.set_ylabel("Column")
ax.set_xticks(x_positions)
ax.set_xticklabels(labels)
ax.legend()
fig.savefig("naive_chart.png")

We start by creating a figure object with a title. The figure will have a subplot that will contain the bar chart. We also set several labels and only used defaults. Here is the result:

[image: Figure 4.7 – Our first chart attempt, just using the defaults]Figure 4.7 – Our first chart attempt, just using the defaults

	Surely, we can do better. Let’s format the chart substantially more:

fig = plt.figure(figsize=(16, 9), tight_layout=True, dpi=600)
fig.suptitle("Fraction of empty values per column", fontsize="48")
ax = fig.add_subplot()
b1 = ax.bar(x_positions, bar_values)
ax.set_ylabel("Percent of empty values", fontsize="xx-large")
ax.set_xticks(x_positions)
ax.set_xticklabels(labels, rotation=45, ha="right")
ax.set_ylim(0, 100)
ax.set_xlim(-0.5, len(labels))
for i, x in enumerate(x_positions):
 ax.text(
 x, 2, "%.1f" % bar_values[i], rotation=90,
 va="bottom", ha="center",
 backgroundcolor="white")
fig.text(0.2, 0.01, "Column", fontsize="xx-large")
fig.savefig("cleaner_chart.png")

The first thing that we do is set up a bigger figure for matplotlib to provide a tighter layout. We rotate the x-axis tick labels 45 degrees so that they fit better. We also put the values on the bars. Finally, we do not have a standard x-axis label as it would be on top of the tick labels. Instead, we write the text explicitly. Note that the coordinate system of the figure can be completely different from the coordinate system of the subplot – for example, compare the coordinates of ax.text and fig.text. Here is the result:

[image: Figure 4.8 – Our second chart attempt, while taking care of the layout]Figure 4.8 – Our second chart attempt, while taking care of the layout

	Now, we are going to do some summary analysis of our data based on four plots on a single figure. We will chart the vaccines involved in deaths, the days between administration and death, the deaths over time, and the sex of people who have died for the top ten states in terms of their quantity (remember to get the file 2021VAERSVAX.csv.gz from Ch02):

dead = vdata[vdata.DIED == "Y"]
vax = pd.read_csv("2021VAERSVAX.csv.gz", encoding="iso-8859-1").set_index("VAERS_ID")
vax_dead = dead.join(vax, on="VAERS_ID", how="inner")
dead_counts = vax_dead["VAX_TYPE"].value_counts()
large_values = dead_counts[dead_counts >= 10]
other_sum = dead_counts[dead_counts < 10].sum()
large_values = pd.concat([large_values, pd.Series({"OTHER": other_sum})])

We’ve now set up some of our key data sets. Let’s calculate our time distance data frames next:

distance_df = vax_dead[vax_dead.DATEDIED.notna() & vax_dead.VAX_DATE.notna()]
distance_df["DATEDIED"] = pd.to_datetime(distance_df["DATEDIED"])
distance_df["VAX_DATE"] = pd.to_datetime(distance_df["VAX_DATE"])
distance_df = distance_df[distance_df.DATEDIED >= "2021"]
distance_df = distance_df[distance_df.VAX_DATE >= "2021"]
distance_df = distance_df[distance_df.DATEDIED >= distance_df.VAX_DATE]
time_distances = distance_df["DATEDIED"] - distance_df["VAX_DATE"]
time_distances_d = time_distances.astype(int) / (10**9 * 60 * 60 * 24)

Now we will calculate the total deaths and find the states with the top number who died.

date_died = pd.to_datetime(vax_dead[vax_dead.DATEDIED.notna()]["DATEDIED"])
date_died = date_died[date_died >= "2021"]
date_died_counts = date_died.value_counts().sort_index()
cum_deaths = date_died_counts.cumsum()
state_dead = vax_dead[vax_dead["STATE"].notna()][["STATE", "SEX"]]
top_states = sorted(state_dead["STATE"].value_counts().head(10).index)
top_state_dead = state_dead[state_dead["STATE"].isin(top_states)].groupby(["STATE", "SEX"]).size()#.reset_index()
top_state_dead.loc["MN", "U"] = 0 # XXXX
top_state_dead = top_state_dead.sort_index().reset_index()
top_state_females = top_state_dead[top_state_dead.SEX == "F"][0]
top_state_males = top_state_dead[top_state_dead.SEX == "M"][0]
top_state_unk = top_state_dead[top_state_dead.SEX == "U"][0]

The preceding code is strictly pandas-based and was made in preparation for the plotting activity.

	The following code plots all the information simultaneously. We are going to have four subplots organized in 2x2 format. In this way we can see all 4 plots in a convenient format that fits in one page.

fig, ((vax_cnt, time_dist), (death_time, state_reps)) = plt.subplots(
 2, 2,
 figsize=(16, 9), tight_layout=True)
vax_cnt.set_title("Vaccines involved in deaths")
wedges, texts = vax_cnt.pie(large_values)
vax_cnt.legend(wedges, large_values.index, loc="lower left")
time_dist.hist(time_distances_d, bins=50)
time_dist.set_title("Days between vaccine administration and death")
time_dist.set_xlabel("Days")
time_dist.set_ylabel("Observations")
death_time.plot(date_died_counts.index, date_died_counts, ".")
death_time.set_title("Deaths over time")
death_time.set_ylabel("Daily deaths")
death_time.set_xlabel("Date")
tw = death_time.twinx()
tw.plot(cum_deaths.index, cum_deaths)
tw.set_ylabel("Cummulative deaths")
state_reps.set_title("Deaths per state stratified by sex") state_reps.bar(top_states, top_state_females, label="Females")
state_reps.bar(top_states, top_state_males, label="Males", bottom=top_state_females)
state_reps.bar(top_states, top_state_unk, label="Unknown",
 bottom=top_state_females.values + top_state_males.values)
state_reps.legend()
state_reps.set_xlabel("State")
state_reps.set_ylabel("Deaths")
fig.savefig("summary.png")

We start by creating a figure with 2x2 subplots. The subplots function returns, along with the figure object, four axes objects that we can use to create our charts. Note that the legend is positioned in the pie chart, we have used a twin axis on the time distance plot, and we have a way to compute stacked bars on the death per state chart. Here is the result:

[image: Figure 4.9 – Four combined charts summarizing the vaccine data]Figure 4.9 – Four combined charts summarizing the vaccine data

There’s more...

Matplotlib has two interfaces you can use – an older interface, designed to be similar to MATLAB, and a more powerful object-oriented (OO) interface. Try as much as possible to avoid mixing the two. Using the OO interface is probably more future-proof. The MATLAB-like interface is below the matplotlib.pyplot module. To make things confusing, the entry points for the OO interface are in that module – that is, matplotlib.pyplot.figure and matplotlib.pyplot.subplots.

The following is some extra information that may be useful:The documentation for matplotlib is really, really good. For example, there’s a gallery of visual samples with links to the code for generating each sample. This can be found at https://matplotlib.org/stable/index.html. The API documentation is generally very complete.Another way to improve the looks of natplotlib charts is to use the seaborn library. Seaborn’s main purpose is to add statistical visualization artifacts, but as a side effect, when imported, it changes the defaults of matplotlib to something more palatable. We will be using seaborn throughout this book; check out the plots provided in the next recipe.

Building a UMAP using Seaborn

In this recipe, we’ll learn about a newer and very visually appealing clustering algorithm called UMAP, using our breast cancer dataset!

’ UMAP is the Uniform Manifold Approximation & Projection. It is useful to understand the structure of higher-dimensional data, even when it is non-linear. UMAP essentially takes a high dimensional space and represents it using the most equivalent lower-dimensional graph it can find. It is also fast and efficient.

Getting Started

The code for this recipe can be found in Ch04/Ch04-6-seaborn.ipynb.

You will need to install the seaborn and umap-learn packages if you don’t already have them. You can do this from the terminal by typing:

pip install seaborn
pip install umap-learn

Or you can install these from the notebook like this:

! pip install umap-learn
! pip install seaborn! pip install ipywidgets

This installs the umap package. We also install seaborn here, although you may already have it installed from previous exercises. When trying this code, I got an error on displaying a progress bar, so I included the installation of ipywidgets to remove this error.

How to Do It...

	First, we will import our libraries:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import StandardScaler
import umap

	We will use the breast cancer dataset as before and bring in the umap module and seaborn for plotting. Let’s load our test data:

data = load_breast_cancer()
X, y = data.data, data.target

	Now we will normalize our data as we have before:

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

	Now we will initialize our umap:

umap_reducer = umap.UMAP(
 n_neighbors=15,
 min_dist=0.1,
 n_components=2,
 random_state=42,
 n_jobs=1
)
X_umap = umap_reducer.fit_transform(X_scaled)

This code initializes the umap. It sets the number of neighbors n_neighbors, which controls local vs. global structure in the clustering. We use the min_dist setting to control the compactness of clusters. We also set n_components to 2 which gives us a 2-D plot. This can be set to 3 for a 3-D view. Finally, we set the random state to 42 for easier reproducibility. We pass in the scaled features as the input.

	Now we can visualize our umap!

plt.figure(figsize=(10, 8))
for i in [0, 1]:
 mask = y == i
 plt.scatter(
 X_umap[mask, 0],
 X_umap[mask, 1],
 label=data.target_names[i],
 alpha=0.7,
 edgecolors='black',
 linewidth=0.5
)
plt.title('UMAP Visualization of Breast Cancer Dataset', fontsize=16)
plt.xlabel('UMAP Dimension 1', fontsize=12)
plt.ylabel('UMAP Dimension 2', fontsize=12)
plt.legend()
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()

This initializes a scatter plot and then iterates over the two classes of data, setting a mask to control which class we will process as we make the subplots. We set the color based on the target class and other visual parameters.Next, we set a plot title and label the X and Y axes. We add a grid, a legend, and adjust the layout, and then show the plot:

[image: Figure 4.10 – Umap visualization for Breast Cancer dataset]Figure 4.10 – Umap visualization for Breast Cancer dataset

As you can see, we actually get a fairly good clustering, although some points do seem to cross into the other cluster.

	Now let’s see if we can improve upon the clustering by trying different parameters.

def plot_umap_parameter_comparison():
 fig, axs = plt.subplots(2, 2, figsize=(16, 16))
 neighbors_values = [5, 15, 30, 50]
 for i, n_neighbors in enumerate(neighbors_values):
 row = i // 2
 col = i % 2
 umap_reducer = umap.UMAP(
 n_neighbors=n_neighbors,
 min_dist=0.1,
 n_components=2,
 random_state=42,
 n_jobs=1
)
 X_umap = umap_reducer.fit_transform(X_scaled)
 axs[row, col].scatter(
 X_umap[:, 0],
 X_umap[:, 1],
 c=y,
 cmap='viridis',
 alpha=0.7,
 edgecolors='black',
 linewidth=0.5
)
 axs[row, col].set_title(f'UMAP (n_neighbors = {n_neighbors})')
 axs[row, col].set_xlabel('UMAP Dimension 1')
 axs[row, col].set_ylabel('UMAP Dimension 2')
 plt.tight_layout()
 plt.show()

We define a function to loop over a list of neighbors values. For each value, we initialize a umap and fit the data as before. We then show the plots. Here is what we get:

[image: Figure 4.11 – Comparison of neighbor parameters]Figure 4.11 – Comparison of neighbor parameters

We can see that different parameters give us different results. Having neighbors at 5 seems to give the clearest separation. In this way, we can tune our parameters and find the best approach.

There’s More ...

UMAP is very similar to a popular technique called t-SNE (t-distributed Stochastic Neighbor Embedding). It is also available in scikit-learn. You will see it used extensively in bioinformatics literature (e.g. Kobak & Berens, “The art of using t-SNE for single-cell transcriptomics”, Nature Communications, Nov 2019). For a good comparison of UMAP and t-SNE see: https://pair-code.github.io/understanding-umap/

See Also

	To learn more about the math behind UMAP read: https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

	This paper shows how UMAP can be used to systematically analyze the transcript profiles of gene deletion mutants of Yeast - Dorritty et al, “Dimensionality reduction by UMAP to visualize physical and genetic interactions”, Nature Communications, Mar 2020 - https://www.nature.com/articles/s41467-020-15351-4

	More information on Seaborn can be found here: https://seaborn.pydata.org/

	When you are finished, clean up your environment by running:

conda deactivate

Chapter 5: Alignment and Variant Calling

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

In this chapter, we will cover some of the core aspects of bioinformatics work. We will deeply explore how to examine the quality of sequencing data for different technologies. We will also go deeper into various tools for manipulating relevant file formats and briefly cover some recent advances in data compression for bioinformatics files. Then, we’ll discuss how sequencing data is aligned to reference sequences and review the importance of different aspects of sequencing algorithms. Finally, we’ll get into variant calling and see how the information resulting from an alignment can be used to find critical biological insights about people and organisms.In this chapter, we’re going to cover the following main topics:

	Quality control for sequencing data

	Tools for sequence manipulation

	Sequence alignment with BWA

	Variant calling with FreeBayes

Technical requirements

You will find the code for this chapter at https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch05.Create a GitHub folder named Ch05 for your notebooks. Inside it, make a subdirectory called data for our practice files.Remember to activate your conda environment before beginning the recipes, like this:

conda activate bioinformatics_base

Or, if you would like to set up a conda environment specifically for this chapter, before activating bioinformatics_base, run the following:

conda create -n ch05-alignment --clone bioinformatics_base
conda activate ch05-alignment

You will be able to install the packages for the chapter as you go, or you can use the YAML file provided in the repository:

conda env update --file ch05-alignment.yml

Quality control for sequencing data

The discovery of DNA and the ability to read, or sequence, it has revolutionized the world. The first such technology was Sanger sequencing, which uses fluorescent dyes sorted by a capillary. This is also called first-generation sequencing. But it was the advent of Next-Generation Sequencing (NGS), the second generation, that allowed dramatic advances, such as routine human genome sequencing. The most popular example of this is the Illumina sequencing technology (https://www.illumina.com), which uses short reads approximately 100 to 300 base pairs long to read out DNA sequences.

Base pairs

Base pairs (bp) are the pairs of complementary nucleotide bases (A goes with T, C goes with G) that are located on the two complementary strands of DNA. We normally don’t repeat both sides of the two strands; we read one strand and assume that the complementary bases are on the other side. So, for example, if we read out the sequence ACGT from one strand, we would say we have “read four base pairs”. A kb is a kilobase, or 1,000 bp. See https://www.genome.gov/genetics-glossary/Base-Pair for more information.

More recently, third-generation technology has matured in which much longer reads can be generated, often up to thousands of bp long.These technologies are used by companies such as PacBio and Oxford Nanopore. These long-read technologies often suffer from high error rates, but are excellent at resolving long-range structural variations in genomes. Each type of technology requires different approaches to quality control and data interpretation.Here is an overview of the current sequencing technologies:

	Technology
	Read Types
	Website
	Description

	Illumina
	Short reads (~100-300 bp)
	https://www.illumina.com/
	Excels on volume/cost

	Pacific Biosciences
	Long reads (10-25 kb)
	https://www.pacb.com/
	Great at structural variation; high error rate

	Oxford Nanopore
	Long reads (10-300 kb)
	https://nanoporetech.com/
	Excels at structural variation; adaptive sampling mode

	Element Biosciences
	Short reads (75-300 bp)
	https://www.elementbiosciences.com/
	High accuracy

	Ultima Genomics
	Short reads (~300 bp)
	https://www.ultimagenomics.com/
	No flow cell; extremely low cost

	BioNano Genomics
	Very long-range structure
	https://bionano.com/
	Optical genome mapping for long-range analysis

Table 5.1 – Sequencing technologiesIn this recipe, we’ll learn how to perform the first step in sequence analysis, basic quality control. We’ll see how to interpret quality control outputs and make decisions on whether the data quality is sufficient to move forward to downstream analysis.

Getting started

Before we begin, make sure you have installed wget:

brew install wget

Now, we will get some FASTQ data to practice with (we’ll go over the FASTQ format in the Tools for sequence manipulation recipe). Run the following commands in your terminal (or you can run them from your notebook using the ! command syntax):

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR390/SRR390728/SRR390728_1.fastq.gz
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR390/SRR390728/SRR390728_2.fastq.gz
mv SRR390728_1.fastq.gz data/
mv SRR390728_2.fastq.gz data/

We will also need to install FastQC and MultiQC with these commands:

conda install -c bioconda fastqc
conda install -c bioconda multiqc

The code for this recipe can be found in Ch05/Ch05-1-qc-data.ipynb.

How to do it...

Here are the steps to try this recipe:

	First, we’ll import the modules we need:

import os
import subprocess

The os module provides operating system functions. The subprocess module is used to run system (terminal) commands.

	Next, we’ll define a function called run_fastqc() to execute FastQC (https://github.com/s-andrews/FastQC). FastQC is a tool that analyzes many basic sequence qualities, such as the quality of each base, the content of the sequences, and their length distribution. This helps lab scientists and bioinformaticians to determine the overall quality of the data they generate. FastQC can be run directly from the command line - have a look at https://olvtools.com/en/documents/fastqc. However, here we will run it using a Python function so that it can be incorporated into our notebook code. Here is the code for this function:

def run_fastqc(input_dir, output_dir):
 os.makedirs(output_dir, exist_ok=True)
 fastq_files = [
 f for f in os.listdir(input_dir)
 if f.endswith((".fastq", ".fastq.gz"))
]
 if not fastq_files:
 print(
 "Could not find any FASTQ files"
 "in the input directory."
)
 return
 print("Running FastQC...")
 fastqc_command = (
 ["fastqc", "-o", output_dir] +
 [os.path.join(input_dir, f)
 for f in fastq_files]
)
 subprocess.run(fastqc_command)
 print("FastQC analysis Completed.")

This code does the following:

	Defines the run_fastqc() function with parameters for the input directory, which will contain our FASTQ files, and an output directory for us to place the FastQC reports.

	Uses the Python os module to create the output directory using the makedirs() function.

	Builds a fastq_files array by looping over the files in the input directory using the os.listdir() function. We use the endswith() function on the file to restrict it to filenames ending with the .fastq extension.

	Prints a warning if we cannot find any FASTQ files.

	Constructs a fastqc_command array that contains the appropriate command for each file.

	Uses the subprocess module to run the FastQC commands.

	Next, we’ll define a run_multiqc() function to aggregate our FastQC reports. Here it is:

def run_multiqc(input_dir, output_dir):
 os.makedirs(output_dir, exist_ok=True)
 print("Running MultiQC...")
 multiqc_command = [
 "multiqc", input_dir, "-o",
 output_dir
]
 subprocess.run(multiqc_command)
 print("Finished...MultiQC report(s) generated.")

This code creates a directory for the MultiQC output files. It then constructs a multiqc_command to run MultiQC against the input directory and place the output in the output subdirectory.

	Now, we’ll define our main() function and run it:

def main():
 input_dir = "./data"
 fastqc_output_dir = "fastqc_output"
 multiqc_output_dir = "multiqc_output"
 run_fastqc(input_dir, fastqc_output_dir)
 run_multiqc(fastqc_output_dir, multiqc_output_dir)
 print(
 f"MultiQC report saved in: "
 f"{os.path.abspath(multiqc_output_dir)}"
)
if __name__ == "__main__":
 main()

This code does the following:

	Points our input directory at the data subdirectory.

	Defines the FastQC and MultiQC output directories.

	Calls our run_fastqc() function to process the FASTQ files.

	Calls our run_multiqc() function to aggregate the reports.

	Prints out the path to the report.

	Uses the special dunder method to define the main() function. The term dunder is short for double underscore and defines special methods. Here, we use it to make sure the main() function is only called when we are executing this script directly and not when importing it into another module. Executing this code block will run the code and process our FASTQ files.

	Now, we can review our MultiQC report and examine the quality of our data:

! open multiqc_output/multiqc_report.html

This last command will open the MultiQC report in your browser. This is what it looks like:

[image: Figure 5.1 – MultiQC main page]Figure 5.1 – MultiQC main page

In this screenshot, we can see that MultiQC has aggregated our samples into a single report. In the General Statistics section, we see the sample names, the percentage of duplicate sequences, GC content (the percentage of G and C bases in the genome), and the total number of reads. Each of our samples has about 7.2 million reads.

	On the left side, we can see a content panel that will take us to various sections of the report. Let’s take a look at some of the sections. Click on Sequence Quality Histograms:

[image: Figure 5.2 – Sequence Quality Histograms]Figure 5.2 – Sequence Quality Histograms

We see the read length on the x axis and the quality score or Phred Score on the y axis. It is important to take a moment to understand the Phred score, which is also called the Q score or Q value:

Phred scores

The Phred score is a measure of the accuracy of a base call in a sequence. It is calculated as the negative log of the probability of the base being wrong: Q = -10 * log10(P), where P is the probability of an error.

So, for example, if we say these bases all exceed Q30, what we mean is that the chance of any base being wrong is less than one in one thousand.We can see that the sequences from our test data are 35 bp in length and that every base has a nice uniform Q score around 28 (our two samples are right on top of each other). They are in the green section of the graph because they fall within the acceptable quality range.

	Here’s an example where read quality falls off towards the end of the read:

[image: Figure 5.3 – FastQC sequence quality graph (source: FastQC website)]Figure 5.3 – FastQC sequence quality graph (source: FastQC website)

This is an example from FastQC of a read where the average quality does not stay the same and falls off toward the end of the read. The bars represent histograms of the range of qualities that we see at that position in the read. The line that goes from left to right represents the average, so you can see there is a downward trend as we move forward in the read. This is very common for many sequencing technologies. In severe cases it might represent bad data, and you would simply discard the data. It is also quite common to use read trimming tools to simply trim off part of the end of the read to yield higher-quality data for use in downstream analysis. We’ll cover read trimming in more depth in the Tools for sequence manipulation recipe.Let’s next look at another graph, Per Sequence GC Content:

[image: Figure 5.4 – Per Sequence GC Content]Figure 5.4 – Per Sequence GC Content

This plot shows the distribution of GC content in the reads. We should typically expect a normal distribution with a peak around the average GC content of the organism we are sequencing. For example, the average GC content of the human genome is forty-one percent. So, if we were trying to sequence a human and saw a different average at the peak here, we would suspect something is wrong. If you see an unusual shoulder or double-peak effect, it could indicate contamination, suggesting that another organism (such as a bacterium that has a different GC content) has gotten into your sequencing preparation.You can investigate the MultiQC output further and look at some of the other available reports. These include things such as the number of Ns (places where the sequencer could not call a base) and the level of adapter content, which can indicate that there is an overrepresentation of the adapters used to make the sequencing library as opposed to the actual DNA you want to sequence.It is important to understand sequencing quality control and its implications. You will want to work with lab personnel to manually inspect entire sequencing runs for quality and develop automated tools in your pipelines to help control for and correct quality issues.

There’s more...

In this recipe, we only aggregated results from the FastQC tool, but MultiQC can also recognize other tools and integrate their results. It can use output from SAMtools, picard, GATK, SnpEff, and many others. You can use this to aggregate many types of reports together in a single handy HTML report.Another important topic we should cover is the use of paired reads. When we sequence DNA, we first extract DNA from our sample and then shear it into fragments. In single-end read mode, we read the DNA from various parts of each fragment. In paired-end mode, we read from each end of the fragment inward. This means we know these two read pairs go with each other, and we know the approximate distance between them. This increases the range of information we have, and this information can be used by aligners and assemblers. In RNA sequencing, this can be especially useful to get reads that span the junction between exons that are spliced together:

[image: Figure 5.5 – Single-end versus paired-end sequencing (source: https://statomics.github.io/SGA/sequencing_intro.html)]Figure 5.5 – Single-end versus paired-end sequencing (source: https://statomics.github.io/SGA/sequencing_intro.html)

We should also discuss quality control of long reads. Long reads have traditionally had higher error rates than shorter reads. However, short reads tend to have errors that are systematic – meaning they occur in the same locations in reads – and long reads tend to have random errors. The random error profile of long reads actually turns out to be very useful because the more coverage we have of a certain base, the less likely it is that we will see the same random error. In this way, we can overcome the error rate of long reads simply by increasing coverage. Indeed, long reads have ushered in an era where we can achieve chromosome-scale assemblies at Q70 or greater quality. This means genomes are assembled into entire chromosomes instead of thousands of contigs, and the quality of each base is such that there is only a one in ten to the seventh power chance that it is incorrect!For a great discussion of this, see Taylor et al., Beyond the Human Genome Project: The Age of Complete Human Genome Sequences and Pangeome References, Annual Reviews, Vol 25, 2024.

Contig

A contig is a contiguous region of a genome. Typically, when overlapping reads can be assembled into one long region of a genome that goes together, it is referred to as a contig. If a genome were completely assembled, the contigs would represent entire chromosomes.

There are several tools that specialize in quality control of long reads. LongQC provides quality control for both PacBio and Nanopore technologies (Fukusawa et al., LongQC: A Quality Control Tool for Third Generation Sequencing Long Read Data, G3, Feb 2020). PycoQC is a tool focused on Oxford Nanopore data (https://a-slide.github.io/pycoQC/).

See also

	You can find the documentation on FastQC here: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

	More information on MultiQC can be found at https://seqera.io/multiqc/, along with a video tutorial: https://www.youtube.com/watch?v=qPbIlO_KWN0

	More information on the Phred quality score can be found here: https://gatk.broadinstitute.org/hc/en-us/articles/360035531872-Phred-scaled-quality-scores

	For a good description of single-end versus paired-end sequencing, visit https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html

	If you want to explore the science further, the paper by Merker et al. describes how long-read sequencing allowed them to find disease-causing variants in patients that were missed by short-read technology: Long-read genome sequencing identifies causal structural variation in a Mendelian disease, Genetics in Medicine, January 2018, https://pubmed.ncbi.nlm.nih.gov/28640241/

Tools for sequence manipulation

In this recipe, we will learn about fundamental tasks for sequencing manipulation that are part of the core toolkit of any bioinformatician. We’ll cover basic operations such as reverse complementation and translation, as well as more advanced topics such as read trimming.We look at BioPython, which is an important library to learn about. It includes tools for storing and manipulating sequence information, performing alignments, running Basic Local Alignment Sequence Tool (BLAST), manipulating protein structures, and much more.Before we go any further, let’s get familiar with some of the core bioinformatics file formats:

	Format
	Description
	Reference
	Comments

	FAST-All (FASTA)
	Plain text DNA or protein sequences
	https://www.ncbi.nlm.nih.gov/genbank/fastaformat/
	Great for storing human-readable sequences

	FASTA with Quality score (FASTQ)
	Like FASTA but includes quality scores as an additional line
	https://learn.gencore.bio.nyu.edu/ngs-file-formats/fastq-format/
	Most common output of sequencers

	Sequence Alignment Map (SAM)
	SAM format specification
	https://samtools.github.io/hts-specs/SAMv1.pdf
	Human-readable alignment output

	Binary Alignment Map (BAM)
	Binary version of SAM file
	https://davetang.github.io/learning_bam_file/
	Takes up less storage space

	Compressed BAM (CRAM)
	Compressed reference-oriented alignment map
	https://samtools.github.io/hts-specs/CRAMv3.pdf
	Up to 40% less storage than BAM

	Original Read Archive (ORA)
	New FASTQ format from Illumina with improved compression, used in DRAGEN
	https://support-docs.illumina.com/SW/DRAGEN_v38/Content/SW/DRAGEN/ORA_Compression_fDG_swHS.htm
	Up to 5x smaller than FASTQ files

Table 5.2 – Common bioinformatics file formatsNote that some of the file formats listed here do not use strict abbreviations per se, but rather just come from historical terms in bioinformatics. The FASTA format, which we discussed briefly in Chapter 3, Modern Coding Practices and AI-Generated Coding, is a human-readable format with the ability to store one or more DNA or protein sequences. The term came from a fast algorithm that could store all types of sequences, meaning nucleotide and protein.The FASTQ format adds sequencer quality information to the FASTA format. For each base, we have a quality score on the next line. Here is an example section:

[image: Figure 5.6 – Example section from a FASTQ file]Figure 5.6 – Example section from a FASTQ file

We see an @ symbol first – this line gives us a read identifier. Next, we see the actual sequence of the read. Then there is a separator, which is just a + sign. Finally, we have the Phred quality scores. These codes translate into a score – the codes can be found here: https://en.wikipedia.org/wiki/Phred_quality_score. For example, E means the Phred quality score was 69.SAM files are used for sequence alignments and are human-readable. They have a header section with a variety of information about the alignment. These headers can vary and are often a source of confusion when trying to compare similar alignments. We then have a series of lines representing each read alignment to a position on the reference. An important concept included here is the CIGAR string. CIGAR stands for Concise Idiosyncratic Gapped Alignment Report. It consists of a series of positions and codes for those positions indicating whether they match, are in a gap, are not included in a reference sequence, and so on. It helps us represent the exact details of how a query sequence matches the reference. You can find more information on CIGAR strings here: https://www.drive5.com/usearch/manual/cigar.html. You may also want to check out the cigar library: https://github.com/brentp/cigar.BAM files are compressed binary versions of SAM files. They are compressed in the BFZF format. BAM files take up less space and can be indexed for faster access.CRAM files introduce a reference file into the BAM file to increase efficiency and compression levels. With the new CRAM 3.1 standard, these files can be 50-70% smaller than a corresponding BAM file. When using CRAM, you want to make sure you track carefully the reference file used with it (although it does not strictly require a reference). CRAM files may introduce increased speed in your pipelines in some cases but may also increase times slightly due to the decompression needed, depending on the situation.You should read Bonfield, CRAM 3.1: advances in the CRAM file format, BioInformatics, March 2022, https://academic.oup.com/bioinformatics/article/38/6/1497/6499262, for more information on the CRAM format.HTSLib is a popular C-based library for accessing bioinformatics files and includes support for CRAM: https://github.com/samtools/htslib.There are many other important bioinformatics file formats that we’ll continue to cover as we go through the book. These are the key formats for primary (sequence-level) and secondary (alignment-level) analysis.

Getting started

First, let’s get some sample data to work with. We will get a sample FASTA file and a Coding DNA Sequence (CDS) file:

! wget -O sample.fasta "https://www.ncbi.nlm.nih.gov/sviewer/viewer.cgi?db=nuccore&id=NM_001200.1&report=fasta"
! mv sample.fasta data/
! wget -O cds_sequence.fasta "https://www.ncbi.nlm.nih.gov/sviewer/viewer.cgi?db=nuccore&id=NM_000518.5&report=fasta_cds_na&retmode=text"
! mv cds_sequence.fasta data/

In this recipe, we will also learn about the SRA Toolkit, a powerful library for retrieving sequence data from public databases:

	First, we will download it:

curl --output sratoolkit.tar.gz https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/current/sratoolkit.current-mac64.tar.gz

	Next, we will unzip and untar it:

gunzip sratoolkit.tar.gz
tar –xvf sratoolkit.tar

	We also need to add it to our path:

export PATH=$PATH:~/Software/sratoolkit.3.1.1-mac-x86_64/bin

Note

In the preceding path, sratoolkit.3.1.1-mac-x86_64 refers to the version of the SRA Toolkit that was current at the time of writing this book, which was 3.1.1. In your case, you should replace it with the current version. Do the same in the upcoming instructions.

	You will want to add this to your .zshrc file:

echo 'export PATH=$PATH:~/Software/sratoolkit.3.1.1-mac-x86_64/bin' >> ~/.zshrc
source ~/.zshrc
fasterq-dump -h

	Now, let’s use it to download a sample FASTQ file. Move back over to your Ch05/data directory and type the following:

fasterq-dump SRR000001

This will use the fasterq-dump SRA tool to download the FASTQ file with the SR000001 accession number. This will download three files. The ones ending in _1 and _2 represent the paired reads (left and right, respectively). The third one is an interleaved file in which the paired reads are alternated to produce a single file.For more information on installing SRA Toolkit, visit https://github.com/ncbi/sra-tools/wiki/02.-Installing-SRA-Toolkit.For this recipe, you will also need to install the biopython Python modules:

conda install -c conda-forge biopython

The code for this chapter can be found in Ch05/Ch05-2-sequence-manipulation.ipynb

How to do it...

Here are the steps to try this recipe:

	Let’s start by looking at how we can use BioPython to manipulate sequences. First, we will import our modules:

from Bio.Seq import Seq
from Bio import SeqIO

	This brings in the BioPython Seq class. In BioPython, sequences are typically stored in Seq objects. The Seq object has a number of handy methods for working with sequences. We also bring in SeqIO, which is the standard input/output system for BioPython. It will help us read (or write) files in common bioinformatics formats.

	Next, we’ll load our sample FASTA files. We’ll want to end up with Seq objects for each of our sequences:

fasta_file1 = "data/sample.fasta"
fasta_file2 = "data/cds_sequence.fasta"
sample_sequence = []
cds_sequence = []
def read_fasta(file_path, seq_list):
 with open(file_path, "r") as handle:
 for record in SeqIO.parse(handle, "fasta"):
 seq_list.append(str(record.seq))
read_fasta(fasta_file1, sample_sequence)
read_fasta(fasta_file2, cds_sequence)
sample_seq_str = " ".join(sample_sequence)
cds_seq_str = " ".join(cds_sequence)
dna_seq = Seq(sample_seq_str)
cds_seq = Seq(cds_seq_str)

To recap, this code does the following:

	Defines the location of our two FASTA files

	Defines a list to hold each sequence

	Creates a read_fasta() function, which takes a path to a file and a list as input, then uses the SeqIO parse method to read in the file and append the sequence contents to the list

	Uses the read_fasta() function to bring in our sample DNA and CDS sequences

	Turns the resulting sequence lists into strings by using the “ “.join() method (this tells Python to join the elements of the list into a string)

	Finally, creates BioPython Seq objects for each of the two sequence strings

	Now, let’s use our Seq objects to alter our sequences! First, we will Complement the DNA sequence:

print("Complement:", dna_seq.complement())

	DNA is double-stranded, so if one strand has ACTG, the other strand will contain TGAC. Complementation to determine the opposite strand is a common sequence operation. For more information on the structure of DNA, please review this Khan Academy tutorial: https://www.khanacademy.org/test-prep/mcat/biomolecules/dna/a/dna-structure-and-function.

	When we are reading the forward DNA strand, or the 5’ to 3’ direction, we often say we are going in the sense direction. Note that the tick mark here is read as the word prime. This terminology comes from the numbering of atoms on the sugars in the nucleic acid, which gives us a sense of direction when reading DNA. The 5’ sugar is on one side of the molecule and the 3’ sugar ends up on the other side of the molecule. When we go in the opposite direction, 3’ to 5’, or the anti-sense direction, we will be reading the complementary strand backward, so ACTG will become CAGT. This is what the reverse complement operation does:

print("Reverse Complement:", dna_seq.reverse_complement())

	The central dogma says that DNA is transcribed into RNA and then translated into protein (amino acids). In this step, we will use the seq object’s transcribe() method to convert the CDS into RNA (the CDS is the Coding DNA Sequence, meaning the part that can be translated into protein). The main difference here is that Uracil (U) is used instead of Thymine (T). You should make sure you understand the basic concepts of transcription, tRNA, and translation. This page contains a good overview.

https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biologyHere is the code to transcribe the CDS to RNA:

print("Transcription (DNA to RNA):", cds_seq.transcribe())

	Finally, we translate the CDS sequence to get the amino acid or protein sequence. The amino acids fold into a 3-dimensional structure to make a protein or enzyme (an enzyme is just a protein that has catalytic or chemical activity, whereas some proteins can be structural). These are the workhorses of the cell that make life possible!

print("Protein Translation (DNA to Protein):", cds_seq.translate(to_stop=True))

Here, we see some of the output from our code:

[image: Figure 5.7 – Part of the output from our sequence manipulation calls]Figure 5.7 – Part of the output from our sequence manipulation calls

In this screenshot, you can see the reverse complement, transcription, and translation outputs.

	Now, let’s look at some basic quality control steps, such as quality-based read trimming and adapter removal. As we learned in the Quality control for sequencing data recipe, it can be important to remove low-quality bases from our data. It is common to perform 3’ end trimming, in which we remove bases with a quality below a certain threshold from our reads before further processing.

Another common task is adapter trimming. When DNA is prepared for sequencing, short sequences called adapters are added to bind to sequencing primers that amplify the DNA, and to provide index sequences, which allow sample demultiplexing. The indexes allow scientists to put several samples on a single sequencing lane and then deconvolute (demultiplex) the reads associated with each sample later, thereby providing significant cost savings.Let’s begin by importing the libraries we’ll need for read trimming:

from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.Seq import Seq

We used the BioPython SeqIO and SeqRecord libraries, and the Seq class in the preceding code.

	Next, we’ll define a function for trimming bases based on quality:

def trim_low_quality_bases(record, quality_threshold):
 qualities = record.letter_annotations[
 "phred_quality"]
 trimmed_index = len(qualities)
 for i in range(
 len(qualities) - 1, -1, -1
): # Iterate over qualities
 if qualities[i] >= quality_threshold:
 break
 trimmed_index = i
 trimmed_seq = record.seq[:trimmed_index]
 trimmed_qual = qualities[:trimmed_index]
 trimmed_record = SeqRecord(
 Seq(str(trimmed_seq)),
 id=record.id,
 description=record.description,
 letter_annotations={
 "phred_quality": trimmed_qual}
)
 return trimmed_record

This code performs the following functions:

	It takes in a SeqRecord object resulting from the parsing of our FASTQ file. This record contains the sequence as well as some annotations of its properties.

	The letter_annotations property of the record contains per-letter (per-base) annotations – in this case, the sequence quality values. The code reads this into a qualities array.

	Next, it initializes trimmed_index – we start at the end by default (assuming no trimming).

	We next create a for loop to iterate backward, starting from the 3’ end of the sequence. As soon as we meet a base falling below our threshold, we will update our trimmed_index and stop there. This is where the read will be trimmed.

	We then trim the sequence and quality string, respectively, based on the index position.

	Finally, we create a new SeqRecord object using the updated sequence and quality strings and return it.

	Next, we’ll set up a function to do adapter trimming:

def remove_adapter(record, adapter_seq):
 seq_str = str(record.seq)
 adapter_position = seq_str.find(adapter_seq)
 if adapter_position != -1:
 trimmed_seq = record.seq[:adapter_position]
 trimmed_qual = record.letter_annotations[
 "phred_quality"
][:adapter_position]
 record = SeqRecord(
 Seq(str(trimmed_seq)),
 id=record.id,
 description=record.description,
 letter_annotations={
 "phred_quality": trimmed_qual
 }
)
 return record

This code does the following:

	It reads in a SeqRecord object as well as the desired sequence for the adapter.

	It converts the sequence to a string and uses the find() method to locate the adapter within the sequence.

	If the adapter is found, it takes the sequence from the startup to the adapter position. It also takes the corresponding quality scores.

	It then creates a new SeqRecord object based on the trimmed sequence and qualities and returns it.

	For our last function, let’s process a FASTQ file and call our other two functions to do the trimming:

def process_fastq(
 input_fastq, output_fastq,
 quality_threshold=20, adapter_seq=None
):
 with open(input_fastq, "r") as input_handle, \
 open(output_fastq, "w") as output_handle:
 for record in SeqIO.parse(input_handle, "fastq"):
 record = trim_low_quality_bases(
 record, quality_threshold)
 if adapter_seq:
 record = remove_adapter(
 record, adapter_seq)
 if len(record.seq) > 0:
 SeqIO.write(
 record, output_handle,
 "fastq"
)
 print(f"Processing complete. Trimmed reads saved to {output_fastq}")

Note that in our function header, we define the inputs and set some defaults. Our default quality threshold is 20. By default, we assume there is no adapter sequence.This code defines a process_fastq() function that does the following:

	Opens a FASTQ file and an output file to which we will write our trimmed sequence.

	Parses each sequence record in the file using the SeqIO.parse() method and calls our quality trimming function. Note that the default Q value is set to 20 in the function definition but can be overridden when you call the function.

	Calls the adapter removal function if an adapter sequence has been defined.

	Assuming any sequence remains after trimming, it uses the SeqIO.write() method to write out the trimmed record to the output FASTQ file.

	Finally, let’s try out our functions:

input_fastq = "data/SRR000001_1.fastq"
output_fastq = "data/processed_reads.fastq"
quality_threshold = 30
adapter_sequence = "AGATCGGAAGAGC
process_fastq(
 input_fastq, output_fastq,
 quality_threshold, adapter_sequence
)

This code defines our input FASTQ file using the one we downloaded in the Getting started section. Our output will go into a file called processed_reads.fastq. We set our Q score cutoff at 30 (a common setting) and provide an adapter sequence. Normally, you would get this adapter sequence from your lab personnel based on the method they are using.We call our process_fastq() function, which will trim the reads and output the processed file. You can check the resulting file sizes, and you will see that some of the sequence has been removed!

There’s more...

We have had a basic introduction to some of the core sequence file formats used in bioinformatics and some tools for manipulating those files. This could include translating sequences or processing files to improve their quality before they go into further analysis in a pipeline.Today’s modern bioinformatics files can be huge in size, depending on the organism and sequencer you are using. The latest Illumina NovaSeqX can produce up to 8 TB of data per run (see https://www.illumina.com/systems/sequencing-platforms/novaseq-x-plus/specifications.html). As such, storage and data transfer costs can be quite significant. It is therefore important to stay on top of modern advances in compression and related tools. For example, the CRAM format is now gaining in popularity for alignments, and the ORA format has been introduced by Illumina to provide significant compression of FASTQ data.Advances in the field of compression are being made all the time. The Genozip program (Lan et al., Genozip: a universal extensible genomic data compressor, BioInformatics, August 2021, https://academic.oup.com/bioinformatics/article/37/16/2225/6135077) is able to achieve significant compression ratios even over already-compressed file types such as fastq.gz and CRAM. It includes some nice features such as co-compression of FASTQ and BAM data.It is worthwhile to stay on top of the latest advances in bioinformatics file formats and compression, as well as to understand how to interrogate your storage costs using modern tools such as AWS Storage Lens (https://aws.amazon.com/s3/storage-lens/). This will put you in a position to save your organization a lot of money and optimize your bioinformatics pipelines! This will only increase in importance in the coming years as modern sequencing advances are not slowing down. In the near future, we can expect to see sequencing costs come down even further and the enablement of cost-effective long-read genome sequencing. This will mean we can routinely assemble entire human genomes in a highly accurate way with costs that are in line with current short-read approaches. These advancements will transform genetic testing, cancer research, and many other areas, and lead to huge impacts on human health and well-being.

See also

	For a deeper background on BioPython’s Seq class, visit https://biopython.org/wiki/Seq

	Details on the SeqRecord object: https://biopython.org/wiki/SeqRecord

	To learn about the central dogma, visit https://www.yourgenome.org/theme/how-is-dna-turned-into-protein-the-central-dogma-of-molecular-biology/

	SciKit-Bio is another good library to check out, which provides sequence manipulation among other tools: https://scikit.bio/index.html

	ISeq is a modern library for fetching sequencing from public databases, including SRA: https://academic.oup.com/bioinformatics/article/40/11/btae641/7840256

	To learn more about adapter trimming, visit https://knowledge.illumina.com/software/general/software-general-reference_material-list/000002905

	A good read on practical CRAM usage can be found at https://www.ga4gh.org/news_item/guest-post-seven-myths-about-cram-the-community-standard-for-genomic-data-compression/

Sequence alignment with BWA

Next, we’ll dive into a core algorithm at the heart of bioinformatics: alignment.Alignment is the process of matching two sequences together so that they share the maximum amount of common sequence, or aligning many reads to a reference sequence. An aligner is any software that specializes in lining up sequencing reads to longer sequences, or in some cases, sets of longer sequences to each other.One of the first core aligners was BWA, the Burrows-Wheeler Aligner (to read more about these aligners, look at the See also section of this recipe).Another important aligner that has been developed recently is the DRAGEN aligner from Illumina. DragMap is an open source version of the DRAGEN aligner.SAMtools (https://www.htslib.org/) is another important program that we’ll be using in this recipe (Li et al., The Sequence Alignment/Map Format and SAMtools, Bioinformatics, June 2009). SAMtools helps us read, write, index, and view SAM and BAM files. It is part of a suite of tools that includes BCFtools for vcf parsing and HTSlib, a C library for reading sequence data.

Getting started

For this recipe, we use the Escherichia coli (E. coli) reference genome. E. coli is a small bacterium with a genome size of ~4.6 MB (4.6 million bases).We’ll keep our genome in data/ecoli_genome and our sequencing reads in data/ecoli_reads.You will need to download the genome sequence (you can run this from the notebook, or if you want to do this in your terminal, just remove the ! character from in front of each command):

! mkdir -p data/ecoli_genome
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.fna.gz
! wget -O data/ecoli_genome/ecoli_reference.fasta.gz
"https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.fna.gz"
! gunzip data/ecoli_genome/ecoli_reference.fasta.gz

Now, let’s get some reads we can align to the reference (this step may take some time):

fasterq-dump --split-files --outdir ./ecoli_reads SRR31783077
! mv ecoli_reads data/

Note that these are paired-end reads, so we will end up with two files ending in _1 and _2.We will also need to install bwa, samtools, and pysam:

! brew install bwa
! brew install samtools
! pip install pysam

We’ll also be using matplotlib in this exercise, which you used in Chapter 4:

! pip install matplotlib

The code for this chapter can be found in Ch05/Ch05-3-alignment.ipynb.

How to do it...

Here are the steps to try this recipe:

	Our first task will involve aligning reads to a reference genome (in this case, E. coli). Let’s import our libraries:

import subprocess
import os

We will use the subprocess and os libraries to run BWA and define a function to index our reference genome.

	When aligning reads to reference genome, we must index the reference first. Indexing a genome is an important first step for alignment. Indexing preprocesses the genome, providing a guide to where sequences originate from, making alignment faster:

def index_reference_genome(reference_fasta):
 print("Indexing the reference genome with BWA...")
 cmd = ["bwa", "index", reference_fasta]
 subprocess.run(cmd, check=True)
 print("Reference genome indexing complete.\n")

The code defines a function called index_reference_genome() that takes in a reference file in FASTA format and then constructs a command to run the BWA index on the file. It then uses subprocess.run() to perform the indexing.

	Next, we’ll define a function to perform the alignment:

def align_fastq_to_reference(
 reference_fasta, fastq_file1,
 fastq_file2, output_sam, threads=4
):
 print("Performing alignment with BWA-MEM...")
 cmd = [
 "bwa", "mem",
 "-t", str(threads),
 reference_fasta,
 fastq_file1,
 fastq_file2,
]
 with open(output_sam, "w") as out:
 subprocess.run(cmd, stdout=out, check=True)
 print(f"Alignment complete. SAM file saved to: {output_sam}\n")

This function takes in a reference FASTA file, a set of paired reads, and a SAM file for output. It then constructs a BWA command with the reference file, FASTQ files, and the number of threads. The number of threads is the number of parallel compute cores to use – in this case, we will default to 4. This is just a default – you can set it to another number based on the number of cores your machine supports. Note that we use the mem version of BWA. This will produce a SAM file.

	Next, we will create a function to sort the SAM file and convert it to a BAM file:

def convert_sam_to_sorted_bam(
 sam_file, bam_file, threads=4
):
 print("Converting SAM to sorted BAM using Samtools...")
 cmd_sort = [
 "samtools", "sort", "-@",
 str(threads), "-o", bam_file, sam_file
]
 subprocess.run(cmd_sort, check=True)
 cmd_index = ["samtools", "index", bam_file]
 subprocess.run(cmd_index, check=True)
 print(f"Sorted BAM file saved to: {bam_file}\n")

This function takes the SAM file as input and runs samtools sort with the default number of threads, 4. It then runs samtools index and turns the SAM file into a BAM file.

	Finally, let’s set up our main code to run these functions:

def main():
 reference_fasta = "data/ecoli_genome/ecoli_reference.fasta"
 fastq_file1 = "data/ecoli_reads/SRR31783077_1.fastq"
 fastq_file2 = "data/ecoli_reads/SRR31783077_2.fastq"
 output_sam = "data/output/aligned_reads.sam"
 output_bam = "data/output/aligned_reads_sorted.bam"
 os.makedirs("data/output", exist_ok=True)
 try:
 index_reference_genome(reference_fasta)
 align_fastq_to_reference(
 reference_fasta, fastq_file1,
 fastq_file2, output_sam, threads=4
)
 convert_sam_to_sorted_bam(
 output_sam, output_bam, threads=4
)
 except subprocess.CalledProcessError as e:
 print(f"Error occurred during execution: {e}")
 except Exception as e:
 print(f"Unexpected error: {e}")
if __name__ == "__main__":
 main()

This code does the following:

	Specifies the location of the genome reference file.

	Specifies the location of the paired-end reads.

	Defines locations for the output SAM and BAM files and makes a directory to hold them.

	Indexes the reference genome.

	Runs BWA to align the reads.

	Sorts the sam file and creates a bam file.

	Note that we use a Try..Except block for the operation. If there is an error, we use the subprocess.CalledProcessError property to report the error.

Now, we have a BAM file containing our alignment!

	We can also get some basic statistics from our BAM file using samtools. We will import our libraries and define a run_command() function. These should look familiar by now:

import subprocess
def run_command(cmd):
 try:
 result = subprocess.run(
 cmd, stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 text=True, check=True
)
 return result.stdout
 except subprocess.CalledProcessError as e:
 print(f"Error executing command: {' '.join(cmd)}")
 print(e.stderr)
 raise

	Next, we’ll write a function to get statistics from a BAM file:

def get_bam_statistics(bam_file):
 print(f"Getting basic statistics for BAM file: {bam_file}")
 stats_output = run_command([
 "samtools", "stats", bam_file])
 stats = {}
 for line in stats_output.splitlines():
 if line.startswith("#"):
 continue
 parts = line.split("\t")
 if len(parts) > 1:
 stats[parts[0].strip()] = parts[1].strip()
 return stats

This uses samtools stats to get information about a BAM file.

	Finally, let’s define our main() function, which will run our statistics against our sorted BAM file:

def main():
 bam_file = "data/output/aligned_reads_sorted.bam"
 try:
 stats = get_bam_statistics(bam_file)
 print("\nBAM File Statistics:")
 for key, value in stats.items():
 print(f"{key}: {value}")
 except Exception as e:
 print(f"Error: {e}")
if __name__ == "__main__":
 main()

This will give us some output that looks like this:

[image: Figure 5.8 – Output statistics for a BAM file]Figure 5.8 – Output statistics for a BAM file

This shows various statistics on the BAM file. For example, COV gives us the coverage (depth) distribution within the region. GCF gives us information on GC content. These statistics are commonly used by bioinformaticians to get information on average coverage or other aspects of a BAM file, to make further decisions in processing, or to feed back quality information to lab scientists. For a full list of the statistics provided by SAMtools, visit https://www.htslib.org/doc/samtools-stats.html.

	Let’s look at some ways to visualize the BAM file. First, we will import our libraries:

import pysam
import matplotlib.pyplot as plt

We introduce pysam, a handy Python module for interfacing with SAM and BAM files (https://pysam.readthedocs.io/en/v0.16.0.1/api.html). PySam can also run SAMtools commands.

	Next, we define a function that uses matplotlib to visualize a region in our BAM file:

def visualize_bam_coverage(
 bam_file, region, output_file=None
):
 contig, positions = region.split(":")
 start, end = map(int, positions.split("-"))
 bam = pysam.AlignmentFile(bam_file, "rb")
 coverage = [0] * (end - start)
 for pileup_column in bam.pileup(
 contig, start, end
):
 pos = pileup_column.reference_pos
 if start <= pos < end:
 coverage[pos - start] = pileup_column.nsegments
 bam.close()
 plt.figure(figsize=(10, 5))
 plt.plot(
 range(start, end), coverage,
 label="Coverage"
)
 plt.xlabel("Position")
 plt.ylabel("Read Depth")
 plt.title(f"Coverage Plot for {region}")
 plt.legend()
 if output_file:
 plt.savefig(output_file)
 print(f"Coverage plot saved to: {output_file}")
 else:
 plt.show()

To recap, this code will do the following:

	Define a function called visualize_bam_coverage() that will take in an input BAM file, a region, and an optional output file.

	Determine the contig and position range by splitting out based on the colon. This means parsing the string by splitting everything from the colon to the left into one substring, and the right side from the colon onward into another substring. This gives us the two variables we need, “contig” and “positions”. In this example, we are going to use NC_000913.3:1000-1500 as the contig and range. Note that often the words chromosome and contig are used interchangeably for these ranges. When an organism can only be assembled into small pieces, we call this a contig. When we can assemble things into entire chromosomes or place contigs within the context of a known physical chromosome, we may use notation such as Chr1:10000-15000. E. coli is a bacterium with a single chromosome, whose accession number is NC_000913.3, and so you see the preceding notation.

	Use the Python map() function to extract the start and end positions of the range as integers. Here, map() simply applies the int() function to each part of the range as split out on the “-” character In other words, we first split the left side of the string before the. dash, which becomes the start position, and convert it to an integer, and then do the same on the right side of the dash, converting the end position to an integer

	Use pysam to open the BAM file in binary read mode (rb).

	Initialize a coverage list with zeroes. The pileup property of the BAM represents how many reads have “piled up” at that position, giving us the reference position and the depth of reads covering the position (nsegments). It then updates the coverage list with the depth at each position.

	Close our BAM file.

	Initialize a plot using matplotlib. We set the title and other parameters for the plot. We will plot the position along the reference as the X axis and the read depth as the Y axis.

	Finally, it will save or display the plot.

	Now, let’s use our charting function on our data:

bam_file = "data/output/aligned_reads_sorted.bam"
region = "NC_000913.3:1000-1500"
output_file = "coverage_plot.png"
visualize_bam_coverage(bam_file, region, output_file)

We get a nice chart that looks like this:

[image: Figure 5.9 – Coverage plot from a BAM file]Figure 5.9 – Coverage plot from a BAM file

We can see the coverage as it varies over the range we provided. This type of chart can be very helpful to inspect variations in coverage that may come from lab processing or sequencer issues.As you can see, there are many downstream tools for analysis that you can run once you have your completed alignment in BAM format.

There’s more...

Sequence alignment is an important area for any bioinformatics professional to understand deeply. Alignment quality forms the basis of variant calling and subsequent analysis of the data and as such has a critical impact on downstream interpretation.Long-read methods have their own alignment tools. For instance, pbmm2 (https://github.com/PacificBiosciences/pbmm2) is used for PacBio data. Long-read alignments can have powerful impacts on variant calling and improve accuracy significantly. For example, the All of Us initiative seeks to sequence the DNA of over one million Americans to gain expanded information on ethnic diversity and improve healthcare. They use long-read sequencing and alignment to study the impact of these technologies on improving variant calling and provide comparisons with the DRAGEN aligner for short reads from Illumina technology (Mahmoud et al., Utility of long-read sequencing for All of Us, Nature Communications, Jan 2024, https://www.nature.com/articles/s41467-024-44804-3).Continued advancements in sequencing and alignment will greatly improve our understanding of human variation and lead to a revolution in medicine. These tools are also being actively applied in plant genomics to improve crops and provide new foods and medicines.

See also

	BWA is described in Li and Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, May 2009, https://academic.oup.com/bioinformatics/article/25/14/1754/225615

	DRAGEN is discussed in the paper by Behera et al., Comprehensive genome analysis and variant detection at scale using DRAGEN, Nature, October 2024, https://www.nature.com/articles/s41587-024-02382-1

	DRAGMAP can be found here: https://github.com/Illumina/DRAGMAP

	For more information on SAMTools, read Danecek et al., Twelve years of SAMTools and BCFTools, GigaScience, February 2021, https://academic.oup.com/gigascience/article/10/2/giab008/6137722

	Another cool tool for BAM visualization is SamBamViz: https://github.com/niemasd/SamBamViz

	This article discusses aligners for nanopore data: Helal et al., Benchmarking long-read aligners and SV callers for structural variation detection in Oxford nanopore sequencing data, Scientific Reports, March 2024, https://www.nature.com/articles/s41598-024-56604-2

Variant calling with FreeBayes

In this recipe, we will see how to use an alignment file to call variants, or alterations in a genome. We will look at FreeBayes (https://github.com/freebayes/freebayes), which is a popular variant caller.In variant calling, we look at the pile-up of reads in the alignment and try to determine whether there are any variations from the reference sequence.Let’s take a look at an example:

[image: Figure 5.10 – Variant Calling example (source: https://www.hammerlab.org/2015/01/23/faster-pileup-loading-with-bai-indices/)]Figure 5.10 – Variant Calling example (source: https://www.hammerlab.org/2015/01/23/faster-pileup-loading-with-bai-indices/)

Getting started

First, we will install FreeBayes using the following code. You may want to add it to your PATH:

! brew install freebayes

The code for this chapter can be found in Ch05/Ch05-4-variant-calling.ipynb.

How to do it...

Here are the steps to try this recipe:

	First, we will import our libraries:

import subprocess
import os

	Next, we define our run_command() function:

def run_command(cmd):
 print(f"Running: {' '.join(cmd)}")
 subprocess.run(cmd, check=True)

	Now we define a function to index our reference genome:

def index_reference(reference_fasta):
 print("Indexing the reference genome...")
 run_command(["samtools", "faidx", reference_fasta])
 print("Reference indexing complete.\n")

This code will use the samtools faidx command to index the reference file in preparation for running FreeBayes on it.

	We define a function to sort and index our BAM file:

def sort_and_index_bam(input_bam, output_sorted_bam):
 print("Sorting and indexing the BAM file...")
 run_command([
 "samtools", "sort", "-o",
 output_sorted_bam, input_bam
])
 run_command([
 "samtools", "index", output_sorted_bam
])
 print(f"Sorted BAM file: {output_sorted_bam}\n")

	Now, we define a function to call variants with FreeBayes:

def call_variants_with_freebayes(
 reference_fasta, input_bam, output_vcf
):
 print("Calling variants with FreeBayes...")
 cmd = [
 "freebayes",
 "-f", reference_fasta,
 input_bam
]
 with open(output_vcf, "w") as vcf_file:
 subprocess.run(
 cmd, stdout=vcf_file, check=True)
 print(f"Variants called successfully. Output VCF: {output_vcf}\n")

	Finally, we define our main function, which will call the variant calling routines:

def main():
 reference_fasta = "data/ecoli_genome/ecoli_reference.fasta"
 input_bam = "data/output/aligned_reads.sam"
 output_sorted_bam = "output/aligned_reads_sorted.bam"
 output_vcf = "output/variants.vcf”
 os.makedirs("output", exist_ok=True)
 try:
 index_reference(reference_fasta)
 sort_and_index_bam(input_bam, output_sorted_bam)
 call_variants_with_freebayes(
 reference_fasta,
 output_sorted_bam, output_vcf
)
 except subprocess.CalledProcessError as e:
 print(f"Error occurred while running a command: {e}")
 except Exception as e:
 print(f"Unexpected error: {e}")
if __name__ == "__main__":
 main()

This function defines the location of the E. coli reference genome as well as the input SAM file coming from the alignment. It then outputs the data in the outputs directory in the variants.vcf file. It will index the reference file, sort and index the BAM, and then call the variants with FreeBayes using the default parameters.Let’s look at the variants.vcf file. In your terminal, type the following:

tail –100 output/variants.vcf

Here is a sample of the output:

[image: Figure 5.11 – Section of the VCF file]Figure 5.11 – Section of the VCF file

The tab-separated columns above contain the reference contig, the position of the variant, the reference base and changed (variant) base respectively, and lastly the CIGAR string. We’ll cover the VCF format in more detail in the next chapter, but in the meantime, there is more information on the variant call format here: https://gatk.broadinstitute.org/hc/en-us/articles/360035531692-VCF-Variant-Call-Format.

There’s more...

There are many other variant callers. One of the most popular is GATK from the Broad Institute (https://gatk.broadinstitute.org/hc/en-us). Variant calling is also being impacted by deep learning. For example, Google’s DeepVariant (https://github.com/google/deepvariant) uses image tensors of the pileup variants and a Convolutional Neural Network (CNN) to make variant calls.Variant calling is especially difficult in regions of the genome that are highly repetitive, or in organisms that have high ploidy (number of chromosomes). For a great review on this topic, read Fukasawa, Genome complexity, not ploidy, dictates long-read variant calling accuracy, bioRxiv, May 2025, https://www.biorxiv.org/content/10.1101/2025.05.14.653922v1.abstract.It is also especially difficult to understand variation when it includes large changes to the genome, such as structural variation, inversion, or repeat expansion. Structural variations are large rearrangements in the genome, typically over 50 base pairs or even much larger. For example, an entire gene might be picked up and moved (inserted) into a wholly different chromosome. A gene could also be flipped around backward, which is referred to as an inversion (https://en.wikipedia.org/wiki/Structural_variation). These are very difficult to resolve accurately with short reads. As you have learned now by looking at alignments, you can readily see that short reads can only map within large regions and cannot tell you if those regions have been moved around in the genome – except by looking at the edges, and again, you would only have short reads to give you a limited amount of information there. Repeat expansions involve short sequences of a few nucleotides that are repeated over and over – they expand easily, causing genetic defects (Malik et al, Molecular mechanisms underlying nucleotide repeat expansion disorders, Nature Reviews Molecular Cell Biology, Jun 2021, https://www.nature.com/articles/s41580-021-00382-6). Again, such variations are difficult to map with short reads because they cannot span the length of the change – that is where long reads come in extremely handy, and we’ll discuss this more in Chapter 7, Genomes and Genome Assembly.In the next chapter, Chapter 6, Annotation and Biological Interpretation, we will learn about interpreting the variants in the VCF file. We’ll discuss the VCF format in detail, and we’ll learn what it means to interpret a variant and the potential biological impact it might have on an organism.Let’s clean up and close down our conda environment:

conda deactivate

See also

	For a great review of modern variant calling tools, read: Olson et al., Variant calling and benchmarking in an era of complete human genome sequences, Nature Reviews Genetics, April 2023, https://pubmed.ncbi.nlm.nih.gov/37059810/

	Koboldt presents a guide to variant calling for clinical purposes in Best practices for variant calling in clinical sequencing, Genome Medicine, October 2020, https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-020-00791-w

Chapter 6: Annotation and Biological Interpretation

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

In this chapter, we will discuss how the results of bioinformatics analysis affect biology. We will first look at how to parse and use the variant calls we arrived at in Chapter 5. We will better understand the Variant Call Format (VCF) and how to parse it. Next, we will learn how to annotate the genes in a genome, using a simple prokaryote (a single-cell organism) as an example. Then, we’ll learn about how gene structures impact the meaning of a variant. Finally, we’ll explore how proteins are annotated and the importance of protein domains.By the end of this chapter, you’ll understand how to work with variant call files and interpret their contents. You will have learned how to annotate genomes and, most importantly, understand how gene structures are impacted by variants. This will give you a solid grounding in the interpretation of variants and how they can impact an organism. You will also learn about the proteins created from the genes and see how variants can impact important regions of a protein. This will give you a perspective on how we interpret genetic results and predict their impact.In this chapter, we will cover the following topics:

	Parsing and filtering variant files

	Annotating a prokaryotic genome

	Interpreting variants on gene structures

	Annotating proteins

Technical requirements

We’ll be using the following packages in this section:

	cyvcf2

	BioPython

	Matplotlib

	Prodigal

	HMMER

You’ll be instructed on how to install these tools in the Getting started section of each recipe.You will find the code for this chapter at https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch06.Remember to activate your conda environment before beginning the recipes, like this:

conda activate bioinformatics_base

Or, if you would like to set up a conda environment specific to this chapter, before activating bioinformatics_base, run the following:

conda create -n ch06-annotation --clone bioinformatics_base
conda activate ch06-annotation

You will be able to install the packages for the chapter as you go, or you can use the YAML file provided in the repository:

conda env update --file ch06-annotation.yml

Parsing and filtering variant files

In this recipe, we will better understand the VCF file format and learn about some tools for parsing and filtering VCF files. We will discuss the meaning of variants and how to interpret their quality.First, let’s review the VCF file format:

[image: Figure 6.1 – Header section (top) and variant portions (bottom) of the variants VCF file]Figure 6.1 – Header section (top) and variant portions (bottom) of the variants VCF file

The first portion of the VCF file contains the VCF header information. We can see that the version of the VCF file format being used here is 4.2. We also see a file date and that the source of the VCF file was FreeBayes. We see the actual command used to generate the file. We then see definition lines, which show the meaning of various abbreviations used in the file. After the INFO lines, you may also find FILTER lines, which explain how the VCF file was filtered, and FORMAT fields with formatting info.Next, we see the column header line, which explains the columns used below it. Here are the columns:

	CHROM: The chromosome or contig name; in this case, we see NC_000913.3, which is the E. coli chromosome

	POS: The position of the variant

	ID: A slot for a unique identifier, such as a dbSNP ID

	REF: The reference base (base in the original genome)

	ALT: The alternate base or bases (found in the sequencing alignment)

	QUAL: A Phred quality score indicating the confidence of the variant call

	FILTER: If this variant passes all filters, this will say PASS; otherwise, it will show why the variant failed to pass a filter

	INFO: A long string of additional information using various abbreviations

	FORMAT: Additional information, such as copy number

The VCF specification can be found here: https://samtools.github.io/hts-specs/VCFv4.2.pdf.Another important concept we should cover is ploidy. Ploidy is a measure of the number of copies of a chromosome in an organism. In E. coli, which is a bacterium, there is only a single chromosome copy, so we say it is haploid. Humans have two copies of each chromosome, and we call this diploid. Some organisms can have even more copies of their chromosomes, such as plants, making variant interpretation even more difficult!The sequence and structure of each individual chromosome in a region is called an allele. An allele typically represents a region of a gene on one copy of a chromosome, and so it is important to know which variants go with each allele. This is used to determine the potential biological impact of the variant.

[image: Take a look at the following figure. It contains an illustration of a haploid organism with one chromosome and a diploid organism with two chromosomes. We’ll evaluate the meaning of a variant analysis at a given position in each scenario:]Take a look at the following figure. It contains an illustration of a haploid organism with one chromosome and a diploid organism with two chromosomes. We’ll evaluate the meaning of a variant analysis at a given position in each scenario:

Figure 6.2 – Illustration of ploidy
In the figure, we see an example of a haploid genome on the top and a diploid genome with two chromosomes on the bottom. We see a variant in which a single base has changed. In the reference, the base is A. But in our sequencing data, we have seen a T (let’s assume in this case that 100% of the reads at that position have a T). The term variant is often used interchangeably with the term polymorphism. This type of polymorphism involving a single base change is typically called a single nucleotide polymorphism, or SNP (pronounced “snip”).In the top example, if we have sufficient depth or reads with the T and we believe the alignment (meaning we’re not worried the reads should have aligned somewhere else in the genome), then we can reliably say that this organism has a T in its genome instead of an A.In the diploid case, we have the added problem of wondering which allele, or chromosome, these reads really came from. Most likely, the reads will align to either chromosome equally well, because the surrounding sequence is all identical. In this case, there was already a source of natural variation in the genome. One allele has A and one has T. So, in a normal sequencing run, we should expect to see 50% A and 50% T in the reads, and assuming we had mapped against the top version of the sequence, we would get a variant call of T with 50% allele frequency. The allele frequency is important to look at as it tells us about the frequency of the variant in the sequencing read population. In a diploid genome such as a human, there will be many 50% allele frequency SNPs, which represent the natural variation already present in the two chromosomes. We might want to filter those out by using a public reference source such as dbSNP (https://www.ncbi.nlm.nih.gov/snp/), which houses a huge database of known polymorphisms. On the other hand, a low allele frequency variant could represent some sort of sample contamination. We might want to use this as a QC check early on, but later in the process we will most likely want to filter out such low-frequency variants.Again, if we see the T 100% of the time here, we would conclude that the top allele must have changed from A to T.When two or more SNPs are near each other, we may want to know whether they are really lying together on the same allele (the same chromosome) or whether they might just be a mixture of variants coming from different chromosomes. If we have reads that contain these variants together in the same read, we can confirm that they are coming from the same chromosome. This is known as phasing (Browning and Browning, Haplotype phasing: existing methods and new developments, Nature Reviews Genetics, September 2011, https://www.nature.com/articles/nrg3054).When multiple SNPs can be phased into a group, we refer to this as a haplotype block. A haplotype is a group of variants that are together on a chromosome.As you can see, we will often want to filter our VCF file before further processing to remove noise and variants that might not be biologically relevant. Some of the most important sub-fields in the INFO field are DP (depth) and AF (allele frequency). The QUAL column is also typically used. OK, let’s get started and see how to filter our VCF file before further processing!

Getting started

Let’s set up our directories:

! mkdir -p input
! mkdir -p output
! mkdir -p data

Copy over the variants.vcf file from Chapter 05 to the input folder:

! cp ../Ch05/output/variants.vcf input/

Next, we’ll install cyvcf2. It is a program for fast parsing of VCF files (https://brentp.github.io/cyvcf2/):

! pip install cyvcf2

The code for this recipe can be found in Ch06/Ch06-1-variant-parsing.ipynb.

How to do it...

Let’s look at how we can filter variants in a VCF file based on their quality or other criteria:

	First, we will import the VCF and Writer classes from cyvcf2:

from cyvcf2 import VCF, Writer

These classes assist with reading VCF and writing out VCF formats, respectively.cyvfc2 is a Cython wrapper around htslib. Cython is a system for compiling Python code into C to make it faster, and htslib is a C library for parsing several common bioinformatics file formats. VCF also provides a compact binary format called BCF, and cyvfc2 can deal with this format as well:

def filter_vcf(input_vcf, output_vcf,
 min_quality=30, chrom_filter=None):
 vcf = VCF(input_vcf)
 writer = Writer(output_vcf, vcf)
 for variant in vcf:
 if (variant.QUAL is not None and
 variant.QUAL < min_quality):
 continue
 if (chrom_filter and
 variant.CHROM not in chrom_filter):
 continue
 writer.write_record(variant)
 vcf.close()
 writer.close()
 print(f"Filtered VCF written to: {output_vcf}")

This code does the following:

	Defines a filter_vcf() function that takes an input VCF file, a designated output VCF file for the filtered results, a minimum quality score to filter on (defaults to Q30), and an optional chromosome (or contig) to filter on.

	Opens the vcf file using the VCF class. This class will parse out the header section and the variants and create an iterator for reading the variants. In Python, an iterator is an object that can be moved ahead to return the next element (https://wiki.python.org/moin/Iterator).

	Creates a writer for the output file using the Writer class.

	Loops over the variants using the iterator:

	For each variant, we will retain it only if the quality meets the QUAL criteria

	We will also check that the variant is on the right chromosome, if the CHROM criteria are defined

	Variants passing the criteria will be written out

	We will clean up by closing our reader and writer. We do this by calling the .close() function of each object, which closes it and frees up the memory associated with the object. Closing the writer also ensures that all file writing operations have been completed.

	Next, we’ll set up our main() function to run the actual filtering:

def main():
 input_vcf = "input/variants.vcf"
 output_vcf = "output/filtered_variants.vcf"
 min_quality = 30
 chrom_filter = ["NC_000913.3"]
 filter_vcf(input_vcf, output_vcf,
 min_quality, chrom_filter)
if __name__ == "__main__":
 main()

We set the input file to the variants file we generated for E. coli. We also set an output file called filtered_variants.vcf. We will use a quality cutoff of Q30, and we set the chromosome as the E. coli chromosome (if this were a multi-chromosome organism, we could also use this to filter variants down to a particular chromosome). We then call our function.You can inspect variants.vcf and filterered_variants.vcf now and see that they are different, and some variants have been filtered out.Now, let’s look at more ways to use cyvf2 for parsing VCF files. We can plot the allele frequency of variants across the genome:

	First, we import our libraries:

from cyvcf2 import VCF
import matplotlib.pyplot as plt

We will use cyvcf2 for parsing and Matplotlib for graphing.

	Now, we’ll define our plotting function:

def plot_allele_frequency(vcf_file, output_file=None):
 chrom_positions = []
 allele_frequencies = []
 vcf = VCF(vcf_file)
 for variant in vcf:
 af = variant.INFO.get("AF")
 if af is not None:
 if isinstance(af, (list, tuple)):
 for freq in af:
 allele_frequencies.append(float(freq))
 chrom_positions.append(
 (variant.CHROM, variant.POS)
)
 else:
 allele_frequencies.append(float(af))
 chrom_positions.append(
 (variant.CHROM, variant.POS)
)
 vcf.close()
 chrom_names = sorted(
 set(chrom for chrom, _ in chrom_positions)
)
 chrom_offsets = {
 chrom: i * 1e6
 for i, chrom in enumerate(chrom_names)
 } # Chromosome offsets for spacing
 plot_positions = [
 chrom_offsets[chrom] + pos
 for chrom, pos in chrom_positions
]
 assert len(plot_positions) == len(allele_frequencies), (
 "Mismatch between positions and frequencies!"
)
 plt.figure(figsize=(12, 6))
 plt.scatter(
 plot_positions, allele_frequencies,
 alpha=0.5, s=10, label="Allele Frequency"
)
 plt.xlabel("Genomic Position (Chromosomes)")
 plt.ylabel("Allele Frequency")
 plt.title("Allele Frequency Across the Genome")
 plt.xticks(
 [chrom_offsets[chrom] for chrom in chrom_names],
 labels=chrom_names,
 rotation=45
)
 plt.grid(True)
 plt.legend()
 if output_file:
 plt.savefig(
 output_file, dpi=300,
 bbox_inches="tight"
)
 print(f"Plot saved to: {output_file}")
 else:
 plt.show()

This code does the following:

	Defines a function called plot_allele_frequency() that takes an input VCF file and an output file.

	Sets up lists to store the chromosome positions and allele frequencies.

	Uses the VCF class to open the VCF file.

	Loops over the variants and captures the allele frequencies (the AF field) and chromosome positions. The code isinstance(af, (list, tuple)) handles the case where multiple allele frequencies are embedded in the field.

	Closes the VCF file.

	Sorts the chromosome names.

	Creates chromosome offsets for the plot (we won’t need this here since we have one chromosome).

	Creates the x coordinates for plotting.

	Sets up a plot with the x axis as the genomic coordinate and the y axis as the allele frequency.

	Sets labels, a title, and tick marks for the plot.

	Optionally saves the plot to an output PNG file or shows the plot.

	Now, we’ll define our main() function to run the code:

def main():
 vcf_file = "input/variants.vcf"
 output_file = "output/allele_frequency_plot.png"
 plot_allele_frequency(vcf_file, output_file)
if __name__ == "__main__":
 main()

We use the input variants.vcf file that we generated for E. coli. We set up an output PNG file in the output subdirectory and then call our function. This is what we get:

[image: Figure 6.3 – Allele frequency across the E. coli genome]Figure 6.3 – Allele frequency across the E. coli genome

You can see the allele frequencies, ranging from 0 to 0.5 to 1, for each variant, mapped across the E. coli genome. Note that in a haploid organism such as E. coli, if you get a SNP, you might expect the allele frequency to be 1 or very close to 1 (this means 100% of the reads support an alternate base as compared to the reference allele). However, we do see some 0.5 alleles here. This can often be indicative of a mixed population. Indeed, if we look carefully at the entry for SRR31783077, which is the data we used for the alignment in Chapter 5, we will see that it came from a study that contained both E. coli and Shigella organisms, https://www.ncbi.nlm.nih.gov/sra/?term=SRR31783077.So, perhaps this data contained a mixture of species, or even a mixture of different E. coli strains. FreeBayes by default assumes that it is analyzing a diploid organism. If it sees a mixture of reference and alternate bases, it will assume a heterozygous outcome, which is a 50% allele frequency. We could have used the –ploidy 1 option to force more allele calls to be either 1 or 0 in a haploid organism. The analysis presented here is for illustrative purposes, so it is not critical in this case. In fact, the data presented here is similar to what you might see in a human variant calling analysis, or any other diploid organism. You will notice that the number of 0.5 SNPs is much less than the 0 or 1 SNPs, though, because the mixed case is not the predominant one. An allele frequency of zero in this case just means that the reads support the reference base.Next, let’s look at the distribution of variant types in our VCF file:

	First, we’ll import our libraries:

from cyvcf2 import VCF
import matplotlib.pyplot as plt
from collections import Counter

This gives us cyvcf2 for VCF parsing and Matplotlib for graphing. We will use the Counter class from the collections module. This class helps us store a dictionary of our count results.

	Next, we’ll define a function to categorize the variant types:

def categorize_variant(variant):
 ref_len = len(variant.REF)
 alt_len = max(len(alt) for alt in variant.ALT)
 if ref_len == 1 and alt_len == 1:
 return "SNP"
 elif ref_len < alt_len:
 return "Insertion"
 elif ref_len > alt_len:
 return "Deletion"
 else:
 return "Other"

We define a categorize_variant() function, which pulls in the REF and ALT fields for the variant. If the REF and ALT lengths are the same, we have a SNP (a single base change). If REF is shorter than ALT, then we must have inserted an additional sequence in the genome. If REF is longer than ALT, that means that we saw a deletion or removal of sequence from the genome. Finally, if we see anything else, we categorize it as Other.

	Now, we need to build our plotting function:

def plot_variant_types(vcf_file, output_file=None):
 variant_counts = Counter()
 print(f"Processing VCF file: {vcf_file}")
 vcf = VCF(vcf_file)
 for variant in vcf:
 variant_type = categorize_variant(variant)
 variant_counts[variant_type] += 1
 vcf.close()
 labels = list(variant_counts.keys())
 sizes = list(variant_counts.values())
 plt.figure(figsize=(10, 8))
 wedges, _, autotexts = plt.pie(
 sizes, autopct="%1.1f%%", startangle=140,
 colors=plt.cm.tab10.colors,
 wedgeprops={
 "edgecolor": "black",
 "linewidth": 1.5
 }
)
 plt.legend(
 wedges, labels,
 title="Variant Types",
 loc="center left",
 bbox_to_anchor=(1, 0.5),
 frameon=False
)
 plt.title(
 "Variant Type Distribution",
 fontsize=14,
 fontweight="bold"
)
 if output_file:
 plt.savefig(
 output_file, dpi=300,
 bbox_inches="tight"
)
 print(f"Plot saved to: {output_file}")
 else:
 plt.show()

This code defines the plot_variant_types() function, which will do the following:

	Initialize a Counter() object to track the number of variants of each type

	Read in the variant file

	For each variant, loop through and categorize and count each variant

	Create the labels and sizes and initialize a pie chart plot

	Set the properties and legend for the pie chart and add a title

	Optionally save the output PNG file or show the plot

This is what we get:

[image: Figure 6.4 – Distribution of variant types found in our E. coli analysis]Figure 6.4 – Distribution of variant types found in our E. coli analysis

You can see that the majority of the variants are SNPs, and then we also have insertions, deletions, and others. Short insertions and deletions are often lumped together under the term indels. Short indels are typically classified as insertions or deletions under 50 bp in length. Beyond that, we typically call these Structural Variations (SVs). We will talk more about SVs in Chapter 7, Genomes and Genome Assembly.To recap, a deletion might have something in the REF and ALT fields such as “AT”, “A”, which would mean that a T has been removed from the genome. For an insertion, we might see something such as “G”, “GC”, meaning that a C has been inserted. If an indel happens in the coding portion of a gene, it will cause a frameshift mutation, which will almost certainly change the amino acids produced by the gene and may also introduce a premature stop codon. Stop codons cause ribosomes to stop translating amino acids. So, either of these effects would probably have a severe negative effect on the function of that protein.

There’s more...

As you can see, we will typically want to filter our variants and make sure we have a set of high-quality variants before processing them further. Typically, the variants that matter the most will be the ones that impact genes and proteins.You can take a quick look at Optional Exercise #4 in the notebook to see how to simulate a simple change to a sequence called by a variant. When a SNP variant alters the coding sequence of a gene, it may change the codon used and thereby change the amino acid produced. But since there are multiple tRNA codons for the same amino acids (referred to as the degenerate genetic code), some mutations may change the DNA but not alter the amino acid produced. If the amino acid is altered, we call that a missense mutation. When the amino acid is not altered, we refer to this as a silent mutation.Here is the output we get from Optional Exercise #4 to illustrate:

Original Gene Sequence:
ATGGCATTTGACTGGTAA
Mutated Gene Sequence:
ATGTGTTTTGACTGGTAA
Original Protein Sequence:
MAFDW*
Mutated Protein Sequence:
MCFDW*

We can see that the alteration G->T in the fourth position results in a change of amino acid from A (alanine) to C (cysteine) at the second position. The stop codon is represented by a * and is unchanged at the end of the protein (a real protein would most likely be longer than this). This would probably impact the structure of the protein, but it might not be radical. It would all depend on the structure of the protein. We’ll discuss these matters more in Chapter 9, Protein Structure and Proteomics.

See also

	The cyvcf2 paper can be found here: Pedersen and Quinlan, Cyvcf2: fast, flexible variant analysis with Python, BioInformatics, June 2017, https://academic.oup.com/bioinformatics/article/33/12/1867/2971439

	For more background on Cython, check out https://cython.org/

	Another variant parser is pyVCF: https://pyvcf.readthedocs.io/en/latest/

	Ploidy can be estimated using sequencing data – see Weib et al., nQuire: a statistical framework for ploidy estimation using next generation sequencing, BMC BioInformatics, April 2018

Annotating a prokaryotic genome

Once we have called and filtered variants, we want to understand the impact of these variants on the organism. The impact of the variant will typically depend on where it lands, for example, in a gene, promoter, or intergenic region. In this recipe, we will learn how to annotate a genome from scratch and begin to understand the core features within a genome. We will get more familiar with common annotation formats as well.In the case of E. coli, the genome has already been annotated by a panel of experts. We can download the file in GenBank format:

wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.gbff.gz

We could run any of our GenBank parsing code on this file as well. But what if we wanted to start with fresh sequencing data? Should we assemble the genome of an organism and then annotate it from scratch? In this recipe, we’ll look at how to use gene prediction programs to do this (we’ll cover assembly in Chapter 7, Genomes and Genome Assembly). But first, let’s take a quick look at the GenBank format:

[image: Figure 6.5 – The GenBank header]Figure 6.5 – The GenBank header

The GenBank header consists of several important pieces of information. The Locus tag gives the organism or chromosome, length, type of molecule, and whether it is circular or linear. In this case, we have a linear E. coli chromosome called NC_000913 that is ~4.6 Mbp in length. We also have a definition line, accession number and version, and details of the organism. Then we have a series of publications related to the organisms. Shortly thereafter, we get into the core of the file, which includes the genetic features:

[image: Figure 6.6 – Features section of the GenBank file]Figure 6.6 – Features section of the GenBank file

Here, we have repeating sections for different features in the genome. We have the source line, which contains the entire sequence. We then have a gene entry with a position (start..end) and gene name, along with other synonyms for the gene and cross-references to other public databases (the db_xref lines). We also have CDS entries for the coding portion of the gene, which include the translation or protein sequence.If you run tail on the file, you see that the file ends with the complete genome sequence.There are huge numbers of organisms already annotated at various levels of completeness in public databases. But there are also new organisms being discovered and sequenced all the time. Let’s see how we can annotate a new prokaryotic genome!

Getting started

For this recipe, we will use Prodigal, a popular genome annotation program:

! brew install prodigal

This will install Prodigal for you.

Tip

Some users may experience errors related to mixed architectures in brew installations, so we will provide alternatives, including installing via conda.

If you have trouble with the preceding prodigal command, you can try the following (from the terminal):

arch -arm64 brew install prodigal

Alternatively, try this:

conda install bioconda::prodigal

Let’s also move over our E. coli reference genome from Chapter 5:

! cp ../Ch05/ecoli_genome/ecoli_reference.fasta input/

Alternatively, you could retrieve it again (from the terminal):

wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.fna.gz
gunzip GCF_000005845.2_ASM584v2_genomic.fna.gz

The code for this recipe can be found in Ch06/Ch06-2-genome-annotation.ipynb.

How to do it...

Here are the steps to try this recipe:

	We will write code to run Prodigal on a given input FASTA file. As output, it will provide an annotated GenBank file, a CDS file, and a Protein FASTA file. First, let’s import our libraries:

import subprocess
import os

	Next, we’ll define a function to run Prodigal for us:

def run_prodigal(input_fasta, output_gbk,
 output_proteins, output_cds):
 if not os.path.exists(input_fasta):
 raise FileNotFoundError(
 f"Input FASTA file not found: {input_fasta}"
)
 command = [
 "prodigal",
 "-i", input_fasta,
 "-o", output_gbk,
 "-a", output_proteins,
 "-d", output_cds,
 "-p", "single"
]
 try:
 print("Running Prodigal...")
 subprocess.run(command, check=True)
 print("Prodigal run completed.")
 except subprocess.CalledProcessError as e:
 print(f"Error running Prodigal: {e}")
 except FileNotFoundError:
 print(
 "Prodigal is not installed or not in your PATH."
)

This function will do the following:

	Ensure the input FASTA file exists. If not, it will raise a FileNotFound error.

	Construct the Prodigal command with the input FASTA file and the desired output files. Note that Prodigal has a mode for metagenomes or single genomes – we’ll use single here for E. coli.

	Run subprocess to run the Prodigal command and handle errors.

	Finally, let’s run Prodigal:

if __name__ == "__main__":
 input_fasta = "input/ecoli_genome/ecoli_reference.fasta"
 output_gbk = "output/ecoli_genes.gbk"
 output_proteins = "output/ecoli_proteins.faa"
 output_cds = "output/ecoli_cds.fna"
 run_prodigal(input_fasta, output_gbk,
 output_proteins, output_cds)

This code will run Prodigal on the E. coli reference genome and produce an output GenBank file and corresponding CDS and Protein files.Let’s look at the GenBank output:

[image: Figure 6.7 – GenBank output from Prodigal]Figure 6.7 – GenBank output from Prodigal

As you can see, this is a little different than our previous GenBank output; obviously, it is lacking the literature references and some other lines, but it is still in GenBank format. It includes the Definition line as well as CDS features called by Prodigal.If you tail this file, you will see that it does not include the genome sequence. We’d like to include that as well.

	Let’s now add the FASTA sequence to the GenBank file:

from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation

We import sequence manipulation modules from BioPython.

	Now, let’s write a function to parse the Prodigal CDS file:

def parse_prodigal_header(header):
 parts = header.split(' # ')
 seqid = parts[0][1:] # Remove '>'
 start = int(parts[1])
 end = int(parts[2])
 strand = 1 if parts[3] == '1' else -1
 return {
 'seqid': seqid,
 'start': start,
 'end': end,
 'strand': strand
 }

This code will split out the CDS lines and get the sequence ID, start, and stop position (and strand).

	Now, we will write our function to create the final combined GenBank file:

def create_genbank(genome_fasta, prodigal_fna, output_gb):
 genome_record = next(
 SeqIO.parse(genome_fasta, "fasta")
)
 gb_record = SeqRecord(
 seq=genome_record.seq,
 id=genome_record.id,
 name=genome_record.id,
 description="Generated from Prodigal predictions"
)
 gb_record.annotations["molecule_type"] = "DNA"
 gb_record.annotations["topology"] = "linear"
 gb_record.annotations["data_file_division"] = "BCT"
 gb_record.annotations["source"] = "Escherichia coli"
 gb_record.annotations["organism"] = "Escherichia coli"
 gb_record.annotations["taxonomy"] = [
 'Bacteria', 'Proteobacteria',
 'Gammaproteobacteria', 'Enterobacterales',
 'Enterobacteriaceae', 'Escherichia'
]
 feature_count = 0
 for record in SeqIO.parse(prodigal_fna, "fasta"):
 gene_info = parse_prodigal_header(
 record.description
)
 feature = SeqFeature(
 location=FeatureLocation(
 gene_info['start'] - 1,
 gene_info['end'],
 strand=gene_info['strand']
),
 type="CDS",
 qualifiers={
 "locus_tag": f"CDS_{feature_count+1}",
 "translation": str(
 record.seq.translate()
),
 "product": "hypothetical protein",
 "note": ["Predicted by Prodigal"]
 }
)
 gb_record.features.append(feature)
 feature_count += 1
 SeqIO.write(gb_record, output_gb, "genbank")
 print(f"Created GenBank file with {feature_count} features")

This code will produce our desired GenBank file by doing the following:

	It uses the SeqIO module to parse the E. coli FASTA file.

	It uses BioPython’s SeqRecord object to build up the GenBank file.

	It then adds some additional annotations to the GenBank record.

	It uses our parse_prodigal_header() function to loop over the entries in the CDS file and add them as features to the GenBank record using the SeqFeature() function.

	Finally, it writes out the combined GenBank file with SeqIO.write().

Let’s use our functions!

def main():
 create_genbank(
 genome_fasta="input/ecoli_reference.fasta",
 prodigal_fna="output/ecoli_cds.fna",
 output_gb="output/ecoli_prodigal_combined.gb"
)
if __name__ == "__main__":
 main()

This will give us our GenBank file with both sequence and gene features! It is worth noting that Prodigal has several other useful options (you can see them by running prodigal –h). Using -f gff, you can get the output in Genomic Feature Format (GFF). You can find information on GFF format here: https://useast.ensembl.org/info/website/upload/gff3.html.It is worth taking a moment to learn about GFF format. You should also take a look at the gffutils package: https://gffutils.readthedocs.io/en/latest/.You can get a little more practice with GenBank files by trying out the Optional Exercise #3 in the notebook, in which we parse back out the features in our new combined Prodigal file. If you want to try this, go into your notebook and review section 3, (Optional Exercise) Parse a GenBank file to Extract Annotations. You will define a new function called annotate_ecoli(), which takes in a GenBank file and parses it to provide the annotations in an output file, and then you’ll run it to produce the parsed annotations.We’ve now seen how to use annotation tools to find the gene structures in an organism from scratch. In the next section, we’ll learn how to view our results!

There’s more...

Once we have a GenBank file, we would like to review our genome in a more visual way than just inspecting the file. For this, we use a genome browser. One of the more popular genome browsers is the Integrated Genomics Viewer (IGV) (https://igv.org/):

Let’s install IGV:brew install --cask igv
If you have trouble with the above command, try:
brew install homebrew/cask/igv
OR
arch -arm64 brew install --cask igv
OR you can use conda:
conda install bioconda::igv
Note: Using conda may require a Java update! brew link igv

Now, open IGV using the Prodigal-annotated E. coli GenBank file:

! igv output/ecoli_prodigal_combined.gb

Here is an IGV view of our annotated E. coli genome:

[image: Figure 6.8 – IGV view of the combined Prodigal E. coli genome annotation]Figure 6.8 – IGV view of the combined Prodigal E. coli genome annotation

This is a high-level view of the genome in IGV.We can zoom in further to see gene-level features:

[image: Figure 6.9 – Zoomed in view of IGV showing gene features derived from Prodigal]Figure 6.9 – Zoomed in view of IGV showing gene features derived from Prodigal

Here, we see an example of a zoomed-in view of the genome in IGV. We can see several gene annotations as well as a Gene informational popup for one of the genes.There are other annotation programs out there you should be aware of. For eukaryotic annotation, BRAKER2 is popular (Bruna et al., BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by protein database, NAR Genomics and BioInformatics, January 2021).

See also

	You can find a tutorial on the GenBank format here: https://www.uvm.edu/~vgn/Archive/bioinf-outreach/2_entrez/2e_sequence-databases/nucleotides/genbank/flatfile/gb_flatfile.htm

	Prodigal installation instructions: https://github.com/hyattpd/Prodigal/wiki/installation

	Prodigal paper: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-119

	You can learn more about Python regular expressions here: https://docs.python.org/3/howto/regex.html

Interpreting variants on gene structures

Let’s now dive deeper into the structure of genes and how variants affect them. Variants could occur throughout the genome, and one could argue that a variant almost anywhere could have a potential impact on an organism. But we should start by understanding the most obvious impacts, which are on genes and proteins.Let’s look at the core structures of a gene:

[image: Figure 6.10 – Structure of a gene]Figure 6.10 – Structure of a gene

The most important part of the gene is the exons. At the beginning of the first exon will be the start codon, typically ATG (the triangle in the preceding figure). The exons are separated by introns (prokaryotic genes are usually simpler and do not contain introns typically, but we’ll focus on a more complex eukaryotic gene structure here). Introns are not translated and are spliced out. Once the exons are joined together after splicing, translation will begin at the start codon and continue until the end of the last exon, at the stop codon. The stop codon is shown as a pentagon in the preceding figure.At the beginning of a gene, there is typically an UnTranslated Region (UTR). Since the gene is transcribed in the 5’ to 3’ direction (recall the directionality of DNA), we will refer to these as the 5’ UTR and 3’ UTR.A variant would be expected to have the most impact if it occurs in the exons, as this will affect the coding part of the gene that will turn into a protein. The most severe effect would be introducing a premature stop codon or removing the start codon. Next would be changing the reading frame so that a large part of the protein is completely different. A lesser impact might be changing a single amino acid. Finally, we would have a silent mutation that would not change any amino acids but still might affect translation rate and thereby have a more subtle impact.Variants in other locations near the gene can also have an impact, though. A mutation in the UTR can affect the regulation or translation of the gene (Li and Wang, Predicting Functional UTR variants by integrating region-specific features, Briefings in BioInformatics, Jul 2024, https://academic.oup.com/bib/article/25/4/bbae248/7680467).Genes also have a promoter region upstream of them. Variants in the promoter can have impacts as well, such as up- or down-regulation of the gene.The part of the gene that is read and translated into protein is called the open reading frame (ORF). Genes can also contain upstream ORFs (uORFs) located in the 5’ UTR (Dasgupta and Prensner, Upstream open reading frames: new players in the landscape of cancer gene regulation, NAR Cancer, June 2024). These uORFS can be involved in many functions, from the regulation of RNA to the production of microproteins.Genes can also contain a signal peptide, which is typically located in the first stretch of amino acids. Signal peptides control which parts of the cell a protein is directed to (for example, to the nucleus or mitochondria).A gene in the intron could have an impact if it is near the splice site (the junction between the two exons). The base pairs right next to the splice site are both within the exonic region and also just within the border of the intronic region. Therefore, disruption of a base there could cause aberrant splicing. However, even variants more internal to the intron, which are called deep intronic variants, can cause disruptions in splicing.We also need to consider that genes can have multiple splice variants. For example, a gene with exons A, B, C, D might produce isoforms ABCD, ABC, ABD, BCD, etc. In fact, there are on average about seven splice variants for any given gene (for more on this, read Leung et al., Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing, Cell Reports, November 2021, https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01504-7?uuid=uuid%3A815ec416-7e8c-401f-86bb-35d29fc13b75. Genes may also have alternative start sites. This means multiple start codons are present within the gene. A common example would be to produce an isoform with a signal peptide and another isoform without the signal peptide by starting translation at a different point within the gene.As you can see, understanding the impact of a variant within the genome can be quite complex. Knowing how to interpret gene structures and having access to the latest information are important for the proper analysis and interpretation of variants.Let’s take a look at how we can use the variants derived from our analysis with the gene structures we’ve annotated on the genome to better understand the potential impact of variants.

Getting started

For this exercise, we’ll be using BioPython, Matplotlib, and the Python csv module.The code for this recipe can be found in Ch06/Ch06-3-genes-variants.ipynb.

How to do it...

Here are the steps to perform this recipe:

	We will first import our libraries:

from Bio import SeqIO
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
import matplotlib.pyplot as plt

This will bring in the BioPython libraries we need, as well as Matplotlib.

	Next, we will define our file paths:

genbank_file = "output/ecoli_prodigal_combined.gb"
vcf_file = "input/variants.vcf"
output_log_file = "output/variant_analysis.log"

We will use the combined Prodigal annotation file we produced in the Annotating a prokaryotic genome recipe and the variants file we made in the Variant calling with GATK recipe of Chapter 5. The output will go into the variant_analysis.log file.

	Next, we will write a simple function to parse the VCF file:

def parse_vcf(vcf_file):
 variants = []
 with open(vcf_file, "r") as vcf:
 for line in vcf:
 if line.startswith("#"):
 continue
 fields = line.strip().split("\t")
 chrom = fields[0]
 pos = int(fields[1]) - 1
 ref = fields[3]
 alt = fields[4]
 variants.append((chrom, pos, ref, alt))
 return variants

This function loops over the variants in the input VCF file and splits the line. It parses out the chromosome and position fields as well as the reference and alternative bases.

	Next is a simple function that checks whether the coding frame has been changed:

def changes_coding_frame(ref, alt):
 return (len(ref) - len(alt)) % 3 != 0

This is done by noting whether the REF and ALT fields have changed the length of the sequence by something that is not a multiple of 3.

	Now, we’ll define a function to check whether an amino acid will change because of this variant:

def introduces_amino_acid_change(cds_sequence,
 ref, alt,
 position_in_cds):
 try:
 if (cds_sequence[
 position_in_cds:position_in_cds
 + len(ref)] != ref):
 raise ValueError(
 "Reference allele does not match CDS"
 "at the specified position."
)
 original_cds = cds_sequence
 mutated_cds = (
 cds_sequence[:position_in_cds]
 + alt +
 cds_sequence[position_in_cds + len(ref):]
)
 original_protein = Seq(
 original_cds
).translate(to_stop=True)
 mutated_protein = Seq(
 mutated_cds
).translate(to_stop=True)
 return original_protein != mutated_protein
 except Exception as e:
 with open(output_log_file, "a") as log:
 log.write(
 f"Error processing variant at position"
 f"{position_in_cds + 1}: {e}\n"
)
 return False

This function will create the mutated CDS sequence and then use the Seq.translate() function to check whether the two translated sequences are identical. If not, it will return False, meaning that the variant introduces an amino acid change in the protein.

	Now, we build our plotting function:

def plot_variant_changes(variant_data):
 positions = [data[0] for data in variant_data]
 change_types = [data[1] for data in variant_data]
 plt.figure(figsize=(12, 6))
 plt.scatter(
 positions, change_types,
 alpha=0.7, edgecolors="k")
 plt.xlabel("Position in Genome", fontsize=12)
 plt.ylabel("Type of Change", fontsize=12)
 plt.title(
 "Variant Type vs. Position in Genome",
 fontsize=14, fontweight="bold"
)
 plt.yticks(
 ticks=[0, 1, 2],
 labels=["No Change", "Frame Change", "AA Change"]
)
 plt.grid(alpha=0.5)
 plt.show()

This uses Matplotlib to build our plot. We will set positions as the first column of the variant_data array. We then set change_types as the second column. We then create a scatter plot with the positions as the x axis and the change types on the y axis. Finally, we set the labels, title, tick marks, and grid, and then show the plot.Now, we’ve defined our functions and will begin running our main code:

	First, we will parse the VCF file:

variants = parse_vcf(vcf_file)

	Next, we will parse the GenBank file and look for variants that intersect with genes:

variant_data = []
with open(output_log_file, "w") as log:
 with open(genbank_file, "r") as gb_file:
 for record in SeqIO.parse(gb_file, "genbank"):
 for feature in record.features:
 if feature.type == "CDS":
 cds_start = int(
 feature.location.start)
 cds_end = int(
 feature.location.end)
 cds_sequence = str(
 feature.extract(record.seq))
 for chrom, pos, ref, alt in variants:
 if (chrom == record.id and
 cds_start <= pos < cds_end):
 in_cds = True
 frame_change = (
 changes_coding_frame(
 ref, alt)
)
 position_in_cds = (
 pos - cds_start)
 amino_acid_change = (
 introduces_amino_acid_change(
 cds_sequence,
 ref, alt,
 position_in_cds)
)
 change_type = (
 2 if amino_acid_change else
 (1 if frame_change else 0)
)
 variant_data.append(
 (pos + 1, change_type)
)
 log.write(
 f"Variant at position {pos + 1}"
 f"(Ref: {ref}, Alt: {alt}) intersects"
 f"CDS ({cds_start + 1}-"
 f"{cds_end}).\n")
 if frame_change:
 log.write(
 "\tThis variant changes"
 "the coding frame.\n")
 else:
 log.write(
 "\tThis variant does not"
 "change the coding frame.\n"
)
 if amino_acid_change:
 log.write(
 "\tThis variant introduces an"
 "amino acid change.\n")
 else:
 log.write(
 "\tThis variant does not"
 "introduce an amino acid change.\n")

This code does the following:

	Creates an empty list to hold the variant data.

	Opens our output log file for writing and our GenBank file for parsing.

	Loops over the records in the GenBank file. For each record, it checks whether it is a CDS type and, if so, it is processed:

	Get the start, end, and sequence for the CDS

	Now we do an inner loop over the variants:

	If the position of the variant is inside our CDS, we perform a series of checks to determine whether the frame or amino acid has been changed by the variant

	Assign a change_type value: 0 means no significant change, 1 is a frame shift, and 2 is an amino acid change

	Append the change information to the variant_data list

	Log the information to our output file, including position, REF, ALT, region of the intersection, and the type of change

	Finally, let’s plot our variant changes. This is what we get:

[image: Figure 6.11 – Variant-induced changes mapped along the genome]Figure 6.11 – Variant-induced changes mapped along the genome

We can see variants with no change, a frame shift, or an amino acid change mapped along the E. coli genome.This was just a simple example of looking at how variants can induce potential biological changes by focusing on the genes and their coding into proteins. More sophisticated modern programs may also look at whether variants fall in promoters, splice sites, UTRs of genes, and so forth. It is through understanding the effects of these variants (and often, combinations of variants) that we can begin to predict the outcome of sequence changes on the phenotype of the organism.

There’s more...

We’ve touched on variants that introduce obvious impacts, such as frame shifts and amino acids in proteins. Let’s discuss more aspects of variant interpretation. SnpEff is a popular program for determining the impacts of variants (https://pcingola.github.io/SnpEff/). It supports numerous genomes and interprets several different kinds of impacts. It also comes with SnpSift, which is a tool for filtering variants.If you want, you can run the optional exercise at the end of the notebook for this Interpreting variants on gene structures recipe. This will install SnpEff and run it on the human genome using a test file that comes with SnpEff:

! wget https://snpeff.blob.core.windows.net/versions/snpEff_latest_core.zip
! unzip snpEff_latest_core.zip
! java -Xmx4g -jar snpEff/snpEff.jar download GRCh38.99
! java -Xmx4g -jar snpEff/snpEff.jar GRCh38.99 snpEff/examples/test.vcf > output/human_annotated_variants.vcf

Let’s take a look at the output:

[image: Figure 6.12 – SnpEff human output]Figure 6.12 – SnpEff human output

SnpEff has added a long line with additional variant information. It shows that there is a variant that is a potential modifier of the DOX11L1 gene, as well as some other potential impacts. SnpEff will tend to call variants upstream of genes as potential modifiers because they might impact promoters, and will also report downstream, intergenic, and other types of variants. It will classify numerous types of variants into the following general categories of impact:

	HIGH: Disruptive effects on proteins, such as frameshifts or introduction of stop codons

	MODERATE: Effects that might disrupt a protein, such as an amino acid change

	LOW: Changes that are unlikely to have much impact, such as a silent mutation in a protein (does not change an amino acid)

	MODIFIER: Variants that may be upstream or downstream of genes and could potentially impact promoters or other aspects of gene regulation

SnpEff is one of several programs that can help you interpret the impact of a variant on a gene structure. The study of gene structures, their variants and isoforms, and the way they impact cellular metabolism and organismal phenotype is called functional annotation. Functional annotation can be performed by searching for similar genes using programs such as BLAST and by studying orthologs (genes from another species that are similar to the gene of interest, having descended from a common ancestor). See Tegenfeldt et al., OrthoDB and BUSCO update: annotation of orthologs with wider sampling of genomes, Nucleic Acids Research, January 2025, https://academic.oup.com/nar/article/53/D1/D516/7899526. A popular tool for this is eggNOG-mapper. See Cantalipiedra et al., eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale” Molecular Biology and Evolution, Dec 2021. https://academic.oup.com/mbe/article/38/12/5825/6379734. It uses the popular eggNOG database, which is a huge collection of orthologs across all domains of life. See Hernandez-Plaza et al., eggNOG 6.0: enabling comparative genomics across 12,535 organisms, Nucleic Acids Research, November 2022, https://academic.oup.com/nar/article/51/D1/D389/6833261.Another popular method involves looking at sets of genes to see whether they are enriched for certain functions. The DAVID system is a great example of this; see Sherman et al., DAVID: a web server for functional enrichment analysis and functional annotation of genes lists (2021 update), Nucleic Acids Research, July 2022, https://academic.oup.com/nar/article/50/W1/W216/6553115.The Gene Ontology (GO) system is also a great method for annotating the functions of genes; see The Gene Ontology resource: enriching a GOld mine, The Gene Ontology Consortium, Nucleic Acids Research, Jan 2021. https://academic.oup.com/nar/article/49/D1/D325/6027811. Tools also exist for performing functional annotation by mapping genes to reaction networks such as KEGG (https://www.genome.jp/kegg/) and Reactome (https://reactome.org/). Read more in Palu et al., KEMET – A Python tool for KEGG module evaluation and microbial genome annotation expansion, Computational and Structural Biotechnology Journal, Vol 20, 2022.Many genes are completely novel and have no known function. For these genes, it is often dangerous to simply assign a function based on a BLAST hit to a nearby organism with a related gene as the hit may be weak, and the other gene may have itself been simply assigned a function computationally. This is known as the problem of transitive annotation. For this, there are newer algorithms that apply more sophisticated approaches, such as PANNZER; see Koskinen et al., PANNZER: high-throughput functional annotation of uncharacterized proteins in an error-prone environment, BioInformatics, May 2015, https://academic.oup.com/bioinformatics/article/31/10/1544/176441.TALE uses a transformer (an AI-based approach that we’ll cover in Chapter 16) to annotate unknown genes; see Cao and Shen, TALE: Transformer-based protein function annotation with joint sequence-label embedding”, BioInformatics, September 2021, https://academic.oup.com/bioinformatics/article/37/18/2825/6182677.Finally, unknown genes and their function can be directly interrogated via a variety of high-throughput experimental methods. Rocha et al. created an Unknome database cataloging large numbers of unknown genes, and then identified a subset of genes from humans that are conserved in Drosophila. They then applied a high-throughput CRISPRi screen in Drosophila to identify phenotypic effects of knockdowns on those genes. This then helps us infer putative functions for the human genes; see Rocha et al., Functional unknomics: Systematic screening of conserved genes of unknown function, Plos Biology, August 2023, https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002222&trk=public_post_comment-text.We can also try to understand the function of unknown genes by seeing whether they are co-expressed with other known genes and then looking at their expression patterns, pathway enrichment, and treatment response information; see Horan et al., Annotating Genes of Known and Unknown Function by Large-Scale Coexpression Analysis, Plant Physiology, May 2008, https://academic.oup.com/plphys/article/147/1/41/6107500.Advances in high-throughput technologies such as microfluidics and imaging are rapidly transforming our ability to identify and annotate unknown genes. Screening large numbers of perturbed genes in an organism, identifying the desired phenotype, and mapping back to the gene(s) of interest is known as forward genetics. As an example, Yu et al. performed this type of screening using microfluidics to find high-performing strains of C. glutamicum that could secrete their products at high titer. A CRISPRi genomic library perturbs large numbers of genes, and this is combined with a titer readout on a microfluidic device that can screen incredibly large numbers of samples. When genes of interest are found, they can be readily identified by reading out the barcode in the guide RNA cassette using NGS to identify the locus that was perturbed; see Yu et al., CRISPRi-microfluidics screening enables genome-scale target identification for high-titer protein production and secretion, Metabolic Engineering, January 2023, https://www.sciencedirect.com/science/article/pii/S1096717622001537?casa_token=KuzYogGkL5MAAAAA:Zfzbm0-dfh62UTJmxnoXwOS3CGPJOlNWdjxnFwlvDvXf0SPQanG3nGNoHf9nKLxtgja4rHGBhV8.High-throughput imaging is another emerging technology that can be leveraged to understand genes of unknown function. Perrin et al. fluorescently tagged many proteins in the cyanobacteria Synechococcus elongatus to determine their subcellular location and association in complexes with known proteins to enhance their functional annotation; see Perrin et al., CyanoTag: Discovery of protein function facilitated by high-throughput endogenous tagging in a photosynthetic prokaryote, Science Advances, February 2025, https://www.science.org/doi/full/10.1126/sciadv.adp6599.

AI tip

Background: Let’s write an example of performing a gene set enrichment using some popular tools: GSEApy (https://gseapy.readthedocs.io/en/latest/introduction.html) and GOATOOLS (https://github.com/tanghaibao/goatools).

Prompt: Write an example using Python libraries for GSEApy and goals that performs a functional enrichment of a sample gene set; provide sample output reports and visualizations for the results.

What you should see: Code to provide a sample gene list with enrichment analysis. GO analysis and reports on top of enriched genes. Visualizations will be included as well as installation instructions.

As you can see, there are many applications for studying gene structures and their annotations, and for deriving functional annotations for unknown genes, ranging from microbial natural product development to plant traits and physiology, through human disease and clinical study. These areas are rapidly advancing as we see the combination of high-throughput screening technologies, large knowledge bases, and AI.Before we continue, let’s talk a little about a non-traditional gene structure, known as non-coding RNA. This is RNA that is transcribed but not translated into proteins. As we learn more about the genome, we find out that more of it is functional than was previously thought, meaning variants once dismissed as harmless must be looked at more closely. For example, not long ago, non-coding RNA was typically thought to be junk related to spurious transcription. We now know that this non-coding RNA (ncRNA) is often functional (Cao et al., Very long intergenic non-coding (vlinc) RNAs directly regulate multiple genes in cis and trans, BMC Biology, May 2021, https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-021-01044-x).Because of the complex nature of interpreting variants, AI is beginning to have a big impact in this field. SpliceAI (https://github.com/Illumina/SpliceAI) uses deep learning to predict the impact of variants on gene splicing. PrimateAI-3D (https://www.illumina.com/science/genomics-research/articles/primateai-3d.html) leverages information from closely related primate species to predict the pathogenicity of variants in humans. New advanced knowledge platforms are being developed to help researchers and clinicians prioritize variants, such as Illumina Connected Insights (https://developer.illumina.com/news-updates/connected-insights-v5). OpenCravat (https://www.opencravat.org/) is another useful platform for variant annotation. A variety of databases and resources exist to help with variant interpretation in humans. The American College of Medical Geneticists (ACMG) sets guidelines on variant interpretation in genetic testing. For example, ClinGen (https://clinicalgenome.org/) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) provide curation of clinically relevant genes and variants. CANVAR is a Python program for annotation of variants in the ClinVar database (Vestergaard et al., CANVAR: A Tool for Clinical Annotation of Variants using ClinVar Databases, Molecular Genetics & Genomic Medicine, October 2024). Genopyc is a Python library for investigating the effects of variants on complex diseases (Gualdi et al., Genopyc: a Python library for investigating the functional effects of genomic variants associated to complex diseases, BioInformatics, June 2024).Now, we’ve talked about the effects variants can have on gene structures. In the Annotating proteins recipe, we’ll take a close look at proteins and understand how we might determine which regions of a protein a variant falls into.

See also

	Variant Effect Predictor (VEP) is another popular program for variant impact prediction: https://useast.ensembl.org/info/docs/tools/vep/index.html

	VarCards2 is an integrated database to help with human clinical variant interpretation: https://academic.oup.com/nar/article/52/D1/D1478/7416810

	Learn more about KEGG in Kanehisa et al., KEGG: a biological systems database as a model of the real world, Nucleic Acids Research, January 2025, https://academic.oup.com/nar/article/53/D1/D672/7824602

Annotating proteins

Let’s next discuss proteins in more detail. Each protein has regions or domains that can be annotated and give us further insight into the biological function of that portion of the protein. With this information, we can further reason about the potential impact of variants in that domain. For now, we’ll focus on 2D protein structure, meaning we look at the primary amino acid sequence without trying to fold or understand the 3D structure of the protein. We’ll talk more about structural prediction in Chapter 9, Protein Structure and Proteomics.Much like the structure of a gene, proteins have various regions that perform different functions. Let’s take a look at the 2D structure of a typical protein:

[image: Figure 6.13 – Protein structure overview]Figure 6.13 – Protein structure overview

Proteins in 2D are read from left to right, and the left side is called the N-terminus. Just like DNA, amino acids have a directionality, with an NH2 group at the beginning and COOH or carboxyl group at the end, which is called the C-terminus.The most basic structures proteins fold into are called secondary structures and include things such as the alpha helix and beta sheet depicted in the preceding figure.Proteins may often have a short peptide at the beginning, sometimes called a leader peptide. This may be a signal peptide. Signal peptides typically help direct a protein to either be secreted outside the cell or inserted into the cell membrane. They are typically at the N-terminus but sometimes can be found in the C-terminus or even internally to the protein.Proteins can also have a transit peptide, which may direct the protein to a particular organelle such as the peroxisome or mitochondria. Because of this, proteins may also have alternative start codons (triangles above), which are often used as a way to translate two versions of a protein, one with a transit peptide and one without. For instance, in plants, this is a common way to make a version of a protein that is destined for the chloroplast and another version that is destined for the cytoplasm.Proteins may also have a nuclear localization signal (NLS). This type of short peptide directs proteins to go back from the cytoplasm (where they are translated on ribosomes) to the nucleus, where they may perform various roles in the structure and function of chromosomes.Proteins can also have alternative lengths for their C-terminus. The C-terminus contains many important motifs that help determine protein stability, trafficking, and regulation.Proteins also have a variety of other functional domains that we can identify, such as binding domains. These can be important clues to the function of a protein, especially when trying to annotate and understand the functions of novel and newly discovered proteins. Finally, proteins can often have a variety of disordered or repetitive domains, much like repetitive DNA.Let’s look at how we can predict the domains in a protein sequence. We will use HMMER (http://hmmer.org/), which is a program that uses hidden Markov models. It can use databases of protein domain profiles such as PFAM (http://pfam.xfam.org/) that contain large databases of protein families that have been aligned to find common domains.

Getting started

First, we will install HMMER:

! brew install hmmer

Alternatively, you can run the following:

! conda install bioconda::hmmer

Next, we need to download the PFAM database and index it:

! mkdir -p pfam
! wget ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/Pfam-A.hmm.gz
! gunzip Pfam-A.hmm.gz
! mv Pfam-A.hmm pfam/
! hmmpress pfam/Pfam-A.hmm

This will place our indexed PFAM database in the pfam/ subdirectory.The code for this recipe can be found in Ch06/Ch06-4-protein-domains.ipynb.

How to do it...

Before we get started, note that HMM searches on proteins are quite compute intensive. So, let’s first make a short script to just take the top 10 proteins from our E. coli FASTA (.faa) file:

from Bio import SeqIO
input_fasta = "output/ecoli_proteins.faa"
output_fasta = "output/ecoli_proteins.top10.faa"
def select_first_n_entries(input_file,
 output_file, n=10):
 with open(input_file, "r") as infile, \
 open(output_file, "w") as outfile:
 records = SeqIO.parse(infile, "fasta")
 limited_records = (
 record for i, record in enumerate(records)
 if i < n
)
 SeqIO.write(limited_records, outfile, "fasta")
 print(
 f"First {n} entries written to {output_file}"
)
select_first_n_entries(
 input_fasta, output_fasta, n=10
)

This code will take the first 10 entries from the E. coli protein FASTA file that we created using Prodigal and deposit them in the ecoli_proteins.top10.faa file in our output subdirectory.Now, we can begin writing our code to run HMMER:

	First, we will import our libraries:

import os
import subprocess
from Bio import SeqIO

We will use the os and subprocess libraries to call HMMER, as well as BioPython for sequence processing.

	Next, we define our file paths:

fasta_file = "output/ecoli_proteins.top10.faa"
pfam_hmm_db = "pfam/Pfam-A.hmm"
output_domtblout = "output/ecoli.pfam_domains.top10.out"

This will set up our input file as the top 10 proteins in E. coli and point to our PFAM database. The output will go into the ecoli.pfam_domains.top10.out file.

	Now, we will define a function to run HMMER:

def run_hmmsearch(input_fasta, hmm_db, output_file):
 command = [
 "hmmsearch",
 "--domtblout", output_file,
 hmm_db,
 input_fasta
]
 print(f"Running HMMER with command: {
 ' '.join(command)}")
 subprocess.run(command, check=True)
 print(f"HMMER search completed.
 Results saved to {output_file}")

This is a pretty straightforward function that will construct a command using hmmsearch with the input FASTA file and the output file, and we will use our PFAM database for the profile search.

	Here is the function to parse our hmmsearch output:

def parse_hmmsearch_output(domtbl_file):
 annotations = []
 with open(domtbl_file, "r") as file:
 for line in file:
 if (line.startswith("#") or
 not line.strip()):
 continue
 fields = line.split()
 query_name = fields[0]
 domain_name = fields[3]
 e_value = float(fields[6])
 annotations.append((
 query_name, domain_name, e_value
))
 return annotations

This function will initialize a list of annotations and then open the domtbl (domain table) file. It will parse and split the lines in the file, grabbing the query name, domain name, and e-value. It will append these to the annotations list and return it.

	We will also write a function to enrich our protein FASTA file with the PFAM annotations:

def annotate_fasta_with_pfam(fasta_file, annotations):
 annotated_file = "annotated_protein.fasta"
 seq_annotations = {
 query: [] for query, _, _ in annotations
 }
 for query, domain, e_value in annotations:
 seq_annotations[query].append(
 f"{domain} (E-value: {e_value:.2e})"
)
 with open(annotated_file, "w") as output:
 for record in SeqIO.parse(fasta_file, "fasta"):
 domains = seq_annotations.get(
 record.id, []
)
 record.description += (
 " | Domains: " + ", ".join(domains)
)if domains else ""
 SeqIO.write(record, output, "fasta")
 print(f"Annotated FASTA file saved to {annotated_file}")

This function will take a FASTA file and a set of annotations and build an annotated file. Note the line for seq_annotations; this uses a syntax to build a dictionary in which the keys are queries and the values are empty lists for storing the domain annotations.

	For each annotation, we will next format the e-value. We will then open the output file and loop over each record in the FASTA file. For each record, we will grab the corresponding domain annotation and append them to the description for the record. We will then write out the record using the SeqIO class.

	Let’s now execute our functions:

if __name__ == "__main__":
 if not os.path.exists(f"{pfam_hmm_db}.h3f"):
 print("Indexing Pfam HMM database...")
 subprocess.run(
 ["hmmpress", pfam_hmm_db],
 check=True
)
 run_hmmsearch(
 fasta_file, pfam_hmm_db,
 output_domtblout
)
 pfam_annotations = parse_hmmsearch_output(
 output_domtblout)
 annotate_fasta_with_pfam(
 fasta_file, pfam_annotations)

This will run indexing if we haven’t already done it, and then run the hmmsearch function using our input FASTA file and PFAM database. Next, it will parse the hmmsearch results and annotate the FASTA file.One last thing; let’s move our annotated FASTA file back into our output directory to keep things clean:

! mv annotated_protein.fasta output

That’s it! We now have a PFAM domain output for our top 10 proteins and an annotated FASTA file. Let’s see what they look like.Here is the PFAM domain file:

[image: Figure 6.14 – PFAM domain output]Figure 6.14 – PFAM domain output

This file contains the domain information for each accession, the e-value, start-stop coordinates, and so on. For example, for gene NC_000913.3_2, we have an AA_kinase domain as the first line. If you google the AA Kinase domain, you will quickly find an entry like this in Interpro: https://www.ebi.ac.uk/interpro/entry/pfam/PF00696/. This is PFAM domain number PF00696. You can learn more about this domain and see that it phosphorylates amino acids. You will also see the query length (qlen) field, the e-value (which is the probability of the hit being correct), the hits score, and a few other fields. You can read more about HMMER results here: https://hmmer-web-docs.readthedocs.io/en/latest/result.html.If you look at the third line down, we see that this same gene NC_000913.3_2 is hitting a protein domain called ACT or PF01842 (https://www.ebi.ac.uk/interpro/entry/pfam/PF01842/). This domain plays a regulatory role in metabolism and is named after three key proteins that contain this domain: Aspartate Kinase, Chorismate Mutase, and TyrA.There is an extensive HMMER user guide here: http://eddylab.org/software/hmmer/Userguide.pdf.You can also check out the annotated_proteins.fasta file, which is a little less interesting. It is basically just our original FASTA file with the domains mentioned earlier appended to each entry.As you can see, this approach allows us to more deeply understand and annotate our proteins. This type of investigation can lead to further insights about the functions of individual proteins, or even into aspects of the organism as a whole.

There’s more...

The function of many protein domains remains poorly understood. These unannotated protein domains are referred to as domains of unknown function (DUFs). Much as we discussed in the previous recipe, they can be addressed by a variety of bioinformatics approaches, including AI and high-throughput functional screening.ProtNote uses AI to perform protein function prediction on unknown proteins; see Char et al., ProtNote: a multimodal method for protein-function annotation, Bioinformatics, May 2025, https://academic.oup.com/bioinformatics/article/41/5/btaf170/8113843.Microfluidics was used to screen for and annotate proteins, including unknown proteins that would improve amylase secretion in Aspergillus oryzae; see Li et al., High-throughput droplet microfluidics screening and genome sequencing analysis for improved amylase-producing Aspergillus oryzae, Biotechnology for Biofuels and Bioproducts, November 2023, https://link.springer.com/article/10.1186/s13068-023-02437-6.PIFia performs high-throughput imaging analysis to infer functional annotations of proteins; see Razdaibiedina et al., PIFia: self-supervised approach for protein functional annotation from single-cell imaging data, Molecular Systems Biology, Mar 2024, https://www.embopress.org/doi/full/10.1038/s44320-024-00029-6.Another important aspect of protein function is where in the cell it is targeted, known as subcellular localization. Many tools exist for predicting domains and targeting peptides in proteins. One key one to know about is SignalP, which predicts signalling peptides (Teufel et al., SignalP 6.0 predicts all five types of signal peptides using protein language models, Nature Biotechnology, January 2022). Another is TargetP, which predicts targeting peptides (https://services.healthtech.dtu.dk/services/TargetP-2.0/). AI is rapidly impacting the field of protein domain prediction. Much like the language models used in programs such as ChatGPT, researchers are building language models based on protein or DNA sequences. You may want to check out PSALM (https://github.com/Protein-Sequence-Annotation/PSALM), which uses protein language models for domain annotation.As you can see, we can take what we learned in the Interpreting variants in gene structure recipe and combine that knowledge with an even deeper understanding of proteins by looking at their domains and secondary structure. For example, if we can overlay an amino acid mutation into a binding domain, we can expect that it may have a big impact on the protein’s ability to bind its substrate. On the other hand, introducing an early stop codon very near the C-terminus may have little impact on protein function.Let’s clean up and close down our conda environment:

conda deactivate

See also

	Interpro contains a wealth of protein domain information. You may want to try manually pasting some of your protein sequences into the web interface and see how they match up with your PFAM annotations: https://www.ebi.ac.uk/interpro/.

	We mentioned GO annotations in the last recipe – PFresGO uses deep learning and GO annotations to provide accurate functional annotation of proteins; see Pan et al., PFresGO: an attention mechanism-based deep-learning approach for protein annotation by integrating gene ontology inter-relationships, BioInformatics, March 2023, https://academic.oup.com/bioinformatics/article/39/3/btad094/7043095.

	This article gives a great review of DUFs: Lv et al., Unraveling the Diverse Roles of Neglected Genes Containing Domains of Unknown Function (DUFs): Progress and Perspective, International Journal of Molecular Sciences, February 2023, https://www.mdpi.com/1422-0067/24/4/4187.

	OpenProt provides a comprehensive resource on alternative proteins coming from unusual reading frames and includes AI-based annotation and structural prediction; see LeBlanc et al., OpenProt 2.0 builds a path to the functional characterization of alternative proteins, Nucleic Acids Research, January 2024, https://academic.oup.com/nar/article/52/D1/D522/7416803.

Chapter 7: Genomes and Genome Assembly

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

Understanding the quality of your genome reference sequence and knowing how to assemble high-quality genomes are core bioinformatics skills. So far, we have learned a great deal about variant calling and alignment, as well as gene annotation. The quality of these steps is greatly impacted by the underlying reference genome. As you might imagine, variants cannot be mapped effectively to poorly assembled regions, and genes cannot be called well when you have incorrect bases or other issues in your assembly.In the past few years, there have been tremendous advances in genome sequencing and assembly that have transformed the field. In this chapter, we’ll learn about how those advances have impacted bioinformatics and the resulting benefits.In this chapter, we will cover:

	Accessing genome assemblies

	Working with graph genomes

	Long-read assembly with Raven

	Assessing genome quality with QUAST

Technical requirements

For this chapter, we will be using the following tools and packages:

	Pyfastx

	NetworkX

	Matplotlib

	Raven

	QUAST

You will be instructed on how to install each package as we go. You can find the code for this chapter at https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch07.

Accessing genome assemblies

In the early days of genome sequencing, short reads were primarily used to assemble genomes, leading to short, fractured assemblies. Scientists would go to conferences and talk about how they had gotten the assembly for their favorite organism down to 10,000 contigs instead of 50,000! This meant it was often unclear which chromosomes these contigs belonged to, or what order they went in. Scientists would try to scaffold the contigs by looking for markers to place them in general areas on chromosomes, and they would engage in painstaking efforts to close the gaps. But if you have a human genome of 3 Gb and 24 chromosomes, you would imagine that you might like to get 24 contigs if you could! (Or, better yet, 48 contigs in total by resolving the haplotypes of the diploid genome.)With the advent of long-read sequencing, this has changed dramatically. We are now able to routinely assemble entire microbial chromosomes with ease (often called “closed genomes” in the case of organisms with circular chromosomes). We can assemble yeast and many other organisms quite well, also. And in the case of the human genome, we are now producing what are called “Telomere-to-Telomere" or T2T genomes. The Telomere is a long, highly repetitive structure at the end of a chromosome. In the center of the chromosome is another highly repetitive structure called the Centromere. Getting through both of these regions was always difficult, and one of the main reasons genome assemblies remained fragmented. That’s why getting all the way across from end to end is quite a feat! Have a look at the following figure:

[image: Figure 7.1 – Major features of a chromosome]Figure 7.1 – Major features of a chromosome

In 2022, scientists completed the first T2T genome called CHM13 (Nurk et al, “The complete sequence of a Human genome,” Science, Mar 2022: https://www.science.org/doi/10.1126/science.abj6987). This assembly has no gaps in any chromosome except the Y chromosome, which is especially repetitive and difficult to assemble. They used a combination of PacBio HiFi reads (~20 kb circular reads with a low error rate), Oxford Nanopore ultra-long reads (reaching up to 100 kb!), and 3D genome technologies to achieve this result. The assembly is represented as a graph genome, which we’ll talk about in the Working with Graph Genomes recipe. You can find more information in the T2T consortium (https://sites.google.com/ucsc.edu/t2tworkinggroup).Since then, researchers have not slowed down and are embarking on ambitious plans to sequence hundreds more T2T genomes. The Human Pangenome Research Consortium (https://humanpangenome.org/) aims to produce hundreds of T2T genomes. With continued advances (and cost reductions) coming in long-read technology, we can expect T2T genomes to become more and more standard.

Getting started

First, we will download a T2T reference genome. Let’s grab the T2T CHM13 genome:

! mkdir -p data
! wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/009/914/755/GCA_009914755.4_T2T-CHM13v2.0/GCA_009914755.4_T2T-CHM13v2.0_genomic.fna.gz
! gunzip GCA_009914755.4_T2T-CHM13v2.0_genomic.fna.gz
! mv GCA_009914755.4_T2T-CHM13v2.0_genomic.fna data/T2T_genome.fasta

This will download the CHM13 version 2.0 genome FASTA file, unzip it, and then move it into our data subdirectory. We will rename it as T2T_genome.fasta for convenience.Let’s also install a tool to investigate the genome, pyfastx:

! pip install pyfastx

How to do it...

Let’s take a quick look at this genome:

	We can use pyfastx to investigate it further (https://github.com/lmdu/pyfastx). This library provides fast access to FASTA and FASTQ files. Let’s import it:

import pyfastx

	Now we will set the input FASTA file we will use as the CHM13 genome that we downloaded:

genome_fasta = "data/T2T_genome.fasta"

	Next, we define a function to compute the genome size:

def compute_genome_size(fasta_file):
 genome_size = 0
 genome = pyfastx.Fasta(
 fasta_file, build_index=False)
 for _, seq in genome:
 genome_size += len(seq)
 return genome_size

This function starts by using pyfastx to open the FASTA file. Note the code fragment for _, seq in genome, which loops over the sequences in the file and returns them as a tuple – the underscore causes us to ignore the first element in the tuple, which is the sequence ID. The second element is the sequence that we will use. We then keep incrementing the genome size variable by the length of the sequence until we have calculated the total length of the genome, which we return.

	Next, we will define a function to compute the GC content of the genome:

def compute_gc_content(fasta_file):
 total_bases = 0
 gc_count = 0
 genome = pyfastx.Fasta(
 fasta_file, build_index=False)
 for _, seq in genome:
 total_bases += len(seq)
 gc_count += (
 seq.upper().count('G') +
 seq.upper().count('C')
)
 return (
 (gc_count / total_bases) * 100
 if total_bases > 0 else 0
)

GC content is an important genome feature. G and C base pairs are held together by three hydrogen bonds, whereas A and T are held together by 2. This makes GC bonds harder to break. GC-rich regions of the genome may have important properties, including higher stability, gene richness, and recombination frequency. GC content is also a key signature of different organisms, varying widely between microbes, plants, and humans.This function again uses pyfastx to open the genome and process each sequence as before. This time, we count up the total bases as well as any G or C bases and return the percentage. Note that we use upper() to make sure that both uppercase and lowercase G and C are counted.

	Next up is a function to compute the N50 value:

def compute_n50(fasta_file):
 lengths = []
 genome = pyfastx.Fasta(
 fasta_file, build_index=False)
 lengths = sorted(
 [len(seq) for _, seq in genome],
 reverse=True
)
 cumulative_length = 0
 total_length = sum(lengths)
 for length in lengths:
 cumulative_length += length
 if cumulative_length >= total_length / 2:
 return length
 return 0

N50 is an important value in genomics. It is the length of the shortest contig in a list of contigs, starting from the longest, that make up 50% of the genome. In other words, if you take the longest contigs and start adding them up in order until you get to 50% genome coverage, the last contig length you get to is the N50 value. In this way, it represents the completeness of the assembly. A highly fragmented assembly with a lot of contigs will have a small N50 value, and a good assembly with few gaps will have a high N50 value. Some closely related metrics that are important to know are the N90, which is the length of the shortest contig needed to get up to 90% coverage of the genome, and the L50, which is the number of contigs needed to reach the N50 value.This function uses pyfastx to build a list of contig lengths in sorted order. It then iterates through the list, building up cumulative_length until it exceeds 50% of total_length. It returns this as the N50 value.Okay, let’s evaluate our genome!

def assess_quality(fasta_file):
 genome_size = compute_genome_size(fasta_file)
 gc_content = compute_gc_content(fasta_file)
 n50 = compute_n50(fasta_file)
 print(f"Genome Quality Metrics for {fasta_file}:")
 print(f"Total Genome Size: {genome_size:,} bp")
 print(f"GC Content: {gc_content:.2f}%")
 print(f"N50: {n50:,} bp")
if __name__ == "__main__":
 assess_quality(genome_fasta)

This code defines a master function, assess_quality(), which runs our three calculation functions and prints out their results.

[image: Figure 7.2 – Genome statistics for T2T genome]Figure 7.2 – Genome statistics for T2T genome

We’ve now seen that we can get access to a wide variety of high-quality genome assemblies and manipulate them. In the coming recipes, we’ll deepen our knowledge of genome assembly and analysis.

There’s more...

Recall that we used the upper() function in the preceding GC calculation to make sure we count both uppercase and lowercase Gs and Cs. Genomes are often repeat-masked, which means that repetitive regions of the genome are written as lowercase. A common tool for repeat masking is RepeatMasker (https://www.repeatmasker.org/). This tool scans the genome and masks repetitive or low-complexity regions. In soft masking, the bases in the genome are converted to lowercase so that they can still be read but can be treated differently by programs. In hard masking, we replace the bases with Ns so that the sequence is not readable by a program (X is used in the case of protein sequences). When two or more SNVs (short for Single Nucleotide Variants) can be confirmed to be within the same read of a genome, we can phase them. This means we know those variants go on the same allele or chromosome half. When we can phase two or more variants, we know we have a whole block of variants that go together. This is called a haplotype block.

[image: Figure 7.3 – Illustration of haplotype blocks]Figure 7.3 – Illustration of haplotype blocks

In the preceding example, we see two haplotype blocks where variants have been phased together during assembly. We can see that GGG is inserted in the preceding sequence. At the end of the sequence, an SNV is shown with a T->A change. By knowing the phasing structure of the haplotype block, we know that the A change goes with the GGG insertion in the same sequence.In typical approaches to genomics, the genome assembly is represented as a collapsed haplotype sequence that represents a mixture of the two alleles. This can be convenient for mapping because we only have to think about aligning our reads to one combined allele sequence, and then we just calculate SNVs against that. An SNV between the two alleles will be seen as 50%/50% variant frequency.But to better represent a Diploid genome, we would want to provide a diploid assembly. In this representation, there would be two separate alleles. Some key diploid genome assemblers include Falcon (https://pb-falcon.readthedocs.io/en/latest/), hifiasm (https://github.com/chhylp123/hifiasm), and Verkko (https://github.com/marbl/verkko).

See also

	More information on the CHM13 genome can be found here: https://github.com/marbl/CHM13

	The pyfastx paper is here: Du et al, “Pyfastx: a robust Python package for fast random access to sequences from plain and gzipped FASTA/Q files,” Briefings in Bioinformatics, Jul 2021: https://academic.oup.com/bib/article/22/4/bbaa368/6042388

	The first T2T genomes for Chinese populations have been produced – Xiao & Yu, “T2T-YAO, T2T-SHUN and More,” Genomics, Proteomics & BioInformatics, Dec 2023: https://pmc.ncbi.nlm.nih.gov/articles/PMC11082254/

	Read about Verkko here: Rautiainen et al, “Telomere-to-Telomere assembly of diploid chromosomes with Verkko,” Nature Biotechnology, Feb 2023: https://www.nature.com/articles/s41587-023-01662-6

Working with graph genomes

As we discussed in the Accessing genome assemblies recipe of this chapter, traditionally, genomes have been represented as linear, haploid structures. However, this comes with significant limitations. Although you can represent an SNV this way, you cannot represent significant structural variations or major haplotype changes. Organisms have a wide array of variation of this nature, and so there is no single, true “reference genome.” Graph genomes were introduced to handle this problem.Graph genomes represent genomes as a series of nodes and edges, which allows us to traverse from common areas into alternative areas of a genome and helps us better represent diversity in the population. This improves alignment and variant calling because we can align reads to the most likely representation of their reference. Have a look at the following figure:

[image: Figure 7.4 – Illustration of a graph genome]Figure 7.4 – Illustration of a graph genome

In the preceding example, we start out with ACGT but then have a choice of going through GGG first (the insertion) or straight into the next sequence. We then see ACTGCCCAC, which is common for all sequences, and then finally we have a choice of an A or T (SNV). It should be noted that graph genomes are closely related (but not identical) to de Bruijn graphs, which are used to efficiently represent the k-mer paths in a genome assembly. Whereas graph genomes represent potential variation in a reference genome, de Bruijn graphs represent possible paths in a putative genome assembly and are used to help make decisions about the correct assembly. This is an important concept in bioinformatics, and you are encouraged to learn more about de Bruijn graphs here: Compeau et al, “How to apply de Bruijn graphs to genome assembly,” Nature Biotechnology, Nov 2011: https://www.nature.com/articles/nbt.2023.Let’s look at a simple example of a graph genome representation. We will use a package called NetworkX (https://networkx.org/), which is designed to create and manipulate complex networks.

Getting started

Let’s install NetworkX:

! pip install networkx

This will set up the library for you. We’ll also use matplotlib in this recipe, which you should already have installed.

How to do it...

Here are the steps of this recipe:

	Let’s start by importing the libraries we need:

import networkx as nx
import matplotlib.pyplot as plt

We’ll use NetworkX to represent our graph genome, and matplotlib to plot it.

	Now we’ll write a function to set up our variation graph:

def create_variation_graph():
 G = nx.DiGraph()
 G.add_node("1", seq="ATGCG")
 G.add_node("2", seq="A")
 G.add_node("2_alt", seq="T")
 G.add_node("3", seq="C")
 G.add_node("4", seq="G")
 G.add_node("5", seq="GTT")
 G.add_node("6", seq="TAA")
 G.add_edge("1", "2")
 G.add_edge("2", "3")
 G.add_edge("3", "4")
 G.add_edge("4", "6")
 G.add_edge("1", "2_alt")
 G.add_edge("2_alt", "3")
 G.add_edge("4", "5")
 G.add_edge("5", "6")
 return G

This code starts out by creating a directed graph using the NetworkX DiGraph() function. In a directed graph, the edges between the nodes have a direction, so in this case, going from left to right through the genome.

	Next, we start building up our example graph. We use the add_node() function to set up the primary nodes containing the sequences in our example genome, including some alternate sequences at certain positions.

Then we add the connections between the nodes using the add_edge() function. We first build the reference path, which you can think of as the default genome sequence. Finally, we add edges for the alternate sequences, which show where variants may occur, creating an alternate path through the genome. We return the graph object.

	Next, we will build a function to find the haplotypes using the graph we just made:

def find_haplotypes(G, start="1", end="6"):
 paths = list(nx.all_simple_paths(
 G, source=start, target=end))
 haplotypes = []
 for path in paths:
 seq = "".join(G.nodes[node]["seq"] for node in path)
 haplotypes.append(seq)
 return haplotypes

This function does the following:

	Takes in a graph object and a start and end parameter.

	Uses the NetworkX all_simple_paths() function to return a generator. In Python, generators are used to return iterators. This type of function returns multiple values over time by using the yield statement instead of return. We then wrap this command in a list() function to turn the results into a list.

	Initializes a haplotype list.

	Loops over the paths. For each path, join the seq attributes of the nodes into a sequence, and then append it to the haplotypes list.

	Finally, we return the haplotypes list.

	Now let’s write a function to visualize our graph genome:

def visualize_graph(G):
 pos = nx.spring_layout(G)
 labels = {node: G.nodes[node]["seq"] for node in G.nodes}
 plt.figure(figsize=(8, 6))
 nx.draw(
 G, pos, with_labels=True,
 labels=labels, node_size=2000,
 node_color="skyblue", edge_color="black"
)
 plt.title("Genome Variation Graph")
 plt.show()

This function first uses the NetworkX spring_layout() function to create a layout for the graph. It uses a force-directed algorithm in which nodes that have more connections are closer together. It will return the results in the pos variable, which will contain a dictionary of the nodes and their positions as (x,y) values.

	We then create a dictionary of labels by mapping each node to its corresponding seq attribute.

	We then initialize a plot using matplotlib. We use the NetworkX draw() function to draw the graph, giving it the following:

	Our input graph object

	The positions of the nodes

	A flag to display labels

	The labels (sequences) of the nodes

	Node size and color parameters

	Finally, we add a title to the plot and show it.

Okay, we are ready to put it all together!

if __name__ == "__main__":
 graph = create_variation_graph()
 haplotypes = find_haplotypes(graph)
 print("All possible haplotypes:")
 for haplotype in haplotypes:
 print(haplotype)
 visualize_graph(graph)

We will call our function to create the variation graph and then use the find_haplotypes() function to return all our haplotypes, loop over them, and print them out. Lastly, we will run our plotting function. Here is what we get:

[image: Figure 7.5 – Haplotypes and network output for the genome graph]Figure 7.5 – Haplotypes and network output for the genome graph

Now you can see what the different potential haplotypes look like for each scenario. If we traverse this graph in all possible ways from left to right, we get the preceding sequences as potential outcomes. These are the haplotypes. We can also see the graphical representation of this and look at the possible paths.

There’s more...

Graph genomes are stored in file formats specialized for their representation. The most widely used is Graphical Fragment Assembly (GFA). Others include FASTG and VG, as well as XG/GWBT for compressed graph formats.A pangenome represents a graph genome that goes beyond a single individual to record variation within a species. In this way, we can represent variation that is present in some individuals in a species but not others. This gives us a compact representation of many genomes.

See also

	GenGraph is a Python library for dealing with Graph genomes – Ambler et al, “GenGraph: a Python module for the simple generation and manipulation of genome graphs,” BMC BioInformatics, Oct 2019: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3115-8

	To learn more about generators, read here: https://realpython.com/introduction-to-python-generators/

	Go deeper into the science by reading: Liao et al, “A draft Human pangenome reference,” Nature, May 2023: https://www.nature.com/articles/s41586-023-05896-x

	Verkko2 integrates de Bruijn graph approaches to further improve assembly contiguity – Antipov et al, “Verkko2 integrates proximity-ligation data with long-read de Bruijn graphs for efficient telomere-to-telomere genome assembly, phasing, and scaffolding,” Genome Research, May 2025: https://genome.cshlp.org/content/35/7/1583.short

Long-read assembly with Raven

Next, we’ll look at assembly in more detail. In assembly, we are tasked with finding reads that go together by overlapping them and continuously extending them until we can build a single contiguous region, or contig. When differences are found, we have to decide whether those differences should cause us to break up the contig into different alleles, or whether we are seeing a completely distinct (but highly similar) region of the genome. Paralogs, which are nearly identical copies of a gene that have been copied into different regions of the genome, can confuse this process.

[image: Figure 7.6 – Illustration of genome assembly]Figure 7.6 – Illustration of genome assembly

In the preceding example, you can see how we can walk across a series of reads and find overlapping sequences. We keep going until we can build up the contig sequence.In this recipe, we’ll use Raven (https://github.com/lbcb-sci/raven) to assemble a genome. Raven excels at using the type of error-prone long reads produced by third-generation sequencing technologies (Vaser & Sikic, “Time- and memory-efficient genome assembly with Raven,” Nature Computational Science, May 2021: https://www.nature.com/articles/s43588-021-00073-4).

Getting started

First, let's download some long-read data that we can work with:

! wget https://nanopore.s3.climb.ac.uk/MAP006-1_2D_pass.fasta
! mv MAP006-1_2D_pass.fasta data/

Next, let’s install Raven:

! git clone https://github.com/lbcb-sci/raven.git && cd raven
! cmake -S ./ -B./build -DRAVEN_BUILD_EXE=1 -DCMAKE_BUILD_TYPE=Release
!cmake --build build

You can also put Raven in your path:

! echo 'export PATH=$PATH:~/work/CookBook/Ch07/raven/build/bin' >> ~/.zshrc
! source ~/.zshrc

As an alternative method for installing Raven, you can try this:

conda install bioconda::raven-assembler

When using the conda method, Raven should automatically be in your path.You can now check that Raven is installed by running the following:

! raven –help

You should see the help output for Raven.

How to do it...

Here are the steps to try this recipe:

	We will set up a function to run Raven on our input long-read data:

def run_raven(input_fasta, output_fasta):
 try:
 print(f"Running Raven on {input_fasta}...")
 with open(output_fasta, "w") as output_file:
 command = ["raven", input_fasta]
 subprocess.run(
 command, stdout=output_file,
 check=True
)
 print(
 f"Assembly completed."
 f"Output saved to {output_fasta}"
)
 except FileNotFoundError:
 print(
 "Error: Raven is not installed or "
 "not found in the system PATH."
)
 except subprocess.CalledProcessError as e:
 print(f"Error running Raven: {e}")
 except Exception as e:
 print(f"Unexpected error: {e}")

This function will open our input FASTA file and construct a command for Raven. The command is then run using the subprocess() function. If the command is successful, we will display a message. We also include some error handling in case the file is not found, Raven is not installed, or we encounter an error.

	Now let’s run our assembly function:

if __name__ == "__main__":
 input_fasta = "data/MAP006-1_2D_pass.fasta"
 output_fasta = "assembly.fasta"
 run_raven(input_fasta, output_fasta)

	Move the result to our output subdirectory:

! mkdir -p output
! mv assembly.fasta output/ecoli-assembly.fasta

That’s it! We now have our assembly. In the next recipe, we’ll examine the assembly results further.

There’s more...

There are many other genome assemblers. Spades (https://github.com/ablab/spades) is a popular one aimed primarily at short-read data, which can also take in long-read data for hybrid assembly. Canu (https://canu.readthedocs.io/en/latest/quick-start.html) specializes in using PacBio or Oxford Nanopore long-reads – Koren et al, “Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation,” Genome Research, Mar 2017: https://genome.cshlp.org/content/27/5/722.short. Canu is descended from the Celera Assembler, which was used heavily in the original human genome effort. Recently, HiCanu was introduced, which utilizes the latest PacBio HiFi reads, which are higher-accuracy consensus-based long reads – see Nurk et al, HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads, Genome Research, Aug 2020: https://genome.cshlp.org/content/30/9/1291.short.More and more, we see assemblers being able to take in multiple types of data, including Hi-C data, which provides 3D information on genome structure by obtaining information on chromosomal contacts in the cell – Simkova et al, Hi-C techniques: from genome assemblies to transcription regulation, Journal of Experimental Botany, September 2024: https://academic.oup.com/jxb/article/75/17/5357/7617848. Hifiasm and Verkko are some of the best examples of these types of assemblers. Scientists are even beginning to build three-dimensional genome assemblies – Wang & Cheng, Reconstructing 3D chromosome structures from single-cell Hi-C data with SO(3)-equivariant graph neural networks, NAR Genomics and Bioinformatics, March 2025: https://academic.oup.com/nargab/article/7/1/lqaf027/8090331.Given the advances in sequencing technology, it is now quite routine to obtain fully closed bacterial assemblies (meaning the circular bacterial contig is completely assembled with no gaps) – Moss et al, Complete, closed bacterial genomes from microbiomes using nanopore sequencing, Nature Biotechnology, February 2020: https://www.nature.com/articles/s41587-020-0422-6. Eukaryotic genomes are more complex, but the use of long-read technology is leading to the creation of more and more T2T genomes even in complex species such as plants – Garg et al, Unlocking plant genetics with telomere-to-telomere genome assemblies, Nature Genetics, July 2024: https://www.nature.com/articles/s41588-024-01830-7.In the next section, we’ll see how to assess the quality of our genome assemblies.

See also

	B-assembler is specialized for circular bacterial genome assembly: Huang et al, B-assembler: a circular bacterial genome assembler, BMC Genomics, May 2022: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-022-08577-7

	Read a paper about using Hi-C data in genome assembly: Kronenberg et al, Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C, Nature Communications, Apr 2021: https://www.nature.com/articles/s41467-020-20536-y

Assessing genome quality with QUAST

Once a genome assembly has been produced, we need to understand its quality. This is typically assessed through a variety of metrics such as the number of contigs, N50, or the number of genes predicted within the genome.One of the key tools used for genome assessment is QUAST (QUality ASessement Tool). QUAST (https://quast.sourceforge.net/) can evaluate the quality of an assembly using a variety of metrics and can support microbial genomes, metagenomes, and larger genomes. In many cases, we may also have a reference genome available. This would either be a gold standard public genome or perhaps just the best genome you have been able to assemble so far. If given a reference genome, QUAST can also help you compare your current assembly to it, to see if you have structural differences, have made progress in joining contigs, or have mis-assembled regions.Okay, let’s see what your Raven E. coli assembly looks like with QUAST!

Getting started

Let’s install QUAST first:

! pip install quast

Check that it is working:

! quast.py --version

Now we are ready to work with QUAST!

How to do It...

Here are the steps to try this recipe:

	Now that we have QUAST installed, let’s write a function to use it. First, we will import our library:

import subprocess

	We only need the subprocess library for this work. Let’s write a function to run QUAST:

def run_quast(
 assembly_file,
 reference_file=None,
 output_dir="quast_output"
):
 try:
 command = [
 "quast.py", assembly_file,
 "-o", output_dir
]
 if reference_file:
 command.extend(["-r", reference_file])
 print(f"Running QUAST...\nCommand: {' '.join(command)}")
 subprocess.run(command, check=True)
 print(f"QUAST analysis complete. Results saved in: {output_dir}")
 except FileNotFoundError:
 print("QUAST is not installed or not found in the system PATH.")
 except subprocess.CalledProcessError as e:
 print(f"Error running QUAST: {e}")
 except Exception as e:
 print(f"Unexpected error: {e}")

This function takes in an assembled genome file, a reference file for comparison (which we won’t use in this case), and a directory to save the outputs in. We then build a QUAST command and run it with some basic error handling in place to check if QUAST is installed and for any errors when running the command.Okay, let’s run our function!

if __name__ == "__main__":
 assembly = "output/ecoli-assembly.fasta"
 reference = None
 output = "quast_results"
 run_quast(assembly, reference, output)

We supply our E. coli assembly from the previous recipe. We won’t be using a reference sequence for comparison in this example. We’ll save our outputs into the quast_results subdirectory.Let’s review our output!

! open quast_results/report.html

This will open the QUAST report HTML file. Let’s look:

[image: Figure 7.7 – QUAST results for E. coli]Figure 7.7 – QUAST results for E. coli

Here, we can see the QUAST output. We report a number of contigs – one in this case, as we were able to completely assemble a microbial genome! Keep in mind that we were able to do this because of the power of long reads. If this had been done using short reads, we may have ended up with a much more fragmented assembly!You will see QUAST reports several other metrics, such as the N50, L50, GC percentage, and so on. Several graphs are also provided.If you look at the upper left, you can click on a link to take you to the Icarus Contig Browser view:

[image: Figure 7.8 – Icarus Contig Browser for E. coli assembly]Figure 7.8 – Icarus Contig Browser for E. coli assembly

Icarus Contig Browser (https://quast.sourceforge.net/icarus.html) allows you to review your assembly. If a reference genome is provided, you can inspect how your contigs align to the reference. Using QUAST, you can play around with assembly parameters, add more data, or take other approaches to build and refine your genome assembly.

There’s more...

The example presented here was simple, of course, to make it approachable in this lesson. In a real-life example, you might be dealing with a complex plant genome, which would be larger and harder to get into full-size contigs. You might try to visually examine the placement of contigs against a reference and order them. You might also be actively engaged with lab staff to generate more data, or different types of data, to combine them into the assembly and improve it further. These are good examples of the tools at your disposal for these types of tasks.There are many other tools for assessing genome quality. Benchmarking Universal Single-Copy Orthologs (BUSCO) looks for genes that are expected to be found in a given species (https://busco.ezlab.org/). In this way, it goes beyond just looking at assembly continuity to assess whether the assembly would support gene calling.There are also tools for evaluating graph genome assemblies. Gretl is a tool for evaluating and visualizing the structures of graph genomes – Vorbrugg et al, “Gretl - variation GRaph Evaluation TooLkit,” BioInformatics, January 2025: https://academic.oup.com/bioinformatics/article/41/1/btae755/7932228As we mentioned, human genome assemblies are continuing to improve dramatically, largely due to long-read technology and the use of graph genomes to better represent variation in the population. As the assemblies improve, the variant calling approaches we discussed in Chapter 5 will continue to improve and allow for better resolution of not only SNVs, but also repeat expansions and structural variations. For this type of assessment, the Genome In A Bottle (GIAB) consortium provides standard reference materials with known variants (https://www.nist.gov/programs-projects/genome-bottle).

See also

	A good article on genome quality assessment: Jauhal & Newcomb, “Assessing genome assembly quality prior to downstream analysis: N50 versus BUSCO,” Molecular Ecology Resources, February 2021: https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-0998.13364

	This article discusses new human genome assemblies and GIAB – Dwarshuis et al, “The GIAB genomic stratifications resource for Human reference genomes,” Nature Communications, October 2024: http://nature.com/articles/s41467-024-53260-y

Chapter 8: Accessing Public Databases

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

In this chapter, we will see how to access the tremendous volume of information from previous sequencing and genome annotation projects. We’ll cover how to get access to genomic, RiboNucleic Acid (RNA), and protein data.There is a wealth of public data sources available to bioinformaticians these days. The National Center for Biotechnology Information (NCBI) houses GenBank, RefSeq, and other key sequence data sources. It holds protein structural data, taxonomies, variant information, and scientific references as well - https://www.ncbi.nlm.nih.gov/ . It also houses Entrez - https://www.ncbi.nlm.nih.gov/search/, which provides a unified search across numerous NCBI databases.The UCSC Genome Database - https://genome.ucsc.edu/ houses a popular genome browser for major organisms, comparative genomics data, and tracks for regulatory elements, clinical variations, and more.Ensembl - https://www.ensembl.org/index.html?redirect=no - provides genomic data, annotations, and comparative genomics viewers for numerous organisms. It includes data on regulatory elements and gene expression patterns as well.The Protein Data Bank (PDB) and UniProt (Universal Protein Resource) hold a wealth of protein sequencesIn this chapter, we will learn about the sources of public data available for bioinformatics and look at tools to programmatically access this data.We will cover the following recipes in this chapter:

	Accessing GenBank and navigating NCBI databases

	Using the Sequence Read Archive

	Using PDB and UniProt

Technical requirements

In this chapter, we’ll use the following tools and packages:

	Biopython

	SRA tools

	NCBI BLAST

You’ll be instructed on how to install the relevant tools in each Getting Started section. The code for this chapter can be found at https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch08.

Accessing GenBank and navigating NCBI databases

Although you may have your own data to analyze, you will probably need existing genomic datasets. Here, we will look at how to access such databases from NCBI. We will not only discuss GenBank but also other databases from NCBI. Many people refer (wrongly) to the whole set of NCBI databases as GenBank, but NCBI includes the nucleotide database and many others, for example, PubMed.In this recipe, we will see how to use Entrez and EF etch to search for and retrieve genetic sequences.

Getting ready

We will use Biopython, which you installed in Chapter 1, Computer Specifications and Python Setup. Biopython provides an interface to Entrez, the data retrieval system made available by NCBI.This recipe is made available in the Ch08/Ch08-1-genbank-ncbi.ipynb file.

How to do it...

Here are the steps to try this recipe:

	We will start by importing the relevant module and configuring the email address:

from Bio import Entrez, SeqIO
Entrez.email = 'put@your.email.here'

Remember to set your email address.

	Next, let’s make our output directory:

! mkdir –p output

	We will now try to find the chloroquine resistance transporter (CRT) gene in Plasmodium falciparum (the parasite that causes the deadliest form of malaria) from the nucleotide database:

handle = Entrez.esearch(db='nucleotide', term='CRT[Gene Name] AND "Plasmodium falciparum"[Organism]')
rec_list = Entrez.read(handle)
if int(rec_list['RetMax']) < int(rec_list['Count']):
 handle = Entrez.esearch(db='nucleotide', term='CRT[Gene Name] AND "Plasmodium falciparum"[Organism]', retmax=rec_list['Count'])
 rec_list = Entrez.read(handle)

We will search the nucleotide database for our gene and organism (for the syntax of the search string, check the NCBI website). Then, we will read the result that is returned. Note that the standard search will limit the number of record references to 20, so if you have more, you may want to repeat the query with an increased maximum limit. In our case, we will actually override the default limit with retmax. The Entrez system provides quite a few sophisticated ways to retrieve a large number of results (for more information, check the Biopython or NCBI Entrez documentation). Although you now have the identifiers (IDs) of all of the records, you still need to retrieve the records properly.

	Now, let’s try to retrieve all of these records. The following query will download all matching nucleotide sequences from GenBank, which is 1,374 at the time of writing this book:

id_list = rec_list['IdList']
hdl = Entrez.efetch(db='nucleotide', id=id_list, rettype='gb')

Be careful with this technique, because you will retrieve a large number of complete records, and some of them will have fairly large sequences inside. You risk downloading a lot of data (which would be a strain both on your side and on the NCBI servers).There are several ways around this. One way is to make a more restrictive query and/or download just a few at a time, and stop when you have found the one that you need. The precise strategy will depend on what you are trying to achieve. In any case, we will retrieve a list of records in the GenBank format (which includes sequences, plus a lot of interesting metadata).

	Let’s read and parse the result:

recs = list(SeqIO.parse(hdl, 'gb'))

Note that we have converted an iterator (the result of SeqIO.parse) to a list. The advantage of doing this is that we can use the result as many times as we want (for example, iterate many times over), without repeating the query on the server.This saves time, bandwidth, and server usage if you plan to iterate many times over. The disadvantage is that it will allocate memory for all records.If you are doing interactive computing, you will probably prefer to have a list (so that you can analyze and experiment with it multiple times), but if you are developing a library, an iterator will probably be the best approach.

	We will now just concentrate on a single record. This will only work if you used the exact same preceding query:

for rec in recs:
 if rec.name == 'KM288867':
 break
print(rec.name)
print(rec.description)

The rec variable now has our record of interest. The rec.description file will contain its human-readable description.

	Now, let’s extract some sequence features that contain information such as gene products and exon positions on the sequence:

for feature in rec.features:
 if feature.type == 'gene':
 print(feature.qualifiers['gene'])
 elif feature.type == 'exon':
 loc = feature.location
 print(loc.start, loc.end, loc.strand)
 else:
 print('not processed:\n%s' % feature)

If the feature.type value is gene, we will print its name, which will be in the qualifiers dictionary. We will also print all the locations of exons. Exons, as with all features, have locations in this sequence: a start, an end, and the strand from which they are read. While all the start and end positions for our exons are ExactPosition, note that Biopython supports many other types of positions. One type of position is BeforePosition, which specifies that a location point is before a certain sequence position. Another type of position is BetweenPosition, which gives the interval for a certain location start/end. There are quite a few more position types; these are just some examples.Coordinates will be specified in such a way that you will be able to easily retrieve the sequence from a Python array with ranges, so generally, the start will be one before the value on the record, and the end will be equal. The issue of coordinate systems will be revisited in future recipes.For other feature types, we simply print them. Note that Biopython will provide a human-readable version of the feature when you print it.We will now look at the annotations on the record, which are mostly metadata that is not related to the sequence position:

for name, value in rec.annotations.items():
 print('%s=%s' % (name, value))

The syntax of the print statement above %s=%s means to create two string placeholders, and then fill them in with values, in this case, the name and value variables. So we’ll get a printout of name=value... from this.Note that some values are not strings; they can be numbers or even lists (for example, the taxonomy annotation is a list).Last but not least, you can access a fundamental piece of information—the sequence:

print(len(rec.seq))

This will print out the length of your sequence record.

There’s more...

Here are a few more interesting genes you might want to try downloading:The human TP53 tumor gene: https://www.ncbi.nlm.nih.gov/datasets/gene/7157/The BRCA1 breast cancer gene: https://www.ncbi.nlm.nih.gov/datasets/gene/672/The ApoE gene, which is involved in Alzheimer’s disease: https://www.ncbi.nlm.nih.gov/datasets/gene/348/There are many more databases at NCBI. You will probably want to check the Sequence Read Archive database (previously known as Short Read Archive) if you are working with NGS (short for Next Generation Sequencing) data. (We’ll cover this more in the next recipe.) The SNP (short for Single Nucleotide Polymorphism) database contains information on SNPs, whereas the protein database has protein sequences, and so on. A full list of databases in Entrez is linked in the See also section of this recipe.Another database that you probably already know about with regard to NCBI is PubMed, which includes a list of scientific and medical citations, abstracts, and even full texts. You can also access it via Biopython. Furthermore, GenBank records often contain links to PubMed. For example, we can perform this on our previous record, as shown here:

from Bio import Medline
refs = rec.annotations['references']
for ref in refs:
 if ref.pubmed_id != '':
 print(ref.pubmed_id)
 handle = Entrez.efetch(db='pubmed', id=[ref.pubmed_id], rettype='medline', retmode='text')
 records = Medline.parse(handle)
 for med_rec in records:
 for k, v in med_rec.items():
 print('%s: %s' % (k, v))

This will take all reference annotations, check whether they have a PubMed ID, and then access the PubMed database to retrieve the records, parse them, and then print them.The output per record is a Python dictionary. Note that there are many references to external databases on a typical GenBank record.Another important tool we used here is EF etch, which is part of the Entrez E-utilities (https://www.ncbi.nlm.nih.gov/books/NBK25501/). These tools can be used to programmatically access sequences, annotations, and publications.Another great genomics resource is the Genomes Online Database (GOLD). GOLD (https://gold.jgi.doe.gov/) tracks the status of numerous sequencing projects and houses data from metagenomics projects and environmental samples.There are also numerous organism-specific databases and resources out there for you. For example, MaizeDGB (https://www.maizegdb.org/) organizes data for Corn. FlyBase (https://flybase.org/) has information on Drosophila genomes. These databases can be a tremendous resource for you when studying particular organisms.Each year, Nucleic Acids Research (NAR) publishes an excellent review of bioinformatics databases. They maintain a comprehensive list here: https://www.oxfordjournals.org/nar/database/c/.

See also

You can find more examples on the Biopython tutorial at http://biopython.org/DIST/docs/tutorial/Tutorial.html.A list of accessible NCBI databases can be found at http://www.ncbi.nlm.nih.gov/gquery/.A great question and answer (Q&A) site where you can find help for your problems with databases and sequence analysis is Biostars (http://www.biostars.org). You can use it for all of the content in this book, not just for this recipe.GenomeKit is a Python library for accessing genomic data: https://github.com/deepgenomics/GenomeKit.BioTite also provides tools for accessing genomic databases: https://www.biotite-python.org/latest/index.html.

Using the Sequence Read Archive

We often want to retrieve raw data, such as FASTQ data, either for testing purposes or to obtain data for an organism, or from publicly available experiments. The Sequence Read Archive (SRA) from the NCBI provides a huge collection of sequencing data from numerous studies, and includes DNA, RNA, and metagenomic data from multiple types of platforms.

Getting ready

You will want to make sure that the SRA tools and fasterq-dump are installed and in your PATH. We briefly covered this in Chapter 5, Alignment and Variant Calling Tools for Sequence Manipulation. If you have not already performed this installation, please refer back to that recipe and install the SRA Toolkit now.If fasterq-dump is not in your PATH, you may have trouble with the code in this recipe. To make sure the SRA Toolkit and fasterq-dump are in your PATH, you can do the following:

echo 'export PATH=$PATH:~/Software/sratoolkit.3.1.1-mac-x86_64/bin' >> ~/.zshrc
source ~/.zshrc

Note that the preceding method for setting the PATH is macOS-specific. It may be different depending on your operating system.Let’s check that fasterq-dump is working:

fasterq-dump –h

You should see the help output from fasterq-dump describing its options.Next, we will install the pysradb library (https://github.com/saketkc/pysradb). This provides a Python wrapper to obtain raw data and metadata from the SRA:

! pip install pysradb

You can find the code for this recipe in Ch08/Ch08-2-using-sra.ipynb.

How to do it...

We will write some wrappers around pysradb to search for and download data from SRA. Let’s see the steps to do this:

	First, let’s import our libraries:

import os
import subprocess
from pysradb.sraweb import SRAweb

This brings in the SRAweb module for us.

	Now, let’s define a function to fetch the metadata, given an SRA accession number, using this module:

def fetch_sra_metadata(sra_accession):
 db = SRAweb()
 metadata = db.sra_metadata(sra_accession, detailed=True)
 return metadata

This function will first initialize a connection to the SRAweb database. This database, called SRAdb is part of a project to provide a SQLite database that tracks the metadata of objects stored in the sequence archive. We can then use this to make a metadata retrieval call, giving the desired accession number. Finally, we return the metadata as a pandas DataFrame.

	Next, we will define a function to perform a download of SRA data:

def download_sra_run(run_accession, output_dir="sra_data"):
 if not os.path.exists(output_dir):
 os.makedirs(output_dir)
 try:
 print(f"Downloading SRA run {run_accession}...")
 subprocess.run(
 ["fasterq-dump", run_accession, "--outdir", output_dir, "--split-files"],
 check=True
)
 print(f"Download complete. Files saved in {output_dir}")
 except subprocess.CalledProcessError as e:
 print(f"Error downloading {run_accession}: {e}")

This function will first create the output directory if it does not already exist. It then runs fasterq-dump to download the file for the accession number provided and puts it into the output directory.

	Now, let’s try out our functions:

def main():
 sra_accession = "SRR536546"
 metadata = fetch_sra_metadata(sra_accession)
 print("Metadata for the accession:")
 print(metadata)
 if not metadata.empty:
 first_run = metadata["run_accession"].iloc[0]
 download_sra_run(first_run)
 else:
 print("No runs found for this accession.")
if __name__ == "__main__":
 main()

We will supply an accession to try out. This very small accession should download in a reasonable time of a few minutes or less.

Accession numbers

Accession numbers are unique IDs or record numbers that are assigned to help retrieve specific information. They are used in places such as libraries or museums, but here they have been extended to include records from sequence databases. These include GenBank, NCBI, PDB, and so on. They can be used to refer to nucleotide sequences, transcripts, protein structures, and many other entities. Throughout this book, we will use the general term accession number.

We first fetch the metadata for the accession. Assuming that we get a valid result, we will grab the first accession number for the related data and put it into the first_run variable. We then call our download function for the accession. The output for this is shown here:

[image: Figure 8.1 – Results of the SRA query]Figure 8.1 – Results of the SRA query

You should see the output metadata showing the results of our query. If you look in your terminal, you should also see in your directory an sra_data subdirectory containing the associated FASTQ data. Let’s put it in our output directory:

! mv sra_data output/

Note

The data for this example is ~1 GB in size. In most cases, it should take in the order of a few minutes to download.

There’s more...

It is also worth taking a moment to learn about the Basic Local Alignment Search Tool (BLAST). This is a tool for aligning sequences (https://blast.ncbi.nlm.nih.gov/Blast.cgi). You can use it to search for your query of interest against major organism genomes. The major flavors of BLAST are as follows:

	Blastn: Compares nucleotides to nucleotides

	Blastx: Compares translations of a nucleotide query to proteins

	Tblastn: Compares a back-translated protein query to nucleotides

	Blastp: Compares proteins to proteins

Here is an example of searching using BLAST via the NCBI API:

from Bio.Blast import NCBIWWW
from Bio.Blast import NCBIXM
query_sequence = ">test_query\nATGGCCATTGTAATCATGTTCTAATAGTGTTCA"
result_handle = NCBIWWW.qblast("blastn", "nt", query_sequence)
with open("blast_result.xml", "w") as out_file:
out_file.write(result_handle.read())
print("BLAST search completed! Results saved in 'blast_result.xml'")

This code imports the NCBI web library for using BLAST and the XML library. We run BLAST with a query sequence against the nt (nucleotide) database and save the results as an XML file.

Note

Historically these terms have been used for NCBI sequence collections - “nt” is short for the nucleotide collection, and “nr” is short for the “Non-Redundant” protein collection .

We can also parse the results of BLAST:

with open("blast_result.xml") as result_file:
blast_records = NCBIXML.read(result_file)
for alignment in blast_records.alignments[:5]:
 print(f"Hit: {alignment.title}")
 for hsp in alignment.hsps:
 print(f" Score: {hsp.score}, E-value: {hsp.expect}")

This is what we get:

[image: Figure 8.2 – BLAST results from the XML file]Figure 8.2 – BLAST results from the XML file

Let’s move the file to our output directory:

! mv blast_result.xml output/

Note that the NCBI limits the number of API calls you can make to BLAST to reduce the chance of network traffic overwhelming their servers (https://docs.blastapi.io/blast-documentation/things-you-need-to-know/limits). This should be fine for the limited example presented here. But if you are interested in running BLAST jobs with large numbers of API calls, you should check out Elastic BLAST: https://blast.ncbi.nlm.nih.gov/doc/elastic-blast/.As you can see, there are numerous powerful tools and databases at your disposal! The information in genomics is growing exponentially, and knowing how to access and search these resources is critical to your role as a bioinformatician.

See also

	Choudhary, pysradb: A Python package to query next-generation sequencing metadata and data from the NCBI Sequence Read Archive, F1000 Research, April 2019: https://pmc.ncbi.nlm.nih.gov/articles/PMC6505635/

	You can learn more about BLAST here: https://conmeehan.github.io/blast+tutorial.html

	Using PDB and UniProt

Proteomics is the study of proteins, including their function and structure. One of the main objectives of this field is to characterize the three-dimensional structure of proteins. One of the most widely known computational resources in the proteomics field is the PDB, a repository with the structural data of large biomolecules.Let’s start with something that you should be more familiar with by now: accessing databases, especially for a protein’s primary structure (as in, sequences of amino acids). We’ll use UniProt, a large repository of protein sequences.You can find the code for this recipe in Ch08/Ch08-3-pdb-uniprot.ipynb.

How to do it...

Here are the steps to try this recipe:

	Let’s import the libraries we need:

import requests
import sys
import json

We will use the requests library, which provides support for HTTP requests. We will also be using JavaScript Object Notation (JSON). JSON (https://www.json.org/json-en.html) is a very popular and lightweight format for storing information that is both human-readable and easy to parse.

	Let’s start by retrieving an example protein from UniProt. We’ll get the protein for accession P21802. Go to uniprot.org and type P21802 into the search bar. You will see this web page:

[image: Figure 8.3 – UniProt entry for P21802]Figure 8.3 – UniProt entry for P21802

The preceding web page result shows our protein through the online interface of UniProt. It is a human fibroblast growth factor. These proteins are involved in signaling for tissue repair and wound healing, but the exact nature of the protein does not matter that much here; we are using it as an example. We can see a lot of information on the protein, such as its length in amino acids and the known evidence for it. There are also links to viewers for the protein, variants known in the protein, and more. The information you can find on Uniprot can be tremendously useful to understand the protein's function, active sites, literature about the protein, and much more.

	Next, we will define a function for retrieving protein information using an accession:

def fetch_protein_data_json(accession):
 request_url = f"https://www.ebi.ac.uk/proteins/api/proteins?offset=0&size=100&accession={accession}"
 headers = {"Accept": "application/json"}
 try:
 print(f"Fetching data for accession: {accession}")
 response = requests.get(request_url, headers=headers, timeout=30)
 response.raise_for_status()
 return response.json()
 except requests.exceptions.RequestException as e:
 print(f"Error fetching protein data: {e}")
 sys.exit(1)

This function first sets request_url to point at the UniProt database hosted at the European Bioinformatics Institute (EBI). By using offset=0, we start with the first result, and by using size=100, we will return a maximum of 100 results.

	Next, we specify our request header so that we will use JSON.

Then, we use requests.get() to retrieve the data with a timeout of 30 seconds. The result will go into the response variable.We use response.raise_for_status() to check for any HTTP error status codes. We then return the response in JSON format. All of this is wrapped in a try..except block to catch any errors.

	Next, let’s create a function to save our JSON response to a file:

def save_json_to_file(data, filename):
 try:
 with open(filename, "w") as json_file:
 json.dump(data, json_file, indent=4)
 print(f"Protein data saved to {filename}")
 except IOError as e:
 print(f"Error saving data to file: {e}")
 sys.exit(1)

This function opens the JSON output file for writing. It then uses the json.dump() function to take the input data and write it out to the JSON file.

	Now, we will run our functions:

def main():
 accession = "P21802"
 output_file = "protein_data.json"
 protein_data = fetch_protein_data_json(accession)
 print("Protein Data (JSON):")
 print(protein_data)
 save_json_to_file(protein_data, output_file)
if __name__ == "__main__":
 main()

This code will first set our accession to be P21802, which is our FGFR2 protein. We then set our output file. Next, we use our function to fetch the protein data, and we print it out. Finally, we save the protein data into our JSON file. You can use less to examine the JSON file:

[image: Figure 8.4 – Snippet of the JSON file for P21802]Figure 8.4 – Snippet of the JSON file for P21802

You can see information on the protein from the UniProt database.

	Finally, let’s move our file into the output directory:

! mv protein_data.json output/

Now, we’ve seen how we can query data from UniProt and store it in a convenient and parsable format (JSON), let’s next look at another very popular protein database, PDB.We will look for a protein called 1A8M, which is a tumor necrosis factor. You can look it up on the PDB website (https://www.rcsb.org/structure/1A8M):

[image: Figure 8.5 – PDB entry for tumor necrosis factor 1A8M]Figure 8.5 – PDB entry for tumor necrosis factor 1A8M

You can see a wealth of information about the protein here, including the 3D structure, methods used to characterize the protein, and related literature.

	Let’s see how to download data from the PDB. We will import our libraries:

import os
import requests
from Bio import PDB

We use the Biopython PDB module. This provides functions for parsing PDB files and related useful methods.

	Next, we will define our download function:

def download_pdb(pdb_id, output_dir="output"):
 pdb_id = pdb_id.lower()
 base_url = "https://files.rcsb.org/download"
 metadata_url = f"https://data.rcsb.org/rest/v1/core/entry/{pdb_id}"
 pdb_url = f"{base_url}/{pdb_id}.pdb"
 os.makedirs(output_dir, exist_ok=True)
 pdb_file_path = os.path.join(output_dir, f"{pdb_id}.pdb")
 response = requests.get(pdb_url)
 if response.status_code == 200:
 with open(pdb_file_path, "w") as file:
 file.write(response.text)
 print(f"PDB file saved at: {pdb_file_path}")
 else:
 print(f"Failed to download PDB file for {pdb_id}.")
 metadata_file_path = os.path.join(
 output_dir, f"{pdb_id}_metadata.json")
 response = requests.get(metadata_url)
 if response.status_code == 200:
 with open(metadata_file_path, "w") as file:
 file.write(response.text)
 print(f"Metadata saved at: {metadata_file_path}")
 else:
 print(f"Failed to download metadata for {pdb_id}.")

This function will take as input the four-letter PDB code and will put our files in the output directory. It ensures that the PDB ID is lowercase. It then sets the URLs for the download, including the PDB file itself and the annotation metadata. We create the output directory if needed, and then use the requests library as before to download the file. Finally, we download the metadata.

	Okay, let’s run the function on our protein:

pdb_id = "1A8M"
download_pdb(pdb_id)

Here is what we see when we examine the PDB file:

[image: Figure 8.6 – PDB file for 1A8M]Figure 8.6 – PDB file for 1A8M

You can also take a look at the metadata file. As you can see, we have now retrieved the PDB file and information for this protein. In the next chapter, we will take a deeper look at the PDB format and how to interrogate protein structures.

There’s more...

Here are some other interesting proteins to download:

	SYNE7 – the aldehyde decarbonylase from Synechococcus elongatus: https://www.uniprot.org/taxonomy/1140

	P68871 – human hemoglobin subunit: https://www.uniprot.org/uniprotkb/P68871/entry

	P42212 – green fluorescent protein (GFP): https://www.uniprot.org/uniprotkb/P42212/entry

There are many other useful protein databases. The Integrated Microbial Genomes (IMG) database houses a large number of microbial genomes and metagenomes: https://img.jgi.doe.gov/. It includes an extensive set of tools for comparing microbial genomes, discovering biosynthetic gene clusters (BGCs), and performing pathway analysis.This is the front page of the IMG website. From here, you can explore and learn about multiple functions of the IMG system:

[image: Figure 8.7 – The IMG home page]Figure 8.7 – The IMG home page

See also

	Burley et al, RCSB Protein Data Bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D, Protein Science, October 2021: https://pubmed.ncbi.nlm.nih.gov/34676613/

	The UniProt Consortium, UniProt: The Universal Protein Knowledgebase in 2025, Nucleic Acids Research, January 2025: https://academic.oup.com/nar/article/53/D1/D609/7902999

Chapter 9: Protein Structure and Proteomics

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

In this chapter, we will learn more about the exciting world of protein databases, structural analysis, and proteomics!The fields of Structural BioInformatics and Enzyme Engineering have made tremendous advances in the past few years, and in this chapter, we’ll get a good overview of what is happening.Protein structures are typically determined by X-ray crystallography. In this method, proteins are first crystallized, and then an X-ray beam is shone through at different angles to build up a picture of the bonds between the atoms. There are several other methods, such as Cryo-Electron Microscopy (Cryo-EM), which is good for large macromolecular complexes, and Nuclear Magnetic Resonance (NMR), which is good for small molecules in solution.Because of the intense experimental work needed when obtaining protein structures, this area has lagged behind genomics. As such, many structures were not known – enter the world of protein folding. Programs were developed that could attempt to look at a 2-D amino acid sequence and then predict the nature of the folded 3-D protein. At first, these predictions were weak, but in the last few years, AI programs have stunned the world by successfully making accurate predictions. AlphaFold (https://deepmind.google/technologies/alphafold/) was able to determine the structures of millions of proteins computationally (Jumper et al, “Highly accurate protein structure prediction with AlphaFold,” Nature, Jul 2021): https://www.nature.com/articles/s41586-021-03819-2.Because of advances in both high-throughput structure determination and the advent of AI-driven protein folding, the number of protein structures available in public databases has grown exponentially – Ahmad et al, “RCSB Protein Data Bank: revolutionising drug discovery and design for over five decades,” Medical Data Mining, Vol 8, 2025: https://www.tmrjournals.com/public/articlePDF/20250220/23eeff3cc1890ab75e547508f407cd54.pdf.

[image: Figure 9.1 – Growth of available protein structures (Source: Ahmad et al, 2025)]Figure 9.1 – Growth of available protein structures (Source: Ahmad et al, 2025)

With the wealth of structures and tools available, scientists can now routinely predict new protein structures and design enzymes computationally to enable capabilities never-before known.The PDB or Protein Data Bank is a large public repository of protein structures obtained from experimental techniques. In this chapter, we will mostly focus on processing data from the PDB. We will look at how to parse PDB files, perform some geometric computations, and visualize molecules. We will use the old PDB file format because, conceptually, it allows you to perform most necessary operations within a stable environment. We will also touch briefly on the newer mmCIF format. We will use Biopython and introduce tools for protein visualization. We will also cover the exciting field of proteomics, in which protein expression levels can be measured to obtain biological insights. We will not discuss molecular docking here because that is probably more suited to a book about chemoinformatics.In this chapter, we will cover the following recipes:

	Extracting information from PDB files

	Computing molecular distances in proteins

	Performing geometric operations

	Animating proteins

	Performing proteomics analysis

Technical requirements

In this chapter, we will use the following:

	BioPython

	NGLView

	Pyteomics

You will be instructed on how to install the necessary packages in each recipe.You can find the code for this chapter at https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch09.You will want to create a Ch09 working folder.Remember to activate your conda environment before beginning the recipes, like this:

conda activate bioinformatics_base

Or, if you would like to set up a conda environment specific to this chapter, before activating bioinformatics_base, run the following:

conda create -n ch09-proteins --clone bioinformatics_base
conda activate ch09-proteins

You will be able to install the packages for the chapter as you go, or you can use the YAML file provided in the repository:

conda env update --file ch09-proteins.yml

Extracting information from PDB files

In the previous chapter, we got a brief introduction to PDB files. Let’s now go deeper and look at how to extract more information from these files.In this recipe, we will use Biopython’s PDB module to examine protein structure files in detail. We’ll focus on one particular protein involved in cancer. We’ll see how to retrieve and parse these files and examine their contents.We will learn how to traverse the amino acid residues in a protein model, find out their characteristics, and retrieve the atoms that make them up. We will learn about protein chains, which are large subsections of a protein structure. Finally, we will see how to plot the contents of the PDB file.

Getting ready

First, let’s set up:

! mkdir -p output

To access the data, we will use the PDB package from BioPython (https://biopython.org/docs/1.75/api/Bio.PDB.html). This module includes functions for parsing PDB and mmCIF format files. For this recipe, we’ll work with the p53 tumor suppressor protein, which has the PDB code 1TUP. You should already be aware of the basic PDB data model of model, chain, residue, and atom objects. A good explanation of Biopython’s Structural Bioinformatics FAQ can be found at http://biopython.org/wiki/The_Biopython_Structural_Bioinformatics_FAQ.This recipe is made available in the Ch09/Ch09-1-extracting-from-pdb.ipynb file.

How to do it...

Take a look at the following steps:Note that Bio.PDB will take care of downloading files for you. Moreover, these downloads will only occur if no local copy is already present:

	First, let’s import our libraries:

from Bio import PDB
import os
import gzip
import shutil
from collections import defaultdict

	Next, we’ll download our protein:

repository = PDB.PDBList()
parser = PDB.PDBParser(QUIET=True)
pdb_id = "1TUP"
repository.retrieve_pdb_file(pdb_id, pdir=".", file_format="pdb")

This code will first create a PDBList object, which allows us to download PDB structures. Next, we create a PDBParser object, which allows us to read and parse PDB files. We then use the retrieve_pdb_file() function to download the 1TUP protein, in PDB format, into the current folder.The file should now exist in your working folder as pdb1tup.ent.

	Next, we’ll retrieve a variety of atom-related statistics from our PDB file:

pdb_file = "pdb1tup.ent"
if os.path.exists(pdb_file):
p53_1tup = parser.get_structure("P53", pdb_file)
else:
print("Error: PDB file not found!")
exit()
atom_cnt = defaultdict(int)
atom_chain = defaultdict(int)
atom_res_types = defaultdict(int)
if not list(p53_1tup.get_atoms()):
print("Error: No atoms found in the structure!")
exit()
for atom in p53_1tup.get_atoms():
 my_residue = atom.parent
my_chain = my_residue.parent
atom_chain[my_chain.id] += 1
 if my_residue.resname != "HOH":
 atom_cnt[atom.element] += 1
 atom_res_types [my_residue.resname] += 1
print("Residue Types:", dict(atom_res_types))
print("Chain Atom Counts:", dict(atom_chain))
print("Element Counts:", dict(atom_cnt))

This will print information on the atom’s residue type, the number of atoms per chain, and the quantity per element, as follows:

{' DT': 257, ' DC': 152, ' DA': 270, ' DG': 176, 'HOH': 384, 'SER': 323, 'VAL': 315, 'PRO': 294, 'GLN': 189, 'LYS': 135, 'THR': 294, 'TYR': 288, 'GLY': 156, 'PHE': 165, 'ARG': 561, 'LEU': 336, 'HIS': 210, 'ALA': 105, 'CYS': 180, 'ASN': 216, 'MET': 144, 'TRP': 42, 'ASP': 192, 'ILE': 144, 'GLU': 297, ' ZN': 3}
{'E': 442, 'F': 449, 'A': 1734, 'B': 1593, 'C': 1610}
{'O': 1114, 'C': 3238, 'N': 1001, 'P': 40, 'S': 48, 'ZN': 3}

Note that the preceding number of residues is not the proper number of residues, but the number of times that a certain residue type is referred to (it adds up to the number of atoms, not residues).Notice the water (W), nucleotide (DA, DC, DG, and DT), and zinc (ZN) residues, which add to the amino acid ones. These elements represent additional parts of the protein structure in addition to the amino acids that make up the main protein. Water is often part of a protein structure – it can stabilize a protein via hydrogen bonds. Nucleotides are seen because this structure (1TUP) includes the p53 tumor suppressor complexed to DNA that it binds to. Zinc is especially important as this ion coordinates amino acids in the DNA Binding Domain (DBD) of p53 and stabilizes its activity – Ha et al, “p53 and Zinc: A Malleable Relationship”, Frontiers in Molecular Biosciences, Apr 2022: https://pmc.ncbi.nlm.nih.gov/articles/PMC9043292/.

	Now, let’s count the instance per residue and the number of residues per chain:

res_types = defaultdict(int)
res_per_chain = defaultdict(int)
for residue in p53_1tup.get_residues():
res_types[residue.resname] += 1
res_per_chain[residue.parent.id] +=1
print(dict(res_types))
print(dict(res_per_chain))

The following is the output:

{' DT': 13, ' DC': 8, ' DA': 13, ' DG': 8, 'HOH': 384, 'SER': 54, 'VAL': 45, 'PRO': 42, 'GLN': 21, 'LYS': 15, 'THR': 42, 'TYR': 24, 'GLY': 39, 'PHE': 15, 'ARG': 51, 'LEU': 42, 'HIS': 21, 'ALA': 21, 'CYS': 30, 'ASN': 27, 'MET': 18, 'TRP': 3, 'ASP': 24, 'ILE': 18, 'GLU': 33, ' ZN': 3}
{'E': 43, 'F': 35, 'A': 395, 'B': 265, 'C': 276}

We can also get the bounds of a set of atoms:

import sys
def get_bounds(my_atoms):
my_min = [sys.maxsize] * 3
my_max = [-sys.maxsize] * 3
for atom in my_atoms:
for i, coord in enumerate(atom.coord):
if coord < my_min[i]:
my_min[i] = coord
if coord > my_max[i]:
my_max[i] = coord
return my_min, my_max chain_bounds = {}
for chain in p53_1tup.get_chains():
print(chain.id, get_bounds(chain.get_atoms())) chain_bounds[chain.id] = get_bounds(chain.get_atoms())
print(get_bounds(p53_1tup.get_atoms()))

A set of atoms can be a whole model, a chain, a residue, or any subset that you are interested in. In this case, we will print boundaries for all the chains and the whole model. Numbers don’t convey it so intuitively, so we will get a little bit more graphical.To get a notion of the size of each chain, a plot is probably more informative than the numbers in the proceeding code:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from Bio import PDB
fig = plt.figure(figsize=(16, 9))
ax3d = fig.add_subplot(111, projection='3d')
ax_xy = fig.add_subplot(331)
ax_xy.set_title('X/Y')
ax_xz = fig.add_subplot(334)
ax_xz.set_title('X/Z')
ax_zy = fig.add_subplot(337) ax_zy.set_title('Z/Y')
color = {'A': 'r', 'B': 'g', 'C': 'b', 'E': '0.5', 'F': '0.75'}
zx, zy, zz = [], [], []
for chain in p53_1tup.get_chains():
 xs, ys, zs = [], [], []
 for i, residue in enumerate(chain.get_residues()):
 if i % 10 != 0:
 continue
 if "CA" in residue:
 ref_atom = residue["CA"]
 elif len(residue) > 0:
 ref_atom = list(residue.get_atoms())[0]
 else:
 continue
 x, y, z = ref_atom.coord
 if ref_atom.element == 'ZN':
 zx.append(x)
 zy.append(y)
 zz.append(z)
 continue
 xs.append(x)
 ys.append(y)
 zs.append(z)
if chain.id in color:
ax3d.scatter(xs, ys, zs, color=color[chain.id], s=10)
 ax_xy.scatter(xs, ys, marker='.', color=color[chain.id], s=10)
 ax_xz.scatter(xs, zs, marker='.', color=color[chain.id], s=10)
 ax_zy.scatter(zs, ys, marker='.', color=color[chain.id], s=10)
ax3d.set_xlabel('X')
ax3d.set_ylabel('Y')
ax3d.set_zlabel('Z')
if zx:
 ax3d.scatter(zx, zy, zz, color='k', marker='v', s=80)
 ax_xy.scatter(zx, zy, color='k', marker='v', s=40)
 ax_xz.scatter(zx, zz, color='k', marker='v', s=40)
 ax_zy.scatter(zz, zy, color='k', marker='v', s=40)
for ax in [ax_xy, ax_xz, ax_zy]:
ax.get_yaxis().set_visible(False)
ax.get_xaxis().set_visible(False)
plt.show(block=False)

There are plenty of molecular visualization tools. Indeed, we will discuss NGLview and PyMOL later. However, matplotlib is enough for simple visualization. The most important point about matplotlib is that it’s stable and very easy to integrate into reliable production code.In the following chart, we performed a three-dimensional plot of chains, with the DNA in gray and the protein chains in different colors. We also plot planar projections (X/Y, X/Z, and Z/Y) on the left-hand side of the graph:

[image: Figure 9.2 – The spatial distribution of the protein chains – the main figure is a 3D plot and the left subplots are planar views (X/Y, X/Z, and Z/Y)]Figure 9.2 – The spatial distribution of the protein chains – the main figure is a 3D plot and the left subplots are planar views (X/Y, X/Z, and Z/Y)

There’s more...

The PDB parser is incomplete. It’s not very likely that a complete parser will be seen soon, as the community is migrating to the mmCIF format.Although the future is the mmCIF format (http://mmcif.wwpdb.org/), PDB files are still around. Conceptually, many operations are similar after you have parsed the file.

Computing molecular distances on a PDB file

Here, we will find atoms closer to three zincs in the 1TUP model. We will consider several distances to these zincs. We will take this opportunity to discuss the performance of algorithms.In this recipe, we will use the Biopython PDB module to parse and interact with the structure of a protein. We’ll learn how to define a simple distance function to see how close various atoms in the model are from key points in the structure. Finally, we’ll dive into some compute optimization and see how we can make our calculations faster!Knowing how to calculate the molecular distances between various atoms in the protein structure model is important and can be useful for several reasons. First off, it can be used to check various constraints to validate the accuracy of the model. It can be especially important in Protein Engineering when we need to try and find what residues might be close to the Active Site. It can also be used to help understand protein-protein interactions and perform comparative structural analysis across different organisms, focusing on 3-D structure instead of sequence-level differences.

Getting ready

This recipe is made available in the Ch09/Ch09-2-molecular-distances.ipynb file.

How to do it...

	Let’s load our model, as follows:

from Bio import PDB
repository = PDB.PDBList()
parser = PDB.PDBParser() repository.retrieve_pdb_file('1TUP', pdir='.', file_format='pdb')
p53_1tup = parser.get_structure('P 53', 'pdb1tup.ent')

	We will now get our zincs, against which we will perform comparisons later:

zns = []
for atom in p53_1tup.get_atoms():
if atom.element == 'ZN':
zns.append(atom)
for zn in zns:
print(zn, zn.coord)

You should see three zinc atoms.

	Now, let’s define a function to get the distance between one atom and a set of other atoms, as follows:

import math
def get_closest_atoms(pdb_struct, ref_atom, distance):
atoms = {}
rx, ry, rz = ref_atom.coord
for atom in pdb_struct.get_atoms():
if atom == ref_atom:
continue
x, y, z = atom.coord
my_dist = math.sqrt((x - rx)**2 + (y - ry)**2 + (z - rz)**2)
if my_dist < distance:
 atoms[atom] = my_dist
return atoms

We get coordinates for our reference atom and then iterate over our desired comparison list. If an atom is close enough, it’s added to the return list.

	We now compute the atoms near our zincs, the distance of which can be up to 4 angstroms for our model:

for zn in zns:
print()
print(zn.coord)
atoms = get_closest_atoms(p53_1tup, zn, 4)
for atom, distance in atoms.items():
print(atom.element, distance, atom.coord)

Here, we show the result for the first zinc, including the element, distance, and coordinates:

[58.108 23.242 57.424]
C 3.4080117696286854 [57.77 21.214 60.142]
S 2.3262243799594877 [57.065 21.452 58.482]
C 3.4566537492335123 [58.886 20.867 55.036]
C 3.064120559761192 [58.047 22.038 54.607]
N 1.9918273537290707 [57.755 23.073 55.471]
C 2.9243719601324525 [56.993 23.943 54.813]
C 3.857729198122736 [61.148 25.061 55.897]
C 3.62725094648044 [61.61 24.087 57.001]
S 2.2789209624943494 [60.317 23.318 57.979]
C 3.087214470667822 [57.205 25.099 59.719]
S 2.2253158446520818 [56.914 25.054 57.917]

Let’s briefly review the preceding partial output. The first line shows the XYZ coordinates of the first zinc atom. We then call get_closest_atoms() with a parameter of 4 to get all the atoms that are within 4 angstroms of the zinc. The next section lists the elements nearby, the distance from the zinc, and the XYZ coordinates of that element. For example, the first element found nearby is a carbon (C) atom, which is 3.4 angstroms away from the zinc, at coordinates X=57.77, Y=21.214, Z=60.142. We only show the output section for one zinc atom here, but in your notebook, you will see repeating blocks for all the zincs.We only have three zincs in this example, so the number of computations is quite significantly reduced. However, imagine that we had more, or that we were doing a pairwise comparison among all the atoms in the set (remember that the number of comparisons grows quadratically with the number of atoms in a pairwise case). Although our case is small, it’s not difficult to forecast use cases, while more comparisons take a lot of time. We will get back to this soon.

	Let’s see how many atoms we get as we increase the distance:

for distance in [1, 2, 4, 8, 16, 32, 64, 128]:
my_atoms = []
for zn in zns:
atoms = get_closest_atoms(p53_1tup, zn, distance) my_atoms.append(len(atoms))
print(distance, my_atoms)

The result is as follows:

1 [0, 0, 0]
2 [1, 0, 0]
4 [11, 11, 12]
8 [109, 113, 106]
16 [523, 721, 487]
32 [2381, 3493, 2053]
64 [5800, 5827, 5501]
128 [5827, 5827, 5827]

As we have seen previously, this specific case is not very expensive, but let’s time it anyway:

import timeit
nexecs = 10
print(timeit.timeit('get_closest_atoms(p53_1tup, zns[0], 4.0)', 'from main import get_closest_atoms, p53_1tup, zns', number=nexecs) / nexecs * 1000)

Here, we will use the timeit module to execute this function 10 times and then print the result in milliseconds. We pass the function as a string and pass yet another string with the necessary imports to make this function work. On a notebook, you are probably aware of the %timeit magic and how it makes your life much easier in this case. This takes roughly 40 milliseconds on the machine where the code was tested. Obviously, on your computer, you will get somewhat different results.

There’s more...

Can we do better? Let’s consider a different distance function, as shown in the following code:

def get_closest_alternative(pdb_struct, ref_atom, distance): atoms = {}
rx, ry, rz = ref_atom.coord
for atom in pdb_struct.get_atoms():
if atom == ref_atom:
continue
x, y, z = atom.coord
if abs(x - rx) > distance or abs(y - ry) > distance or abs(z - rz) > distance:
continue
my_dist = math.sqrt((x - rx)**2 + (y - ry)**2 + (z - rz)**2)
if my_dist < distance:
atoms[atom] = my_dist
return atoms

So, we take the original function and add a very simplistic if with the distances. The rationale for this is that the computational cost of the square root, and maybe the float power operation, is very expensive, so we will try to avoid it. However, for all atoms that are closer than the target distance in any dimension, this function will be more expensive. To recap, the key innovation in this function is to only check for atoms that are clearly within a cube bounded by the distance. This reduces unnecessary computation by not calling sqrt() as many times.

	Now, let’s time against it:

print(timeit.timeit('get_closest_alternative(p53_1tup, zns[0], 4.0)', 'from main import get_closest_alternative, p53_1tup, zns', number=nexecs) / nexecs * 1000)

On the same machine that we used in the preceding example, it takes 16 milliseconds, which means that it is roughly three times faster.

	However, is this always better? Let’s compare the cost with different distances, as follows:

print('Standard')
for distance in [1, 4, 16, 64, 128]:
print(timeit.timeit('get_closest_atoms(p53_1tup, zns[0], distance)', 'from main import get_closest_atoms, p53_1tup, zns, distance', number=nexecs) / nexecs * 1000)
print('Optimized')
for distance in [1, 4, 16, 64, 128]:
print(timeit.timeit('get_closest_alternative(p53_1tup, zns[0], distance)', 'from main import get_closest_alternative, p53_1tup, zns, distance', number=nexecs) / nexecs * 1000)

The result is shown in the following output:

Standard
85.08649739999328
86.50681579999855
86.79630599999655
96.95437099999253
96.21982420001132
Optimized
30.253444099980698
32.69531210000878
52.965772600009586
142.53310030001103
141.26269519999823

Note that the cost of the Standard version is mostly constant, whereas the Optimized version varies depending on the distance of the closest atoms; the larger the distance, the more cases that will be computed using the extra if, plus the square root, making the function more expensive.The larger point here is that you can probably code functions that are more efficient using smart computation shortcuts, but the complexity cost may change qualitatively. In the preceding case, I suggest that the second function is more efficient for all realistic and interesting cases when you’re trying to find the closest atoms. However, you have to be careful while designing your own versions of optimized algorithms.

Performing geometric operations

We will now perform computations with geometry information, including computing the center of mass of chains and whole models.In this recipe, we will learn how to use Biopython’s PDB module to calculate the masses of structures in our model. We’ll then use operations to find the geometric center of mass.

Getting ready

This recipe is made available in the Ch09/Ch09-3-geometric-operations.ipynb file.

How to do it...

Here are the steps to try this recipe:

	First, let’s retrieve the data:

from Bio import PDB
repository = PDB.PDBList()
parser = PDB.PDBParser() repository.retrieve_pdb_file('1TUP', pdir='.', file_format='pdb')
p53_1tup = parser.get_structure('P 53', 'pdb1tup.ent')

	Then, let’s recall the type of residues that we have with the following code:

my_residues = set()
for residue in p53_1tup.get_residues():
my_residues.add(residue.id[0])
print(my_residues)

So, we have H_ ZN (zinc) and W (water), which are HETATM types; the vast majority are standard PDB atoms.

	Let’s compute the masses for all chains, zincs, and waters instances using the following code:

import numpy as np
def get_mass(atoms, accept_fun=lambda x: True):
return sum([atom.mass for atom in atoms if accept_fun(atom)])
chain_names = [chain.id for chain in p53_1tup.get_chains()]
my_mass = np.ndarray((len(chain_names), 3))
for i, chain in enumerate(p53_1tup.get_chains()):
my_mass[i, 0] = get_mass(chain.get_atoms())
print("Mass array:", my_mass)

The get_mass function returns the mass of all atoms in the list that pass an acceptance criterion function. Here, the default acceptance criterion involves not being a water residue.We then compute the mass for all chains. We have three versions: just amino acids, zincs, and water. Zinc does nothing more than detect a single atom per chain in this model. The output is as follows:

[image: Figure 9.3 – The mass for all protein chains]Figure 9.3 – The mass for all protein chains

	Let’s compute the geometric center and the center of mass of the model, as follows:

def get_center(atoms, weight_fun=lambda atom: 1 if atom.parent.id[0] != 'W' else 0):
xsum = ysum = zsum = 0.0
acum = 0.0
for atom in atoms:
x, y, z = atom.coord
weight = weight_fun(atom)
acum += weight
xsum += weight * x
ysum += weight * y
zsum += weight * z
return xsum / acum, ysum / acum, zsum / acum
print(get_center(p53_1tup.get_atoms()))
print(get_center(p53_1tup.get_atoms(),
weight_fun=lambda atom: atom.mass if atom.parent.id[0] != 'W' else 0))

First, we define a weighted function to get the coordinates of the center. The default function will treat all atoms as equal, as long as they are not a water residue.We then compute the geometric center and the center of mass by redefining the weight function with a value of each atom equal to its mass. The geometric center is computed, irrespective of its molecular weight.For example, you may want to compute the center of mass of the protein without DNA chains.

	Let’s compute the center of mass and the geometric center of each chain, as follows:

import pandas as pd
my_center = np.ndarray((len(chain_names), 6))
for i, chain in enumerate(p53_1tup.get_chains()):
x, y, z = get_center(chain.get_atoms())
my_center[i, 0] = x
my_center[i, 1] = y
my_center[i, 2] = z
x, y, z = get_center(chain.get_atoms(), weight_fun=lambda atom: atom.mass if atom.parent.id[0] != 'W' else 0)
my_center[i, 3] = x
my_center[i, 4] = y
my_center[i, 5] = z
weights = pd.DataFrame(my_center, index=chain_names, columns=['X', 'Y', 'Z', 'X (Mass)', 'Y (Mass)', 'Z (Mass)'])
print(weights)

The result is shown here:

[image: Figure 9.4 – The center of mass and the geometric center of each protein chain]Figure 9.4 – The center of mass and the geometric center of each protein chain

There’s more...

Although this is not a book based on the protein structure determination technique, it’s important to remember that X-ray crystallography methods cannot detect hydrogens, so computing the mass of residues might be based on very inaccurate models; refer to http://www.umass.edu/microbio/chime/pe_beta/pe/protexpl/help_hyd.htm for more information.

Animating proteins

One of the most fun and exciting things to do with proteins is to view and animate their structures. Proteins are the workhorses of the cell. They are essentially nanobots that can create structure in a cell or perform enzymatic reactions to convert one chemical into another. Indeed, for a long time, DNA and RNA were viewed somewhat as just instructions on the way toward making a protein, consistent with the Central Dogma. We now know that DNA and RNA can also perform important structural roles and will often form a complex with proteins (i.e., a DNA-protein structure) to complement or enhance the function of the protein. Ribozymes are RNA molecules that can perform enzymatic reactions and hence are viewed as a likely starting point for life.In this recipe, we’ll learn how to animate a protein structure in our notebook using a library called NGLview (https://github.com/nglviewer/nglview). We’ll also check out another library, py3Dmol: https://pypi.org/project/py3Dmol/.

Getting ready

For this recipe, you will need Biopython, which we’ll assume is already installed, and nglview. To install it, run the following:

! pip install nglview

This recipe is made available in the Ch09/Ch09-4-nglview.ipynb file.

How to do it...

Here are the steps to perform this recipe:

	First, we will import our libraries:

import nglview as nv
from Bio import PDB

	Next, let’s download our protein:

pdb_id = "1TUP"
pdb_list = PDB.PDBList()
pdb_list.retrieve_pdb_file(pdb_id, pdir=".", file_format="pdb")

	We set pdb_id to the 1TUP protein and set up a PDBList object to download the protein. We then load the PDB file into NGLviewer:

view = nv.show_file(f"pdb{pdb_id.lower()}.ent")

	Now we will set some visualization parameters:

view.clear_representations()
view.add_cartoon(color="spectrum")
view.add_spacefill("ZN")

This clears any settings and then sets up a cartoon style, which means that we highlight secondary structures such as alpha helices and beta sheets. We also highlight zinc atoms:

view.camera = "perspective"
view.center()
view.animate = True

This sets our camera mode to perspective, which gives a depth effect. We center the view on the protein and allow animation, which means we can move around and manipulate our view of the protein using the mouse.

	Finally, we trigger our view:

view

Here is what you will see:

[image: Figure 9.5 – NGLview picture of the 1TUP protein]Figure 9.5 – NGLview picture of the 1TUP protein

We can see the 1TUP protein with secondary structures and zincs highlighted. We can rotate it with our mouse and hover over individual atoms and see their respective amino acid codes.

Tip

Some of you may experience problems with NGLview not displaying the protein in the notebook. This may be related to your version of ipywidgets or Jupyter Notebook. If you are having issues, there are a couple of things you can try. Leave your notebook and, from the terminal, run the following:

pip install –upgrade notebook
pip install –upgrade ipywidgets

Then, go back into your notebook and try the code again. Remember, you can run pip show to see the version of any package. There is some additional test code in the notebook to help with debugging.

If you are still having trouble with NGLview, you can move on to learn about Py3DMol in the next section, which is an alternative protein viewer.

We can explore more capabilities of NGLview. For instance, we can highlight certain residues:

AI tip

Try this prompt: Write code using NGLview to visualize the 1TUP protein and highlight the Cysteine residues.

You should see: Code to download and visualize the 1TUP protein with CYS residues highlighted in a particular color.

We can also use NGLview to visualize the differences between a native version of a protein and a mutated copy:

Try this prompt: Write code using NGLview to compare the 6GFG protein to the 1TUP protein.

You should see: Code to compare 6GFG, which is a mutated version of the p54 protein, to its wild-type version, 1TUP. You will see two side-by-side, interactive 3-D models.

Okay, let’s try another handy library for protein structure viewing, Py3DMol. Take a look at the Ch09-4-py3dmol.ipynb notebook. First, we will install Py3DMol:

! pip install py3Dmol

Now we import our library:

import py3Dmol

Now we run our viewer:

view = py3Dmol.view(query='pdb:1crn')
view.setStyle({'cartoon': {'color': 'spectrum'}})
view.zoomTo()
view.show()

This code sets up our viewer with the 1CRN protein (Crambin). It then sets style and zoom parameters, and finally calls view.show() to display the protein.Here is what we see:

[image: Figure 9.6 – The 1CRN Crambin protein displayed by Py3DMol]Figure 9.6 – The 1CRN Crambin protein displayed by Py3DMol

There’s more...

PyMOL is another useful and important structure viewer to know about. It has recently been integrated with several structural bioinformatics tools using PyMod – Janson & Paiardini, “PyMod 3: a complete suite for structural bioinformatics in PyMOL,” Bioinformatics, May 2021: https://academic.oup.com/bioinformatics/article/37/10/1471/5917627.Using structure viewers, scientists can gain insights into the function of the protein. In particular, the Active Site of the enzyme can be modified to increase or decrease the rate of activity of the protein or alter the substrate selectivity.Enzyme Engineering is the art of changing enzymes by mutating various amino acid residues, or in some cases, introducing entirely new loops or pieces of structure. This was traditionally done primarily through random mutagenesis or focused libraries that were screened in the lab. But with the advances in AI, mutant enzymes can also be designed and tested in silico.

See also

	PyMOL is here: https://www.pymol.org/

	Read more about NGLView in Nguyen et al, NGLview - interactive molecular graphics for Jupyter notebooks, Bioinformatics, Apr 2018: https://academic.oup.com/bioinformatics/article/34/7/1241/4721781

	This article gives a good tutorial on Py3DMol: https://william-dawson.github.io/using-py3dmol.html

	For a good review on the current state of the art in structural bioinformatics, read: Rosignoli et al, “An outlook on structural biology after AlphaFold: tools, limits, and perspectives,” FEBS open bio, Sep 2024: https://febs.onlinelibrary.wiley.com/doi/10.1002/2211-5463.13902

	Machine learning can be used for enzyme engineering: Landwehr et al, “Accelerated enzyme engineering by machine-learning guided cell-free expression,” Nature Communications, Jan 2025: https://www.nature.com/articles/s41467-024-55399-0

	SeaMoon uses language models to simulate the motions of proteins: Lombard et al, SeaMoon: From protein language models to continuous structural heterogeneity, Structure, Jul 2025: https://www.sciencedirect.com/science/article/abs/pii/S0969212625002448?dgcid=author

	La-Proteina can generate protein structures with atom-level accuracy: https://research.nvidia.com/labs/genair/la-proteina/

Performing proteomics analysis

Proteomics is the study of protein expression. Much as we learned that we can analyze the expression of genes by RNA-Seq, it is also possible to look at the expression of proteins.Typically, this is done by mass spectrometry. In this technique, proteins are first fragmented by digestion, and then small protein fragments are run through a spectrometer, so we can determine their mass and charge. We then work backward with a set of fragments to understand what protein they may have come from. To do this, we first need to perform an in silico digestion of the proteins that are potentially present in the sample. We do this by taking the putative proteome of the organism in the sample and calculating where the enzyme used for digestion will cut it. For example, trypsin cleaves amino acids between lysine and arginine, unless they are followed by a proline.Once we have a database of our potential fragments, we can feed this into our proteomics software to help us determine the identity and level of various proteins in the sample.In this recipe, we’ll learn how to use a package called pyteomics, which specializes in proteomics analysis. We’ll learn how to calculate key properties of proteins and perform a simulated digestion of a protein to understand how a typical proteomics analysis would work. Finally, we’ll learn how to visualize the peptide mass distributions of a digested protein, as it would be used in typical proteomics workflows.

Getting ready

In this recipe, we will use the pyteomics package (https://pyteomics.readthedocs.io/en/latest/). You will also need matplotlib, Biopython, pandas, and seaborn. The latter are probably already installed for you, but this line will make sure everything is installed:

! pip install biopython matplotlib pandas seaborn pyteomics

This recipe is made available in the Ch09/Ch09-5-proteomics.ipynb file.

How to do it...

Here are the steps to try this recipe:

	First, we will install our libraries:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from Bio.SeqUtils.ProtParam import ProteinAnalysis
from pyteomics import parser, mass

From the pyteomics package, we will use the parser class for digesting protein sequences and the mass class for computing molecular mass.

	Now let’s define our protein sequence:

protein_sequence = (
 "MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPG"
 "PDEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGT"
 "GFVKVGQSTSRHKKLMFKTEGPDSD"
)

We will use the 1TUP p53 tumor suppressor protein.

	Next, let’s analyze some key properties of this protein:

protein = ProteinAnalysis(protein_sequence)
molecular_weight = protein.molecular_weight()
hydrophobicity = protein.gravy()
isoelectric_point = protein.isoelectric_point() amino_acid_composition = protein.count_amino_acids()
print(f"Protein Molecular Weight: {molecular_weight:.2f} Da")
print(f"Protein Hydrophobicity (GRAVY): {hydrophobicity:.2f}")
print(f"Protein Isoelectric Point (pI): {isoelectric_point:.2f}")

We create a ProteinAnalysis object to enable calculations on the protein sequence. We then calculate the molecular weight of the protein in Daltons using the standard molecular weights of the amino acids.We also calculate the hydrophobicity or gravy score. This is the Grand Average Hydropathy score, which calculates the sum of the hydropathy values of the amino acids in the protein. The higher the value, the greater the hydrophobicity.We also calculate the Isoelectric Point for the protein, which is the pH at which the protein has a net charge of 0. The amino acid composition is also calculated, which reflects the number of each type of amino acid in the protein.

	Next, we’ll perform an in silico digestion of the protein using trypsin as the enzyme:

peptides = sorted(list(parser.cleave(protein_sequence, parser.expasy_rules['trypsin'])))
peptide_masses = [mass.calculate_mass(sequence=p) for p in peptides]
df = pd.DataFrame({'Peptide': peptides, 'Mass (Da)': peptide_masses})
df = df[df['Mass (Da)'] > 500]
print("\nTop 10 Peptides:")
print(df.head(10))

This will first perform a simulated trypsin digest on our protein sequence using the parser.cleave() function. We return this as a sorted list of peptide fragments. We then calculate the mass of each peptide using the mass.calculate_mass() function. We create a pandas dataframe to store the peptides and their masses. Finally, we filter out small peptides. Here is an example of what we get:

[image: Figure 9.7 – Top 10 peptides from digestion and their masses]Figure 9.7 – Top 10 peptides from digestion and their masses

Okay, now let’s visualize our results!

plt.figure(figsize=(10, 5))
sns.histplot(df['Mass (Da)'], bins=30, kde=True, color="blue")
plt.xlabel("Peptide Mass (Da)")
plt.ylabel("Frequency")
plt.title("Peptide Mass Distribution (Trypsin Digest)")
plt.show()

We set up a plot using the Seaborn histogram function. We plot the mass of the peptides and add a density curve. We then set the labels and title for the plot. Here is what we get:

[image: Figure 9.8 – Peptide mass distribution for digested protein]Figure 9.8 – Peptide mass distribution for digested protein

This gives you a basic sense of how we can digest proteins for analysis by proteomics software! This approach allows us to look at a proteomics sample and make calculations about the identity and abundance of various proteins in the sample.

There’s more...

Once proteins have been digested, they can be built into a database to analyze a proteomics dataset. Special software is used to look at the spectra generated by peptide fragments in a proteomics experiment to determine the identity of the original protein. We can then calculate the expression levels of proteins as well. Much like RNA-Seq, we can start to make inferences about what is going on biologically. Several pieces of software exist to process proteomics data. For example, OMSSA (https://bioinformaticshome.com/tools/proteomics/descriptions/OMSSA.html) is open source software for identifying proteins in mass spectrometry data. A variety of proteomics tools are available via OHSU here: https://www.ohsu.edu/proteomics-shared-resource/proteomics-tools. NIST maintains spectral libraries for proteins: https://www.nist.gov/programs-projects/peptide-mass-spectral-libraries.This was just a brief introduction to the basics of proteomics, which is a large field. You may wish to follow up by diving deeper into some of the materials provided here. This video is a good place to start: https://www.youtube.com/watch?v=wx4F6kGy1Fs. Next, get a broad overview of proteomics in Al-Amrani et al, Proteomics: concepts and applications in human medicine, World Journal of Biological Chemistry, Sep 2021: https://pmc.ncbi.nlm.nih.gov/articles/PMC8473418/. Another great review is available in Jiang et al, Comprehensive Overview of Bottom-Up Proteomics using Mass Spectrometry, ACS Measurement Science Au, Jun 2024: https://pubs.acs.org/doi/full/10.1021/acsmeasuresciau.3c00068. Read about proteomics techniques in Cui et al, High-throughput proteomics: a methodological mini-review, Laboratory Investigation, Aug 2022: https://www.nature.com/articles/s41374-022-00830-7. You can brush up on the very latest advances in proteomics in Guo et al, Mass-spectrometry-based proteomics: from single cells to clinical applications, Nature, Feb 2025: https://www.nature.com/articles/s41586-025-08584-0.Protein abundance can also be assayed by protein sequencing. Protein post-translational modifications can be assayed by nanopore sequencing. Companies such as Nautilus Biotechnology (https://www.nautilus.bio/) use protein arrays to assay proteomes.Okay, let’s clean up and close down our conda environment:

conda deactivate

See also

	Learn about one of the largest proteomics studies ever here: “Largest proteome study enlists 14 biopharmas”, Nature Biotechnology, Feb 2025: https://www.nature.com/articles/s41587-025-02577-0

	Learn more about predicting protein properties with ProtParam here: https://web.expasy.org/protparam/

	This tool provides a web interface to analyze proteomics data: Didusch et al, amica: an interactive and user-friendly web-platform for the analysis of proteomics data, BMC Genomics, Dec 2022: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-022-09058-7

	Microfluidics can be used in proteomics: Steinbach et al, Digital Microfluidics for Sample Preparation in Low-Input Proteomics, Small Methods, Aug 2024: https://onlinelibrary.wiley.com/doi/full/10.1002/smtd.202400495

	Learn about a proteomics method where proteins are not digested first – Roberts et al, Top-down proteomics, Nature Reviews Methods Primers, Jun 2024: https://www.nature.com/articles/s43586-024-00318-2

	Learn how nanopores can be used for protein sequencing – Dorey & Howorka, Nanopore DNA sequencing technologies and their applications toward single-molecule proteomics, Nature Chemistry, Mar 2024: https://www.nature.com/articles/s41557-023-01322-x

Chapter 10: Phylogenetics

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

Phylogenetics is the application of molecular sequencing that is used to study the evolutionary relationship among organisms. The typical way to illustrate this process is through the use of phylogenetic trees. The computation of these trees from genomic data is an active field of research with many real-world applications.In this book, we will take the practical approach that is mentioned to a new level: most of the recipes here are inspired by a study on the Ebola virus, researching the Ebola outbreak in Africa. This study is called Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak, by Gire et al., published in Science. It is available at https://pubmed.ncbi.nlm.nih.gov/25214632/. Here, we will try to follow a similar methodology to arrive at similar results to the paper.In this chapter, we will use DendroPy (a phylogenetics library) and Biopython. The bioinformatics_phylo Docker image includes all the necessary software.In this chapter, we will cover the following recipes:

	Preparing a dataset for phylogenetic analysis

	Aligning genetic and genomic data

	Comparing sequences

	Reconstructing phylogenetic trees

	Playing recursively with trees

	Visualizing phylogenetic data

Technical requirements

The code for this chapter can be found in: https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch10You will want to create a Ch10 folder and set up your notebooks there.

Preparing a dataset for phylogenetic analysis

In this recipe, we will download and prepare the dataset to be used for our analysis. The dataset contains complete genomes of the Ebola virus. We will use DendroPy (https://jeetsukumaran.github.io/DendroPy/) to download and prepare the data. DendroPy offers Python functions for phylogenetic computing. It includes a variety of methods for reading and writing phylogenetic trees in popular formats such as Newick, NEXUS, and Phylip. It can also generate and compare phylogenetic trees. Here we will first use DendroPy to download and format several Ebola genomes. We will then create FASTA files which will be used throughout the recipes in this chapter to examine the phylogenetic relationships between the different species of Ebola. We will learn about the DnaCharacterMatrix class in DendroPy which is a useful container class for storing and manipulating your sequences.Next, we’ll see how to extract a subset of genes from the alignment and calculate basic statistics on them. We’ll also see how to determine the number of distinct taxons present in the alignment and calculate general statistics on the alignment.By the end of this recipe, you will be comfortable using the DendroPy alignment class and extracting information from it. You will then be prepared for diving further into phylogenetic analysis with the data.

Getting ready

We will download complete genomes from GenBank; these genomes were collected from various Ebola outbreaks, including several from the 2014 outbreak. Note that there are several virus species that cause the Ebola virus disease; the species involved in the 2014 outbreak (the EBOV virus, which was formally known as the Zaire Ebola virus) is the most common, but this disease is caused by more species of the genus Ebolavirus; four others are also available in a sequenced form. You can read more at https://en.wikipedia.org/wiki/Ebolavirus.If you have already gone through the previous chapters, you might panic looking at the potential data sizes involved here; this is not a problem at all because these are genomes of viruses that are each around 19 kbp in size. So, our approximately 100 genomes are actually quite light.We will be using DendroPy in this recipe. Let’s install it:

! pip install dendropy

As usual, this information is available in the corresponding Jupyter Notebook file, which is available at Ch10/Ch10-1-preparing-dataset.ipynb.

How to do it...

Take a look at the following steps:

	First, let’s start by specifying our data sources using DendroPy, as follows:

import dendropy
from dendropy.interop import genbank
def get_ebov_2014_sources():
#EBOV_2014
#yield 'EBOV_2014', genbank.GenBankDna(id_range=(233036, 233118), prefix='KM')
yield 'EBOV_2014', genbank.GenBankDna(id_range=(34549, 34563), prefix='KM0')
def get_other_ebov_sources():
 #EBOV other
 yield 'EBOV_1976', genbank.GenBankDna(ids=['AF272001',
 'KC242801'])
 yield 'EBOV_1995', genbank.GenBankDna(ids=['KC242796',
 'KC242799'])
 yield 'EBOV_2007', genbank.GenBankDna(id_range=(84, 90),
 prefix='KC2427')
def get_other_ebolavirus_sources():
#BDBV
yield 'BDBV', genbank.GenBankDna(id_range=(3, 6), prefix='KC54539')
yield 'BDBV', genbank.GenBankDna(ids=['FJ217161']) #RESTV
yield 'RESTV', genbank.GenBankDna(ids=['AB050936', 'JX477165', 'JX477166', 'FJ621583', 'FJ621584', 'FJ621585'])
#SUDV
yield 'SUDV', genbank.GenBankDna(ids=['KC242783', 'AY729654', 'EU338380', 'JN638998', 'FJ968794', 'KC589025', 'JN638998'])
#yield 'SUDV', genbank.GenBankDna(id_range=(89, 92), prefix='KC5453') #TAFV
yield 'TAFV', genbank.GenBankDna(ids=['FJ217162'])

Here, we have three functions: one to retrieve data from the most recent EBOV outbreak, another to retrieve data from the previous EBOV outbreaks, and one to retrieve data from the outbreaks of other species.Note that the DendroPy GenBank interface provides several different ways to specify lists or ranges of records to retrieve. Some lines are commented out. These include the code to download more genomes. For our purpose, the subset that we will download is enough.

	Now, we will create a set of FASTA files; we will use these files here and in future recipes:

other = open('other.fasta', 'w')
sampled = open('sample.fasta', 'w')
for species, recs in get_other_ebolavirus_sources():
tn = dendropy.TaxonNamespace()
char_mat = recs.generate_char_matrix(taxon_namespace=tn, gb_to_taxon_fn=lambda gb: tn.require_taxon(label='%s_%s' % (species, gb.accession)))
char_mat.write_to_stream(other, 'fasta')
char_mat.write_to_stream(sampled, 'fasta')
other.close()
ebov_2014 = open('ebov_2014.fasta', 'w')
ebov = open('ebov.fasta', 'w')
for species, recs in get_ebov_2014_sources():
tn = dendropy.TaxonNamespace()
char_mat = recs.generate_char_matrix(taxon_namespace=tn, gb_to_taxon_fn=lambda gb: tn.require_taxon(label='EBOV_2014_%s' % gb.accession)) char_mat.write_to_stream(ebov_2014, 'fasta') char_mat.write_to_stream(sampled, 'fasta') char_mat.write_to_stream(ebov, 'fasta') ebov_2014.close()
ebov_2007 = open('ebov_2007.fasta', 'w')
for species, recs in get_other_ebov_sources():
tn = dendropy.TaxonNamespace()
char_mat = recs.generate_char_matrix(taxon_namespace=tn, gb_to_taxon_fn=lambda gb: tn.require_taxon(label='%s_%s' % (species, gb.accession)))
char_mat.write_to_stream(ebov, 'fasta') char_mat.write_to_stream(sampled, 'fasta')
if species == 'EBOV_2007':
char_mat.write_to_stream(ebov_2007, 'fasta')
ebov.close()
ebov_2007.close()
sampled.close()

We will generate several different FASTA files, which include either all genomes, just EBOV, or just EBOV samples from the 2014 outbreak. In this chapter, we will mostly use the sample.fasta file with all genomes.Note the use of the dendropy functions to create FASTA files that are retrieved from GenBank records through conversion. The ID of each sequence in the FASTA file is produced by a lambda function that uses the species and the year, alongside the GenBank accession number.

	Let’s extract four (of the total seven) genes in the virus, as follows:

my_genes = ['NP', 'L', 'VP35', 'VP40']
def dump_genes(species, recs, g_dls, p_hdls):
for rec in recs:
for feature in rec.feature_table:
if feature.key == 'CDS':
gene_name = None
for qual in feature.qualifiers:
if qual.name == 'gene':
if qual.value in my_genes: gene_name = qual.value
elif qual.name == 'translation':
protein_translation = qual.value
if gene_name is not None:
locs = feature.location.split('.')
start, end = int(locs[0]), int(locs[-1])
g_hdls[gene_name].write('>%s_%s\n' % (species, rec.accession)) p_hdls[gene_name].write('>%s_%s\n' % (species, rec.accession)) g_hdls[gene_name].write('%s\n' % rec.sequence_text[start - 1 : end])
p_hdls[gene_name].write('%s\n' % protein_translation)
g_hdls = {}
p_hdls = {}
for gene in my_genes:
g_hdls[gene] = open('%s.fasta' % gene, 'w')
p_hdls[gene] = open('%s_P.fasta' % gene, 'w')
for species, recs in get_other_ebolavirus_sources():
if species in ['RESTV', 'SUDV']:
dump_genes(species, recs, g_hdls, p_hdls)
for gene in my_genes:
g_hdls[gene].close()
p_hdls[gene].close()

We start by searching the first GenBank record for all gene features (please refer to the National Center for Biotechnology Information (NCBI) documentation for further details; although we will use DendroPy and not Biopython here, the concepts are similar) and write to the FASTA files in order to extract the genes. We put each gene into a different file and only take two virus species. We also get translated proteins, which are available in the records for each gene.

	Let’s create a function to get the basic statistical information from the alignment, as follows:

def describe_seqs(seqs):
print('Number of sequences: %d' % len(seqs.taxon_namespace))
print('First 10 taxon sets: %s' % ' '.join([taxon.label for taxon in seqs.taxon_namespace[:10]]))
lens = []
for tax, seq in seqs.items():
lens.append(len([x for x in seq.symbols_as_list() if x != '-']))
print('Genome length: min %d, mean %.1f, max %d' % (min(lens), sum(lens) / len(lens), max(lens)))

The describe_seqs() function takes a DnaCharacterMatrix DendroPy class and counts the number of taxons. Then, we extract all the amino acids per sequence (we exclude gaps identified by -) to compute the length and report the minimum, mean, and maximum sizes. Take a look at the DendroPy documentation for additional details regarding the API (https://jeetsukumaran.github.io/DendroPy/primer/index.html).

	Let’s inspect the sequence of the EBOV genome and compute the basic statistics, as shown earlier:

ebov_seqs = dendropy.DnaCharacterMatrix.get_from_path('ebov.fasta', schema='fasta', data_type='dna')
print('EBOV')
describe_seqs(ebov_seqs)
del ebov_seqs

We then call a function and get 25 sequences with a minimum size of 18,700, a mean size of 18,925.2, and a maximum size of 18,959. This is a small genome when compared to eukaryotes.Note that at the very end, the memory structure has been deleted. This is because the memory footprint is still quite big (DendroPy is a pure Python library and has some costs in terms of speed and memory). Be careful with your memory usage when you load full genomes.

	Now, let’s inspect the other Ebola virus genome file and count the number of different species:

print('ebolavirus sequences')
ebolav_seqs = dendropy.DnaCharacterMatrix.get_from_path('other.fasta', schema='fasta', data_type='dna')
describe_seqs(ebolav_seqs)
from collections import defaultdict
species = defaultdict(int)
for taxon in ebolav_seqs.taxon_namespace:
toks = taxon.label.split('_')
my_species = toks[0]
if my_species == 'EBOV':
ident = '%s (%s)' % (my_species, toks[1])
else:
ident = my_species
species[ident] += 1
for my_species, cnt in species.items():
print("%20s: %d" % (my_species, cnt))
del ebolav_seqs

The name prefix of each taxon is indicative of the species, and we leverage that to fill a dictionary of counts.The output for the species and the EBOV breakdown is detailed next (with the legend as Bundibugyo virus=BDBV, Tai Forest virus=TAFV, Sudan virus=SUDV, and Reston virus=RESTV; we have 1 TAFV, 6 SUDV, 6 RESTV, and 5 BDBV).

	Let’s extract the basic statistics of a gene in the virus:

gene_length = {}
my_genes = ['NP', 'L', 'VP35', 'VP40']
for name in my_genes:
gene_name = name.split('.')[0]
seqs = dendropy.DnaCharacterMatrix.get_from_path('%s.fasta' % name, schema='fasta', data_type='dna')
gene_length[gene_name] = []
for tax, seq in seqs.items():
gene_length[gene_name].append(len([x for x in seq.symbols_as_list() if x != '-']))
for gene, lens in gene_length.items():
print ('%6s: %d' % (gene, sum(lens) / len(lens)))

This gives you an overview of the basic gene information (that is, the name and the mean size), as follows:

NP: 2218
L: 6636
VP35: 990
VP40: 988

There’s more...

Most of the work here can probably be performed with BioPython, but DendroPy has additional functionalities that will be explored in later recipes. Furthermore, as you will discover, it’s more robust with certain tasks (such as file parsing). More importantly, there is another Python library to perform phylogenetics that you should consider. It’s called ETE and is available at http://etetoolkit.org/.

See also

	The US Center for Disease Control (CDC) has a good introductory page on the Ebola virus disease at https://www.cdc.gov/vhf/ebola/history/summaries.html.

	The reference application in phylogenetics is Joe Felsenstein’s Phylip, which can be found at http://evolution.genetics.washington.edu/phylip.html.

	We will use the Nexus and Newick formats in future recipes (http://evolution.genetics.washington.edu/phylip/newicktree.html), but do also check out the PhyloXML format (http://en.wikipedia.org/wiki/PhyloXML).

	Read more about DendroPy in this paper: Moreno et al, “DendroPy 5: a mature Python library for phylogenetic computing”, The Journal of Open Source Software, May 2024 - https://joss.theoj.org/papers/10.21105/joss.06943

Aligning genetic and genomic data

Before we can perform any phylogenetic analysis, we need to align our genetic and genomic data. Here, we will use MAFFT (http://mafft.cbrc.jp/alignment/software/) to perform the genome analysis. The gene analysis will be performed using MUSCLE (http://www.drive5.com/muscle/).Alignment is a key step in any phylogenetic analysis. When we align whole genomes, we are aligning the entire nucleotide sequences of the genomes against each other. When we align genes or genetic content of an organism, we are aligning one more more genes against each other from a gene family. This could potentially be done either at the nucleotide or amino acid (protein level). There are even Structure-Guided alignments which take place in 3-D protein space (see: Ghaly et al, “EcoFoldDB: Protein-structure guided funcitonal profiling of ecologically relevant microbial traits at the genome scale”, bioRxiv, Apr 2025 - https://www.biorxiv.org/content/10.1101/2025.04.02.646905v1.abstract.Alignments find the most common regions of a gene or genome and line them up. Where gaps need to be introduced to make the best fit, we put a “-” character.When blocks of genes are present in the same region and in the same order in two different organisms we call this Synteny. Synteny is a powerful tool for elucidating gene function, because blocks of genes that stay together during evolution tend to have important, conserved functions. The genes that stay together are likely to operate in the same biochemical pathway, be regulated as a unit, or may even form a protein complex with one another.Here is a diagram to help you understand these key concepts of Synteny and Alignment:

[image: Figure 10.1 – Illustration of Synteny and Gene Alignment concepts]Figure 10.1 – Illustration of Synteny and Gene Alignment concepts

As you look at the diagram above, you can see first of all that blocks of genes in a genome are conserved to varying degrees in different primate or human genomes. For example, the light orange block is quite conserved, whereas gorillas have a small light blue group of genes that must be unique to them. In the second half of the diagram, we see an example of a sequence-level gene alignment. Genes are lined up across the species showing many positions where they are in common (asterisks, bottom row). When a base is different from the common base, we call that a Substitution and highlight it in red. Substitution rates are used to calculate the lengths of branches in phylogenetic trees. The more substitutions occur in a gene the greater is its evolutionary distance, and hence the longer the branch length in the tree. Rates of substitution can also be used to model how quickly different organisms or areas of a genome are evolving.

Getting ready

To perform the genomic alignment, you will need to install MAFFT. Additionally, to perform the genic alignment, MUSCLE will be used. Also, we will use trimAl (http://trimal.cgenomics.org/) to remove spurious sequences and poorly aligned regions in an automated manner. Let’s install our packages:

! brew install trimal
! brew install mafft
! brew install muscle

As usual, this information is available in the corresponding Jupyter Notebook file at Ch10/Ch10-2-aligning-genetic-data.ipynb. You will need to run the previous notebook beforehand, as it will generate the files that are required here. In this chapter, we will use BioPython.

How to do it...

	Let’s get started by importing our libraries:

import subprocess
from Bio.Align.Applications import MafftCommandline

	Next, we need to set up our MAFFT command line and run it:

mafft_cline = MafftCommandline(input="sample.fasta", ep=0.123, reorder=True, maxiterate=1000, localpair=True)
print("Running MAFFT with command:", mafft_cline)
process = subprocess.run(
 str(mafft_cline),
 shell=True,
 capture_output=True,
 text=True
)
if process.returncode != 0:
 print("Error running MAFFT:", process.stderr)
else:

 with open("align.fasta", "w") as w:
 w.write(process.stdout)
 print("Alignment completed and saved to align.fasta")

The preceding parameters are standard for MAFFT. We set the gap extension penalty to a reasonable value, keep the aligned sequences in the order they are input, and iterate up to 1000 times. We will use the BioPython interface to call MAFFT.

	Let’s use trimAl to trim sequences, as follows:

import os
os.system('trimal -automated1 -in align.fasta -out trim.fasta -fasta')

Here, we just call the application using os.system. The -automated1 parameter will automatically select trimming parameters based on the characteristics of your alignment.

	Additionally, we can run MUSCLE to align the proteins:

import subprocess
import os
my_genes = ['NP', 'L', 'VP35', 'VP40']
for gene in my_genes:
input_file = f"{gene}_P.fasta"
 output_file = f"{gene}_P_align.fasta"
 if not os.path.exists(input_file):
 print(f"Error: Input file '{input_file}' not found.")
else:
 muscle_cmd = f"muscle -align {input_file} -output {output_file}"
 print(f"Running MUSCLE with command: {muscle_cmd}")
 process = subprocess.run(
 muscle_cmd, shell=True, capture_output=True, text=True
)
 if process.returncode != 0:
 print("Error running MUSCLE:", process.stderr)
 else:
 print(f"Alignment completed and saved to {output_file}")

We use Biopython to call an external application. Here, we will align a set of proteins.Note that to make some analysis of molecular evolution, we have to compare aligned genes, not proteins (for example, comparing synonymous and nonsynonymous mutations). However, we just have aligned the proteins. Therefore, we have to convert the alignment into the gene sequence form.

	Let’s align the genes by finding three nucleotides that correspond to each amino acid:

from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
for gene in my_genes:
gene_seqs = {}
unal_gene = SeqIO.parse('%s.fasta' % gene, 'fasta')
for rec in unal_gene:
gene_seqs[rec.id] = rec.seq
al_prot = SeqIO.parse('%s_P_align.fasta' % gene, 'fasta')
al_genes = []
for protein in al_prot:
my_id = protein.id
seq = ''
pos = 0
for c in protein.seq:
if c == '-':
seq += '---'
else:
seq += str(gene_seqs[my_id]
[pos:pos + 3]) pos += 3
al_genes.append(SeqRecord(Seq(seq), id=my_id))
SeqIO.write(al_genes, '%s_align.fasta' % gene, 'fasta')

The code gets the protein and the gene coding. If a gap is found in a protein, three gaps are written; if an amino acid is found, the corresponding nucleotides of the gene are written.

Comparing sequences

Here, we will compare the sequences we aligned in the previous recipe. We will perform gene-wide and genome-wide comparisons. In this recipe, we’ll use DendroPy to organize and process the sequence data across species of the Ebola virus. We will first set up a data structure to help us organize data by gene and species. We will use DendroPy’s popgenstats module to calculate population genetics statistics on our sequences. This module can calculate the number of Segregating Sites – positions where the sequences differ in the alignment, a measure of evolutionary distance. We will learn about Tajima’s D value, a measure of genetic diversity (https://en.wikipedia.org/wiki/Tajima%27s_D). This measure of substitution rates helps us see if a genetic region is just evolving randomly, or may be evolving in a particular direction under selection. We will also learn about Wattersons Theta, which measures rates of population mutation (https://en.wikipedia.org/wiki/Watterson_estimator). By the end of this recipe, you will learn to determine how genetically distinct are different Ebola outbreaks, and you’ll have an understanding of how to determine if selection pressures occurred during Ebola outbreaks using phylogenetic analysis. This will give you a good understanding of key statistics and approaches that are applicable to any phylogenetic analysis.

Getting ready

We will use DendroPy and will require the results from the previous two recipes. As usual, this information is available in the corresponding notebook at Ch10/Ch10-3-comparing-sequences.ipynb.

How to do it...

Take a look at the following steps:

	Let’s start analyzing the gene data. For simplicity, we will only use data from two other species of the genus Ebola virus that are available in the extended dataset, that is, the Reston virus (RESTV) and the Sudan virus (SUDV):

import os
from collections import OrderedDict
import dendropy
from dendropy.calculate import popgenstat
genes_species = OrderedDict()
my_species = ['RESTV', 'SUDV']
my_genes = ['NP', 'L', 'VP35', 'VP40']
for name in my_genes:
gene_name = name.split('.')[0]
char_mat = dendropy.DnaCharacterMatrix.get_from_path('%s_align.fasta' % name, 'fasta')
genes_species[gene_name] = {}
for species in my_species:
genes_species[gene_name][species] = dendropy.DnaCharacterMatrix()
for taxon, char_map in char_mat.items():
species = taxon.label.split('_')[0]
if species in my_species:
genes_species[gene_name][species].taxon_namespace.add_taxon(taxon)
genes_species[gene_name][species][taxon] = char_map

We get four genes that we stored in the first recipe and aligned in the second.We load all the files (which are FASTA formatted) and create a dictionary with all of the genes. Each entry will be a dictionary itself with the RESTV or SUDV species, including all reads. This is not a lot of data, just a handful of genes.

	Let’s print some basic information for all four genes, such as the number of segregating sites (seg_sites), nucleotide diversity (nuc_div), Tajima’s D (taj_d), and Waterson’s theta (wat_theta) (check out the There’s more... section of this recipe for links on these statistics):

import numpy as np
import pandas as pd
summary = np.ndarray(shape=(len(genes_species), 4 * len(my_species)))
stats = ['seg_sites', 'nuc_div', 'taj_d', 'wat_theta']
for row, (gene, species_data) in enumerate(genes_species.items()):
for col_base, species in enumerate(my_species):
summary[row, col_base * 4] = popgenstat.num_segregating_sites(species_data[species])
summary[row, col_base * 4 + 1] = popgenstat.nucleotide_diversity(species_data[species])
summary[row, col_base * 4 + 2] = popgenstat.tajimas_d(species_data[species])
summary[row, col_base * 4 + 3] = popgenstat.wattersons_theta(species_data[species])
columns = []
for species in my_species:
columns.extend(['%s (%s)' % (stat, species) for stat in stats])
df = pd.DataFrame(summary, index=genes_species.keys(), columns=columns)
df

	First, let’s look at the output, and then we’ll explain how to build it:

[image: Fig 10.2 – A DataFrame for the virus dataset]Fig 10.2 – A DataFrame for the virus dataset

We used a pandas DataFrame to print the results because it’s really tailored to deal with an operation like this. We will initialize our DataFrame with a NumPy multidimensional array with four rows (genes) and four statistics times the two species.The statistics, such as the number of segregating sites, nucleotide diversity, Tajima’s D, and Watterson’s theta, are computed by DendroPy. Note the placement of individual data points in the array (the coordinate computation).Look at the very last line: if you are in Jupyter, just putting df at the end will render the DataFrame and the cell output, too. If you are not in a notebook, use print(df) (you can also perform this in a notebook, but it will not look as pretty).

	Now, let’s extract similar information, but genome-wide instead of only gene-wide. In this case, we will use a subsample of two EBOV outbreaks (from 2007 and 2014). We will perform a function to display basic statistics, as follows:

def do_basic_popgen(seqs):
num_seg_sites = popgenstat.num_segregating_sites(seqs)
avg_pair = popgenstat.average_number_of_pairwise_differences(seqs)
nuc_div = popgenstat.nucleotide_diversity(seqs) print('Segregating sites: %d, Avg pairwise diffs: %.2f, Nucleotide diversity %.6f' % (num_seg_sites, avg_pair, nuc_div))
print("Watterson's theta: %s" % popgenstat.wattersons_theta(seqs))
print("Tajima's D: %s" % popgenstat.tajimas_d(seqs))

By now, this function should be easy to understand, given the preceding examples.

	Now, let’s extract a subsample of the data properly, and output the statistical information:

import dendropy
taxon_namespace = dendropy.TaxonNamespace()
ebov_seqs = dendropy.DnaCharacterMatrix.get(path="trim.fasta", schema="fasta", taxon_namespace=taxon_namespace)
sl_2014 = []
drc_2007 = []
ebov2007_set = dendropy.DnaCharacterMatrix(taxon_namespace=taxon_namespace) ebov2014_set = dendropy.DnaCharacterMatrix(taxon_namespace=taxon_namespace)
for taxon, char_map in ebov_seqs.items():
print(taxon.label)
if taxon.label.startswith("EBOV_2014") and len(sl_2014) < 8:
 sl_2014.append(char_map)
 new_taxon = taxon_namespace.require_taxon(label=taxon.label)
 ebov2014_set[new_taxon] = char_map
elif taxon.label.startswith("EBOV_2007"):
 drc_2007.append(char_map)
 new_taxon = taxon_namespace.require_taxon(label=taxon.label)
 ebov2007_set[new_taxon] = char_map
del ebov_seqs
print("2007 outbreak:")
print(f"Number of individuals: {len(ebov2007_set.taxon_namespace)}")
do_basic_popgen(ebov2007_set)
print("\n2014 outbreak:")
print(f"Number of individuals: {len(ebov2014_set.taxon_namespace)}")
do_basic_popgen(ebov2014_set)

Here, we will construct two versions of two datasets: the 2014 outbreak and the 2007 outbreak. We will generate one version as DnaCharacterMatrix and another as a list. We will use this list version at the end of this recipe.As the dataset for the EBOV outbreak of 2014 is large, we subsample it with just eight individuals, which is a comparable sample size to the dataset of the 2007 outbreak.Again, we delete the ebov_seqs data structure to conserve memory (these are genomes, not only genes).If you perform this analysis on the complete dataset for the 2014 outbreak available on GenBank (99 samples), be prepared to wait for quite some time.The output is shown here:

2007 outbreak:
Number of individuals: 7
Segregating sites: 25, Avg pairwise diffs: 7.71, Nucleotide diversity 0.000412
Watterson's theta: 10.204081632653063
Tajima's D: -1.383114157484101
2014 outbreak:
Number of individuals: 8
Segregating sites: 6, Avg pairwise diffs: 2.79, Nucleotide diversity 0.000149
Watterson's theta: 2.31404958677686
Tajima's D: 0.9501208027581887

	Finally, we perform some statistical analysis on the two subsets of 2007 and 2014, as follows:

pair_stats = popgenstat.PopulationPairSummaryStatistics(sl_2014, drc_2007)
print('Average number of pairwise differences irrespective of population: %.2f' % pair_stats.average_number_of_pairwise_differences) print('Average number of pairwise differences between populations: %.2f' % pair_stats.average_number_of_pairwise_differences_between) print('Average number of pairwise differences within populations: %.2f' % pair_stats.average_number_of_pairwise_differences_within) print('Average number of net pairwise differences : %.2f' % pair_stats.average_number_of_pairwise_differences_net) print('Number of segregating sites: %d' % pair_stats.num_segregating_sites)
print("Watterson's theta: %.2f" % pair_stats.wattersons_theta)
print("Wakeley's Psi: %.3f" % pair_stats.wakeleys_psi)
print("Tajima's D: %.2f" % pair_stats.tajimas_d)

Note that we will perform something slightly different here; we will ask DendroPy (popgenstat.PopulationPairSummaryStatistics) to directly compare two populations so that we get the following results:

Average number of pairwise differences irrespective of population: 284.46
Average number of pairwise differences between populations: 535.82
Average number of pairwise differences within populations: 10.50
Average number of net pairwise differences : 525.32
Number of segregating sites: 549
Watterson's theta: 168.84
Wakeley's Psi: 0.308
Tajima's D: 3.05

Now the number of segregating sites is much bigger because we are dealing with data from two different populations that are reasonably diverged. The average number of pairwise differences among populations is quite large. As expected, this is much larger than the average number for the population, irrespective of the population information.

Reconstructing phylogenetic trees

Here, we will construct phylogenetic trees for the aligned dataset for all Ebola species. We will follow a procedure that’s quite similar to the one Gire et al used in their paper (referenced at the beginning of this chapter). We will use a program called RAxML-ng which is an updated version of the original RAxML program. It uses Maximum Likelihood phylogenetic analysis. In this method, the best tree is the one that has the highest likelihood of explaining the underlying observed evolutionary structure, given the data we have. We’ll then use matplotlib to make a visualization of the relationships between the sequences.By the end of this recipe, you’ll have produced your Maximum Likelihood phylogenetic tree, and will have your first visualization of a tree!

Getting ready

This recipe requires RAxML-ng (https://github.com/amkozlov/raxml-ng), the updated version of RAxML, a program for maximum likelihood-based inference of large phylogenetic trees. You may also want to check out the collection of phylogetic programs at the Exelixis web site: http://sco.h-its.org/exelixis/software.html. Bioconda also includes it, but it is named raxml. Note that the binary is called raxmlHPC. You can perform the following command to install it:

! brew install raxml-ng

The following code is simple, but it will take time to execute because it will call RAxML (which is computationally intensive). Although there is a recipe for visualization later in this chapter, we will, nonetheless, plot one of our generated trees here.As usual, this information is available in the corresponding notebook at Ch10/Ch10-reconstructing-trees.py. You will need the output of the previous recipe to complete this one.

How to do it...

Take a look at the following steps:

	First, we will reconstruct the genus dataset, as follows:

import os
import subprocess

We import the libraries we will use to call raxml-ng.

	Next, we define our input file and output prefix:

data_path = "trim.fasta"
output_prefix = "ebola_tree"

	Next, let’s check that the input file exists:

if not os.path.exists(data_path):
 raise FileNotFoundError(f"Error: The file {data_path} does not exist!")

	Let’s construct our raxml-ng command:

cmd = [
 "raxml-ng",
 "--msa", data_path,
 "--model", "GTR+G",
 "--prefix", output_prefix,
 "--search"
]

This will use the input sequence alignment file with the GTR+G substitution model. This is the General Time Reversible plus Gamma model which looks at how substitutions of amino acids are expected to occur over evolutionary time. You can read about it here: https://academic.oup.com/bioinformatics/article/36/Supplement_2/i884/6055914

	Now we will run RAxML-NG:

try:
 subprocess.run(cmd, check=True)
 print(f"RAxML-NG completed successfully. Output files are saved with prefix '{output_prefix}'")
except subprocess.CalledProcessError as e:
 print(f"Error running RAxML-NG: {e}")

This executes our command using os subprocess and prints our a success or error message.

	We will also clean up temporary files:

for ext in [".raxml.log", ".raxml.bestTree", ".raxml.rba", ".raxml.rfdist"]:
file_path = f"{output_prefix}{ext}"
if os.path.exists(file_path):
os.remove(file_path)
print("Temporary files cleaned up.")

Great! Now we’ve run RAxML-NG on our sequences and are ready to visualize our tree!You should at this point see ebola_tree.raxml* files in your working directory.

	Now we will visualize our tree!

import matplotlib.pyplot as plt
from Bio import Phylo
tree_file = "ebola_tree.raxml.bestTreeCollapsed" # Based on the raxml-ng output from the previous step
my_ebola_tree = Phylo.read(tree_file, "newick")
my_ebola_tree.name = "Our Ebolavirus Tree"
fig = plt.figure(figsize=(16, 18)) ax = fig.add_subplot(1, 1, 1) Phylo.draw(my_ebola_tree, axes=ax)
plt.show()

This code uses matplotlib and the BioPython Phylo module. The Phylo module is great for handling phylogenetic trees (https://biopython.org/wiki/Phylo).We then read our tree in from the previous step, which will be in the Newick format. We’ll use the Phylo.read() function to do this. We assign a name to the tree, and then set up our plot. We then use the Phylo.draw() function to draw our tree and we show the plot. Here is the phylogenetic tree we get:

[image: Fig 10.3 – Phylogenetic Tree visualization]Fig 10.3 – Phylogenetic Tree visualization

That’s it! We have now seen how we can reconstruct and visualize phylogenetic trees. Next, we’ll look at how to iterate recursively over trees.

There’s more...

Although the purpose of this book is not to teach phylogenetic analysis, it’s important to know why we do not inspect consensus and support information in the tree topology. You should research this in your dataset. For more information, refer to http://www.geol.umd.edu/~tholtz/G331/lectures/cladistics5.pdf.

See also

	Learn about the latest updates to RAxML-NG here: Togkouisidis et al, “Adaptive RAxML-NG: Accelerating Phylogenetic Inference under Maximum Likelihood using Dataset Difficulty”, Molecular Biology and Evolution, Oct 2023 - https://academic.oup.com/mbe/article/40/10/msad227/7296053

	Read more about Tree formats here: https://evomics.org/resources/tree-formats/

Playing recursively with trees

This is not a book about programming in Python, as the topic is vast. Having said that, it’s not common for introductory Python books to discuss recursive programming at length. Usually, recursive programming techniques are well tailored to deal with trees. It is also a required programming strategy with functional programming dialects, which can be quite useful when you perform concurrent processing. This is common when processing very large datasets.The phylogenetic notion of a tree is slightly different from that in computer science. Phylogenetic trees can be rooted (if so, then they are normal tree data structures) or unrooted, making them undirected acyclic graphs. Additionally, phylogenetic trees can have weights on their edges. Therefore, be mindful of this when you read the documentation; if the text is written by a phylogeneticist, you can expect the tree (rooted and unrooted), while most other documents will use undirected acyclic graphs for unrooted trees. In this recipe, we will assume that all of the trees are rooted.Finally, note that while this recipe is mostly devised to help you understand recursive algorithms and tree-like structures, the final part is actually quite practical and fundamental for the next recipe to work.

Getting ready

You will need to have the files from the previous recipe. As usual, you can find this content in the Ch10/Ch10-5-recursive-trees.py notebook file. Here, we will use DendroPy’s tree representations. Note that most of this code is easily generalizable compared to other tree representations and libraries (phylogenetic or not).

How to do it...

Take a look at the following steps:

	First, let’s load the RAxML-generated tree for all Ebola viruses, as follows:

import dendropy
tree_file = "ebola_tree.raxml.bestTreeCollapsed"
ebola_raxml = dendropy.Tree.get_from_path(tree_file, schema="newick")
print(ebola_raxml.as_string(schema="newick"))

	Then, we need to compute the level of each node (the distance to the root node):

def compute_level(node, level=0):
for child in node.child_nodes():
compute_level(child, level + 1)
if node.taxon is not None:
print("%s: %d %d" % (node.taxon, node.level(), level))
compute_level(ebola_raxml.seed_node)

DendroPy’s node representation has a level method (which is used for comparison), but the point here is to introduce a recursive algorithm, so we will implement it anyway.Note how the function works; it’s called seed_node (which is the root node, since the code works under the assumption that we are dealing with rooted trees). The default level for the root node is 0. The function will then call itself for all its children nodes, increasing the level by one. Then, for each node that is not a leaf (that is, it is internal to the tree), the calling will be repeated, and this will recurse until we get to the leaf nodes.For the leaf nodes, we then print the level (we could have done the same for the internal nodes) and show the same information computed by DendroPy’s internal function.

	Now, let’s compute the height of each node. The height of the node is the number of edges of the maximum downward path (going to the leaves), starting on that node, as follows:

def compute_height(node):
children = node.child_nodes()
if len(children) == 0:
height = 0
else:
height = 1 + max(map(lambda x: compute_height(x), children))
desc = node.taxon or 'Internal'
print("%s: %d %d" % (desc, height, node.level()))
return height
compute_height(ebola_raxml.seed_node)

Here, we will use the same recursive strategy, but each node will return its height to its parent. If the node is a leaf, then the height is 0; if not, then it’s 1 plus the maximum height of its entire offspring.Note that we use a map over a lambda function to get the heights of all the children of the current node. Then, we choose the maximum (the max function performs a reduce operation here because it summarizes all of the values that are reported). If you are relating this to MapReduce frameworks, you are correct; they are inspired by functional programming dialects like these.

	Now, let’s compute the number of offspring for each node. By now, this should be quite easy to understand:

def compute_nofs(node):
children = node.child_nodes()
nofs = len(children)
map(lambda x: compute_nofs(x), children)
desc = node.taxon or 'Internal'
print("%s: %d %d" % (desc, nofs, node.level())) compute_nofs(ebola_raxml.seed_node)

	Now we will print all of the leaves (this is, apparently, trivial):

def print_nodes(node):
for child in node.child_nodes():
print_nodes(child)
if node.taxon is not None:
print('%s (%d)' % (node.taxon, node.level()))
print_nodes(ebola_raxml.seed_node)

Note that all the functions that we have developed so far impose a very clear traversal pattern on the tree. It calls its first offspring, then that offspring will call their offspring, and so on; only after this will the function be able to call its next offspring in a depth-first pattern. However, we can do things differently.

	Now, let’s print the leaf nodes in a breadth-first manner, that is, we will print the leaves with the lowest level (closer to the root) first, as follows:

from collections import deque
def print_breadth(tree):
queue = deque()
queue.append(tree.seed_node)
while len(queue) > 0:
process_node = queue.popleft()
if process_node.taxon is not None:
print('%s (%d)' % (process_node.taxon, process_node.level()))
else:
for child in process_node.child_nodes(): queue.append(child)
print_breadth(ebola_raxml)

Before we explain this algorithm, let’s look at how different the result from this run will be compared to the previous one. For starters, take a look at the following diagram. If you print the nodes by depth-first order, you will get Y, A, X, B, and C. But if you perform a breath-first traversal, you will get X, B, C, Y, and A. Tree traversal will have an impact on how the nodes are visited; more often than not, this is important.Regarding the preceding code, here, we will use a completely different approach, as we will perform an iterative algorithm. We will use a first-in, first-out (FIFO) queue to help order our nodes. Note that Python’s deque can be used as efficiently as FIFO, as well as in last-in, first-out (LIFO). That’s because it implements an efficient data structure when you operate at both extremes.The algorithm starts by putting the root node onto the queue. While the queue is not empty, we will take the node out front. If it’s an internal node, we will put all of its children into the queue.We will iterate the preceding step until the queue is empty. I encourage you to take a pen and paper and see how this works by performing the example shown in the following diagram. The code is small, but not trivial:

[image: Fig 10.4 – Visiting a tree; the first number indicates the order in which that node is visited traversing depth-first, while the second assumes breadth-first]Fig 10.4 – Visiting a tree; the first number indicates the order in which that node is visited traversing depth-first, while the second assumes breadth-first

	Let’s get back to the real dataset. As we have a bit too much data to visualize, we will generate a trimmed-down version, where we remove the subtrees that have single species (in the case of EBOV, they have the same outbreak). We will also ladderize the tree, that is, sort the child nodes in order of the number of children:

from copy import deepcopy
simple_ebola = deepcopy(ebola_raxml)
def simplify_tree(node):
prefs = set()
for leaf in node.leaf_nodes():
my_toks = leaf.taxon.label.split(' ')
if my_toks[0] == 'EBOV':
prefs.add('EBOV' + my_toks[1])
 else:
prefs.add(my_toks[0])
if len(prefs) == 1:
print(prefs, len(node.leaf_nodes()))
node.taxon = dendropy.Taxon(label=list(prefs)[0])
node.set_child_nodes([])
else:
for child in node.child_nodes():
simplify_tree(child)
simplify_tree(simple_ebola.seed_node)
simple_ebola.ladderize()
simple_ebola.write_to_path('ebola_simple.nex', 'nexus')

We will perform a deep copy of the tree structure. As our function and the ladderization are destructive (they will change the tree), we will want to maintain the original tree.DendroPy is able to enumerate all the leaf nodes (at this stage, a good exercise would be to write a function to perform this). With this functionality, we will get all the leaves for a certain node. If they share the same species and outbreak year as in the case of EBOV, we remove all of the child nodes, leaves, and internal subtree nodes.If they do not share the same species, we recurse down until that happens. The worst case is that when you are already at a leaf node, the algorithm trivially resolves to the species of the current node.

There’s more...

There is a massive amount of computer science literature on the topic of trees and data structures; if you want to read more, Wikipedia provides a great introduction at http://en.wikipedia.org/wiki/Tree_%28data_structure%29.’Note the use of the map and lambda functions in this recipe. The map function applies a function to each item in an iterator. Lambdas are small, concise functions that can be written in one line. They are often used together to apply simple functions and can be espceially useful in data transformation operations. You can read more about them here: https://www.analyticsvidhya.com/blog/2021/10/an-explanation-to-pythons-lambda-map-filter-and-reduce/

Visualizing phylogenetic data

In this recipe, we will discuss how to visualize phylogenetic trees. DendroPy only has simple visualization mechanisms based on drawing textual ASCII trees, but Biopython has quite a rich infrastructure, which we will leverage here. We’ll use the Biopython Phylo module (https://biopython.org/wiki/Phylo) which has nice functions for visualizing trees.Visualizing phylogenetic trees is an important part of the field and can be extremely useful for understanding the relationships between DNA sequences, genes, proteins, or entire organisms. Several popular software packages exist for visualizing phylogenetic trees. Geneious (https://www.geneious.com/features/phylogenetic-tree-building) contains some great visualization tools for phylogenetics (as well as tree building and alignment algorithms). Interactive Tree of Life (iTOL) also provides some excellent tools for phylogenetics (https://itol.embl.de/).In this recipe we will load up our phylogenetic trees and compare ascii versus graphical representations. We’ll also play around with coloring and ladderization in which more diverse taxons are placed to the right of less diverse taxons, making the tree more readable.By the end of this recipe, you’ll be a master of phylogenetic tree visualization and interpretation!

Getting ready

This will require you to have completed all of the previous recipes. Remember that we have the files for the whole genus of the Ebola virus, including the RAxML tree. Furthermore, a simplified genus version will have been produced in the previous recipe. As usual, you can find this content in the Ch10/Ch10-6-visualizing-phylogenetics.py notebook file.

How to do it...

Take a look at the following steps:

	Let’s load all of the phylogenetic data:

from copy import deepcopy
from Bio import Phylo
best_tree_file = "ebola_tree.raxml.bestTreeCollapsed"
simplified_tree_file = "ebola_tree.raxml.support"
ebola_tree = Phylo.read(best_tree_file, "newick")
ebola_tree.name = "Ebolavirus Tree"
try:
ebola_simple_tree = Phylo.read(simplified_tree_file, "newick")
ebola_simple_tree.name = "Ebolavirus Simplified Tree"
except
FileNotFoundError: print(f"Warning: Simplified tree '{simplified_tree_file}' not found. Using a copy of the main tree instead.")
ebola_simple_tree = deepcopy(ebola_tree)

For all of the trees that we read, we will change the name of the tree, as the name will be printed later.

	Now, we can draw ASCII representations of the trees:

Phylo.draw_ascii(ebola_tree)
Phylo.draw_ascii(ebola_simple_tree)

The ASCII representation of the simplified genus tree is shown in the following diagram: ’

[image: Figure 10.5 – The ASCII representation of a simplified Ebola virus dataset]Figure 10.5 – The ASCII representation of a simplified Ebola virus dataset

Here, we will not print the complete version because it will take several pages. But if you run the preceding code, you will be able to see that it’s actually quite readable:Bio.Phylo allows for the graphical representation of trees by using matplotlib as a backend:

import matplotlib.pyplot as plt
from Bio import Phylo
simplified_tree_file = "ebola_tree.raxml.bestTreeCollapsed"
ebola_simple_tree = Phylo.read(simplified_tree_file, "newick")
fig = plt.figure(figsize=(16, 22))
ax = fig.add_subplot(111)
def label_branches(clade):
if clade.branch_length and clade.branch_length > 0.02: return f"{clade.branch_length:.3f}"
return None
Phylo.draw(ebola_simple_tree, branch_labels=label_branches, axes=ax)
plt.show()

In this case, we will print the branch lengths at the edges, but we will remove all of the lengths that are less than 0.02 to avoid clutter. The result of doing this is shown in the following diagram:

[image: Fig 10.6 – A matplotlib-based version of the simplified dataset with branch lengths added]Fig 10.6 – A matplotlib-based version of the simplified dataset with branch lengths added

	Now we will plot the complete dataset, but we will color each bit of the tree differently. If a subtree only has a single virus species, it will get its own color. EBOV will have two colors, that is, one for the 2014 outbreak and one for the others, as follows:

fig = plt.figure(figsize=(16, 22))
ax = fig.add_subplot(111)
from collections import OrderedDict
my_colors = OrderedDict({ 'EBOV_2014': 'red', 'EBOV': 'magenta', 'BDBV': 'cyan', 'SUDV': 'blue', 'RESTV' : 'green', 'TAFV' : 'yellow' })
def get_color(name):
for pref, color in my_colors.items():
if name.find(pref) > -1:
return color
return 'grey'
def color_tree(node, fun_color=get_color):
if node.is_terminal():
node.color = fun_color(node.name)
else:
my_children = set()
for child in node.clades:
color_tree(child, fun_color)
my_children.add(child.color.to_hex())
if len(my_children) == 1:
node.color = child.color
else:
node.color = 'grey'
ebola_color_tree = deepcopy(ebola_tree) color_tree(ebola_color_tree.root) Phylo.draw(ebola_color_tree, axes=ax, label_func=lambda x: x.name.split(' ')[0][1:] if x.name is not None else None)

This is a tree traversing algorithm, not unlike the ones presented in the previous recipe. As a recursive algorithm, it works in the following way. If the node is a leaf, it will get a color based on its species (or the EBOV outbreak year). If it’s an internal node and all the descendant nodes below it are of the same species, it will get the color of that species; if there are several species after that, it will be colored in gray. Actually, the color function can be changed and will be changed later. Only the edge colors will be used (the labels will be printed in black).Note that ladderization (performed in the previous recipe with DendroPy) helps quite a lot in terms of a clear visual appearance.We also deep copy the genus tree to color a copy; remember from the previous recipe that some tree traversal functions can change the state, and in this case, we want to preserve a version without any coloring.Note the usage of the lambda function to clean up the name that was changed by trimAl, as shown in the following diagram. A portion of the phylogenetic tree we get is shown below

[image: Fig 10.7 – A ladderized and colored phylogenetic tree with the complete Ebola virus dataset]Fig 10.7 – A ladderized and colored phylogenetic tree with the complete Ebola virus dataset

There’s more...

Tree and graph visualization is a complex topic; arguably, here, the tree’s visualization is rigorous but far from pretty. One alternative to DendroPy, which has more visualization features, is ETE (http://etetoolkit.org/). General alternatives for drawing trees and graphs include Cytoscape (https://cytoscape.org/) and Gephi (http://gephi.github.io/). If you want to know more about the algorithms for rendering trees and graphs, check out the Wikipedia page at http://en.wikipedia.org/wiki/Graph_drawing for an introduction to this fascinating topic.Be careful not to trade style for substance, though. For example, the second edition of this book had a pretty rendering of a phylogenetic tree using a graph-rendering library. While it was clearly the most beautiful image in that chapter, it was misleading in terms of branch lengths.

Chapter 11: Population Genetics

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

Population genetics is the study of the changes in the frequency of alleles in a population on the basis of selection, drift, mutation, and migration.In this recipe we will focus on studying population genetics using SNPs. We will learn about Genetic Association analysis, which focuses on whether certain traits in a larger population can be tied back to particular genetic variants in those individuals.First, a word on file formats in this field. There is no such thing as a default file format for population genetics data. The reality of this field is that there are a plenitude of formats, most of them developed with a specific application in mind; therefore, none are generically applicable. Some of the efforts to create a more general format (or even just a file converter to support many formats) had limited success. Furthermore, as our knowledge of genomics increases, we will require new formats anyway (for example, to support some kind of previously unknown genomic structural variation). Here, we will work with PLINK (https://www.cog-genomics.org/plink/2.0/), which was originally developed to perform Genome-Wide Association Studies (GWAS) with human data but has many more applications. If you have Next-Generation Sequencing (NGS) data, you may question, why not use the Variant Call Format (VCF)? Well, a VCF file is normally annotated to help with sequencing analysis, which you do not need at this stage (you should now have a filtered dataset). If you convert your Single-Nucleotide Polymorphism (SNP) calls from VCF to PLINK, you will get roughly a 95 percent reduction in terms of size (this is in comparison to a compressed VCF). More importantly, the computational cost of processing a VCF file is much higher (think of processing all this highly structured text) than the cost of the other two formats.

	In this chapter, we will cover the following recipes:

	Managing datasets with PLINK

	Using sgkit for population genetics analysis with xarray

	Exploring a dataset with sgkit

	Analyzing population structure

	First, let’s start with a discussion on file format issues and then continue to discuss interesting data analysis.

Technical requirements

In this chapter, we’ll use the following tools and packages:

	PLINK

	sgkit

You’ll be instructed on how to install the relevant tools in each Getting Started section. The code for this Chapter can be found in:https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch11

Managing datasets with PLINK

Here, we will manage our dataset using PLINK, a toolset for whole genome association analysis. We will create subsets of our main dataset (from the HapMap project) that are suitable for analysis in the following recipes.In this recipe we’ll go over installing PLINK (https://www.cog-genomics.org/plink/2.0/). We’ll then prepare our dataset from the HapMap project. We will then learn how to manipulate and subsample our data. We will learn how to convert our data into different formats or extract individual chromosomes from the data. This will give us a solid grounding for subsequent chapters.

Warning

Note that neither PLINK nor any similar programs were developed for their file formats. There was probably no objective to create a default file standard for population genetics data. In this field, you will need to be ready to convert from format to format (for this, Python is quite appropriate) because every application that you will use will probably have its own quirky requirements. The most important point to learn from this recipe is that it’s not formats that are being used, although these are relevant, but a ‘file conversion mentality’. Beyond this, some of the steps in this recipe also convey genuine analytical techniques that you may want to consider using, for example, subsampling or Linkage Disequilibrium- (LD-) pruning.

Getting ready

Throughout this chapter, we will use data from the International HapMap Project. The HapMap project is in many ways the precursor to the 1,000 Genomes Project; instead of whole genome sequencing, genotyping was used. You can refer to the HapMap site (https://www.genome.gov/10001688/international-hapmap-project) for more information on the dataset. Remember that we have genotyping data for many individuals split across populations around the globe. We will refer to these populations by their acronyms. Here is the list taken from http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html:

	Acronym
	Population

	ASW
	African ancestry in Southwest USA

	CEU
	Utah residents with Northern and Western European ancestry from the CEPH collection

	CHB
	Han Chinese in Beijing, China

	CHD
	Chinese in Metropolitan Denver, Colorado

	GIH
	Gujarati Indians in Houston, Texas

	JPT
	Japanese in Tokyo, Japan

	LWK
	Luhya in Webuye, Kenya

	MXL
	Mexican ancestry in Los Angeles, California

	MKK
	Maasai in Kinyawa, Kenya

	TSI
	Toscani in Italy

	YRI
	Yoruba in Ibadan, Nigeria

Table 11.1 - The populations in the Genome Project

Note

We will be using data from the HapMap project that has, in practice, been replaced by the 1,000 Genomes Project. For the purpose of teaching population genetics programming techniques in Python, the HapMap Project dataset is more manageable than the 1,000 Genomes Project, as the data is considerably smaller. The HapMap samples are a subset of the 1,000 Genomes samples. If you do research in human population genetics, you are strongly advised to use the 1,000 Genomes Project as a base dataset.

This will require a fairly big download (approximately 1 GB), which will have to be uncompressed. Make sure that you have approximately 20 GB of disk space for this chapter. The files can be found at https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3_r3/plink_format/.Decompress the PLINK files using the following commands:

!
gunzip data/hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz ! gunzip data/hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz

Now, we have PLINK files; the MAP file has information on the marker position across the genome, whereas the PED file has actual markers for each individual, along with some pedigree information. We also downloaded a metadata file that contains information about each individual. Take a look at all these files and familiarize yourself with them.We can also download the relationships file:

! wget https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3_r3/relationships_w_pops_041510.txt
! mv relationships_w_pops_041510.txt data/

Again this recipe will make heavy usage of PLINK. Python will mostly be used as the glue language to call PLINK. So you will want to make sure you have PLINK installed. You will first download the appropriate binary file from here:

https://www.cog-genomics.org/plink/2.0/

Then move the file from your Downloads directory to your Ch11 working directory.Test that PLINK is working by running this command from the terminal:

./plink2

You should see the following help message:

[image: Fig 11.1 – Help output for PLINK2]Fig 11.1 – Help output for PLINK2

You may get a message saying that your Mac cannot trust this file. If so, do the following:

Go into your Mac Settings ->

Open System Preferences → Security & Privacy:

Click on the General tab.

Look for a message saying that "plink2 was blocked because it is from an unidentified developer."

Click Allow Anyway

Now you should now be able to run ./plink2

You may need to click Allow All again and provide the administrator password for your Mac

As usual, this is also available in the Ch11/Ch11-1-plink.py Notebook file, where everything has been taken care of.Ok now we are ready to start our first recipe!

How to do it...

Take a look at the following steps:

	Let’s get the metadata for our samples. We will load the population of each sample and note all the individuals that are offspring of others in the dataset:

import os
from collections import defaultdict
f = open('data/relationships_w_pops_041510.txt')
pop_ind = defaultdict(list)
f.readline()
offspring = []
for l in f:
toks = l.rstrip().split('\t')
fam_id = toks[0]
ind_id = toks[1]
mom = toks[2]
dad = toks[3]
if mom != '0' or dad != '0':
offspring.append((fam_id, ind_id))
pop = toks[-1]
pop_ind[pop].append((fam_id, ind_id))
f.close()

This will load a dictionary where the population is the key (CEU, YRI, and so on) and its value is the list of individuals in that population. This dictionary will also store information on whether the individual is the offspring of another. Each individual is identified by the family and individual ID (information that can be found in the PLINK file). The file provided by the HapMap project is a simple tab-delimited file, which is not difficult to process. While we are reading the files using standard Python text processing, this is a typical example where pandas would help.There is an important point to make here: the reason this information is provided in a separate, ad hoc file is that the PLINK format makes no provision for the population structure (this format makes provision only for the case and control information for which PLINK was designed). This is not a flaw of the format, as it was never designed to support standard population genetic studies (it’s a GWAS tool). However, this is a general feature of data formats in population genetics: whichever you end up working with, there will be something important missing.We will use this metadata in other recipes in this chapter. We will also perform some consistency analysis between the metadata and the PLINK file, but we will defer this to the next recipe.

	Now, let’s subsample the dataset at 10 percent and 1 percent of the number of markers, as follows:

! ~/work/CookBook/Ch11/plink2 --pedmap data/hapmap3_r3_b36_fwd.consensus.qc.poly --out hapmap10 --thin 0.1 --geno 0.1 --export ped ! ~/work/CookBook/Ch11/plink2 --pedmap data/hapmap3_r3_b36_fwd.consensus.qc.poly --out hapmap1 --thin 0.01 --geno 0.1 --export ped

Note

Make sure to replace the path to plink2 above with your correct path if needed.

Note the subtlety that you will not really get 1 or 10 percent of the data; each marker will have a 1 or 10 percent chance of being selected, so you will get approximately 1 or 10 percent of the markers.Obviously, as the process is random, different runs will produce different marker subsets. This will have important implications further down the road. If you want to replicate the exact same result, you can nonetheless use the --seed option.We will also remove all SNPs that have a genotyping rate lower than 90 percent (with the --geno 0.1 parameter).

Note

There is nothing special about Python in this code, but there are two reasons you may want to subsample your data. First, if you are performing an exploratory analysis of your own dataset, you may want to start with a smaller version because it will be easy to process. Also, you will have a broader view of your data. Second, some analytical methods may not require all your data (indeed, some methods might not be even able to use all of your data). Be very careful with the last point though; that is, for every method that you use to analyze your data, be sure that you understand the data requirements for the scientific questions you want to answer. Feeding too much data may be okay normally (even if you pay a time and memory penalty) but feeding too little will lead to unreliable results.

	Now, let’s generate subsets with just the autosomes (that is, let’s remove the sex chromosomes and mitochondria), as follows:

def get_non_auto_SNPs(map_file, exclude_file):
f = open(map_file)
w = open(exclude_file, 'w')
for l in f:
toks = l.rstrip().split('\t')
try:
chrom = int(toks[0])
exceptValueError:
rs = toks[1]
w.write('%s\n' % rs)
w.close()
get_non_auto_SNPs('hapmap1.map', 'exclude1.txt')
get_non_auto_SNPs('hapmap10.map', 'exclude10.txt')
os.system('~/work/CookBook/Ch11/plink2 --pedmap hapmap1 --out hapmap1_auto --exclude exclude1.txt --export ped')
os.system('~/work/CookBook/Ch11/plink2 --pedmap hapmap10 --out hapmap10_auto --exclude exclude10.txt --export ped')

	This will create a function that generates a list with all the SNPs not belonging to autosomes. With human data, that means all non-numeric chromosomes. If you use another species, be careful with your chromosome coding because PLINK is geared toward human data. If your species are diploid, have less than 23 autosomes, and a sex determination system, that is, X/Y, this will be straightforward; if not, refer to https://www.cog-genomics.org/plink2/input#allow_extra_chr for some alternatives (such as the --allow-extra-chr flag).

	We then create autosome-only PLINK files for subsample datasets of 10 and 1 percent (prefixed as hapmap10_auto and hapmap1_auto).

	Let’s create some datasets without offspring. These will be needed for most population genetic analysis, which requires unrelated individuals to a certain degree:

os.system('~/work/CookBook/Ch11/plink2 --pedmap hapmap10_auto --filter-founders --out hapmap10_auto_noofs --export ped')

Note

This step is representative of the fact that most population genetic analyses require samples to be unrelated to a certain degree. Obviously, as we know that some offspring are in HapMap, we remove them.

However, note that with your dataset, you are expected to be much more refined than this. For instance, run plink --genome or use another program to detect related individuals. The fundamental point here is that you have to dedicate some effort to detect related individuals in your samples; this is not a trivial task.

	We will also generate an LD-pruned dataset, as required by many PCA and admixture algorithms, as follows:

os.system('~/work/CookBook/Ch11/plink2 --pedmap hapmap10_auto_noofs --indep-pairwise 50 10 0.1 --out keep --export ped')
os.system('~/work/CookBook/Ch11/plink2 --pedmap hapmap10_auto_noofs --extract keep.prune.in --out hapmap10_auto_noofs_ld --export ped')

The first step generates a list of markers to be kept if the dataset is LD-pruned. This uses a sliding window of 50 SNPs, advancing by 10 SNPs at a time with a cut value of 0.1. The second step extracts SNPs from the list that was generated earlier.

	Let’s recode a couple of cases in different formats:

os.system('~/work/CookBook/Ch11/plink2 --pedmap hapmap10_auto_noofs_ld --export ped --out hapmap10_auto_noofs_ld_12')
os.system('~/work/CookBook/Ch11/plink2 --pedmap hapmap10_auto_noofs_ld --make-bed --out hapmap10_auto_noofs_ld')

	The first operation will convert a PLINK format that uses nucleotide letters from the ACTG to another, which recodes alleles with 1 and 2. The second operation recodes a file in a binary format. If you work inside PLINK (using the many useful operations that PLINK has), the binary format is probably the most appropriate format (offering, for example, a smaller file size). We will also extract a single chromosome (2) for analysis. We will start with the autosome dataset, which has been subsampled at 10 percent:

os.system('~/work/CookBook/Ch11/plink2 --pedmap hapmap10_auto_noofs --chr 2 --out hapmap10_auto_noofs_2 --export ped')

Great work! We have now seen how to use PLINK to manipulate our files and perform basic operations on the data.

There’s more...

There are many reasons why you might want to create different datasets for analysis. You may want to perform some fast initial exploration of data – for example, if the analysis algorithm that you plan to use has some data format requirements or a constraint on the input, such as the number of markers or relationships between individuals. Chances are that you will have lots of subsets to analyze (unless your dataset is very small to start with, for instance, a microsatellite dataset).This may seem to be a minor point, but it’s not: be very careful with file naming (note that I have followed some simple conventions while generating filenames). Make sure that the name of the file gives some information about the subset options. When you perform the downstream analysis, you will want to be sure that you choose the correct dataset; you will want your dataset management to be agile and reliable, above all. The worst thing that can happen is that you create an analysis with an erroneous dataset that does not obey the constraints required by the software.The LD-pruning that we used is somewhat standard for human analysis, but be sure to check the parameters, especially if you are using non-human data.The HapMap file that we downloaded is based on an old version of the reference genome (build 36). Be sure to use annotations from build 36 if you plan to use this file for more analysis of your own.This recipe sets the stage for the following recipes and its results will be used extensively.

See also

	For a good primer on Genetic Association studies, read: Uffelmann et al, “Genome-wide association studies”, Nature Reviews Methods Primers, Aug 2021 - https://www.nature.com/articles/s43586-021-00056-9

	The Wikipedia page http://en.wikipedia.org/wiki/Linkage_disequilibrium on LD is a good place to start.

	The website of PLINK https://www.cog-genomics.org/plink/2.0/ is very well documented, something lacking in much of genetics software.

	Check out pandasGWAS, a Python package for retrieving GWAS data: Cao et al, “pandasGWAS: a Python package for easy retrieval of GWAS catalog data”, BMC Genomics, May 2023 - https://link.springer.com/article/10.1186/s12864-023-09340-2

Using sgkit for population genetics analysis with xarray

Sgkit (https://sgkit-dev.github.io/sgkit/latest/) is the most advanced Python library for doing population genetics analysis. It’s a modern implementation, leveraging almost all of the fundamental data science libraries in Python. When I say almost all, I am not exaggerating; it uses NumPy, pandas, xarray, Zarr, and Dask.Here, we will introduce xarray as the main data container for sgkit. Because I feel that I cannot ask you to get to know data engineering libraries to an extreme level, I will gloss over the Dask part (mostly by treating Dask structures as equivalent NumPy structures).

Getting ready

You will need to run the previous recipe because its output is required for this one: we will be using one of the PLINK datasets. You will need to install sgkit:

! pip install sgkit
! pip install 'sgkit[plink]'

As usual, this is available in the Ch11/Ch11-2-using-sgkit.py Notebook file, but it will still require you to run the previous Notebook file in order to generate the required files.

How to do it...

Take a look at the following steps:

	Let’s load the hapmap10_auto_noofs_ld dataset generated in the previous recipe:

import numpy as np
from sgkit.io import plink
data = plink.read_plink(path='hapmap10_auto_noofs_ld', fam_sep='\t')

Remember that we are loading a set of PLINK files. It turns out that sgkit creates a very rich and structured representation for that data. That representation is based on an xarray dataset (https://xarray.dev/).

	Let’s check the structure of our data – if you are in a notebook, just enter the following:

data
sgkit – if in a notebook – will generate the following representation:

[image: Fig 11.2 - An overview of the xarray data loaded by sgkit for our PLINK file]Fig 11.2 - An overview of the xarray data loaded by sgkit for our PLINK file

data is an xarray DataSet. An xarray DataSet is essentially a dictionary in which each value is a Dask (https://www.dask.org/) array. For our purposes, you can assume it is a NumPy array. In this case, we can see that we have 56241 variants for 1198 samples. We have 2 alleles per variant and a ploidy of 2.In the notebook, we can expand each entry. In our case, we expanded call_genotype. This is a three-dimensional array, with variants, samples, and ploidy dimensions. The type of the array is int8. After this, we can find some metadata relevant to the entry, mixed_ploidy, and comment. Finally, you have a summary of the Dask implementation. The Array column presents details about the size and shape of the array.

	Another way to get summary information, which is especially useful if you are not using notebooks, is by inspecting the dims field:

print(data.dims)

The output should be self-explanatory:

Frozen({'variants': 56241, 'alleles': 2, 'samples': 1198, 'ploidy': 2})

	Let’s extract some information about the samples:

print(len(data.sample_id.values))
print(data.sample_id.values)
print(data.sample_family_id.values)
print(data.sample_sex.values)

The output is as follows:

1198
['NA19916' 'NA19835' 'NA20282' ... 'NA18915' 'NA19250' 'NA19124']
['2431' '2424' '2469' ... 'Y029' 'Y113' 'Y076']
[1 2 2 ... 1 2 1]

We have 1198 samples. The first one has a sample ID of NA19916, a family ID of 2431, and a sex of 1 (Male). Remember that, given PLINK as the data source, a sample ID is not enough to be a primary key (you can have different samples with the same sample ID). The primary key is a composite of the sample ID and sample family ID.

TIP

You might have noticed that we add .values to all the data fields: this is actually rendering a lazy Dask array into a materialized NumPy one- .values is akin to the compute method in Dask.

The .values call is no nuisance – the reason our code works is that our dataset is small enough to fit into memory, which is great for our teaching example. But if you have a very large dataset, the preceding code is too naive. For now, the simplicity is pedagogical.

	Before we look at the variant data, we have to be aware of how sgkit stores contigs:

print(data.contigs)

The output is as follows:

['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22']

The contigs here are the human autosomes (you will not be so lucky if your data is based on most other species – you will probably have some ugly identifier here).

	Now, let’s look at the variants:

print(len(data.variant_contig.values))
print(data.variant_contig.values)
print(data.variant_position.values)
print(data.variant_allele.values)
print(data.variant_id.values)

Here is an abridged version of the output:

56241
[0 0 0 ... 21 21 21]
[557616 782343 908247 ... 49528105 49531259 49559741]
[[b'G' b'A']
...
[b'C' b'A']]
['rs11510103' 'rs2905036' 'rs13303118' ... 'rs11705587' 'rs7284680'
'rs2238837']

We have 56241 variants. The contig index is 0, which if you look at the step from the previous recipe, is chromosome 1. The variant is in position 557616 (against build 36 of the human genome) and has possible alleles G and A. It has an SNP ID of rs11510103.

	Finally, let’s look at the genotype data:

call_genotype = data.call_genotype.values
print(call_genotype.shape) first_individual =
call_genotype[:,0,:] first_variant = call_genotype[0,:,:]
first_variant_of_first_individual = call_genotype[0,0,:]
print(first_variant_of_first_individual)
print(data.sample_family_id.values[0],
data.sample_id.values[0])
print(data.variant_allele.values[0])

call_genotype has a shape of 56,241 x 1,1198,2, which is its dimensioned variants, samples, and ploidy.To get all variants for the first individual, you fixate the second dimension. To get all the samples for the first variant, you fixate the first dimension.If you print the first individual’s details (sample and family ID), you get 2431 and NA19916 – as expected, exactly as in the first case in the previous sample exploration.

There’s more...

This recipe is mostly an introduction to xarray, disguised as a sgkit tutorial. There is much more to be said about xarray – be sure to check https://docs.xarray.dev/. It is worth reiterating that xarray depends on a plethora of Python data science libraries and that we are glossing over Dask for now.

Exploring a dataset with sgkit

In this recipe, we will perform an initial exploratory analysis of one of our generated datasets. Now that we have some basic knowledge of xarray, we can actually try to do some data analysis. In this recipe, we will ignore population structure, an issue we will return to in the following one.

Getting ready

You will need to have run the first recipe and should have the hapmap10_auto_noofs_ld files available. There is a Notebook file with this recipe called Ch11/Ch11-3-exploring-with-sgkit.py. You will need the software that you installed for the previous recipe.

How to do it...

Take a look at the following steps:

	We start by loading the PLINK data with sgkit, exactly as in the previous recipe:

import numpy as np
import xarray as xr
import sgkit as sg
from sgkit.io import plink
data = plink.read_plink(path='hapmap10_auto_noofs_ld', fam_sep='\t')

	Let’s ask sgkit for variant_stats:

variant_stats = sg.variant_stats(data)
variant_stats

The output is the following:

[image: Figure 11.3 - The variant statistics provided by sgkit’s variant_stats]Figure 11.3 - The variant statistics provided by sgkit’s variant_stats

	Let’s now look at the statistic, variant_call_rate:

variant_stats.variant_call_rate.to_series().describe()

There is more to unpack here than it may seem. The fundamental part is the to_series() call. Sgkit is returning a Pandas series to you – remember that sgkit is highly integrated with Python data science libraries. After you get the Series object, you can call the Pandas describe function and get the following:

count 56241.000000
mean 0.997198
std 0.003922
min 0.964107
25% 0.996661
50% 0.998331
75% 1.000000
max 1.000000
Name: variant_call_rate, dtype: float64

Our variant call rate is quite good, which is not shocking because we are looking at array data – you would have worse numbers if you had a dataset based on NGS.

	Let’s now look at sample statistics:

sample_stats = sg.sample_stats(data)
sample_stats

Again, sgkit provides a lot of sample statistics out of the box:

[image: Figure 11.4 - The sample statistics obtained by calling sample_stats]Figure 11.4 - The sample statistics obtained by calling sample_stats

	We will now have a look at sample call rates:

sample_stats.sample_call_rate.to_series().hist()

This time, we plot a histogram of sample call rates. Again, sgkit gets this for free by leveraging Pandas:

[image: Figure 11.5 - The histogram of sample call rates]Figure 11.5 - The histogram of sample call rates

There’s more...

The truth is that for population genetic analysis, nothing beats R; you are definitely encouraged to take a look at the existing R libraries for population genetics.Most of the analysis presented here will be computationally costly if done on bigger datasets. Indeed, sgkit is prepared to deal with that because it leverages Dask.

See also

	A list of R packages for statistical genetics is available at https://cran.r-project.org/web/packages/genetics/index.html.

	If you need to know more about population genetics, I recommend the book Principles of Population Genetics, by Daniel L. Hartl and Andrew G. Clark, Sinauer Associates.

Analyzing population structure

Previously, we introduced data analysis with sgkit ignoring the population structure. Most datasets, including the one we are using, actually do have a population structure. Sgkit provides functionality to analyze genomic datasets with population structure and that is what we are going to investigate here.

Getting ready

You will need to have run the first recipe, and should have the hapmap10_auto_noofs_ld data we produced and also the original population meta data relationships_w_pops_041510.txt file downloaded. There is a Notebook file with the Ch11/Ch11-4-population-structure.py recipe in it.

How to do it...

Take a look at the following steps:

	First, let’s load the PLINK data with sgkit:

from collections import defaultdict
from pprint import pprint
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import xarray as xr
import sgkit as sg
from sgkit.io import plink
data = plink.read_plink(path='hapmap10_auto_noofs_ld', fam_sep='\t')

	Now, let’s load the data assigning individuals to populations:

f = open('data/relationships_w_pops_041510.txt')
pop_ind = defaultdict(list)
f.readline()
for line in f:
toks = line.rstrip().split('\t')
fam_id = toks[0]
ind_id = toks[1]
pop = toks[-1]
pop_ind[pop].append((fam_id, ind_id))
pops = list(pop_ind.keys())

We end up with a dictionary, pop_ind, where the key is the population code, and the value is a list of samples. Remember that a sample primary key is the family ID and the sample ID.We also have a list of populations in the pops variable.

	We now need to inform sgkit about to which population or cohort each sample belongs:

def assign_cohort(pops, pop_ind, sample_family_id, sample_id):
cohort = []
for fid, sid in zip(sample_family_id, sample_id): processed = False
for i, pop in enumerate(pops):
if (fid, sid) in pop_ind[pop]:
processed = True
cohort.append(i)
break
if not processed:
raise Exception(f'Not processed {fid}, {sid}')
return cohort
cohort = assign_cohort(pops, pop_ind, data.sample_family_id.values, data.sample_id.values)
data['sample_cohort'] = xr.DataArray(cohort, dims='samples')

Remember that each sample in sgkit has a position in an array. So, we have to create an array where each element refers to a specific population or cohort within a sample. The assign_cohort function does exactly that: it takes the metadata that we loaded from the relationships file and the list of samples from the sgkit file, and gets the population index for each sample.

	Now that we have loaded population information structure into the sgkit dataset, we can start computing statistics at the population or cohort level. Let’s start by getting the number of monomorphic loci per population:

cohort_allele_frequency = sg.cohort_allele_frequencies(data)['cohort_allele_frequency'].values
monom = {}
for i, pop in enumerate(pops):
monom[pop] = len(list(filter(lambda x: x,
np.isin(cohort_allele_frequency[:, i, 0], [0, 1]))))
pprint(monom)

We start by asking sgkit to calculate the allele frequencies per cohort or population. After that, we filter all loci per population where the allele frequency of the first allele is either 0 or 1 (that is, there is the fixation of one of the alleles). Finally, we print it. Incidentally, we use the pprint.pprint function to make it look a bit better (the function is quite useful for more complex structures if you want to render the output in a readable way):

{'ASW': 3332,
'CEU': 8910,
'CHB': 11130,
'CHD': 12321,
'GIH': 8960,
'JPT': 13043,
'LWK': 3979,
'MEX': 6502,
'MKK': 3490,
'TSI': 8601,
'YRI': 5172}

	Let’s get the minimum allele frequency for all loci per population. This is still based in cohort_allele_frequency – so no need to call sgkit again:

mafs = {}
for i, pop in enumerate(pops):
min_freqs = map(lambda x: x if x < 0.5 else 1 - x, filter(lambda x: x not in [0, 1], cohort_allele_frequency[:, i, 0]))
mafs[pop] = pd.Series(min_freqs)

We create Pandas Series objects for each population, as this permits lots of helpful functions, such as plotting.

	We will now print the MAF histograms for the YRI and JPT populations. We will leverage Pandas and Matplotlib for this:

maf_plot, maf_ax = plt.subplots(nrows=2, sharey=True)
mafs['YRI'].hist(ax=maf_ax[0], bins=50)
maf_ax[0].set_title('YRI') mafs['JPT'].hist(ax=maf_ax[1], bins=50) maf_ax[1].set_title('JPT')
maf_ax[1].set_xlabel('MAF')

We get Pandas to generate the histograms and put the results in a Matplotlib plot. The result is the following:

[image: Figure 11.6 - A MAF histogram for the YRI and JPT populations]Figure 11.6 - A MAF histogram for the YRI and JPT populations

	We are now going to concentrate on computing the FST. The FST is a widely used statistic that tries to represent the genetic variation created by population structure. Let’s compute it with sgkit:

fst = sg.Fst(data)
fst = fst.assign_coords({"cohorts_0": pops, "cohorts_1": pops})

The first line computes fst, which, in this case, will be pairwise fst across cohorts or populations. The second line assigns names to each cohorts by using the xarray coordinates feature. This makes it easier and more declarative.

	Let’s compare fst between the CEU and CHB populations with CHB and CHD:

remove_nan = lambda data: filter(lambda x: not np.isnan(x), data)
ceu_chb = pd.Series(remove_nan(fst.stat_Fst.sel(cohorts_0='CEU', cohorts_1='CHB').values))
chb_chd = pd.Series(remove_nan(fst.stat_Fst.sel(cohorts_0='CHB', cohorts_1='CHD').values))
ceu_chb.describe()
chb_chd.describe()

We take the pairwise results returned by the sel function from stat_FST to both compare and create a Pandas Series with it. Note that we can refer to populations by name, as we have prepared the coordinates in the previous step.

	Let’s plot the distance matrix across populations based on the multi-locus pairwise FST. Before we do it, we will prepare the computation:

mean_fst = {}
for i, pop_i in enumerate(pops):
for j, pop_j in enumerate(pops):
if j <= i:
continue
pair_fst = pd.Series(remove_nan(fst.stat_Fst.sel(cohorts_0=pop_i, cohorts_1=pop_j).values))
mean = pair_fst.mean()
mean_fst[(pop_i, pop_j)] = mean
min_pair = min(mean_fst.values())
max_pair = max(mean_fst.values())

We compute all the FST values for the population pairs. The execution of this code will be demanding in terms of time and memory, as we are actually requiring Dask to perform a lot of computations to render our NumPy arrays.

	We can now do a pairwise plot of all mean FSTs across populations:

sns.set_style("white")
num_pops = len(pops)
arr = np.ones((num_pops - 1, num_pops - 1, 3), dtype=float) fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111)
for row in range(num_pops - 1):
pop_i = pops[row]
for col in range(row + 1, num_pops):
pop_j = pops[col]
val = mean_fst[(pop_i, pop_j)]
norm_val = (val - min_pair) / (max_pair - min_pair)
ax.text(col - 1, row, '%.3f' % val, ha='center') if norm_val == 0.0:
arr[row, col - 1, 0] = 1
arr[row, col - 1, 1] = 1
arr[row, col - 1, 2] = 0
elif norm_val == 1.0:
arr[row, col - 1, 0] = 1
arr[row, col - 1, 1] = 0
arr[row, col - 1, 2] = 1
else:
arr[row, col - 1, 0] = 1 - norm_val
arr[row, col - 1, 1] = 1
arr[row, col - 1, 2] = 1
ax.imshow(arr, interpolation='none')
ax.set_title('Multilocus Pairwise FST')
ax.set_xticks(range(num_pops - 1))
ax.set_xticklabels(pops[1:])
ax.set_yticks(range(num_pops - 1))
ax.set_yticklabels(pops[:-1])

In the following diagram, we will draw an upper triangular matrix, where the background color of a cell represents the measure of differentiation; white means less different (a lower FST) and blue means more different (a higher FST). The lowest value between CHB and CHD is represented in yellow, and the biggest value between JPT and YRI is represented in magenta. The value on each cell is the average pairwise FST between these two populations:

[image: Figure 11.7 - The average pairwise FST across the 11 populations in the HapMap project for all autosomes]Figure 11.7 - The average pairwise FST across the 11 populations in the HapMap project for all autosomes

See also

	F-statistics is an immensely complex topic, so I will direct you firstly to the Wikipedia page at http://en.wikipedia.org/wiki/F-statistics.

	A very good explanation can be found in Holsinger and Weir’s paper (Genetics in geographically structured populations: defining, estimating, and interpreting FST) in Nature Reviews Genetics, at http://www.nature.com/nrg/journal/v10/n9/abs/nrg2611.html.

Chapter 12: Mectabolic Modeling and Other Applications

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

We have now obtained a solid grounding in the core areas of BioInformatics. In this chapter we will see how bioinformatics has expanded over the years to impact numerous areas of science.Today, bioinformatics professionals work in many diverse areas including neuroscience, imaging, agriculture, food & nutrition, biofuels, and more. Artificial intelligence and data science are finding increasing overlap with bioinformatics.In this chapter, we will learn the following recipes:

	Metabolic Modelling with COBRAPy

	Design siRNAs using BioPython and ViennaRNA

	Predict Food Properties using BioInformatics

	Discover Genes to make Novel molecules

Technical requirements

In this chapter, we’ll use the following tools and packages:

	BioPython

	COBRAPy

	ViennaRNA

	Entrez

	Prodigal

	HMMER

You’ll be instructed on how to install the relevant tools in each Getting Started section. The code for this Chapter can be found in:https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch12

Metabolic modelling with COBRAPy

The computational simulation of biochemical pathways in cells is called metabolic modelling. In this approach a matrix of reactions in a cell is defined, and a mass balance is set up so that we achieve a steady state. We can then try to optimize one of the outputs so that fluxes are diverted toward it – this is called Flux Balance Analysis (FBA). A Constraint-Based model provides reasonable ranges for fluxes and so requires less information and models the cell at a steady state. A model with reaction rates called a Kinetic Model provides more detail but is more complex to build.In FBA, we typically optimize an Objective Function. This is the output the model is trying to maximize. Typically, by default we use the growth of the organism for this function. But often we use something else, like the output of a metabolite. For instance, if we were making biofuels, we might try to maximize the output of that molecule, even at the expense of growth.Typically, a metabolic model includes reactions for a smaller set of pathways that focus on carbon and energy metabolism. But researchers are increasingly using Genome Scale Models (GSMs) in which nearly all of the reactions that can be predicted from the genome of the organism are present.Once we have a model, we can simulate changes to the organism. The model starts out with all reactions, which we call a Wild-Type model. When we simulate a gene Knock Out we are looking at what would happen if we eliminate the gene. This is typically done through introducing a foreign sequence into the location of the gene to disrupt it. This will obviously have an effect on the organism – it might either increase or decrease the flux through your pathway of interest, or it could just be neutral. We could also simulate gene Knock Down which is just a reduction of the gene’s expression, often down through using an siRNA (a short RNA that interferes with the gene) or altering its codons so that it translates less effectively. There is also gene Up-Regulation in which we increase the expression of a particular gene. This is typically done by inserting a stronger promoter in front of it. Finally, there is gene Knock-In which involves adding a foreign gene sequencing into the organism. You won’t be able to simulate this unless you add those reactions to your model.COBRAPy (https://opencobra.github.io/cobrapy/) is a Python package for simulating metabolic models. It has functions to load and represent models, perform FBA, simulate changes to the model, determine which genes are essential, and more. It can read several different file formats, but one of the most popular is the Systems Biology Markup Language (SBML). You can read more about SBML here: https://sbml.org/In this recipe, we’ll learn to set up a metabolic model and simulate various changes to it. We will use E. coli as the example organism. You’ll get a sense of how strain engineers utilize these models to make decisions and come up with strategies to improve their strains.For this exercise we’ll use the SBML model of E. coli. We can download it from a public repository such as the Biochemically, Genetically, and Genomically (BiGG) models repository (https://bigg.ucsd.edu/).In this recipe we will use the E. coli model and learn to perform FBA. We’ll learn to calculate growth rates and simulate the effects of gene knock outs.

Getting started

First let’s install COBRAPy:

! pip install cobra

Now we will download our E. coli model from BiGG:

! wget http://bigg.ucsd.edu/static/models/e_coli_core.xml

The code for this recipe can be found in Ch12/Ch12-1-cobrapy.ipynb.That’s it! We are ready to get started with COBRAPy!

How To Do It...

Here are the steps to perform this recipe:

	First, we will import the COBRAPy library and read in the model.

import cobra
model = cobra.io.read_sbml_model("e_coli_core.xml")

This code uses the read_sbml_model() method to read the SMBL file that we downloaded from BiGG. This model contains the metabolites, reactions, and interactions needed to simulate E. coli metabolism.

	Next, we will run the FBA on our model:

solution_wt = model.optimize()
print("Wild-type growth rate (objective value):", solution_wt.objective_value)
print("Flux distribution for key reactions:")
for rxn in model.reactions[:10]:
print(f"{rxn.id}: {solution_wt.fluxes[rxn.id]}")

This code uses the optimize() function to find the flux distribution that will maximize the objective function, which in this case will be growth rate. It does this by using Linear Programming, which is a mathematical technique for finding the optimal outcome given a series of constrained linear relationships. We’ll print the growth rate based on the wild-type model.We’ll also print out our top 10 reactions. Here is what we get:

Wild-type growth rate (objective value): 0.8739215069684303
Flux distribution for key reactions:
PFK: 7.477381962160286
PFL: 0.0
PGI: 4.860861146496822
PGK: -16.02352614316761
PGL: 4.959984944574652
ACALD: 0.0
AKGt2r: 0.0
PGM: -14.716139568742836
PIt2r: 3.2148950476848035
ALCD2x: 0.0

We can see the current growth rate (without any changes) is 0.87. We also see the flux rates for the top 10 reactions in our model.

	Next, let’s simulate knocking out a gene in our model:

gene_to_knockout = "b0351"
with model:
model.genes.get_by_id(gene_to_knockout).knock_out()
 solution_ko = model.optimize()
 print(f"\nGrowth rate after knocking out gene {gene_to_knockout}:", solution_ko.objective_value)

This code will simulate knocking out the gene b0351, which is a Thymidate Synthase gene involved in DNA synthesis. We use the with statement on our model to make changes temporarily in a context, without making the changes permanent. The purpose of using the with statement here is to be able to check what happens when we knock out the gene, but without actually changing our model except within the context of this with block. When we go back to the next step, outside of the with block, the gene will no longer be knocked out.We next get the gene based on its id and use the knock_out() function to disable all the reactions related to that gene in the model.

	Next, we use optimize() to run our flux balance again. Here is what we get:

Growth rate after knocking out gene b0351: 0.8739215069684303

Knocking out this gene didn’t really change our growth rate!

	Let’s try some other genes and see whether they have an effect. We can print out a list of possible genes to knock out:

print("Available gene IDs in the model:")
for gene in model.genes:
 print(gene.id)

This code will simply loop over the genes in the model.genes property and print them out. Let’s try another gene:

gene_to_knockout = "s0001"
with model:
model.genes.get_by_id(gene_to_knockout).knock_out()
solution_ko = model.optimize()
 print(f"\nGrowth rate after knocking out gene {gene_to_knockout}:", solution_ko.objective_value)

Again, we set a gene to knockout – this gene s0001 is a special one meant to represent spontaneous reactions in the cell – so it has a big impact:

Growth rate after knocking out gene s0001: 0.21114065257211664

Here we see a much lower growth rate.

	We can now also review the impact on the flux rates of our top 10 reactions:

print("\nChange in fluxes for selected reactions after knockout:")
for rxn in model.reactions[:10]:
flux_change = solution_wt.fluxes[rxn.id] - solution_ko.fluxes[rxn.id]
print(f"{rxn.id}: Δ flux = {flux_change:.2f}")

Here is what we see:

Change in fluxes for selected reactions after knockout:
PFK: Δ flux = -2.31
PFL: Δ flux = -17.43
PGI: Δ flux = -5.10
PGK: Δ flux = 3.42
PGL: Δ flux = 4.96
ACALD: Δ flux = 8.47
AKGt2r: Δ flux = 0.00
PGM: Δ flux = 4.41
PIt2r: Δ flux = 2.44
ALCD2x: Δ flux = 8.47

The fluxes for many reactions have changed, some in a positive direction and some negative.You can play around with other genes in the list and see how they impact the model!Now we’ve seen how to set up and implement a metabolic model and knock out genes to see their effect on the model.

There’s more...

Strain Engineering is the art of modifying organisms, usually microbes, to make valuable products. Typically, these might be biofuels or medicines. Strain Engineers use metabolic modeling to simulate flux through pathways and maximize their products. They use it to simulate gene knockouts or overexpression, or to optimize media and fermentation parameters. Metabolic modeling can be used to optimize cofactors needed by the cell, such as NADH and NADPH – see King et al, “Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains – OptSwap", Industrial Biotechnology, Aug 2013 - https://www.liebertpub.com/doi/abs/10.1089/ind.2013.0005.Several popular packages exist to optimize genetic engineering efforts using metabolic modeling. For example, OptKnock is a tool for suggesting gene deletion strategies for overproduction of molecules. Other packages specialize in optimizing co-factor usage or provide regulatory control strategies.Here is a table of some key packages and their uses – more details of the references are provided in the See Also section.

	Package
	Usage
	Reference

	OptKnock
	Gene Knock Out
	Burgard 2003

	PyCoMo
	Community modeling
	Predl 2024

	COBREXA
	Modular modeling
	Kratochvil 2025

	k-OptForce
	Kinetics with FBA
	Chowdhury 2014

	FastKnock
	Identify all possible knock out strategies
	Hassani 2024

	MOMA
	Prediction based on minimal reorganization of fluxes
	Segre 2002

	OptORF
	Gene Knock Out and Up-Regulation
	Kim 2010

	OptDesign
	Combines regulation and Knock Out
	Jiang 2022

	StrainDesign
	Python package that integtrates multiple approaches
	Schneider 2022

Table 12.1 – Major Metabolic Modeling PackagesWhen building metabolic models, it can be incredibly useful to integrate other data sources for the organism into the model, such as RNA-seq (transcriptomics), proteomics, or small metabolite data (metabolomics). These are collectively referred to as “omics” data (because it most cases you end the word with “omics). Metabolic models can be greatly enhanced with omics data. For example, RNA-Seq data could be used to help estimate the level of genes under different conditions or to identify regulatory sequences in an organism. Proteomics can be used in a similar matter to help determine the actual levels of proteins in fermentation processes. Metabolomics data can be used to measure actual concentrations of metabolites.

Tip

For a short review of integrating multi-omics data into systems models, read “Approaches to Computational Strain Design in the Multiomics Era”, John & Bomble, Frontiers in Microbiology, Apr 2019 - https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.00597/full

Many tools have been developed to integrate omics data into metabolic models. For example, METAFlux can infer fluxes from bulk or single-cell RNA-Seq data – refer to Huang et al, “Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAflux”, Nature Communications, Aug 2023 - https://www.nature.com/articles/s41467-023-40457-wMetabolomics is the study of small molecules in cells. Compared to transcriptomics and proteomics, its capabilities have lagged behind somewhat. One common approach has been 13C Metabolic Flux Analysis, in which isotopically labeled carbon sources, such as glucose, are fed to the organism to analyze where carbon goes in cellular pathways. Mass Spectrometry and Nuclear Magnetic Resonance are also commonly used. Metabolomics can be Untargeted, looking at all metabolites that can be detected by an instrument, or Targeted, in which a subset of metabolites are measured with higher accuracy. NEXT-FBA uses metabolomic data to improve flux estimation in models –refer to Morrissey et al, “NEXT-FBA: A hybrid stoichiometric/data-driven approach to improve intracellular flux predictions”, Metabolic Engineering, Mar 2025 - https://www.sciencedirect.com/science/article/pii/S1096717625000461.MiNEApy can integrate multiple types of omics data including transcriptomic, proteomic, and metabolomic – refer to Pandey, “MiNEApy: enhancing enrichment network analysis in metabolic networks”, BioInformatics, Mar 2025 - https://academic.oup.com/bioinformatics/article/41/3/btaf077/8030213.Machine learning is being used increasingly within the field of metabolic modeling. It can be used to upgrade and fill in gaps in models, estimate thermodynamic constraints, optimize media conditions, and much more. For a good review of machine learning methods in metabolic modeling, read Kundu et al, “Machine learning for the advancement of genome-scale metabolic modeling”, Biotechnology Advances, Sep 2024, https://www.sciencedirect.com/science/article/pii/S0734975024000946?casa_token=d6K79DgkHFIAAAAA:ZLIcmC6Dn4u4vE8eDjw3m1ufUiSSoyKA7NNGaWE2LsEzNGAQo5JR4ck0e-XLu9L04bojFiKa.Taken together, strain engineers can incorporate advice from metabolic models and more general-purpose approaches, such as randomly-generated library screening, to make multiple changes to a strain as part of an iterative Design-Build-Test-Learn (DBTL) strain optimization program. ART, the Automated Recommendation Tool, is a good example of a system that uses machine learning to guide strain engineers as part of the DBTL cycle – Radivojevic et al, “A machine learning Automate Recommendation Tool for synthetic biology”, Nature Communications, Sep 2020 - https://www.nature.com/articles/s41467-020-18008-4As you can see, metabolic modeling is an exciting field that will only continue to advance. In the future we should see increasingly sophisticated models that apply to whole cells, incorporate numerous omics data sources, and can make increasingly accurate predictions. Let’s try one last example before we move to the next topic!

AI Tip

Prompt: Write a Python script using MiNEApy that integrates RNA-seq transcriptomic data with an E. coli genome-scale metabolic model to create context-specific models under two different conditions. The script should:

Load the iML1515 E. coli model using Mineapy's model loading functionality

Import real or simulated RNA-seq data from a CSV file with gene IDs matching the model

Preprocess the expression data (normalization, thresholding)

Implement the GIMME (Gene Inactivity Moderated by Metabolism and Expression) algorithm to create condition-specific models

Run flux balance analysis on both condition-specific models

Identify and analyze differential flux patterns between conditions

Visualize key pathway differences using Mineapy's visualization tools

Generate a comprehensive output report including growth rates, flux distributions, and reaction essentiality changes

Include detailed comments explaining the biological significance of each step in the workflow

Please include error handling and ensure the code follows best practices for reproducibility in computational biology research.

You should See: Code to import the MiNEApy package and simulate RNA-Seq data for incorporation into a metabolic model. It can compare the outputs of the model under different conditions and visualize the results using matplotlib.

See Also

	The COBRAPy paper is here: Ebrahim et al, “COBRAPy: Constraints-Based Reconstruction and Analysis for Python”, BMC Systems Biology, Aug 2013 - https://link.springer.com/article/10.1186/1752-0509-7-74

	A good primer on FBA can be found in Orth et al, “What is flux balance analysis?”, Nature Biotechnol, Mar 2010 - https://www.nature.com/articles/nbt.1614.pdf

	COBREXA focuses on modular modeling – Kratochvil et al, “COBREXA 2: tidy and scalable construction of complex metabolic models”, BioInformatics, Feb 2025 - https://academic.oup.com/bioinformatics/article/41/2/btaf056/8005852

	PyCoMo is used to model communities of microbes – Predl et al, PyCoMo: a Python package for community metabolic model creation and analysis, BioInformatics, Apr 2024 - https://academic.oup.com/bioinformatics/article/40/4/btae153/7635576

	A review of Linear Programming can be found here: https://sites.math.washington.edu/~burke/crs/409/LP-rev/lp_rev_notes.pdf

	OptKnock is discussed in Burgard et al, OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization, Biotechnol Bioeng, Dec 2003 - https://pubmed.ncbi.nlm.nih.gov/14595777/

	OptORF generates both gene deletion and up-regulation strategies: Kim & Reed, OptORF: Optimal metabolic and regulatory peturbations for metabolic engineering of microbial strains, BMC Systems Biology, Apr 2010 - https://link.springer.com/article/10.1186/1752-0509-4-53

	k-OptForce integrates kinetics with FBA: Chowdhury et al, k-OptForce: Integrating Kinetics with Flux Balance Analysis for Strain Design, PLOS Computational Biology, Feb 2014 - http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003487

	FastKnock identifies all possible combinations of knockouts for strain design: Hassani et al, FastKnock: an efficient next-generation approach to identify all knockout strategies for strain optimization, Microbial Cell Factories, Jan 2024 - https://link.springer.com/article/10.1186/s12934-023-02277-x

	OptDesign uses a two-stage strain design strategy, combining regulatory and Knock Out approaches: Jiang et al, OptDesign: Identifying Optimum Design Strategies in Strain Engineering for Biochemical Production, ACS Synthetic Biology, Apr 2022 - https://pubs.acs.org/doi/full/10.1021/acssynbio.1c00610

	StrainDesign is a Python package which integrates multiple packages – Schneider et al, StrainDesign: a comprehensive Python package for computational design of metabolic networks, BioInformatics, Nov 2022 - https://academic.oup.com/bioinformatics/article/38/21/4981/6701962

	MOMA (short for Minimization of Metabolic Adjustment) is described in Segre et al, Analysis of optimality in natural and perturbed metabolic networks, Biological Sciences, Nov 2002 - https://www.pnas.org/doi/10.1073/pnas.232349399

	There is more information on the E. coli core model here: https://systemsbiology.ucsd.edu/Downloads/E_coli_Core

Designing siRNAs with BioPython and ViennaRNA

In this recipe, we’ll learn how to design siRNAs (short for short interfering RNAs). These RNAs are typically short (~21nt long) and interfere with genes by binding to a target gene and causing them to be cut up by a protein complex, thereby Silencing the gene. siRNAs can be used in a wide variety of applications. For example, a cell expressing an siRNA could be used to kill pathogens of an aquatic food product, increasing its yield (Huang et al, “RNA-Based Biopesticides: Pioneering Precision Solutions for Sustainable Aquaculture in China”, AROH, Feb 2025 - https://onlinelibrary.wiley.com/doi/full/10.1002/aro2.70000). siRNA is also being explored for use in gene silencing to treat man Human diseases – Friedrich & Agner, Therapeutic siRNA: State-of-the-Art and Future Perspectives, BioDrugs, Aug 2022 - https://link.springer.com/article/10.1007/s40259-022-00549-3.When scoring siRNA candidates there are a variety of criteria that can be used. Algorithms are used to look at the thermal properties of the RNA, how it folds and how stable it is. We can examine the free energy of the siRNA-target duplex. Sequence rules have been developed to understand key determinants of how an siRNA sequence will bind with its target and induce silencing by protein complexes. We also need to examine the folding of the target RNA to see how accessible it will be for binding with the siRNA.We look for Off-Target effects by examining the target genomes to see if the siRNA candidate might also target other genes. This helps determine whether unexpected side effects might occur when introducing the siRNA.Vienna RNA (https://www.tbi.univie.ac.at/RNA/) is a powerful package for predicting RNA structure. In this recipe, we’ll use it to design a Class for siRNA prediction.

Getting Started

First, we will install the ViennaRNA package. This command will install it along with any other packages you need for this recipe:

! pip install biopython pandas matplotlib seaborn ViennaRNA requests

You will also want to make sure BLAST is installed:

! brew install blast

The code for this recipe can be found in Ch12/Ch12-2-sirna.ipynb.

How To Do It...

Here are the steps to perform this recipe:

	First let’s import our libraries:

import os
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from Bio import SeqIO
from Bio.Seq import Seq
import numpy as np
import requests
import tempfile
import re
from io import StringIO
import RNA
import subprocess
import sys
import warnings
warnings.filterwarnings('ignore')

This will set up the RNA package which contains ViennaRNA. We also bring in our data manipulation and visualization libraries. We will ignore any warnings that come up.

	Then, we will define an siRNADesigner() class. In Python a class is used for Object-Oriented Programming (OOP). In this approach we bundle data and the methods needed to act on that data together in objects. This keeps things more organized as compared to just using functions.

Our class for designing siRNAs will have several functions. It can extract sequences, calculate properties of RNAs, generate and score candidates, and check for Off-Target effects as shown here:

class SiRNADesigner:
def __init__(self):
 self.parameters = {
 'length': 21,
 'min_gc': 30,
 'max_gc': 60,
 'seed_max_gc': 60,
 'check_off_targets': True
 }

 self.weights = {
 'gc_content': 0.20,
 'seed_gc': 0.15,
 'thermo_asymmetry': 0.25,
 'secondary_structure': 0.20,
 'motif_penalty': 0.20
 }

 self.avoid_patterns = [
 'AAAA', 'CCCC', 'GGGG', 'TTTT',
 'GUCCUUCAA', 'UGUGU',
 'TAAAA', 'AAAAA'
]

 self.blast_available = self._check_blast_installed()

This code first defines an initialization routine for the class. The first function defined in a class is the special __init__(self) method. This is also often called a Constructor function. It gets automatically called when you create an instance of the class and is used to set up basic parameters.We have default parameters for the length of siRNA we want to make, minimum GC content allowed (the percentage of G and C bases vs. A and T), and so forth. We also create the default weight penalties for scoring. We define key sequence patterns to avoid:Homopolymers (runs of the same base) can cause problems with foldingImmune stimulatory motifs may activate the host immune systemTermination signals could lead to premature termination of transcription of the siRNA

	Finally, we’ll run a routine to check if BLAST is installed that looks like this:

def _check_blast_installed(self):
try:
result = subprocess.run(['blastn', '-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return result.returncode == 0
except FileNotFoundError:
return False

This code just attempts to run BLAST via the OS. If it works and the return code is 0, we return true; if there is any other return code, we got an error and we return it, or if BLAST is not found we catch that error and return False.

	Next, we’ll define a handy function to fetch a sequence from NCBI using the EFetch and the requests library. We won’t use it in this example, but it will give you an option to use the Class that way in the future.

def fetch_sequence_from_ncbi(self, accession):
 url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id={accession}&rettype=fasta&retmode=text"
 response = requests.get(url)
 if response.status_code == 200:
 fasta_io = StringIO(response.text)
 for record in SeqIO.parse(fasta_io, "fasta"):
 return str(record.seq)
 else:
 raise Exception(f"Failed to fetch sequence from NCBI: {response.status_code}")

This code defines a URL for the EFetch request and sends it ahead. If it works, it then parses the FASTA and returns it.

	Next, we’ll define 3 functions to calculate important parameters:

def calculate_gc_content(self, sequence):
gc_count = sequence.count('G') + sequence.count('C') return (gc_count / len(sequence)) * 100
def calculate_seed_region_gc(self, antisense):
 seed_region = antisense[1:8]
 return self.calculate_gc_content(seed_region)

def check_forbidden_patterns(self, sequence):
 rna_seq = sequence.replace('T', 'U')
 for pattern in self.avoid_patterns:
 pattern = pattern.replace('T', 'U')
 if pattern in rna_seq:
 return False
 return True

This gives us functions to calculate the GC content of a sequence, find the GC content of a seed region, and check for our forbidden sequence patterns, respectively. The seed region is typically the first 8 nucleotides of the siRNA.

	Now we will define a function to calculate the thermal asymmetry:

def calculate_thermodynamic_asymmetry(self, sense, antisense):
 sense_rna = sense.replace('T', 'U')
 antisense_rna = antisense.replace('T', 'U')
 five_prime_sense = sense_rna[:4]
 five_prime_antisense = antisense_rna[-4:]
 delta_g_5prime = RNA.fold_compound(five_prime_sense + five_prime_antisense).mfe()[1]

 three_prime_sense = sense_rna[-4:]
 three_prime_antisense = antisense_rna[:4]
 delta_g_3prime = RNA.fold_compound(three_prime_sense + three_prime_antisense).mfe()[1]
 diff = delta_g_3prime - delta_g_5prime

 if diff <= -3:
 return 100
 elif diff >= 0:
 return 0
 else:
 return (1 - (diff / -3)) * 100

Thermal asymmetry is an important feature of siRNA. It affects how the RNA is incorporated into the protein complex that performs gene silencing. This function first converts our input sequence to RNA, meaning that Uracil (U) replaces Thymidine (T). Next it takes windows of the RNA sequence and computes the Minimum Free Energy (MFE) using the ViennaRNA package. MFE tells us how stable the RNA will be when it is folded in solution. When the 5’ end of the RNA is less stable than the 3’ end, the siRNA tends to work better. Finally, we perform a normalization on the score and return it. This is used in scoring candidate RNAs to find the best one.

	Next, we need to check if the target region of the gene we want to knock down will actually be accessible for the siRNA to pair with it. If the gene is folded in solution such that the target region is inaccessible, then the siRNA will not be effective.

def analyze_target_accessibility(self, target_region):
 target_rna = target_region.replace('T', 'U')

 (structure, mfe) = RNA.fold(target_rna)

 central_start = max(0, len(structure) // 2 - 10)
 central_end = min(len(structure), len(structure) // 2 + 11)
 central_region = structure[central_start:central_end]

 unpaired_count = central_region.count('.')
 unpaired_percentage = (unpaired_count / len(central_region)) * 100

 return unpaired_percentage

This code first converts the sequence to RNA by replacing T with U. We then use the ViennaRNA fold() function to predict the secondary structure of the RNA. The fold function will return both the structure of the RNA in a dot-notation structure (https://www.tbi.univie.ac.at/RNA/ViennaRNA/refman/io/rna_structures.html), and the minimum free energy. In dot notation, unpaired nucleotides between the sequence and the target are represented by dots.We next focus on the central binding region of the RNA around a 21nt window. Then we calculate the number of unpaired nucleotides (represented by dots) and normalize as a percentage of the total length. We return the unpaired percentage.

	Next, we will calculate the Ui-Tei value. This is based on a series of rules for siRNA design developed by Kumiko Ui-Tei (for more information, look in the See Also section).

def calculate_ui_value(self, sequence):
sequence = sequence.upper()
score = 0
 if sequence[0] in 'AU':
 score += 33.3
 if len(sequence) > 9 and sequence[9] == 'A':
 score += 33.3
 if len(sequence) > 18 and sequence[18] == 'A':
 score += 33.3
 return score

This code examines our sequence and does the following:

	It gives it a higher score for having A or U at the first position

	It adds score if position 10 contains an A

	It adds score if position 19 contains an A.

	Now we will define one of our most important functions, which generates candidates based on the various scoring methods we’ve defined.

def generate_candidates(self, mrna_sequence, length=21):
candidates = []
 for i in range(len(mrna_sequence) - length + 1):
target_start = max(0, i - 10)
target_end = min(len(mrna_sequence), i + length + 10)
target_region = mrna_sequence[target_start:target_end]
 sense = mrna_sequence[i:i+length]
 if not all(n in 'ACGT' for n in sense):
 continue
 antisense = str(Seq(sense).complement())[::-1]
 candidates.append({
'position': i + 1,
'sense': sense,
'antisense': antisense,
'target_region': target_region }
return candidates

Here we will generate all the siRNA sequences we can, given a target sequence. We use a default sliding window of 21nt and move across the target.For each position, we will expand the window around it by 10nt for accessibility analysis. We will create the antisense strand of the target and then store all these candidates in a dictionary.

	Ok let’s define a function to compute the Reynolds score! This score incorporates several sequence characteristics such as low GC content and absence of inverted repeats.

def compute_reynolds_score(self, sequence):
 score = 0
sequence = sequence.upper()
gc_content = self.calculate_gc_content(sequence)
if 30 <= gc_content <= 52:
score += 1
au_count = sum(1 for i in range(14, 19) if i < len(sequence) and sequence[i] in 'AT')
 if au_count >= 3:
 score += 1
 if len(sequence) > 2 and sequence[2] == 'A':
 score += 1
 if len(sequence) > 9 and sequence[9] == 'A':
 score += 1
 if len(sequence) > 12 and sequence[12] == 'T':
 score += 1
 if len(sequence) > 12 and sequence[12] != 'G':
 score += 1
 if len(sequence) > 18 and sequence[18] != 'G':
 score += 1
 has_repeat = False
 for i in range(len(sequence) - 7):
 if sequence.count(sequence[i:i+7]) > 1:
 has_repeat = True
 break
 if not has_repeat:
 score += 1
 if sequence[0] in 'AT':
 score += 1
 if len(sequence) > 18 and sequence[18] in 'AT':
 score += 1
 return score

This function will score the sequence based on several criteria. We check if the GC content is between 30 and 52, check for A and U at critical positions, lack of G at certain positions, and lack of internal repeats.

	Great! Now let’s bring it all together by creating our master function to score the siRNA candidates:

def score_candidates(self, candidates):
 scored_candidates = []

 for candidate in candidates:
sense = candidate['sense']
 antisense = candidate['antisense']
 target_region = candidate['target_region']

gc_content = self.calculate_gc_content(sense)
 seed_gc = self.calculate_seed_region_gc(antisense)
 gc_score = 100 - abs((gc_content - 45) * 2)
 gc_score = max(0, min(100, gc_score))

 seed_gc_score = 100 - ((seed_gc /
self.parameters['seed_max_gc']) * 100)
seed_gc_score = max(0, min(100, seed_gc_score))
 motif_score = 100 if self.check_forbidden_patterns(sense) else 0
 thermo_score = self.calculate_thermodynamic_asymmetry(sense, antisense)

 access_score = self.analyze_target_accessibility(target_region)
 reynolds_score = (self.compute_reynolds_score(sense) / 10) * 100
 ui_score = self.calculate_ui_value(sense)
total_score = (gc_score * self.weights['gc_content'] + seed_gc_score * self.weights['seed_gc'] + thermo_score * self.weights['thermo_asymmetry'] + access_score * self.weights['secondary_structure'] + motif_score * self.weights['motif_penalty'])
total_score = 0.7 * total_score + 0.15 * reynolds_score + 0.15 * ui_score
candidate_with_score = candidate.copy()
candidate_with_score.update({ 'gc_content': gc_content, 'seed_gc': seed_gc, 'gc_score': gc_score, 'seed_gc_score': seed_gc_score, 'motif_score': motif_score, 'thermo_score': thermo_score, 'access_score': access_score, 'reynolds_score': reynolds_score, 'ui_score': ui_score, 'total_score': total_score })

scored_candidates.append(candidate_with_score)

return sorted(scored_candidates, key=lambda x: x['total_score'], reverse=True)

This function loops over our siRNA candidates and applies our various scoring criteria. It checks the GC content, problematic sequence patterns, thermodynamic asymmetry, target accessibility, Reynolds score, and Ui-Tei score. We then calculate a composite score based on a weighted function. Recall that the weight parameters are defined in the init() function of the class. The final score consists of a weighted combination of 70% of the component scores, 15% of the Reynolds score, and 15% of the Ui-Tei score.Finally, we sort and return the list of candidates with their scores. Note in the return statement we use a lambda function. This is a short unnamed inline function which in this case simply takes the name of the candidate (x) and returns total_score. This tells the sorting function to sort the candidates by total score, and we set reverse=True indicating we want them sorted in descending order.Note that our class contains a method check_off_targets_blast() which is used to run BLAST against the target genome to check for additional places the siRNA might hit. It isn’t directly used in this example, so we won’t go over it further in the interest of space – but here’s an AI Tip you could use to try it out.

AI Tip

Prepare: First paste in the code for the siRNADesigner class

Prompt: Write a code example that uses my siRNADesigner class to check for off target effects

You should See: Code to generate a list of top siRNA candidates using your class and then run the off-target check routine

Next, you’ll see another method predict_efficacy_with_thermocomposition() - again not used in this example. This method is complementary to the scoring methods we used here. If you want to try it out, you could explore an AI Tip like this (you may need to paste in your code first, so the tool knows what to refer to):

AI Tip

Prompt: Enhance the siRNA off-target analysis example by also incorporating the predict_efficacy_with_thermocomposition method. Modify the example to apply this method to each candidate, include the resulting score in the evaluation process, and adjust the final ranking to account for all three scoring approaches: the original composite score, off-target analysis, and thermo-composition prediction. The final score should weigh these three components appropriately. Make sure to display and export the thermo-composition scores in the results."

You Should See: An updated siRNADesigner() example that that now incorporates the additional scoring method

Ok let’s define a short function that retrieves our top candidates:

def get_top_candidates(self, scored_candidates, top_n=5):
return scored_candidates[:top_n]

This function simply returns our top 5 scored candidates by default.Now we can show some ways to visualize our candidates:

def visualize_candidates(self, candidates, top_n=10):
df = pd.DataFrame(candidates[:top_n])
 plt.figure(figsize=(12, 6))
 ax = sns.barplot(x=df.index, y='total_score', data=df)
 plt.title('Top siRNA Candidates by Score')
 plt.xlabel('Candidate Index')
 plt.ylabel('Total Score')
 for i, p in enumerate(ax.patches):
 ax.annotate(f"Pos: {df.iloc[i]['position']}",
 (p.get_x() + p.get_width() / 2., p.get_height()),
 ha='center', va='center',
 xytext=(0, 10),
 textcoords='offset points')

 plt.tight_layout()
 plt.show()
 score_components = ['gc_score', 'seed_gc_score', 'thermo_score',
'access_score', 'motif_score']

 plt.figure(figsize=(14, 8))
 df_melt = pd.melt(
 df,
 id_vars=['position'],
 value_vars=score_components,
 var_name='Score Component',
 value_name='Value'
)

 sns.barplot(x='position', y='Value', hue='Score Component', data=df_melt)
 plt.title('Score Components by siRNA Candidate')
 plt.xlabel('Position in Target mRNA')
 plt.ylabel('Score Value')
 plt.legend(title='Score Component')
 plt.tight_layout()
 plt.show()
 plt.figure(figsize=(10, 6))
 sns.scatterplot(x='position', y='gc_content', size='total_score',
 hue='total_score', sizes=(50, 200), data=df)
 plt.axhline(y=30, color='r', linestyle='--', alpha=0.5)
 plt.axhline(y=60, color='r', linestyle='--', alpha=0.5)
 plt.title('GC Content Distribution of Top siRNA Candidates')
 plt.xlabel('Position in Target mRNA')
 plt.ylabel('GC Content (%)')
 plt.tight_layout()
 plt.show()

This method uses pandas to convert the data to a dataframe. It then creates three key plots for us:

	Bar plot of top siRNA candidates by score

	Most important components of the score for each of the top candidates

	GC content distribution of the top candidates.

	Now we’ll write a function to print a nice, formatted output of the top candidates:

def format_output(self, candidates, top_n=5):
for i, candidate in enumerate(candidates[:top_n], 1):
 print(f"Candidate #{i} (Score: {candidate['total_score']:.2f}, Position: {candidate['position']})")
 print(f"Sense: 5'-{candidate['sense']}-3'")
 print(f"Antisense: 3'-{candidate['antisense']}-5'")
 print(f"GC Content: {candidate['gc_content']:.1f}%")
 print(f"Seed Region GC: {candidate['seed_gc']:.1f}%")
 print(f"Thermodynamic Asymmetry: {candidate['thermo_score']:.1f}")
 print(f"Target Accessibility: {candidate['access_score']:.1f}")
 print(f"Reynolds Score: {candidate['reynolds_score']:.1f}")
 print(f"Target Region: ...{candidate['target_region']}...")
 print("-" * 50)

This method is pretty straightforward. For each top candidate it prints out the key information including sequence, scores, GC content and target region.

	The final method in our class will be for exporting our candidates:

def export_candidates(self, candidates, file_path):
df = pd.DataFrame(candidates)
df.to_csv(file_path, index=False)
print(f"\nAll candidates exported to '{file_path}'")
That’s it! Now that we’ve built our class, let’s see how to run it:
if __name__ == "__main__":
try:
import RNA
except ImportError:
print("ERROR: ViennaRNA Python package not found.")
print("Please install it with: pip install ViennaRNA")
print("For installation instructions, visit: https://www.tbi.univie.ac.at/RNA/")
 sys.exit(1)
 designer = SiRNADesigner()
example_sequence = """
 ATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCGTATTGGGCGCCTGGTCACCAGGGCTGC
 TTTTAACTCTGGTAAAGTGGATATTGTTGCCATCAATGACCCCTTCATTGACCTCAACTACATGG
 TTTACATGTTCCAATATGATTCCACCCATGGCAAATTCCATGGCACCGTCAAGGCTGAGAACGGG
 AAGCTTGTCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTCCAAAATCAAGTG
 GGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCACCACCATGGAGAAGGCTG
 """
example_sequence = re.sub(r'\s+', '', example_sequence)
print("Designing siRNAs for target sequence...")
 candidates = designer.generate_candidates(example_sequence)
print(f"Generated {len(candidates)} siRNA candidates")
print("Scoring candidates based on design rules...") scored_candidates = designer.score_candidates(candidates)
top_candidates = designer.get_top_candidates(scored_candidates)
designer.format_output(top_candidates)
designer.export_candidates(scored_candidates, 'sirna_candidates.csv')
designer.visualize_candidates(scored_candidates)

The first line of this code checks if the special name variable is set to main. Python does this when it is running a script directly, as opposed to importing a module. This ensures the code will execute.Next, we check if the ViennaRNA package is installed, and if not provide instructions to install it.We next instantiate an instance of our siRNADesigner() class. We set up a Target sequence, which is in this case a partial sequence of the GAPDH gene, a Glyceraldehyde 3-phosphate Dehydrogenase (https://www.genecards.org/cgi-bin/carddisp.pl?gene=GAPDH).Next, we will generate a list of candidates using our generate_candidates() method. We will then score the candidates and get our top N candidates. We will then format the output and print our top candidates. Finally, we export the candidates to an output CSV file and visualize our results.Here are the RNAs designed:

Designing siRNAs for target sequence...
Generated 305 siRNA candidates
Scoring candidates based on design rules...
=== Top siRNA Candidates ===
Candidate #1 (Score: 66.88, Position: 116)
Sense: 5'-ACCTCAACTACATGGTTTACA-3'
Antisense: 3'-TGTAAACCATGTAGTTGAGGT-5'
GC Content: 38.1%
Seed Region GC: 42.9%
Thermodynamic Asymmetry: 0.0
Target Accessibility: 66.7
Reynolds Score: 90.0
Target Region: ...CCCTTCATTGACCTCAACTACATGGTTTACATGTTCCAATA...
--
Candidate #2 (Score: 65.72, Position: 70)
Sense: 5'-AACTCTGGTAAAGTGGATATT-3'
Antisense: 3'-AATATCCACTTTACCAGAGTT-5'
GC Content: 33.3%
Seed Region GC: 28.6%
Thermodynamic Asymmetry: 0.0
Target Accessibility: 71.4
Reynolds Score: 70.0
Target Region: ...GGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTGCCATCA...
--
Candidate #3 (Score: 65.05, Position: 125)
Sense: 5'-ACATGGTTTACATGTTCCAAT-3'
Antisense: 3'-ATTGGAACATGTAAACCATGT-5'
GC Content: 33.3%
Seed Region GC: 42.9%
Thermodynamic Asymmetry: 0.0
Target Accessibility: 52.4
Reynolds Score: 100.0
Target Region: ...GACCTCAACTACATGGTTTACATGTTCCAATATGATTCCAC...

As you can see, we get our top siRNA candidates with their sense and antisense sequences. We can review their scores and their position within the target gene.Our siRNA candidates have been saved in the file sirna_candidates.csv.Now let’s look at the visualizations. As you can see, we have our three key visualizations for our top siRNA candidates:

The first graph shows us the score for each of the candidates, and we use a label to show the position in the target sequence.

The next graph shows which components of the score for each siRNA contributed to it being selected. You can note that the motifs present tend to be one of the biggest contributing factors, whereas seed GC content tends to be one of the least important.

[image: Figure 12.1 - Visualizations for the siRNA Candidates]Figure 12.1 - Visualizations for the siRNA Candidates

The third graph shows the GC content of the candidates relative to their position within the target. We use color and size to represent the score as well.This concludes our development of the siRNA system! You can see that you are able to use a variety of techniques, including motif finding and RNA folding, to find siRNAs that can knock down genes. This is a great real-world example of integrating multiple aspects of bioinformatics into a practical workflow.

There’s more...

ViennaRNA can be used for many other purposes. RNA folding is important to study for understanding conservation of non-coding RNAs across species or to model how RNA interacts with other molecules. You can even design RNAs to fold into specific structures.Machine learning is being widely applied to the field of RNA design. For a good review on this topic read Martinelli, “Machine learning for siRNA efficiency prediction: A systematic review”, Health Sciences Review, Jun 2024 - https://www.sciencedirect.com/science/article/pii/S2772632024000102.

See Also

	ViennaRNA is described here: Lorenz et al, “ViennaRNA Package 2.0”, Algorithms for Molecular Biology, Nov 2011 - https://almob.biomedcentral.com/articles/10.1186/1748-7188-6-26

	For information on the Ui-Tei value see: Ui-Tei et al, “Reduced base-base interactions between the DNA seed and RNA target are the major determinants of a significant reduction in the off-target effect due to DNA-seed-containing siRNA” - https://ui-tei.rnai.jp/assets/files/pdf/Ui-TeiMHS2009_P2_26.pdf

	For a good overview of siRNA design and discussion of the Reynolds score, read: He et al, “Predicting siRNA efficacy based on multiple selective siRNA representations and the combination at score level”, Scientific Reports, Mar 2017 -https://pmc.ncbi.nlm.nih.gov/articles/PMC5357899/#:~:text=For%20example%2C%20Reynolds%20analyzed%20180,%2C%20and%20(8)%20position%2013

	RNAxs integrates target site accessibility with siRNA scoring – Tafer et al, “The impact of Target site accessibility on the design of effective siRNAs”, Nat. Biotechnol., Apr 2008 - https://www.nature.com/articles/nbt1404

	Read more about OOP here: https://www.freecodecamp.org/news/how-to-use-oop-in-python/

	You can learn more about Lambda functions in this article: https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html

Predicting food properties using BioInformatics

BioInformatics is increasingly being used in a wide variety of areas. It is used extensively in the development of agricultural and food products. In this recipe we are going to use bioinformatics to calculate some key food properties of an organism. Microorganisms are often used as Single Cell Protein (SCP) by fermenting them and then adding the protein into various foods. We can actually tell a lot about the nutritional value of an organism by examining its proteome!In this recipe, we will calculate many properties of the amino acids in an organism, using the E. coli proteome as an example. We’ll use the properties of the proteome to calculate the number of essential amino acids, protein content, potential flavor profile, and other key characteristics of the organism.By the end of this recipe, you’ll see how bioinformatics can be applied to predict food and nutritional properties of organisms used in food science.

Getting started

First, we’ll download the E. coli proteome from UniProt to analyze it:

! wget https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes/Bacteria/UP000000625/UP000000625_83333.fasta.gz

Uncompress the file:

! gunzip UP000000625_83333.fasta.gz

Let’s rename the file to keep it simple:

! mv UP000000625_83333.fasta example_organism.fasta

The code for this recipe can be found in Ch12/Ch12-3-food-properties.ipynb.

How To Do It...

Here are the steps to try this recipe:

	First, we will import our libraries:

import pandas as pd
import numpy as np
from Bio import SeqIO
import matplotlib.pyplot as plt
from collections import Counter

	Now we will write a function to calculate food properties:

def calculate_food_properties(proteome_file, output_file=None):
 essential_aas = {'F': 'Phenylalanine',
 'I': 'Isoleucine',
 'K': 'Lysine',
 'L': 'Leucine',
 'M': 'Methionine',
 'T': 'Threonine',
 'V': 'Valine',
 'W': 'Tryptophan',
 'H': 'Histidine'}
 non_essential_aas = {'A': 'Alanine',
 'R': 'Arginine',
 'N': 'Asparagine',
 'D': 'Aspartic acid',
 'C': 'Cysteine',
 'E': 'Glutamic acid',
 'Q': 'Glutamine',
 'G': 'Glycine',
 'P': 'Proline',
 'S': 'Serine',
 'Y': 'Tyrosine'}

We define amino acids as Essential or Non-Essential. Essential amino acids cannot be synthesized by the body, so we must get them from food. As such they are the most important food components. Non-essential amino acids can be biosynthesized by our metabolism.

	Now we will define some key properties of amino acids:

 aa_properties = {
 'hydrophobic': ['A', 'I', 'L', 'M', 'F', 'V', 'P', 'G'],
 'hydrophilic': ['R', 'N', 'D', 'C', 'Q', 'E', 'H', 'K', 'S', 'T', 'W', 'Y'],
 'sulfur_containing': ['C', 'M'],
 'umami': ['E', 'G'],
 'sweet': ['A', 'G', 'S', 'T'],
 'bitter': ['I', 'L', 'V', 'F', 'Y', 'W', 'H']
 }

Hydrophobic amino acids interact with lipid membranes, improving food absorption. Hydrophilic amino acids can bind water, which may enhance baking properties. Sulfur-containing amino acids undergo something called the Maillard reaction (https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/maillard-reaction) which generates distinctive aromas and flavors. Finally, we define amino acids for the umami, sweet, and bitter tastes.

	Now we will read the E. coli proteome file using BioPython:

proteins = list(SeqIO.parse(proteome_file, "fasta"))

	Next, we will initialize key counters for our analysis:

total_aa_count = 0
aa_counter = Counter()
essential_aa_counter = Counter()
non_essential_aa_counter = Counter()
property_counter = {prop: 0 for prop in aa_properties}

These will keep track of the total amino acids, essential and non-essential amino acids. The last line will create a dictionary with a counter for each of our properties.

	Next, we will process each protein and count up the relevant properties:

for protein in proteins:
 sequence = str(protein.seq)
 for aa in sequence:
 if aa in essential_aas or aa in non_essential_aas:
 aa_counter[aa] += 1
 total_aa_count += 1
 if aa in essential_aas:
 essential_aa_counter[aa] += 1
 elif aa in non_essential_aas:
 non_essential_aa_counter[aa] += 1
 for prop, aa_list in aa_properties.items():
 if aa in aa_list:
 property_counter[prop] += 1

This code:

	Loops over all the proteins in the organism

	Then loops over all the amino acids in that protein

	For each amino acid, we will count if it is essential or non-essential

	We will also loop over each property, and if that amino acid is in the list for the property we will count that as well

	Next, we will calculate the total protein content based on certain assumptions of the average weight of amino acids:

 avg_aa_weight = 110 # g/mol
 protein_content = total_aa_count * avg_aa_weight / 6.022e23 * 100 # g/100g

Then, we calculate the ratio of essential amino acids:

 essential_ratio = sum(essential_aa_counter.values()) / total_aa_count if total_aa_count > 0 else 0

	Now we will prepare our results in a dictionary:

 results = {
 "protein_content": protein_content,
 "total_amino_acids": total_aa_count,
 "essential_amino_acid_ratio": essential_ratio,
 "amino_acid_composition": {aa: count/total_aa_count for aa, count in aa_counter.items()},
 "essential_amino_acids": {aa: count for aa, count in essential_aa_counter.items()},
 "non_essential_amino_acids": {aa: count for aa, count in non_essential_aa_counter.items()},
 "taste_properties": {
 prop: count/total_aa_count for prop, count in property_counter.items()
 }
 }

This includes our protein content, total amino acids, and essential amino acid ratio. We also create a dictionary for amino acid composition, with the relative percentage of each amino acid. We provide counts for the essential and non-essential amino acids. And finally, we create a dictionary of taste properties, with the relative frequency of each property based on the percentage of amino acids in the proteome possessing that property.

	Now we are going to calculate a nutritional score based on the relative importance of the essential amino acids:

 essential_aa_importance = {
 'F': 0.8, 'I': 0.9, 'K': 1.0, 'L': 0.9, 'M': 1.0,
 'T': 0.8, 'V': 0.9, 'W': 1.0, 'H': 0.8
 }
 nutritional_score = 0
 for aa, count in essential_aa_counter.items():
 composition = count / total_aa_count if total_aa_count > 0 else 0
 nutritional_score += composition * essential_aa_importance.get(aa, 0)
 results["nutritional_score"] = nutritional_score * 10

This code sets up the relative importance of each amino acid for nutrition, then loops over the essential amino acids. It then calculates the relative composition of each amino acid and multiples it by the importance factor, scaling the nutritional score to a range of 0-10 at the end.

	Now we will calculate a flavor profile:

 flavor_profile = {
 "umami": sum(aa_counter[aa] for aa in aa_properties['umami']) / total_aa_count if total_aa_count > 0 else 0,
 "sweet": sum(aa_counter[aa] for aa in aa_properties['sweet']) / total_aa_count if total_aa_count > 0 else 0,
 "bitter": sum(aa_counter[aa] for aa in aa_properties['bitter']) / total_aa_count if total_aa_count > 0 else 0
 }
 results["flavor_profile"] = flavor_profile

For each flavor, we will calculate the relative proportion of amino acids yielding that flavor and store it in a dictionary.

	Finally, we will generate our analysis report and return the results:

 if output_file:
 generate_analysis_report(results, output_file)
 return results

	Next, we will define a function for generating a report on the results:

def generate_analysis_report(results, output_file):
 aa_data = pd.DataFrame({
 'Amino Acid': list(results['amino_acid_composition'].keys()),
 'Frequency': list(results['amino_acid_composition'].values())
 })
 aa_data = aa_data.sort_values('Frequency', ascending=False)

We set up a pandas dataframe with the amino acids and frequencies.

	Next, we begin setting up our plots:

 fig, axes = plt.subplots(2, 2, figsize=(15, 12))
 axes[0, 0].bar(aa_data['Amino Acid'], aa_data['Frequency'])
 axes[0, 0].set_title('Amino Acid Composition')
 axes[0, 0].set_ylabel('Frequency')
 axes[0, 0].tick_params(axis='x', rotation=45)

This will set up a plot that has 4 sections (subplots) and the first chart, which is a bar chart of amino acid frequency.

 essential_count = sum(results['essential_amino_acids'].values())
 non_essential_count = sum(results['non_essential_amino_acids'].values())
 axes[0, 1].pie([essential_count, non_essential_count],
 labels=['Essential', 'Non-essential'],
 autopct='%1.1f%%')
 axes[0, 1].set_title('Essential vs Non-essential Amino Acids')

	This code creates a pie chart showing the percentage of Essential vs. Non-Essential amino acids.

 flavor_data = results['flavor_profile']
 axes[1, 0].bar(flavor_data.keys(), flavor_data.values())
 axes[1, 0].set_title('Flavor Profile')
 axes[1, 0].set_ylabel('Proportion')

The above code produces a proportional bar chart of the flavor components.

 prop_data = results['taste_properties']
 axes[1, 1].bar(prop_data.keys(), prop_data.values())
 axes[1, 1].set_title('Amino Acid Properties')
 axes[1, 1].set_ylabel('Proportion')
 axes[1, 1].tick_params(axis='x', rotation=45)

And our last chart is a bar chart of the amino acid properties and their proportion.

	Finally, we adjust the padding of the plots and save the figure to a file:

 plt.tight_layout()
 plt.savefig(f"{output_file}_plots.png")

And then print out a summary report:

 with open(f"{output_file}_summary.txt", 'w') as f:
 f.write("PROTEOME NUTRITIONAL ANALYSIS\n")
 f.write("============================\n\n")
 f.write(f"Protein Content: {results['protein_content']:.2f} g/100g\n")
 f.write(f"Nutritional Score: {results['nutritional_score']:.2f}/10\n")
 f.write(f"Essential Amino Acid Ratio: {results['essential_amino_acid_ratio']:.2f}\n\n")
 f.write("FLAVOR PROFILE\n")
 f.write("=============\n")
 for flavor, value in results['flavor_profile'].items():
 f.write(f"{flavor.capitalize()}: {value:.2f}\n")

 f.write("\nESSENTIAL AMINO ACIDS\n")
 f.write("====================\n")
 for aa, count in results['essential_amino_acids'].items():
 f.write(f"{aa}: {count}\n")

Awesome! Let’s use our nutritional functions:

if __name__ == "__main__":
 proteome_file = "example_organism.fasta"
 results = calculate_food_properties(proteome_file, "nutritional_analysis")

 print(f"Protein Content: {results['protein_content']:.2f} g/100g")
 print(f"Nutritional Score: {results['nutritional_score']:.2f}/10")
 print(f"Essential Amino Acid Ratio: {results['essential_amino_acid_ratio']:.2f}")
 print("\nFlavor Profile:")
 for flavor, value in results['flavor_profile'].items():
 print(f" {flavor.capitalize()}: {value:.2f}")

Here are our results!

Protein Content: 0.00 g/100g
Nutritional Score: 3.94/10
Essential Amino Acid Ratio: 0.44
Flavor Profile:
 Umami: 0.13
 Sweet: 0.28
 Bitter: 0.34

This is how the results look:

[image: Figure 12.2 - Summary of Nutritional Properties for the E. coli Proteome]Figure 12.2 - Summary of Nutritional Properties for the E. coli Proteome

You will also find a summary of the results in your working directory in the file nutritional_analysis_summary.txt (as well as the plots).That’s it! In this recipe you used bioinformatics to understand how an organism might be used to affect the nutrition, baking properties, and flavor of a food product. You could imagine many ways to take this further, by looking at how easily proteins can be digested or analyzing a proteome for substances that might be beneficial (or harmful)!

There’s More...

BioInformatics is being increasingly used in many industries such as food, agriculture, and more. For a recent review on BioInformatics in agriculture, read: Sahu et al, “Editorial: Bioinformatics, big data and agriculture: a challenge for the future”, Frontiers in Plant Science, Oct 2023 - https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1271305/full.Bioinformatics can be used to develop insecticides – Da Costa et al, Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach, IJMS, Jul 2022 - https://www.mdpi.com/1422-0067/23/15/8218.Bioinformatics can be used to discuss food digestibility – Jaeger et al, In vitro digestibility of bioprocessed brewer’s spent yeast: Demonstrating protein quality and gut microbiome modulation potential, Food Research International, Feb 2025 - https://www.sciencedirect.com/science/article/pii/S0963996925000699.Bioinformatics can be used to study the microorganisms critical to successful food fermentation – Chelliah et al, A review on the application of bioinformatics tools in food microbiome studies, Briefings in Bioinformatics, Mar 2022 - https://academic.oup.com/bib/article/23/2/bbac007/6533500.Bioinformatics can also be used to discover BioActive Peptides (https://www.sciencedirect.com/topics/food-science/bioactive-peptides). These short peptides often come from food fermentation and can have many health benefits such as antihypertension or immune stimulation – Du et al, Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives, TrAC, May 2023 - https://www.sciencedirect.com/science/article/pii/S0165993623001383?casa_token=wWdJZiBiRh8AAAAA:ZRRR166DG3dNG5e4H-ZtO99V71hWB9pD2hhRtK3cxO1R43nmwZje1B_jBrTcam5RLD-TcCFc.

Discovering genes to make novel molecules

One of the most important tasks of Bioinformatics is to characterize novel genes and pathways, and to discover new pathways that can make important molecules. These molecules might be used as industrial lubricants and biofuels or to cure cancer.Comparative Genomics is the analysis and comparison of multiple genomes, often to compare their gene content. It can be used to characterize the evolutionary history of organisms or to annotate genes based on their conservation across species. In this example we will use it to find novel genes by comparing several organisms that are closely related. If one of those organisms is known to make a certain molecule and the others not, then we can subtract away all the genes in the organisms that are in common, leaving novel gene candidates.Genome mining uses bioinformatics to discover and annotate genes in novel organisms or metagenomic samples. In particular, Extremophiles can be very useful for mining as they contain genes to adapt to intense conditions such as cold or heat. Tools like antiSmash and DeepBGC are often used to annotate clusters of genes likely to be related to making a natural product (these are referenced in the See Also section).In this example we will perform comparative genomics. We will imagine we have discovered a new organism, a species of mycobacteria, called M. tuberculosis in this case, that makes a valuable molecule - let’s call it YourRichium. We know that there are three other closely related organisms that don’t make this molecule. You’ll discover which candidate genes might make the molecule!

Getting Started

First, let’s install the packages we’ll need (you may already have these installed):

! pip install biopython pandas

You will also need Prodigal, BLAST, and HMMer installed:

brew install brewsci/bio/prodigal
brew install blast
brew install hmmer
mkdir -p ~/pfam
cd ~/pfam
curl -O ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/Pfam-A.hmm.gz
gunzip Pfam-A.hmm.gz
hmmpress Pfam-A.hmm

Add it to your path by placing in your .zshrc file:

export PFAM_DIR=~/pfam
source ~/.zshrc # or source ~/.bash_profile

The code for this recipe can be found in Ch12/Ch12-4-gene-discovery.ipynb.

How To Do It...

Here are the steps to perform this recipe:

	First we’ll import our libraries:

import os
import subprocess
from Bio import SeqIO
from Bio.Blast.Applications import NcbiblastpCommandline
import pandas as pd
import argparse

	Next we set up Entrez:

from Bio import Entrez
Entrez.email = "your.email@example.com"

You can replace the email above with your email.

	Next, let’s define a function to set up our directories:

def setup_directories():
 directories = ['genomes', 'predictions', 'blast_results', 'unique_genes', 'annotations']
 for directory in directories:
 os.makedirs(directory, exist_ok=True)
 return directories

	Now we will define a function to download a genome:

def download_genome(accession, output_dir):
 output_file = f"{output_dir}/{accession}.fasta"
 if not os.path.exists(output_file):
 print(f"Downloading {accession}...")
 handle = Entrez.efetch(db="nucleotide", id=accession, rettype="fasta", retmode="text")
 with open(output_file, 'w') as out_f:
 out_f.write(handle.read())
 print(f"Downloaded {accession} to {output_file}")
 else:
 print(f"Genome {accession} already exists at {output_file}")
 return output_file

This function takes an NCBI accession number and target directory as input and then uses Entry Efetch to download the file.

	Let’s create a function to predict genes from our genome file:

def predict_genes(genome_file, output_dir, organism_type="prokaryote"):
 genome_name = os.path.basename(genome_file).split('.')[0]
 output_prefix = f"{output_dir}/{genome_name}"
 protein_file = f"{output_prefix}_proteins.faa"
 if not os.path.exists(protein_file):
 print(f"Predicting genes for {genome_name}...")
 if organism_type == "prokaryote":
 cmd = f"prodigal -i {genome_file} -a {protein_file} -o {output_prefix}_genes.gff -f gff"
 subprocess.run(cmd, shell=True, check=True)
 else:
 print("Eukaryotic gene prediction requires tools like Augustus or MAKER")
 print(f"Gene prediction complete for {genome_name}")
 else:
 print(f"Gene predictions already exist for {genome_name}")
 return protein_file

This function will take in our genome file and run Prodigal on it.

	The next function will create a BLAST database:

def create_blast_database(protein_file):
 db_name = protein_file
 cmd = f"makeblastdb -in {protein_file} -dbtype prot -out {db_name}"
 subprocess.run(cmd, shell=True, check=True)
 return db_name

This function will run our BLAST comparisons.

def run_blast_comparison(query_proteins, subject_db, output_file, evalue=1e-5):
 if not os.path.exists(output_file):
 print(f"Running BLAST comparison: {query_proteins} vs {subject_db}")
 blastp_cline = NcbiblastpCommandline(
 query=query_proteins,
 db=subject_db,
 out=output_file,
 outfmt="6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore",
 evalue=evalue,
 max_target_seqs=1
)
 stdout, stderr = blastp_cline()
 print(f"BLAST comparison complete. Results saved to {output_file}")
 else:
 print(f"BLAST results already exist at {output_file}")
 return output_file

This function will take a set of query proteins and blast it against a subject database. It constructs a BLAST command line with a standard easy-to-use output format and saves the results to a file.The next function is the core of our algorithm. It will use our BLAST results to identify genes in our organism of interest (Target) that are not present in the reference genome (Reference).

def identify_unique_genes(target_protein_file, blast_results_files, output_dir, identity_threshold=30, coverage_threshold=50):
 target_name = os.path.basename(target_protein_file).split('_')[0]
 target_proteins = {}
 for record in SeqIO.parse(target_protein_file, "fasta"):
 target_proteins[record.id] = record
 proteins_with_hits = set()
 for blast_file in blast_results_files:
 with open(blast_file, 'r') as f:
 for line in f:
 parts = line.strip().split('\t')
 query_id = parts[0]
 identity = float(parts[2])
 alignment_length = float(parts[3])
 query_length = len(target_proteins[query_id].seq)
 coverage = (alignment_length / query_length) * 100
 if identity >= identity_threshold and coverage >= coverage_threshold:
 proteins_with_hits.add(query_id)
 unique_proteins = set(target_proteins.keys()) - proteins_with_hits
 output_file = f"{output_dir}/{target_name}_unique_proteins.faa"
 with open(output_file, 'w') as out_f:
 for protein_id in unique_proteins:
 SeqIO.write(target_proteins[protein_id], out_f, "fasta")
 print(f"Identified {len(unique_proteins)} unique proteins in {target_name}")
 print(f"Unique proteins saved to {output_file}")
 return output_file, unique_proteins

This function will identify a set of genes that are unique to our organism of interest.We first get the name of our target organism and load in its proteinsWe then parse our blast results to find proteins with significant hit; Our default criteria will be that we must have at least 30% sequence identity over at least 50% of the length of our query geneWe next use a set() operator to perform a subtraction, to find the genes that are present only in the Target organism and not in the ReferenceWe save and return the results.

	For our final function let’s have a way to annotate our unique genes so we can understand them. We will not fully implement this function or utilize it in the recipe, but we’ll leave it as an exercise for you to explore further.

def annotate_unique_genes(unique_proteins_file, output_dir):
 output_name = os.path.basename(unique_proteins_file).split('_')[0]
 hmmer_output = f"{output_dir}/{output_name}_pfam_annotations.txt"
 cmd = f"hmmscan --domtblout {hmmer_output} pfam/Pfam-A.hmm {unique_proteins_file}"
 # subprocess.run(cmd, shell=True, check=True)
 annotations = {}
 print(f"Functional annotation complete. Results saved to {hmmer_output}")
 return hmmer_output, annotations

This function would be used to annotate the genes further.

	Great! Now we have all our functions defined. Let’s use our code:

def main():
 directories = setup_directories()
 target_accession = "NC_000962"
 reference_accessions = [
 "NC_002945", # M. bovis
 "NC_008769", # M. avium
 "NC_002677" # M. leprae
]
 target_genome = download_genome(target_accession, directories[0])
 reference_genomes = [download_genome(acc, directories[0]) for acc in reference_accessions]
 target_proteins = predict_genes(target_genome, directories[1])
 reference_proteins = [predict_genes(genome, directories[1]) for genome in reference_genomes]
 reference_dbs = [create_blast_database(proteins) for proteins in reference_proteins]
 blast_results = []
 for i, db in enumerate(reference_dbs):
 ref_name = os.path.basename(reference_genomes[i]).split('.')[0]
 target_name = os.path.basename(target_genome).split('.')[0]
 output_file = f"{directories[2]}/{target_name}_vs_{ref_name}.blast"
 blast_results.append(run_blast_comparison(target_proteins, db, output_file))
 unique_genes_file, unique_gene_ids = identify_unique_genes(
 target_proteins, blast_results, directories[3]
)
 annotation_file, annotations = annotate_unique_genes(unique_genes_file, directories[4])
 print("\nSubtractive Comparative Genomics Results:")
 print(f"Target organism: {target_accession}")
 print(f"Reference organisms: {', '.join(reference_accessions)}")
 print(f"Total predicted proteins in target: {len(list(SeqIO.parse(target_proteins, 'fasta')))}")
 print(f"Number of unique proteins identified: {len(unique_gene_ids)}")
 print(f"Unique protein sequences saved to: {unique_genes_file}")
 print(f"Functional annotations saved to: {annotation_file}")
if __name__ == "__main__":
 main()

For this example, we chose Mycobacterium and some related species. We do the following:

	Set up our directories

	Define our accessions; We will use M. tuberculosis H37Rv as our organism of interest (Target) and reference species will be M. bovis, M. avium, and M. leprae respectively.

	Download the genomes

	Perform gene prediction

	Create BLAST databases

	Run the BLAST comparisons

	Identify Unique Genes

	Report out our results

Here are our results:

Building a new DB, current time: 03/23/2025 13:50:48
New DB name: ~/work/CookBook/Ch12/predictions/NC_002945_proteins.faa
New DB title: predictions/NC_002945_proteins.faa
Sequence type: Protein
Deleted existing Protein BLAST database named ~/work/CookBook/Ch12/predictions/NC_002945_proteins.faa
Keep MBits: T
Maximum file size: 3000000000B
Adding sequences from FASTA; added 4013 sequences in 0.0374229 seconds.
Building a new DB, current time: 03/23/2025 13:50:48
New DB name: ~/work/CookBook/Ch12/predictions/NC_008769_proteins.faa
New DB title: predictions/NC_008769_proteins.faa
Sequence type: Protein
Deleted existing Protein BLAST database named ~/work/CookBook/Ch12/predictions/NC_008769_proteins.faa
Keep MBits: T
Maximum file size: 3000000000B
Adding sequences from FASTA; added 4027 sequences in 0.0403821 seconds.
Building a new DB, current time: 03/23/2025 13:50:49
New DB name: ~/work/CookBook/Ch12/predictions/NC_002677_proteins.faa
New DB title: predictions/NC_002677_proteins.faa
Sequence type: Protein
Deleted existing Protein BLAST database named ~/work/CookBook/Ch12/predictions/NC_002677_proteins.faa
Keep MBits: T
Maximum file size: 3000000000B
Adding sequences from FASTA; added 3999 sequences in 0.0365422 seconds.
Identified 62 unique proteins in NC
Unique proteins saved to unique_genes/NC_unique_proteins.faa
Functional annotation complete. Results saved to annotations/NC_pfam_annotations.txt
Subtractive Comparative Genomics Results:
Target organism: NC_000962
Reference organisms: NC_002945, NC_008769, NC_002677
Total predicted proteins in target: 4085
Number of unique proteins identified: 62
Unique protein sequences saved to: unique_genes/NC_unique_proteins.faa
Functional annotations saved to: annotations/NC_pfam_annotations.txt

We have identified 62 unique genes! They will be saved in the file NC_unique_proteins.faa. This is a small enough list to begin further narrowing down your search. You could sift through the functional annotations and try to understand which genes might perform the reactions you are interested in. You could look for Operons which in bacteria are related groups of genes that are right next to each other. This generally indicates they are involved in the same pathway or biochemical process. Finally, you would express these genes, individually or in combination, in a host organism, such as Yeast or E. coli, and then measure them for the product of interest.

There’s more...

Gene-finding approaches such as the one presented here have been used to find many important natural products. For example, examining the genomes of cold-adapted extremophiles led to the discovery of Olefins, (https://www.britannica.com/science/olefin) an important hydrocarbon. These molecules help organisms to adapt to cold environments by making their membranes more fluid. But they can also be used to make biofuels – see: Sukovich et al, “Widespread Head-to-Head Hydrocarbon Biosynthesis in Bacteria and Role of OleA”, Applied and Environmental Microbiology, Jun 2010 - https://journals.asm.org/doi/full/10.1128/aem.00436-10.Alkanes represent another important biofuel molecule, being the primary component of gasoline. These genes were discovered using a comparative genomics approach like the one presented here. Different cyanobacteria, some which produced alkanes and some which did not, were progressively compared and genes in common were subtracted away, until the genes for alkane biosynthesis were discovered – Schirmer et al, “Microbial Biosynthesis of Alkanes”, Science, Jul 2010 - https://www.science.org/doi/full/10.1126/science.1187936?casa_token=-etD39hGppQAAAAA%3AlirgJw4EIb_rCAMB3Ji7WlrQqG1qSYg_70qXrGv1pQJgQO5qCyG3VceUYPjHiYzipKXxCFa6s7Z9.Ok let’s try one last exercise! We can use AI to upgrade our code above so that it actually runs HMMER against a PFAM database to annotate the genes.

AI Tip

Prepare: Make sure your code from this recipe has already been pasted in the AI

Prompt: Update the above code to actually call HMMER

Troubleshooting: During the writing of this code, I ran into several issues. I had to install the PFAM database and make sure the code pointed to my unique genes file from the previous work. I also had some issues with the summary parser not reading the file correctly. I also had the code updated to make it more robust by trying different e-values if no results are found on the first pass.

Here are some example prompts to fix these types of issues:

Write code to install the PFAM database for me

Update the above code so the input file is in unique_genes/NC_unique_proteins.faa

It looks like there is an issue with the parsing function

You can also paste in any errors you get to iterate and improve the code.

You should see: Output code to run HMMER on your unique genes, parse the outputs, and report and summarize the results.

Here is what we get! Below is a partial output of the HMMER results:

Examining HMMER output file: annotation_results/NC_pfam_annotations.txt
Total lines: 382
Data lines (non-comment): 369
First data line sample:
Abhydrolase_1 PF00561.26 245 NC_000962.3_145 - 301 5.7e-34 118.3 0.2 1 1 1.7e-37 1.4e-33 117.0 0.2 1 245 34 281 34 281 0.91 alpha/beta hydrolase fold
Processed 369 data lines
Successfully parsed 144 domain hits
Found annotations for 40 proteins
Saved parsed results to annotation_results/NC_pfam_parsed.tsv
Examining raw HMMER output:
 Header lines: 13
 Data lines: 369
First few matches (if any):
 Abhydrolase_1 PF00561.26 245 NC_000962.3_145 - 301 5.7e-34 118.3 0.2 1 1 1.7e-37 1.4e-33 117.0 0.2 1 245 34 281 34 281 0.91 alpha/beta hydrolase fold
 Abhydrolase_6 PF12697.13 217 NC_000962.3_145 - 301 3e-19 71.0 11.5 1 1 4.6e-23 3.7e-19 70.6 11.5 2 216 37 286 36 287 0.62 Alpha/beta hydrolase family
 Hydrolase_4 PF12146.15 239 NC_000962.3_145 - 301 6.9e-13 48.8 0.0 1 2 5.1e-13 4.1e-09 36.5 0.0 6 116 35 143 31 168 0.85 Serine aminopeptidase, S33
Annotation summary saved to annotation_results/NC_annotation_summary.tsv

You can see that we have 144 protein domains annotated on our candidate genes. Each line includes details about the domain hit, its PFAM identifier, and the E-value of the hit.Your output files will be in the annotation_results subdirectory.The example for this code is provided in the notebook for this recipe.We also create the following summary visualization:

[image: Figure 12.3 – Summary of Protein Domains for Unique Gene Candidates]Figure 12.3 – Summary of Protein Domains for Unique Gene Candidates

We see a variety of protein domains and their frequency graphed here. You could use this information to examine your candidate genes further. For example, let’s say that you believe YourRichium synthesis involves a reaction catalyzed by a thioesterase (https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/thioesterase). You notice that there are A/B Hydrolase domains on some of your proteins. You find that these are part of a superfamily of proteins called Alpha/Beta Hydrolases which include thioesterases. You could then use a database of these proteins like ESTHER to explore their potential functions even further – Lenfant et al, “ESTHER, the database of the A/B hydrolase fold superfamily of proteins: tools to explore diversity of functions”, Nucleic Acids Research, Nov 2012 - https://pmc.ncbi.nlm.nih.gov/articles/PMC3531081/.You get the idea! You can see here how bioinformatics, AI, and literature research (and of course lab work!) create a virtuous cycle which can lead to significant and important discoveries.

See Also

	antiSmash is described in this paper: Blin et al, antiSmash 6.0: improving cluster detection and comparison capabilities, Nucleic Acids Research, May 2021 - https://academic.oup.com/nar/article/49/W1/W29/6274535

	DeepBGC is discussed here: Liu et al, Deep Learning to Predict the Biosynthetic Gene Clusters in Bacterial Genomes, JMB, Aug 2022 - https://www.sciencedirect.com/science/article/pii/S0022283622001772?casa_token=VlnuGUa2uKoAAAAA:aPJLT01QE0_f95GL2HYTdKQc0XLkPjZ31ac--CsgB8BtcjhnhCYJMjzK-Xvg2tzg4TSEolja

	Learn more about Set operators in Python: https://realpython.com/python-sets/

Chapter 13: Genome Editing

Join our book community on Discord

[image: A qr code with a square in the middle Description automatically generated]https://packt.link/EarlyAccessCommunity

In this chapter we will learn how bioinformatics is used in genome editing and analysis. In the past several years, there have been tremendous advances in our ability to modify genomes. This has led to a revival in our ability to alter microbes to make biofuels, engineer food crops for greater yield or pest resistance, and even alter human cells to cure cancer. The use of sequencing, especially long read sequencing, has become critical in this area to support verification of edits. We’ll see how the background we’ve built up so far is useful in applying bioinformatics to these emerging areas.The ability to insert or attach barcodes, or short sequences, to cells or constructs within cells, has also been revolutionary. By combining this approach with sequencing, one can design powerful and elegant experiments. We’ll see how bioinformatics can contribute to this exciting area.By the time you finish this chapter you’ll understand how to design strategies for editing genomes and resolve the accuracy of the edits. You’ll also learn how to use barcode counting algorithms to generate large-scale biological datasets. In this chapter, we will cover:

	Designing guide RNAs for Genome Editing

	Counting Barcodes in Genomic Libraries

	Using Nanopore data to resolve Genome Edits

Technical requirements

In this chapter we will use the following tools and packages:

	BioPython

	NumPy & Pandas

	Matplotlib & Seaborn

You will want to make a working directory called Ch13.The code for this chapter is available in: https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-Fourth-Edition/tree/main/Ch13

Designing guide RNAs for Genome Editing

In this recipe we will learn about the exciting world of gene editing! Early methods of genome editing included transpsoson mutagenesis, in which short “hopping” DNA sequences called Transposable Elements (TEs) are used to integrate into the genome and knock out genes (Liu et al, “Transposase-assisted target-site integration for efficient plant genome engineering”, Nature, Jun 2024 - https://www.nature.com/articles/s41586-024-07613-8). But it was really the invention of CRISPR (https://www.broadinstitute.org/what-broad/areas-focus/project-spotlight/crispr-timeline) that dramatically changed the field. CRISPR stands for Clustered Regular Interspaced Short Palindromic Repeats. These consist of sequences of DNA that are separated by spacers, and were first discovered in Archaea (https://pmc.ncbi.nlm.nih.gov/articles/PMC7613921/), a form of ancient life. CRISPR RNAs are transcribed and recognized by an enzyme, Cas9 that recognizes it and the associated matching DNA in the genome, and then cuts (edits) the genome. The initial applications involved knocking out genes, but researchers have now upgraded the CRISPR-Cas9 system to allow for gene knock-up or knock-down.The RNAs used to perform CRISPR editing are called guide RNAs or gRNAS. To design appropriate guide RNAs, you need to understand where you are targeting in the genome, what off-target homologous regions might exist, whether the RNAs might fold back on themselves, and so forth.When Cas9 binds to the target DNA, it looks for a special recognition site. This is the Protospacer Adjacent Motif (PAM) site (https://www.idtdna.com/pages/support/faqs/what-is-a-pam-sequence-and-where-is-it-located). As part of this recipe, we’ll learn about identifying the PAM site to find places in the genome suitable for editing.Cas9 identifies that target DNA and introduces a Double Strand Break (DSB) in which DNA is broken. There is a natural process in cells called Homology Directed Repair (HDR) in which the cell can take a homologous sequence in and use it to help guide the repair of the region. We can take advantage of this by introducing a homologous repair sequence that is very similar on the ends but contains a point mutation in the middle – thus introducing a point mutation (SNV) in the sequence in a very precise way. Once the sequence is repaired, it will be back to normal except for this single mutation. We’ll learn in this recipe how to design the Repair Template. In this recipe, we will learn about guide RNA design principles by designing a system to knock in a specific mutation in the BRCA1 gene (https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet). BRCA1 is a tumor suppressor gene involved in DNA repair and cell cycle regulation. Mutations in this gene can lead to cancers including Breast Cancer, from whence it got its name. Imagine that we have a patient with breast cancer, and it has been traced back to a single mutation (SNV) in the tumor. But by editing cells to fix this mutation and introducing them into the patient, you can replace the tumorous cells with new, health cells! To do this you need to create a cell line of edited cells, so you’ll design guide RNAs to introduce the right mutation in the right place.

Getting started

First you will want to get the Human BRCA1 gene sequence. You can find it here:https://www.ncbi.nlm.nih.gov/nuccore/NG_005905.2?report=fastaYou can download the file manually from here by choosing Send To | Complete Record | File from the menu and then choosing the FASTA format. You can leave Show GI unchecked.

[image: Figure 13.1 – Downloading the BRCA1 sequence from NCBI]Figure 13.1 – Downloading the BRCA1 sequence from NCBI

Once you have your file, move it to your Ch13 working directory and rename it brca1_sequence.fasta. Alternatively, you can directly download the file with this command:

! wget -O brca1_sequence.fasta "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=NG_005905.2&rettype=fasta&retmode=text"

This should place the brca1_sequence.fasta file in your working directory. You will use this in the recipe to design guide RNAs against. The code for this recipe can be found in Ch13/Ch13-1-grna-design.ipynb.

How To Do It...

Ok let’s design a system for finding guide RNAs that will introduce a mutation where we want it.

	First let’s import our libraries:

from Bio import SeqIO
import matplotlib.pyplot as plt
import os

We will use BioPython and os for sequence file manipulation and matplotlib for plotting.

	Next, we will write a simple function to load in our BRCA gene sequence:

def load_brca_sequence_from_file(filename, gene="BRCA1"):
print(f"Loading {gene} sequence from file: {filename}")
if not os.path.exists(filename):
 raise FileNotFoundError(f"File not found: {filename}")
 try:
 record = SeqIO.read(filename, "fasta")
 sequence = str(record.seq).upper()
 except Exception as e:
 raise Exception(f"Error reading FASTA file: {str(e)}")
 print(f"Sequence length: {len(sequence)} bp")
 return sequence, record.id

This function takes in a filename and gene to parse out, with the default being BRCA1. It then checks to see if the file exists.Next, it uses BioPython’s SeqIO module to read in and parse the file into the sequence variable and sets the sequence to be upper case. Finally, we print out the sequence length and then return the sequence and record id.

	Next, we need to design a function to create our mutation guides. We will look in a region around the desired mutation position and attempt to find PAM sites. We will check both the forward and reverse strand.

def design_mutation_guides(sequence, mutation_pos, mutation_from, mutation_to, window=100):
start = max(0, mutation_pos - window)
end = min(len(sequence), mutation_pos + window)
region_seq = sequence[start:end]
if sequence[mutation_pos] != mutation_from:
raise ValueError(f"Base at position {mutation_pos} is {sequence[mutation_pos]}, not {mutation_from}")
guides = []
for i in range(max(0, mutation_pos - window), min(len(sequence), mutation_pos + window)):
if i + 2 < len(sequence) and sequence[i+1:i+3] == "GG":
 if i >= 20:
 guide_seq = sequence[i-20:i]
 cut_site = i - 3
 distance = mutation_pos - cut_site
 guides.append({
 "sequence": guide_seq,
 "pam": "NGG",
 "strand": "+",
 "start": i-20,
 "end": i,
 "mutation_distance": abs(distance),
 "cut_site": cut_site
 })
 if i >= 1 and sequence[i-1:i+1] == "CC":
 if i + 20 < len(sequence):
 guide_seq = sequence[i+1:i+21]
 cut_site = i + 3
 distance = mutation_pos - cut_site
 guides.append({
 "sequence": guide_seq,
 "pam": "NGG",
 "strand": "-",
 "start": i+1,
 "end": i+21,
 "mutation_distance": abs(distance),
 "cut_site": cut_site
 })
return guides

This function takes in a sequence and target position for introducing a mutation. We will also specify the mutation from and to sequence, e.g “A” to “T” if we want to change an A to a T at that position. We will search within a certain radius around the target position, referred to as the Window Size. The default for this will be 100 base pairs.We will first extract the region around mutation position (within our window size) with some simple string manipulation. We then provide a simple check to make sure we don’t try to change the mutation base to itself, which would not accomplish anything. We also initialize our list of guides.Next, we will search within the window for our guides looking for a PAM site. We are looking here for an NGG PAM site, meaning any base followed by two Gs. We will walk across our sequence in the window area using a for loop. When we find a potential site, we will check that there is still enough room in the window to have a minimum 20nt (20 nucleotide) guide sequence. If there is a good candidate, we will next find the Cut Site which is going to be 3 base pairs upstream from the PAM site.We are going to record the distance of the cut site within the guide from the mutation. This is important because CRISPR works best when the cut site occurs within 10-30 base pairs of the desired mutation.The next step is to append the guide sequence information to our guides list. We will include our 20-nucleotide guide sequence, the PAM site used, the strand, the start and end position of the guide, the distance from the mutation, and the cut site.We then do the same thing on the reverse strand, this time looking for “CC” in the reverse complement sequence. Finally, we return our list of candidate guides.Ok, now let’s define a short function to calculate GC content:

def calculate_gc_content(sequence):
gc_count = sequence.count("G") + sequence.count("C")
return (gc_count / len(sequence)) * 100

This function simply counts the total number of G and C in the sequence and returns the percentage.

	Now we will define our function to design the repair template:

def design_repair_template(sequence, mutation_pos, mutation_from, mutation_to, homology_arm_length=50):
left_arm_start = mutation_pos - homology_arm_length left_arm = sequence[left_arm_start:mutation_pos]
right_arm_end = mutation_pos + 1 + homology_arm_length right_arm = sequence[mutation_pos+1:right_arm_end]
repair_template = left_arm + mutation_to + right_arm
return { "template": repair_template,
"left_arm": left_arm,
"right_arm": right_arm,
"mutation": mutation_to,
"length": len(repair_template) }

This function creates the repair template needed for Homology Directed Repair. It takes in the target sequence, mutation position, and the desired mutation. We also provide it with the desired homology end length, set to 50 by default.We create the repair template by joining the homologous region from the left side, the desired mutation, and the right-side homology region. We return the entire repair template, homology arms, desired mutation, and the length of the repair template.

	Now let’s define a function for scoring the different guide RNA candidates:

def score_guides(guides):
scored_guides = []
for guide in guides:
seq = guide["sequence"]
gc_content = calculate_gc_content(seq)
gc_score = 1.0 - abs(gc_content - 50) / 50
 distance = guide["mutation_distance"]
 if 0 <= distance <= 10:
 distance_score = 1.0
 else:
 distance_score = max(0, 1.0 - (distance - 10) / 40)
has_homopolymer = any(base * 4 in seq for base in "ATGC")
has_self_comp = False
overall_score = (0.3 * gc_score) + (0.7 * distance_score)
 if has_homopolymer or has_self_comp:
 overall_score *= 0.5
guide_scored = guide.copy()
guide_scored.update({ "gc_content": gc_content, "gc_score": gc_score,
"distance_score": distance_score,
"has_homopolymer": has_homopolymer,
"has_self_complementarity": has_self_comp,
"overall_score": overall_score })
 scored_guides.append(guide_scored)
 return sorted(scored_guides, key=lambda x: x ["overall_score"], reverse=True)

This function will:

	Initialize a list of scored_guides

	Calculate the GC content of the guide using the function we previously created. Guide RNAs with around 50% GC content tend to work best, and so we penalize for deviations from this.

	Apply Proximity Scoring. This penalizes guides that are farther away from the mutation site.

	Penalize homopolymers, in which we see the same base in a row 4 or more times

	Include a placeholder for checking Self Complementarity. RNAs that can bind with themselves will of course be less effective – we discussed these concepts in the “Design siRNAs using BioPython and ViennaRNA” recipe of Chapter 12.

	Calculate the overall score, giving more weight to distance and less weight to GC content.

	Use .copy() to create a new list of scored guides and update it to include the relevant scoring criteria and overall score for each guide.

	Return the list of scored guides, sorted in descending order by overall score.

	Now we’ll write a function to visualize our guides:

def visualize_guides(sequence, guides, mutation_pos, mutation_from, mutation_to, top_n=5):
plt.figure(figsize=(12, 6))
region_start = max(0, mutation_pos - 100)
 region_end = min(len(sequence), mutation_pos + 100)
 plt.axvline(x=mutation_pos, color='red', linestyle='--', label=f'Mutation: {mutation_from} → {mutation_to}')
top_guides = guides[:top_n]
for i, guide in enumerate(top_guides):
 if guide["strand"] == "+":
 plt.hlines(y=i+1, xmin=guide["start"], xmax=guide["end"], color='blue', alpha=0.7)
 plt.plot(guide["cut_site"], i+1, 'o', color='green')
 else:
 plt.hlines(y=i+1, xmin=guide["start"], xmax=guide["end"], color='purple', alpha=0.7)
 plt.plot(guide["cut_site"], i+1, 'o', color='green')
plt.legend()
plt.xlim(region_start, region_end)
plt.ylim(0, top_n+1)
plt.xlabel('Genomic Position') plt.yticks(range(1, top_n+1), [f"Guide {i+1}: Score={g['overall_score']:.2f}" for i, g in enumerate(top_guides)])
plt.title(f'Top {top_n} Guide RNAs for {mutation_from}{mutation_pos}{mutation_to} Mutation')
plt.tight_layout()
 plt.savefig('guide_visualization.png')
 plt.close()

This function will create a genomic map for us with a 200 base pair region having the mutation in the center. We set up our plot and use matplotlib’s axvline function to draw a dashed vertical line at our mutation position. We then extract our top guides (default is 5) and plot them as colored lines against their genomic position.

	Next, we iterate over the top guide sequences. For guides on the plus strand, we draw a blue line covering the region of the guide sequence, and a green circle at the cut site. For guides on the minus strand, we use a purple line and green circle.

Finally, we add our legend, axis labels, and title. We save our figure to a PNG file.Ok let’s put it all together and use our functions!

def main():
gene = "BRCA1"
mutation_pos = 42500
 mutation_from = "T"
 mutation_to = "C"
brca_file = "brca1_sequence.fasta"
try:
sequence, gene_id = load_brca_sequence_from_file(brca_file, gene)
except Exception as e:
print(f"Error loading sequence: {str(e)}")
print("Please ensure your FASTA file exists and is properly formatted.")
print("You can download the BRCA1 sequence from NCBI and save it as brca1_sequence.fasta")
return
print(f"Designing guides for {gene} mutation {mutation_from}{mutation_pos}{mutation_to}")
 try:
guides = design_mutation_guides(sequence, mutation_pos, mutation_from, mutation_to)
print(f"Found {len(guides)} potential guides")
except ValueError as e:
print(f"Error: {str(e)}")
print("Check that the mutation position and reference base are correct.")
return
scored_guides = score_guides(guides)
repair_template = design_repair_template(sequence, mutation_pos, mutation_from, mutation_to)
print("\nTop 5 Guide RNAs:")
for i, guide in enumerate(scored_guides[:5], 1):
print(f"Guide {i}: {guide['sequence']} (PAM: {guide['pam']}, Strand: {guide['strand']})")
print(f" Position: {guide['start']}-{guide['end']}, Cut site: {guide['cut_site']}")
print(f" Distance to mutation: {guide['mutation_distance']} bp")
print(f" GC content: {guide['gc_content']:.1f}%, Score: {guide['overall_score']:.2f}")
visualize_guides(sequence, scored_guides, mutation_pos, mutation_from, mutation_to)
print("\nRepair Template Design:") print(f"Length: {repair_template['length']} bp")
print(f"Left homology arm: {repair_template['left_arm']}")
print(f"Mutation: {mutation_from} → {repair_template['mutation']}")
print(f"Right homology arm: {repair_template['right_arm']}")
guides_df = pd.DataFrame(scored_guides)
 guides_df.to_csv(f"{gene}_mutation_guides.csv", index=False)
 print(f"\nResults saved to {gene}_mutation_guides.csv and guide_visualization.png")
if name == "main":
main()

This code will run our core functions in the order needed. First, we define our gene as BRCA1 and set up the position and desired mutation. We load in our BRCA1 gene sequence from the FASTA file we created. We then design our guide candidates against the sequence.Next, we score the guides and then design our repair templates. We print out our top 5 guide RNAs for review. We then call our visualization function to make the image of the genomic regions with our guide RNAs overlayed on it (it is saved to a PNG file). We print out the repair template information and then use Pandas to write out the guide RNAs to a CSV file.That’s it! Now we have a set of candidate guide RNAs for introducing the desired mutation into the BRCA1 gene, and a repair template. These materials would be suitable for use in a CRISPR lab workflow to perform gene editing. Here is our output:

[image: Figure 13.2 – Output for guide RNA design]Figure 13.2 – Output for guide RNA design

We see the top 5 guide RNAs with their details and scores, as well as the repair template design. Here is our output visualization:

[image: Figure 13.3 – Guide RNA design summary]Figure 13.3 – Guide RNA design summary

This graph shows the top 5 guide RNAs and their position along the sequence. We see the strand based on the color, and the cut site as a green circle. The mutation target position is highlighted in the center of the graph with the dashed line.The guide RNAs will also be saved in the output file BRCA1_mutation_guides.csv in your working directory.

There’s more...

In this section we’ll go a little further and cover some of the latest advances in genome editing. But first let’s see how to further upgrade the code we just wrote:

AI Tip

You can update your scoring function to include the actual implementation of self-complementarity using the ViennaRNA package.

Preparation: Paste in the score_guides() function

Prompt: Update the above scoring function to implement the self-complementarity score using ViennaRNA

You should see: An updated function that checks for installation of the ViennaRNA package and uses the RNA.fold() function to calculate a self-complementarity score.

Genome editing is finding uses in many exciting areas. It is being extensively used in plant science to improve crop traits (Pan et al, “Guide RNA library-based CRISPR screens in plants: opportunities and challenges”, Current Opinion in Biotechnology, Feb 2023 - https://www.sciencedirect.com/science/article/abs/pii/S0958166922002178?casa_token=9Ng_0ter2oAAAAAA:t-4lvycoGlSCxA4KqMijBFvfkfKPclCOqQCeMBt2-NUfCNE32DSM_DZtJQ2g4490JOwWzpDd). CRISPR is also used in livestock editing to improve efficiency, farming practices, and animal welfare (Menchaca et al, “CRISPR in livestock: From editing to printing”, Theriogenology, Jul 2020” - https://www.sciencedirect.com/science/article/pii/S0093691X20300765?casa_token=lzXqSGW8_4oAAAAA:wiXa17FYxHQr3PEZta8_EXcX2NNHNHgkpgi7l-nOvBOPnJnfe82ZXJ84_yNOzu05eOpptgeO). It is also widely used in medicine and cancer treatment, as we saw in this recipe. Many exciting new applications of CRISPR are emerging. As mentioned previously, in addition to gene knock out, CRISPRa and CRISPRi have been developed to provide gene activation and inactivation respectively (Bendixen et al, “CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi”, Molecular Therapy, Jul 2023 - https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(23)00145-4).In addition to Cas9, other CRISPR enzymes have been discovered, and many have useful properties for different applications. For example, Cas12 recognizes a different PAM site and creates sticky ends instead of blunt ends, which means that when the enzyme cuts the DNA, it leaves overhangs of DNA on one strand, as opposed to having evenly matched strands. This can be useful for various applications including increased precision. Cas13 can edit RNA instead of DNA!The Cas enzymes have also been a major target of protein engineering. For example, machine learning has been used to engineer ~1000 unique Cas9 enzymes, each with their own PAM site recognition (Silverstein et al, “Custom CRISPR-Cas9 PAM variants via scalable engineering and machine learning”, Nature, Apr 2025 - https://www.nature.com/articles/s41586-025-09021-y). Scientists are even working to engineer “PAM-free” Cas enzymes that can recognize any sequence (Collias & Beisel, “CRISPR technologies and the search for the PAM-free nuclease”, Nature Communications, Jan 2021 - https://www.nature.com/articles/s41467-020-20633-y).We have seen how genome editing is transforming the world and how bioinformatics plays a huge role in this effort. The exciting advances in this space are only just beginning!

See also

	Read how a knock-in strategy similar to the one discussed here was used in BRCA1 to improve cancer treatment: Witz et al, “CRISPR/Cas9-mediated knock-in of BRCA1/2 mutations restores response to olaparib in pancreatic cancer cell lines”, Scientific Reports, Oct 2023 - https://www.nature.com/articles/s41598-023-45964-w

	AwesomeCrispr provides a library of software tools and references - https://github.com/davidliwei/awesome-crispr/blob/master/README.md

	CRISPRware provides intelligent guide RNA design for library screening – Malekos et al, “CRISRware: an efficient method for contextual gRNA library design”, bioRxiv, Jun 2024 - https://pmc.ncbi.nlm.nih.gov/articles/PMC11213142/

A good review on Cas protein structure can be found here: Wang et al, “Structural biology of CRISPR-Cas immunity and genome-editing enzymes”, Nature Reviews Microbiology, May 2022 - https://www.nature.com/articles/s41579-022-00739-4CRISPR can even be used to image nucleic acids in real time – Chen et al, “CRIBAR: a fast and flexible sgRNA design tool for CRISPR imaging”, BioInformatics Advances, Feb 2025 - https://academic.oup.com/bioinformaticsadvances/article/5/1/vbaf022/8010465

Counting barcodes in a genomic library

Another exciting application of genome editing is to create Barcoded Genomic Libraries. In one typical example of this technique, CRISPR guide RNAs are introduced into cells such that each cell on average receives one guide RNA to knock out one gene, leaving behind a unique barcode sequence. The barcode and guide RNA from the CRISPR vector are integrated into the genome. This means that we can put many cells together into a single experiment (such as a fermentation tank) and see which ones out-compete the others and then retrieve those cells and sequence them to identify the barcodes, a technique known as Bar-Seq. This will tell us which gene interventions worked the best and is known as Pooled Screening. Barcodes are also used in other applications such as Demultiplexing. Multiple samples are barcoded before being put on a sequencer so that they can be deconvoluted, or demultiplexed before analysis. This allows for cost savings by running many samples on a sequencer that can produce a tremendous amount of data per run. Illumina sequencers produce BCL (short for Binary Base Call) format files, which are then combined with the barcodes used for de-multiplexing using a program called BCLConvert, which then produces the FASTQ files for the individual samples. This recipe, however, will focus on the use of barcodes in screening genomic libraries.Barcodes are typically ~10-20 nucleotide long sequences that are meant to be unique enough for the experiment. Given N barcodes, you will have 4^N potential unique barcodes, meaning you can design barcodes long enough for potentially very large experiments. You also need to consider GC content, homopolymer runs, self-similarity, and potential mutations in the barcode during construction.To read out the barcodes, we will typically use something like a regular expression, so that we can perform “fuzzy matching” on the barcode. This helps ensure that if there are some accidental mutations, we can still recover the barcode. A regular expression encodes logic with some special characters to match strings. For example, consider the expression:

\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b

This would use \b to define a word boundary, and then the characters in the [] section say that we can match any one of a number of letters, numbers, and special characters. After that we have to have an “@” symbol. Next, we match any characters again, then we need a “.”, then 2 or more characters. This type of regular expression will match an email address, like for example: your.name@cookbook.com.To learn more about regular expressions you should familiarize yourself with the Python re module, https://docs.python.org/3/library/re.html. When analyzing barcodes we should know about Hamming Distance. This is the distance between any 2 barcodes – for example, ACTG and AGCG differ by 2 positions, so they have a Hamming distance of 2. This is important because when designing barcode libraries, we want to design our set of barcodes such that all the barcodes have a minimum Hamming distance between them (typically 3 is good). That way, if there are sequencing errors that erode one or two of the bases in the barcode, we can still distinguish them.One popular tool for analyzing barcode sequences is Bartender (https://github.com/LaoZZZZZ/bartender-1.1/blob/master/README.md). It applies barcode patterns as regular expressions to cluster similar barcodes together. In many cases, barcodes are first generated in a random manner. The next task is then to identify what they are. Bartender uses optimized algorithms to then cluster and identify the barcodes in the pool. One important class of random barcodes are Unique Molecular Identifiers (UMIs). These sequences are attached during the sequencing process to identify unique individual molecules. During sequencing, often the molecules being sequenced are amplified via PCR. During this process, duplicates of the same molecule can be amplified, leading to PCR Duplicates. UMIs help filter out these duplicates (https://www.ecseq.com/support/ngs/how-can-unique-molecular-identifiers-help-to-reduce-quantitative-biases). UMIs also provide powerful error correction, allowing for highly sensitive variant detection. This is used in cell-free DNA (cfDNA) analysis to detect very low level variants coming from tumor DNA circulating in your blood, enabling techniques like Molecular Residual Disease (MRD) detection, in which a patient's cancer can be monitored to exquisite accuracy during their treatment (Hirotsu et al, “Dual-molecule barcode sequencing detects rare variants in tumor and cell-free DNA in plasma”, Scientific Reports, Feb 2020 - https://www.nature.com/articles/s41598-020-60361-3). Bartender also understands that barcodes may change slightly during a Time-Course Analysis and is able to use the clustering approach to track the equivalent barcodes as they evolve over time in an experiment.By the end of this recipe, you will understand how barcodes are extracted and read from sequencing data, and how barcoded libraries can be analyzed to gain biological insights from real-world experiments!

Getting Started

There is nothing extra to install for this recipe. As this recipe is very long, we will not cover every single function in the text of the book. Instead, we will discuss each function but, in some cases, refer you to the notebook to review the actual code.The code for this recipe can be found in Ch13/Ch13-2-barcodes.ipynb.

How To Do It...

Here are the steps to try this recipe:

	First, we will import our libraries:

import re
import random
from collections import Counter, defaultdict
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

We will use re for regular expression manipulation. We also include the random library for generating pseudo-random numbers.

	Now we will set up a few basic items before going further:

plt.style.use('ggplot')
sns.set(font_scale=1.1)
np.random.seed(42)
random.seed(42)

This code first sets the plot style to the popular ggplot style. Next, we adjust the default font size by 10%. We then set random seeds for Numpy and Python’s built in random module respectively. Setting the random see to a number like this means the code will be reproducible when you run it.

	Next, we will define a function to generate simulated FASTQ data:

def generate_random_sequence(length):
return ''.join(random.choice('ACGT') for _ in range(length))

This function uses a list comprehension to make a random choice of our 4 bases (A, C, G, or T). The for _ loop iterates length number of times, and finally, .join() concatenates the bases together. Recall that list comprehension is when we use a for loop directly inline to create the list.

	Next, we need a function to map the barcodes to the genes. For each gene there will be a barcode that represents its expression. We need to make up a series of gene names and then assign it a random barcode. This will simulate what would happen in a real gene expression library.

def create_barcode_gene_map(num_barcodes=50):
genes = [f"Gene_{chr(65+i//4)}{i%4+1}" for i in range(num_barcodes)]
barcodes = [generate_random_sequence(12) for _ in range(num_barcodes)]
return dict(zip(barcodes, genes))

This function will give us gene names like A1, B2 etc. It will also give us 12 base pair barcodes using our generate_random_sequence() function. We return the paired encoding by using the zip() function to combine or zip up the two lists, and then turn this result into a dictionary. Note that with 4 positions and 12 letters, we can generate 4^12 or 16,777,216 barcodes. That is plenty to cover all the genes in the genome!

	Next, we need a function to generate a simulated FASTQ file as if it had come from a real experiment. Imagine that we measured the numerous barcodes in a cell from a real experiment by sequencing it. We would find a variety of genes up- or down-regulated based on the conditions. This would be reflected in the relative abundance of the barcodes for those genes. This function will simulate what we would get from a real sequencing experiment.

def generate_fastq_content(num_reads, barcode_gene_map, barcode_distribution):
barcodes = list(barcode_gene_map.keys())
lines = []
for i in range(num_reads):
 barcode = np.random.choice(barcodes, p=barcode_distribution)
pre_seq = generate_random_sequence(random.randint(15, 25))
post_seq = generate_random_sequence(random.randint(30, 60))
full_seq = pre_seq + barcode + post_seq
quality = ''.join(chr(random.randint(33, 73)) for _ in range(len(full_seq)))
lines.append(f"@Read_{i+1} barcode={barcode}")
 lines.append(full_seq)
 lines.append("+")
 lines.append(quality)
return lines

Let’s review this code:

	First, we initialize our list of barcodes and the lines of our file

	Next, use the Numpy random.choice() method to choose a set of barcodes based on barcode_distribution supplied to the function. The distribution is a set of probabilities used to skew the barcode choices – if none is given, a uniform distribution will be used.

	Then generate a pre and post sequence. Join the barcode in-between the pre and post sequences, to create a simulated read containing the barcode.

	Since FASTQ files require a quality line, we also generate a quality string with random Q scores from 33 to 73.

	We then construct the FASTQ lines including the header, sequence, and quality scores.

	Now we need a function to create different probability distributions for the barcodes, so that we will see a different result for each sample in the experiment.

def create_sample_distributions(num_barcodes, num_samples=3):
distributions = []
 for sample in range(num_samples):
 dist = np.random.dirichlet(np.ones(num_barcodes) * 0.5)
 boost_indices = np.random.choice(num_barcodes, size=5, replace=False)
 for idx in boost_indices:
 dist[idx] *= random.uniform(3, 8)
 dist = dist / dist.sum()
 distributions.append(dist)
return distributions

This code takes in the desired number of barcodes and samples and then uses np.random to create a Dirichlet distribution, which is a common parameterized probability distribution that is often used in cases like this (https://www.sciencedirect.com/topics/mathematics/dirichlet-distribution).We also select 5 barcodes and put them in boost_indices and then randomly boost their value by a factor of 3 to 8. This will ensure that each sample has a few overrepresented genes. Finally, we append the distributions to our list and return it.

	Next, we will need a simple parse_fastq() function to parse out our faux FASTQ reads. You can refer to the notebook and review this function. It should be straightforward for you by this point, but if you want further explanation, you can paste it into your AI tool.

Now we will define a function to extract the barcodes from the simulated reads:

def extract_barcodes(reads, barcode_pattern):
barcode_dict = {}
for header, sequence in reads:
 read_id = header.split()[0][1:]
 header_match = re.search(r'barcode=(\w+)', header)
 if header_match:
 barcode_dict[read_id] = header_match.group(1)
 continue
 match = barcode_pattern.search(sequence)
 if match:
 barcode_dict[read_id] = match.group(1)
 return barcode_dict

This function takes in the reads and a barcode regular expression pattern. It then searches either the header or sequence for the barcode and adds them to a dictionary.We use Python’s regex (regular expression) module here. .match() looks for a pattern at the beginning of a string. .search() searches the entire string. And .group() is used to cleanly return the found pattern.

	Next, we need to map the barcodes to the genes and count the number of barcodes for each gene.

def map_to_genes_and_count(barcode_dict, barcode_gene_map):
barcode_counts = Counter(barcode_dict.values())
gene_counts = defaultdict(int)
for barcode, count in barcode_counts.items():
if barcode in barcode_gene_map:
gene = barcode_gene_map[barcode]
gene_counts[gene] += count

return Counter(gene_counts)This function first creates a Counter object from the Python Collections module, to keep track of the counts for each barcode. We then create a defaultdict for the gene counts, a dictionary which provides default values for any non-existing keys. We then loop over the barcodes and for each barcode we find that is mapped to a gene, we increment the count for that gene.

	Next, we will define some graphing functions to visualize our data. The plot_gene_heatmap() function will build a heat map showing the expression of various genes over the different samples. The plot_gene_proportions() function will make a stacked bar chart showing the relative proportion of each gene by sample, based on its barcode abundance. The plot_top_genes_barchart() will create a bar chart of the top 10 genes and their relative abundance in each sample. You can review these functions in the notebook.

Ok let’s set up our simulation and run the analysis!

	First, we will create sample distributions for each of the three samples so they will have contrasting barcode profiles:

sample_distributions = create_sample_distributions(num_barcodes, num_samples=3)

	Next, we will generate the sample sequencing data for our 3 samples:

sample_fastq_data = {}
for i, dist in enumerate(sample_distributions): sample_name = f"Sample_{i+1}"
sample_fastq_data[sample_name] = generate_fastq_content(num_reads=3000, barcode_gene_map=barcode_gene_map, barcode_distribution=dist)
print(f"Generated {len(sample_fastq_data[sample_name])//4} reads for {sample_name}")

	Now, we set up our regex pattern. This pattern is simple for purposes of illustration, and picks up any 12 base pair sequence of A,C,G,T:

barcode_pattern = re.compile(r'([ACGT]{12})')

In this example we just associated each gene and barcode in the header of the simulated FASTQ data to keep things simple. We used a very simple regex pattern. But in real life we might use a more sophisticated regular expression and barcode pattern. Here is an example of how we could upgrade our code in such as case:

AI Tip

Background: Let’s imagine we want to work with 10x Genomics Single-Cell data (https://www.10xgenomics.com/blog/single-cell-rna-seq-an-introductory-overview-and-tools-for-getting-started) which uses a 16bp Cell barcode at the beginning of the read, followed by a UMI (Unique Molecular Identifier, used to identify reads that came from the same molecule – see: https://www.illumina.com/techniques/sequencing/ngs-library-prep/multiplexing/unique-molecular-identifiers.html). There will also be a potential Poly-T sequence after the UMI. We could specify this type of barcode with this pattern:

barcode_pattern = re.compile(r'^([ACGT]{16})([ACGT]{12})(T{5,})?(.*)')

Preparation: Paste in your code from the section above (“Create Distributions for three different samples”)

Prompt: Upgrade this code to use a barcode pattern suitable for 10x Genomics single cell sequencing data, which uses a 16bp cell barcode, followed by a 12bp UMI, followed by a potential Poly-T sequence.

You Should See: Code to use the new barcode pattern and properly capture the different elements of the barcode. It will also include UMI deduplication to improve read counting for greater accuracy.

Ok let’s continue with our example!

	Next, we will loop over the samples and analyze them.

sample_results = {}
for sample_name, fastq_lines in sample_fastq_data.items():
reads = parse_fastq(fastq_lines)
barcode_dict = extract_barcodes(reads, barcode_pattern)
gene_counts = map_to_genes_and_count(barcode_dict, barcode_gene_map)
sample_results[sample_name] = gene_counts
print(f"\nAnalysis of {sample_name}:")
 print(f" Total reads: {len(reads)}")
 print(f" Reads with identified barcodes: {len(barcode_dict)} ({len(barcode_dict)/len(reads)*100:.1f}%)")
 print(f" Unique genes detected: {len(gene_counts)}")
 print(f" Top 5 most abundant genes:")
 for gene, count in gene_counts.most_common(5):
 print(f" {gene}: {count} reads ({count/len(reads)*100:.1f}%)")
print("\nGenerating visualizations...")
plot_gene_heatmap(sample_results)
plot_gene_proportions(sample_results)
plot_top_genes_barplot(sample_results)
print("Analysis complete!")

This code will:

	Initialize a dictionary to keep track of the results for the samples

	Loop over the samples and their corresponding FASTQ data

	Parse the FASTQ lines and extract the barcodes

	Map the barcodes to the genes and count them

	Store the gene counts in the sample_results dictionary for each sample

	Print out summary statistics

	Create our 3 key visualizations

That’s it! We now have a functioning example of a barcode analysis system.Here is the output we get:

Analysis of Sample_1:
 Total reads: 3000
 Reads with identified barcodes: 3000 (100.0%)
 Unique genes detected: 42
 Top 5 most abundant genes:
 Gene_E1: 1092 reads (36.4%)
 Gene_G1: 349 reads (11.6%)
 Gene_G2: 190 reads (6.3%)
 Gene_M2: 142 reads (4.7%)
 Gene_K2: 125 reads (4.2%)
Analysis of Sample_2:
 Total reads: 3000
 Reads with identified barcodes: 3000 (100.0%)
 Unique genes detected: 46
 Top 5 most abundant genes:
 Gene_E3: 469 reads (15.6%)
 Gene_L2: 262 reads (8.7%)
 Gene_K2: 215 reads (7.2%)
 Gene_H2: 176 reads (5.9%)
 Gene_M2: 172 reads (5.7%)
Analysis of Sample_3:
 Total reads: 3000
 Reads with identified barcodes: 3000 (100.0%)
 Unique genes detected: 45
 Top 5 most abundant genes:
 Gene_A1: 377 reads (12.6%)
 Gene_H1: 352 reads (11.7%)
 Gene_J4: 281 reads (9.4%)
 Gene_B1: 256 reads (8.5%)
 Gene_F1: 216 reads (7.2%)

The following is its heatmap:

[image: Figure 13.4 – HeatMap from Barcode Analysis]Figure 13.4 – HeatMap from Barcode Analysis

Next, we will produce a bar chart for each sample. We use different colors to show the proportion of each gene found in the barcode counting:

[image: Figure 13.5 – Proportions of each Gene by Sample, based on Barcode abundance]Figure 13.5 – Proportions of each Gene by Sample, based on Barcode abundance

Here we have a side-by-side bar chart showing the top genes found in the analysis along the X axis, and with their relative count for each sample shown with three different colors:

[image: Figure 13.6 – Barcode counts for each of the Top Genes, by Sample]Figure 13.6 – Barcode counts for each of the Top Genes, by Sample

This summarizes our results. We can see that each sample has a different set of top genes, and that each sample has a unique gene expression pattern. In a real experiment, these samples could be different strains of an organism making varying levels of a product, or cells from three different tissues. We would be able to quickly gain insights into the biology going on in the samples. We could review the gene annotations for top up- or down-regulated genes or use Pathway Analysis to see whether the genes worked together in common biochemical systems.

There’s more...

Barcode sequencing technology is a transformative method for generating big datasets in biology. For example, Perturb-Seq generates CRISPRi guide RNAs with barcodes for all major transcriptional regulators in a cell, and then exposes the cells to a variety of conditions. The readout comes from single-cell RNAseq. This provides a rich dataset allowing for gene expression changes to be tied back to their genetic regulators, along with analysis of how those regulators are important under different cellular conditions. This technology uses three levels of combinatorial barcode indexing (Jiang et al, Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens, Nature Cell Biology, Feb 2025 - https://www.nature.com/articles/s41556-025-01622-z)Barcode technology is used to perform powerful pooled screening in fermentation tanks (Wehrs et al, Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation, Microbial Cell Factories, Aug 2020 - https://link.springer.com/article/10.1186/s12934-020-01423-z). It can be combined with imaging (Walton et al, “Pooled genetic screens with image-based profiling”, Molecular Systems Biology, Nov 2022 - https://www.embopress.org/doi/full/10.15252/msb.202110768) and has been used in drug development (Wong et al, “Multiplex barcoded CRISPR-Cas9 screening enabled by CombiGEM”, PNAS, Feb 2016 - https://www.pnas.org/doi/10.1073/pnas.1517883113) and organoid development (Mukhare et al, “Integration of Organoids with CRISPR Screens: A Narrative Review”, Biology of the Cell, Apr 2025 - https://onlinelibrary.wiley.com/doi/full/10.1111/boc.70006). Barcode screening can also be combined with microfluidics for incredibly high-throughput experiments (Li et al, “UDA-seq: universal droplet microfluidics-based combinatorial indexing for massive-scale multimodal single-cell sequencing”, Nature Methods, Jan 2025 - https://www.nature.com/articles/s41592-024-02586-y).This powerful tool generates large data sets that directly interrogate complex biology, and bioinformatics is poised to have a huge impact on the analysis and interpretation of this data!

See also

	Here is a tutorial on regular expressions: https://www.geeksforgeeks.org/write-regular-expressions/

	The Bartender paper is here: Zhao et al, Bartender: a fast and accurate clustering algorithm to count barcode reads, BioInformatics, Mar 2018 - https://academic.oup.com/bioinformatics/article/34/5/739/4562326

	mBARq is another tool for barcode analysis: Sintsova et al, mBARq: a versatile and user-friendly framework for the analysis of DNA barcodes from transposon insertion libraries, knockout mutants, and isogenic strain populations, BioInformatics, Feb 2024 - https://academic.oup.com/bioinformatics/article/40/2/btae078/7606336

	SeqWalk helps you design robust libraries with good separation between barcodes: Gowri et al, Scalable design of orthogonal DNA barcode libraries, Nature Computational Science, Jun 2024 - https://www.nature.com/articles/s43588-024-00646-z

	A tutorial on designing CRISPR screens can be found here: Braun et al, Tutorial: design and execution of CRISPR in vivo screens, Nature Protocols, Jul 2022 - https://www.nature.com/articles/s41596-022-00700-y

	Dive deeper into the science of MRD here: Kurtz et al, Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA, Nature Biotechnology, Jul 2021 - https://www.nature.com/articles/s41587-021-00981-w

Using Nanopore data to resolve Genome Edits

In this recipe, we’ll learn how to determine if the position where we’ve edited a genome is correct. For example, we may wish to insert a foreign gene into a strain. In this case we might want to ensure that the gene landed in the correct region and did not interfere with other genes or their promoters. We might want to insert a barcode, a promoter library, or other entities as well. To check the accuracy of such edits, one could use PCR or short reads for example, but to be absolutely sure, long read sequencing is recommended.By the end of this recipe, you’ll understand how to simulate long read data and apply it to a genomic edit and verify whether or not the edit has been performed successfully.

Getting Started

There are no major packages needed for installation in this recipe, other than the libraires we’ll install below.The code for this recipe can be found in Ch13/Ch13-3-genome-editing.ipynb.

How To Do It...

Here are the steps to try this recipe:

	First, we need to import our libraries:

import random
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from collections import Counter
from IPython.display import display, HTML

We will use BioPython and some of our other standard libraries. We also bring in the iPython display module (https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html) which provides methods for displaying rich media, such as HTML or audio, in a notebook.

	Next, we will set our random seeds so our results will be reproducible:

np.random.seed(42)
random.seed(42)

	Now let’s set up a function to generate a simulated DNA sequence.

def generate_random_sequence(length, gc_content=0.5):
p_g = p_c = gc_content / 2
p_a = p_t = (1 - gc_content) / 2
nucleotides = []
for _ in range(length):
nuc = np.random.choice(['A', 'C', 'G', 'T'], p=[p_a, p_c, p_g, p_t])
nucleotides.append(nuc)
return ''.join(nucleotides)

This function will assign probabilities to the bases (A, C, G, T) depending on the average GC content provided. It will then make a random choice based on those probabilities and construct a sequence of the desired length.

	Now we will simulate insertion of a gene into a genome. First, we will construct the reference genome.

print("Creating reference genome...")
reference_genome = generate_random_sequence(10000)
print(f"Reference genome length: {len(reference_genome)}")
print(f"Reference sample: {reference_genome[:50]}...")

This uses our random sequence generator to set up a reference_genome of 10,000 base pairs.

	We then print out the length and a subset of the sequence.

print("\nCreating gene insertion...")
insertion_sequence = generate_random_sequence(1500, gc_content=0.6)
print(f"Insertion length: {len(insertion_sequence)}")
print(f"Insertion sample: {insertion_sequence[:50]}...")

This creates a simulated insertion sequence of 1500 base pairs with 60% average GC content.

	Now we just need to insert our simulated “gene” into the reference sequence.

insertion_position = 4000
modified_genome = reference_genome[:insertion_position] + insertion_sequence + reference_genome[insertion_position:]
print(f"\nModified genome length: {len(modified_genome)}")
print(f"Insertion position: {insertion_position}")

Here we add the insertion_sequence at position 4,000 in the reference genome by adding the left side, insertion, and right side together.Here is our output:

Creating reference genome...
Reference genome length: 100000
Reference sample: CTGGAAATGGATTAAACGCCGACCCTAGGAGAATTTCAGCACATCGCGGA...
Creating gene insertion...
Insertion length: 5000
Insertion sample: GGCCCGTGCGATCCAGGCGAGCGTACATCCGGTGTAATTCCCGGCCCAAA...
Modified genome length: 105000
Insertion position: 40000

This shows us how we create our reference genome, insertion, the length of the new “genome” and the position where we inserted the gene. Nanopore reads are inherently noisy and can contain base errors (substitutions of the wrong base) and insertions and deletions, in particular around homopolymer runs.

	We’ll need a function to simulate the errors in the reads:

def apply_nanopore_errors(sequence):
 result = ''
 for base in sequence:
 p_error = 0.05
 if random.random() < p_error:
 error_type = random.choice(['substitution', 'deletion', 'insertion'])
 if error_type == 'substitution':
 possible_bases = [b for b in 'ACGT' if b != base]
 result += random.choice(possible_bases)
 elif error_type == 'deletion':
 continue
 else:
 result += random.choice('ACGT') + base
 else:
 result += base
 return result

This function loops over the sequence and assigns a 5% error rate. So, 5% of the time, we choose to introduce an error, and we pick between the options of substitution, insertion and deletion.If we are introducing a substitution, we pick a base other than the current base and replace it with that base. If this is a deletion, we simply skip over the base. And if this is an insertion (the final else condition) we pick a random base and add it in front of our main base. If we are not in the error condition, we just add the current base to the result.At the end, we return our new sequence with errors introduced.

	Next, we will define a function to generate a set of nanopore reads.

Our function generate_nanopore_reads() will take in a genome, a desired number of reads, and a length range for the reads. Review this code in the notebook.This function creates a number of reads, with a random length between the min and max desired length. It picks a random position in our genome and then extracts out a sequence for a read of that length. We then call our function apply_nanopore_errors() to add the errors consistent with typical sequencing results. Finally, we assign the reads an ID, store the information, and return the read set.Let’s use the function to generate a nanopore read set for our genome:

print("\nGenerating nanopore reads...")
reads, read_info = generate_nanopore_reads(modified_genome, n_reads=1000)
print(f"Generated {len(reads)} nanopore reads")
print("\nSample of read information:")
display(read_info.head())

We generate 1000 reads from the genome. Here is the output:

[image: Figure 13.7 – Sample output for generated Reads]Figure 13.7 – Sample output for generated Reads

This shows a sample overview of the first 5 reads, including the read id, start and end position, and length of the read.

	Next, we will define some functions to align the reads to the genome. We will use a Kmer-based Alignment strategy. In this approach, we break a read into k-length subsets called kmers, and find the maximum number of kmers in the read matching to adjacent locations in the genome. This approach can be more efficient than traditional approaches like Smith-Waterman.

	First, we’ll write a short function to find all the k-mers in sequence.

def find_kmers(sequence, k=15):
 kmers = []
 for i in range(len(sequence) - k + 1):
 kmers.append(sequence[i:i+k])
 return kmers

This function simply loops over the sequence and pulls out subsets (k-mers) of default length 15.

	Now, we will define our function for mapping reads to the genome:

def map_read_to_genome(read, reference, k=15, mismatch_penalty=0.2):
read_kmers = find_kmers(read, k)
 kmer_positions = {}
 for i in range(len(reference) - k + 1):
 kmer = reference[i:i+k]
 if kmer not in kmer_positions:
 kmer_positions[kmer] = []
 kmer_positions[kmer].append(i)
position_counts = Counter()
for i, kmer in enumerate(read_kmers):
 if kmer in kmer_positions:
 for pos in kmer_positions[kmer]:
 expected_offset = i
 actual_offset = pos
 position_counts[pos - expected_offset] += 1
 if position_counts:
 best_offset = position_counts.most_common(1)[0][0]
 confidence = position_counts[best_offset] / len(read_kmers)
 if len(position_counts) > 1:
 second_best = position_counts.most_common(2)[1][1] if len(position_counts) > 1 else 0
 ratio = second_best / position_counts.most_common(1)[0][1] if position_counts.most_common(1)[0][1] > 0 else 0
 confidence *= (1 - ratio * mismatch_penalty)
 return best_offset, confidence
 else:
 return -1, 0.0

This function will first obtain the k-mers for the read. We then loop over the reference genome and all kmers for it as well. We then initialize a Counter() object count the number of read kmers that match kmer positions in the genome. We then use the most_common() function (https://www.geeksforgeeks.org/python-most_common-function/) to find the best matching position in the genome with the highest number of kmer matches coming from the read, which is therefore the most likely position for that read to align in the genome. We calculate a confidence score by looking at the ratio of kmers that align to the genome versus the total number of kmers in the read. We also apply a penalty for reads that map equally to both locations. Finally, we return the best match position and the confidence score. We’ll use this function to align reads to our genome.

	Now, we will map our simulated reads to the reference genome.

print("\nMapping reads to reference and modified genomes...")
mapping_results = []
k_size = 21
for read in reads:
 read_seq = str(read.seq)
ref_pos, ref_conf = map_read_to_genome(read_seq, reference_genome, k=k_size)
mod_pos, mod_conf = map_read_to_genome(read_seq, modified_genome, k=k_size)
read_len = len(read_seq)
if read_len > 0:
normalized_ref_conf = ref_conf * (read_len / 1000)
normalized_mod_conf = mod_conf * (read_len / 1000)
conf_diff = normalized_mod_conf - normalized_ref_conf
else:
conf_diff = 0
threshold = max(0.05, 0.2 - (read_len / 10000))
read_type = 'ambiguous'
if conf_diff > threshold:
if mod_pos < insertion_position and mod_pos + read_len > insertion_position + len(insertion_sequence):
read_type = 'spanning'
elif (mod_pos <= insertion_position and mod_pos + read_len > insertion_position) or
(mod_pos < insertion_position + len(insertion_sequence) and mod_pos + read_len >= insertion_position + len(insertion_sequence)):
read_type = 'supporting'
else:
read_type = 'non-insertion'
elif conf_diff < -threshold:
read_type = 'reference'
mapping_results.append({
 'read_id': read.id,
 'read_length': read_len,
 'ref_position': ref_pos,
 'ref_confidence': ref_conf,
 'mod_position': mod_pos,
 ' mod_confidence': mod_conf,
 'confidence_diff': conf_diff,
 'read_type': read_type
 })

This code will take each read and map it to both our “normal” reference genome and the “modified” reference genome with the insertion. By default, we will assume that our read mapping is ambiguous. We calculate a confidence difference, looking at the number of reads mapping to the normal versus modified genome. If the confidence score is too close to call, we’ll leave this as an ambiguous mapping call. Note that we pass through a kmer size of 21 here (as opposed to the functions default of 15) to get fewer ambiguous matches. Optimizing the kmer size is an import factor to understand in kmer-based alignment. We also apply an adjustment to our threshold based on read-length, as longer reads should have higher confidence.If the reads map better to our modified genome, we’ll examine the following cases:

	If the read is able to completely span the insertion and cross into the genomic regions on the left and right, we will call this a spanning read. This is an ideal situation in which we have significant evidence not only of the insertion, but also that it has a flanking region on both the left and right side. This helps us be sure it really inserted in the right place and did not insert somewhere else, or even worse cause some sort of recombination event in which it picked up a portion of the target genome but also rearranged itself somewhere else, which would be an Off-Target Effect.

	If the read crosses one end of the genome into the insertion, we call this a supporting read. This provides good evidence of correct insertion, if combined with supporting reads coming from both sides of the insertion.

	If the read maps to the modified genome, but not at the insertion location, we call it a non-insertion read.

If a read is better mapped to the unmodified genome, we will call it a reference read.

	Finally, we create all the details for our analysis and append it to the mapping_results list.

Now let’s summarize the analysis:

alignment_df = pd.DataFrame(mapping_results)
display(alignment_df.head())
read_type_counts = alignment_df['read_type'].value_counts() print("\nRead type distribution:") display(read_type_counts)

We will convert the data to a Pandas dataframe. We display the header and then summarize counts for the different read types.Here is what we get:

[image: Figure 13.8 – Alignment Results Summary]Figure 13.8 – Alignment Results Summary

We definitely see some reads spanning or supporting our insertion, so our strategy appears able to detect the inserted sequence. We are not really getting reference reads because our confidence threshold is not such that it distinguishes between the normal and reference genome enough to cross the threshold. You can play around with tuning that if you want, but it will not impact this exercise.

	Now we will analyze and summarize the evidence for our gene insertion:

spanning_reads = len(alignment_df[alignment_df['read_type'] == 'spanning']) supporting_reads = len(alignment_df[alignment_df['read_type'] == 'supporting']) total_reads = len(alignment_df)
print(f"\nInsertion evidence summary:")
print(f"Total reads: {total_reads}")
print(f"Reads spanning the insertion: {spanning_reads} ({spanning_reads/total_reads100:.1f}%)")
print(f"Reads supporting the insertion: {supporting_reads} ({supporting_reads/total_reads100:.1f}%)")

This gives us some totals for the reads supporting the insertion event:

Insertion evidence summary:
Total reads: 1000
Reads spanning the insertion: 488 (48.8%)
Reads supporting the insertion: 16 (1.6%)

Good! We have a fair number of reads that support our insertion or even span it completely. In a real example our genome would be much larger, and the percentages would be lower – but as long as you have something in the range of 20-30x coverage supporting both ends of your insertion, you would have a strong case for proper gene insertion.

	Next, we’ll visualize our results. The first graph is for read type distribution. You can review this code under “Graph 1 – Read Type Distribution” in the notebook. Here is the resulting graph:

[image: Figure 13.9 – Distribution of Read types from Insertion Analysis]Figure 13.9 – Distribution of Read types from Insertion Analysis

We see a summary of the number of different read types found here.Let’s create a graph to help us analyze the confidence scores of the reads, to see how much we are disambiguating a putative normal genome from a modified genome. Review the code for “Graph 2 – Confidence Difference Histogram” in the notebook. Here is the output:

[image: Figure 13.10 – Histogram of Confidence Differences in Insertion Analysis]Figure 13.10 – Histogram of Confidence Differences in Insertion Analysis

This shows a peak near 0, which represents our ambiguous reads, which are the equivalent of reference reads. This is expected as much of the genome is normal and does not contain the insertion. On the right side though we see a long tail indicating quite a few reads that have high confidence of separation between the normal and modified genome. These are the reads that provide evidence for the insertion.

	Now check out the code for “Graph 3 – Read Alignment Visualization”. This graph uses line plotting in matplotlib to show the reads lined up against the insertion region. Here is what we get:

[image: Figure 13.11 – Read Alignment Visualization for Insertion Analysis]Figure 13.11 – Read Alignment Visualization for Insertion Analysis

You can try playing around with different aspects of this graph. A bigger genome would help you see more normal and insertion regions layed out for example.Let’s define a function now to verify the insertion and summarize our results. Review the code for the verify_insertion() function in the notebook. This code calculates percentages for reads that support the insertion and applies a threshold, requiring at least 5 fully spanning reads and 15 supporting reads. It gives an example of calculating a simple confidence score based on the evidence.We then calculate the verification result and display it using HTML:

[image: Figure 13.12 – Results of Insertion Verification Analysis]Figure 13.12 – Results of Insertion Verification Analysis

Congratulations! You have verified the insertion. Your strain engineers will be very happy!Let’s create another nice figure for them to summarize the evidence. Review “Step 6 – Coverage Analysis Across Insertion Site” in the notebook. This code calculates a coverage depth by looking at the number of reads covering each position in the sequence and then adds some lines and colors to highlight where the expected insertion is. Here is what we see:

[image: Figure 13.13 – Read Coverage Across Insertion Site]Figure 13.13 – Read Coverage Across Insertion Site

The final piece will be a textual summary of the overall results and some guidance to the scientist for potential next steps. Review “Step 7 – Conclusion and Next Steps” in the notebook. Here is the output:

--- Conclusion ---
Insertion VERIFIED with moderate confidence (0.05). Found 488 spanning reads and 16 supporting reads.
Recommended next steps:
1. Validate insertion boundaries with targeted PCR
2. Confirm insertion sequence with Sanger sequencing
3. Verify expression of inserted gene (if applicable)
This analysis demonstrates how nanopore sequencing can be used to verify gene insertions
through read mapping and coverage analysis. The long reads provided by nanopore technology
are particularly valuable for spanning entire insertion regions, enabling confident verification.

This explains the result and level of confidence. It suggests some next steps for potential further lab validation of the result if desired.That concludes this recipe. As you can see, sequencing data, and in particular long read data, can be immensely valuable for confirmation of genome edits. This is a powerful tool that has greatly improved our ability to verify strain construction efforts and analyze off-target effects when they occur.

There’s more...

You can play around with the above example more if you want by altering the number of reads, length of insertion, and kmer length. You can also try out a sequence without any insertion to confirm that it will not be found. In general, you will see that having too few reads will lead to “under sequencing” and you will not be able to detect insertions. Kmer length will impact the ambiguity of your mappings as well, and hence your ability to detect insertions.Long-read sequencing is critical for verifying genomic insertions. In this recipe we used an Alignment-based approach, in which we aligned reads around the region of the insertion to verify that it was present, and that it contained the correct genomic region on the left side (Left Flank) and right side (Right Flank). Another approach that can be very helpful is to take reads that contain all or part of the insertion and perform De Novo assembly on them. This can be especially helpful when the insertion is incomplete or imperfect and can reveal the off-target region of the insertion. Another interesting approach is to annotate the reads themselves directly. Typically, this is done with a de novo annotation strategy or using a Lift Over strategy to bring over annotations (from your reference genome plus your genetic parts library). This approach can be very helpful to provide direct read-level (single-molecule) evidence for the insertion and neighboring region.

See also

	SeqVerify is a software package for interrogation of genomic edits: Smela et al, SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes, Stem Cell Reports, Oct 2024 - https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(24)00242-X

	SuperDecode is another tool for verifying edits which supports multiple sequencing technologies: Li et al, SuperDecode: An integrated toolkit for analyzing mutations induced by genome editing, Molecular Plant, Apr 2025 - https://www.cell.com/molecular-plant/fulltext/S1674-2052(25)00092-9?uuid=uuid%3A637b4f6c-bd3e-4714-b986-b15f29bacd53

	Learn more about how genome engineering is used in animals: Bunton-Stasyshyn et al, Screening and validation of genome-edited animals, Laboratory Animals, Jul 2021 - https://journals.sagepub.com/doi/full/10.1177/00236772211016922

	Read more about genome editing for Plant improvements: Mall et al, CRISRP/Cas-Mediated Genome Editing for Sugarcane Improvement, Sugar Tech, Jan 2024 - https://link.springer.com/article/10.1007/s12355-023-01352-2

OEBPS/media/file129.png
Insertion Verification Result
Status: VERIFIED
Confidence: 0.05

Details: Insertion VERIFIED with moderate confidence (0.05). Found 488 spanning reads and 16 supporting reads.

OEBPS/media/file78.png

OEBPS/media/file27.png
try:
with open(file_path, 'r') as file:
header = None
sequence = []
for line in file:
line = line.strip()
if not line:
continue # Skip empty lines
if line.startswith(">"): # Header Line
if header: # Save the previous sequence
fasta_dict header] = ''.join(sequence)
header = line[1:] # Remove ">"

sequence = [] # Reset sequence list
else:
sequence. append (Line)
if header: # Save the last sequence
fasta_dict[header] = ''.join(sequence)
except FileNotFoundError:
print(f"Error: File '{file_path}' not found.")
return fasta_dict

OEBPS/media/file43.png
Content Panel

amitee [2 multige

‘A modular tool to aggregate fesults from bioinformatios analyses acr ' samples into a single report

Ropor enaalod on 2024-12-14, 1928 PST based o data . /Usr/shane bk K/ CookBao 3/ 1514¢_utput

General Statistics

8 Gooy e | W onsurmcounrn | St | R s i o g o

o
Samples

. FastQC o 0.2

[Somars e sty conto oot for g oughget sequancing dta. U i

Sequence Counts

Soquene count o sach sample. uplcat read conis o anasmateory.

OEBPS/media/file110.png
Mukilocus Painwise FST

I

OEBPS/media/file61.png
DEFINITION saqnum=1;saqlan=45641662;saqndr="NC_800914.3 Escharichia coll str. Kk—12 subsir. ME1456, complets genome®;varslon=Prodigal.vi.&.3;Tun_typ:
gle;model="Ab initio";gc_cont=50.79; transl_table=11;uses_sd=1

FEATURES Location/Qualifiers
cos <3..98
/note="Ib=1_1;partial=16; start_type=Edge; rbs_motif=None; rbs_spacer=None;gc_cont=8.427;conf=56.57; score=1.15; cscore=-1.57; sscor

2;rscore=0.00; uscore=0.00; tscore=3.22; "
cos 337..2799
/note="ID=1_2;partial=88; start_type=ATG; rbs_moti =66AG/GAGE; rbs_spacer=5-18bp;gc_cont=8.531;conf=99.99; score=336.87; cscore=328.95
5.93; rscore=11.24;uscore=1.40; tscore=3.94;"
cos 2801..3733
/note="ID=1_3;partial=80; start_type=ATG; rbs_motif=AGGAG; rbs_spacer=5-10bp; gc_cont=0.563;conf=100.00; score=118.08; cscore=97.71; s5c0
©=20.37; rscore=14.85; uscore=0.32; tscore=3.94; "
cos 3734..5020
/note="ID=1_4;partial=8e; start_type=ATG; rbs_motif=GGA/GAG/AGE; rbs_spacer=5-18bp;gc_con

§sscore=4.33;rscore=2.99; uscore:
cos 5234..5530
/note="ID=1_5;partial=80; start_type=6T6; rbs_motif=AGGAG; rbs_spacer=5-10bp;gc_cont=0.539; conf=86.81; score=8.20; cscore=0.54; sscore=7

3.88; tscore=3.94;"

657 rscore=14.85;uscore=-0.06; tscore=—6.49; "
cos conplenent (5683. .6459)
/note="1D=1_6;partial=00;start_type=ATG; rbs_motif=AGGA; rbs_spacer=5-18bp;gc_cont=8.495; conf=100.00; score=117.71; cscore=100.93; ssco.

OEBPS/media/file35.png
Decision Tree Feature Importance

mean concave points
worst concave points
worst radius

worst perimeter

mean texture

worst texture

fractal dimension error
concave points error
area error

worst smoothness
texture error
smoothness error
mean smoothness
mean fractal dimension
mean compactness
mean concavity

mean area

mean perimeter

mean symmetry

worst fractal dimension
radius error

perimeter error

worst symmetry
compactness error
concavity error
symmetry error

worst area

worst compactness
worst concavity

mean radius

0.0 01 02 03 0.4 05 06 07
Feature Importance

OEBPS/media/file112.png
70

60

50

Total Score
5
&

W
8

20

10

Top siRNA Candidates by Score

Pos: 116
Pos: 70 Pos: 125 Pos: 71

Pos: 196 Pos: 205

Pos: 149

Pos: 118

Pos: 79 Pos: 107

0 1 2 3

Candidate Index

4 5 6 7

8 9

OEBPS/media/file96.png
Genome vs Gene Phylogenetic Alignments

Genome Alignment

Human

Chimp

Gorilla

Orangu

Colored blocks represent syntenic regions with homology across species
Different block lengths indicate insertions/deletions; unique colors show different genomic regions

Gene Alignment
Human ATGCCGGATACGTACGTATCGATCGTACGCTAGCTAGCTACGCTGATCGATGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTT
Chimp ATGCCGGATACGTAAGTATCGATCGTACGCTAGCTAGCTACGCTGATCGA-GCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTT
Gorilla ATGCCGGATATGTACGTATCGATCGTACGCTAGCTA--CTACGCTGATCGATGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTT

Orangu ATGCTGGATACGTACGTATCGATAGTACGCTAGCTAGCTACGCTGATCGATGCTAGCTGGCTAGCTAGCTAGCTAGCTAGCTT
sk shokklliokk soklllk sollklllokollollollokiololololiork okkolkkoolokoololokookoookoololok

Red letters show mutations (substitutions); red dashes indicate gaps (insertions/deletions)
Asterisks below show conserved positions across all sequences

OEBPS/media/file53.png
NC_000913.3 1541 6 i i EPP=3.44459; EPPR
TI=8; LEN=1; MEANALT=1; MQM=68; NQNR=59 . 91.3; N :PRO=0 0 379;R0=46; RPL=3; P
PR=4.70971;RPR=2; RUN=1; SAF=5; SAP=13.8677; SAR=0; SRF=25; SRP=3.76559; SRR=21; TYPE=snp GT:DP:AD:RO:QR:A0:QA:GL B/8:51:46,5:46:1379:5:87:0, -
16.341
NC.096913.3 1545 ©] AB=0; ABS EPP=11.6962; EPPR
T ;NUMALT=1;0DDS=57 . 6883; PAIRED: ; POR=0; PROZ0; 0 7;RPL=4; RPP=11. 6
8565; RP ; SRF=26; SRP=6. 16534; SRR=21; TYP| GT:DP:AD:R0:QR:A0:QA:GL B/8:52:47,4:47:1454:4:54:8,-18.6885
NC_6913.3 1593 1537.49 AB=0; ABP=0; AC=2; AF=1; AN=2; A0=50; CIGAR=1X; DP=50; DPB=50; DPRA=0; EPP=3.70517; EPP
LEN=1; MEANALT=1; MM 1.3549; PATRED=1; PAIREDR=0; PAO=0; PQA=0 ; POR=0; PRO=0; QA=1738; QR=B; RO=0; RPL=24; RPP=3.18402; RPP
iRUN=1; SAF=25; SAP=3.0103; SA ; SRR=0; TYPE=snp GT:DP:AD:RO:QR:A0:QA:GL 1/1:50:0,50:0:0:50:1738:~156. 663, -15.0515,
NC_68913.3 1797 1568.51 AB=0.77027; ABP=49.9611; AC=1; AF=D.5; AlN=2; A0=57; CIGAR=1X; 4;DPRA=0;
EPPR=3.13863;6T1=8; LE 0; MOMR=41. 1765; NS=1; NUMALT=1; 0DDS=41. 1614; PATRED=1; PATREDR=1; PAO=0; PQA=0; PQR=0; PRO=0; QA=2098,;QR=626
32;RPP=4.877; RPPR=39 .9253; RPR=25; RUN=1; SAF=29; SAP=3. 8484 SAR=28; SRF=8; SRP=3.13863; SRR=9; TYPE=snp GT:DP:AD:RO:QR:A0:QA:GL 8/1:74:17,57
:298:-166.777,8,-31.2587
NC_913.3 1860 2137.62 AB=0; AB] X; DP=64;DPB=64; DPRA: 55317 EPP
LEN=1; MEANALT=1; MQM=68; MOMR=8; N 8.7631; PATRED=1; PAIREDR=B; PAO ;PRO=0; 0A=2408;QR=0; RO=0: RP! 55317 RPP
iRUN=1;SAF=34; SAP=3.55317; SA iTYPE=Snp GT:DP:AD:RO:QR:AD:QAZGL 1/1:64:0, 64:0:0:64:2408:-216.931,-19.2659,
NC_9913.3 1875 2457.67 AB=0; ABP=0; AC=2; AF=1; AN=2; A0=75; CIGAR=1X; DP=75; DPB=75; DPRA=0; EPP=7. 90335 EPP
LEN=1; MEANALT=1; MQM=68; MOR=8; N 86.012; PATRED=1; PATREDR=0; PAO=0; PQA=0; POR=0; PRO=0; QA=2795 QR=B; RO=0; RPL=26 ; RPP=18 326 RPP
{RUN=1; SAF=46; SAP=11.3777; SAR STYPE=snp GT:DP:AD:RO:QR:AD:QAZGL 1/1:75:0,75:0:0:75:2795:-251.732,-22.5773,
NC_69913.3 1884 2398.93 AB=0; ABP=0; AC=2; AF=1; AN=2; A0=73; C1GAI {EPP=9.70319; EPP

X; DP=73;DPB=73; DPRA:
LEN=1; MEANALT=1; MQM=68; MOMR=8; N 03.24; PATRED=1; PATREDR=8; PAO=8; PQA=8; PQR=8; PRO=8; $RO=0; RPL=21; RPP=31.5964; RPPR
RUN=1: SAF=43; SAP=8.83741; SAR=30; SRF=0; SRP=0 SRR=0; TYPE=Snp GT:DP:AD:RO:QR:A0:QA:GL 1/1:73:8,73:0:0:73:2743:-247.058,-21.9752,0

OEBPS/media/file10.png
50 12570

65 12410
60 12235
51 12098
59 11955
115 6
119 4
106 2
113 1
109 1

Name: AGE_YRS, Length: 111, dtype: int64

OEBPS/media/file5.png

OEBPS/media/file104.png
PLINK v2.0.0-2.6.9 64-bit (29 Jan 2025) cog-genomics.org/plink/2.8/
(C) 2005-2025 Shaun Purcell, Christopher Chang GNU General Public License v3

1 [other flag(s).

plink2 <input flag(s)...> [conmand flag(s).
plinkz —help [flag name(s)...]

Conmands include —rn-dup list, —make-bpgen, ——export, ——freg, —-geno-counts
—-sanple-counts, —-missing, —hardy, —het, —fst, —indep-pairwise,
—-r2-phased, —sanple-diff, ——make-king, ~—king-cutoff, —pmerge, —-pgen-diff,
——check-sex, —rite-sanples, —mrite-snplist, —make-grm-list, —pca, —glm,
—-adjust—file, —gwas-ssf, —pheno-svd, —clump, —score-list, ——variant-score,
—-genotyping-rate, ——pgen-info, —validate, and —zst-deconpress

wplink2 —help | more" describes all functions.

OEBPS/media/file45.png
R FastQC
Eile Help

bad_sequence.txt | good_sequence_short.ixt]

Qe
% L—

-
> em—

Per base sequence content |28

%
Per base GC content s
Per sequence GC content (22
e
Per base N content
18

Sequence Length Distrbuton| 16
14
Sequence Duplcaton Levels
12
Overrepresented sequences 1

Kmer Content i

00000000

3
n
2

Quaty scores across allbases (llumina >v1.3 encoding)

01z 15 17 15 21 23 25 27 29 Al
Postion in read (bp)

EREEAE)

OEBPS/media/file88.png
110

100

%0

70

60

50

40

OEBPS/media/file71.png
Genome Quality Metrics for data/T2T_genome.fasta:
Total Genome Size: 3,117,292,070 bp

GC Content: 40.75%

N50: 150,617,247 bp

OEBPS/media/file84.png
HEADER
TITLE
COMPND
COMPND
COMPND
COMPND
COMPND
COMPND
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
KEYWDS
EXPDTA
AUTHOR
REVDAT
REVDAT
REVDAT
REVDAT
REVDAT
IRNL
IRNL
IRNL
IRNL
IRNL
IRNL
IRNL

LYMPHOKINE 27-MAR-98 1ABM
TUMOR NECROSIS FACTOR ALPHA, R31D MUTANT

MOL_ID: 1;

2 MOLECULE: TUMOR NECROSIS FACTOR ALPHA;

3 CHAIN: A, B, C;

& SYNONYM: ' TNF-ALPHA;

5

6

ENGINEERED: YES
MUTATION: YES

MOL_ID: 1

2 ORGANISM_SCIENTIFIC: HOMO SAPIENS

3 ORGANISM_COMMON: HUMAN

4 ORGANISM_TAXID: 9605

5 EXPRESSION_SYSTEM: ESCHERICHIA COLT

& EXPRESSION_SYSTEM_TAXID: 562

LYMPHOKINE, CYTOKINE, CYTOTOXIN

X-RAY DIFFRACTION

C.REED,2.-Q.FU, J.WU, Y. N.XUE, R.W.HARRISON, M. 3 .CHEN, I.T.WEBER

5 23-0cT-24 1ABM 1 REMARK.
4 2-AUG-23 LasM 1 REMARK.
3 e3-NOv-21 1aBM 1 SEQaDy
2 24-FEB-09 LABM 1 VERSN
1 17-0UN-98 1ABM @

AUTH C.REED,Z.Q.FU, 3.WU, Y.N.XUE, R.W.HARRISON, M. 3. CHEN, 1.T.WEBER
TITL CRYSTAL STRUCTURE OF TNF-ALPHA MUTANT R31D WITH GREATER
TITL 2 AFFINITY FOR RECEPTOR R1 COMPARED WITH R2.

REF_ PROTEIN ENG. V. 1o 1101 1997

REFN TSSN 0269-2139

PMID 9488135

DOI 10.1093/PROTEIN/10.18.1101

OEBPS/media/file92.png

OEBPS/media/file41.png
UMAP Dimension 2

UMAP Dimension 2

UMAP (n_neighbors = 5)

UMAP (n_neighbors = 15)

UMAP Dimension 2

4 5
UMAP Dimension 1
UMAP (n_neighbors = 30)

UMAP Dimension 1

UMAP (n_neighbors = 50)

10

UMAP Dimension 2

1

13

n

10

1 2 B 1 5
UMAP Dimension 1

UMAP Dimension 1

B

1

16

OEBPS/media/file37.png
Column

100

80

60

40

20

Fraction of empty values per column

OEBPS/media/file98.png
taxa

20

Our Ebolavirus Tree

SUDV_Fj968794
SUDV_KC242783

SUDV_EU338380

SUDV_AY729654
SUDVING38998
SUDV_KC589025.

EBOV_2014_KM034563

EBOV_2014_KM034550

EBOV_2014_KM034554

E80V_2014_KM034562

EBOV_2014_KM034555

E80V_2014_KM034559

EBOV_2014_KM034561

|esov 2014 Kkmo3ass3

EBOV_2014_KM034552

EBOV_2014_KM034556

EBOV_2014_KM034558

EBOV_2014_KM034551

EBOV_2014_KM034557

EBOV_2014_KM034560
EBOV_2014_KM034549
£80V_1976_KC242801
EBOV_1976_AF272001
EBOV_1995 KC242796

EBOV_1995_KC242799

EBOV_2007_KC242790
EBOV_2007_KC242785

EBOV_2007_KC242789

EBOV_2007_KC242786
EBOV_2007_KC242784
EBOV_2007_KC242788

EBOV_2007_KC242787

RESTV_JX477166
RESTV_AB050936
RESTV_F|621585
RESTV_JX477165

I_ RESTV_F621583
RESTV_Fj621584

BDBV_Fj217161
BDBY_KC545396
BBV_KC545395
BDBY_KC545394
BDBY_KC545393

TAFV_FI217162

0o

02

04

06

o8 10
branch length

12

14

OEBPS/media/file114.png
GC Content (%)

GC Content Distribution of Top siRNA Candidates

55
50
total_score °
615
5{ @ 630
64.5
@ 660 i
40
(] e
35
[]] o

80 100 120 140 160 180 200
Position in Target mRNA

OEBPS/media/file127.png
Alignment Confidence Difference (Modified - Reference)

Count

02
Confidence Difference

OEBPS/media/file120.png
Top 5 Guide RNAs for T42500C Mutation

T
i
i
i
i
i
Guide 5: Score=0.49 ! -—
i
i
i
i
|
Guide 4: Score=0.61 ! -—
i
i
i
i
i
Guide 3: Score=0.61 —e |
i
i
i
i
i
i
Guide 2: Score=0.62 -— !
!
i
i
i
Guide 1: Score=0.82 e i
i
i
i
i
i
i
I
42400 42425 42450 42475 42500 42525 42550 42575 42600

Genomic Position

OEBPS/media/file12.png
191

a9

1254

1257

VAERS_ID

916803

91717

917790

017793

RECVDATE

01/01/2021

01/01/2021

01/03/2021

01/03/2021

STATE

LA

AR

AR

AR

AGE_YRS

780

820

200

780

CAGE_YR

780

820

200

780

CAGE_MO

NaN

NaN

NaN

NaN

SEX RPT_DATE

M

M

NaN

NaN

NaN

NaN

SYMPTOM_TEXT
respitory colase

After vaccination,
patient tested
positive for...

Atthe time of
vaccination, there
was an outbr...

Prior to the
administration of
the COVID 19
va.

DIED.

Y

ER_ED_VISIT

NaN

NaN

NaN

NaN

ALLERGIES

NoA

None

None

None

OEBPS/media/file3.png
"~ Jupyter Welcome Last Checkpoint: 12 minutes ago

File

Edit View Run Kernel
New

New Text Notebook

Jupytext

Open...

New Console for Notebook
Save Notebook

Save Notebook As.

save Al

Rename...

Duplicate

Reload Notebook from Disk

Revert Notebook to Checkpoint...

Download
Save and Export Notebook As
Trust Notebook

Close and Shut Down Notebook

Log Out
Shut Down

Settings _ Help

~oqQ

Pair Notebook with Percent Format
Pair Notebook with Light Format

Pair Notebook with Nomarker Format
Pair Notebook with Markdown

Pair Notebook with MyST Markdown

Pair Notebook with R Markdown

Pair Notebook with Quarto (amd)

Custom Pairing

air Current Notebook

etad

© Jupytext FAQ
- Jupytext Reference

~ Openin...

ont™)

mpy==2.1.0 pandas==2.2.3 scipy==1.1

(o]

& Python 3 (ipykernel) O

e

Trusted

OEBPS/media/file55.png
e

OEBPS/media/file68.png
hmm coord
target name

ias from to
x

NC_680913.3_2
0.1 3 23
¢_cont=e.531
NC_688913.3_2
0.1 202 233
¢_cont=p.531
NC_688913.3_2
6.8 7 59
¢_cont=p.531
NC_688913.3_2
8.5 5 49
¢_cont=p.531
NC_688913.3_2
0.1 12 22
¢_cont=p.531
NC_680913.3_2
P

ali coord

from

317

325

404

805

.

from

to

284

349

375

a6

815

P

305

323

400

804

P

coord

tlen query name

accession E-value

qlen

o acc description of target

821 AA_kinase
284 0.88 #

821 AA_kinase
350 0.78 #

821 ACT
380 0.87 #

821 ACT
454 0.78 #

821 ACT
815 0.87 #

821 ACT_7
e B RO &

337

337

337

337

337

P

2799

2799

2799

2799

2799

00

PFOB696.33 234
14 10=1_2;partia

L4e-49

PFO0696.33 234
14 10=1_2;partia

L4e-49

PFO1842.31 66
#14 1021 2;partia

L6e-17

PFO1842.31 66
#14 1021 2;partia

L6e-17

PFO1842.31 66
#14 1021 2;partia

L6e-17

PF13840.12 65
1 E TR e e

LBe-23
bolba

SHES SEHEENEE

157.0
0; start_

157.0

0; start_

0; start_

0; start_

0; start_

bias # of c-Evalue i-Evalue

1.6 1 2 7.9e-50 7.9e-49 155.8
\TG; rbs_motif=GGAG/GAGG; rbs_spacer=5-10bp;

typ

10 2 2 0.19 1.9 2.5
\TG; rbs_motif=GGAG/GAGG; rbs_spacer=5-10bp;

type=

514
typ

1.4 1 3 3.2009 3.2008 22.8
\TG; rbs_motif=GGAG/GAGG; rbs_spacer=5-10bp;

514
typ

1.4 2 3 27010 2.70-09 26.2
\TG; rbs_motif=GGAG/GAGG; rbs_spacer=5-10bp;

514
typ

14 03 3 0.56 5.6 3.6
\TG; rbs_motif=GGAG/GAGG; rbs_spacer=5-10bp;

717
Py

0.9 1 2 3.6e-12 3.6e-1l 323
e e e AR e ot

OEBPS/media/file102.png
10

15

Ebolavirus Tree

UDV_Fj968794
UDV_KC242783

UDV_EU338380

UDV_AY729654

UDV_jN638998
UDV_Kes89025
BOV_2014 KM034563
BOV_2014 KM034550
BOV_2014 KM034554
BOV_2014 KM034562
BOV_2014_KM034555
BOV_2014_KM034559
BOV_2014 KM034561
BOV_2014 KM034553
BOV_2014 KM034552
BOV_2014 KM034556
BOV_2014 KM034558

BOV_2014_KM034551

OEBPS/media/file86.png

OEBPS/media/file25.png
o Changes requested Hide all reviewers

1 review requesting changes Learn mare.

() 1 change requested ~

& octocat requested changes

(© A checks have passed Show al checks
% successiul check

‘This branch has no conflicts with the base branch
Merging can be performed automaticall

Merge pull request You canalso open this n Gtk Desktop orview command line nstructons.

OEBPS/media/file73.png

OEBPS/media/file124.png
Generating nanopore reads. ..
Generated 1000 nanopore reads

sample of read information:

read_id start end length
0 Read1 204 6111 5907
1 Read2 4150 10443 6293
2 Read 3 548 7735 7187
3 Read 4 2069 10806 8737
4 Read s 3181 8655 5474

OEBPS/media/file90.png
x

v

z

X (Mass)

Y (Mass)

Z (Mass)

49727231

32.744879

81259417

49708513

32.759725

81207395

51.982368

33.843370

81578795

52.002223

33620064

81624394

72.990763

28525429

56714012

72.822668

28810327

56716117

67.810026

12624435

88.656590

67.729100

12.724130]

88 545659

38.221565

-5.010494

88.203141

38.169364]

-4.915395

88166711

OEBPS/media/file65.png
Type of Change

AA Change

Frame Change

No Change

Variant Type vs. Position in Genome

0 1 2 3 4
Position in Genome

1e6

OEBPS/media/file107.png
xaray Dataset

» Dimensions: (samples: 1198, variants: 56241, alles: 2, plokly: 2)

» Coordinates: (0)

+ Data variabes:

nt64 dask anay<chunksize=(L.. &

(samples) foaisd_dask armay<chunksize=(l... © 8
(samples) ints4 dask anay<chunksize=(L.. B8
(samples) int64 daskaray<chunksize=(l... B 8
(sampies) int64. dask aray<chunksize=(L.. B &
(samples) int64 dask array<chunksize=(L.. @ &
(variants) n16 0000000..212121 .. @8
(varants) in22 dask anay<chunksize=(5... © B
(variants, aleles) 181 dask amay<chunksize=G.. D 8
(samples) U7 daskamay<chunksize=(l... B

(variants, samples, ploidy) int8 dask array<chunksize=6... @ &
(variants, samples, ploidy) bool dask aray<chunksize=(5.. [&

(variants) <UI0 daskarray<chunksize=G... B &
(samples) <U7 daskamay<chunksize=(L.. (3 @
. (samples) <4 daskamay<chunksize=(L.. (3 8
sample_matem... (samples) <Us daskamay<chunksize=(L.. [8
samplo_sex (samples) In® daskarray<chunksize=(L.. 3 8
sample_phenat... (samples) In® daskarray<chunksize=(L... (3 8
sample_cohort (samples) 64 00000000..0000.. B8
v Attibutes:
contigs

9.20,21,
source Sgkit0.5.0

OEBPS/media/file82.png
"accession': "P21802",
"idv: "FGFR2_HUMAN'

"proteinExistence’: "Evidence at protein level",
“infors {
"typets "Swiss-Prot”,

"created': "1991-05-01",
"modified": "2024-11-27%,
“version®: 277

3

"organisn': {

"taxonomy”: 9606,
“names*: [

i

"typers "scientifict,
“value": "Homo sapiens®

“valug": "Human®

"lineage: [
"Eukaryota®,
"Metazoa",
“Chordatar,
“Craniata®,
"ertebrata®,

OEBPS/media/file57.png
10

Allele Frequency Across the Genome

0.8

°
S

le Frequency

°
=

02

0.0 4

o mre s = St s = a0t 00 020 00 6 St et Smmsmie + @ emsemtmmen« o Allele Frequency

Genomic Position (Chromosomes)

OEBPS/media/file31.png
PCA on Breast Cancer Dataset (3D View: PC1, PC2, PC3)

o malignant
4 benign

OEBPS/media/file116.png
Top 15 Protein Domains in NC

35
30

0)
]

15
10
5
0

8
Aouanbay

OEBPS/media/file48.png
@SRRO0@001.2 EM7LVYS@2GCAPL length=115
TATATTTTCCTTCTTAGATTCCACGGCAGCCCTGTGAGT TAACAATCAACTCTGTTTCAAAGCTGAGGACACTGAGGCTCTAAGAGGT TAAATTATTGACCCAGATCACAAGAAT
| +SRR000001.2 EM7LVYS@2GCAPL length=115
' <=; <GC7*C<B

<<FA/<FB0. B<;<B;

Bi<

OEBPS/media/file74.png
All possible haplotypes:
ATGCGACGTAA
ATGCGACGGTTTAA
ATGCGTCGTAA
ATGCGTCGGTTTAA

Genome Variation Graph

OEBPS/media/file22.png
ChatGPT 40

GPT-40
Great for most tasks

GPT-40 with canvas =ers
Collaborate on writing and code

More models

3 Temporary chat

2. for number in range(..

« Iterates through each number in the generate

3. print(nunber’

« Prints each number on a new line.

Output:

The output will be:

GPT-40 mini
Faster for everyday tasks

GPT-4
Legacy model

100

@B POy

OEBPS/media/file109.png
EEEFEEE

5

01

02 T 03 os a5

OEBPS/media/file80.png
Hit: gi]|1338838386|ref|XM_023806334.1| PREDICTED: Paramormyrops kingsleyae T-box transcription factor TBXS-like (LO
€11184@956) . transcript variant X2, mRNA
doublecick o hide | Eoyalue: 1.12623
Hit: gi|1338838384|ref|XM_023806333.1| PREDICTED: Paramormyrops kingsleyae T-box transcription factor TBXS-like (LO
€111840956), transcript variant X1, mRNA

Score: 45.0, E-value: 1.12623
Hit: gi]|2647104289|gb|CP141595.1| Rossellomorea aquimaris strain Rossellomorea aquimaris S-2 chromosome, complete g
enome

Score: 44.0, E-value: 1.12623
Hit: gi|1190964948| ref|XR_002333164.1| PREDICTED: Arabidopsis lyrata subsp. lyrata uncharacterized L0C110229766 (LO
C110229766), ncRNA

Score: 43.0, E-value: 3.93094
Hit: gi|891573148|ref |XM_013165470.1| Schizosaccharomyces cryophilus 0Y26 RNA polymerase II associated Pafl complex
(SPOG_02808), mRNA

Score: 42.0, E-value: 3.93094

OEBPS/media/file14.png
26 HISTORY
27 PRIOR_VAX
28 SPLTTYPE
29 FORM_VERS

374854 non-null
36452 non-null
219962 non-null
753040 non-null

30 TODAYS_DATE 747480 non-null

31 BIRTH_DEF!
32 OFC_VISIT
33 ER_ED_VIS:
34 ALLERGIES

ECT 459 non-null
144517 non-null
IT 90288 non-null
298538 non-null

object
object
object
intea

object
object
object
object
object

dtypes: float6d(s), int64(2), object(28)

memory usage:

1.4 GB

OEBPS/media/file122.png
1.0

08

o
>

o -II I I-

o IIl IIIIII-

Proportion

o
=

02

00

Gene Proportions by Sample

Sample

Genes
Gene_E1
Gene_G1
Gene_E3
Gene_A1
Gene_H1
Gene_K2
Gene_J4
Gene_L2
Gene_M2
Gene_F2
Gene_B1
Gene_J1
Gene_H2
Gene_G2
Gene_F1
Other genes

OEBPS/media/file126.png
Count.

Distribution of Read Types
500

400

300

200

100

Read Type

OEBPS/media/file100.png
TaEY.

OEBPS/media/file130.png
Read Coverage Across Insertion Site

500 ~ Insertion Region
--- Insertion Start
--- Insertion End
400
=
2 300
<
a
@
&
g
S
3
8 200
100
0
0 2000 4000 6000 8000 10000

Genome Position

OEBPS/media/file105.png
sarray Dataset

+ Dimensions: (variants: 56241, allles: 2, sampls: 1195, plody:2)
» Coordinates: (0)
+ Data variabes:
vasiant_contg (variant) nti6 0000000, 212121212121
vasant_positon (vasants) in32 dask aray<chunksize=(56241.), meta=np.
variant_alele
sample_d
cal genotype
mixed_plidy :
comment all genotype. Encod as alle values (0 for th rference, 1 for
the fistalee, 2 for the second allee), -1 0 indicaie &
missing value, o 2t ndicate non alee in mixed plidy dataset.

P
e ime
g —
o\
Type 8 oumpyndartay &

callgenotype .. (variani, sampes, ploidy) bool dask aray<chunksize=(s6017, 158, .. [&

vasiant id (variants) V10 daskaray<chunksize ee
sample_famiy_d_(samples) <U7 daskaray<churisize =
sample_patema... (sampls) <Us”dask aray<chunksize =
sample_maten... (samples) <Us daskaray<chunisz =
sample_sex (sampls) i dask aray<chunksize=(1198), meta=nprd... () @
sample_phencx... (samples) 8 dask amay<chunksize=(1198), meta=npad... () @

« Abutes:
contgs (02,3, 0,5, 56,7, 8, 9,10, 10, 12,13, 14,15, 16, 17, 18,19, 20, 21 22]

source: 5gt0S0

OEBPS/media/file118.png
National Library of Medicine

National Center for Biotechnology Information

Nucleotide [Nucleotide |

Advanced

FASTA~

Homo sapiens BRCA1 DNA repair associated (BRCA1), RefSeqGe
on chromosome 17

NCBI Reference Sequence: NG_005905.2

GenBank ~ Graphics

>NG_005905.2 Homo sapiens BRCAL DNA repair associated (BRCA1), RefSeqGene (LRG_292)
on chromosone 17
TGTGTGTATGAAGTTAACTTCAAAGCAAGCTTCCTGTGCTGAGGGGGTGGGAGGTAAGGGTGTGATGAGG
CAGGGCTTCTCCTTTGGCAAAGCCTCTGTAGTCCTTCCTTAGTCACCAGGGAGTTGTGGGAGATATAGAC
CAGGGTTGCAGGTGCCTGGAGTACAGGGACAGCAGACAGGTCATGGTGGGTGAGGGGTCAGCTGGTGGGG
CACAGATGCGTTTCCTCGGCAGTCCACATATTCATAGCTCTGAAAGACCAGCTGCTCTGAATGGCTCAGG
TATGAACAGGTCAGGGTGCCCCTGGAGAGGAAGCAGGCCTTGTTGCCATGGCTGGGAGGAAAAGGAAAGT
TCTGGCCCCATTATACTGTCTGGGGGTGGGGAGCGEGGAGCTCCCTCATTTGCCCTTCCCTCTGGCTCCC
CACTCTGCCAAGGTACCTGGGACAGCTGCCCCACCTGTTTTCCAGCAGCTTCCAGACAGCCCTATGCCTG
TTGCCCCTAATAACTTATAGGCAAGGTGAGACTCAGAARAGGGGCTAGACTTGCTATTCCCAAGAGCCAA
CAAAGATTCATGGGGTCAGCTTGGAAGACTCTCTGCCCATGAGGTGTAGCTGAGTGAGAATGAAGTCAGA
AGTGAGAGCAGGGATACCAGAGCTCCAAGCTCTACTTACTGGATGTGCAAAAGCACATGGTGGACTTTGA

Send to: +

®Complete Record
OCoding Sequences
OGene Features

Choose Destination

e OClipboard uen
OCollections O Analysis Tool

Download 1 item.

Format

FASTA ~ tion

Show 61 0

Components (Core)

OEBPS/media/file46.png
FastQC: Per Sequence GC Content

Percentages, 2 samples

2.5%

2%

1.5%

1%

0.5%

0%
0% 20% 40% 60% 80% 100%

OEBPS/media/file59.png
Locus
{ DEFINITION
| ACCESSION
VERSION
DBLINK.

” KEYWORDS
| source
-~ oRGANISM

4

REFERENCE
AUTHORS

TITLE

JOURNAL
PUBMED
REMARK.
[REFERENCE
AUTHORS

TITLE

JOURNAL

PUBMED
REFERENCE
| AUTHORS

NC_000913 4641652 bp DNA circular CON 89-MAR-2022
Escherichia coli str. K-12 substr. MGL6SS, complete genome
NC_000913

NC_000913.3
BioProject: PRINAS7779
BioSample: SAMNG2684891

RefSeq.
Escherichia coli str. K-12 substr. NGL6SS

Escherichia coli str. K-12 substr. MGL6SS

Bacteria; Pseudomonadota; Gammaproteobacteria; Enterobacterales
Enterobacteriaceae; Escherichia

1 (bases 1 to 4641652)

Riley M., Abe,T., Arnaud,M.B., BerlynM.K., Blattner,F.R.
Chaudhuri R.R., Glasner,J.D., Horiuchi,T., Keseler,I.M., Kosuge,T.
Mori,H., Perna,N.T., Plunkett,G. III, Rudd,K.E., Serres,M.H.
Thomas, G.H., Thomson,N.R., Wishart,D. and Wanner,B.L

Escherichia coli k-12: a cooperatively developed annotation
snapshot—-2885

Nucleic Acids Res. 34 (1), 1-9 (2006

16397293

Publication Status: Online-Only

2 (bases 1 to 4641652)

Hayashi K., Morooka,N., Yamamoto,Y., Fujita K., Isono,K., Choi,S.
Ohtsubo,E., Baba,T., Wanner,B.L., Mori,H. and Horiuchi,T

Highly accurate genome sequences of Escherichia coli k-12 strains
MG1655 and W3ll0

Mol. Syst. Biol. 2, 2006 (2006)

16738553

3 (bases 1 to 4641652)

Blattner,F.R., Plunkett,G. III, Bloch,C.A., Perna,N.T., Burland,V.
Riley M., Collado-Vides,J., Glasner,J.D., Rode,C.K., Mayhew,G.F.
Gregor,d., Davis,N.W., Kirkpatrick,H.A., Goeden,M.A., Rose,D.J.

OEBPS/media/file29.png
size rank
STATE
cA 69740 0

RLoame 1
™ ame 2
NY st 8
PA 25068 4

OEBPS/media/file16.png

OEBPS/media/file93.png
Top 10 Peptides:
Peptide

LGFLHSGTGFVK
LLPENNVLSPLPSQAMDDLHLSPDDTEQWFTEDPGPDEAPR
LFK

MEEPQSDPSVEPPLSQETFSDLWK
MPEAAPPVAPAPAAPTPAAPAPAPSHPLSSSVPSQK
TEGPDSD

TYQGSYGFR

VGOSTSR

CEeNOUsWN

Mass (Da)
1261.681907
4591.141076
537.298491
2775.258542
3442.759512
719.260978
1077.487959
733.371866

OEBPS/media/file20.png
fasta_dict = {}
with open(file_path, 'r') as file:
header = None
sequence = []
for line in file:
line = line.strip()
if line.startswith(">"): # Header line
if header: # Save the previous sequence
fasta_dict[header] = ''.join(sequence)
header = line[1:] # Remove ">"
sequence = [1 # Reset sequence list
else:
sequence. append (Line)
if header: # Save the last sequence
fasta_dict [header] = '*.join(sequence)
return fasta_dict

Example usage:

fasta_file = "example. fasta"

fasta_records = parse_fasta(fasta_file)

for header, seq in fasta_records.items():
print(f'Header: {header}")
print(f'Sequence: {seq}")

Header: seql

Sequence: ATCGTACGATCGGATCGTACGATC
Header: seq2

Sequence: CGTAGCTAGCTA

OEBPS/media/file63.png
164,000k
I L I

165,000k

LR] Gene

type: gene
‘gene_id: ENSMFAGO0000038279
L__genc_version: |

‘gene_name: ATGAC

Gena

scol_prodigal_combinsd gb

| HEE¢] BN

TOO00USE3SE ATGAC KANK

‘gene_source: ensembl
s gene_biotype: prote

coding

type: transcript
‘gene_id: ENSMFAGO0000038279
gene_version: |

transcript_id: ENSMFAT00000028082
transcript_version: 1

gene_name: ATGAC

‘gene_source: ensembl

‘gene_biotype: protein_coding
transcript_name: ATG4C-201
transcript_source: ensembl

transcript_biotype: protein_coding
type: exon
‘gene_id: ENSMFAGO0000038279

gene_version: |
transcript_id: ENSMFAT00000028082
transcript_version: |

exon_number: |

gene_name: ATGAC

‘gene_source: ensembl

‘gene_biotype: protein_coding
transcript_name: ATG4C-201
transcript_source: ensembl
transcript_biotype: protein_coding
‘exon_id: ENSMFAE00000049603
exon_version: |

169,000 k0 170000k 171,000+
I L I L I
[LIL} ..
YR ARt FYB2 ENSM

OEBPS/media/file50.png
BAM File Statistics:
CHK: 7fbggale

SN: percentage of properly paired reads (%):
FFQ: 151

LFO: 151

GCF: 86.68

GCL: 97.49

GCC: 151

GCT: 151

FBC: 151

FTC: 32085562

LBC: 151

LTC: 32056282

15: 887

RL: 151

D: 66
1C: 148

cov: [479-479]
GCD: 55.0

OEBPS/media/file7.png
VAERS_ID 916600

RECVDATE 01/01/2021
STATE T
AGE_YRS 33.0
CAGE_YR 3.0
CAGE_HO Nan
SEX F
RPT_DATE Nan
SYMPTOM_TEXT Right side of epiglottis swelled up and hinder...
DIED Nan
DATEDIED Nan
L_THREAT Nan
ER_VISIT Nan
HOSPITAL Nan

neprave -

OEBPS/media/file76.png
QUAST

Quality Assessment Tool for Genome Assemblies by CAB

12 January 2025, Sunday, 14:05:04
View in Icarus contig browser

All statistics are based on contigs of size >= 500bp, unless otherwise noted (e.g., “# contigs (>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).

Statistics without reference ~ ecoli-assembly

contigs 1
contigs (>= 0 bp) 1
contigs (>= 1000 bp) 1
contigs (>= 5000 bp) 1
contigs (>= 10000 bp) 1
contigs (>= 25000 bp) 1
contigs (>= 50000 bp) 1
Largest contig 4629606
Total length 4629606
Total length (>= 0 bp) 4629606

Total length (>= 1000 bp) 4629606
Total length (>= 5000 bp) 4629606
Total length (>= 10000 bp) 4629606
Total length (>= 25000 bp) 4629606
Total length (>= 50000 bp) 4629606

N50 4629606
N90 4629606
auN 4629606
L50 1

L90 1

GC (%) 50.99

Mismatches
#N's per 100 kbp
#N's

oo

OEBPS/media/file33.png
K-Means Clustering on Breast Cancer Dataset

@ Clustero
A Cluster1

125

10.0

75

5.0
2.5
0.0

Z usuodwiod edidung

-25

-5.0

-75

15

10

Principal Component 1

OEBPS/media/file89.png
No Water

Zines|

Water

5068.04412

0.00

351.9868

625820442

0.00

223.9916

20548.26300

6539

5167.8812

20368.18840

6539

1119.9580

RICERIL]

20466.22540|

6539

1279.9520

OEBPS/media/file0.png

OEBPS/media/file111.png

OEBPS/media/file4.png
(base) shanebrubakerdSHANEs-MacBook-Pro ChOL % cat Welcome.py

Jupyte
Jupytext:
formats: ipynb, py:light
text_representation:
extension: .py
format_name: light
format_version: '1.5
jupytext_version: 1.17.1
kernelspec:
display_nane: Python 3 (ipykernel)
language: python
name: python3

"
BioInformatics with Python Cookbook - Fourth Edition

=+

jelcome to the bookl #
-1 Vielcome #

print("Welcone to the BioInformatics with Python Cookbook Fourth Edition!")

Tnstall packages using Conda

Tnstall Jupytext

1 pip install jupytext

I
End of Notebook
(base) shanebrubakerGSHANEs MacBook-Pro chat % I

OEBPS/media/file52.png
Laaass

contig:position REF—ALT gene_names AD DP! GQ! GT Sample Name
11100027355 AT—A - 1s,8) 27 99 o 183 snv.indel.sv
1:100067318 T-A - (18,14 32 9 o 1S3 snv.indel.sv
11100105222 G-A - (17,7 2 99 o
1100138606 c-caa PALMD 411 35 9 o 1S3 snv.indel.sv
1100876675 T-C CDC14A [27,26] 53 99 o 1S3 snv.indel sv
Human NCBI37/hg19 1: (2
1919 1:10,135,592..10,135,642 a & = e elac + A B ® 2 >
+x Genome
& e (e o
AAGCTAAGAGAAAGGGCTTGGGCATTCBlCTAAAGCGGT TAGTTCTTGGCCGCG®
* Run VCF 0|
=
=
]

Powered by Biodalliance 0.12.9-dev

I

OEBPS/media/file18.png
(1 [Mpycodestyte
2 # Unused inports and mtiple imports on o Line
et cxompte_funcrionte, b): 8 Missing doctring

15 grenter than) 0 Tmprapr snsentation

brint (" 1 rester or eausl to a%) # Extrs indentation
tong Uine exceding 10 chorocters

ANt (TS s 3 restly, reatly, really, restly, restly, really, resily lonp Line of code”)

exampte_function(1,) # Funceien call with no meninaful context

110: €40 mtciple isports on one line
502 expectes 2 bk ines, found &

5171 Exn1 insentotion s not 3 mttipte of &

3111 305 aupectad 3 blak Lines after clas o function definition found 8

3ian: Esa Vine o0 tong (92 5 75 charscters)

T203E 1392 o Tine ot end of File

OEBPS/media/file95.png

OEBPS/media/file44.png
FastQC: Mean Quality Scores

2 samples

@
o
o
o
)
bl
@
2
<
o

15 bp 20 bp 35bp

Position (bp)
[——

OEBPS/media/file87.png
mNumber of Stuctures Released Annually

@Total Number of Entries Avalable.

et
esr66'l
19r°sy

szl

SL¥SST
e
s
oSSz

250000

200000

150000

f10z
iz
oz
or0
ome
so0z
e
omz
o0z
oz
f00z
B
100z

OEBPS/media/file103.png

OEBPS/media/file26.png
Your parse_fasta function looks correct and is well-structured — it will successfully parse a standard
FASTA file into a dictionary where headers are keys and sequences are values.

Quick points it handles correctly:
« Strips whitespace.
« Detects headers with >.
« Accumulates multi-line sequences.
« Saves the last sequence after the loop finishes.

- Clean docstring.

OEBPS/media/file28.png

OEBPS/media/file79.png
Metadata for the accession:
run_accession study_accession \
o SRR536546 SRP014780

study_title experiment_accession
Single Neuron Sequencing Quantifies L1 Retrotr... SRX175596

©

experiment_title \
@ Genome-wide L1 insertion profiling of single n...

experinent_desc organism_taxid \
@ Genome-wide L1 insertion profiling of single n... 9606

organism_name library_name library_strategy
© Homo sapiens 4638-cortex_1-neuron_MDA_28 AMPLICON

experiment_alias label body_site sample-type \
© 4638-cortex_l-neuron MDA_28 UMB4638 cortex 1-cell MDA

ena_fastq_http ena_fastq_http_1 \

@ http://ftp.sra.ebi.ac.uk/voll/fastq/SRR536/SRR. .. <NA>
ena_fastq_http_2 ena_fastq_ftp \
[<NA> era-fasp@fasp.sra.ebi.ac.uk:voll/fastq/SRRS36/. ..

ena_fastq_ftp_1 ena_fastq_ftp_2
) <NA> <NA>

[1 rows x 53 columns]
Downloading SRA run SRR536546. ..
Download complete. Files saved in sra_data

spots read : 3,512,181
reads read : 3,512,181
reads written : 3,512,181

\

OEBPS/media/file6.png
VAERS_ID
RECVDATE
STATE
AGE_YRS
CAGE_YR
CAGE_MO
SEX

int64
object
object
float6d
float6d
float64
object

OEBPS/media/file36.png
Decision Tree Classifier

mean concave points <= 0.051

g
samples = 455
value = [169, 286]
class = benign

gini
samples = 35
value = [17, 18]
class =

3
value = [2, 1]
class = malignantl

OEBPS/media/file62.png

OEBPS/media/file113.png
Score Value

100

80

60

20

Score Components by SiRNA Candidate

Score Component
- g score
seed_gc_score

- motif_score

= thermo,_score
7 7

1 7 107

116 118
Position in Target MRNA

125 139 19 205

OEBPS/media/file11.png
NaN 742506
Y 10534
Name: DIED, dtype: int64

OEBPS/media/file97.png
509, 0800 (RESTV) ruc_ v (RASTV) ta G(RESTY) wad theta (RESTV) sog. shes (SUOV) s v (SUOV) ta 4(SUOV) wal theta (SUON)

T

D

OEBPS/media/file67.png
'l////"

‘ Signal ‘ Alpha ‘ Beta Binding
Peptide Helix Sheet Domain

OEBPS/media/file54.png

OEBPS/media/file2.png
"~ Jupyter 3-1-Style-guides Last Checkpoint: 5 days ago a

File Edit View Run Kemel Settings Help Trusted

B+ XD0O » = C » Code v JupyterLab (7 & Python 3 (ipykemel) O = B

Coding and Style guides ses

1 #31

[1: # Libraries

[1: #3.1.2 - Install PyCodeStyle
1pip install pycodestyle pycodestyle magic

[1: # Install flakeg dependency
1pip install flakes

Load PyCodestyle
load_ext pycodestyle_magic

[1: %pycodestyle
#3.1.2 - Example Code A
my_var=10

[1: #3.1.2 - Example Code B [T0DO]

[1: #3.1.3 - Black in Jupyter
pip install "black[jupyter]”

[1: # Now run black on the notebook from the command line

OEBPS/media/file121.png
Gene Expression Heatmap

T
z
g
H

Sample_2
Samples

OEBPS/media/file24.png
self.assertAlnostEqual(best_alignment.score, expected_score, places=1)
self.assertIn(expected_target, str(best_alignment))
self.assertIn(expected_query, str(best_alignment))

Run the tests
if _name__ == "_main_'
unittest.main(arg

1 exit=False)

FAIL: test_global alignment (_main__.TestPairwiseAligner.test_global_alignment)
Test global alignment.

Traceback (most recent call last):
File "/var/folders/53/kmyyy3057ndfbobpwx_2pkro@@egn/T/ipykernel_37172/1953800863.py", line 24, in test_global alignment
self.assertAlnostEqual (best_alignment.score, expected_score, places=1)
AssertionError: 6.0 != 9.0 within 1 places (3.0 difference)

FAIL: test_local_alignment (_main_.TestPairwiseAligner.test_local_alignment)
Test local alignment.
Traceback (most recent call last):
File "/var/folders/53/kmyyy3057 ndfbobpwx_2pkro@@egn/T/ipykernel _37172/1953800863.py", line 39, in test_local_alignment
self.assertAlnostEqual (best_alignment.score, expected_score, places=1)
AssertionError: 7.0 != 6.0 within 1 places (1.0 difference)

Ran 2 tests in 0.003s

FAILED (failure:

)

OEBPS/media/file101.png

OEBPS/media/file72.png
Haplotype 1 ‘ ACGTGGGACTGCCCACA

Haplotype 2 ‘ ACGTACTGCCCACT

OEBPS/media/file91.png
Atom: [PROJ250:A.CA

OEBPS/media/file85.png
'JGI}\? JGLHOME CONTACTUS LOGIN / SIGN-ON

) INTEGRATED MICROBIAL GENOMES & MICROBIOMES.

) MGM Workshop Apr 28-May 2, 2025
‘See What's New in IMG Kegg, PFam and IMG Anotation updates.
NERSG Planned Outages Mon Jan 27, 2025 to Sat Feb 1, 2025 IMG Select Genomes BLAST wil be down.

IMG/M 22
from Sequence I '
to Biology

m o .

OEBPS/media/file9.jpg
Age

Age of adverse events

120 A

100 A

80 -

60 -

40 4

20

0

200000 400000 600000 O 20000 40000 60000
Frequency

OEBPS/media/file42.png

OEBPS/media/file69.png

OEBPS/media/file56.png
Haploid

Diploid

Diploid

OEBPS/media/file115.png
Frequency

Proportion

008

006

004

Amino Acid Composition

v v oo

B R R R N R R R

Flavor Profile

Proportion

Essential vs Non-essential Amino Acids

Essential

55.9%

Non-essential

Amino Acid Properties

OEBPS/media/file38.png
Percent of empty values

Fraction of empty values per column

o &

ééé’
© wy‘ﬂ

S o
T IS

OEBPS/media/file99.png

OEBPS/media/file128.png
Read Alignment Visualization

—— Spanning Reads
Supporting Reads
—— Reference Reads
—— Non-insertion Reads
—— Ambiguous Reads
~Insertion Region

Reads

~2000 0 2000 4000 6000 8000 10000 12000
Genome Position

OEBPS/media/file60.png
FEATURES

cos

aene

e N e N MERSATRS hTER TRS AR
Information (NCBI).
COMPLETENESS: full length.

Location/Qualifiers
1..4641652

Jorganisn="Escherichia coli str. K-12 substr. MG1655"
/mol_type="genomic DNA"

/strain="k-12"

/sub_strain="nG1655"
/db_xref="taxon:511145"
190..255

/gene="thrL"
/locus_tag="b0001"
/gene_synonyn="ECK00OL"
/db_xzef="ASAP: ABE-0000006"
/db_xref="ECOCYC:EG11277"
/db_xref="GeneID:944742"

190..255

/gene="thrL"

/locus_tag="b0001"
/gene_synonyn="ECK8001"
/codon_start=1

Jtrans]_table=11

/product="thr operon leader peptide”
/protein_id="Np_414542.1"
/db_xref="UniProtkB/Suiss-Pro
/db_xref="ASAP: ABE-0000006"
/db_xref="ECOCYC:EG11277"
/db_xref="GeneID:944742"
/translation="MKRISTTITTTITITTGNGAG"
337, .2799

0ADBG"

OEBPS/media/file30.png
array([[8,
[4,
[8
17,
[6

27,
19,
28,
27,
25,

33,
30,
35,
33,
33,

26,
39,
24,
27,
29,

ol,
ol,
ol,
ol,
011, dtype=uint8)

OEBPS/media/cover.jpg
[Early Access | <packt>

33T53Y

p222220d

533

53355

23

Bioinformatics
with Python

Cookbook

Solve advanced computational biology problems and
build production pipelines with Python & Al tools

<> SHANE BRUBAKER

OEBPS/media/file81.png
search ID mapping SPARQL UniProlk®

[Function

Names & Taxonomy

Disease & Variants

PTWProcessing
Expression
Interaction

Structure

Family & Domains
Sequence & Isoforms.

Similar Proteins

%P21802 - FGFR2_HUMAN

Protein' | Fibroblast growth factor receptor 2 Amino acids | 821 (g0t sequence
Gone! | FarR2 Proteinexistence! | Eidenceat prten v
Status! | 3 UniProtk® reviewed (Swiss-Prot) Annotation score’ | ()

Organism' | Homo sapiens (Human)

Entry Variantviewer @EJ) Feature viewer Genomic coordinates Publications External links History.

& Tools~ L Download # Add Add apublication _ Entry feedback

Function'

Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation, migration and apoptosis, and
in the reguiation of embryonic development. Required fo normal embryonic pattering, trophoblast unction,limib bud developmen, lung morphagenesis, osteogenesis and skin development.
Plays an assentil ol in the rogulaton of osteoblast iferentaton, prolferation and apoptosis, and i roquired for normal skeloton development. Promotes.callprolforation n keratinocyles and
immature osteobiasts, but promoes apoptosis n diferentiated osteoblasts. Phosphorylates PLCGH1, FRS2 and PAKA. Ligand binding leads to the acivatin of several sgnaiing cascades.
Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-risphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1,
PIK3R1 and SOS1, and mediates acivation of RAS, MAPK1/ERK2, MAPKA/ERK1 and the MAP Kinase signaling paifway. as well s of the AKTY signaiing paihway. FGFR signaling is down-
ogulated by ubiqitination,intemalizaton and degradation. Mutaions that lead fo contiutve kinase acivation or mpair norma FGFR2 maturaion, intemalizaion and degradaion lead o aberrant
signaling. Over-expressed FGFR2 promotes activation of STATI. (X 4 Fubesios]

OEBPS/media/file13.png
Unknown 221 32
EN6201 157 33
unknown 127 21
EN5318 120 29
EN6200 120 22
EN6198 115 24
EL9261 111 22
EL3248 102 18
EM9B10 100 21
EN6202 98 19

039K20A 97 13

OEBPS/media/file39.png
Vaccines involved in deaths Days between vaccine administration and death

3500
3000
2500
- § 2000
- £
- :
o J oo
-
- 1000
-
-
- 00
-
3
o 100 200 300 Y 50 00
Days
Deaths over time Deaths per state stratified by sex
50 10000
a000
5 £
H 6000 ¢ 2
e L
H
H w00 £
3
2
2000
N < .o - fo

202101 202104 202107 202110 202201 202204 202207 202210 202501
Date

OEBPS/media/file125.png
Alignment results summary:

read_id read_length ref_position ref_confidence mod_position mod_confidence confidence_diff read_type

0 Read 5907 203 0058026 204 0068422 0061408 spanning
1 Read_2 6203 2637 0027674 4137 0027292 -0.002408 ambiguous
2 Read_3 7187 541 0045123 541 0075038 0214998 spanning
3 Readd 8737 567 0036182 2067 0036022 -0.001403 ambiguous
4 Reads 5474 1690 0032710 3185 0038651 0032519

Read type distribution:

ambiguous 496
spanning 88
supporting 16

Name: read_type, dtype: int6d

OEBPS/media/file19.jpg
Response

Function

 Paring a FASTA fhe typcaty clvs e th e e by e, dentyng secuence hesders
s st wih ») o e subsecent s 5 th corependng sequence Boon

15Pythoncode o parsing a FASTA fle nd targ the dat i dicionary.
o~ O o

et parse_susta(tite_puthl:

Farses & FAGTA file and returns 3 dictionay ith seqvence hesders a5 Keys and

it cpen(rite_puth, “r°) a8 Fiter
hesser = pane
semence = 1)

ine = Unestrinl)
e

beader + Uinalis] ¢ Avwore

OEBPS/media/file23.png
Perform global alignment
global_alignments = aligner.align(seql, seq2)

Display the best global alignment
print("Best global alignment:")
print(global_alignnents(0])

print(f'score: {global_alignments[@].score}")

Perforn local alignment
aligner.mode = ‘local' # Switch to local alignment mode
local_alignments = aligner.align(seql, seq2)

Display the best local alignment
print(“\nBest local alignment
print(local_alignments [0])

print(f'Score: {local_alignments[0].score}")

Best global alignmen

target 0 ACGT-GCTAGCTAG 13

O [I1I=l.1=I111- 14
query 0 ACGTCGAT-GCTA- 12
Score: 6.0

Best local alignment:

target 0 ACGT-GCTAGCTA 12
O [I1I=1-1-1111 13
query © ACGTCGAT-GCTA 12/

Score: 7.0

OEBPS/media/file83.png
RCSBPDB Depost)

= B 200744 Sinctures rom e o8
=} Entor search tarmys), Enty 1D, Ligand I or sequence ncudo oS ©

FROTEIN DATA BANK [E] 108,577 Computea Suctre Mooes S
Advanced Searc | Browss rvctatons Help

SPDB foneicon: §NAKB 12 @PDB-HM

Srucure Amowions Experment Sequence Genome Versions

B1A8M

TUMOR NECROSIS FACTOR ALPHA, R31D MUTANT
PDB DOL: hitpsy/dol 013/10.2210/pdbTABM/pdl

Glassification: LYMPHOKINE

Organism(s): Homo sapiens.

Expression System: Escherichia col
Mutationfs): Yes ©

Deposited: 1968-03-27 Releasedt: 1998-06-17
Deposition Author(s): Feed, C., Fu, Z-Q., W, J., Xve, Y-N., Harrison, R, Chen, M., Weber LT

Experimental Data Snapshot WWPDB Validation © ©30Rogon | Fut gt
Methods: X-RAY DIFFRACTION Metric Percentile Ranks Value
Resolutin: 2.30 A Clashaors —
R-Value Froe: 0.240

R-Value Work: 0218 Ramchindan oicrs — 05
R-Value Observed: 0218 Er— — s 5

Ing M experimental Wi e o e
©Explore i 3D: Strcture | Sequence Annotatons | View mors detsle U e o et e e
Eectron Densty | Valaton Report

OEBPS/media/file66.png
FRanpErTyersion= s.2e \bulld cB24-18-04 18:97), Dy Fablo Lingolani™
SNpEFf GRCh38.99 snpEFf/examples/test.vef

., Type=String, Description="Functional annotations: 'Allele | Annotation | Annotation_Impact | Gene_Name | Gene_ID | Feature_Type
Feature_ID | Transcript_BioType | Rank | HGVS.c | HGVS.p | cDNA.pos / cDNA.length | CDS.pos / CDS.length | AA.pos / AA.length | Distance | ERRORS / WAR
NINGS / INFO' ">
##INFO=<ID=LOF , Nunber=. , Type=String, Description="Predicted loss of function effects for this variant. Format: 'Gene_Name | Gene_ID | Number_of_transcrip
ts_in_gene | Percent_of_transcripts_affected'">
##INFO=<ID=NND, Number=. Type=String, Description="Predicted nonsense mediated decay effects for this variant. Forma
anscripts_in_gene | Percent_of_transcripts_affected' ">
1 10469 . c o 365.78 PSS AC=38;AF=8.8732; ANN=G|upstrean_gene_variant |MODIFIER| DDX11L1|ENSGBBBBB223972 transcript | ENSTEBEB
8456328.2| processed_transcript| |n.-1488C>C| | | | |1488] | upstrean_gene_variant|MODIFIER| DDXLLLL|ENSGBBBBB223972| transcript | ENSTOBOBD450305. 2| transcribed_u
nprocessed_pseudogene| |n.~1541C>6] || | |1541] 6| downstrean_gene_variant |MODLFLER | WASH7P | ENSGBBBBB227232 transcript | ENSTBBBBBABBLA7 1| unprocessed_pseudogen
| |n.*39356>C| | | ||3935] , G| intergenic_region|MODIFIER| CHR_START-DDXLLLL| CHR_START-ENSGB0000223972| intergenic_region|CHR_START-ENSGBBBBB223972] | [n.10469C>
c

"Gene_Name | Gene_ID | Number_of_tr

OEBPS/media/file58.png
Variant Type Distribution

Variant Types
B Deletion
s RSN
B Other
EE insertion

OEBPS/media/file117.png

OEBPS/media/file40.png
UMAP Dimension 2

UMAP Visualization of Breast Cancer Dataset

o malignant
© benign

UMAP Dimension 1

10

12

OEBPS/media/file15.png
VAERS_ID int64 5
RECVDATE object 48
STATE object 39
AGE_YRS float6d 5
CAGE_YR floatsd
CAGE_MO floatsd 5

SEX object 41

RPT_DATE object 23
SYMPTOM_TEXT object 496

OEBPS/media/file108.png
0575 0% o0sss 0s%0 0995 1000

OEBPS/media/file32.png
g
s
s
3
g
g

Cumulative Expl

0.70

°
@
&

0.60

055

050

0.45

Cumulative Explained Variance by Principal Components

125 150 175 2.00 2.25 3.00

Number of Principal Components

2.50 2.75

OEBPS/media/file49.png
Reverse Complement: TATATATATATTTATGTATTTAATTTTGCTGTACTAGCGACACCCACAACCCTCCACAACCATGTCCTGATAGTTCTTTAATACAACCTTTTCATTCTCGTCAAGGTACAGCATCGAGATA
GCACTGAGTTCTGTCGGGACACAGCATGCCTTAGGAATCTTAGAGTTAACAGAGTTGACCAACGTCTGAACAATGGCATGATTAGTGGAGTTCAGATGATCAGCCAGAGGAAAAGGGCATTCTCCGTGGCAGTAARAGGCG
TGATACCCCGGGGGAGCCACARTCCAGTCATTCCACCCCACGTCACTGAAGTCCACGTACAAAGGGTGTCTCTTACAGCTGGACTTAAGGCGTTTCCGCTGTTTGTGTTTGGCTTGACGTTTTTCTCTTTTGTGGAGAGGA
TGCCCTTTTCCATCATGGCCAAAAGTTACTAGCAATGGCCTTATCTGTGACCAGCTGTGTTCATCTTGGTGCAAAGACCTGCTTATCCTAACATGTCTCTTGGAGACACCTTGTTTCTCCTCCAAGTGGGCCACTTCCACC
ACGAATCCATGGTTGGCGTGTCCCTGTGCAGTCCACCGCATCACAGCGGGGGTGACATCARAACTTTCCCACCTGCTTGCATTCTGATTCACCAACCTGGTGTCCARAAGTCTGGTCACGGGGAATTTCGAGTTGGCTGTT
GCAGGTTTTATGATTTCATAARTATTAATTCGGTGATGGAAACTGCTATTGTTTCCTARAGCATCTTGCATCTGTTCTCGGAAAACCTGAAGCTCTGCTGAGGTGATAAACTCCTCCGTGGGGATAGAACTTAAATTAAAG
AAGAATCTCCGGGTTGTTTTCCCACTCGTTTCTGGTAGTTCTTCCAAAGATTCTTCATGGTGGAAGCTGCGCACAGTGTTGGCTCGGCTGGCTGCCCTCTCCAACCGGTGGTCTGGGGCGEGTGAGCCCGGCTGACCTGAG
TGCCTGCGATACAGGTCTAGCATGTAGGGGGGCACCACGGCGTCCCTGCTGGGGGTGGGTCTCTGTTTCAGGCCGAACATGCTGAGCAGCCGCAACTCGAACTCGCTCAGGACCTCGTCAGAGGGCTGGGATGAGGGGCGG
CCCGACGACGCCGCCGCOAACTTCCTGCGGCCCAGCTCCGGAACGAGGCCAGCCGLGCCGCCCAGGAGGACCTGGGGAAGCAGCAACGCTAGAAGACAGCGGGTCCCGGCCACCATGGTCGACCTTTAGGAGACCGCAGTC
CGTCTAAGAAGCACGCGGGGACACGTCCATTGAAAGAGCGTCCACATGGAAAAACTCTGGTCAAAGGACCTGGCGCAAGGACCGAATGTCCGTTCCTTTTCTTTGCCTCCTCCTTCTCCCGEGTGCCGGCCGCGCAGTCTC
TCTTTTCACGCTGGGAACAGCGTCTCAGTGTCGGGCAAGGCCGAGGAGTGGAGGGGCGGTGEGGCTCGGAGATGGCGAAGCAGGCTCCGCTGGGGCAMGGCACCGGCGCARAGTGGGGTGCGCAAGTTATTCTCCCTGCA
AGTTCAAGAAGTCCCC

Transcription (DNA to RNA): AUGGUGCAUCUGACUCCUGAGGAGAAGUCUGCCGUUACUGCCCUGUGGGGCAAGGUGAACGUGGAUGAAGUUGGUGGUGAGGCCCUGGGCAGGCUGCUGGUGGUCUACCCUUG
GACCCAGAGGUUCUUUGAGUCCUUUGGGGAUCUGUCCACUCCUGAUGCUGUUAUGGGCAACCCUAAGGUGAAGGCUCAUGGCAAGAAAGUGCUCGGUGCCUUUAGUGAUGGCCUGGCUCACCUGGACAACCUCAAGGGCAC
CUUUGCCACACUGAGUGAGCUGCACUGUGACAAGCUGCACGUGGAUCCUGAGAACUUCAGGCUCCUGGGCAACGUGCUGGUCUGUGUGCUGGCCCAUCACUUUGGCARAGAAUUCACCCCACCAGUGCAGGCUGCCUAUCA
GAAAGUGGUGGCUGGUGUGGCUAAUGCCCUGGCCCACAAGUAUCACUAR

Protein Translation (DNA to Protein): MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPHTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPEN
FRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

OEBPS/media/file75.png
Contig ‘ ACGTACTGCCCACT

‘ ACGTGT ‘ ‘ [e3fclelele} ‘ ‘ CACT

Reads

‘ GTACTG ‘ ‘ CCCACT

OEBPS/media/file1.png
Z Jupyter

File View Settings Help

® Files | © Running

“New *Upload C

- /chp3-1/
© Name - Last Modified File Size
(][3-1-Style-guides.bkup.ipynb 5 days ago 28K8

[0 @ 2-3-Pandas-Joins.py 6 days ago 17K8
O @ 2-6-Matplotiib.bkup.py 6 days ago 6KB
0O @ 2-6-Matplotiib.py 6 days ago BAKB

OEBPS/media/file70.png
Telomere Telomere

Telomere Telomere
Centromere

OEBPS/media/file77.png
Wanmes [carus Move << < > > zoom +x « ox starc CHEN o BRI

Fade contigs shorter than bp

QUAST Contig Browser.

Contig
lengih: 4629606 UIGS042 1st contig ‘
o dozseos LIS click on a conti to get
é s77 i wer wia 2535 Wiz w80 we2on s20m srip
= Legend
- contigs
ecoli-assembly 50 NSO,
o 7 7 3 3

463 Mop contig of length = Nx
statistic (e.g. N50)

OEBPS/media/file47.png
Single-end sequencing

Paired-end sequencing

exon © exon 3'UTR 3

OEBPS/media/file123.png
Read Count

Top Gene Counts by Sample

Sample
=== Sample_1

1000 e Sample_2
=== Sample_3

800

600

400

m ‘ ‘ ‘ I |

o II il I .

& F F & F & & @“ &

OEBPS/media/file119.png
Top 5 Guide RNAs:

Guide 1: TTCCACATGTTGGAAACATG (PAM: NGG, Strand: +)
Position: 42466-42486, Cut site: 42483
Distance to mutation: 17 bp
GC content: 40.0%, Score: .82

Guide 2: ACATGTTGGAAACATGTGGA (PAM: NGG, Strand: -)
Position: 42476-42490, Cut site: 42472
Distance to mutation: 28 bp
GC content: 40.0%, Score: .62

Guide 3: TATTAGGAACTTCCACATGT (PAM: NGG, Strand: +)
Position: 42456-42476, Cut site: 42473
Distance to mutation: 27 bp
GC content: 35.0%, Score: 0.61

Guide 4: ACATTCCCAGAAATCATCTA (PAM: NGG, Strand: -)
Position: 42525-42545, Cut site: 42527
Distance to mutation: 27 bp
GC content: 35.0%, Score: 0.61

Guide 5: CAGAAATCATCTAGCATTTG (PAM: NGG, Strand: -)
Position: 42532-42552, Cut site: 42534
Distance to mutation: 34 bp
GC content: 35.0%, Score: 0.49

Repair Template Design:

Length: 101 bp

Left homology arm: TGAAGTTATTAGGAACTTCCACATGTTGGAAACATGTGGAAACAGAAGTA
Mutation: T - C

Right homology arm: GCTGAAAGTATTTAAATTTTGACCACATTCCCAGAAATCATCTAGCATTT

Results saved to BRCAI_mutation_guides.csv and guide_visualization.png

OEBPS/media/file106.png
¥anay Dataset

- Dimensions:
» Coordnates: (0)

+ Data variabies:

« Atibutes:

(variants: 56241, avels: 2,

(arants)
(variants)

(asiants)

(arants)

(ariants)

(arants)

(arants, alles)
(variants)

(asants, alles)
(arants)

(ariants)

(variants, aleles)
(samples)
(asants,samples, o)
(variants, samples, ploy)
(arants)

(samples)

(samples)

- (samples)

(samples)
(samples)
(samples)

s,
9,20, 21,22
$gkit05.0

samples: 1198, ploiy: 2

niss
oats
ni6s
nt6a
ntss
ntss
s,
niss
oats
s
ns2
st
wr
g
bool
w0
wr
<ws

dask anay<chunksiz s
daskamay<chunksize=G5... @ 8
dask aray<chunksiz =
daskanay<chunksize=Gs... @ B
dask anay<chunksiz

dask anay<chunksize=(s.. B 8
daskaray<chunksize=(s.. D @
caskamay<chunksize=G... D 8
daskaray<chunksize=(5.. @ 8
0000000...212121

dask anay<chunksize=(

dask anay<chunksize=(s.. B 8
daskaray<chunksize=(L.. 8
caskamay<chunksize=G... D 8
dask.aray<chunksiz s
daskanay<chunksize=(s... B
cask amay<chunksiz =
daskanay<chunksize=(L.. [8
dask aray<chunksiz e}
daskamay<chunksize=(l.. 8
dask aray<chunksiz 13
00000000..0000.. B8

13,114, 15, 16, 17, 1

OEBPS/media/file17.png
Ferrkkoookek Module sample
sample. CB114: Missing module docstring (missing-module-docstring)

sample. : Co410: Multiple imports on one line (0s, sys) (multiple-imports)

sample. Co116: Missing function or method docstring (missing-function-docstring)

sample. Argument name "a" doesn't conform to snake_case naming style (invalid-name)
sample. Argument name "b doesn't conform to snake_case naming style (invalid-name)

sample. Missing class docstring (missing-class-docstring)

sample. Missing function or method docstring (missing-function-docstring)

sample. Missing function or method docstring (missing-function-docstring)

sample. : Constant name "BADVariableName® doesn't conform to UPPER_CASE naming style (invalid-name)

sample.
sample.

Wo611: Unused import os (unused-import)
WR611: Unused import sys (unused-import)

Your code has been rated at 3.12/10 (previous run: 5.80/10,

.88)

OEBPS/media/file94.png
Peptide Mass Distribution (Trypsin Digest)

2.00

175

150

Frequency
5 &
g8 B

°
S
>

.

1500 2000 2500 3500 4500
Peptide Mass. (Dai

OEBPS/media/file8.png
VAERS_ID
916600
916601
916602
916603
916604

AGE_YRS CAGE_YR

330

730

230

58.0

470

330

730

230

58.0

470

OEBPS/media/file51.png
Read Depth

70

65

60

55

50

a5

40

Coverage Plot for NC_000913.3:1000-1500

—— Coverage

1000

1100

1200

Position

1300

1400

1500

OEBPS/media/file64.png
Promoter

5'UTR % Exon 1

—
Intron

Exon 2 3'UTR

OEBPS/media/file34.png
True Label

malignant

benign

Confusion Matrix for Decision Tree

60

-20

-10

malignant
Predicted Label

OEBPS/media/file21.png
Header: seql
Sequence: ATCGTACGATCGGATCGTACGATC
Header: seq2

Sequence: CGTAGCTAGCTA

