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Preface of the Second Edition

In writing this second edition of this book Statistical Mechanics for
Beginners, 1 intended to keep the book for students who for the
first time study this scientific field. The book may be also useful for
teachers in proposing a frame for a course. I think that this approach
makes the originality of the book. The question was: what to do in a
second edition? This field was initiated more than 100 years ago and
one cannot hope for recent development which could be added to a
first edition. So I decided to read the book as it was a new one. In
reading I ask myself: is this text clear enough? Are the explanations
enough satisfying? The first thing to do was to correct the text from
inevitable errors. And I made several minor corrections to all the
text. But more important are four initiatives.

The first concerns the fluctuations. Since the theory gives distri-
butions, it is good to recall this point that I mention rapidly without
giving too many details.

In the second initiative, I wanted to present a detailed study of the
bosons. The goal was to understand more clearly the Bose-Einstein
condensation. I confess that, in the first edition, this phenomenon
did not receive a satisfactorily explanation. The answer to the prob-
lem did not seem to correspond to the question. I consider a group of
bosons with a given potential and calculate numerically their proper-
ties: energy, chemical potential and variation of the population in the
lowest level with the temperature. This last point has great impor-
tance because this is a particular behaviour of bosons. When one
decreases the temperature, the ground level is progressively filled.
However, one distinguishes two regions, one with the lowest level
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almost empty and the second region with a filling of the lowest level in
a small temperature interval. This is like the Bose-Einstein conden-
sation but progressively. The Bose-Einstein condensation appears, as
in a phase transition, at a well-defined temperature but otherwise,
there is a blurred transition. A Bose-Einstein condensation is not a
sort of exotic phenomenon but an intrinsic property of bosons. In the
case of fermions, in an identical situation, the ground level is filled
regularly when the temperature is decreased.

But the story is not finished. Why the problem of the chemical
potential is solved by the division of the particles? Why it is proposed
to say that the series and the integral do not agree, in this case? In
fact it is the general problem to compare the sum of a series and that
of the integral, both with the same expression. It is not evidence that
one can replace a series by an integral as physicists make currently.
Series and integrals have very different definitions, they are very dif-
ferent mathematical objects. The problem of the comparison of the
sums of series and integrals was solved by Kuler and McLaurin in
1737. The Euler-McLaurin formula gives the difference between the
sums, but it seems that the Bose-Einstein condensation is one case
where the difference is important. It is likely that in most cases where
one replaces a series by an integral, neglecting the differences has no
serious consequences.

The third initiative is the energy of a gas of fermions. I give two
solutions to the problem of calculating its energy. The second solution
that I added is much known and it is simpler than the first. But I
want to show that the first solution, in spite of its complication has
the advantage of giving a useful formula.

Finally, I added the problem of the size of a neutron star. This is
a kind of an introduction to astrophysics.

I mention that the number of exercises is much larger than in the
first edition and a large part is new and not published elsewhere.

I hope these four initiatives will contribute to make the book more
useful for beginners.

L.G. Benguigui
Haifa 2024



Preface of the First Edition

This book is intended for the students who begin for the first time
the study of statistical mechanics. There are two different approaches
to teach thermal physics to the students in physics at the level of the
BSc. The first is to expose the subject in two separate courses: one
in thermodynamics i.e. the macroscopic aspect of thermal physics
and a second one (taught immediately after) in statistical mechan-
ics, i.e. the microscopic aspect. There are excellent books that chose
this way. The other approach is to present the subject in only one
course mixing the two aspects. Excellent books also exist that fol-
low this more compact method. Here there is no place to discuss the
advantages and the disadvantages of each of the two approaches. In
this book, I follow the first one. This means that this course in suited
for students that have already some knowledge in thermodynamics.

Historically, the classical statistical mechanics was first developed
and only later, with the progress of the theory of the quantum theory,
the quantum statistical mechanics was born. I think that, from a
pedagogical point of view, it is easier to teach the quantum statistical
mechanics than its classical counter part. This is the reason why in
this book, the major part of the book is devoted to the quantum
statistical mechanics. It suffices that the student has an elementary
knowledge of the basic results of the quantum theory to be able to
understand the matter.

This book may appear very short. It is effectively far form being
complete. For example, in thermodynamics the concept of entropy is
introduced in connection with irreversible process. However, in this

vii
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book, I did not discuss this problem, giving time for student to study
it later.

I tried to present the subject in a consistent form: first the gen-
eral principles or the methods giving the links between the macro-
scopic and the microscopic worlds. In addition, in the second part,
applications to simple situations are developed. It is good to give
first the foundations and only after the details of the applications.
On the other side, I present classical cases as particular situations
of quantum cases. This is not the way in which the matter is fre-
quently taught. I think that the actual presentation has some novel
aspect. The mathematical level is not very high. The reader has to
be used with algebraic calculus, combinatory, differential and integral
calculus.

The book is almost exclusively for the use of the students. It is
based on my personal teaching at the Technion. At the disposal of the
teacher, there are many very good books with a lot of complementary
details for an oral teaching in the classroom. But I did not find a book
that I can recommend to the students when, for example, he was not
able to assist some classes. When I taught this course, I had only
two hours a week (and one hour for exercises) during one semester of
14 weeks. In such limited time, only the main points may be taught.
This means that all is important in the book. It represents what a
student needs to know in order to be able to follow other courses in
his studies toward his first degree in physics (for example, a course in
solid state physics). I introduced exercises which are straightforward
applications of the matter of each chapter. They will help the student
to assimilate the main concepts and methods.

I added a special chapter on the history of statistical mechanics.
Since in the book itself I do not follow the historical development, I
thought this could be interesting to bring some views about how the
theory was built.

I thank J. Unffick of University of Utrecht for his help in preparing
the chapter on the history of the statistical mechanics.

L.G. Benguigui
Haifa 2009
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Introduction

In thermodynamics, it is shown that the thermal properties of a
system compound of a very large number of particles is characterized
by a relatively small number of quantities such as the internal energy,
the temperature, the entropy, the volume, and the pressure. These
are the macroscopic parameters of the matter. Thermodynamics was
developed without a hypothesis about a microscopic picture of the
matter in its three forms: solid, liquid or gas. However, with the
development of the atomic theory, it has become possible to look for
the link between the macroscopic world and a microscopic picture.
At the end of the 19th and at the beginning of the 20th century,
the first steps towards a theory relating the macroscopic world and a
microscopic picture were proposed by Boltzmann and Gibbs. At this
time the term Statistical Mechanics was coined by Gibbs.

The basic problem in statistical mechanics is to find the macro-
scopic properties of a system of particles from the knowledge of their
microscopic properties. But at the microscopic level, the number of
parameters is enormous. It is impossible to follow each particle indi-
vidually and to calculate the properties of the system by some average
over all the particles. In front of this impossible task, it was neces-
sary to proceed in another way. One has to leave the microscopic
individual picture and to rely on a statistical approach.

The theory is based on a fundamental hypothesis. It is possi-
ble to formulate it as follows. The matter, whatever its state, is a
compound of microscopic entities which have specific characteristics.
The state of each entity does not remain the same but changes with
time. In other words, the microscopic world is disordered. However,

xvii
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it is admitted that the collective properties do remain stationary.
For example, the molecules of a gas change constantly their velocity
because of the collisions between them but their mean velocity is
well-defined. In a stationary state, the macroscopic quantities can be
found by some averaging procedure.

A particular theory was developed which is based on some pos-
tulates. The test of the validity of this method is the comparison
between the consequences drawn from the postulates and the exper-
imental results. The very good agreement, which was found, is a
guarantee of the validity of the method.

An important consequence of this approach is that thermal phe-
nomena have their origin in mechanics. It is not an obvious thinking
and the reader must be ready to adopt it. If a system is made of a
relatively small number of bodies, one can apply the law of mechanics
like in the planetary system. But if now the system is a compound of
a very large number of units, one has thermal phenomena. Some sub-
tle points remain in this approach and they were in the past subject
of intense debates. In this book, we shall not consider them except in
the historical part. We think that in the first contact with this field,
it is better to consider only the basic concepts. We hope that this
first encounter with statistical mechanics will help the reader to be
able to read more advanced books.

The book is divided into two parts: first the principles of the
theory and in a second part some applications. This does not corre-
spond to the historical development of statistical mechanics as it is
frequently presented in order to follow the history, we added a chap-
ter which presents the scientists who contributed to the main steps
in the development of the theory.

The Thermodynamic Potentials

Before embarking on the exposition of the theory and its applica-
tions, important results concerning the thermodynamic potentials
are recalled.

If the equilibrium state of the system is defined by the knowledge
of some variables, it exits a function of these variables from which all
the properties of the system can be deduced. These functions play
the role of a potential for the following reasons. If a perturbation
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appears in the system and the chosen variables are kept constant,
the equilibrium state is reached when the potential is a minimum.
We shall consider three cases, which are important for the theory of
statistical mechanics.

The entropy as a thermodynamic potential

In the first case, the state of the system is controlled by extensive
variables like the energy FE, the volume V', the number of particles
N, etc. (We took only these three variables by convenience). In such
case, one considers the system as a closed system since no energy
or no particle can enter or leave the system. The extensive vari-
ables are those which are proportional to the size of the system. The
thermodynamic potential associated with such a state is the entropy
S(E,V,N). We recall that in a closed system, equilibrium is reached
when S is maximum or when —S is minimum. Entropy is a complex
concept which may be presented in several ways. In the framework
of this book, entropy is defined as a potential thermodynamic in the
particular context of the closed system.
The entropy is a homogeneous function such that

S(AE,A\V,AN) = \S(E,V,N) (1)
where )\ is a scalar. From the differential of
dE =TdS — PdV + pdN (2)
one gets the differential of S
dS =dE/T + (P/T)dV — (u/T)dN (3)

(T is temperature, P the pressure and u the chemical potential). One
sees that the temperature is given by

(95/0B)v.x = 1/T (4)

The function of state P(V,T, N) is deduced from T'(E,V,N) and
P(E,V,N)=T(05/0V)g,n and eliminating £ from them.
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The Helmotz free energy as a potential

The second case corresponds to the system in thermal contact with
a reservoir which defines the temperature of the system with volume
V' and number of particles N. It is supposed that: (a) The ensemble
reservoir + system is a closed system. (b) The reservoir is much larger
than the system. The thermodynamic potential is the Helmotz free
energy, which is also a minimum when 7',V and N are kept constant.
Its definition is

F(T,V,N)=FE—-TS (5)
and the differential of F' is
dF = dE — d(TS) =TdS — PdV + udN —TdS — SdT

or
dF = —SdT — PdV + pdN (6)
One gets the entropy
S(T,V,N) =—(0F/0T)v,n (7)
and the energy
E(T,V,N)=F —-T(0F/0T)v N (8)

The function of state is merely P(T,V,N) = —(0F/0V)r n.

In the case of magnetic material one has to take into account the
magnetization of the material under application of a magnetic field.
The magnetization M is the number of effective magnetic dipoles
and the contribution to the energy is MdH. The differential of E is
now

dE = TdS — PdV + pdN + HdM (9)

since F is a function of the extensive quantities as M is.
The free energy is Fiy = E—T'S — M H such that its differential is

dFy = —SdT — PdV + pdN — MdH (10)

In other words, Fjs is a function of T, V, N and H.
The magnetization is obtained from Fj; through its derivative
relatively to H, M = *(8FM/8H)T7V7N.
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The grand potential

In the third case, the system is in thermal contact with a reservoir
made of the same kind of particles. But now it is enclosed in a cell of
volume V with walls permeable to the particles. The variables which
characterize the system are the volume V,T (imposed by the reser-
voir), and the chemical potential which is the same for the system
and the reservoir. If one particle crosses the walls from the reservoir
to the system when nothing else is changed, the energy of the reser-
voir decreases by an amount equal to —upg (chemical potential of the
reservoir) when the energy of the system increases by ps (chemical
potential of the system). Since the total energy has not changed (the
reservoir + the system are a closed system), it results equality of the
chemical potentials.

In the present case the thermodynamic potential is the grand
potential

U(T,V,u) = E — TS — uN. (11)

From the fundamental equality of thermodynamics, £ = TS —
PV + uN one gets ¥ = —PV. The differential of ¥ is dV = dF —
d(T'S) — d(uN) or

dV = —5dT' — PdV — Ndu (12)
Thus, one has
S =—(0¥/0T)v, (13)
P=—0¥/0V)r, (14)
and
N = —(0¥/0p)ry (15)

The energy is given by
E=V4+TS+uN=V-T0V/0T)v, —wo¥Y/ou)ryv. (16)

The distributions

Thermodynamics look for the relationships between thermal and
non-thermal quantities like energy, temperature, volume, pressure,
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electric and magnetic fields, etc. Each of the three thermodynamics
presented above are function of three quantities. In thermodynamics,
they are macroscopic quantities that one can measure. They are also
well-defined.

One has to make important remarks. The three thermodynamic
potentials mentioned above are not the only potentials one can define.
There are others like the enthalpy or the free energy of Gibbs, Each
potential is considered as a function of some variables (called con-
strained variables) which give complete differentials from which other
variables may be known. All these potentials are equivalent since one
can choose the constrained variables in a convenient manner. The
constrained variables of a given potential may be deduced variables
of another potential.

However, in the frame of statistical mechanics, the results do not
give well-defined quantities but only a distribution of the values of
different quantities. This is due to the disordered character of the
microscopic world. We shall get only probabilities of occurrence of
particular values of the parameters.

We shall see three different approaches for passing from the micro-
scopic world to the macroscopic. In the first case, the temperature
and the pressure are not controlled by some external influence and
one considers the system as a closed system. In the second case, the
macroscopic energy is the mean value of the energy of the system. It
can fluctuate since only the temperature is imposed by the external
reservoir. But it is a fundamental hypothesis that the macroscopic
energy that can be measured is the mean value and that the fluc-
tuations around the mean value are negligible when the number of
particles is very large. And in the third case, the macroscopic energy
is the mean energy and the macroscopic density corresponds to the
mean value of N. Since the walls are permeable to the particles, their
number in the volume V of the system can vary. If we suppose that
the fluctuations are negligible, the three cases give the same results
and one can use the standard thermodynamics formulas.

The fundamental goal of statistical mechanics is to determine the
thermodynamic potentials S, F and ¥ from the knowledge of the
microscopic properties of the particles. It is the subject of the two
following chapters.



Chapter 1

The Closed System or the
Microcanonical Ensemble

1.1 The Microcanonical Ensemble

In a closed system, NN particles are enclosed in a volume V with
walls impervious to heat such that the system cannot receive energy
from the external world or send energy outside. The energy of the
system is E. We suppose also that the system is in equilibrium. In
other words, it is supposed that it is possible to prepare the system
with well-define values of the energy E, the volume V', the number
of particles N and other quantities which we design by «. We call
such a situation a macrostate of the system.

At a particular time, a particular particle is characterized by a
set of variables which define completely its state. For example, the
state of a free and isolated particle is given by the knowledge of
its momentum vector p. But the energy is not a characteristic of
the state since there are several states with the same energy and the
same absolute value of the momentum p but with different directions
of the vector p. But in a group of several particles, each particle does
not stay always in the same state and there is a perpetual change
from state to state.

At a particular time, the system is in a state called a microstate
when the states of all the particles are well defined. We recall the fun-
damental hypothesis that the particles change their state with time,
so the system also passes from one microstate to another but keeps
the same macrostate defined by the chosen values of the quantities
E, V and N. If we consider an ensemble (called the microcanonical
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ensemble) of a very large number of identical systems (prepared as
above with the same set of variables E, V, N and «), each system is
in a particular microstate when all these microstates correspond to
the same macrostate.

We shall give a simple example of a system of three particles which
can have one of four possible energies: 0, €, 2¢ and 3e. We suppose
that the total energy of the system is 3¢ and this energy defines the
microstates of the system. One can have the following possibilities,
each defining a particular microstate: (a) the three particles are in the
state with energy &; (b) one particle is a state with energy 3¢ and
the two others are in the state with energy 0; (c) one particle is
in the state with energy 2¢, one particle in the state with energy e
and the third in the state with energy 0.

The fundamental quantity that we shall define and study is the
entropy. In thermodynamics, the concept of entropy has some mys-
terious aspects. It can be seen as a tool which is very useful but its
physical meaning is not very clear. In statistical mechanics, it has a
physical meaning and I shall present it as a postulate.

Now, we can state several postulates concerning the ensemble.

Postulate 1: The probability p; to find a particular system in the
ensemble in a given microstate (labeled i) is the same for all the
microstates (in number ). The probability is a number smaller
than 1 such that the sum of all the probabilities is equal to 1.
One has Yp; = 1 when the sum has € terms. Since p; is the
same for all the microstates, YXp;, = Qp; = 1 and one gets p; =
p=1/Q.

In other words, there is no preferential microstate for the cho-
sen macrostate. We can already emphasize that the number of
microstates 2 is a function of the parameters F, V, N and «.

Postulate 2 of Boltzmann: The entropy S of the system is
S=kpLnQ (1.1)

It is the most fundamental formula of statistical mechanics.
Boltzmann first proposed it and it is why the constant kg is called
the Boltzmann constant. Its value is 1.38 x 10723 Joule - deg™! or
8.62 x 107° eV -deg™!. (We recall that 1 eV = 1.602 x 10712 J). We

shall see later how this value was obtained.



The Closed System or the Microcanonical Ensemble 3

The problem is now to show that this postulate gives the same
entropy as that defined in thermodynamics. Later, we shall see that
we need a new postulate that we formulate in the following.

An important consequence of this postulate 2 is that, for 7' = 0,
the entropy is null (except for some particular exceptions). T' = 0 is
the lowest temperature and all the particles are in their lower energy
state. So, the number of microstates is 1 since all the particles are in
the same state.

Postulate 3: In a closed system, the equilibrium state corresponds
to the largest value of the entropy.
In other words, since £,V and N are fixed, the equilibrium state
will be given by the value of o which gives the largest value of S.
Now, we shall take two simple examples.

Example 1. One considers a row of six spins aligned. If ny spins
are up and ng spins are down, the number of microstates associated
with a particular choice of ny and ns is

It is the number of possibilities to put 6 particles in two boxes.
If there is no external magnetic field or interaction between spins,
the energy is null. The equilibrium state is the one with the largest
number of microstates ) because in this case the entropy is maxi-
mum. In the present case, one can choose a as the number n; (or
ng). Varying ni one sees that €2 is maximum for ny = 3 (Q = 20), as
shown in Table 1.1.

In the equilibrium state, half of the spins are up and half down.
The entropy is equal to kp Ln 20.

Example 2. Three spins are located at the three corners of an equi-
lateral triangle. The energy of the systems is only due to the inter-
actions of the spins. mq, mo and mg are the values of the three spins

Table 1.1. Number of microstates when the number of spins up
is changed.

ni 0 1 2 3 4 5 6
Q 1 6 10 20 10 6 1
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which can be equal to 1 (spin up) or —1 (spin down). The energy of
the system is E' = —(mymg + mams + mgmy). There are 2 x 2 x 2
microstates depending on the directions of the spins. There are two
microstates with energy E; = —3 (the three spins up or the three
spins down) and six microstates (when two spins are in the same
direction and the third in the opposite) with energy Fy = —1. In
other words, the system can have only two macrostates. What are
the possible values of the entropy for such systems? In the first case,
the entropy is S1 = kg Ln 2, and in the second case, Sy = kg Ln 6.
Note that the macrostate with the larger energy has also the larger
entropy.

1.2 Properties of the Entropy

2.A We consider an isolated system of N particles with energy E in
the volume V' which is divided into two distinct cells (left cell with
volume Vj and right cell with volume Va; V; + V5 = V). The two cells
are separated by a rigid wall covered by a material which does not
give the possibility for heat to go from one cell to the other nor for
the particles to pass from one side to the other (if it is a gas). On
the left side, there are N7 particles with energy E; and No particles
with energy Fo on the right side (N7 + Ny = N and Ey + E; = E).
The two cells are two closed subsystems (Fig. 1.1).

We shall call Q(E, V, N) the number of microstates of the whole
system, Q1 (FEq, V1, N1) the number of microstates of the left subsys-
tem and Qq(Es9, Va, Na) the number of the microstates of the right
subsystem. One has

Q=010 (1.3)

since for each microstate of the left subsystem it is possible to
associate all the microstates of the right. We conclude from (1.1)

E; E;
Vi V2
Ni N>

Fig. 1.1. A system and its two subsystems.
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that
S=kpLlnQ=*kpLn(:Q) =kpLn Q) + kpLnQy (1.4)
or
S=5+5 (1.5)
The entropy is an additive quantity as it must be.

2.B One considers again the isolated system divided into two sub-
systems as above. At a given time, one removes the material, which
covers the separation wall making it permeable to heat. The two sub-
systems being different were not at the same temperature, but now
that the wall is permeable to heat, there is heat transfer from the
side with upper temperature to the side with lower temperature. For
t = oo, the two sides reach the same temperature. At ¢ = 0 when one
removes the isolating material, the system is not in equilibrium and
reaches it at the end of the process. At the equilibrium, the entropy
reaches its largest value.
To understand this point, one writes (with V' and N constant)

S = Sl(El) + SQ(EQ) = Sl(El) + SQ(E — El) (1.6)

since the total energy F is constant. During the heat transfer process,
one can take F4 as the quantity o which gives S maximum. This
condition is

(85/8E1)V,N = (851(E1)/6E1)V,N + (BSQ(E — El)/aEl)va =0
(1.7)
or
(65/8E1)V,N = (651/8E1)V7N + (aSQ/aEQ)VJ\/(dEQ/dEl) =0
(1.8)
But dE2/dE1 = —1 since E2 =F— El.

The condition (0S/0FE))y,n = 0 which gives the condition of equi-
librium can be written as

(351/6E1)V7N = (352/6E2)V7N (1.9)

Since the equilibrium is given by the equality of the temperatures
Ty = Ty, one concludes that equality (1.9) is equivalent to the equal-
ity of the temperatures. It means that the derivatives (0.S;/0E;)v n
are functions of T only. Now, we add the last postulate:
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Postulate 4: The derivative of the entropy relative to the energy is
equal to the inverse of the temperature

(0S/0E)v,n =1/T (1.10)

Equation (1.10) gives the link with the thermodynamic definition
of the entropy. It is not difficult to see that the derivative (0S/0E)y.n
is positive: if one increases the energy of the system, keeping V and
N constant, the possible energy for each particle is also increased
giving more possible states to it. This means that the total number
of microstates has also been increased.

It remains to show that in the process of equality of the tem-
peratures there is an increase of the entropy. It is a well-known
result of thermodynamics that an irreversible process takes place
with an increase in entropy. For that we compare the entropy .5; at
the beginning of the process with the entropy S; at its end.

At the beginning, the number of microstates is given by (as shown
above)

Q; = O1(E)Q0(E — By) (1.11)

However, in the final state, the energy F; of the side one is not
fixed but can take several values (due to some fluctuations in the
temperatures) keeping the sum E; + F5 constant. For the calculation
of the number of microstates, we have to sum over all the possible
values E; of the side one. We get

O = SQ(E)QUE — Ey) (1.12)

In the expression (1.12), there is a term in the sum with the E;
equal to the initial energy E; and other terms. This means that
the sum (1.12) is larger than (1.11). In other words, the number of
microstates in the final state is larger than in the initial state. We
conclude that the entropy increased in the process of equalization of
temperatures.

2.C One considers the same system as above divided into two subsys-
tems. In the beginning, the wall is clamped such the pressures on both
sides are not equal. However, at a given time, the wall is freed and
moves until the pressures on both sides are equal. At the same time,
the wall is also made permeable to heat so the temperature on both
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sides will be equal. Taking V} and E; as quantities for which one looks
for equilibrium by maximizing the entropy we write 9S/0F; = 0 and
0S5/0Vi = 0. One gets the following equalities (following the same
method as above):

(0S1/0E,) = (9S2/0F) (1.13)
and
(081/0Vi)E,N = (0S2/0Va)E N (1.14)

which are equivalent to the equality of the pressures and the
temperatures. We have already seen that (1.13) is equivalent to
T1 = T,. To translate the equivalence of (1.14), we need to take
into account the dimension of the ratio (entropy/volume). From
(1.10), one sees that the dimension of S is (energy/temperature) or
(volume x pressure/temperature). Thus, the dimension of the ratio
(entropy/volume) is (pressure/temperature). We can replace the
equality (1.14) with the following equality:

P /Ty = Py)Ty (1.15)
The conclusion is that
(0S/0V)g N = P/T (1.16)

2.D Once again, one takes the system divided into two subsystems.
Up to now, the physical state of the system (solid, liquid or gas) was
not important since the number of particles N7 and Ny were constant.
Now, we suppose that it is a fluid with the wall not permeable to
particles. At a given time, one makes the wall (a) permeable to heat,
(b) mobile and (c) permeable to particles. The equilibrium is reached
when (a) the temperatures are equal, (b) when the pressures are equal
and (c) when the chemical potentials of both sides are equal:

p1 = fi2 (1.17)

To see that, we repeat again the argument presented above. Con-
sider the system at equilibrium when some particles cross the wall
(although the mean numbers of particles on both sides are constant,
there is always possibility for particles to cross the wall and make the
instantaneous numbers different from the mean values). On side 1,
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the number of particles increases by d/N; and on the other side by
dNy with dNy + dNy = 0. The changes in the energies of the two
sides are respectively dE; = p1 dN; and dEs = uo dNo. Taking into
account that the total energy is constant (dE; + dEy = 0) and that
dN; = —dNjy, one gets equality (1.17).

We write again the condition of equilibrium of maximum of the
entropy taking as the variables «, F;, V4 and Nj. Proceeding as
above, one gets the equalities (1.13), (1.14) and a new equality

(851/8N1)E7V = (852/8]\/'2)3{/ (1.18)

which is equivalent to (1.17). Considering that the dimension of S
is (energy/temperature), that p is an energy and the fact that N is
without dimension, one obtains

(9S/ON) gy = —p/T (1.19)

The reason for the negative sign is not trivial and can be justi-
fied in the following way using the theorem which gives the relation
between the three partial derivatives of three quantities related by
a relationship. Let be these three quantities z, y, z and the relation
can be written in three equivalent forms: z(y, z), y(z, z) or z(z,y).
It is possible to show that (this demonstration is very often given in
textbooks of thermodynamics)

(0x/0y)=(0y/02)2(0z/0x)y = —1 (1.20)

We shall use this relation for the entropy seen as a function of £
and N, keeping V' as a constant and we get

(aS/aE)]\LV(6E/6N)57v(aN/aS)E,V =-1 (1.21)
or introducing (0S/OE)yyv = 1/T and the definition of p =
(OE/ON)g.v, this gives

(/) () (ON/9S)5. = ~1 (1.22)

from which one deduces (1.19). Without negative sign, it should not
be possible to respect theorem (1.20).

From expressions (1.10), (1.16) and (1.19), we get the differential
of the entropy

dS = dE/T + (P/T)dV — (u/T)dN (1.23)
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1.3 An Example

We now solve a particular situation of N particles in a solid with
two possible states when one supposes that N is a very large num-
ber. Each state is characterized by its energy: state 1 with energy 0
and state 2 with energy e. In the present case, the volume is con-
stant and does not play any role, so we drop it. And the number
of particles being constant, the different interesting quantities are
functions of T" only. If one considers the system as a closed one, it is
possible to apply the method of the microcanonical ensemble. In a
given macrostate, the number of particles in each state is specified,
and this corresponds to a particular value of the energy and also to
the temperature. Taking a different macrostate (i.e. a different dis-
tribution of the particles between the two possible states), one gets
a different value of the energy and of the temperature. The question
is to find the energy, the entropy and the number of particles in each
particle state as functions of the temperature. First, one calculates
the entropy.

If n particles are in state 2, the energy of the system is F = ne.
The number of microstates is given by

Q = NU/[nl(N —n)] (1.24)

It is the number of manners to choose n particles among N parti-
cles. It is equal to the number of manners to put IV particles in two
boxes, n particles in the first and N — n particles in the second. And
the entropy is

S=kpLnQ=kp[Ln Nl —Lnn! —Ln(N —n)!] (1.25)

To go further, we adopt the Stirling approximation: Ln N! =
N Ln N — N, which is good, even for a relatively small number, say
10%. In the present case of a macroscopic body, n and N may be very
large (order of 10'?) and, as we see in the following, even when the
used approximation is not valid, the results are qualitatively correct.

From (1.25), one gets

S=kpg[NInN —nInn— (N —n)Ln(N —n)] (1.26)

In order to find the functions E(T'), S(T) and n(T"), one writes the
relation (0S/0F) = 1/T using dS = (05/0n)g dn and dE = edn.
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This gives (writing dn = dE/e)
(0S/OE), = (05/0n)r(0n/0FE) (1.27)
or
(0S/OE), = (1/e)(0S/on)r =1/T (1.28)
From (1.26), one calculates the derivative (05/0n)g and the result
following (1.28) is (0S/0n)g =¢/T
(0S/on)g = kpLn[(N —n)/n) =e/T (1.29)
From (1.29), one can extract the relation between n and T

n = N/[1+exp(e/kp/T)] (1.30)

Now, it is easy to insert n(7") in the expressions of the energy and
of the entropy. One has for F,

E =ne = (Ne)/[1 + exp(e/kyT)] (1.31)
and for S,

S = kpN[(1+ exp(e/kgT)) ' Ln(1 + exp(e/kpT))
+ (1 + exp(—e/kpT)) ' Ln(1 + exp(—e/kpT))]  (1.32a)

which can be also written in the following form:

S = kpN(e/kgT)[1 + exp(e/kgT)] "' + kN Ln[l + exp(—e/kgT)]
(1.32b)

The two expressions (1.32a) and (1.32b) look so different that one
can doubt if it is really the same function. It is left as an exercise for
the reader to find a way to pass from one expression to another. We
suggest to use the following identities: (1 +1/x)~ '+ (1+2)"t =1
and Ln[(1 + e*)/(1 + e~*)] = x. The complete derivation is given at
the end of the chapter.

Now, it is interesting to look for the limits of n and S at low
and high temperatures. The low temperatures are defined by the
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condition kT < e or (e/kpT) > 1. This gives for n (since e/kyT
goes to infinity and exp(e/kyT) — 00)

n = Nexp(—e/kp/T) (1.33)

and one sees that n goes to zero as T goes to zero.! This result was
expected since for T = 0 all the particles are in the state one with
the lowest energy and n goes to 0. So, the total energy is also zero.

For the entropy, one has to take only the first term of (1.32b) (the
second term goes to 0 (because exp(—e/kpT) goes to 0) and this first
term becomes

S =kpN(e/kpT)exp(—e/kpT) (1.34)

which goes to zero for T' = 0 (recalling that the product xexp(—z)
goes to zero if x goes to oo) as expected since there is only one
microstate.

Now, at high temperatures, when kg7 > e, one obtains (since
e/kyT < 1, one can use the approximations valid for x < 1: exp(z) ~
l+zand 1/(1+2)~1—2)

n=N/(2+e/kpT) = (N/2)[1 —e/(2kpT)] (1.35)
and
S = Nkp[Ln 2 + (¢/2kpT)?] (1.36)

As T goes to infinity, n tends to N/2, and there is equal distribu-
tion of the particles between the two states and S tends to Nkp Ln 2.

In Fig. 1.2, we give the variations of (n/N) and (S/kpN) with T
when one chooses e/kp = 10.

Important Remark: In the determination of the number of
microstates, one has admitted that it is possible to follow separately
each particle. Consequently, when there are n particles in level 2, if
one permutes one particle from level 1 with one particle from level 2,
one has the same energy but a different microstate. We say that the
particles are distinguishable. We did not introduce the mechanical

'In such a case, the Stirling approximation is not always applicable. Nevertheless,
the result is qualitatively correct.
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Fig. 1.2. Variations of the entropy and the relative number of particles in the
state with the largest energy as functions of the temperature. The ratio n/N
tends to 0.5 when the ratio (S/kpN) tends to Ln 2 ~ 0.7.

quantum behavior of the particles, thus in this example, the parti-
cles are classical and can be distinguished.

Equivalence of (1.32a) and (1.32b)
Writing « = e/kpT, (1.32) can be written as

S/kpN =Ln(1+¢€*)/(1+e")+In(l+e*)/(1+e*) (1.37)
Using the identity Ln[(1 + €”)/(1 + e™*)] = x one can write
In(l+¢") —Ln(l+e*) ==
or
In(l+e¢")=xz+Ln(l+e7) (1.38)

One introduces this expression of Ln(1 + ¢*) in (1.37) and one
gets

S/kpN =[z+In(l1+e *)]/(1+e)+Ln(l+e *)/(1+e %)
(1.39)
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One sees that one can develop (1.39) and regroup the terms as

S/kpN = 2/(1 +€%) + La(l + e ) [1/(1 + ") + 1/(1 + ~%)]
(1.40)

Now, one uses the second identity 1/(14+¢e*) +1/(1+e*) =1
and one gets

S/kpN =z/(1+¢€*)+Ln(l+e ™) (1.41)

which is (1.32b) when =z is replaced by e/kpT.
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Chapter 2

The System in Thermal Contact with
a Reservoir (the Canonical Ensemble
and the Grand Canonical)

In this chapter, we shall see the most important concept of statistical
mechanics, the partition function. This method is much often used
than that presented in the microcanonical ensemble.

This chapter is also relatively difficult and we suggest to the reader
to read it step by step without skipping some lines.

There is a novelty concerning the concept of chemical potential.
In thermodynamics it appears when several phases are in contact,
i.e. it is related to more than one phase. In statistical mechanics it
receives a new role even for an isolated ubique system.

We begin by a system in contact with a very large system at con-
stant temperature 1. We shall call it the reservoir. In a first case,
the contact is purely thermal; it means that the temperature of the
system is fixed by the contact with the reservoir. In the second case,
the contact is thermal but there is also the possibility of exchanging
particles between the system and the reservoir. Since it is supposed
that the system and the reservoir are in equilibrium, there are equal-
ities of the temperatures and of the chemical potentials, as explained
above. Our goal is always to find the relation between the micro-
scopic properties of the particles of the system and its macroscopic
properties.

The fundamental hypotheses are:

(a) The system and the reservoir are seen together as a grand sys-
tem which is isolated from the rest of the world. The results

15
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of the preceding chapter can be applied to the grand system.
In particular, its energy FEj is constant and the entropy is given
by (1.1).

(b) The system is much smaller than the reservoir itself. In particular
the energy Eg of the system is much smaller than the energy Fr
of the reservoir and that of grand system. Thus one will be able
to apply approximations concerning small quantities versus large
ones.

2.1 The Canonical Ensemble

2.1.1 The partition function

As exposed above, the system with volume V' and number of particles
N is in thermal contact with the reservoir, which imposes the temper-
ature. However, the energy of the system is not fixed by the contact
with the reservoir and can fluctuate over all the possible energies of
the system. Our first goal will be to determinate, in the ensemble of a
very large number identical systems which constitutes the canonical
ensemble, the probability to find one system in a microstate labeled
s with energy Eg. Once this probability will be found, we shall be
able to calculate the mean energy, which is the macroscopic energy
of the system and other quantities.

In the case of the thermal contact of the system with the reservoir,
it was stated that the temperature is fixed when the energy is fluctu-
ating. This means that there is constant transfer of energy from the
reservoir to the system and vice versa. How is this possible if there
is no temperature difference between the system and the reservoir?
One possibility is the transfer of potential energy through the vari-
ations of the distances between particles since this kind of energy is
dependent on distances. But in fact there are changes in the temper-
atures although they are so small that one does not consider them
and accepts to say that the temperature is constant.

If one picks at random a system in the ensemble, the probability ps
to find this system in a microstate s with energy Eg is the ratio of two
quantities: first the number of microstates of the system with energy
FEs and secondly the total number of microstates of the grand system.
A probability is defined as the number of “favorable” cases (here a
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favorable case is the system is a microstate with energy Fyg) divided
by the number of all the possible cases (here number of microstates
of the grand ensemble, favorable or not).

If the energy of the system is Fg and that of the grand system
is Ep, the energy of the reservoir is (Ey — Eg) and the number of
microstates in which the system has energy Eg is equal to the number
of microstates in which the reservoir has the energy Fy — FEg. One
writes

ps = Qr(Eo — Es)/Qas(Eo) (2.1)

Qg indicates the number of microstates of the reservoir and Qgg
those of the grand system. From the preceding chapter, we know that
the entropies Sgg of the grand system and that Sg of the reservoir
are

Sgs = kB Ln Qgs(Eo)
Sp = kB Ln Qr(Ey — Es)

Qcs(Eo) = explSas(Eo)/kB] (2.2)
Qr(Eo — Es) = exp[Sr(Eo — Es)/kB] (2.3)

For the grand system there is no problem to apply the preceding
formula since it is a closed system. For the reservoir, it is only an
approximation since it is in contact with the system. It is a good
approximation since it is much larger than the system.

From (2.1), (2.2) and (2.3) one gets

Ps = eXp[SR(EO — ES)//{?B]/eXp[SGS(Eo)//{:B] (2.4)

One can expand Si(Ey — Es) as a Taylor development! and stop
it after the second term since Ey > Eg

Sr(Ey — Es) = Sr(Eo) — Es(9Sg/0E)o (2.5)

!The Taylor development of a function f(z) is given by f(z + h) = f(z) +
h df Jda(z) + (h2/2)d? f /dz® (z) 4 - - - + (R /n))d™ f /dz™ (z)+
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But (BSR/aE) = 1/T
Sr(Eo — Es) = Sr(Ey) — Eg/T (2.6)
The probability ps can be written as
ps = exp[Sr(Eo)/kp — Es/(kBT)]/ exp[Sas(Eo)/kB]
ps = exp[Sr(Eo)/kB|exp[—Egs/(kBT)]/ exp[Sas(Eo)/kB]  (2.7)

Since the sum of all the probabilities is equal to 1, this means
that

Ysps = X5 exp[Sr(Ey)/kBlexp[—Es/(kBT)]/ exp[Scs(Eo)/kB] = 1
(2.8)
Xsps = {exp[Sr(Eo)/kB]/ exp[Sas(Eo)/kBl}
x B, exp[—Es/(kBT)] = 1
Thus
exp[Sas(Eo)/kB] = exp[Sr(Eo)/kB]%s exp[—Eg/(kBT)] (2.9)
Putting (2.9) in (2.7), we get the final result for p:
ps = exp(—Es/kBT) /% exp[—Eg/(kBT)] (2.10)

when the sums in (2.8), (2.9) and (2.10) are over all the possible
microstates and not only on the possible values of the energies. The
probability ps is the probability to find the system in a microstate
or in a state with energy Eg. It is an important result and we shall
use it several times.

The sum

7Z = Ysexp|—Es/kBT] (2.11)

is called the partition function. In the context of the canonical ensem-
ble, this is the most important result. We shall see that it will give
the link between the microscopic and the macroscopic points of view.
Z is a function of the parameters that define the system: T', V and N.
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The temperature T' appears explicitly, but the possible energies of
the system depend in general on V and N.

It is usual to take the Greek letter 5 as the inverse of the temper-
ature § = 1/(kpT) and to write Z as

Z =Yg exp(—FEs) (2.12a)

It is possible that several different microstates have the same
energy, thus there is a function ¢(Eg) giving the number of
microstates for a given energy Fg. Such states with the same energy
are called degenerate states. The partition function can be written
as a sum over the energies:

Z = Xgg(Es) exp(—BEs) (2.12b)

We recall and stress the difference between (2.11) or (2.12a), and
(2.12b). In (2.11) the sum is over all the microstates and in (2.13) it
is over the energies.

2.1.2 The energy, the entropy, the
thermodynamic potential

2.2A With the knowledge of ps, it is possible to calculate the mean
energy F as

E = Y,p,Eg (2.13a)
or
E = %, Es exp(~BEs) /%, exp(~BEs) (2.13b)

The formula (2.13a) is the standard formula for the mean value
of a quantity which has different probability to appear.

The numerator of (2.13b) is minus the derivative of the denomi-
nator relatively to 5 and the energy can written using Z as

E =—[02/9B]/Z = —[0Ln Z/3p) (2.14)

2.2B The energy F is given as a function of T, V and N. The
derivative (0E/OT )y, n is the specific heat at constant volume, Cy .
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The entropy is given by?

S = /Cv(dT/T) = /(8E/8T)V(dT/T).
One uses the following relations linking 7" and 3 to get:

T =1/(kBB)
dT = —dB/(kBB%)
(OE/OT) = (0E/0B)(dB/dT) = (DE/0B)(—kB?)

giving
S = /(8E/8T)V(dT/T)kB = k:B/ﬂ(@E/@ﬂ)vdﬁ.
Performing integration by parts, one writes
u=_, dv:(BE/Bﬁ)Vdﬂ/udv:uv—/v du
du=df v=F
One gets, using (2.14)
S = kB[SE — /Edﬁ] = kB[BE + /(BLn Z/0p)dp] (2.15)
or
S =FE/T +kBLnZ (2.16)
From (2.16) we have the link that we are looking for
E—TS=F=—kBT LnZ (2.17)

We recall that F' is the Helmotz free energy and it is a function of
T,V and N. We mentioned above that from the knowledge of F' we

2The fundamental relation between the entropy dS and the heat d@ in a infinites-

imal process is dS = dQ/T. If the process takes place at constant volume
dQ = CvdT and dS = (Cv/T)dT.
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can get all the possible data about the system. The relation (2.17) is
one of the most important of this course.
We close this section by another formulation of the entropy:

S = —kBXpsLn pg (2.18a)

To show that, one introduces in (2.17) the expression (2.10) for
ps and one gets:

S = —kBY[exp(—FEs)/Z][-FEs — Ln Z] (2.18b)
Or
S = kBX[BEs exp(—BEs)|/Z + kB[(Ln Z)/Z]%, exp(—BEs)
(2.18¢)

Taking account of (2.13), one sees that the first term in (2.18b)
is equal to E/T. Since Y5 exp(—pEg) = Z the second term becomes
equal to kgLn Z. Finally (2.18¢c) is equal to

S =E/T + kBLn Z.

One recovers the expression (2.16) for the entropy.

The expression (2.17) is very general and can be used for the
closed system of the microcanonical ensemble. In this case, the prob-
ability to find the system in a microstate with the chosen energy is
1/, since all the microstates, in number 2, have the same proba-
bility to be found in the ensemble. Putting p; = 1/ in (2.17) gives
again the Boltzmann formula (1.1), S = kgLn Q since the number
of terms in the sum is merely (2.

2.2C We consider N particles without interaction in a volume V' at
temperature T. We add also that it is possible to distinguish between
the particles. This means that it is always possible (in principle) to
follow an individual particle. In such case, the permutation of two
particles between their respective states introduces a new microstate
for the system. This cannot be true for gas in which there are constant
collisions between the particles such that their “individuality” is lost.

In the expression of Z will appear all the energies of the system.
These energies are all the possible sums of the individual energies
(of the microstates)? of the N particles. We note by {e; }one of these

30ne can sort the energies of the microstates of one particle as e1, ez, es, ...
The energies e; are not necessarily all different since it is possible that some
microstates have the same energy.
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possible sums (with N terms) and the partition function is Z =
Y exp(—p{e;}) over all these {e;}

The one particle partition function is Z; = ¥ exp(—fe;} where
the sum is on the .possible energies of one particle and now consider
the following expression B:

B = (Z1)" = [exp(—B%ie;)] " (2.19)
One can write
B = [exp(—f%ie)]"
= [exp(—FX;e;)][exp(—pX;e;)]|[exp(—F2ie;)] . ... (2.20a)

when the right-hand side contains N identical terms. More explicitly
(2.20a) is

[(exp(—Pe1) + exp(—Pez) + exp(—fes) .. ]
[(exp(—Pe1) + exp(—Pez) + exp(—fes) .. ]
[(exp(—pe1) + exp(—LPea) + exp(—Pes)...J[.... (2.20b)

If one expands these products, one finds that B will be given by
a sum of terms of the form exp[—/{e;}]. As above {e;} mentions one
of the possible sums of the energies of the particles. This gives

B = Sexpl—p{e.})

and one sees that B is the partition function of the system. Conse-
quently

Z = (Z)N (2.21)

We shall take a very simple example of a system with 2 particles,
each with two energies e; and es. The possible energies of the system
or the different {e;} are: e; + ey, e; + e2, e2 + €1 and ez + e3. One
has

Z = exp[—PB(e1 + e1)] + exp[—B(e1 + e2)] + exp[—B(ez + e1)]
+ exp[—[B(e2 + €2)] (2.22)

or noting that exp[—/(e1 + e1)] = exp(—[Se1) exp(—Se1) one has
(ai = exp(—Pe;)), Z = aia1 + 2aias + azaz = (a1 + a2)2 = (21)2-
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Example 1 (A two-level system). We take the same example
that we solved at the end of the preceding chapter. We recall that
there are, for each particle, two possible states, one with energy 0
and the other with energy e.

We determine the partition function in two ways. The first is to
calculate Z for the system of N particles. The second is to use (2.21)
and to calculate the one particle partition function.

To be able to compute the partition function, we need to know
the number of microstates with a given energy F = ne. This number
was already calculated and it is equal to Cp,xy = N!/[(N — n)!nl].
Thus Z is (using (2.13))

Z = ¥,Cyn exp(—Pne) = 2" NI /[(N — n)nl| (2.23)
with
x = exp(—/fne)

The sum in (2.21) is the development of the quantity (1 + z)V.

Thus the final result is
Z = [1 + exp(—pBe)]V (2.24)

This result agrees with what we said about the partition func-
tion of independent particles, Z = Z{¥. The one-particle partition
function is

Zy =1+ exp(—pe)

since for one particle there are only two states.
The free energy I is

F = —kpTLn Z = —kg TN Lnll + exp(—fe)].

Now it is straightforward to get the energy and the entropy using
the formula (2.14) and (2.16) or from the derivatives of F':

E=F—T(F/0T)y and S=—(9F/dT)y.
One gets
E = Ne/[1 + exp(fe)]
and
S =kB Nl(e/kBT)/(1 + exp(e/kBT) + Ln(1 + exp(—e/kBT))]
as found above (Egs. (1.31) and (1.32b)).
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Finally one calculates the chemical potential = (O0F/ON )7,y

pu=0{—kBTNLn[l + exp(—pe)]}/ON = —kBTLn[l + exp(—/fe)]
(2.25)

Example 2 (The ideal gas: The equipartition of the energy
in classical mechanics). In this section, we consider particles in
classical mechanics. The energy of one particle in a volume V is the
sum of two terms, the kinetic energy E and the potential energy V),
when E is a quadratic function of the particle velocities or the lin-
ear momentums and Vp is function of the particle positions. But
we have a new situation. Until now, the quantities in the calcu-
lations have discontinuous values: for example the energy and the
entropy. All the results were presented as series. But in the present
cases, the energy and other variables have continuous values. We shall
adopt the current believing that it is possible to transform directly a
series by a definite integral. We shall discuss this point at the end of
Chapter 4.

In one dimension (particles on a line of length L) the kinetic
energy of one particle is Ex = p2/2m and the partition function is

2=/Q) [ [ exol-8(Ex + Vy)ldp, o (2.26)

where the limits of the integrals for the two variables (p,,z) are:
—oo and oo for the momentum and 0 and L for the position. It is
the application of the general expression of the partition function

Z = Ysexp|—FEg/kBT) (2.11)

to the case of one particle in classical mechanics. The introduc-
tion of the quantity ) is needed since by definition Z is a quan-
tity without dimension but the double integral in (2.26) has the
dimension of a (momentum)(length). This is the reason why one
has to introduce the quantity ) with this dimension. In fact
the dimension of the product (momentum)(length) is that of the
product (mass)(velocity)(length) or [M][v][L]. This product has
the dimension of [energy][time|=[E][T]. One can see the following
transformations:

[M[[L] = [M][ZI[T/IT] = [M[v]*[T] = [E)[T]

We shall see below what constant was chosen for Q.
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This expression can be transformed into the product of two
integrals

[e.9]

Z2=0/Q) [ exol-pt/2m)dp, [ espl-Vy(olds (227

— 00

Now we consider the case of particles without potential energy and
only with kinetic energy. It is the case of the monatomic ideal gas
where the atoms have only kinetic energy and there is no interaction
between them. This absence of interaction is characteristic of the
concept of ideal gas. The one-particle partition function becomes

o0

L
2=(1/Q) [ exal=p2/2mldp, [ ds

~(L/Q) [ exp{-l3/mEBT) }dp,
To calculate Z; we use the following trick: we divide the integral
by (2mkgT)®® and multiply it by the same factor. This gives

7y = (L/Q)(2mkBT)%5

< [ espl-lGE/mkBT)]dlp,/ (2mkBTI? (225)

— 00

The integral is now a definite integral of the variable z =
pe/(2mkpT)%5 with the same limits (—oo and o)

o

7y = (L/Q)(2mkBT)%° / exp(—a?)dx

—00

If there is no potential energy for the particle the partition func-
tion becomes

Zy = (L/Q)A(2mkBT)"® (2.29)

where

A= /OO exp(—22)dz = /.

—00

The energy is calculated through the formulas
E=F—-T(OF/0T) and F = —kBTLn Z4
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One gets (note that we do not need to need the value of A to
calculate the energy)

= (1/2)kBT (2.30)

This energy is the mean kinetic energy of the particle and is called
the thermal energy of the particle. It is a remarkable result that
this means kinetic energy is proportional to the temperature. For N
particles one multiplies the above result by N.

In the case of a particle in three dimensions the kinetic energy is
Er = (p3 + p; + p2)/2m. The partition function is now a multiple
integral

— (1/Q)* [ expl{-Bl(w? + 5} + ) 2m
+ Vp(,y,2)]}dp,,dp,dp, drdydz (2.31)
If there is no potential energy it reduces to

= (1/Q°) /exp{—ﬁ[(pi +p; +p2)/2ml}ydp . dp, dp, dedydz
(2.32)

This can written as the product of three integrals (when the inte-
gral on the variables z, y, z is equal to V)

=~ V/Q") [ expl-ptE/2m)ldp., [ expl-5(s%/2m)ldp,
<[ Z expl—B(p2/2m)] dp, (2.33)
And from the above results we get
= (V/Q*)(2rm kBT)3/? (2.34)
and finally
E =3/2 kBT (2.35)

The preceding results can be generalized in the following formu-
lation. If in the total energy of a system there is a term which is
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quadratic in some parameter like the momentum or the position,
this term contributes to the energy by the amount (1/2)kgT. The
parameter is called a degree of freedom.

A simple application of this theorem is the one-dimensional har-
monic oscillator. Its energy is E = p?/2m+ Kz? /2. In thermal contact
with a reservoir at temperature 7', its thermal energy is kp71' since
there are two degrees of freedom.

Now we come back to the value of (). The expression (2.34) is
the one particle partition function of the ideal gas (in three dimen-
sions). Below in Chapter 4, we shall calculate this partition function
from the quantum mechanics principles. In order to make the two
results identical (in this chapter and in Chapter 4) one has to chose
Q@ = h, the Planck constant, effectively the Planck constant has the
dimension of (energy)(time).

Important remark. The partition function is defined as a series
Z = Ysexp[—FEg/kpT] but for its calculation, we transform this
expression into an integral:

2= /Q) [ expl-s(Ek + Vy)ldp,ds

and we did this without any justification. It is very frequent to find
this equivalence series-integral in spite of their differences and we did
as it is usual. In fact, the relation between the sum of a series and
the sum of the corresponding integral is an old problem in mathe-
matics. It received several solutions and we postponed to Chapter 4
a detailed discussion of this point. It is very likely that this proce-
dure of replacement is due to the fact that it is easier to calculate a
definite integral than to calculate the sum of a series.

2.2 The Grand Canonical Ensemble

2.2.1 The grand partition function

As above, we consider a large ensemble of identical systems We are
looking for the probability ps to find the system in a microstate s
with energy Eg and number of particles ns. We begin by the same
expressions as above in writing p, as (2.1) but in specifying that the
number of microstates are function of the energy and the number of
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particles:
ps = Qr(Eo — Es, Ng — ng)/Qas(Eo, No) (2.36)

Ny is the number of particles in the grand system and it is a constant
and Ng—ng is the number of particles in the reservoir. We write again
as above

Sas = kBLn Qgs(Eo, No)
SR = kBLn QR(EO - ES, NO - ns)
or
Qas(Eo) = exp[Sas(Eo, No)/kB] (2.37)
Qr(Ey — Es) = exp[Sr(Eo — Es, No — ns)/kB] (2.38)

In the following steps, we use the thermodynamic relation £ =
TS — PV 4+ uN to write S in the following form:

S=(PV)/T+ (E—puN)/T (2.39)
and putting it in (2.37) and (2.38) one gets
Qas(Eo, No) = exp|(PasVas) /T + (Eo — pNo) /k BT
= exp|(PasVas) /kBT ] exp[(Eo — 11No) /kBT]
= Ags exp[(Eo — uNo)/kBT] (2.40)
with
Ags = exp|(PasVas)/kBT].
For Qr(FEy — Es, Ny — ns) one has
QR(EO — Es, N — ns)
= exp[(PrVR)/kBT]exp[(Ey — Eg)/kBT — u(No — ns)/kBT)
= Apexp[(Eo — Eg)/kBT — p(Na—ns)/kBT|
= Agexp|(Eo — nNo)/ kBT exp[—(Es — pns)/ kBT (2.41)

with Ap = exp|[(PrVR)/kpT)].
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Putting (2.40) and (2.41) in (2.36) gives
Ps = (AR/AGS) exp[—(Eg - ,uns)/kBT] (2'42)

The sum of the probabilities over all the microstates gsps = 1,
thus

Sops = (Ar/Aqs) s expl—(Ey — pms) /kBT] = 1
and this means that
Ags /AR = Esexp[—(Es — pn,)/kBT]
Finally we get the final result for p,
ps = exp[—(Ex — ins) /KBT) /Sy expl—(Ey — uny) [kBT]  (2.43)

And we stress again that the sum is over all the possible
microstates of the system with all the possible energies and number
of particles. The values of the mean energy and the mean number of
particles are

E =%psEgs and N = X psng

But we can get these values through the grand partition function
Zq defined by

Za = Ysexp[—B(Es — pnsg)] (2.44)

with 8 = 1/kgT. The sum (2.44) is in fact a double sum: on the
microstates and on the number of particles. Z¢ is a function of T, V'
and .

2.2.2 The number of particles, the energy,
the entropy and the grand potential

The mean number of the particles N in the system is given by

N = ¥gnsps = Bsnsexp|[—F(Es — pns)]|/Xs exp[—B(Es — puns)]
(2.45)



30 Statistical Mechanics for Beginners
Recalling that the numerator of (2.45) is the derivative of the

denominator relatively to p divided by 8 and with a change in the
sign, (2.45) can be written as

N = (1/8)(0Za /026 = (1/8)(@Ln Za/op) (2.46)

The energy E = Y,psFEs can be calculated with the help of the
derivative (OLn Zg/0f) which is

(0Ln Zg/0B) = —Ss(Es — uns) exp[—B(Eg — pny)]/
X Ygexp[—B(Es — pns)] (2.47)

The numerator of (2.47) is

—YsE, eXp[_ﬂ(Es - ,uns)] + Ysuns eXp[_/B(Es - Mns)]

and consequently 0Ln Zg/0p) is the sum of two terms. The first is

(S By expl—B(E, — un,)|}/Ssexpl-B(Es — uny)]  (248)

This term is —YpsFEg = —FE. The second term is

Espns exp|—B(Es — pns)|/Es exp[—B(Es — pns)

which is equal to

pXsns exp[—B(Es — uns)| /Xsns exp[—B(Es — puns) = pXspsns = pN
(2.49)
Finally one gets (0Ln Zg/08) = —FE + uN and for E one has

E=—(0Ln Zg/0B) + uN = —(0Ln Zg/0B) + (n/B)(OLn Zc/Op)
(2.50)

when N was replaced by its value (2.46) (1/3)(0Ln Zg/0w).
Since FE is equal to —(0Ln Z/9[3), we have the following relation
between the grand partition function and the partition function Z
of a system with the same temperature, the same mean energy and
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a number of particles equal to the mean number of particles of our
present system.

(9 Ln Z¢/dB) = (0Ln Z/88) — uN (2.51)

The entropy is determined using (2.51). We saw above, in the
section on the canonical ensemble that (expression 2.16)

S=E/T +kBlLn Z. (2.16)

Integrating (2.51) gives
Ln Zg=1Ln Z — /,uNdB =Ln Z — (uNpP) (2.52)

From (2.16) one gets
Ln Z=[S—-E/T|/kB (2.53)
Introducing this expression of Ln Z in (2.52) gives
S = (E — uN)/T + kBLn Zg (2.54)
From (2.50) E — uN = —(0Ln Z¢/0p), and introducing in (2.54)

S = —(dLn Zg/0B)/T + kBLn Zg
S = —kBB(0Ln Z¢/0B) + kBLn Zg (2.55)

It is not difficult to verify the relation S = —kpXgpsLn ps in
analogy with the preceding cases. From the preceding results, one
deduces the grand potential ¥ given by

U(T,V,N)=—PV =E—TS — uN (2.56a)
— —kBTLn Zg (2.56b)

when its differential is dU = —SdT + PdV — Ndu. To get (2.56b) one
puts in (2.56a) the value of E — uN = (0Ln Zg/95) (see 2.50) and
S from (2.55). The expression (2.56) is the third link between the
macroscopic thermodynamic description and the microscopic side.
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2.2.3 An example

One considers a system in contact with a reservoir in the conditions
of the grand canonical ensemble. This system is .made of particles
without interaction with energies 0, e, 2¢, 3e, etc. The grand partition
function is the double sum,

Zg = Ysexp[—B(Es — pns)]

which can be written as

Zg = Ys{exp(Buns)Xs exp(—BEs)} (2.57)

First one performs the sum on the microstates of a system with ng
particles and then one performs the sum on the number of particles,
from 0 to the infinity. The sum X, exp(—SFEj) is partition function of
ns particles (with the same volume V' and the same temperature 7).
It is not possible to use the expression (2.21), Z = (Z1)" since now
the particles are indistinguishable. In the case of the grand canonical
ensemble, the particles may leave the system to enter the reservoir
and vice versa as a gas. This prevents the possibility to see them as
distinguishable. This fact makes the determination of the partition
function difficult.

We shall consider a particular situation that we shall call the clas-
sical limit and in the next chapter we shall explain why. We suppose
that particles are distributed among their possible energies or levels
as follows: either one particular level is populated by one particle or
it is not populated, i.e. there is no particle with this energy. When
one considers a given repartition of the ng particles in the energy
levels, this defines a particular microstate. If now one changes the
position of some particles but keeping the same occupied levels one
has the same microstate. To take into account this fact one divides
the partition function by the number of possible permutations of the
particles between the occupied levels, i.e. by ng! Thus the partition
function of the ng particles is

Z = (Z1)" (ns) (2.58)

We shall find again this expression by another way in Chapter 3.
The grand partition function is now

Z = Sofexp(Bumy)[Ss exp(—Bed)]™ /nyl}  (2.59)

with e; = 0, ¢, 2¢, 3e, ... etc.
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The sum X; exp(—fBe;) is equal to [I — exp(—Be)] ™!, this gives

Z6 = Sy exp(Bums)[1 — exp(—fe)] ™ /ny! (2.60)
Z6 = S fexp(Bu)[L — exp(=Be)] 1" /nl (2.61)

or

with = = exp(Bu)[1 — eXp(*ﬁe)]_l
)

Zg = X2 Ing! = exp(z (2.62)

where we used the series development of the function exp(x). Our
final result is

Za = exp{exp(Bu)[1 — exp(—PFe)] '} (2.63)

and

Ln Zg = exp(Bu)[1 — exp(—fe)] ! (2.64)
U = —kBTLn Zg = —kBT exp(Bu)[1 — exp(—Be)] ™' (2.65)

Now one can calculate the mean number of particles N
N = (1/B)(0Ln Zg/0p) = exp(Bu)[1 — exp(—Be)] ™" (2.66)
Putting this expression in (2.65) gives the equation of state
-V =PV = NkBT (2.67)
From (2.66) one gets an expression for the chemical potential p
p = kBT[Ln(N) + Ln(1 — exp(—fe))] (2.68)
The derivative of Ln Z¢ relatively to S is following (2.50)
(OLn Zg/0B) = uN — E (2.69)
One has

(OLn Z/08) = pexp(Bu)[l — exp(Pe)]
— exp(Bp)eexp(—Pe)/[1 — exp(—Fe)| 2 (2.70)
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Taking into account of (2.56) one can write

(0Ln Zg/0B) = uN — Neexp(—Pe)/[1 — exp(—Pe)] (2.71)

Comparing (2.69) and (2.71) gives

B = Neexp(—Be) /[1 — exp(—fe)] = Ne/lexp(Be) — 1] (2.72)

The entropy can be calculated through the formula £ = T'S —
PV + uN giving

S =E/T + PV/T — uN/T
or taking account of (2.67), (2.68) and of (2.72) one gets

S/kBN = (e/kBT)/lexp(e/kBT) —1]+1—1n N
— Ln[l — exp(—e/kBT)] (2.73)

In the next chapter, we shall show that, in the conditions we
chose, the chemical potential is negative such that the entropy is
always positive. It is also possible to verify that S is an increasing
function of the temperature.

The condition that g < 0 gives the regime of validity of this
problem. Writing (from (2.68) that

(u/kBT) =Ln N + Ln(1 — exp(—fe)) <0
gives
(u/kBT) =Ln N + Ln[l — exp(—fe)] = Ln[N(1 — exp(—pe))] <0

or N[1 — exp(—pfe)] < 1. Since N is very large, this means that
1 —exp(—pe) is very small. In other words, exp(—[e) is very close to
1, i.e. Be is very small. Using the approximation exp(— fe) ~ 1 — fe,
the inequality N[l — exp(—fe)] < 1 becomes fe < 1/N or T >
eN/kp. This means that the temperature is large enough and/or e
(the distance between two consecutive levels) is very small. We shall
see later that this situation is called the classical case.
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2.3 Fluctuations

We have supposed that the mean value of the distribution energy
(and other quantities) is equal to its macroscopic value although
we know that this quantity fluctuates in the cases of the canonical
and grand canonical ensembles. It is an important hypothesis of sta-
tistical mechanics. If fluctuations are small the energy distribution
has a very sharp maximum which is the mean value of the energy
and its, most probable value. One has the same thing in the case of
the grand canonical ensemble about the number of the units of the
system. In the next chapter on the quantum particles, we shall see
that it can be easier to calculate the grand partitions function than
partition function, for a given number of particles. At the end, the
mean number of particles given by the grand potential is taken as the
effective number of particles. This can be seen as a trick, since one
wants to study a system with a well-defined number of particles by
mean a method which supposes a distribution for this number. But
the distribution is so sharp that the mean is effectively the number
of particles.

To close this chapter, we make simple calculations of 1 “fluctu-
ations” in order to get an a quantitative idea of the phenomenon.
The goal is to estimate to what extent the values of the quantity
which fluctuates are far or near the mean value. We shall begin by
the energy E and one saw above, in the context of the canonical
ensemble the distribution is

ps = exp[—(Es)/kBT]/%s exp|—(Es)/kBT)| (2.74a)
ps = (1/Z) exp[—(Fs)/kBT)| (2.74Db)

where Z is the partition function If one writes the mean value of F as
(FE) and Ej the different possible values of the energy the deviations
from the mean value are [(E) — Es]. But since they can be positive
or negative, one takes the square of these deviations and one looks
for their mean value and the fluctuations are

AE? = p(B) - BJ? = (B)2 — 2B)(E) + (E?)  (2.75)

AFE? = (E?) — (E)? (2.75b)
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2.3.1 Fluctuations of the energy

We begin recalling the two definition of the mean energy and that of
the mean square of the energy

(B) ==Y Eexp(~8E) | > exp(—AE)
(B?) = 3" B? exp(~BE) | 3 exp(~BE)

(E) = ~(1/2)02/08
(B%) = (1/2)0°Z/ 98"

Now one can write

OF

55 =~ 70 2/08) +~(02/05) (2.76)

One has
AE? = (E2) — (B)* = (1/2)9°2/08° — [(1/2)0Z/9B))*  (2.77)

One sees that the derivative of (F) relatively to 5 is compound
of two terms: (a) the derivative of 1/Z multiplied by 0Z/05 squared
and (b) the derivative of 9Z/0 multi|plied by 1/Z. These are exactly
the two terms appearing in AE?

The final result is

~0(E) /08 = (E2) - (E)?
And since the specific heat is given by C' = 0 < E > /9T one has
finally
AE? = kBCT? (2.78)
We can energy to estimate the ratio

J(AE?/E) =T /(kBCy)/E

One knows from the partition function ZV that the energy is a
linear function of N and Cy also. It results that \/(AE2 /E) is pro-
portional to N~ which is a very small number. However in certain

circumstances, the fluctuations may grow and play an essential role
as in second-order transitions.
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2.3.2 The fluctuations of the pressure

In the canonical ensemble, we chose the temperature, the volume and

the number of particles as the constrained quantities that define the

system, Consequently, the temperature, the volume and the num-

ber of particles do not fluctuate, We shall present the results of the

fluctuations of the pressure P, using the same method as above.
One has

P = (0F/dV)r = (E/0V)s (2.79)
(P)=(1/2)) _(OE/dV)exp(~BE) = —(1/B2)(0Z/0V)
(2.80)
Finally,
POV = —B[(P?) — (P?)] (2.81)

Final remark. The first remark concerns the relation of the fluc-
tuations with the free energy. We defined quantitatively le concept
of fluctuations by the expression (2.75). In the two cases we have
presented (fluctuations of the energy and the pressure) one has
AE? = (E?) — (E)*> = kBCy T?
AP? = (P?) — (P)? = —kBT[0(P)dV]
The quantities Cy and (P)0V are the second derivatives of the
free energy £ —T'S:

o=t () () - (e
POV = —0?F/oV?

This is an interesting result since this is a point of junction
between thermodynamics and statistical mechanics.

J(AE?/E) =T, /(kBCy)/E
One knows from the partition function ZV that the energy is a

linear function of N and Cy also. It results that \/(AE2 /E) is pro-

portional to N~%5 which is a very small number. However, in certain
circumstances, the fluctuations may grow and play an essential role
as in second-order transitions.
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Chapter 3

Quantum Statistics

In this chapter, we shall calculate the general expression of the free
energy from the partition function or the grand partition function of
a gas, in which quantum effects are present. We shall see later that
in some particular conditions the quantum effects are not important
and we shall call the gas in such circumstances a classical gas or an
ideal gas. As in the rest of this book, we consider the simple case of
particles without interaction.

In quantum mechanics, one distinguishes between two kinds of
particles: the bosons and the fermions. There are two basic differences
between them. The first difference stands in the spin. The spin of a
particle is nh/2m when n takes integer values (0, 1, 2, etc.) for the
bosons and half-integer values (1/2, 3/2, 5/2, etc.) for the fermions.
This means that a state of a particle is also characterized by the z
components s, of the spin which can take values between —n and
+n, by steps of one (—n, —n+1,—n+2,...,n—1,7). Thus, the state
of an isolated particle is defined by the vector linear momentum p
and the value of s,.

The second difference is that the fermions obey the Pauli prin-
ciple: two fermions in a particular group of fermions cannot be in
the same state when for the bosons such restriction does not exist.
Two or more bosons can be in the same state. The fermions obey the
Fermi—Dirac statistics and the bosons the Bose—Einstein statistics.
Examples of fermions are the electron; the proton and the neutron
and examples of bosons are the photon and the « particle.

39
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3.1 The Partition Function and the Free Energy

When one considers a quantum gas, two different situations can hap-
pen. The number of particles may be or may be not fixed. In the first
case, we indicate the number of particles by NV, when in the second
case this number can fluctuate. One can only speak about the mean
number of particles, which is, in general, dependent of the tempera-
ture. The well-known example of a gas with a non-fixed number of
particles is a gas of photons.

An isolated particle has a number of possible states that we label
by a series of numbers 1, 2, 3, and so on. To each state ¢, corresponds
an energy e; and it is possible that two or more different states have
the same energy. Since the particles are confined in a volume V', the
possible energy e; form a discontinuous series of values. We suppose
that all the e;’s are positive. A microstate of the system of particles
is defined by the number ny of particles in the state 1, no particles in
the state 2,...,n; particles in the state i, etc. The ensemble {n;} of
the number of particles in each state is characteristic of a microstate.
If one permutes two particles between the two states to which they
belong, one has the same microstate since in quantum mechanics it
is not possible to distinguish between two particles.

The energy of the system for a given microstate, i.e. for a given
ensemble of the n;’s is

ES = Emnlez (31)

with the following conditions: (a) For the fermions, n; can be equal
to zero or to one (impossibility to have two particles in the same
state) and for the bosons n; can take all the possible values; (b) If
the number of particles is fixed, one has N = ¥n;.

The partition function is

Z = Yexp|—F(Xnie;)] (3.2a)
or
Z:Eexp[—ﬁ(mel—l—ngeg—i—---—i—niei—i—---)] (3.2b)

when the sums are over all the microstates or over all the possible
ensembles {n;}. We write again (3.2) in a different form. Putting
z; = exp(—fe;) < 1, one has

Z =%(21)" (22)" (23)™ -+ ()™ - (3.3)
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3.1.1 Case 1. N 1is not fized, fermions

In the sum (3.3), n; can be equal to zero or to one, and the sum (3.3)
is without limit about the total number of particles. We write (3.3)
summing first on ny (recalling that the n; can be equal to zero or
one)

Z = (21)"%(22)"* (23)"% (24)™* - - -
+ (21)8(22)™ (23)"™ (2a)™ - - (3.4)

Z = (1+ 21)%(2)" (23 (z0)™ - - (3.5)

One can repeat this process for z9 and after for z3 and so on.
We get
Z=01Q4+z)142z) - (1+z) - (3.6a)

Now the free energy F' is equal to —kgTLn Z and it is

F = —kgTLn[IL;(1 + )] (3.72)

F = —kpT¥;Ln[l + exp(—fe;)] (3.7b)

3.1.2 Case 2. N is not fixed, bosons
We used the same procedure than for the fermions taking into
account that there is no limitations on the n;’s. We begin by summing
on the possible values of nq:

Z = (21) 8 (22)"(23)" (2a)™ + -+
+(21)B(22)" (23)"™ (24)™ +
+(21)22(22)" (23)" (20)™ +
+(21)°8(22)" (23)" (24)™ +
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Z=[14z+ (1) + (=)
+ ] B (22) " (23)" (za)™ - (3.9)

Since there is no limit of the possible values of the number ny, the
sum in the bracket is infinite. Since z; < 1 (we recall that e; < 0),
the series has a limit, (1 — 2;)~! and one has

Z = (1— 2) " D (20)"2 (25)"3 (24)™ - - (3.10)

As above, we repeat the process for no, then for ny and so on. We
obtain

Z=01-2)"1—-2)" 1 —-2)"-- (3.11)
Z =11 — z)™" (3.12)

Finally for the free energy, one has
F = —kpT¥; — Ln[l — exp(—pfe;)] (3.13)

When one compares, the expressions for the fermions (3.6) and
(3.7) with those for the bosons (3.12) and (3.13), one sees that the
difference stands in a sign + for the fermions and — for the bosons.

This permits to write in a compact form the free energy in the case
of non-fixed N:

F = —kpT%; £ Ln[l &+ exp(—fe;)] (3.14)

and
Z =10;(1 £ z)*! (3.15)
when one puts the sign + for the fermions and the sign — for the

bosons.

3.1.3 Case 3. N 1is fized, fermions
3.1.4 Case 4. N 1is fixed, bosons

We deal with cases 3 and 4 together since, as we shall show below,
the calculations are very similar to the precedent cases.
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The calculations of the sum (3.3) is difficult since we have to take
into account only the possible ensembles of {n;} for which the total
number of particles is fixed, ¥;n; = N. We avoid this difficulty in
calculating the grand partition function. But there is a price to pay,
we have to introduce the chemical potential and the results are more
complicated. The grand partition function Z¢g is given by

Zg = Ysexp|—[(Es — puns)]

where the sum is a double sum, on the possible sates of the system
and on the number of particles. Zg can be written as

Za = Ysexp{—LF[Xi(nie;) — pns)} (3.16)

To calculate this sum, we proceed, in principle, by steps: first, we
choose a value of ng, we distribute these ng particles in the different
states such that ¥;n; = ns and perform the sum. In a second step,
we choose a different value of ngs and repeat the procedure. We can
operate differently in writing Zs in the following form:

Za = Ysexp|—B(Xinie; — uXin;)] = Xp; exp[—p2in;(e; — p)] (3.17)
or putting z; = exp|—S(e; — p)]
26 = Tni(21)™ (22)" (23)™ -+ (20)™ - - (3.18)

which has exactly the same form than (3.3). The calculations are
identical than those we did above, since in the grand canonical ensem-
ble we perform the sum without limitation on the number of particles.
We can write immediately the results from the precedent section:

Zg = L;(1 £ z)*! (3.19)

with z; = exp[—f(e;—p)] and, as above, the sign + is for the fermions
and the sign — for the bosons. From (3.19), one has

Ln Zg = 2/In[(1 + z)%] = 2 £ Ln{1 + exp[—B(e; — )]} (3.20)
Finally, we deduce from the expressions (2.55),

U(T,V,N) = —PV = E — TS — uN (2.55a)

= —kpTLn Zg (2.55b)
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E— TS — uN = —kgTLn Zg and the free energy FF = E — TS =
—kpTLn Zg + ulN
or

F = —kpT¥; £ Ln[l £ exp[—f(e; — p)] + pN (3.21)
and the mean value of the number of particles N is given by
N = (1/8)(0Ln Za /o) = S expl—Ble; — )
x {1+ exp[—Ble; — )]} ! (3.220)
or multiplying the numerator and the denominator by exp|[8(e; — )]
N = Sif{explfle; — )] £ 1} (3.22D)

The expression (3.22b) gives the possibility to calculate the chem-
ical potential p(7,V,N) and from the result one can calculate
F(T,V,N).

When one compares the expression (3.20) with (3.14) giving the
free energy for the case of non-fixed N, one sees that (3.14) is a
particular case of (3.21) with p = 0. Conclusion: the expression (3.20)
and (3.21) are always valid with the condition x4 = 0 for non-fixed N.

3.2 The Energy and the Entropy

The energy is given by the expression (2.37) E' = —(9Ln Zg/9p) +
(1/B)(OLn Zg /Op) or

E = —(dLn Z¢/9B) + uN.
One has
(OLn Z/9B) = i — (e — p) exp[—B(e; — p)][1 + exp[—Ble; — p)) ™!

= %; — esexp[—B(e; — p)][1 = exp[—B(e; — p)] !
+ n¥ exp[—B(e; — p)][L £ exp[—B(e; — p)]

and using (3.22a)

—(Ln Ze:/0B) = ies expl—Blei — )] [1 % exp[—Ble; — p)] ™ — uN
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and finally

E = Sie; exp[—fBe; — p)][1 £ exp[—Ble; — p)] ™
Multiplying the numerator and the denominator by exp|[3(e; — )],
one gets

E = Siei{exp[B(e; — p)] £ 1} 71 (3.23)

This can be written again as E = X,n,e, where n,. is the average
number of particles in the state r with energy e, (we changed the
labeling from n;, number of particles in the state ¢ at a given time to
n,, the mean number of particles in the state r for a given macrostate
with energy F). One has

ny = {explBer — ) £ 1} (3.24)

This expression is compatible with (3.22b) since it can be read
as N = X,n,. In the case of the fermions, the n;’s can be equal to
zero or to one, and as shown by (3.24) the mean numbers are always
smaller than one. But in the case of the bosons, since n, must be a
positive number, one has exp[5(e, — )] > 1 for all the possible values
of e;. This is possible only if p is smaller than the lowest value of
the e;’s. In particular, if this value is chosen to be zero, the chemical
potential of a group of bosons is negative except the case of non-fixed
particles when it is zero.

The expressions (3.23) and (3.24) (N is the mean number) are
also valid for particles with a non-fixed number; it suffices to make
w=0.

To calculate the entropy, we use the results of the preceding chap-
ter, expression (2.39), S = (E — uN)/T + kpLn Zg. We have

S=(E—uN)/T+ kpX; £ Ln [1 £ exp[—[(e; — p)] (3.25)

3.3 The Classical System: The Maxwell-Boltzmann
Statistics

By definition, a classical system is a system in which the quantum
effects are negligible. This situation may happen if
exp[B(e; —p)] >1 or exp[-B(e; — p)] <1,

such that the expressions for the bosons and for the fermions become
identical. Consequently (exp[B(e; — p)] £ 1) is practically equal to
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exp[fB(e; — p)] and there is no difference for fermions or bosons. Since

ni = exp[—f(e; — p)] <1,

this is possible if practically one level is either occupied by only one
particle or not occupied at all. Clearly in this case the mean number
of particles in a given level is very small.

This condition must be true even for the lowest e; that we take
equal to zero. This means that exp(—fu) > 1 or u strongly negative
(as we have supposed in the third example of the preceding chapter).
Such situation occurs at high temperature associated with the prop-
erty (Ou/0T)y,n < 0. We postpone the demonstration of this point
to the next section. We precise that for a system with a non-fixed
number of particles, we cannot reach such a condition (since p = 0):
a classical system has always a well-defined number of particles.

The condition exp(—fu) > 1 or exp(Bu) < 1 gives the following
results for the mean number of particles in the state 7 :

n; = exp(Bu)exp (—pFe;) (3.26a)
and for the total number N (3.22b)
N = exp(Bu)2; exp(—pei) (3.26b)

The sum 3; exp(—/3e;) is the partition function Z; of one particle
and one has

N =exp(fu)Z1 (3.26¢)

From (3.26a) and (3.26b) one gets the important result of the
classical case

ni/N = exp(—fei)/Z, (3.27)

The chemical potential is obtained from the expression (3.26¢)
of N

Bu=—Ln(Z1/N) (3.28)
or u=—kpTLn Z1+ kgTLn N (3.29)

We calculate now the Helmotz the free energy F'. Since exp[5(e; —
w)] > 1 or exp[—f(e; — u)] < 1 one can use, in the expression of
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F(3.21), the approximation Ln(1 + z) ~ x for z < 1 and one gets

F = —kpT¥; exp[—B(e; — p)] + pN (3.30a)
F = —kpTexp(Bu)X; exp(—pPe;) + uN (3.30b)

One inserts in (3.30b) the expressions (3.27) for exp(fu) and
(3.29) for p and taking into account that

Z1 =¥, exp(—Le;) is the partition function of one particle,
B = ~Ln(Z1/N)
pw=—kgTln Z1 + kgTLn N

one has
F=—kpT(N/Z1)Z1+ N(—kpTLn Z1 + kgTLn N)
or
F =—kpT(NLn Z; + N — NLn N) (3.31)

If N is very large as we suppose, we can use the Stirling formula
Ln N!'= NLn N — N and we write F' as

F = —kgT[Ln(Z1)" —Ln N
F = —kpTLn[(Z1)N /N1 (3.32)

We conclude that the partition function of the classical system is
Z = (Z1)N/N! (3.33)

We note that it is different from the expression (2.20) of the par-
tition function of N-independent particles. Here, the quantity N!
appears in the denominator. The difference is due to the fact that in
the present case, it is not possible to distinguish between the parti-
cles contrarily to the case of the expression (2.20). One has to divide
by all the possible permutations of the particles.

To finish this section, we come back to the expression (3.29) giving
the chemical potential. If it is strongly negative (as necessary for the
ideal gas), this means that Z; > N. Since Z; is function of 7" and V/,
this condition can be translated into another condition concerning
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only T', V" and N. We shall give explicitly this condition in the next
chapter when we shall calculate the partition function of the ideal
gas. This condition can be also written as n,, < 1, the mean number
in one particular state is much smaller than 1.

It is usual to call such a situation of a classical case the Maxwell—
Boltzmann statistics. In the present case, the particles are indistin-
guishable.

3.4 The Chemical Potential

The chemical potential was presented in Section 3.1 in the context of
situations in which the number of particles is variable. However, in
this chapter, the chemical potential is introduced in cases where the
number of particles is constant. It was used as help for the application
of Fermi—Dirac and Bose—Einstein statistics. It becomes an important
parameter in the application of the different statistics.

We shall take one situation that will show the different behaviours
of systems of bosons and system sof fermions. The goal of the cal-
culations is to find the properties of the system as function of the
temperature: energy, chemical potential and population of the lowest
level).

3.4.1 Bosons versus fermions

One considers N particles with energy given by e = Pn and n =
1,2,3,.... We begin by the case of bosons. The energy is given by
the expression

E = Siei{exp[B(e; — p)] — 1} (3.23)

And one needs to know the chemical potential . It appears in
the expressions of the number of particles

N = Si{explBle; — p)] - 1} (3.22b)

In order to extract the chemical potential from this expression,
one has to make numeral calculations (we do not give details since
only the results are of interest). We show in Fig. 3.1 the variation
of the chemical potential with the temperature. In this figure, we
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Fig. 3.1. Variations of the chemical potential of the boson gas with the tem-
perature.
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Fig. 3.2. Energy of the boson gas.

took e = 1eV and N = 135, and in Fig. 3.2 the variations of the
energy with 7" are shown. One notes an inflexion point in the energy
curve which indicates that the specific heat has a maximum. One
property which is particular to the bosons is the variations of the
number of particles Ny in the lower state. This is shown in Fig. 3.3
and one has a very interesting property: One can distinguish two
regimes when increasing the temperature from zero where Ny = N.
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Fig. 3.3. Number of bosons in the ground state.
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Fig. 3.4. Variation of the chemical potential of the fermions gas. Note the
difference with the boson gas, Fig. 3.1.

In the first part of the curve Ny(T'), there is a rapid decrease of Ny
and in the second part N remains small. Since we chose a small
number of particles the two regimes correspond to a smooth curve.
However, for a larger number of particles, the two regimes are very
distinct and the lowest level becomes empty in a very small range of
temperatures. In Chapter 7 on boson gas, we shall present a detailed
analysis of this phenomenon called the Bose—Einstein transition.
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Now one considers N fermions but one has to add some degen-
eracy to the energy levels in order that all the fermions could be in
the lowest level. We chose N = 500 and degeneracy 500 so that at
T = 0 all the fermions could be all together in the smallest ground
level. We show the results of the numerical calculations: the chemical
potential (Fig. 3.4), the energy (Fig. 3.5) and finally the population
of the lowest level N1(T) (Fig. 3.6). It is very easy to see the striking
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0.0 — T T T T T T T T T T
0 20 40 60 80 100 120 140 160

T

Fig. 3.5. Energy of the fermion gas.
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Fig. 3.6. Number of fermions in the ground state. Note also the difference with
the bosons, Fig. 3.3.
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differences in the behaviors of the particles due to the different statis-
tics. In particular one can observe the variations of the particles in
the ground state, The bosons come into this lowest level, such that
this level, at relatively low temperature is almost full. This behavior
of the fermions is different since the lowest level becomes full only
progressively.

3.5 Qualitative Behavior of the Chemical Potential
and Demonstration of (Ou/0T)y,n < 0

We begin by the expression (3.22b) giving N
N = Yi{exp[f(ei — p)] £ 1} — 1 (3.22b)

and derive both sides relatively to 7. Since N is constant,
(dN/dT) = 0. One writes

dN/dT = (dN/dB)(dB/dT") = (dB/dT)%i[(ei — p) — B(Op/0B)]
x exp[B(ei — p)]/D =0
when D is equal to {exp[f(ei — p)] £ 1}2. In the expression of
dN/dT,dT/dS # 0 and D # 0 such that dN/dT can be equal to
zero only if the sum

Yil(ei — p) — B(On/0B)] exp[B(ei — )]

is equal to zero. We can decompose it into two sums that are equal:
Sii(ei — 1) exp[B(ei — )] = B(Op/0B)TiexplBlei — )] (3.34)
or

(Ou/0B) = {Xi(ei — p) exp[B(ei — p)|}/{B%iexp[B(ei — p)]}
(3.35)

3.5.1 Bosons

In the case of bosons (ei — p) is positive since p is smaller than all
the ei’s. The numerator of (3.35) is positive and the denominator
also since the sum ) iexp[f(ei — u)] is positive. One concludes that
(Ou/0B) > 0. Since (Ou/0T) = (Ou/0p)(dB/dT) and (dB/dT) =
—(1/T2) < 0, one concludes that (Ou/0T) < 0.
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3.5.2 Fermions

The case of the fermions is a little bit more complicated. We suppose,
as done above, without loss of generality that all the ei’s are positive
and that the lowest is equal to zero. First, we note that for T" going
to zero, u goes to a positive value. At T' = 0, the system has the
lowest possible energy. This means that the particles are in the lowest
possible states. In the case of fermions, there is no more than one
particle in each state, and consequently the states occupied by only
one particle are the first NV states. Recalling that the mean number
in a state labeled r is r = {exp[S(er — )] + 1} — 1, one sees that for
g —o0 (T —0),

ifer <p, explfler—p)] =0 and n, —1

ife, >pu, exp[Ble, —p) > o0 and n, —0

Since n, = 1 for the N first states, we conclude that p is larger or
equal to the energy of the state with the largest occupied energy, i.e.
the state i = N. Thus one gets the important result, (7' = 0) > 0.

Secondly, there is only one temperature Ty = (1/kpfy) for which
p = 0. It is given by N = ¥;[exp(Boe;) + 1]7L. Thus for T' < Ty one
has > 0 and consequently for 7" > Ty one has pu < 0 (because Ty is
unique).!

Finally, for p < 0,(0p/0B8) > 0 or (Op/dT’) < 0 using the same
reasoning that we used for the bosons. From those results, we deduce
that u is positive for T < Tj and that for T° > Tyu is negative with a
negative derivative (Ou/0T") < 0. It is not excluded that p may have
a maximum in the region p > 0.

The conclusion is that for the bosons the chemical potential is
always negative with a negative derivative relatively to the temper-
ature when for the fermions it is the case only for T' larger than a
particular temperature Tj.

13We shall see in the second part that it is effectively the case for a fermions gas.
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Chapter 4

The Density of States

In the definition of the partition function and the grand partition
function, we insisted in specifying that the sums are over all the
microstates of the system. In this chapter, we shall consider the
case of a gas of particles without interaction and shall find the num-
ber gg(E) which gives, for one particle, the number of states with
energy E. The partition function is Z = ¥4 exp(—Fs) with sum over
all the states. It is X595 (F) exp(—SE;) with sum over the energies.

Since there is no interaction, the energy of particle is the kinetic
energy if the particle has a finite mass or the relativistic energy if the
mass is zero. However, we shall see later (in the next chapter) that
a particle (or a molecule) compound of several atoms can have also
internal energy. For the time, we deal with the kinetic energy which
is equal to E = (p?/2m) when p is the value of the linear momentum
and m is the mass of the particle. For particles with m =0 like
photons the energy is relativistic, related to the momentum by FE =
pc where c is the light velocity.

The state of a particle is defined by the vector p and the z com-
ponent s, of the spin. It suffices to know what is the number of the
possible values of s, and to multiply by the number of states with
different vectors p but equal kinetic energy E to get the function
gr(E), called the density of states. We begin by looking after the
number: number of states with the same value of p, i.e with the same
energy E(p).

The second part of this chapter is devoted to the study of the
ideal gas as an example of application of the density of states.

55
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4.1 The Wave Vector

A particle in a box of dimension L, Ly, L, (volume V = L,L,L,)
is described in quantum mechanics by a wave function characterized
by a wave vector k (with component k, ky, k)

U(x,y,z) = Yosin(kyx) sin(kyy) sin(k.2) (4.1)

with k, = (ngm/Ly), ky = (nym/Ly) and k, = (n.m/L,) where ng,n,
and n, are integers (0, 1,2, 3, etc). For the sake of the simplicity, one
chooses L, = L, = L, = L. This choice does not change the final
results and makes the calculations simpler. One can write the squared
value of the vector k:

k? = (7% /L%)(n2 + n} +n2) (4.2)

The relation between the linear momentum and the wave vector is
p = hk and the state of the particle is defined by the vector p or the
vector k or by the three numbers n;,n,,n.. One defines a number n
as n? =n? +n§ +n? and for each ensemble of states defined by three
numbers ng,n,,n, having the same n, the energy £ has the same
value. The possible values of k are discrete but at the exception of
the very low temperatures, the energy of the particles is such that
the values of n are very large. For example, an electron with energy
of 1eV located in a cubic box of 1 mm side, n is of order of 10 and
for a photon with the same energy in the same box, n is of order of
10, This justifies taking the values of n as a continuum since the
two following values of n correspond to a very small difference in the
energy. In such a condition, the sum giving the partition function is
replaced by an integral (see below discussion on this point)

Z= /gE(E) exp(—BE)dE

This can be also be written with the help of p as

7 = /gp(p) exp[—BE(p)ldp

In the case of quantum particles, one has for Ln Zg

Ln Zg = /i 95(E){1 £ exp[~B(E — 1)) }dE
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4.2 The Density of States

We have to count how many sets of the three numbers n,,ny,,n,
located between n and n+dn there are. We indicated this number by
gn(n)dn. We considers a three-dimensional virtual space such that a
point in this space is marked by three positive numbers on the three
orthogonal axis n4,ny,n.. In other words, we represent a state of
the particle by a point in this space. Since the numbers n,,n,,n.
are positive, the points corresponding to all possible states of the
particles are located only in 1/8 of the total space.

The goal is to find the number of states with the same energy or to
estimate the degeneracy of gas. We concluded that a state is defined
by three integers and the degeneracy is given by a number n? equal
to the sum of the squares of the three integers. In fact, one wants
to know the number of boxes of size 1, in two shells with radiuses n
and n + dn of the 1/8 of a sphere. The calculation made in Eq. (4.3)
implies that the number n is a continuous variable, supposing that
the boxes are very small.

The next step is to look for the number of boxes of linear momen-
tum Since n = p(2L/h) the dimension of the ratio h/L is that of a
linear momentum and this can be seen as the size of the elementary
boxes.

The number of points between the two shells of radius n and n + dn
are the number of states g, (n)dn that we have to find. It is

gn(n)dn = (1/8)4rn?dn (4.3)

(47n? is the surface of one of the two spheres delimiting the shell
and dn is the thickness of the shell).

We recall the relation between k and n,k = (w/L)n and that
between k and p,p = hk = (h/2m)k to get the relation between n
and p:n =p(2 L/h). Thus we get

gn(n)dn = (1/8)4rn’dn = n/2[p(2L/h)*[(2L/h)dp] (4.4a)
9p(p)dp = AmL’p*dp/h° (4.4b)

Finally considering the different states with different spin compo-
nent and taking that V = L3 one has g,(n)dn = g,(p)dp

gp(p)dp = s.(4V p*dp) /h? (4.4c)
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This is our final result, and we shall use it frequently in the follow-
ing chapters. The function gg(F) is easily deduced from the equality
9p(p)dp = gp(E)dE and the relation between p and E.

Important remark. Concerning the possible energies of a particle
in a box. The numbers n,, n, and n, appearing in (4.2) cannot be
together equal to zero. In such a case, the wave function (4.1) is null,
i.e. there is no particle in the box. The smallest values of the energy
are those with one of n;,ny,n. is equal to 1 and the two others equal
to zero (degeneracy 3 for the energy). If, in the following chapters,
we shall take the energy zero as the lowest energy, it means merely
that we make a change in the energy scale.

4.3 The Monatomic Ideal Gas

4.3.1 The partition function

The first step is to calculate the partition function Z = (Z;)" /N!
(expression (3.33) of the preceding chapter) when Z; is the partition
function of one atom. Z; can be written as an integral (instead a
sum) since we have shown that, for an isolated particle in a box, the
different possible energies form a continuum:

a:AWMMmWZH%W@ﬂ@

=MﬂWﬂAmﬁwM%ﬁﬂm® (4.5)

when (4.4) was used and we supposed that s, = 1. The limits of the
integration are from 0 to oco.
In order to calculate the integral (4.5), we make the change in the
variable and write x = (8p*/2m) and one gets
o0

Zy = [4nV 33(2m)3/% (h™3)] / 2% exp(—a?)dz (4.6)
0

The integral of the function 22 exp(—2?) from 0 to oo is equal to
(v/™) /4. Thus the final result is

Zy = V[(2rmkpT)/h?*/? (4.7)
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and the partition function is (following (3.33))
Z = {V[(2rmkgT)/h*/*} /NI (4.8)

We shall use the Stirling formula in the form Ln(N!) = NLn
N — N and one has N! = (N/e)" where e is the basis of the natural
logarithms. Inserting this expression of N! (correct for large N) one
has the final expression of the partition function:

Z = (Ve/N)N[(2rmkpT)/h?3N/? (4.9)
For the free energy F' = —kgTLn Z, we get

F = —NkgT Ln{(eV)/N[(2rmkpT)/h*3/?} (4.10)

4.3.2 The internal energy, the entropy and the
equation of state

Now, we can calculate the three important quantities: the energy, the
entropy and the equation of state.

For the energy E, we use the thermodynamic relation £ = F —
T(0OF/0T) and we get the well-known expression of the ideal gas:

E = (3/2)NkpT (4.11)

To obtain this result, we develop the expression (4.10) of the free
energy and write it as

F = —NkgT[A+ (3/2)Ln T)] (4.12)

where A = Ln(eV/N) + 3/2Ln[(2rmkp)/h?]. From E = F —
T(OF/OT), one gets (4.11)

The internal energy is independent of the volume and is linearly
related to the temperature.

The entropy is S = —(0F/9T)y N or

S = Nkp{(3/2)Ln T + Ln(eV/N) + 5/2 + (3/2) Ln[(2rmkg) /h®]}
(4.13)
This expression is compatible with that obtained in ther-

modynamics since it differs only by the constant 5/2 +
(3/2) Ln[(2rmkp)/h3. In thermodynamics, one considers only
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entropy differences and this constant does play any role. But we note

that this expression for S does not give S = 0 for 7' = 0. This is a con-

sequence of the approximations of the classical case we made to get

the partition function (no distinction between bosons and fermions).
The equation of state is P = —(0F/0)r,nvor

P = (NkgT)/V (4.14)

This expression gives the possibility to calculate the value of the
Boltzmann constant kp. For a mole (when the number of particles
is equal to the Avogadro number Ny = 6.02 x 10?%) one has P =
(RT)/V (R is the ideal gas constant equal to 8.32 Joule/degree). One
deduces kg = R/N4 = 1.38 x 10723 Joule/deg.

Finally, we calculate the chemical potential u = (0F/9ON). One
gets

1= —kgT{Ln(V/N) + Ln[(2rmkpT) /h?])>/?} (4.15)
As we mentioned above, in the classical limit, the chemical poten-

tial is negative (since as shown below (V/N)[(2rmkpT)/h?]*/? > 1),

4.3.3 The classical limat

In the preceding chapter, we saw that the classical limit can be
defined by the inequality Z; > N. Now, we are able to write explic-
itly this condition using the above expression of Z; (4.7):

V[(2rmkgT)/h*>? > N (4.16)

We can express this inequality in two equivalent forms. If we con-
sider the system at constant density (N/V'), we express a condition
concerning the temperature:

kBT > (h%/2rmm)(N/V)*/3 (4.17)

If we consider the system at constant temperature, the condition
concerns the density

(N/V) < [(2rmkgT)/h?*/? (4.18)
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In other terms, the classical limit is reached at low density and/or
at high temperature.

4.4 Some Remarks

In Chapter 2, in calculating the partition function of the classical
ideal case, we did two transformations from the original series: First,
we adopted the hypothesis of the equivalence series-integral and sec-
ondly, we introduced a constant (). The role of this constant is to
keep the partition function as a quantity without dimension. For
the calculation of the energy this constant () is unimportant but
this introduces a constant in the expressions of the entropy, of the
free energy and of the chemical potential. It is clear that, when one
replaces a series by an integral, a constant must be introduced to
keep the dimension of the integral identical to that of the series.

However, it is important to note that the differential density of
states g(p)dp does not change the dimension of the integrals.

We come back to the problem mentioned in Chapter 2 about the
equivalence between the sum of a series and that of an integral. It is
not a trivial problem and mathematicians have searched for different
solutions. Among them, there is the formula of Euler and McLaurin.
The complete formula is very complicated and we give a simplified
form which is relatively precise.

One considers a series given by 2871 f(k) where the index k
begins by 0 and goes to n. One has the following expression where
f(z) is a function in which z replaces the index k. The formula of
Euler and McLaurin is:

31tk = [ @t 51510+ 5] + 517 )~ 0]

/' is the first derivative of the function f.
It is important to remark

1. This expression concerns convergent series as well as divergent
series since the upper limit may be infinite or not.

2. The lower limit of k is one in the series on the right side when the
lower limit of the integral is zero.
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Now one compares both sides of the Euler—McLaurin expression.
If one takes the integral for the complete sum of the series (from 0
to n ) one makes two errors. First, the first term of the series (k = 0)
is absent and the last term is m» — 1. Second, this introduces two
constants.

It seems that in several cases these errors do not introduce prob-
lems because frequently the number of particles in the state k£ = 0 is
not very large and they do not contribute too much to the properties
of the system. But we shall see in Chapter 7 that it is not the case
for a gas of bosons.



Chapter 5

Some Problems

In order to have a better understanding of the concepts exposed
in the preceding chapters we shall solve explicitly some problems.
They are an integral part of the book and not merely exercises. It is
strongly recommended to the reader not to skip this chapter.

5.1 The Quantum Harmonic Oscillator

We consider N particles with mass m, which perform a harmonic
motion, in thermal contact with a reservoir at the temperature T,
and we want to calculate the thermal properties of these oscillators,
namely the internal energy, the specific heat and the entropy. For this
purpose, we shall determine the partition function Z. We suppose
that one oscillator can move in the three dimensions of the space
and that the motion in each direction (x,y or z) is independent of
the motion in the two others. This means that this ensemble of N
oscillators in three dimensions is equivalent to 3/N linear oscillators.
We add a new assumption, namely that the positions of the oscillators
are fixed and one can see them as distinguishable particles. Each
oscillator is independent of the others such that one can calculate Z
from the partition function of one linear oscillator Z; by the relation
(2.20), Z = (Z1)3N.

The different states of the linear oscillator are characterized by
their energy e

e = (n+1/2)hw (5.1)

63
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In (5.1), w is the classical frequency (divided by 27 ) of the oscilla-
tor. We recall that the potential energy of the oscillator is (Kw?z?)/2
(z is its displacement and K is a constant). The quantity N is an
integer from N = 0 to infinity. There is one energy by state such that
in the sum of the partition function there is no distinction between
sum on the microstates or sum on the energies.

The one particle partition function is

Zy = Xy exp[—f(n+ 1/2)hw] (5.2)

Z1 = exp(—phw/2)E,, exp(—pniw) (5.3)

If one writes = exp[—fhw], the sum can be written as [1 + x +
22 4+ -+ 2™+ ---] which converges to 1/(1 — z) since z < 1. This
gives for 7

Zy = exp(—phw/2)/[1 — exp(—fhw)] (5.4)

and for the total free energy of the N oscillators F' = —kgTLn Z
(with Z = (Z1)3N)

F = —3NkpTLn Z; = 3N{hw/2 + kpTLn[l — exp(—Bhw)]} (5.5)

To calculate the energy FE, we use the relation E =
—(0Ln Z/0p) = —3N(Ln Z;/90)3). This gives

E = 3N{hw/2 4 hwlexp(hw/kpT) — 1]~} (5.6)
The specific heat! C' is C = dE/dT and one gets after derivation
C = 3Nkp(hw/kpT)? exp(fiw/kpT)[exp(hw/kpT) —1]72  (5.7)

It is possible to calculate the entropy following two ways. First by
the expression (2.17) S = —kpXpsLn ps and secondly by the ther-
modynamic relation S = —(9F/0T). In the first way we shall calcu-
late the entropy of one oscillator and since the entropy is an additive

!There is no distinction between the specific heart at constant volume and the
specific heat at constant pressure since we supposed that the frequency of one
oscillator is independent of the volume and of the pressure.
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quantity, we shall multiply the result by 3N to get the entropy of all
the oscillators. The probability ps is given by (2.10)

ps = exp(—Es/kpT)/¥s exp(—Es/kpT) or
Ps = eXp(*Es/kBT)/Zl (2.10)

Since the energy? of one oscillator is Ey = (s +1/2)hw, S is given
by

S = —kpXpsln ps = kX, {exp[— (s + 1/2)hw]/Z1 }
X [B(s +1/2)hw + Ln Z] (5.8)

S = kp{(B/Z1)Sn(s + 1/2)hw expl—B(s + 1/2)hu]
+(1/Z1)Ln ZySa{expl—B(s + 1/2)hw]} (5.9)

The first sum is minus the derivative of ¥, {exp[—3(s+1/2)hw] =
Z relatively to 8 and one gets for S

S = kp[=£(021/08)/Z1 + Ln Zi] (5.10)
Since (071/08)/Z1 = (0Ln Z1/0)3), we have the final expression
S = kp|—B(0Ln Z1/08) + Ln Z] (5.11)

Now from Ln Z; = fhw/2 + Ln[l — exp(—phw)], it is easy to
calculate S,

§ = 3N{(hw/T)lexp (o ks T) — 1]~ — kpLn[1 — exp(—Bhw)]}
(5.12)
The same result is obtained from the thermodynamic relation
S =—(0F/0T)yN.
It is interesting to look for the limits of the expressions for FE,

C and S in the two cases kpT < hw (low-temperature limit) and
kT > hw (high-temperature limit).

2We hope that the change in noting the quantum number n by the letter s will
not disturb the reader.
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5.1.1 Low-temperature limait
If kpT < hw, one has exp(hw/kgT) > 1 or exp(—hw/kpT) < 1. In
this case, the expression of E becomes

E(kpT < hw) = 3NTw[1/2 + exp(—hw/kpT)] (5.13)

which goes to 3Nhw/2 if T goes to zero.
The specific heat is given by (5.7) and its limit for 7' — 0 is

C(kpT < hw) = 3Nkp(hw/kpT)? exp(—hw/kgT) (5.14)

which goes to zero with T'. To see that, it is necessary to consider the
limit of (22e~%) for = hw/kpT going to infinite. This expression is
the product of two quantities one going to zero (¢~*) and the other to
infinity (22) but the exponential goes very fast to zero such that the
product goes also to zero. It is also possible to derive (5.13) relatively
to T to get (5.14).

For the limit of the entropy, we use the approximation Ln(1—x) ~
—z for |z] < 1 and one gets

S(kpT < hw) = 3N|(hw/T) exp(—lw/kpT) + kg exp(—hw/kpT)]
(5.15)

which goes to zero with T, as expected for the entropy (recall:
(e=1/%) /2 goes to zero with x).

5.1.2 High-temperature limat

In this case, hw/kpT < 1, one uses the approximation,
exp(thw/kpT) ~ 1+ hw/kpT and one has for the energy

E(ka > hw) =3NkgT (5.16)
and for the specific heat
C(k‘bT > hw) =3Nkp (5.17)

The entropy is the sum of two terms (see 5.12). Using the approx-
imation exp(fw/kpT) ~ 14 hw/kpT, one sees the first term tends
to 3Nkp. The second term —kpLn[l — exp(—phw)] can be writ-
ten as  kpLn[l — exp(—pBhw)]~!. Using again the approximation
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exp(—fhw) ~ 1 — hw/kpT, this second term becomes equal to
Ln(kgT/hw). Thus,

S(ka > hw) = 3N]€B[1 + Ln(kBT/hw)] (5.18)

One sees that F and S increase with T', when C' goes to a constant.

These results were obtained first by Einstein in 1907 and have a
historical importance since he was able to provide an explanation of
the decrease of the specific heat of solids with T". This experimental
fact was not explained by the classical statistical mechanics, which
predict only the behavior given by the high-temperature limit (that
we can call the classical limit). The thermal properties of solids were
explained by postulating that atoms in the solids behave like har-
monic oscillators with a well defined frequency. Einstein was the first
to show that it is necessary to use quantum mechanics. However, his
success was only qualitative since the experimental decrease of C' is
not given by the expression (5.14) but C' is proportional to T3. We
shall see later in the second part of the book the solution to this
problem.

5.2 The Polyatomic Ideal Gas

In the preceding chapter, we calculate the properties of the
monatomic ideal gas, i.e. a gas compound of single atoms. In this
case, the energy of one atom is its kinetic energy of translation. But
in the case of molecules with several atoms, there is also, besides
the kinetic energy of translation, (a) energy due to vibrations of
the atoms in the molecule; (b) kinetic energy of rotation. Thus, the
energy of one molecule is given by

E = By + By + Frot (5.19)

where E; = p?/2m and the one molecule partition function by
71 = Y exp|—B(Er + Evib + Erot )] (5.20)
71 = Y exp(—BEy) exp(—BEyib ) exp(—SFErot ) (5.21)

In (5.20) and (5.21), the sum is over all the microstates, when
one microstate is defined by the five numbers: the three numbers
Ng, Ny, of the linear momentum, the quantum number N of the
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vibration energy and the quantum number corresponding to the z
component of the angular momentum.

We suppose that the different energies are not related, one can
write Z as

Zy = Ee eXp(_ﬁEt)Evib eXp(_ﬁEvib)Erot eXp(_/BErot) (522)
or
Zl = ZZvib Zrot (523)

As an example, we shall take the case of a molecule made of
two identical atoms. The energy of vibration is given by the above
expression (5.1) and the energy of rotation is given by

Bt = (B*/2I)K(K +1) (5.24)

I is the angular momentum of the molecule and K is a quantum
number that is null or equal to a positive integer. And there are
2K + 1 states with the same energy corresponding to the z compo-
nents of the angular momentum. These are the results of the quantum
mechanics solution of the problem of the rotator. Z; and Z, have
been already calculated: Z; is the one particle partition function cal-
culated in the preceding chapter (expression (4.9)) with the difference
that the mass m is now the sum of the two masses of the two atoms.
Zyip s given by the expression (5.4). It remains to calculate Z.

Zrot = 2 (2K + 1) exp[— K (K + 1)i?/(21kpT)] (5.25)

It is not possible to calculate Z,ot analytically and we look for
approximations in the two limits 42 /2IkpT < 1 and h?/2TkgT > 1.
In the first case, the temperature is high enough such the important
terms in the series are those with large values of K. One can replace
the sum by an integral (with K > 1):

Zrot 2TkpT /1% > 1) = / 2K exp|—(K?h?/2IkgT)|dK  (5.26)
0
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The integral is calculated for K = 0 to infinite. To calculate the
integral, we make first a change in the variable, 22 = K2h%/2IkgT
and the integral becomes

Zrot (2IkgT/1* > 1) = (41kpT/h?) / zexp(—x?)dz  (5.27)
0

The integrand is the derivative of the function exp(—x?) multiply
by (—1/2) and the integral between the limits [0, o] is equal to 1/2.
The final result is

Zrot2TkpT/h? > 1) = 2IkgT/h? (5.28)

Now in the case where 2IkpT/h* < 1, the exponentials are small
in the sum of (5.25) and one can take only the first two terms (K =0
and K = 1):

Zvor (2IkpT/h? < 1) = 1+ 3exp(—h?/2IkgT) (5.29)

Now, we have all the results we need to calculate the thermal
properties of this diatomic ideal gas. We see that we can have
different regimes following the various conditions: for the rotation
K2h%/2IkpT < 1 or K?h?/21kpT > 1, for the vibration kpT < hw
or kgT > hw, with the condition (4.15) kgT > (h®/2mm)(N/V)?/3
of the ideal gas. We shall consider the case of the high-temperature
limit in admitting that when (4.15) is satisfied, then K?2h?
/2IkpT < 1 and kT > hw. The energy and the specific heat
at constant volume can be calculated using the preceding results
(expression (4.11) for the energy of translation, (5.16) for the energy
of vibration and expression (5.28) for the partition function of the
rotation). This gives

E =3/2NkpT + 3NkgT + NkgT = 11/2NkgT  (5.30)
Cy = 11/2Nkp (5.31)

However, in general for an ideal gas at room temperature when
(4.15) is satisfied, one has kpT < &w such that the contribu-
tion of the vibration to the specific heat is negligible and one has
Cy =5/2Nkp as indicated in the textbooks of Thermodynamics for
a diatomic gas.
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5.3 Bosons and Fermions in a Two-Level System

One considers N particles with 2M possible states, M states with
energy equal to zero and M states with energy e. There are two
possible cases: the particles are bosons or fermions. In the second
case, one must have M > N since a state cannot be occupied by
more than one fermion. We want to know the thermal properties of
this system of N particles. We shall see that the properties of such
a system are very different depending of the nature of the particles,
bosons or fermions.

To solve this problem, we do not use the partition function but
the chemical potential approach. We begin by calculating the chem-
ical potential using the expression (3.22b) that gives the number of
particles

N = Si{explBle; — p)] £ 1} (3.22b)

Again, we recall that the sum is over the states. In the present
cases there are only two possible energies, but 2M states and N is
given by

N =n1+no
ny = Mlexp(—Sp) £ 171 ny = M{exp[B(e — p)] £ 1}~
Writing
z =exp(—pfp) and A =exp(fe),

one has an equation from which one can extract the chemical poten-
tial as a function of 7" and N.

n+no=Mz+1) ' +Az+1)" =N (5.32)

5.3.1 The particles are bosons

(5.32) becomes
Mz -1 4+ (Az-1)"Y=N (5.33)
and can be written as follows:

M[(Az — 1) + (z — 1)}/[(z — 1)(Az — 1)] = N (5.33b)
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M[Az +x —2] = N(z — 1)(Az — 1) (5.33¢c)
(N/M)Az? — (A+1)(N/M 4+ Dx+ 2+ N/M)=0  (5.34)

Before solving this equation, we shall look for solutions at T' — oo
and T" — 0. In the first case, A = exp(e/kpT) — 1 and (5.34)
becomes

(N/M)z* —2(N/M + 1)z + (2+ N/M) =0 (5.35)

This equation has two solutions that are: z; = (2+ N/M)(M/N)
and 9 = 1. If 29 = 1,n; = M/(x — 1) goes to infinity and this
solution is not acceptable. Inserting the correct value of z; in the
above expressions of ny and ng gives ny = ny = N/2 and p =
—kpTLn(1 + 2M/N).

In the second case (" — 0) A — oo, Eq. (5.34) becomes in neglect-
ing the third term in (5.35) and dividing by A

(N/M)x* — (N/M + 1)z =0 (5.36)

The solution is z = (1 + M/N) since > 0. This gives n; =
N,ng = 0 (since A is infinite) and p = —kpTLn(l + M/N), always
negative as it stands for bosons. This analysis shows whatever the
number of states and the number of particles, at low temperature all
the particles are in the state 1 and the energy is null and at high
temperature, the particles are equally distributed in the two levels
and the energy is £ = Ne/2.

The solution of the general problem (whatever the N and M
values) is cumbersome and we chose to look for solutions in the two
following cases: (1) N =M, (2) N < M.

1. N=M

Equation (5.34) becomes

Ar? —2(A+ 1)z +3=0 (5.37)
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Fig. 5.1. Variation of the number of particles in the state with energy e, in the
three cases: bosons, fermions and classical particles.

with two solutions x = (1 + 1/A4) £ (1/14)\/(142 — A+ 1). We can
verify that the solutions which gives the known results in the limits
T — 0 and T — oo, are the solutions with the sign +. We calculated
numerically nsy, the number of particles in level 2 and we plotted
in Fig. 5.1 as a function of the temperature choosing as in Chapter
1, e/kp = 10°K. The energy E as a function of T has the same
variation as no since F = ens.

2. N« M

In this case (5.34) can be written as (neglecting N/M relatively to 1
and 2)

(N/M)Az? — (A+ 1)z +2=0 (5.38)

The positive solution® is z = (M/2NA){[(A + 1) + [(4 +
1)2 — (8NA/M)]°®}. In the root square, one has* (A + 1)2 >
(8NA/M) and the solution is with a very good approximation

*We chose again the positive solution for the same reason as above.
4We recall that A varies from 1 to infinite and consequently this inequality is
always fulfilled when M > N.
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x = (M/N)(1+ 1/A). One remarks that in this case,  and A are
much larger than one and the expressions for n; and ny are merely
ny = (M/x)=N/(1+1/A) no=N/(1+A)
The energy is

E = Ne[l +exp(Be)]™* (5.39)

and the chemical potential is calculated from the expression of

v = exp(—p/kpT) = (M/N)(1 +1/A)

= —kgTLn[(M/N)(1+ exp(—pe)] (5.40)

Note that p is negative and goes to zero with T'. We already note
that these results were identical to the case of a two-level system in
a classical situation.

5.3.2 The particles are fermions
The equation giving x is now (from (5.32)
M[(z+1) +(Az+1)" =N (5.41)
or (following the same steps as in the case of the bosons)
(N/M)Az* + (A +1)(N/M — 1)z — (2— N/M) =0 (5.42)

One wants to know the limits of the populations of the two levels
(for T'— 0 and T' — o0) one transform Eq. (5.42). In the case T'— 0
one has A — oo and (5.42 is written as

(N/M)z?® + (N/M — 1)z =0

The solution of this equation depends of the sign of (N/M — 1) or if
N > M or if N < M. In the first case (N > M) one gets n; = M
and ng = N — M. In the second case (N < M), one gets n; = N and
ng = 0, This result is accordance with the Pauli principle.
The case T' — oo (5.42) becomes (A — 1)
(N/M)x? +2(N/M — 1)z — 24+ N/M =0
r=(2M — N)/N

and the solution is ny = ng = N/2.
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This result implies a restriction concerning the possible realization
of such a system. One needs the condition M > N/2 because the
Pauli principle.

As the case of bosons, we shall make explicit calculations for the
simple cases: (1) M = N and (2) N > M.

M =N
Equation (5.42) simplifies and becomes merely
Az —1=0 (5.43)
or
r= A2 (5.44)

and p = e/2. The chemical potential is constant and located at half
distance from the two levels The final energy of this system is

E = Ne/[exp(e/2kpT) + 1]

and it plotted in Fig. 5.1 with the same conditions than above, i.e.
e/kp = 10°K. One sees that, in the case of fermions, ny increases
much faster than for the bosons because of the Pauli principle.

2. N M

Equation (5.43) becomes now
(N/M)Az* — (A+ 1)z —2=0 (5.45)

It is easy to show that one gets the same results for the fermions
as the bosons. The conclusion is that, when N < M, there is no dis-
tinction between bosons and fermions and we consider the particles
as classical particles, as in the case of the ideal gas. In Fig. 5.1, is
plotted the variation of ny for the classical situation. One remarks
that the curve of the classical particles is located between the curves
of the bosons and that of fermions. The classical particles are with-
out interaction when for the quantum particles, there are hidden
interactions: repulsion for fermions and attraction for bosons.

It is worth now to give a detailed analysis of the classical situation.
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5.4 Classical Particles

We want to calculate the free energy of the system in the classical
case N < M. The method is general and in the classical case, it is
possible to make easily explicit calculations. We know the energy

E = Ne/[1 + exp(fe)] = —(0Ln Z/93) and the chemical potential
p = —kpTLn[(M/N)(1 + exp(—pe)] = (OF/ON)r
— 9(—kpTLn Z)/ON.

In other words, we have the two derivatives of Ln Z from which
it is possible to find the partition function Z as a function of 7" and
N.

From the first (0Ln Z/93) = —Ne/[1 + exp(fe)], one can write

InZ—-— / dBNe/[1 + exp(Be)] + K (N) (5.46)

where K(N) is an unknown function of the number of particles N.
To calculate the integral, we make the change of variable x = fe and
u =1+ exp(z). We get du = exp(x)dx or de = du/(u — 1) taking
into account that exp(xz) = u — 1. Ln Z becomes

Ln Z = N/du/[u(u —1)]+ K(N) (5.47)
Writing 1/[u(u—1)] = —=1/u+1/(u— 1), one gets for the integral

/du/[u(u— 1] = —/du/u+/du/(u— 1) = Lf(u—1)/u] (5.48)
and finally for Ln Z, one has
Ln Z = NLn[l + exp(—B8¢)] + K(N) (5.49)
The second derivative is
8(—kpTLn Z)/ON = —kpTLu[(M/N)(1 + exp(—B¢)]  (5.50)
It can be written as

(OLn Z/ON)r =Ln M — Ln N + Ln[l + exp(—_e)] (5.51)
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This gives

In Z =— /Ln NdN+Ln M/dN+Ln[1+eXp(ﬁe)]/dN+P(T)

(5.52)
where P(T') is an unknown function of 7.
Recalling that the integral of Ln N is ( NLn N — N ), (5.52) can
be written as

Ln Z = NLn[l +exp(—pe)] + N(Ln M —Ln N + 1) + P(T) (5.53)

Comparing (5.49) and (5.53) one concludes that P(T") = 0 and
that K(N) = N[Ln(M/N) — 1]. The result for F' is

F = —kgTN{[Ln[l + exp(—fe)] + Ln(M/N) + 1} (5.54)

From (5.54) it is possible to calculate the entropy and its limits
for T'— 0 and T' — oo.
Finally, one can formulate the partition function Z with the help

of the one-particle partition function Z;. By definition, Z; is given
by

Zy = M1 + exp(—fe)] (5.55)
From (5.54), the logarithm of Z is
In Z = F/(—kT) = N{[Ln[l 4 exp(—Se)] + Ln(M/N) + 1} (5.56)
or
Ln Z = N[Ln[l 4+ exp(—fe)] + NLn M — NLn N + N (5.57)
or
Ln Z = N{Ln[l + exp(—fe)] + Ln M} — NLn N + N (5.58)
or
Ln Z =Ln {M"™[1 +exp(—Be)N~™ —NLn N + N (5.59)

Now we shall use the Stirling formula Ln N! =~ NLn N — N and
finally

Ln Z = Ln{M"[1 + exp(—Be)]V /N'!} (5.60)
Z = MN[1 4 exp(—Be)]N/N! = (Z))V /N (5.61)
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One can compare the results of this section with those of the
example that we took in Chapter 1 ( N particles in a two-level sys-
tem). In particular, the presence of N! in the denominator of Z is
due to the fact that, it is not possible to distinguish between the
particles.

Important remark. From the preceding chapters, we see that there

are four kinds of particles: Quantum particles that are indistinguish-
able

(1) Fermions: The grand partition function is given by Zg =
Hz(l + Zi)+1.

(2) Bosons: The grand partition function is given by Zg =
I1;(1 — 2)~ !, with z; = exp[—B(e; — )] N Classical particles.

(3) Distinguishable: The partition function is Z = (Z;)V.

(4) Indistinguishable: The partition function is Z = (Z,)Y/N!. Z;
is the one-particle partition function.

Particles behave classically only in particular circumstances (see the
ideal gas and the preceding example).

5.5 The Magnetic Chain

We consider a chain made of N magnetic dipoles. A dipole is attached
to another dipole and they form a magnetic chain. The chain is
located in a plan and each dipole b can be directed along four direc-
tions +z, —x,+y and —y. One end of the chain is fixed at the point
x = 0,y = 0 when the other end is free and a magnetic field H
is applied in the +x direction. The energy of a dipole is equal to
(bH cos §) when 0 is the angle between the vector magnetic moment
and the vector magnetic field. The energy of the dipole is zero if
it is along the £y directions, e; = —bH if in the +x direction and
eo = bH if it is in the —x direction. Furthermore, to make the prob-
lem simple, we suppose that the state of one dipole is not influenced
by the state of its two neighbors and so that two dipoles can be
superposed. By this simplification, the dipoles are without interac-
tion between them. Since the position of one dipole in the chain
is well-defined, the dipoles are distinguishable units. The partition
function is Z = Z; . One dipole has four possible states correspond-
ing to the four directions that it can take. The energy of these four
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states are £ = bH,FEy = —bH, E3 = 0 and E4 = 0. Thus, one has
for 74

71 = exp(—BbH) + exp(BbH) + 2 = 2[1 + ch(BbH)]  (5.62)

The energy is calculated with the help of the relation E =
—(0Ln Z/0p). One gets

E = —NbHsh(8bH)/[1 + ch(8bH))] (5.63)

A high temperature (8 — 0),ch(80H) — 1 and sh(SbH) goes to
zero, i.e. F goes also to zero. Now at low temperature, (§ — oo) and
both sh(SbH) and ch(BbR) are very large and practically equal to
1/2exp(BbH). Thus, E goes to a constant value, —NbH.

The entropy is calculated from the expression S = (E — F)/T =
E/T + kpln Z:

S = NkpLn{2[1 + ch(B8bH)]}

— (NbH/T)sh(BbH)/[1 + ch(BbH)] (5.64)
S = Nkp{Ln 2+ Ln[l + ch(BbH)]}
— Nkp(BbH)sh(BbH)/[L + ch(BbH)] (5.65)

Now we calculate the limits of S at high and low temperature.
For high T'(8 — 0), one gets S = NkpLn4. This is a very general
result for a system of N particles with a finite number of states. At
low temperature, we know that S goes to zero. We shall verify this
basic property of the entropy. We write S as (z = SbH )

S = Nkp{Ln 2 + Ln[l + ch(x)]} — Nkgxzsh(z)/[1 + ch(z)]

and look for the limit of S when x — oco. Putting ch(x) ~ sh(x) ~
1/2exp(z) for x — oo, one has

S — Nkp{Ln 2+ Ln[l/2exp(z)] — =}
= Nkp[ln2—-In2+z—2] =0 (5.66)

The magnetization of the chain can be calculated using the
magnetic free energy M = (0Fy/0/H). The free energy is
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—(kpTN)Ln Z; and one gets
M = Nbsh(BbH)/[1 + ch(BbH)] (5.67)
It is also possible to calculate M through the following expression
M =bN(xz+) — bN (z—)

when N (z+) is the number of dipoles in the z+ direction and N (z—)
their number in the x— direction. The probability p(x+) for a dipole
to be in the z+ direction is given by exp(8bH)/Z; and the proba-
bility p(z—) for a dipole to be in the z— direction is exp(—SbH)/Z;.
The number of dipoles in the z+ direction is Np(z+) and the num-
ber of dipoles in the z— direction is Np(z—). One gets the same
result (5.61).

At low temperature (8 — oo) or/and large fields (H — oo), M
tends towards Nb since sh(BbH) and ch(SbH) become both equal
to 1/2exp(BbH) > 1. The magnetization has its maximum value. In
this case, the chain is completely linear since all the dipoles are in the
direction x+. However, at high temperature and low magnetic fields,
M tends toward zero. This means that, in this limit, the chain has
a complicated shape with the same number of dipoles in all direc-
tions. To show that recall that for ' — ococh(BbH) goes to 1/2 and
exp(+BbH) goes to 1 +(8bH), one has

p(a™) ~ (1+pbH)/4 pla—)~ (1-pbH)/4 ply+) = ply—) = 1/4

which all become equal to 1/4 at high temperature.

As the temperature changes from zero to infinity, the chain evolves
from a linear chain to a chaim with a complicated shape. The solu-
tion we present gives a simplified view of the chain. A more realistic
solution is much more difficult since one has to take into account the
fact that two dipoles cannot overlap.
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Chapter 6

The Gas of Photons:
The Black Body Radiation

When a body is heated, it is well known that it begins to emit light
and the spectrum of the light emitted, i.e. the distribution of wave-
lengths is dependent on the temperature. If one uses the naked eye
to evaluate the wavelength or the color, when the temperature of the
body increases, one begins to see a red color, after appears a bright
red light and further a white light. This radiation is due to the emis-
sion of electromagnetic waves or photons. The origin of the emission
is the motion of the atoms of the body, which are moving because the
heating. In the theory of electromagnetism, an electric charge mov-
ing in an accelerated motion emits an electromagnetic radiation. In
the solid, the charged particles (electrons and nuclei) move in a dis-
ordered motion such that they emit photons. In quantum mechanics,
it is taught that phenomena associated with light can be described
by two complementary ways: as waves or as particles. Depending on
the situation, one way is more appropriate than the other. In the
present case, we shall use the particle aspect but without ignoring
the other.

In this chapter, we shall consider two phenomena which appar-
ently are not related directly: the photon gas and light emission by
solids. In the case of the photon gas, i.e. photons inside a container,
one wants to know, besides the regular thermodynamic properties
of a gas (energy, entropy, equation of state etc.), what are the wave
components of the light spectrum. On the other hand, the relevant
point in the light emission of solids is precisely their light spectrum.
One important case is the light emission by what it is called the black

81
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body. Such a body appears black because it absorbs all radiations
whatever their wavelengths. There is a direct relation between the
light spectrum of a photon gas and that of a black body

In order to be able to study precisely a photon gas, one has to
define the conditions in which it takes place. For this purpose, one
makes inside a body a cavity with a simple shape. Because heating of
the body, the inner walls of the cavity emit photons and at the same
time absorb photons. The only condition that we put on the body
is that it can stand the temperature. At the equilibrium, one has a
gas of photons in a well-defined volume (that of the cavity) and in a
well-defined temperature. The energy of the gas is also well defined:
there is no energy loss nor energy gain since the cavity is closed.

The properties of the photon gas are independent of the shape of
the cavity and of the material of the walls. For the time we shall take
these properties as well verified experimental facts. Below we shall
give a physical argument to show that the properties of the photon
gas are independent of the shape and of the material.

Now one wants to know: what is the energy of the photon gas?
What is the spectrum of the radiation trapped in the cavity?

But how it is possible to answer experimentally to these questions
since the gas is trapped in a close cavity without contact with the
external world? To be able to make measurements on this photon
gas, one makes a small aperture in the body such that a very small
quantity of radiation can escape outside. This hole is so small that
it does not perturb the photon gas.

The radiation spectrum of the photon gas is defined as S(A) giving
the energy of radiation between A and A+dA\ (d) is a small interval of
wavelength). S(\) goes to zero with the wavelength, reaches a maxi-
mum and decreases toward zero at large wavelength. Experimentally,
one gets that E is proportional to the product VT, Furthermore, it
was found that the product A, T is constant, when )\, is the wave-
length of the maximum in the spectrum.

Before calculating the energy and the spectrum, one recalls the
properties of the photon. First, as a particle it is defined by its
moment p, and its energy E = pc (c is the light velocity). As a wave
it has a wave vector k, a wavelength A = 27 /k and a frequency v or
w = 27v. Between these quantities, one has the following relations:

k=2n/\=2mv/c=w/cA=c/v (6.1)
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The relations between the two series of properties of a photon as
a particle and as a wave are

E = pc = hv = hkc/2m = hke (6.2)
p = hk (6.3)

In (6.2) and (6.3), h is the Planck constant and i = h/27.

6.1 The Energy and the Energy Spectrum

We recall the formula for the energy that we gave in Chapter 3
(Eq. (3.23b))

E=3%n.e, (3.23b)

when n, is the mean number of particles in the state r and e, is
the energy of the state . The number n, is given by (3.24) putting
w=0.

n, = [exp(Be,) — 1]7! (6.4)

The chemical potential is null since the number of photons is not
fixed. There is permanent creation and absorption of photons and
their number is not fixed. The photons are bosons since its spin is
1 and thus there is no restriction of the number of photons with a
given energy.

The sum (3.23b) is over the states but the sum over the energies is

E =Yg(e,)ne, (6.5)
where g(e,) is the density of states, the number of states with energy
e,r. However, in Chapter 4 on density of states, we mentioned that

the energy levels are so close that one can replace the sum (6.4) by
an integral

E = /0 Eg(E)n(E)dE (6.6)

with n(E) = [exp(BE) — 1]~ L.
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The density of states g(p), as a function of the momentum p, was
calculated in Chapter 4 (Eq. (4.4c)).

To transform g¢(p) into g(F), one has to recall that E = pc or
p = F/c. This gives,!

g(E)dE = (87V/c*h*)E*dE (6.7)

We added a factor 2 (s, is equal to 2 , because the two possible
polarizations of the photon which is a transversal wave):
Equation (6.6) is now

E = (87V/c*h?) / E3lexp(BE) — 1]7YE (6.8)
0
The limits of the integration are 0 and oo. To calculate the inte-

gral, one multiplies and divides the integral by =% = (kpT)*. The
integral becomes

I= /OOO E3lexp(BE) — 1] YdE
- /OOO(k:BT)4(E/k:BT)3[exp(E/k:BT) — 17 d(E/kpT)

or writing z = E/kgT, putting (kgT)* outside and taking the same
integration limits [0, o0]

I = (hyT)? /O " Plexp(a) — 1]71dE = (x4 /15) (kpT)*

(74/15 ) is the value of the definite integral. Now the energy is easily
calculated from Eq. (6.8): replacing the integral I by its value

E = (87°k g /15033 VT (6.9)
It is usual to write E as follows:

E = (40/c)VT? (6.10)

!The spin of the photon is 1, and in principle s. should be equal to 3. However,
for a massless particle there are only two spin projections corresponding to the
two possible polarizations of the light.
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where o = (2r°k%/15h3¢?) is the Stefan constant. It is equal to
5.67107®MKS and the experimental determination is in very good
agreement with its theoretical formula.

The energy spectrum can be calculated from the expression (6.8)
of the energy, writing it as

o / S(E)dE

where S(E)dE is the quantity of energy between the two values F
and F + dE. Because of the duality waveparticle, it is possible to
translate the expression of S(E)dE as a function of the wavelength
since one has F = pc = hke = he/ .

From (6.8)

S(E)dE = (87V/c*h*) E*[exp(BE) — 1] 'dE
and putting F = hc/A and dE = (hc/)\2) dX one gets
S(\)d\ = (87V he/A)[exp(he/NepT) — 1] 71dA (6.11a)
S(A) is the radiation spectrum of the photon gas. The quantity
K(\) = S(\)/V = (87he/N°)[exp(he/ kpT) — 171 (6.11Db)

has the dimension of an energy per volume unit and per wavelength
unit and can be seen as the energy density of the photon gas.

The quantity K () is plotted for several temperatures in Fig. 6.1
and these theoretical curves are in a perfect agreement with the
experimental curves. The spectrum S(\) varies very strongly with
the temperature such that we used a logarithmic scale to plot the
quantity K (A).

To find the law of the constant product A,,T, one derives the
function S(\) relatively to A and writes that the derivative is null for
Am. First, one writes S(\) = 8whe/f(A) and one has

dS/d\ = —(8mhe)(df JdN)/ f?

Writing dS/dX\ = 0 is equivalent to write df /d\ = 0. The function
f(A) is equal to

FO) = (Wfexp(he/ AKT) — 1]
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Fig. 6.1. Energy density spectrum of the photon gas as a function of the wave-
length (in microns) for several temperatures. The energy spectrum is strongly

dependent of the temperature.

and one has
df Jd\ = 5\ [exp(hc/ N kpT) — 1]
— A2 (he/kpT) exp(hc/ApkpT) =0 (6.12a)
df Jd\ = A {5[exp(he/ N\ kT) — 1]
— (he/AmkpT) exp(he/AmkpT)} =0 (6.12b)

One sees that in (6.12b), one can solve the equation in the brack-
ets taking the quantity x = (hc/Ay,kpT) as the unknown. One can

rewrite (6.12b) as
df Jd\ = Ay {[Bexp(z) — 1] — zexp(z)} = 0

Only the terms in brackets are important, one has finally the

equation
[z exp(z)]/[exp(z) —1] =5

One sees that the solution must be near 5 since exp(5) is
larger than 1 and consequently the left-hand becomes equal to .
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Effectively the exact solution is a transcendental number which
begins by 4,96. ..

Finally one can write \,,T = (hc/5kp)

All the preceding results were obtaining by Planck in 1909 and
they were the first steps toward quantum mechanics.

6.2 The Free Energy and the Entropy

The expression (3.13) applied to the bosons gives the free energy of
a gas of bosons with an undetermined number of particles.

Passing to the energy level continuum and taking into account of
the density of states, one can write as

F =kpT /OO g(E)Ln[l — exp(—pE)|dE (6.13)
0
g(E) is given by (6.7), thus
F = (87kgTV)/(h3c3) / h E*Ln[l — exp(—E/kpT)|dE  (6.14a)
0

We repeat the trick used above to transform the integral in mul-
tiplying and dividing it by (kpT')3. This transforms the integral into
a function of the group (E/kpT) alone and it becomes a definite
integral.

F = (87kpTV)/(h*c®)(kpT)?

X /OO(E/k:BT)2Ln[1—exp(—E/kBT)]d(E/k:BT) (6.14b)
0

This shows that F' is proportional to T%. The exact result is
F=—(40/3c)VT? (6.15)

Formally, the negative sign comes from the fact that the logarithm
in (6.14a) is negative since [1 — exp(—E/kpT)] is smaller than 1.
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From the free energy, one can calculate all the thermodynamic
properties. The calculations are easy, and we give only the results
that the reader can check.

The entropy

S = —(0F/9T)y = (160/3c)VT?
and the pressure
P = —(dF/dV)r = (40/3¢)T*

One gets also that PV = E/3.

The specific heat at constant volume is Cy = (OE/0T)y =
(160 /c)V T3.

The mean number of photons is given by

Nmean = Ernr = Er[exp(/ﬁer) - 1]71 (616)

The sum is on the states and passing to the sum on the energy,
one has

Noean = [ a(B)exp(E/kpT) = )] HE (617
0

or using the above expression of g(E)
Nonean = (87V)/(h3¢%) / Eexp(E/kpT) — 1)]"YdE  (6.18)
0

Using the same trick than above, one multiplies the above expres-
sion by (kgT)? and divides by the same quantity, thus one can write
(6.18) as follows:

o0
Nmean = (87TVk3BT3)/(h3c3)/ 22 (e” — 1) tda (6.19)
0
when the integration limits are 0 and oo.
Taking into account that the value of the integral is approximately
7.2 the final result is

Nuean = 181(VE3gT3)/(h3¢3) (6.20)

Comparing this result with the expression of the specific heat at
constant volume it is possible to see that C), is proportional to the
product Nyeanks-



The Gas of Photons: The Black Body Radiation 89

6.2.1 The relation with the wave picture

All the preceding results have been obtained using the particle pic-
ture of the photon gas. In a closed volume, the equivalent of a single
photon is a standing wave. The problem is to count the number
of standing waves with frequencies between w and w + dw. Once
the result is obtained, one can calculate the energy of the ensemble
of the standing waves using first the equivalence between frequency
and energy (F = hw) and secondly the statistic weight given by
lexp(hw/kpT) — 1].

6.3 Light Emission and Absorption of Solids:
The Kirchhoff Law

We come back to the basic phenomenon of emission of light by solids
when they are heated. One considers two aspects: the emission and
the absorption and we shall see how they are related.

The emission power function of a heated body B(\,T) gives the
energy of the radiation emitted by a small area of the solid surface,
in a small wavelength interval d\, per unit area and per unit time in
a small solid angle df2, as

dEem = B(\, T)(cos 0)dAdS2 : (6.21)

The angle 0 is the angle between the normal to the surface and
the direction of the emission. B(A,T) is a function of the wavelength
and of the temperature but also of the nature of the body. The cos 6
appears in (6.21) because one considers the emission from a small
surface element dA and this surface element is seen as (cos#)dA in
the 6 direction. The emission power, expressed as a function of the
wavelength and of the temperature, has the dimension of energy per
unit time and unit of volume.

It is possible also to define in the same manner the radiation
absorbed by a small area of the surface of the solid. It concerns only
the radiation which is absorbed and not the radiation reflected or
diffused by the surface. The function M (A, T') gives the fraction of
the radiation absorbed by the body.

The Kirchhoff law states that the ratio B(\,T")/M (A, T') depends
only on A and 7" and does not depend on the properties of the body.
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This ratio is a universal function of A and 7. The exact expression is
B\, T)/M(\,T) = (2rhe®/X°) [exp (he/MepT) — 1] (6.22a)
This can be written as

B\T)/M(\,T) = (¢/2m) (871'th/)\5) [exp (he/MkpT) —1]7*
(6.22b)
The Kirchhoff law can be applied to the inner walls of the cavity
with a photon gas. So it not astonishing that one can write (6.22b)
as

B\T)/M(AT) = (c¢/20) K (\) (6.23)

We recall that K () is the energy density per wavelength unit of
the photon gas (see (6.11Db)).

We shall not give a demonstration of this law but only mention
an intuitive argument.

Consider the emission in a narrow range of wavelength from the
wall of the cavity where the photon gas is established, it depends
on the function B(A,T). There is also absorption by the wall of
the energy from the photon gas with energy density K(\). Since
these two processes must be equal at the equilibrium (the emitted
energy flux must be equal to the absorbed energy flux) one can
understand intuitively the expression (6.23) written as B(\,T) =
M\ T)(c/2m)K(N).

6.4 The Black Body Emission

A black body is defined as a body with perfect absorption for all
wavelengths. In other words, the function M (A, T') is a constant equal
to 1. From (6.23), it results that the emission power of the black body
is directly related to the spectrum of the photon gas.

B\T) = (¢/2m)K(N)

This explains the equivalence between the two phenomena.
The study of light emission by solids which are not black bodies
is beyond the frame of this book.
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6.5 The Properties of the Photon Gas are
Independent of the Shape and the Material
of the Cavity

Suppose that the properties of the photon gas inside a cavity, in
particular its energy, are not only dependent on the volume and the
temperature but also on the shape and on the material of the body
in which the cavity was made.

One considers two cavities with the same volume and the same
shape at the same temperature but the two bodies are made with
different materials. The two bodies with their cavities can be seen as
a closed system at the temperature T. The energies of the two cavities
are different because the differences in the materials. Conversely, if
the energies of the two photon gases were equal, their temperature
would be different.

Now one connects the two cavities by means of a tube with a very
small volume giving possibility for the photons of both cavities to
diffuse from one cavity to the other. After some time the energies
of the two cavities are equal and consequently their temperatures
are different. But one has apparition of a temperature difference in
a closed system without making work. This is in contradiction with
the second principle of Thermodynamics which states exactly the
opposite. This demonstrates that the initial hypothesis is not correct
and that the properties of a photon gas in a cavity are independent
of the material.

Similarly, following the same argument, one can show that the
shape of the cavity is not important.
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Chapter 7

The Atomic Vibrations in Solids:
Phonons

7.1 The Atomic Vibrations in Solids

In this chapter, the thermodynamics properties of solids are stud-
ied. This is a very complicated problem since atoms move in three
dimensions and their motion is a collective one. An atom cannot move
without influencing its neighboring atoms. In the frame of this book
one can only give a simplified picture which keeps the essential of
the atomic properties. In particular the specific heat of solids is well
described by the model exposed in this chapter, the Debye model. We
have already noted that the first model of atomic motions in solids
was proposed by Einstein: each atom is seen as independent of its
neighbors. Consequently, all the atoms move as harmonic oscillators
with the same characteristic frequency.

We shall give briefly the properties of the motion of atoms in
a crystalline solid. In a crystal the positions of atoms in the space
has some regularities such that the distances between equilibrium
positions of atoms are well defined.

At temperature zero all the atoms are placed at their equilib-
rium positions. When the temperature increases they perform small
oscillations around their equilibrium positions and their amplitudes
increases with the temperature. The first important point is that the
atomic vibrations are the superposition of several harmonic motions
given by standing waves. We take the simple example of atoms in one
dimension along a line of length L. The displacements of the atoms
can be perpendicular to the line (transverse motion) or along the line

93
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(longitudinal motion). A standing wave is the superposition of two
propagating waves in inverse directions and opposite amplitudes. For
example, the first wave is given by Asin(wT — kz) where A is the
amplitude, w is the frequency multiplied by 27, T is the time, k is
the wave vector k = 2w /A, X is the wavelength and z is the position
along the line. The second wave is given by —Asin(wT + kx) and the
sum is

Alsin(wt — kx) — sin(wt + kz)] = A cos(wt) sin(kx)

The motion of each point along the line is a harmonic motion but
the amplitude depends on the position. In particular if for z = 0 and
x = L the amplitude is null if the product kL = nw(n = 1,2,3,...)
or A = (2L/n): this is the case of a standing wave. In other words
the length of the line is a multiple of half the wavelength.

We shall develop this simple model of a linear solid made of a
line of N atoms separated the distance a, such that the length! of
the atoms line is L = Na. The atoms are connected by springs with
constant B. At T = 0 they are rest and the distance between two
consecutive atoms is a. When the temperature increases the atoms
perform harmonic motions under the influence of the springs. We
suppose for the sake of simplicity that the atomic motions are lon-
gitudinal. One looks for the relation between the frequency w and
the wave vector k. When one atom (labeled N when N is between
1 and N) is out of its equilibrium position, two forces act on this
atom, one from the atom labeled N — 1 and from the atom labeled
N + 1. If we call u,, the displacement of the atom N from its equilib-
rium position, these forces are proportional to the differences between
the displacements of two neighboring atoms, i.e. to u, — u,_1 and
Up — Up+1. The equation of motion of the chain is

m(d*u, /dt*) = —B(up — un_1) + B(tni1 — Uy). (7.1)
where m is the mass of one atom. We look for wave solutions given by
Uy, = Dsin(wt — kna) (7.2)

when the quantity (na) gives the position of the atom n. To check
if (7.2) is solution of (7.1), one has to put it in the differential

'Rigorously the length of the chain is a (N — 1) but since N > 1 one can take
L = Na.
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equation (7.1) and to verify for what condition the two sides of (7.1)
are equal. This will give a relation between w and k.

In place of using the solution (7.2) we shall consider the functions
D expli(wT — kna)| for which the real part is (7.2). Introducing the
exponential in (7.1) we shall get the condition we look for.? This
gives

— mw?D exp(iwt) exp(—kna) = BD exp(iwt){—2 exp(—kna)
+ exp[—k(n + 1)a] + exp[—k(n — 1)a]}
(7.3a)

We write this equation as follows

— mw?D exp(iwt) exp(—kna)
= BD exp(iwt) exp(—kna)[—2 + exp(—ka) + exp(ka)]  (7.3b)
since exp[—k(n + 1)a] = exp(—kna) exp(—ka)
Using the relation e + e™* = 2cos(z) gives [exp(—ka) +

exp(ka)] = 2 cos(ka)
Introducing in (7.3b) and simplifying, one gets

mw? = 2B[1 — cos(ka)] (7.4)

Since that cos(x) = cos(—z) the expression (7.4) is also good for other
solutions of (7.1) given by u, = D exp[i(wT + kna)] propagating in
the inverse direction as we need for standing waves solutions. Using
the relation

cos(z) = [1 — 2sin?(z/2)]
one has the relationship between w and k as
w = 2(B/m)"?sin(ka/2) (7.5)

In Fig. 7.1, we show the graph of the frequency w versus the wave
vector for the two possible directions of the wave propagation, corre-
sponding to positive k£ and to negative k. We show this relationship
as a continuum but there only N possible frequencies (see below).

2 At the end of the chapter we give the solution of (7.1) by means of trigonometric
functions.
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Fig. 7.1. Variation of the frequency with the wavevector for a linear atom chain.

From Fig. 7.1 and from (7.5) one can deduce important characteris-
tics. First, there is a maximum frequency given by

wyr = 2(B/m)Y/?

Secondly corresponding to this maximum frequency, there is a
maximum wave vector (in absolute value) k = 7/a and a minimum
wave length \ = 27 /k = 2a. Thirdly, writing that the standing wave
condition is that the length L is a multiple of half the wavelength,
i.e. L = d\/2 where d is an integer, one gets that the maximum d
(corresponding to the smallest wave length) is equal to N. In other
words, there are N possible frequencies for the chain and they are
called the normal modes of the chain. Finally, we note also that only
for small wave vectors, the relation between w and k is linear using
the approximation sin z ~ x for small x.

To resume: the harmonic function D sin(wT —kNa) is the solution
of the propagating waves in the atom chain with w related to k by
(7.5) and k given by k = +d(7/Na)(d =1,2,3,...,N).

Now we shall generalize the above results for the case of three-
dimensional solids.

(A) Since the atomic motion may be transverse or longitudinal, the
motion of an atom is the sum of three harmonic motions, two
corresponding to the transverse waves and one to the longitudi-
nal wave.

(B) The relation between & and k is not linear and since the wave
velocity is given by the derivative (dw/dk), the velocity is not
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independent of the frequency as in the case of electromagnetic
waves. Only for the small frequencies the relationship between
the frequency and the wave vector is linear resulting in indepen-
dent velocity. In this range of low frequencies and large wave-
lengths one has w = kv (v is the wave velocity) and since there
are two types of waves one has two wave velocities. vp (trans-
verse wave) and vy, (longitudinal wave). These small frequen-
cies correspond to the small wave vectors and large wavelengths
which are sound waves. Effectively the sound frequencies are
relatively small (say less than 20,000 Hz) and since the sound
velocity is typically several thousands of meters per second in
solids, it results that the wave length is much larger than the
atomic distances which are order of several Angstroms. The wave
vector is very small. Thus, vy and vy, are the sound velocities in
the solid.

There is an upper limit for the frequencies of the waves as one
saw above. This frequency is not easy to calculate and is different
for the longitudinal and the transverse waves. Below we shall
present the method of the Debye model to get an approximate
value.

There is a limited number of possible frequencies for the atomic
vibrations. Since the N atoms of the solid correspond to 3N
oscillators, the total number of possible frequencies is also 3N
in analogy with the case of the linear atomic chain.

In quantum mechanics the equivalence between waves and parti-
cles was established and we shall use it in the case of the atomic
vibrations. The motion of system of the N atoms is described
by the superposition of the normal modes which are standing
waves. A standing wave is the wave description of a particle in a
restricted volume as we saw in the case of the photon gas. Sim-
ilarly to the case of electromagnetic waves where the particles
are photons, one introduces a new particle, the phonon.

7.2 The Properties of the Phonons

In complete analogy with the photons, the phonons are bosons and
their number is not fixed. Consequently, the chemical potential is
null. The well-known relation between frequency and energy is again
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E = hv = (hw/27) where h is the Planck constant. The relation
between the linear momentum with the wave vector is p = (hk/2m)
as in the case of the photons.

However, there are also important differences. First there are two
types of phonons, the transverse phonons corresponding to the trans-
verse waves and the longitudinal phonons corresponding to the lon-
gitudinal waves. We recall that the photons correspond only to the
transverse electromagnetic waves. Secondly their energy levels are in
a finite number. Since in the wave picture there is a finite number
of frequencies, one has the same properties for the energy levels. As
seen above this is equivalent to say that there is a maximum possible
energy Fjs. Finally, the relation between the energy and the momen-
tum is linear only for small energies. In this case, one has E = pvp for
the transverse phonons and F = pvy, for the longitudinal phonons.
One recalls that the wave velocity is given by dw/dk and is linear for
the small values of k, i.e. the large wavelengths.

7.3 The Atomic Chain: The Low-Temperature Case

Now we present the thermal properties of the most of linear chain.
We begin with the calculation of the free energy given in Chapter 3
for the case of bosons with not fixed number

F = —kpT¥; — Ln[l — exp(—pfe;)] (3.13)

or going to the energy continuum
Enm
F= kBT/ g(E)Ln[l — exp(—pE)|dE (7.6)
0

In (7.5) the limits of the integral are from 0 to the maximum
energy Ejr. One has to calculate the function g(E) from the basic
expression of g,(p) given in Chapter 4

gp(p)dp = s.(4xV p?dp)/h* (4.4¢)

However, this is not possible because the relation between E and p
is not a simple function but a complicated expression, except for the
low energies. This is precisely the case of the low temperatures where
the energy levels occupied by the phonons are the lowest levels. One
has two expressions for g(E) one for the transverse phonons and one
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for the longitudinal ones. Using the relation p = F /v, one gets from
(4.4c)

Longitudinal phonons: g1, (E)dE = [47V/h3(vy )3 E*dE
Transverse phonons: gr(E)dE = 2[4xV/h3(vr)3| E*dE

We added a factor 2 in the case of the transverse phonons as we
did in the case of the photons. Finally, the total function g(F) is

9(E) = gr(E) + gr(E)
9(E) = (4zV/h*)[1/(vr)? + 2/ (vr)*| E? (7.7)

or writing a mean sound velocity v as 3/v3 = 1/(vy)? + 2/(vr)? the
final expression is

g(E) = (4xV/h3)(3/v®)E?dE (7.8)

We can write the free energy (7.6) in the following form:
Enm
F = (12nkgTV/h3v3) / E*Ln [l — exp|—(E/kgT)|dE  (7.9)
0

This expression is very similar to that of the free energy of a photon
gas:

F = (87kpTV)/(R3C?) / h E*Ln[l — exp[—(E/kpT)]|dE
0

(6.14a)

But the important difference stands in the limits of the integral:
in (6.14) they are 0 and oo but in (7.8) they are 0 and E}jy.

To calculate F' (7.9) we shall use again the trick used above of
multiplying and diving the expression by (kgT)? and one gets

F = 12rn(kgT)*V/(h30®)

Bt /KT
< /O (E/kgT)?Ln[1 — exp|—E//kgT)d(E/k5T)
(7.10)

with new limits for the integral: 0 and Ejs/kgT. But since we con-
sider the low-temperature case (Eps > kT'), one can take the limits
as 0 and oo. The calculation is now completely analog with that of
the electromagnetic waves (see 6.14b), (7.10) becomes

F = 12n(kpT)*V/(h3v?) /OO 2*Ln[1 — exp(—x)]dx (7.11)
0
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where we recall that the limits of the integral are now 0 and oc. The
value of the integral is —7/45 and the final result is

F = —(4/15)7° (kgT)*V/(h3v®) (7.12)

The energy is calculated through the usual formula F = F —
T(OF/0T) and the specific heat at constant volume from Cy =
(OE/OT). The final result is

Cy = (16/5)[x° (kp)*/(R3v*)|V T3 (7.13)

The variation of Cy with the temperature as 72 is well verified for
solids at low temperatures.

7.4 The Atomic Chain: The High-Temperature Case
We begin again by the free energy (7.6).
Enm
F= kBT/ g(E)Ln[l — exp(—pE)|dE (7.6)
0

The limits of the integral are 0 and the maximum energy FEj; But
since we consider high temperatures (kg7 > E) we can write

exp|—(E/kpT)] =~ 1— (E/kpT)

Introducing in (7.6), we get
Eyn
F = kBT/ g(E)LH(E/k)BT) = kBT
0

Enr
Y /0 o(B)[Ln(E) — Ln(kpT)|dE (7.14)

En
F = k‘BT/ g(E)Ln(E)dE — kpTLn(kpT)
0

En
X /0 g(E)dE (7.15)
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Writing A = f (E)dE and J = [;M g(E)dE, we can
express F' in the followmg form

F = AkgT — JkgT Lun(kgT) (7.16)

The quantities A and B depend on N and V but are independent of
the temperature. We can calculate the energy £ = F — T(90F/0T)
and the result is:

E = JkgT (7.17)

The final step is to calculate J = [; Eu g E)dE. Tt is exactly the

sum of all the possible states which is the number of the possible
frequencies or energies. J is equal to 3N as we saw above. Thus, we
have

E =3NkpgT (7.18)
and

Cy = 3Nkpg (7.19)

7.5 The Debye Formula

In the model of Debye it is supposed that the relation between the
energy and the momentum is linear up to Fj;. This means that
expression for g(F) is given by

g(E) = (4xV/h3)(3/v*)E?dE (7.8)

and it is supposed to be valid up to Fy;. Now Ejs can be calculated
from the relation

/ o g(E)dE = 3N (7.20)
0
From (7.8) one has
EM EM
/ g(E)dE = (47V/h3)(3/v?) / E%dE = 3N (7.21)
0 0

The integral is equal to (Fys)3/3. This gives for Ey;
(En)? = (3NK303) ) (47V) (7.22)
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Now one can calculate the energy from the formula (3.23) of
Chapter 3

E = Siei{exp[B(e; — p)] £ 1371 (3.23)

Using this formula for the bosons with g = 0 and passing to the
continuum limit one has

En
E = Eg(E)(exp E/kgT —1)"'dE (7.23)
0

Introducing (7.8) in (7.23) gives
En
E = (477V/h3)(3/v3)/ E3lexp(E/kgT) — 1]7'dE (7.24)
0
We recall that the limits of the integral are 0 and Fj;. To calculate
this integral we use once again the trick to transform the integral by
multiplying it and dividing it by (kgT)*. This gives
E = (4nV/h*)(3/v*)(kpT)*

Ean /KT
x/ (B/kpT)3lexp(E/kpT) — 1] 'd(E/kgT) (7.25)
0

when the limits of the integral are 0 and (Ey/kpT).
Writing x = kpT' the expression for the energy is

E = (4nV/h*)(3/v*)(kpT)* /OxM 23exp(z) — 1] tdx (7.26)

The integral is a function of the temperature through the upper limit
xy = (Eym/kpT) and can be calculated numerically. It is usual to
define the Debye temperature Tp by the relation

Ey = kgTp

and the limit x; becomes equal to (Tp/T). It is possible to transform
(7.13) in noting that (47V/h3v3) = 3N/(E);)? and one gets

To/T
E = [9N/(Ex)3(kpT)* /O 3exp(x) — 1] tdx (7.27)



The Atomic Vibrations in Solids: Phonons 103

or
Tp/T
E = 9Nk:BT(T/TD)3/ 23[exp (x — 1] dx (7.28)
0
Finally one sees that
E =3NkgTf(T/Tp) (7.29)

where the function
Tp /T
F@/T) =30/To)* [ afexpla) — 1)
0

is a universal function of the ratio (7//Tp), valid for all materials.
From (7.15) one can get the expression for the specific heat at a
constant volume

Cy = (0E/0T)v
Tp/T
Cy = 9Nk:B(T/TD)3/O xtexp(z)[exp(z) — 1]7%]dz  (7.30)

The passage form (7.28) to (7.30) necessitates some steps in the
derivation. We put it at the end of the chapter. We recall that the
limits of the integrals in (7.14,15,16,17) are 0 and zp; = Tp/T.

Cy must be calculated numerically and we plot (Cy/Nkp) as a
function of (T'/Tp) in Fig. 7.2. It is possible to show that in the low
temperature limit one recovers the 72 behavior of the specific heat.
More precisely one has

Cy = (127* /5)Nk(T /Tp)? (7.31)

and the measure of C), at low temperatures gives a determination of
Tp (of course, if the T2 behavior is observed).

In the high temperatures limit, the Debye model gives Cy =
3Nkp as expected. Between these two limits (7" — Oand T — o0),
the Debye model gives a good description of C, for materials with
no too complicated structure.

Another means to check the validity of the Debye model: is
through the sound velocities. We recall the definition of Ej,

(Em)? = (kgTp)® = (3Nh3v3)/(47V) (7.32)
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Fig. 7.2. Variation of the specific heat of the Debye model as a function of the
reduced temperature (7'/Tp).

Table 7.1. Debye temperature for some materials.
Materials Tp from Cy Tp from v
NaCl 308 320
KCl1 230 246
Ag 225 216
Zn 308 305

Note: The temperatures are given in degrees Kelvin.
Source: From C. Kittel, Introduction to Solid State
Physics. John Wiley and Sons, New York, 1956.

and one can relate the Debye temperature to the mean sound
velocity v

Tp = v(h/kp)(3N/4xV)'/3 (7.33)

In Table 7.1, we give the values of the Debye temperature obtained
from the specific heat and from the sound velocities for some materi-
als. We see that the agreement is very good taking into account that
the Debye model is in fact an approximation.
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7.5.1 Resolution of the differential equation (7.1)
by means of trigonometric functions

We recall the differential equation giving the motion of atoms in the
linear atom chain

m(d*u, /dt*) = =Bty — tn_1) + B(tny1 — ). (7.1)

We look for solution as u,, = D sin(wt —kna). Introducing in (7.1)
gives

— mw?sin(wt — kna) = —2B sin(wt — kna) + Bsin(wt — k(n — 1)d
+ Bsinjwt — k(n + 1)a] (7.34)

One can develop the second and third term in the right-hand side
of (7.34) using the formula

sin(a + b) = sin(a) cos(b) — cos(a) sin(b)
sin(wt — k(n — 1)a] = sin(wt — kna + na)
= sin(wt — kna) cos(ka)
+ sin(wt — kna) sin(ka) (7.35a)
sin(wt — k(n + 1)a] = sin(wt — kna + na)
= sin(wt — kna) cos(ka)
— sin(wt — kna) sin(ka) (7.35b)
The sum of these two terms is
2sin(wt — kna) cos(ka)
and introducing in (7.34) gives, after some manipulations
mw? = 2B[1 — cos(ka)]

as we got above.
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7.5.2 Derivation of the expression (7.30) giving
Cyv in the Debye model

We begin with the expression of the energy
Tp/T
E= 9Nk:BT(T/TD)3/ 23[exp(x) — 1] tdx (7.28)
0

and we divide the two sides by 9Tp Nkp
Tp/T

E/(9TpNkg) = (T/Tp)* /O 23exp(z) — 1] 1dx (7.36)

We consider the group
1y
A=FE/9TpNkp) = y4/ 23exp(z) — 1] Vdx (7.37)
9

where y = T/Tp. We derive A relatively to y to get the derivative
relatively to T since one has

dA/dy = Tp(dA/dT)

We write

1/y

1y
/ 3(expr — 1) tdr = f(x)dx
9 9

and we define the function F(x) such that dF'/dz = f(x). The inte-
gral fgl/y 23 (expx —1)"dx is equal to F(1/y)— F(0) and A becomes

A=y' F(l/y)
since F'(0) = 0. The derivative dA/dy is
dA/dy = 4y’ F(1/y) +y'(=1/y*)(dF /dz), (7.38)

The function F'(z) is given by the indefinite integral

F(x) = /x?’[exp(:n) — 1] Yz
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and can be calculated by parts in writing u = (expxz — 1)7!, dv =
p3dr,v = 2*/4

F(:U):/udv:uv/vdu
F(z) = z*/[4(expx — 1)] + (1/4) /564 exp(x)[exp(z) — 1] ?dx

Putting this expression in (7.26) and recalling that
dF/dx = x3(expx — 1)~! one gets finally

dA/dT = Tp(dA/dy)
1/y
dA/dT = ygTD/ ztexp(z)[exp(z) — 1] 2dx
9
from which one reaches the final formula

Tp/T
Cv = ONk(T/Tp)? /0 st exp(@)lexp(z) — 1] 2de (7.30)



This page intentionally left blank



Chapter 8

The Boson Gas at Low Temperature:
The Bose—Einstein Condensation

8.1 The Chemical Potential of a Boson Gas

To study the thermal properties of a gas of quantum particle one
needs the knowledge of the chemical potential p. In this chapter one
considers a gas of massive bosons in a volume V with control of the
temperature 7T

To calculate the thermodynamic quantities, one has, following
the results of Chapter 3, to determine the chemical potential as a
function of the temperature through Eq. (3.22b) applied to the case
of the bosons:

N = Zi{exp[B(e; — p)] = 1371 (8.1)

or passing to the energy continuum

N = / E){exp|B(E — p)] — 1} YdE (8.2)

The density of states g(E)dE is deduced from the expression of
the density of states g(p)dp obtained in Chapter 4

gp(p)dp = s.(4V p*dp) /h? (4.4)

through the relation between the momentum p and the energy E, E =
p?/2m (m is the mass of an atom). One has

p>=2mE and dp=mdE/p= \/QmB/QEl/QdE

109
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and inserting in (4.4) one gets (taking s, equal to one)
g(E)dE = (4nV/h®)\/2m*? EY2dE (8.3)

Introducing (8.3) in (8.2) gives an expression from which on can
deduce the chemical potential

N = (4xV/h3)\/2m>/? / h EV?{exp[B(E — p)] — 1} 'dE (8.4)
0

N = [22V(2m)*/2 /13 /0 h EY%{exp[B(E — p)] — 1} "YE  (8.5)

This is an implicit equation N/V = F(T, ) from which one can
determine p as a function of 7" and the density N/V. We recall also
that in the case of bosons the chemical potential must be smaller
than the lowest energy; this means that p must be negative if the
lowers energy is zero. Furthermore we saw that the derivative du/dT
is negative. Lowering the temperature makes the chemical potential
smaller in absolute value and the question is: what is the limit at low
temperature? Surprisingly one can see that Eq. (8.5) has the solution
p- = 0 for a finite temperature 7, that one can easily calculate.
Effectively, putting p- = 0 and T'= T, in (8.5) gives

N = [2r(2m)*2V /] / " B 2exp(B/kTy) — 1]-YdE (3.6)
0

After multiplying the right-hand side of (8.6) by (kpT,)%/2, divid-
ing EY/2 by (kpT,)'/? and dE by kpT, and, one gets (after rearrang-
ing the factor before the integral)

N = V[2rmkgT,/h?**/?(2/ /) / h 2 ?lexp(z) — 1] dz (8.7)
0

where © = E/kpT,
or

N/V = 2.61[2rmkpT,/h**/? (8.9)

In (8.9) we replaced the integral by its value. Finally one has
for T,

T, = 0.53[h?/(2rmkp)|(N/V)?/3 (8.10)



The Boson Gas at Low Temperature 111

Thus, above Ty, the chemical potential is negative but below it is
likely to be positive. One concludes that something is wrong with
the expression (8.2)!

The answer stands in the passage from the series (8.1) to the
integral (8.2). In the series, the first term is [exp(—pu/kgT) — 1]71
different from zero. But the function in the integral begins from zero.
In fact in passing from the series to the integral, we have changed
the first term with energy zero. It is just this state which becomes
more and more populated when the temperature is lowered.

This interpretation finds its mathematical justification in the
Euler-McLaurin formula. We recall

g 10 = [ fys = 5 | 10) + 1)+ 3517 0) - F0)

If one neglects the correction terms, one sees that in the integral
the first term of the series is absent. This means merely that the
integral is not equal to the sum of the series. Thus below Ty, Eq. (8.2)
must be changed and written as follows, putting explicitly the first
term in the sum

N = [exp(—p/kpT) = 1]
+ (47V/h3)/2m3/? / Nk
0

{exp[B(E — p)] -1}~ 1dE (8.11)

One can determine the behavior of ¢ when the temperature goes
to zero. In this limit, V; (the number of particles in the lowest energy
state) goes to N and one writes

Ny = [exp(—p/kpT) —1]7* = N (8.12)
exp|—u/kpT] — (N +1)/N (8.13)

Since N is very large in a macroscopic sample, the ratio (N+1)/N
is very near to 1 and this mean that u/kp T is very small. In this
case one develops the exponential term exp(—z) ~ (1 —x) and (8.13)
becomes

1 — u/kpT — (N +1)/N (8.14)
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and finally
w— —kgT/N (8.15)

The chemical potential is thus very small at very low temperatures
and it is a very good approximation to take it equal to zero below
and at Tj.

To resume one writes the general expression (8.11) in the following
forms:

For T' > T,

N = [2r(2m)*?V/h?] / T e lexp{(E — p)/kgT — 1]7'dE
0
(8.5)

For T'=1T,

N = [2r(2m)*?V/h?] / h E\exp(E/kpT,) —1]"'dE  (8.6)
0

For T' < T,
N = Ny + [2r(2m)* 2V /b3 / E'\?[exp(E/kpT) — 1] dE
0
(8.16)

The first term Ny corresponds to the number of particles in the
state with energy zero and the second term corresponds to particles
number in all the other states. Remark that in (8.16) the chemical
potential is taken equal to zero.

One can get from the preceding formulas (8.16) and (8.7) an
expression giving Ny as a function of T;,. Introducing the same proce-
dure than that used above to pass from (8.6) to (8.7), one can write
(8.16) as follow:

N = Ny + V[2rmkgT/h?>2(2/ /) / h 22 [exp(z) — 1] Ndx
0
(8.17)

The number of particles in the state with positive energy,
N(e>0)is

N(e > 0) = V[2rmkgT/h*3/%(2//7) / h 22 [exp(z) — 1] Ndx
0
(8.18)
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One recalls the expression (8.7)
N = V[2rmkgT,/h*3/%(2/ /) /0 h 2 2[exp(z) — 1] dz  (8.7)
From (8.7) one has
(2//) /0 T o 2exp(a) — 1" Nda = N/[V (2rmkpTy /h2)5?]

inserting in (8.17) one has N = Ny + N(T/T,)*/? and finally
Ni/N =1— (T/T,)*? (8.19)

The temperature T, can be seen as the temperature for which
the “condensation” of the particles into the lowest state begins. For
T — 0, the number of particles in this state goes to N and for
T > T,, this number is null. This last point, namely that for 1" > T,
the lowest level is partially unoccupied is specific to the bosons as
shown in Chapter 3.

This phenomenon was predicted by Einstein using a method
developed by Bose, it receives the name of the Bose-Einstein
condensation.

8.2 The Energy, the Specific Heat, the Free Energy
and the Entropy

We consider the case T < T, which is simpler because the chemical
potential is null. The energy is given by

E = / Eg(E)dE = / E(4xV/h3)y2m3/2E1/?
0 0

X [exp(E/kpT) —1]71dE (8.20)

One uses again the trick of transforming the integrals by dividing
and multiplying this expression by (kBT)5'/ 2 and rearranging the
numerical factor one has

E = V[2rm/h*3?2//n)(kpT)>/? /0 g lexp(z) — 1] dx
(8.21)
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One recalls the expression giving N (8.7)
N = V2rmhkpTy/h2¥2(2/ /) /O T o Plexp(a) — 1" lds (8.7)
Dividing (8.21) by (8.7) term by term gives

BIN = TR0, [ s fexpe) — 117 o
0

/ {/OOO a2 exp(x) — 1]_1d:c} (8.22)

The ratio of the two integrals is about 0.77 thus one gets finally
E = 0.77TNkg[T°/?/(T,)>?] (8.23)

It is possible to express E as a function of V' and 7' introducing
in (8.23) the values of T, given by (8.10)

E = (2n0m/h?)32V (kgT)®/? = AVT®/? (8.24)

where A is equal to (2mm/h?)3/2(kg)®?. Now one can calculate
the specific heat at constant volume CYy,, the entropy and the free
energy "

Cy = (OE/OT)V = 5/2 AVT3/? (8.25)
S = / (Cy/T)dT = 5/3 AVT?/? (8.26)
F=E—-TS=-2/3AVT®?=_2/3E (8.27)

From (8.27) one deduces the pressure
P = —(dF/0V)p = 2/3 AT/ (8.28)

One remarks the very particular behavior of the boson gas in the
condensation regime. The energy, the free energy and the entropy
do not depend on the number of particles It is merely the conse-
quence of the fact that the chemical potential is zero. The pressure
is independent of the volume.

Immediately above 7|, the calculations become cumbersome and
we do not present them. And at temperatures well above T, the gas
behaves as a classical ideal gas with energy 3/2NkpT.
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Fig. 8.1. Variation of the specific heat with the reduced temperature showing
the beak in the slope at T' = T5.

We shall give a qualitative picture of the specific heat Cy -, For
T < T, one comes back to the expression (8.23) of the energy to
calculate again the specific hast at constant volume

Cy = (OE/0T)y = 1.925Nkg(T/T,)>'?

Well above T, one has the classical value Cy = 3./2Nkp. How-
ever, for T = T,Cy is equal to 1.925Nkp, larger than the classical
value. It is possible to show that the specific heat is continuous at T},
and thus for T" > T,Cy begins to decrease from the value 1.925Nk g
to the value 3/2Nkp. In Fig. 8.1, one shows schematically the vari-
ation of Cy with T.

8.3 Experimental Confirmations

The Bose-Einstein condensation was predicted in 1925 and at this
time there was no experimental evidence of such a phenomenon. The
first proposition for a possible experimental realization was made by
London in 1938 about the properties of liquid helium. This element
is a gas at room temperature and it remains liquid even at very
low temperature. Particular properties appear at the temperature
of 2.3°K when it losses its viscosity. This state is called a super-
fluid state. The idea of London was to consider this transition as a
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Bose—Einstein condensation. If one applies the formula (8.10) to cal-
culate the Bose-Einstein condensation, one obtains T;, about 3.4°K.
It is not exactly the good temperature, but it is not too far. In order
to understand the proposal of London, one considers the two fluid
model proposed later by Tisza. In this model, the helium liquid in its
superfluid state is compound of two fluids. In the first the atoms form
a normal liquid and in the other the atoms form the superfluid liquid.
The atoms in this superfluid state are those which condensate in the
lowest energy level as in the Bose—FEinstein condensation. However,
the application of the Bose-Einstein condensation to helium presents
several difficulties since the theory considers atoms in their gaseous
state when they do not have any interaction between them contrarily
to liquid helium.

The problem in an experimental realization of the Bose—Einstein
condensation is as follows. From the expression (8.10) of 7, it possi-
ble to see that the condensation can occur only at low temperatures
when all the elements are solid (at the exception of helium which
remains liquid) If the number of atoms is reduced to a small num-
ber (for example, 10° atoms or less) it is possible to kept them in a
gaseous state. But the condensation temperature becomes very low
(below 1079 K). The technical difficulties are to get a gas of small
number of atoms at a very low temperature. Only very recently solu-
tion to this problem was found and the Bose-Einstein condensation
was observed. These are very sophisticated techniques first to cool
the atoms (like Rubidium atoms) by laser and evaporation and sec-
ondly to keep the group of atoms far from the wall of the container
(to avoid heating of the atoms) by magnetic interaction. The atoms
in the condensate state are in their lowest kinetic energy stare and
consequently are almost stationary.



Chapter 9

The Gas of Fermions: Electrons in
Metals and in Semiconductors;
Neutron Stars

In this chapter, we consider a gas of fermions in three particular
situations. In the first, we present a simple model of metals described
by a gas of N electrons in a box of volume V. The model is used
to describe the properties of metals since in a metal a part of the
electrons is not located near the nuclei but are free to move in the
volume of the metal sample. It is a surprisingly good approximation
for some metals. It is a surprise since in the theoretical derivation
of the properties of the gas; the electrons are seen as independent
particles when in the real metals the free electrons are subject to
their coulomb interaction. We shall not present explanation for the
success of the model but just mention it.

In the second part of the chapter, we consider the case of semicon-
ductors which are characterized by the absence of free electron when
the temperature is zero. However, when the temperature increases,
some electrons become free and form a gas of electron.

And the third case of a gas of fermions, we consider a star, a
neutron stare making a gas of neutrons.

117
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9.1 Free Electrons in a Box

9.1.1 The Fermi—Dirac function

We begin by the energy of the N fermions as a function of T, N
and V. We recall the formula of the energy we got in Chapter 3:

E = Siei{exp[Ble; — p)] £ 1371 (3.23)
In the present case, one takes the + sign and (3.23) becomes

E = Siei{exp[B(e; — p)] + 137" (9.1)

or in passing to the continuum

B [ BaEewlsE -l 1) e (02)

where g(F) is the density of states for a massive particle with kinetic
energy p?/2m. The function g(E) was already calculated in the pre-
ceding chapter and it is

g(E)dE = (87V/h®)y/2m®?EY2dE (9.3)

In (9.3) we introduced the factor 2 to take into account the spin
of the electrons and neutrons (1/2). Thus the energy is given by

E = (87V/h3)/2m>/? / h B3 {exp|B(E; — p)] +1}"YE  (9.4)
0

In (9.2) and (9.3) the limits of the integrals are from 0 to oco. One
sees from (9.3) that, in principle, to calculate F one needs to calculate
the chemical potential u. For historical reason, it is frequently called
the Fermi level. Sometimes the calling is restricted to the value of
@ at T = 0 but in the present book, it will be called always “Fermi
level” whatever the temperature.

The determination of u is made through the general expression
of N

N = SfexplBle; — )] £ 1} (3.22D)
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or in our case
N = (87V/h%)/2m32 / T B2 {explB(E — p)] + 1)"1E  (9.5)
0

In order to be able to calculate p from (9.4) and E from (9.3) a
study of the function

fep = {exp[B(E — p)] + 1} (9.6)

is useful. This function is called the Fermi-Dirac function. We recall
that this function gives the probability that a state with energy E is
occupied by an fermion.

First, we consider the FD function for 7" = 0 when the Fermi level
is g > 0. If the energy FE is smaller than pug,exp[B(E — uo)] goes to
0if T — 0(8 — o0) since E — pg < 0. In this case frp goes to 1.
Now if E is larger than pg,exp[B(E — po)] — oo it T'— 0(8 — o0)
since E — g > 0. In this case, the function frp is null. Consequently
the fpp function is a step function passing from the value 1 to the
value 0 when the variable E crosses the value EF = . The function
is shown in Fig. 9.1.

We have already seen in Chapter 3 that the occupied levels are
the N first levels. This means that at T' = 0, the Fermi level is equal
to the highest energy occupied by the last particle.

When the temperature increases (but it not too high), the frp
function takes the shape indicated in Fig. 9.2 with > 0 For £ < u

f

FD 10

0.8

0.6 T = O

0.4

0.2

00 . . . . .

Fig. 9.1. The Fermi-Dirac function for 7" = 0. The energies are in electron—volt
and the Fermi level is taken equal to 2eV.
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Fig. 9.2. The Fermi-Dirac function for 7" > 0. The energies are indicated in
eV. In this figure, kT is equal to 0.08 eV. Since kg is equal to 8.62 107° eV /°K,
the temperature is 929°K.
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Fig. 9.3. The Fermi-Dirac function when the Fermi level is negative. It is equal
to —0.5eV and the temperature is equal to 2309°K. The energies are indicated
in eV.

the function is equal to 1 but near pu, it decreases steeply to 0. For
E = p the function is equal to 1/2.

If now one increases strongly the temperature so that the Fermi
level becomes negative, the fpp can be approximate by an exponen-
tial: frp = exp[—B(E — p)] since exp[3(E — u)] > 1 (see Fig. 9.3).
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9.1.2 The chemical potential or the Fermsi level

The variation of the Fermi level p with the temperature can be cal-
culated with the help of (9.5)

N = (87V/h3)/2m>/? / h EY2{exp|B(E — p)] + 1} YdE  (9.5)
0

It is an implicit function of 7" and p and it is clear that it is not
possible to get an analytic expression giving u(7"). However at least
for one value of T it is possible to get an exact value, i.e. for T'= 0.

We saw in the preceding section that at T = 0, the Fermi-Dirac
function is a step function equal to 1 for £ < ug and equal to 0 for
E > 1. In such a case, the expression (9.5) reduces to

1
N = (87V/h3)\/2m>/? / EY2dE (9.7)
0

The integral is equal to (2/3)(uo)32. This gives for N

N = 87V/h?)/2m*?(2/3) i (9.8)
From which one gets

po = (N/V)*P(h? /2m) (3/8m)*/? (9-9)

One takes a typical value of quantity for the free electrons in
metals, N/V = 5 102 m~2 and one finds for ug a value of about
5eV.

When the temperature is different from 0, we shall consider two
different limits. For that, we transform the expression (9.5) using the
trick already used several times. We multiply and divide the right-
hand side of (9.4) by (kpT)3/?

N = (87V/h®)y/2m3?(kpT)/?
X / OO(E/kBT)Wd(E/kBT)
0

x {exp((E — p)/kpT)] + 1} (9.10)
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N/V = (4//7)|(2rmkpT)/h?>/?

X /OOO 22 [exp(—p/kpT) exp(z) + 1] tdz  (9.11)

when we write x = E/kgT. The two cases we consider are those with
(N/V) < (4/y/7)][(2nmkpT) /%32 (9.12)
and
(N/V) > (4/y/m)[(2mmkpT) /h2)? (9.13)

We begin with the first condition (9.12) which means that the
fermion density is small. When it is fulfilled, the integral of (9.11)
(that we call I) reduces to

I= / 2 lexp(—p/kpT) exp(z) + 1] tde < 1
0

This occurs when g is negative and exp(—pkpT’) > 1. In other
words, the situation is classical or non-degenerate. In such a case the
integral becomes

I= exp(,u/k:BT)/ 22 exp(—x)dz = exp(p/kpT)(\/7/2) (9.14)
0
Inserting the value of the integral in (9.11) gives
(N/V) = 2[(2rmkpT)/h?*? exp(u/kpT) (9.15)
and one gets
p= kT Ln(N/V) — kT Ln{2[(2rmkpT)/h*>/?} (9.16)

We have already found all these results. The inequality (9.12) is
the condition for the classical case and is equivalent to the condi-
tion (4.16). And the expression (9.16) for the chemical potential is
the equivalent of the expression (3.29) when one inserts the com-
plete expression (4.7) for Z;. The only difference stands in a factor
2 appearing in (9.16) since we took into account the spin.
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Now we consider the case given by the inequality (9.13) which cor-
responds to a large fermion density and relatively low temperatures.
It is the degenerate case. One needs to use the complete expres-
sions (9.4) or (9.5). As mentioned above, it is not possible to get
an analytic expression u(7') giving the variation of the Fermi level
with the temperature. But a numerical calculation is feasible and
we performed it in order to give an illustration of the variations of
w with T

We chose g = 2eV which corresponds to a electron density
of about 5102 m~3. We verify that the inequality (9.13) in calcu-
lating the quantity (4//7)[(2rmkgT)/h?*/? for = 500°K. We get
3.410%m™3, i.e. the inequality (9.13) is just satisfied. In such case
the complete curve (Fig. 9.4) shows that the Fermi level is practi-
cally constant up to this temperature. Important changes in p appear
only at very high temperatures. pu decreases until it becomes null for
T = 33540°K. Of course no element can stand this temperature and
we show the complete curve for the sake of the completeness. The
conclusion is that for large densities and “reasonable” temperatures
the Fermi level is constant,
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Fig. 9.4. Variation of the Fermi level with the temperature.
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We can now confess that it is possible to have (after hard calcu-
lation work) an expression for the Fermi level at low temperature.
It is

= po — (72/12)(kpT)? /o (9.17)

The reader can verify (for example, for 7' = 500°K) that the
relative change in the Fermi level (u — po)/po is really very small
such that the conclusion of the preceding paragraph is correct.

9.1.3 The energy
(A)T=0

The calculation of the energy F at T = 0 is not difficult due to
the simple form of the Fermi-Dirac function. We recall the general
expression for £ (9.4)

E = (87V/h®)/2m>/? / B3 {exp[B(E; — p)] + 1} YdE  (9.4)
0
The expression of E becomes

E(0) = (87V/h3)/2m3/? / " B34 (9.18)
0

The integral is equal to (2/5) ,ug/ ? and one has
E(0) = (87V/h*)y/2m?*/?(2/5)uy* (9.19)
We recall a preceding expression
N = (8xV/h3)\/2m>/%(2/3) 02 (9.8)

And we divide side by side the expression (9.19) and (9.8):
to get

E(0)/N = (3/5)uo = 0.0727(N/V)2/3(h? /2m) (9.20)

(B) T # 0 The first method

The determination of F for T' # 0 is much more difficult and before
we derive an expression valid at low temperatures, we need to recall
two properties relative to definite integrals, which are not well known
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Property 1. The permutation of the limits of the integral changes

its sign
b a
/a f(z)dz = —/b f(z)dx

Property 2. It is applicable if the function under the integral is
defined for positive and negative values of the variable

BECEINE

We begin with the expression (9.4) that we write in the following
form:

E= D/ E){exp[(E — p)/kpT] + 1} 'dE (9.21)

where D = (87V/h3)y/2m3/? and h(E) = Eg(E) = E%/>.

The Fermi level appears in (9.21) and in principle it is temperature
dependent. But in the temperature range we consider we take it
constant and equal to its value at T" = 0 as explained in the preceding
section.

We have to calculate the integral.

J = /000 h(E){exp[(E — p)/kpT] + 1} 1dE (9.22)

in the limit of low temperatures. As a first step one makes a change
in the variable © = (E — pu)/kpgT and one has E = u+ kpTz,dE =
kpTdz and the limits are now —u/(kgT') and oo.

The integral J becomes

J = kBT/ h(u + kpTx)[expx + 1] 1da (9.23)
—p/kT

In the second step, the integral is written as the sum of two
integrals

J=J1+ Jo

0
J1 = k‘BT/ h(p+ kpTx)exp(x) + 1]tz (9.24a)
—p/kT

Jy = kBT/ h(p+ kpTx)[exp(z) + 1] 'dx (9.24b)
0
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Using the property 2 above the integral J; becomes
w/kT
J = kBT/ h(p — kpTx)exp(—z) + 1] da (9.25)
0

Using the identity

lexp(—z) +1]71 =1 — [exp(z) +1]*
and putting it in (9.25), one sees that J; can be written as the sum
of two integrals J{ and Ji':

/KT
J| = k:BT/ h(p — kpTx)dx (9.26)
0

n/kT
J' = kT / W — kpTa)exp(x) + 1] 'de (9.27)
0

Now we make in J] the following change of the variable x: y =
u—kpTx,dr = —dy/(kpT) and the limits become y = p and y = 0.
Consequently

0
R / h(y)dy) (ksT) = /0“h<y>dy (0.28)
I

The second equality is due to the property 1 above.

The upper limit of the integral Ji' is p/(kpT) which is very large
when T is very small thus we take it infinite. We can give to the
integrals Jo and J{' the same limits [0, 00] and put them together in
one sum

J" = k;BT/ [h( + kpTz) — h(p — kpTz)|[exp x + 1] dz
0
(9.29)

It is an important result since J = J| + J” and it can be used if
the function h(y) has a simple form like a polynom. In such a case
it is possible to calculate the integral since the values integrals of
the type [;~ 2™ [exp(z)+ 1]~ are known (n is an integer). But in the
present case h(y) = y*/? and the integral (9.29) cannot be calculated.

We shall develop the function h(y) appearing in the integrand of
J" in series around the value . It is justified as long as (kpTz) =€
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is much smaller than g and when it is not the case (since x goes to
infinite), exp(z) becomes large enough to make the integrand small
and negligible.

One has

h(p — &) = h(p) — e(dh/dy)|, + *(d*h/dy*), /2 + - -
h(p) + e(dh/dy)|, + €*(d*h/dy®) . /2+

=
=
+
NUE
I

and

B+ €) — hip — ) = e(dh/dy),

Finally the integral J" is

o0

I = (kpT)2(dh/dy), /O slexpr+1-lde  (9.30)

The integral [ z[exp x4 1]~ dx is equal to /6.
The final result is

J=J1+Jo=J +J] +J
J=J +J"

Putting the value of J; (9.28) and that of J” (9.30) gives

7= [ Wiy + 7 60Tt ), (9.31)

We come back to the initial expression of the energy and introduce
the integral J in (9.21)

E = DJ = (87V/h?)/2m>/?
< | [ 1wan+ 2 stranjanl,| o
Recalling that h(y) = y*/? and (dh/dy)|, = 3/2 u'/?
E:@ﬂ%ﬂﬁmWAZWHyM%WW)

x /2m3272 )6(kpT)?(3/2)u*/? (9.33)
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or
E = E(0) + (87V/h®)\/2m>*x? /6(kpT)?(3/2) '/

The first term is the energy for T' = 0 (see expression (9.18)) when
the integrand y replaces F and the second term is the contribution
due to the temperature.

(C) The second method

This is a method inspired from the work of Sommerfeld and consists
in a different calculation of the integral J above. We recall that h(E)
is the energy E multiplied by G(E), the density of states

J = /000 h(E){exp[(E — p)/kpT] + 1} 1dE (9.22)

The first step is a change in the variable and the new variable x
is given by (E — p) = kgT'z. Thus

J = /_O; dxh(p + kpTz)/(exp(z) + 1)

T

-

The lower limit of the integral is now a = —u/kpT. Since we
intend to make this calculation at very low T, it is possible to take
a = —oo and one has

[ dah(p + kpTx)

J =
exp(z) + 1

The second step is to transform integral J by integration by parts.
One has

du=h=(p+ k‘BTm)% and u = 2/(5kpT) (1 + kpTx)®?
v=1/(exp(x)+1) and dv= (xkpT)(exp(z)/(exp(x)+ 1)2

The integral J becomes

7= [ (3) Gt haTa) 2 wexo(o))fexpia) + 1

— 00
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The next step is to develop (2/5)(u + kpTz)?/? around = which
is a small quantity. Following the schema

(@) = f(0) +2f'(0) + 2*/2"(0)
= (2/5)(u + kpTx)*?
= (2/5)u°? + (kpT)pPx + (3/2)(kpT)?u' 2 /2

The integral J is now divided in three integrals. The first is

(2
[ (3) e exnio) + 1o/
and it is equal to 2/5(u)%/2.

The second integral is

o kTexp(xz)
[ b =0

since the integrand is symmetric relatively to the x and finally the
third integral is

3\ 1 o exp(z)a? 1/2 2/_2
- p2(k T _dr= (3/2)pM*(kpT)? (7% /6
[ (5) wt o SR = (32 T )

The final result is identical to that of the first method as the
reader can verify. When comparing two methods, it is clear that the
first is more complicated. However its final formula is easier to be
used in several cases We recall the formula

N

7= [ Wiy + 7 6(0n Tt/ ), (9.31)

in which it is only necessary to know the function h(y) which can be
known for various situations (see exercises).

(D) Résumé of the first method
The goal is to calculate the integral of their expression

h(E){exp[(E + p) /kpT] + 1}~ dE

where h(FE) is the density of states multiplied by the energy.
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After a change in the variables, the integral is divided into two
integrals

0
J1 = k:BT/ h(pu+ kpTx)[exp(z) + 1] 1dx  (9.24a)
—u/kT

Jy = kT /0 T h(u+ kpTa)exp(e) + 1" e (9.24b)
After some manipulations, it is possible to write .J as
J = /000 hy)dy+kgT /Ooo[h(u—i—ka) —h(p—kTz)]dz/(exp(x)+1)
The first integral gives E(0) and the second the energy for 7' > 0.
E(T) = J" = (kgT)*(dh/dy),, /OOO alexp(z) + 17!

(E) The formulas of the energy at T =0 and at T # 0

Energy at all temperatures
E=(PV)/K and K =3/2

Energy at T'=10
E(0) =3/5N,0

E(0) = (87V/h*)V2m®?(2/5)u;”
Energy at T'# 0
E = E(0) + (87V/h®)y/2m3/ %72 /6(kpT)?(3/2) /?

The quantity (87V/h3)y/2m>/? appears in the relation between
N and pg

N = (87V/h3)y/2m>/?(2/3) (9.8)

And one deduces that (87V/h3)y/2m3/? = (3N/2p3?). Introduc-
ing it in (9.31) gives the final expression! for E at low temperatures:

E = E(0) + (7 /4)N (kpT)*uo (9.34a)

'In several textbooks the expression for the energy is derived with the help of
the method due to Sommerfeld. The first method used here is due to Landau and
Lifshitz.
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with E(0) = (3/5)Npo. Introducing the value of 19 in (9.34a) gives
E = E(0) + 10.17N(V/N)?3(kgT)?(2m/h?) (9.34D)

The specific heat
From the expression of the energy (9.34a) one can calculate the
specific heat at constant volume Cy = (0E/IT)y

Cy = (7 /2)N (kg)*T/ 1o (9.35)

The specific heat is linear with the temperature.

In several metals this relation is verified but at very low temper-
ature. The total specific heat of a metal is compound of the contri-
bution of the atoms and that of the free electrons. However the first
contribution is much larger than the second except at low tempera-
ture when the atomic contribution is also very low because it varies
with the temperature as 7.

It is possible to write the specific heat in different forms. One
can introduce the Fermi temperature Tr defined by kpTr = ug or
Tp = pp/kp. Putting in (9.33) gives

Cv = (7*/2)kpN(T/Tr) (9.36)

Finally we give another expression for Cy. We recall the expres-
sion of the number of electrons

N = (87V/h3)\/2m>/? /0 h EY2{explB(E — p)] + 1} YdE  (9.5)

which can be written as N = [ n(E)dE. The function n(E) can be
interpreted as giving the number of electrons in the vicinity of the
energy F. For EY' = pg one has

(o) = (87V/h3)\/2m*2 (9.37)
This gives
u> = n(uo) [(8V/h®)y/2m*?) (9.38)

Above we found that (87V/h?)y/2m>/? = (3N/2u3?)- and putting
it in (9.38) gives n(uo) = (3N/2uo) or po = (3N/2[n(up)]. Inserting
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this expression of g in (9.34a)
E = E(0) + %/6(kpT)*n(uo) (9.39)
One gets for Cy
Cy = 7 /3n(uo) k5T (9.40)

The interest of this last formula stands in the possibility to extract
n(up), the number of electrons with energy equal to the Fermi level,
from a measure of the electronic specific heat.

9.2 Applications to Metals

We shall give a simplified picture of the energies of electrons in solids
and in particular in metals. The energy levels of electrons in an iso-
lated atom are a series of discrete values but when the atoms form
a solid, the possible energies for electrons are grouped in bands. The
origin of the bands is the fact that the atoms are not isolated but
interact in order to form a solid. It results that the density of states
for electrons in solids is compound of several distinct regions called
“bands”. In Figs. 9.5 and 9.6 we give the two possible situations for
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Fig. 9.5. Schematic picture of the electronic bands in an insulator.
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Fig. 9.6. Schematic picture of the electronic bands in a metal.

solids at temperature zero. In the first (Fig. 9.5) the first bands are
completely occupied by the electrons and the last band is empty.
In Fig. 9.5, we show an example of three occupied bands and one
empty band. It is possible to show that a filled band cannot sustain
an electric current and thus the material is an insulator.

In the other situation, the last band is not completely filled. We
show in Fig. 9.6 such an example of two bands completely filled when
the third is only partially filled. This band is called the conduction
band since the electrons in this band can sustain an electric current.
This material is a metal. The electrons of the conduction band are
free electrons which are not bonded to specific atoms contrarily to
the case of insulators.

In a first approximation, the picture of free electrons we gave
above can be applied to the electrons in the conduction band of met-
als but with two changes. In the above calculations it was supposed
that the smallest energy is zero when in a metal, the smallest energy
is that of the bottom E¢ of the conduction band. Thus each time that
the energy E appears in the above expressions, we have to replace
it by £ — E.. However this does not modify the expressions of the
specific heat. The second change concerns the mass of the electron.
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One of the influences of the atoms on the free electrons is to change
their mass which is now an effective mass. But this effect is not strong
such that in our approximation it is possible to use the electron mass.

9.3 Electrons in Semiconductors

Semiconductors are a particular class of insulators. Like all insu-
lators, the electrons are bonded to the nucleus such that at zero
temperature there are no free electrons. But it is possible to liberate
electrons from the atoms and consequently the insulator can sustain
an electric current. In the band picture this means that electrons with
energy of the last filled band, called the valence band, have gained
enough energy to pass from the valence band to the conduction band.
In semiconductors this process takes place by heating the material
(and also under influence of the light).

Once the electrons are liberated and have their energy in the
conduction band, what we said above about the free electrons in
metals is applicable concerning their energy minimum (F,) and their
effective mass. But there is an important difference: the Fermi level
is below the minimum energy FE¢ of the electrons when for met-
als it is in the conduction band. Consequently the electrons do not
obey the Fermi-Dirac statistics but the Maxwell-Boltzmann statis-
tics. This can be understood in considering Fig. 9.5. Since at T'=0
the conduction band is empty and the valence band filled, from
the property of the Fermi—Dirac function, one sees that the Fermi
level must be between FE¢, the bottom of the conduction band
and Fy the top of the valence band: Fy < u < E.. We want to
answer the following question: what is the number of electrons in
the conduction band when the material is heated? It is important
in order to understand the electric conduction in the semiconduc-
tors which depends strongly on the temperature. It is not the case
of the electrons in metals since their number does not depend on the
temperature.2

It does not mean that their electric conduction is completely independent of
the temperature since the electric conduction is a function of the number of free
electrons but also of their ability to move under influence of the electric field.
This last property is slightly dependent on 7.
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To calculate the number of electrons in the conduction band, one
needs to know the density of states. For that we use the “parabolic
approximation”. We assume that the conduction band can be approx-
imate, in the vicinity of F¢, by the following expression:

9e(E) = Do(E — Ec)'/? (9.41)

in analogy with the case of free electrons in a box (see (9.3)). We
complete the analogy in writing Do = (87V/ hg)\/2m2/ ®m where
me is the effective mass of an electrons (see Fig. 9.7). The effective
electron mass is defined through D¢ and it is often smaller than the
electron mass.

The number of electrons in the conduction band is now

N, = (87V/H®)y/2m3? / (B~ Bo){explB(E - )] + 1} dE

Ec

The limits of the integral are chosen from E¢ to oco. The lower
limit is self evident but the upper one is not correct since the
parabolic approximation is valid only for values of E near E¢. How-
ever the Fermi-Dirac function is a rapidly decreasing function such
that for large values of E the integrand is very small and does not
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Fig. 9.7. Parabolic approximation of the bands of a semiconductor.
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contribute significantly to the integral. Since the Fermi level u is
smaller than E¢ the Fermi-Dirac function reduces to an exponential
function and one has
[e.e]
N. = (sV/)yemd? [ (- Eo)? expl-5(E ~ wldE (942)
Ec

Now we deal with the electrons in the valence band. In this band
there is a lack of electrons equal to the number of electrons in the
conduction band. Instead to consider the electrons themselves in the
valence band, we consider the number of states which are not occu-
pied by the electrons. If the probability for a state to be occupied
by an electron is given by the Fermi-Dirac function, the probability
that a state is not occupied is 1 — fpp. The number of unoccupied
states is equal to the density of states in the valence band multiplied
by (1 — frp).

The unoccupied states of the valence band can receive an intu-
itive picture. When an electron is bonded to an atom, it moves in
a restricted region of the space near the atom. If now this electron
is liberated and moves freely, this unoccupied place may receive one
electron from the neighboring atoms. In leaving the atom this new
electron creates a new place which can be filled by another electron.
Thus the appearance of a free electron brings about the motion of
electrons from unoccupied place to another. These wandering places
correspond to the unoccupied states of the valence bands. There are
called “holes”.

We use again the “parabolic approximation” for the valence band
as shown in Fig. 9.7 and write

95(E) = Dy(BEy — E)Y/? (9.43)

and D, = (87V/ h3)\/2mi/ ? where one defines my, as the effective
mass of a hole.
The number of the holes is given by

Ny = (87V/h)y/2m’ / Y By - BV fep)dE (9.44)

—0o0

where

1— fep =1 — {exp[B(E — p)] + 1} 7" = {exp[-B(n — E)] + 1}
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Since E < p one has exp[—((F — u)] > 1 and 1 — fpp becomes
exp[B(n — E)]. Inserting in (9.

44) gives
Ny = (8aV/h%)y/2m/? / EV(EV—E)l/z exp[—B(u—E)|dE (9.45)

Now we are able to calculate the Fermi level as function of the
temperature and the number of electrons in the conduction band
which is equal to the number of holes in the valence band. For that
we shall make some transformations to the expressions (9.42) and

(9.45).
First we write in (9.42), E—pu=FE — Ec — (u — Ec¢)
B(E - Ec) = (E — Ec)/(ksT) = ydE = (ksT)dy
The expression (9.42) is now
N, = (87V/h3)y/2(kpT)¥?m"? explB( — Ec)]
< [ ooy (9.46)
0
In (9.45) we write
p—E=p—Ey+(Ey - E)
B(Ev — E) = (By — E)/(kT) = ydE = —(kpT)/dy
and
Ny = 87V/h3)2(kpT)*/*m>? exp|—B(u — Ev)]

X /0 y'/? exp(—y)dy (9.47)

In writing (9.47) we used the property 1 above concerning defi-
nite integrals. Now we have two equations to find the two unknown
quantities: No = Ny and p. The value of the integral appearing in
(9.46) and (9.47) is /7 /2. First, we multiply (9.46) and (9.47) side
by side and one finds

NoNy = [(3273V2) /hS)(kpT)? (memp,)?/? exp|—B(Ec — Ev)]
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and finally
No = Ny = (NoeNy)Y? = 2V |[(2nkpT)/h23/% (memy, )3/
x exp[—B(Ec — Ev)/2] (9.48)

One sees that the number of electrons in the conduction band
and of the holes in the valence band is strongly dependent on the
temperature. In particular it is a function of the difference Ex — Ey
which is called the band gap.

To get the Fermi level, one writes that the right-hand sides of
(9.46) and (9.47) are equal. One obtains

p=(Ec+ Ev)/2+ (3/4)kpT Ln(my/me) (9.49)

For T" = 0 the Fermi level is exactly at mid distance from the
bottom of the conduction band and the top of the valence band.
Since frequently mj > me, the Fermi level is an increasing function
of T.

All what we describe about the properties of the semiconductor
concerns the case where there are not impurities. These impurities
may liberate some of their electrons in increasing the temperature.
They introduce electrons and holes. When their numbers are higher
than the electrons and holes from the material itself, one speaks
about the extrinsic regime.

A final word about the holes as missing places of electrons. In the
absence of electric field, the jumping electrons and the missing places
are moving at random. But under influence of an electric field, the
electrons move preferentially in the opposite direction of the field.
Consequently the missing places move in the direction of the field.
The missing places behave as if there were particles with a positive
electric charge and the effective mass of the holes.

9.4 Neutron Stars

We shall terminate the chapter by another example of a fermion gas.
They are stars which are made of neutrons. These stars are created
by evolution of larger stars and may disappear after some time as
black holes. They have specific properties, in particular their huge
density. The distance between two neutrons is of the same order
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of magnitude than that of nucleons in the atoms. The statistical
mechanics will help us to get an evaluation of the typical size of a
neutron star.

The neutron stars have their stability from two elements. The
first is the kinetic energy Ex of the fermion gas and the second
is the gravitational energy. Thus the two kinds of energy will have
opposite contributions to the total energy We shall first calculate
this two energies and afterward determine what is the volume which
gives the minimum of the total energy.

9.4.1 The kinetic energy of the neutrons

The determination of the energy of the neutrons stands on several
assumptions. The first is that the neutron stars are degenerated
fermions gas. One supposes also that the gas is nonrelativist. And
finally the calculation is made at temperature zero.

The energy at T' = 0 is given by

E(0) =3/5Npuo andonehas ug = (N/V)?/3(h?/2m)(3/87)*/*
This gives
E = 0.073(N°/3 /V%/3)(h?/2m) (9.50)

One recall that is m the mass of a neutron

9.4.2 The gravitational energy of a sphere

One begins by the potential of a system of two masses, M and m:
U = —GMm/R. Now consider a mass in form of a sphere with radius
R. The density p is uniform such that the mass of sphere is

M = pV

One delimits inside the mass M a sphere with radius r smaller
than R and a layer of thickness dr around the sphere r. dr must be
understood as the differential of r. The mass of this layer is

m = 4nr? pdr

Applying the formula above to the mass M which is the mass of
the sphere with radius R and the mass m that of the layer. One has
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the differential of the energy U as

dU = —(4/3)7Gr3 p(4mr? pdr) /7
and the energy itself as

47 pr2dr

R
U= / (4/3)7Gpr®) L (16/3)72 R[5
0
where
R 5
/ ridr = R—
0 5
U = —G[(4/3)(x*p* R*)]*(3/5)(1/R)
And finally
3\ GM?
=2 51
oo (1) o
The total energy is
M2
EZEK+U=3/5 N/io—(%) GR (9.52)

9.4.3 The volume and the radius of a mneutron
star

One has to minimize the energy relatively to the volume or the radius.
It is also necessary to work with either the mass or the number N of
particles. One choses the radius and the mass. M = Nm. The energy

is written as
3 GM?
EF=1= Ny — 9.53
(5)( o~ 2 ) (9.53)

And the derivative relatively to R is

o = —39) [N(auo/ax/) (%) + GMQRz] ~0

Opo/OV = —(2/3)V 3 (N)P/3(h? /2m) (3/8m)*/*
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Writing N = M /m, one gets the equation for which the energy is
minimum

R = (3/8m)%/3(3/4m)/3[h? /(GMPm®/3)] (9.54)

Now one makes a numeral calculation of radius. The constant
G is equal to 6.7 107'* (in MKS) and the mass of a neutron is
1.7 102" kg. The mass of a neutron star is of order of magnitude of
the mass of the sun M = 3 10" kg. (the mass of some neutron stars
has been determined, here we take 1.5 time the mass sun) This gives
for R ~ 10km which is very small size comparatively to other stars
like the sun that has a radius of 7 10° km.
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Chapter 10

A History of Statistical Mechanics

10.1 Thermodynamics and Statistical Mechanics
Before Maxwell and Boltzmann

It is impossible to write a history of statistical mechanics without ref-
erence to thermodynamics. These fields are two aspects of the more
general field of thermal physics which includes the macroscopic and
macroscopic sides. However, I shall try to emphasize the important
steps which permitted an understanding of the development of sta-
tistical mechanics. It is also difficult in a limited space of one chapter
(a complete book is necessary) to quote all the scientists who con-
tributed to the advances in the field.

The first precursor of statistical mechanics is probably the math-
ematician Daniel Bernoulli who wrote a treatise of hydrodynamics
in 1738. He gave a picture of a gas made of balls bouncing on the
walls of the container. He calculated the pressure on the walls by the
motion of the ball and he derived the Boyle law of the constancy of
the product (pressure)(volume) at constant temperature. He showed
also that this product is proportional to the kinetic energy of the
balls. One has to note that it is supposed that all the balls have the
same velocity. This assumption is adopted by numerous scientists
and the work of Maxwell described below departs from this view.
The work of Bernoulli was forgotten until 1859.

Thermodynamics begins really at middle of the eightieth century
when the properties of gas began to be known (Boyle law, Gay Lussac
law) (at this time the concept of ideal gas was not known and it was
thought that all the gas have the same properties). The use of the

143
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heat to produce work began to be realized in steam engines. The
concepts of specific heats and of latent heat are developed. Like in all
fields of science experimental works and theoretical works appeared
side by side. At the beginning of the ninetieth century there is a new
area with the formulation of the important concept of energy (Young
in 1806), the study the heat propagation (Fourier in 1807), thermal
properties of solids (Dulong and Petit in 1819) and of gas (Delaroch
et Bérard in 1812) and the problem of understanding the mechanism
of the heat engine in order to maximize the work obtained from heat.
The work of Sadi Carnot in 1824 concerning the transformation of
heat in work is fundamental since he gave the basic principles of a
cycling engine. He showed that a fraction of the heat that the engine
receives from the heat reservoir is expelled outside without being
transformed in work.

In the middle of the nineteenth century the basis of thermody-
namics was established with the two laws of thermodynamics. In par-
ticular the second law received several formulations. One of the most
important formulations is based on the concept of entropy intro-
duced by Clausius' in 1865. Formally it is proposed that exists a
state function of a system defined by the integral taken between two
equilibrium states S = [dQ/T (dQ is a reversible small amount
of heat) It was a mysterious concept related to irreversibility. It was
first related to the lack of symmetry concerning the transformation of
work in heat and the contrary. It is possible to transform some work
completely in heat the converse in not true as shown by Carnot. But
the most impressive aspect is the principle that in an isolated system
any irreversible process (or any process taking place spontaneously)
results in an increase of the entropy.

In parallel of the development of thermodynamics several theo-
retical works were done on the theory of gas by Herapath in 1812,
Laplace in 1824 on the interaction between particles, Waterston
in 1845, Joule in 1851, Clausius in 1857. But they were not in
the mean stream of interest for majority of scientists. One impor-
tant result of these works is that the mean kinetic energy of one

Tt is usual to mention the entropy by the letter S. It was the letter used for the
first time by Clausius and it was speculated that maybe it was done in honor of
Sadi Carnot.
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molecule of a gas is proportional to the temperature or more exactly
1/2(mvp,?) = (3/2)(R/N4)(273 + T)(N4 is Avogadro number, R is
the gas constant and T is given in centigrade degrees).

10.2 The Kinetic Theory of Maxwell

The name of Maxwell is well known by the fundamental equations
of electromagnetism but he worked also in the kinetic theory of gas.
In 1860 he published the determination of the velocity distribution
of an ideal gas.

The goal of this work is to find what proportion of N molecules
in a gas has a velocity with values between v and v + dv. One
begins by the unknown function f(v,) which gives the number of
molecules with velocity in the x direction between v, and v, + dv,.
This number is N f(v,)dv,. In other direction y and z, one has sim-
ilar expressions for the number of molecules with velocity between
vy and vy + dvy - N f(vy)dv, and in the z direction N f(v.)dv, since
the gas is isotropic. Now for the number of molecules with veloci-
ties between v, and v, + dv,, v, and v, + dv, - v, and v, + dv, one
has N f(vy) f(vy) f(v:)dvy dugdv, since the velocities in the different
directions are independent. But since there is no correlation between
the velocities, this number of molecules must depend only the total
velocity (v2 + v2 4+ v%)!/2 or

f(vx)f(vy)f(vz) - F(U:% + U; + Ug)

where F' is also an unknown function. It is possible to show that
such equality is possible for an exponential function such that f(v) =
Aexp(£Bv?). Maxwell chose the sign — since when v increases, the
number of molecules must decrease. The final result is that the num-
ber of molecules with velocity between v and v + dv is

N A3 exp(—Bv?)4nv?dv

where 4mv?dv is element of volume in the velocity space between the
spheres with radius v and v+ dv. It remains to find the two constants
A and B. It is done using the following data

[e.9]
N/ A3 exp(—Bv?)dmvidv = N
0
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since the total sum is equal to the number of molecules. And the mean
value of v? which is known to be equal to (3RT/Nm) is given by

/ v? A3 exp(—Bv?)4mv?dv = (3RT/Nm)
0

The final result? is
f(v) = 4x(m/27kgT)*?v? exp(—E/kpT)

The importance of this work stands from the picture of a gas
which is proposed: each molecules has only a certain probability to
have a particular velocity since the expression A3 exp(—Bv?)4rv?dv
is seen as a probability. It is the first introduction of probability
in thermal physics. One cannot know the velocity of an individual
molecules but only the probability that it has a given velocity. This
step is conceptually very important since it opens the way to the
development of statistical mechanics.

10.3 Boltzmann and Irreversibility

In the second half of the ninetieth century, explaining the existence
of irreversibility by means of the laws of mechanics seemed to be
impossible. The reason for that is that the equations of the mechan-
ics are reversible with a change of the time from ¢ to —t. We can take
a very simple example of throwing a stone in the air with a veloc-
ity making some angle with the vertical direction. After a parabolic
trajectory, the stone reaches the ground. But imagine that if it were
possible to inverse the time after the throwing, we shall get the same
trajectory than the first case but only with a change in the direction
of the positions and of the velocities. The process of throwing is thus
reversible. Applying this argument to the motions of molecules in a
gas shows that the gas will never show irreversibility.

The proposal of Boltzmann to understand irreversibility can be
formulated as follows. The state of a system is given by the positions
and the velocities of all the components, say N molecules, i.e. by the

*We write f(v) in the modern way. The Boltzmann constant was not known at
the time of Maxwell.
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knowledge of 6N quantities (3 for the position of one molecule and 3
for its linear moment if one sees these molecules as points). One can
define a space phase with 6/N dimensions and a “point” in this space
represents a microscopic state of the system. This point will move
constantly in this space. For the sake of the simplicity, this phase
space is divided in cells in which the representative point is located.?

The basic idea of Boltzmann is that the different states of the
systems are different probabilities to take place. The equilibrium
macroscopic state has the largest probability. More precisely, the
equilibrium macroscopic state corresponds to the largest number of
cell points representing the system.

Since a macroscopic state has a certain probability, this does not
exclude the possibility for other states different from the equilibrium
state to exist. But their probability is very low such that it is not
possible to observe them. A simple example of irreversibility is a
drop of black ink falling in a water container. Just after the fall, one
can distinguish colored and transparent regions of water. But after
a while, the water takes a uniform grey color and one does not see
states with separation of ink and water. Such states are not forbidden
by the laws of mechanics but they have a very low probability to
appear and the state of complete mixture has the largest probability.
It is the equilibrium state. One sees the qualitative analogy with
entropy. In the example of the ink and water, the entropy of the
system (ink + water) increases until its largest value is reached at the
equilibrium state. A direct relation must exist between the entropy
and the probability of the equilibrium state.

It is the fundamental proposal of Boltzmann (in 1877) to relate
first the probability of occurrence of a state to the number of cells
in the phase space and secondly this probability to the entropy. The
probability is merely proportional to the number W of points cor-
responding to a macroscopic state or the number of “complexions”
realizing this state. The entropy is proportional to the logarithm of
W or S = kg LnW. The constant kg is the famous Boltzmann con-
stant. In equilibrium W and consequently S must be maximum.

31 shall not discuss the problem of the size of a cell and if it contains one or
more representative points.
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This proposal was not accepted immediately by numerous sci-
entists and the debate about the Boltzmann formula was intense.
Echoes of the discussions appeared long time after publication of the
paper of Boltzmann.

The importance of this proposal must be emphasized since it is
the first time that an interpretation of this mysterious quantity called
entropy is given, which can only increase in an isolated system. This
gives the possibility to relate microscopic and macroscopic quantities.
Statistical mechanics was born.

Very often (in particular in the popular literature) the entropy
is related to disorder. Microscopic systems are seen as disordered
since the molecules have various and varying states (position and
velocity). Frequently one says that W and S are measures of disor-
der. But doing that, one forgets the link with irreversibility and the
macroscopic aspect of entropy.

10.4 Gibbs, the Father of Statistical Mechanics

The contribution of Gibbs to statistical mechanics can be found
in a short treatise published in 1902, one year before his death:
Elementary Principles in Statistical Mechanics. This book had a deci-
sive influence of the development of statistical mechanics, term that
Gibbs himself coined. The subtitle indicates the program of the book:
the rational foundation of thermodynamics.

The goal of Gibbs is to develop rigorously what he calls a “broader
view” of mechanics. He adopts the point of view of Maxwell in leaving
out the possibility to follow in time the evolution of a mechanic
system. He imagines an ensemble of identical systems varying by the
configurations? and the velocities and he looks for the law giving
the number of systems “which fall within any infinitesimal limits of
configuration and velocity”. It is clear that Gibbs knew the work
of Boltzmann since he mentioned him on his preface. He used also
largely the concept of space phase to describe states of a system.

Gibbs introduces the three ensembles: the canonical, the micro-
canonical and also the grand ensemble for system compound of

4By configuration Gibbs means the positions of the particles of the system.
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several kinds of molecules. But contrarily to the method adopted
in this book, he defines the canonical ensemble by a linear relation
between the logarithm of the probability to find a given state and the
energy: log P = (¢ —¢)/6(e is the energy, v and 6 being constant) or
P = exp[(v) — €)/0]. This choice is justified only by its importance.
Gibbs deduces all the properties of the canonical ensemble from his
basic definition. He concludes that 0 is related to the temperature
and P to the entropy.

This small book gives us all the methods which are now standard
in the study of thermal physics.

10.5 Planck and Einstein: Quantum Theory
and Statistics

We put in parallel the work of Planck concerning the black body
radiation and that of Einstein on the specific heat of solids. Both
gave the correct interpretation of phenomena that the classical sta-
tistical mechanics was not able to explain. Both introduced the basic
principle of quantum physics: the energy quanta.

At the end of the ninetieth century the radiation spectrum of a
gas of photon was measured in large range of wave lengths and it was
shown that this spectrum as a function of the frequency (or the wave
length) exhibits a maximum. The classical interpretation begins with
the equipartition theorem for one oscillator with energy kgT'. To get
the radiation spectrum one multiples the energy of one oscillator
by the frequency density of states of standing waves (V/7%¢3)w?dw
(w is 27 the frequency v multiplied by 27) and one has for the radi-
ation spectrum the expression [(w?kgT)/(7?c®)]dw which is correct
only at low frequency. Thus the classical theory cannot explain the
maximum in the spectrum.

The work of Planck was twofold. Examining the experimental
results he found empirically the correct formula:

K(v,T) = [(87hv*)/c*)[exp(hv/kpT) — 1]
The second step was to find the theoretical derivation of this

formula that he did in 1900. He took the method of Boltzmann to
calculate the entropy and from that the relation between energy and
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entropy he determined the temperature. The innovation in calculat-
ing W (the number of complexions) was to suppose that the energy
of one oscillator was discontinuous by step of hv (h was a constant
which was named the Planck constant and v is the oscillator fre-
quency). This gives the possibility to get the formula already found
only by inspection of the experiments. It is not clear if Planck was
really conscious that his assumption will open the way toward a new
of physics. It is likely that he was happy because “it works”. One
must also stress that from his work Planck was able to give the first
determinations of his constant h and of the Boltzmann constant kg.

I mentioned above that at the beginning of the ninetieth century
Dulong and Petit made numerous measurements of specific heats
solids until they formulated their law: the specific heat of solids is
independent of T' and equal to 6cal/mole (approximately equal to
3R). This law was thought so general that it was used to determine
the atomic weight of some solids. However, there were exceptions. In
particular measurements of carbon made in 1833 by Avogadro and in
1840 by de la Rive and Maret showed that, at ambient temperature,
the specific heat of carbon is much lower than 6cal/mole. In 1872
Weber succeeded in measuring the specific heat of diamond at low
temperature (down to 20°K) and he observed a regular decrease of
the specific heat when the temperature is lowered.

The theoretical interpretation of the Dulong and Petit law was
given by Boltzmann in 1876 using the equipartition theorem for
N three dimensional harmonic oscillators and he got the value of
3R/mole.

In 1906 the puzzle of the specific heat at low temperature received
its first solution by Einstein. He calculated the mean energy F,, of
one harmonic oscillators by means of the formula of the canonical
ensemble

E, = /000 Eexp(—FE/kpT)dE/ /OOO exp(—FE/kpT)dE

and this gives F,, = kg1, the classical result. The idea to Einstein
was to adopt the assumption of Planck concerning the energy of an
oscillator. He supposed that the energy can take only discrete values
by steps of hv. Putting E' = hv/kpT, he gets the mean energy

E,, = hvlexp(hv/kpT) — 1)1
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For a solid Einstein supposes that all the atoms have the same
frequency and this gives for the specific heat

C = 3Nkp(hw/kgT)? exp(hv/kpT)[exp(hv/kpT) — 1] 72

Einstein compared his formula with data of diamond and found
good agreement except at very low temperature. The assumption of
independent motion of atoms is not correct and Debye gave later (in
1912) a method to calculate the specific heat taking into account the
collective motions of the atoms. The works of Planck and Einstein
were the first introduction of quantum ideas in statistical mechanics
and their success gave strong evidence that a new physics is needed.

10.6 The Method of Bose and the Bose—Einstein
Condensation

In 1924 Bose published a short paper in which he proposed a new
derivation of the Planck formula. He wrote it first in English but the
paper was refused by an English journal The Philosophical Magazine.
He wrote to Einstein asking his opinion and Einstein translated him
in German. Finally the paper appeared in Zietschrift fir Physik.
The novelty of the paper of Bose was to see the radiation gas as a
gas of photons and to apply the relation p = (hv)/c. The density of
states was the momentum density of states. He calculated the entropy
by the number of complexions but supposing that the particles are
undistinguishable.

The method of Bose was adopted by Einstein in considering
molecules and not photons. He calculated W the number of com-
plexions leaving out the possibility to distinguish between particles.
He looked for a maximum of Ln W but with constraints, as Bose
did: the number of particles is constant and the energy is also con-
stant. The well known method of the multipliers of Lagrange per-
mits to determine a maximum (or a minimum) of a function with
constraints.

By this way, Einstein was able to get the well known formula
giving the mean number of particles with energy E

Ng = [A Y exp(—E/kpT) — 1]~
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One recognizes in this formula the habitual expression if one take
the multiplier A equal to exp(u/kpT)(p is the chemical potential).
In a paper in 1924 (shortly after the publication of the Bose paper)
Einstein considered only the case A < 1 (or p < 0), i.e., a boson
gas at not too high temperature. But later in 1925 he investigated
the case A =1 (or 4 = 0) and concluded that a growing number of
molecules goes to the smallest energy level. Einstein established the
condensation of a boson gas. The name of Bose is associated to that
of Einstein since Einstein used the method first proposed by Bose.
Today it is a standard method which is exposed in several textbooks
but in this book I choose another more direct way.

10.7 The Principle of Pauli and the Statistics
of Fermi and Dirac

The principle of Pauli is a strictly quantum effect. Pauli in 1925,
looking for the interpretation of the electronic structure of atoms,
proposed that two electrons cannot be found in the same quantum
state. At the same time he saw the need for a new quantum number
which is the spin.

The relation with statistics was seen independently by Fermi and
by Dirac in 1926. In fact the first was Fermi who published a short
paper in which he gave the expression of the Fermi-Dirac function.
He followed a method parallel to that of Einstein for bosons maximiz-
ing the function Ln W with the two constraints of the fixed number
of electrons and a fixed value of the energy. The determination of W
was made in accordance with the Pauli principle.

Dirac found also the Fermi—Dirac function but he gave a more
general view of the statistics in showing that there are two kinds of
particles, bosons and fermions. Considering the wave function of an
ensemble of particles, he showed that there are two possibilities when
one makes permutation between the quantum states of two particles.
Either there is no change of the wave function or there is a change
in the sign. In the last case, it is possible to show that two particles
cannot be in the same quantum state.

Interesting enough, this novelty in statistical mechanics was
immediately appreciated and applied. For example at end of 1926,
Ehrenfest and Uhlenbeck published an article on the two statistics
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giving their names of Bose-Einstein and Pauli-Fermi—Dirac. In 1927
Sommerfeld established the theory of electrons in metal using the
Fermi—Dirac statistics.

Finally the relation with the spin (bosons with integer spin and
fermions with half integer spin) was made independently by Fierz in
1939 and by Pauli in 1940.

Thus in 1940 all the tools to study statistically independent par-
ticles were present.

10.8 Modern Developments

To finish this brief history, I want to tell some words on recent
advances. Thermodynamics is not a closed field and there are always
new developments but at relatively slow rate. I want only to quote the
names of Onsager and Prigogine who studied the thermodynamics
of irreversible processes.

In statistical mechanics, emphasize was put on methods for study-
ing interacting particles. The main field of application is condensed
matter although there are also applications in other fields like astro-
physics. The examples of applications are very numerous (semicon-
ductors, superconductivity, magnetism, theory of liquids, transport
phenomena, percolation etc). One very active research was phase
transitions and critical points with the theory on renormalization
(Wilson, 1972).

The final word will be for mentioning the application of statistical
mechanics outside physics. There are many tentative to apply its
methods to economy (with a new field, Econophysics), to geography,
to social sciences (sociology, psychology) and probably others.
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Chapter 11

Exercises

Chapter 1: The Microcanonical Ensemble

Exercise 1.1

A system is made of three identical harmonic oscillators in a closed
box. The energy of one oscillator is given by:

1
FE; = hw <n2+§> wheni =1,2,3

The n;’s are integers equal to 0,1,2,3,...
The system is prepared such that the total energy is:

3
E:ZEi:hw<n+§> whenn = ny + ng + ng

(a) Suppose that n = 3, find the entropy of the system.

(b) Suppose that n = 5, find the entropy of the system.

(¢) Now n is chosen to be a not specified integer, calculate the
entropy of the system as a function of n, the temperature T
and the energy F(T) when n > 1.

Exercise 1.2

A closed system is made of two subsystems A and B in thermal
contact one with another. In each subsystem there are N particles
with different possible energies. The particles in the subsystem A can

155
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have two possible energies: 0 and € and in the subsystem B they can
have two possible energies: € and 2¢. The total energy F which is the
sum of the energies F4 and Ep is known. Use the microcanonical
ensemble.

(a) Calculate the energies E4 and Ep of each subsystem. Express
your answers with the help of £, N and e.
(b) Calculate the temperature of the system.

Exercise 1.3

One considers N identical harmonic oscillator, and the total energy
is given by

3N
E:ZEi:hw<n+7> (i=1,2,3,...,N)

The numbers N and n are very large numbers such you can use the
Stirling formula:

InN!'=NLnN - N

Calculate the entropy as function of n and N, the temperature T
and the energy F as a function of 7.

Hint: You have to calculate the number of possibilities to put n
units, say “particles”, in N “boxes” or oscillators. Suppose that we
put the n particles on a line and also put N — 1 walls between the
particles giving a picture in N boxes. You have to find now all the
complexion of this n + N — 1 objects (n particles +N — 1 walls)
taking into account that the particles are indistinguishable and the
walls also.

Exercise 1.4

The entropy of magnetic material is given by

1 (H\?
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where T is the temperature, H is the magnetic field and A is a
constant.

(a) What is the energy as a function of H and T°?

(b) What is the magnetization as a function of 7" and H?

(c) Show that the above results correspond to a material with one
magnetic dipole b for each of the N atoms, at high temperatures.
The magnetic dipoles can have two directions +x and —x and
the field is directed along +x. Use the microcanonical ensemble
and determine the constant A.

Hint: We suggest the following procedure. First, calculate the energy,
and from the limit of the energy at high temperatures, determine the
entropy.

Chapter 2: The Canonical and Grand Canonical
Ensembles

Exercise 2.1

Solve the problem 1.2 by mean of the partition function.

Exercise 2.2

N particles are in thermal contact with a reservoir at temperature 7.
The possible energies of the particles are as follows:

Energy E7 = 0 and degeneracy 1 (only one state with energy Ej)
Energy Fy = ¢ and degeneracy 2 (two states with energy Es)
Energy F3 = 2¢ and degeneracy 1 (one state with energy E3)

(a) Calculate the one particle partition function and the total parti-
tion function.

(b) Calculate the energy of these N particles and find the limits for
T — 0 and for T' — oo.

(c) Calculate the entropy and the limits for 77 — 0 and for
T — oc.
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Exercise 2.3

N particles have p possible states with energies E; (i from 1 to p).
Show that in the limit of high temperatures, the entropy tends
toward:

S(T' — o0) = Nkp Ln (p)

Exercise 2.4

N particles have two possible energies 1 = 0 and Fy = e and they
are in contact with a reservoir at temperature T'. The walls of the
reservoir are permeable to particles.

(a) Give an expression of the grand partition function as an infinite
series.

(b) At what condition the series will converge? Express the condition
with the help of the chemical potential, T" and e.

(c¢) Suppose that the series of the grand partition function converges.
Calculate N, the mean number of particles with the help of the
chemical potential, T" and e.

(d) Find the chemical potential as a function of V,T" and e. Calculate
the energy as function of N, T and e.

(e) Check if the condition of convergence found in (b) is verified.

Exercise 2.5

The entropy of magnetic material is given by

1 [(H\?

where T is the temperature, H is the magnetic field and A is a
constant.

(a) What is the energy as a function of H and T°?

(b) What is the magnetization as a function of 7' and H?

(c) Show that the above results correspond to a material with one
magnetic dipole for each of the N atoms, at low temperatures.
The magnetic dipoles can have two directions +x and —x and
the field is directed along +x. Use the canonical ensemble.
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Exercise 2.6

One considers N particles with two energy levels 0 and e. They are
in contact with a reservoir at temperature 7.

(a) Show that the specific heat C' goes to zero for high temperatures.
(b) Propose an explanation for this behavior of C.

Exercise 2.7

N particles are in contact with a reservoir at temperature 7'. Their
energy is given by E = n;eq and ey = A(V/Vy)* where V is the
volume of the particles and V), A and « are constants.

(a) Calculate the partition function.

(b) Calculate the equation of state P(V,T'). P is the pressure.

(c) Calculate the entropy S(V,T') and the limits at low and high
temperatures.

(d) What are the limits of the constant a?

Exercise 2.8

One considers an ideal gas with IV particles. Its volume is V' and its
temperature 7. One wants to know what the differences are if the
particles are seen as distinguishable or not. For that one calculates
the properties of the gas in these two cases:

Case 1: Distinguishable particles
Case 2: Nondistinguishable particles

(a) Write the partition function in the two cases. You are not asked
to calculate them but only to copy from the textbook.

(b) Calculate in the two cases the following quantities: the energy F,
the state function P(V,T), the free energy F' and the entropy S.
What are the functions which are identical and those which are
different?

(c) Verify if there is a temperature interval for which there are no
differences between the two cases.
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Exercise 2.9

N particles at temperature 1" have energy levels given by F = nje;
when the numbers n; goes from 1 to Q.

(a) Calculate the energy E and the entropy S.
(b) What are the limits of E and S when T goes to large values?

Hint: Use the following approximation for exp(z) when x — 0:

22
exp(x) =1+x+ —

2

Exercise 2.10

This problem investigates the changes in the properties of an ideal
gas when the number of particles varies. For that, one considers a
quasi-static process at constant entropy and volume and increasing
the number of particles which is N; at the beginning of the process.
The initial temperature is 7T

(a) Show that in such a process, one has (Ccll_ji\“[)sv < 0.

(b) Show that in this process the energy is decreased if the number
of particles of an ideal gas is increased.

Chapter 3: Quantum Statistics

Exercise 3.1

Show that in a system of quantum particles with energies e; the total
energy is

E=) e (g—j)

where F' is the Helmotz free energy.

Exercise 3.2

The possible energies of N quantum particles are Fy < Fy < E3 < By
with degeneracy G;(i = 1,2,3,4).
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(a) Sketch a qualitative graph of the chemical potential as a function
of the temperature in the following cases:

1. The particles are bosons
2. The particles are fermions with N = G + G»

Plot the two curves on the same graph.

(b) Give an expression of the energy in the classical limit
(Maxwell-Boltzmann statistics) and find the energy at very high
temperatures.

Exercise 3.3

(a) Find the relationship between n; the mean number of quantum
particles in the lowest level (energy Ej) and the mean number
n; in one higher energy level E;.

1. In the case of bosons
2. In the case of fermions

(b) Calculate n; as a function of nj, the temperature 7" and the
difference E; — F.

(c) What are the limits of n; at low temperatures and at high tem-
peratures, for bosons and for fermions?

Exercise 3.4

Particles without fixed number can have only two possible energies:
g1 and g9 > £1. The two levels have the same degeneracy G(G states
for each energy)

(a) The particles are bosons. Calculate the energy F(T'), the specific
heat C'(T') and the mean number of particles N1(T") and Ny (T')
in the two levels. Give for these three quantities the limits for
T —0and T — oo.

(b) Same questions if the particles are fermions.

(c) Plot the specific heats of bosons and fermions on the same graph.

(d) Plot the ratios No/Nj as a function of T' for bosons and fermions
on the same graph.

Hint: The graphs are only qualitative.
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Exercise 3.5

Two particles have three possible energies 0, ¢, 2e. They are in contact
with a reservoir at temperature T'.

(a) What are the different configurations if the two particles are two
fermions with spin 1/2.

(b) Give an expression of the energies in each of the configurations
and calculate them in the limit 7" — oo.

(c) Same questions if the two particles are bosons with spin 0.

Exercise 3.6

N fermions are at temperature 7. For each particle there are two
possible energies 0 and e. The degeneracy of each energy level is
equal to M > N.

(a) Find the equation from which it is possible to calculate the quan-
tity exp(—pu) where § = kT and p is the chemical potential.

(b) Solve this equation for N = M and calculate the energy of each
level.

(c) Calculate the number of particles in each energy level.

Exercise 3.7

Same problem than the precedent but for bosons.

Chapters 4 and 5: Miscellaneous

Exercise 4.1

(a) Show that the density of states of particles with linear moment p
located on a surface of area A (particles in two dimensions, 2D)
is g2(p)dp = (2w A)h™>pdp.

(b) Show that the density of states of particles with linear momen-
tum p located on a line of length L (particles in one dimension,

1D) is g1(p)dp = (2%) dp.
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Exercise 4.2

Calculate the energy density of states g(E)dE of particles for which
the energy and the momentum are related as £ = Kp*(s > 0) in 3D,
2D and 1D.

Exercise 4.3

N atoms of an ideal gas with mass m and linear momentum p are
located in a cubic box with edge L. One side of the box can absorb
atoms and these atoms behave as an ideal gas in two dimensions.

(a) Calculate the partition function of the ideal gas on the absorbing
side if one supposes that there are Ng absorbed atoms on this
side.

(b) Calculate the grand partition function of the atoms inside the
box and the grand partition function of the absorbed atoms.

(c) Calculate the number of atoms Ny in the box and the number
Ng of atoms onto the absorbing side. Give the ratio (Ng/Ny ).

1. By means of the partition functions
2. By means of the grand partition functions

Exercise 4.4

A gas of quantum particles (fermions or bosons) has the following
properties:

1. The possible energies form a continuum from 0 to infinity (E > 0)
2. The energy density of states is g(E)dE = AE*dE

(a) Demonstrate the following relationship: PV = K E where K is a
function of a (P is the pressure and V' the volume).

Hint: Transform the integral giving In Z by integration by parts.
(b) Apply the results to the cases of relativistic particles (E = pc)
and nonrelativistic massive particles (E = p?/2m).
(c¢) Give the equation of state in the two preceding cases.
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Exercise 4.5

An ideal gas of N atoms have their energy related to the momentum
as E = pc (c light velocity), The volume is V' and the temperature 7'

(a) Calculate the one atom partition function.
(b) Calculate the energy and the specific heat at constant volume.
(c) Calculate the equation of state.

Exercise 4.6

Find the energy and the entropy as functions of the temperature T' of
N classical harmonic oscillators for which the energy of one oscillator
is E = p?/2m + Kx?/2 (p is the momentum, m the mass and K the
spring constant).

Calculate the chemical potential of these oscillators.

Exercise 4.7

A linear harmonic oscillator has a magnetic moment dependent on its
position. The energy of one oscillator is E = p*/2m+Kz?/2—~vHz (p
is the momentum, m its mass, K the spring constant, H the magnetic
field and ~ is a constant).

(a) Calculate the one oscillator partition function in classical
mechanics.

Hint: Use the identity Az? — Bx = A(x — B/2A)? — B%/4A
(b) Calculate the energy of N identical oscillators as a function of T’

and H.
(c) Calculate the magnetization of N oscillators.

Exercise 4.8

N particles have energy of infinite levels given by E; = Pn; where
P is a const and n; = 1,2,3,... The constant P is small such that
one can consider the energies as a continuum, F = Ke. Calculate
the chemical potential p.

(a) In the case of bosons.
(b) In the case of fermions. For what temperature Ty p is null?
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Give also the expressions of y for 7' — 0 and for 7" — oo for the
bosons and the fermions

Exercise 4.9

One asks to find the energy at low temperature of the N particles
of the preceding problem. You are asked to find the energies in the
following cases:

(a) Bosons. Take as an approximation u = —kgT.
(b) Fermions. Take as an approximation p = M — kgT.

Hint: You do not need to calculate the integrals but transform them
in definite integrals which are constant. In this problem, one looks
only for the temperature dependence.

Chapter 6: Gas of Photons

Exercise 6.1

(a) Calculate the thermal properties E(T'), S(T),C(T)(C(T) is the
specific heat at constant area) of a gas of photons located onto
a surface of area A. Give the emission spectrum K ().

(b) Same problem for a gas of photons in 1D, on a line of length L.

Exercise 6.2

Give the expression of the emission spectrum of a photon gas in a
volume V as a function of the frequency w. Give the limits of the
spectrum for (hw/kpT) < 1 and (fw/kgT) > 1.

Exercise 6.3

Calculate the emission spectrum of a gas of fermions in not fixed
number (volume V', temperature 7'). Express the spectrum as a func-
tion of the wavelength and as a function of the frequency. Give the
limits of the spectrum for (hw/kpT) < 1 and for (hw/kpT) > 1.
Compare with the case of photons.
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Exercise 6.4

Find the equation giving the relationship between the frequency and
the maximum of the spectrum.
Try to find an approximated solution.

Exercise 6.5

A gas of photons is trapped in a cavity of volume V; and temperature
Ti1. By an adiabatic process one reduces the volume of the cavity to
V2(V2 < Vl).

(a) What is the relationship between the pressure and the volume?

(b) What is the new energy?

(c) By an isothermal process, one reduces the volume of the cavity
to Vo(Va < V7). What is the new energy of the gas?

It exchanges heat with the exterior world. Does the gas receive heat
or send heat outside?

Exercise 6.6

A Carnot cycle is made with a gas of photons. One begins by a
state with a volume V; and pressure P;. The first step is to make
an isothermal expansion in contact with a hot reservoir at tem-
perature Ti, until volume Vo > V; and P, < P;. The second
step is an adiabatic expansion until V3 > V5 and P3 < P,. The
third is an isothermal compression in contact with a cold reser-
voir at temperature Ty, until V; < V3 and Py > P3;. The final
step is compression until the starting point, what is the efficiency of
such a cycle?

Exercise 6.7

What is the ratio between the specific heat and the mean numbers
of photons in a photon gas at temperature 7" and volume V. Give
your results in 1D, 2D and 3D.
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Chapter 7: Phonons

Exercise 7.1

N atoms are located onto a surface forming a 2D solid of area A.
Calculate the thermal properties: the energy E(T) and the specific
heat Cy (T following the Debye method. Give the limits for the low
temperature and for the high temperature.

Exercise 7.2

Same question for NV atoms along a line of length L.

Exercise 7.3

Calculate the mean numbers of phonons in media at 1D, 2D and 3D.
Use model of Debye and give explicit expressions at low and high
temperatures. Compare with photons.

Exercise 7.4

N atoms in a solid medium are in a volume V and in contact with
reservoir at temperature T'. Calculate the pressure of this system in
the following cases at low temperature:

(a) Atoms connected by springs.
(b) The model of Debye.

Hint: The pressure P = —g—{; (F is the free energy). But at low
temperature it is possible to use the approximate P = —g—g.

We propose not to use the Debye temperature in the case of the
Debye model but only the maximum energy which depends on V.

Exercise 7.5

The models of the linear chain adapted at 3D and the Debye
model contain very different elements. Nevertheless, at low and high
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temperatures they give very similar results. Can you explain why? Do
not give answer with the help of formula but only physical arguments.

Exercise 7.6

Do you think that it is possible to define a Debye temperature for
liquids? If yes, what does happen at melting from the solid state.
The Debye temperature will increase or decrease?

Hint: The sound velocity of liquids is typically equal to 1500 m /s and
to 4000 m/s for metals.

Exercise 7.7

A linear atomic chain is compound of N atoms with mass m and
connected by springs of constant B. The linear motions of the atoms
are longitudinal waves and one recalls the dispersion relation between
the frequency ww and the wave vector k:

w = 2(B/m)Y? sin(ka/2)

(a) Calculate the sound velocity as a function of B, m and the inter-
atomic distance a.

(b) Give another expression of the sound velocity as a function of
the largest possible frequency.

Exercise 7.8

One considers a linear chain made of atoms with mass m. They are
connected by springs with constant B. One wants to determine the
transversal motion of the atoms. The displacement of the atom i is
v; perpendicular to the wave vector (propagation in the direction z
perpendicular to y). Give the dynamic equation for the displacements
and the relation w(k).

Exercise 7.9

In a linear chain of N identical atoms of mass m the atoms
are connected by springs with constant B. One wants to know
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the thermodynamic of this chain taking into account longitudinal
phonons and transversal phonons.

(a) Give an expression for the energy E(T") and the limits for low
and high temperature.

(b) Give also an expression for the specific heat and the limits at
low and high temperature.

Chapter 8: Gas of Bosons

Exercise 8.1

A gas of N bosons with mass m is located onto a surface with
area A.

(a) Write the equation from which it is possible to calculate the
Bose-Einstein condensation temperature if it takes place. Show
that the Bose—Einstein condensation does not take place.

Hint: You have two possibilities to answer. One is to calculate
the integral knowing that [ dzfexp(z) —1]7! = Ln[l — exp(—=z)].
In the second, you do not need to calculate the integral. Try the
two methods.

(b) Calculate the chemical potential p as a function of 7" and find
the limits for the low temperatures and the high temperatures.
Hint: [ dz[Cexp(z) —1]7! = —Ln[l — C~texp(—2)](C > 1)

(c) Show that (du/dT’) goes to zero with T'. Sketch a qualitative
graph of u(T).

(d) Show that the ratio (u/kpT’) goes to zero with 7.

(e) Calculate the energy at low temperatures.

Exercise 8.2

The dimension of the space can be only 3, 2 or 1. However, suppose
that there are spaces with a non-integer dimension d. From the results
of the exercise 4.2 one can write the momentum density of state as

g(p)dp = Ap*dp

where d is the dimension of the space. Find for what dimensions
between 3 and 2 one can observe a Bose-Einstein condensation.
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Hint: You do not need to calculate any integral to answer this
question.

Exercise 8.3
N bosons have the following properties:

1. They are located in a volume V
2. The energy E of one boson is equal to pc (p is the momentum, ¢
light velocity)

(a) Calculate the Bose-Einstein condensation temperature.

(b) Calculate the ratio N;/N (Np is the number of bosons in the
lowest level) as a function of the temperature in the condensed
regime.

(c) Calculate the energy E(T") in the condensed regime.

Hint: [;° a?lexp(z) — 1]71 &~ 2.404 [ @3[exp(x) — 1] 7! ~ 6.5.

Exercise 8.4

The compressibility of a fluid is defined as x = %g—g at entropy

constant or at temperature constant, for a gas of N bosons (mass m)
in a volume V and in contact with a thermal reservoir. The gas is in
a state of partial condensation.

(a) Calculate the compressibility at constant entropy, supposing the
gas remains partially condensed.
(b) Try to calculate the compressibility at constant temperature.

Exercise 8.5

(a) What is the relation between V' and 7" during an isentropic (con-
stant entropy) process between two temperatures smaller than
the condensation temperature for a boson gas of N atoms?

(b) What is the relation between the pressure and the volume for
the same process than in (a)?
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Exercise 8.6

The velocity of the sound in a fluid is given by

I
V=,/—
Xp

where Y is isentropic compressibility and p is the density.

(a) Calculate the velocity of sound of a gas of N bosons at tempera-
ture 7" smaller than the condensation temperature (mass m) and
volume V.

(b) Make a numerical evaluation of the velocity for a helium atom
made of two protons and two neutrons.

Exercise 8.7

A gas of N bosons is in a volume V' and in contact with a reservoir at
temperature 71'. During a process at constant temperature the volume
is decreased from V; to V5. The gas remains in a state of partially
condensed.

(a) If the number of bosons is N at the beginning of the process
what is the number of bosons in the condensed state at the end
of the process?

(b) What is the change in its internal energy?

(c) What is the variation of calorific and mechanical energies during
this isothermal process?

Exercise 8.8

(a) Verify the relation for a gas of bosons in partial state of conden-
sation PV = K F where E is the energy. Determine the value of
the coefficient K.

(b) Adapt the formula for a gas at 2D and 1D.
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Exercise 8.9

A system is made of two boxes and each of them contains a gas of
bosons. Their temperature T' is the same for the two systems and
also their condensation temperature Ty > T'. The total energy F is
known. The number Np, the volume V; and the energy F; of the
subsystem 1 are known.

(a) Calculate the condensation temperature.
(b) Calculate the energy Fs of the subsystem 2.
(c) Calculate the number Ny and the volume V5 of the subsystem 2.

Chapter 9: Gas of Fermions

Exercise 9.1

A gas of N fermions is located in a volume V' at temperature T

(a) Calculate the pressure of this gas at 7= 0 and T' # 0 (but low).
(b) Give an expression of the energy libre a T > 0.

Hint: Take the expressions of energy F(T') as given in Chapter 9,
and that of the Fermi level at T" > 0.

Exercise 9.2

(a) Calculate the entropy of the gas of the precedent exercise.
(b) What is the relation between the volume and the temperature
during a process at constant entropy?

Exercise 9.3

For N electrons in a volume V at temperature T' the energy E is
related to the linear momentum p as E = pec (c is the light velocity).

(a) Calculate the Fermi level and the energy for 7' = 0.
(b) Show that for T # 0 (but not too high) the specific heat at
constant volume is linear with 7.
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Exercise 9.4

(a) Show that in a process at constant entropy and constant volume,
the energy is increased if the number of particles of this gas is
increased.

(b) Try to give a physical explication for this result, without
calculation.

Exercise 9.5

The energy spectrum of N electrons in a volume V is as follows:

1. There is one level (energy E = —¢) with degeneracy N (one state
for one electron)

2. For energy equal or larger than 0 there is a continuum of energy
up to infinity

(a) Find the position of the Fermi level at T = 0 (without calcula-
tion).

(b) Give an expression for the number n; of the free electrons (as a
function of T, N, and the Fermi level p).

(c) Give an expression for the number of electrons ny on the level
with energy —e (as a function of 7', N, e and the Fermi level p).

(d) Give an expression of the missing places N —ng on the level with
energy —¢.

(e) Find the Fermi level as a function of 7" (for low 7") and calculate
ny as a function of T.

Hint: Find the approximate expression for N —ns taking into account
the position of the Fermi level.

Exercise 9.6

A gas of electrons is located onto a surface of area A (electron gas in
two dimensions).

(a) Calculate the Fermi level p as a function of the temperature
T. For what temperature it becomes null? What is its value at
T =07

Hint: [ dz[Cexp(z) + 17! = —Ln[l + C~ ! exp(—2)].
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(b) Calculate the derivative (du/dT) as a function of T" and give its
value for T'= 0. Sketch a qualitative graph of u(T").

(c¢) Show that for 7" # 0 (but not too high) Cy the specific heat at
constant volume is linear with 7.

(d) For a 2D boson gas at low temperatures the constant volume
specific heat is also linear with 7. Can you find an explanation
why Cy has the same temperature dependence for bosons and
fermions?

Exercise 9.7

(a) Calculate the relation between the volume (or the radius) and
the mass of a neutron star: Radius R, mass M, volume V.

(b) If you think that the result is a paradox, try to find an explana-
tion.

Exercise 9.8

A white dwarf is a star made of some atomic nucleons which are ion-
ized. It is compound of these nucleons and free electrons. It is gen-
erally admitted the properties of a white dwarf are, in first approxi-
mation due to the electrons.

(a) Calculate the electronic kinetic energy of such a star admitting
that the temperature is zero and the electrons are relativistic: it
is the energy of Fermi Ep(E = pc).

(b) Calculate the typical radius of a white dwarf following the schema
of Chapter 9. First consider the total energy: Energy of Fermic
plus energy of gravitation U = —%GTW (M is the mass of the
nucleons). Secondly determine the volume of the star by mini-
mizing the total energy. Er + U relatively to the volume V.

(c) Make a numerical evaluation of the radius.

Data:

Mass of the star = mass of the sun, M = 2-10%" kg
Gravitation constant G = 6.7 - 10~ MKS

Electron mass m = 1073 kg

Planck constant h = 6.6 - 1073* MKS
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Exercise 9.9

Show that at the equilibrium, one has the following relation for a
neutron star
The total energy £ = —U where U is the gravitational energy
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