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Page iAn Invitation to Real Analysis

Adopting a student-centered approach, this book anticipates and addresses the common challenges that students face when learning abstract concepts like limits, continuity, and inequalities. The text introduces these concepts gradually, giving students a clear pathway to understanding the mathematical tools that underpin much of modern science and technology. In addition to its focus on accessibility, the book maintains a strong emphasis on mathematical rigor. It provides precise, careful definitions and explanations while avoiding common teaching pitfalls, ensuring that students gain a deep understanding of core concepts. Blending algebraic and geometric perspectives to help students see the full picture. The theoretical results presented in the book are consistently applied to practical problems. By providing a clear and supportive introduction to real analysis, the book equips students with the tools they need to confidently engage with both theoretical mathematics and its wide array of practical applications.

Features


	Student-Friendly Approach making abstract concepts relatable and engaging.


	Balanced Focus combining algebraic and geometric perspectives.


	Comprehensive Coverage: Covers a full range of topics, from real numbers and sequences to metric spaces and approximation theorems, while carefully building upon foundational concepts in a logical progression.


	Emphasis on Clarity: Provides precise explanations of key mathematical definitions and theorems, avoiding common pitfalls in traditional teaching.


	Perfect for a One-Semester Course: Tailored for a first course in real analysis.


	Problems, exercises and solutions.




Andrew D. Hwang earned his PhD in mathematics at the University of California, Berkeley. After a 30-year career as a mathematician in academia, he now pursues mathematical art, design, education, and outreach through his company, Differential Geometry (www.diffgeom.com).
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Page xiTo the Instructor

An Invitation to Real Analysis exists to serve a variety of introductory courses in real analysis in a pedagogical interval, from a one-semester analysis-based introduction to proofs course near the left endpoint, to a one- or two-term course for more advanced students in mathematics and other quantitative fields at the right endpoint. The book is far from alone among analysis texts, so a few words are in order about the book's features, and prospective courses.


What Is Inviting About An Invitation to Real Analysis?

Two pedagogical principles stand out for shaping the book. First, presenting definitions of analysis as adversarial games, not as a passing remark but as a uniform stance, powerfully engages students' intuition. Second, real analysis is a language in addition to its substantial mathematical content. In particular, consistency of definitions is vital given the founding role analysis plays in so much of school mathematics, not to mention calculus and beyond. Explicitly acknowledging the language aspect, both for ourselves as instructors and for students, and structuring material in careful logical order, ultimately make everyone's life easier.

Atop these anchoring principles, the book takes special care: to be self-contained1; to use consistent and evocative terminology, notation, and proof idioms, stringently avoiding unstated edge cases; to phrase definitions and theorem statements for ease of comprehension and use; to structure arguments as simply and concretely as possible, and only directly or contrapositively, not by contradiction2; starting with axioms for the real numbers in Chapter 3, and earlier where feasible, to develop material in strict logical order, with proofs resting solidly on definitions and specific, established theorems; to present interesting examples as soon as possible; to provide students with comparable proofs before posing exercises, both as illustrations of proof-writing and as incentives to study and absorb existing proofs; to encapsulate technical points to avoid repetition; to cultivate conceptual revisiting, foreshadowing coming ideas and connecting material with what has already been developed.

_____________________________ 1Except for the integer division algorithm. ⏎
2There is precisely one exception, in an exercise: The proof there exists no surjection from a set to its power set. ⏎
Page xiiIn my experience, real analysis tends to be the course of “maximum dynamic pressure” for math majors, future teachers, and other students, a blizzard of complicated and unfamiliar definitions, unstated idioms involving the use of arbitrary inequalities to establish equalities, and bewildering technicalities stated as tone poems written from Greek alphabet soup. In effect, students are asked to read and write literature while learning a foreign language. Neglecting to mention this often creates a mysterious layer of frustration: Students who enjoyed calculus suddenly find their day-to-day understanding of mathematics has sharply decreased for no apparent reason.

To the best of my ability, the book is a gradual, paved, well-marked path with multiple trailheads into the language and landscape of real analysis. It is written to be read, studied, taught from, referenced for many years, and enjoyed.



Sample Courses

Table 0.1 contains an approximate syllabus for a 10–15-week analysis-based proofs course for mathematics and education majors who have had a year of one-variable calculus, and possibly a semester of linear algebra and/or multi-variable calculus. Stars signify increasingly optional sections that can be omitted or partially combined with neighboring material as time demands. This course starts with statements and logic and makes its way to construction of the elementary functions, with emphases on the structure of the real number system and the definition and usage of sequential limits.



Table 0.1 Section coverage for an introductory course. ⏎


	1. §1.1*

	10. §4.1

	19. §6.2

	28. §8.3

	37. §10.3




	2. §1.2

	11. §4.2

	20. §6.3

	29. §8.4

	38. §11.1




	3. §1.3

	12. §4.2–3

	21. §6.4

	30. §8.5

	39. §11.2*




	4. §2.1

	13. §5.1**

	22. §7.1*

	31. §9.1

	40. §12.1




	5. §2.1*

	14. §5.2*

	23. §7.2

	32. §9.2

	41. §12.2*




	6. §2.2*

	15. §5.3

	24. §7.3*

	33. §9.3

	42. §13.1




	7. §3.1

	16. §5.4*

	25. §7.4

	34. §9.4

	43. §13.2*




	8. §3.2

	17. §6.1

	26. §8.1

	35. §10.1

	44. §13.2**




	9. §3.3

	18. §6.1*

	27. §8.2

	36. §10.2*

	45. §14.2**







Table 0.2 contains an approximate syllabus for a 13–15-week introductory real analysis for upper-level undergraduate or beginning graduate students in mathematics, physics, computer science, statistics, engineering, and other quantitative fields, who have had a year of one-variable calculus, a semester of linear algebra, and possibly multi-variable calculus and/or a course in techniques of proof. This course starts with a brisk review of the real numbers and ends with about two or three weeks devoted to topics in metric spaces and functional analysis.



Table 0.2 Section coverage for an advanced course. ⏎


	1. §3

	10. §6.4

	19. §9.1–2

	28. §12.4*

	37. §16.3




	2. §4.1

	11. §7.1*

	20. §9.2–3

	29. §13.1

	38. §16.4




	3. §4.2

	12. §7.2

	21. §9.4

	30. §13.2

	39. §16.5




	4. §4.3

	13. §7.3*

	22. §10.1–2

	31. §14.1–2

	40. §17




	5. §4.4*

	14. §7.4

	23. §10.3–4

	32. §15.1

	41. §17




	6. §5.1–3*

	15. §8.1–2

	24. §11.1–2

	33. §15.2

	42. §17




	7. §5.4

	16. §8.3

	25. §11.3

	34. §15.3

	43. §17




	8. §6.1–2

	17. §8.4

	26. §12.1–2

	35. §16.1

	44. §17




	9. §6.3*

	18. §8.5

	27. §12.2–3*

	36. §16.2

	45. §17







The book provides a solid foundation for a differential equations course devoted to techniques of solution for first- and second-order equations, or to qualitative theory of dynamical systems; for numerical analysis; for a theoretical course in multi-variable calculus; for mathematical probability and statistics; for measure theory; for spectral decomposition.

Each section comes with exercises. Across the book, these range from routine verification to challenging extended write-ups. Exercises that have hints (H), answers (A), or solutions (★) in the back are clearly marked. There is a complete solution manual available on request.

The book's essential thread is power series: Sections 7.4, 8.3, 9.4, and 11.1. Page xiiiPower series illustrate material on sequential limits, uniform estimates, properties of functions, and order of approximation, among other topics. They permit easy construction and study of non-algebraic functions.

Page xivInversely, Sections 2.4 (construction of natural, whole, and rational numbers) and 8.6 (discrete dynamical systems) are optional in the book's overall structure. Section 4.4 (topology) is recapitulated in Section 16.1 on metric spaces, so one or the other may be skimmed or omitted accordingly. The examples of functions in Section 5.1 are likely known to students, but are included for self-containment. Although the terms countable and uncountable occur in various places throughout the book, Section 5.4 (cardinality) contains more material than is strictly used. Series reordering is covered in Section 7.3, but is not used elsewhere. Section 12.3 (hyperbolic functions) contains material that could be covered only as needed. Finally, Chapter 17 contains selective applications. Aside from 17.2 and 3 (uniform convergence), these sections are mutually independent and optional.



What Is Distinctive About An Invitation to Real Analysis?

We mathematicians tend toward eponyms for concepts and theorems. These are opaque to students, and rarely withstand historical inspection. With two peripheral exceptions that are well-known in popular culture—Venn diagrams and Fibonacci numbers—this book instead uses descriptive names: the ordered product of sets, condensing sequences whose terms can be made as close to each other as we like, the cross-term bound for inner products, the polar formula eiθ=cosθ+isinθ, spectral decomposition for periodic functions, and many others. Eponyms are, however, indexed for easy reference.

Students at this writing are not unlikely to have programming experience. A couple of salient expository choices reflect this reality. First, definitions, theorems, and exercises are formulated with an eye toward algorithmic implementation where appropriate. Sums and factorials, for example, are defined recursively. Generally, the book avoids using ellipses to connote “continuing patterns” except for illustration. Consequently, mathematical induction underpins the entire book. More than once, these recursive foundations simplified the “traditional” presentations and proofs I had used for many years in the classroom.

In this book, curly braces signify unordered sets while round parentheses connote ordered lists. Counting starts at 0 (the cardinal of the empty set) and, for a list of length n, ends at (n−1), as in programming languages. In this book, 00=1, the number of mappings from the empty set to itself. Again, being systematic with these choices pleasantly clarified edge cases and simplified at least a few calculations.

An Invitation to Real Analysis is written for the 21st century. I hope and expect both students and you will find the book especially friendly, supportive for your respective needs, internally consistent, mathematically substantive, and thought-provoking in positive ways.





Page xvTo the Student

Welcome to An Invitation to Real Analysis: Not just this book, but to the prospect of a math course with a similar title and probably an intimidating reputation. Presumably, this book will be your close companion for a few months, and maybe your occasional companion for longer.

Real analysis places integral and differential calculus on a solid logical foundation. Calculus traffics in “infinitesimals” such as dt. Formally, an integral is “a sum of infinitely many infinitesimals” while a derivative is a ratio of infinitesimals. In the real numbers, however, there are no infinitesimals. As a calculus student, you may have wondered, “What exactly is dt?” or “Why do these calculations work?” This book contains one extended answer: Real analysis, the mathematics of arbitrarily close approximation, allows us to express and prove the computational rules of calculus using only real numbers.

Because infinitesimals extend to the roots of calculus, we must dig deeply into structure of the number line in order to establish results of calculus as theorems. As a result, the material does not look like calculus. Instead, analysis initially focuses on real numbers, sets of real numbers, and sequences. Later on as well, real analysis avoids infinitesimal notation, so in theoretical work, even integrals and derivatives do not look much like calculus.

Related to these items of unfamiliarity, real analysis is something like a foreign language. The story of limits you may have learned in calculus, anything that sounded like “approaching, but never reaching” or “closer and closer,” is casually workable but lies somewhere between misleading and technically wrong; a large part of analysis is developing this story with logical consistency.

Further, in real analysis, we establish equalities via arbitrarily close inequalities: If x and x′ are real numbers, and if |x′−x|<ε (epsilon) for every positive ε, then x=x′. Computationally, you may be less familiar with inequalities than with equalities. Rest assured: This book will help you develop your expertise. Conceptually, for each particular ε, say ε=10−6, the assumption |x′−x|<ε does not imply x=x′. On closer reflection, no matter how small ε is, the assumption |x′−x|<ε does not imply x=x′. So, what gives? A direct answer involves “infinitely many hypotheses,” but perhaps a clearer answer is, if x≠x′, then 0<|x′−x|. So, if we pick ε=|x′−x|/2, then |x′−x|<ε is false. This idea justifies much of analysis.

This book develops real analysis from little more than everyday common sense and mathematical properties of addition, multiplication, and comparison Page xviof real numbers. It is written to be read, actively and mindfully. Strive to connect what you read with what you already know. Browse chapters and sections your course skips. The book takes special care to develop material in logical order, to define all mathematical terms introduced, and to supply “sample” proofs before asking you to construct your own. Do use prior results in developing proofs, and use the book's index to locate unfamiliar terms.

Some exercises consist of an isolated statement or question, such as “3 exists,” or “Is 0.999―=1?,” or “x5+7x−1=y has a real solution x for every real y.” (These are made-up examples.) Each is a request for an answer backed up by proof, using only concepts and results established in the book so far. The bare answer may be of interest, but providing incontrovertible justification within the framework of the material is an essential part of the subject.

You may ask yourself, “Why do we prove things?” To make an athletic analogy, why do we struggle up the precipice or hike the rocky trail instead of driving or taking the cable car? One partial answer is, “It depends what you want to do.” There is looking at the view, and there is the pleasure of earning the view. Another partial answer is, “Maybe there is no road or cable car,” and you are required to build one. Someone has to climb that cliff and map the territory for the first time. You are training for that possibility.

Mathematics leads to mind-stretching conclusions. Has every ordering of a deck of playing cards been seen at some point in history? Given an arbitrary infinite string s of 0s and 1s, is there a computer program that prints s in the idealized sense of “if we wait infinitely long”? If Bn(1) denotes a ball of radius 1 in n-dimensional space, how rapidly does the volume of Bn(1) grow with n? What does “eiπ+1=0 ” even mean?

If you are pursuing mathematics purely for its own sake, give due respect to mathematics that sheds light on practical problems or opens technological frontiers. Even when a “simple” idea has useful applications, the fact of noticing and acting is itself an achievement. The world of experience is larger and more complicated than human mathematics encompasses, even if mathematics provides our best descriptive and predictive physical frameworks.

Inversely, if you are pursuing mathematics for its applications, take care to enjoy its intrinsic wonder, a profound aspect of the human experience independent of applications. Remember as well: Large pieces of “pure,” “irrelevant” mathematics have found surprising technological applications decades or centuries after they were developed. None of us is omniscient.

Technical intricacy aside, doing mathematics has elements of play, discovery, and art. The more you seek and cultivate these pleasant aspects for yourself, the happier and more productive will be your time with this material.

Welcome again, and all good wishes with your journey!
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Mathematics encompasses a language for expressing logical and quantitative propositions, and computational tools for using known truths to deduce new ones. In order to read, understand, and write mathematics fluently, you must learn and practice using the terminology, syntax, and idioms of this language. This chapter introduces essentials needed throughout the book.

As a body of recorded knowledge, mathematics proceeds via logical deduction from explicit but unproven hypotheses toward conclusions. The wish to present mathematics in logical order entails a pedagogical chicken and egg problem: Humans learn by example, but when material is developed in strict logical order, there are no familiar examples until considerable work has been accomplished. In this chapter, we “cheat” a little. Specifically, we'll give examples that refer to integers (whole numbers), natural numbers (for us this means non-negative integers), rational numbers (fractions of integers), and real numbers (which at this stage are difficult to describe precisely, but may be viewed as filling in gaps left by rational numbers on the number line).


1.1 Statements and Logical Connectives


Definition 1.1.1. A statement is a sentence having a truth value, T (True) or F (False).



Remark 1.1.2. Contact with the external world must be made via experience and is necessarily approximate. For example, no known phenomenon behaves exactly like integers. ⋄



Example 1.1.3. −4 is an even integer. (True.)

The decimal representation of π contains the string “999999.” (True) (The number π is defined in Chapter 13.)

2+2=5. (False) ♢



Example 1.1.4. Sentences that are not statements include “101000 is a large number” (“large” has not been given a precise meaning), and “x is a positive real number” (whose truth value depends on x, so the sentence is not a statement unless x is specified). ♢


Conventionally, abstract statements are denoted P and Q.


Definition 1.1.5. Page 2The negation of a statement P is its logical opposite ¬P.



Remark 1.1.6. You may regard the negation as P preceded by the clause “It is not the case that…,” but usually a more pleasant wording can be found. ⋄



Example 1.1.7. P: 2+2=4. ¬P: 2+2≠4. ♢


Assume P and Q are statements. New statements can be constructed using the “logical connectives” and, or, and implies.


Definition 1.1.8. The statement “P and Q,” the conjunction of P and Q, has its ordinary meaning: The compound statement is true provided both P and Q are true, and is false otherwise.



Example 1.1.9.


	2+2=4 and 0<1. (True)


	2+2=5 and 0<1. (False)


	2+2=5 and 1<0. (False) ♢






Definition 1.1.10. The statement “P or Q,” the disjunction of P and Q, always has the “inclusive” meaning in mathematics: P is true, or Q is true, or both.



Example 1.1.11.


	2+2=4 or 0<1. (True)


	2+2=5 or 0<1. (True)


	2+2=5 or 1<0. (False) ♢






Implication

“Logical implication” plays a central role in mathematics as our tool for deducing new true statements from known ones.


Definition 1.1.12. A logical implication is a statement of the form “If P then Q,” also read “P implies Q.” The statement P is called the hypothesis, and Q the conclusion. In logic, “P implies Q” is true unless the hypothesis P is true and the conclusion Q is false.



Example 1.1.13. ⏎


	If 1≠0, then 12≠0. (True)


	If 1≠0, then 12=0. (False)


	If 1=0, then 0=0. (True)


	If 1=0, then 12=0. (True) ♢






Remark 1.1.14. There are two potentially confusing consequences of logical implication. First, it is logically sound to deduce an arbitrary conclusion from a false hypothesis. An implication with false hypothesis is said to be vacuous. Humorous examples abound: “If 1=0, then money grows on trees.”

Page 3In Example 1.1.13, the third and fourth implications are vacuous. Note carefully that in each case, we can give a proof. If 1=0, subtracting this equation from itself gives 0=0, which proves the third statement. Similarly, squaring gives 12=02=0, proving the fourth statement.

Second, an implication need not connect logically related statements. The implication “If 0=0, then 2 is an even integer” is true because both the hypothesis and conclusion are true, but is effectively a non sequitur; the conclusion does not “follow” from the hypothesis in any obvious sense. A sequence of true implications does not, of itself, constitute a proof. In the example at hand, we know the implication is true only because there exists a valid proof, consisting of implications whose truth is apparent.

In these two senses, mathematicians are liberal in deeming an implication to be true. Truth of an implication is the weakest criterion that excludes the act of drawing a false conclusion from a true hypothesis.

In this book, and throughout mathematics in practice, implications do actually link “logically related” statements. Most implications involve classes of objects and assert that every object satisfying some condition also satisfies some other condition. ⋄



Definition 1.1.15. An implication of the form “P implies P” is a tautology. A statement P such that “P implies ¬P and ¬P implies P” is a contradiction.



Remark 1.1.16. ⏎ Existence of a contradiction is fatal for logic: If P is a contradiction and Q is an arbitrary statement, then either P implies Q or ¬P implies Q is vacuously true. Thus, Q is provable, and there are no logical grounds for distinguishing truth and falsehood. Informally, “This sentence is false” is a contradiction. Example 1.3.11 describes a dramatic formal example. ⋄




Truth Tables

The logical operators “not,” “and,” “or,” and “implies” may be summarized with a truth table, Table 1.1. A truth table involving compounds of two statements contains four rows, one for each combination of truth values of P and Q. The value in the column of an expression represents the truth or falsity of that statement.



Table 1.1 A truth table for not, and, or, and implies. ⏎


	P

	Q

	¬P

	P and Q

	P or Q

	P implies Q






	T

	T

	F

	T

	T

	T




	T

	F

	F

	F

	T

	F




	F

	T

	T

	F

	T

	T




	F

	F

	T

	F

	F

	T








Remark 1.1.17. If P and Q are statements, the statement “P and Q” is false if at least one of P and Q is false. If someone assures you two statements are both true, only one has to be false for the assurance to be unfounded.

Analogously, if someone assures you at least one statement of two is true, then both must be false for the assurance to be unfounded.

Exercise 1.3.5 formalizes these observations. Loosely, the connectives “and” and “or” are interchanged by negation, perhaps contrary to first impression. Consequently, the order of negation and conjunction matters. ⋄Page 4



Example 1.1.18.


	The integers 1 and 0 are not both zero. (True.)


	The integers 1 and 0 are both not zero. (False.) ♢







Logical Equivalence


Definition 1.1.19. Two statements P and Q are logically equivalent if each implies the other: P implies Q and Q implies P.



Remark 1.1.20. A truth table shows P and Q are equivalent precisely when they have the same truth value. In Table 1.2 we write P equiv Q to indicate P and Q are logically equivalent. ⋄




Table 1.2 Logically equivalent statements have the same truth value. ⏎


	P

	Q

	P implies Q

	Q implies P

	P equiv Q






	T

	T

	T

	T

	T




	T

	F

	F

	T

	F




	F

	T

	T

	F

	F




	F

	F

	T

	T

	T







Every abstract logical implication P implies Q belongs to a quadruple of implications. These are laid out as a “seating chart” in Table 1.3. We'll meet each partner in more detail, then return to their collective relationships. You do not need to memorize these names before reading further.


Table 1.3 The quadruple of an abstract implication. ⏎


	Direct:

	P implies Q

	Contrapositive:

	¬Q implies ¬P






	Converse:

	Q implies P

	Inverse:

	¬P implies ¬Q







Definition 1.1.21. Page 5The implications “P implies Q” and “¬Q implies ¬P ” are said to be contrapositive to each other.



Example 1.1.22.


	Direct: If x is a multiple of 4, then x is even.


	Contrapositive: If x is not even, then x is not a multiple of 4. ♢






Remark 1.1.23. As shown in Table 1.4, an implication and its contrapositive are logically equivalent: “If it was raining when I left home this morning, then I am carrying an umbrella” is equivalent to “If I am not carrying an umbrella, then it was not raining when I left home this morning.” ⋄




Table 1.4 An implication is logically equivalent to its contrapositive. ⏎


	P

	Q

	P implies Q

	¬Q

	¬P

	¬Q implies ¬P






	T

	T

	T

	F

	F

	T




	T

	F

	F

	T

	F

	F




	F

	T

	T

	F

	T

	T




	F

	F

	T

	T

	T

	T








Remark 1.1.24. The implication “if P then Q” sometimes gets expressed “Q if P.” This is a natural shortening of “Q (is true) if P (is true).”

The same implication sometimes gets expressed “P only if Q.” This paraphrases the contrapositive, “if Q is false, then P is false.” ⋄



Example 1.1.25. ⏎ Implications with multiple hypotheses are generally easier to understand and prove in contrapositive form. In each condition, x stands for an integer. Assume P is the condition “x2−1≠0 ” and Q is “x≠1.”

The implication P implies Q is true, but may require a few seconds' thought to see. By contrast, the logically equivalent contrapositive, “If x=1, then x2−1=0,” is immediate. ♢



Definition 1.1.26. The implications “P implies Q” and “Q implies P” are converse to each other.



Remark 1.1.27. Table 1.2 shows that an implication and its converse are not logically equivalent. Humans are particularly prone to conflating an implication and its converse: Everyone who works hard for years will become wealthy. “Therefore,” everyone who is wealthy worked hard for years. ⋄



Remark 1.1.28. In Example 1.1.25, the converse implication, “If x≠1, then x2−1≠0 ” is false. The number x=−1 is a counterexample: It satisfies the converse hypothesis Q but not the converse conclusion P. ⋄



Remark 1.1.29. Page 6Logical equivalence of P and Q means “P if Q” (Q implies P) and “P only if Q” (equivalent to P implies Q). This naturally shortens to “P if and only if Q.” The phrase “if and only if” pervades mathematics. ⋄



Definition 1.1.30. The implications “P implies Q” and “¬P implies ¬Q ” are inverse to each other.



Remark 1.1.31. Page 7Exercise 1.1.2 shows that an implication and its inverse are not logically equivalent. Humans are particularly prone to conflating an implication and its inverse: Ordinary people die. “Therefore,” because I am not ordinary, I will not die. ⋄



Remark 1.1.32. To summarize, every abstract implication P implies Q travels in an entourage of four. This entourage divides into two pairs of logically equivalent statements: direct-contrapositive, and converse-inverse. In general, a direct implication and its converse do not have the same truth value. Their truth values are the same precisely when P and Q are logically equivalent.

Any two statements in the entourage are reciprocally related. For example, the direct implication is the converse of its converse. ⋄



Remark 1.1.33. In this book, a proven conclusion is a theorem if it merits a name, a proposition if noteworthy but not named, a lemma if idiomatic or useful in some other proof but not strictly immediate from definitions, and a corollary if it amounts to a useful observation on a theorem or proposition. ⋄



Remark 1.1.34. Mathematical theorems involve an ironclad guarantee “P implies Q.” In many useful instances, P is some easily verified condition, while Q is onerous to check directly. In this situation the proof amounts to performing the onerous checking one time in sufficient generality.

Do take care: While mathematics “tells the truth” it need not “tell the whole truth.” For example, “If n is the square of an even integer, then n is a multiple of 4” is true. The inverse, “If n is not a square, then n is not a multiple of 4” is false.

Theorems (etc.) of the form “P if and only if Q” do tell the whole truth in the preceding sense. For example, a theorem might guarantee that if easily-verified condition P holds, then useful-but-onerous conclusion Q also holds, and in addition they characterize Q by guaranteeing that if P is false, then Q is false. ⋄





Exercises for Section 1.1


	Exercise 1.1.1. (★) Assume P and Q are statements. Use a truth table to prove “P implies Q” is equivalent to “(¬P) or Q.”


	Exercise 1.1.2. Assume P and Q are statements. Use a truth table to prove


	(a)“P implies Q” is not equivalent to its inverse “¬P implies ¬Q.”


	(b)“¬P implies ¬Q ” is equivalent to “Q implies P.” (In words, the inverse and converse of an implication are logically equivalent.)





	Exercise 1.1.3. (★) It is crucial to do this exercise yourself before reading the solution, which is a spoiler. Assume we have a set of cards bearing a letter, either D or N, on one side and a positive integer on the other. The question is to detect the logical condition, “If the card's letter is not N, then the integer on the reverse is greater than or equal to 21.”


	(a)Four cards are shown. Which cards satisfy the condition?

20D46D16N25N


	(b)Four more cards are shown on one side. Which cards must be turned over in order to check the condition?

1835DN




These tasks are probably a little tricky. That is both normal and pedagogically optimal. This exercise and the solution in the back of the book illustrate how humans have at least two cognitive modes for logical deduction. We started here with the (slow, difficult) analytical mode needed to apprehend mathematical concepts.


	Exercise 1.1.4. (★) The calculations you may have learned to associate with solving or doing math are really working backward from conclusion to hypothesis. This three-part question asks you to think carefully about the process and why it works.


	(a)A question asks, “Find all real x such that 0=x3−4x2−4x+16.” Customarily, we factor the polynomial (which in general is hard), set each factor to 0, and read out values of x by inspection. Here, we might notice (x−4) is a factor. Thus 0=(x−4)(x2−4)=(x−4)(x−2)(x+2), so x=4 or x=2 or x=−2.

Page 8Explain carefully: What are the requested hypothesis and conclusion? What are the hypothesis and conclusion established by the calculation? Given that what was asked and what was shown are not logically equivalent in general, “Why does this work?” Specifically, why go through this process instead of being direct, and what cautions must we take when “solving equations” in this way?


	(b)Analyze the following two-column “proof” that −1=1.

−1=1to be shown,(−1)2=12square both sides,1=1true statement.

Therefore, −1=1.


	(c)Let a and b denote real numbers, and assume a=b. Analyze the following “proof” that 2=1.

b2=aba=b,b2−a2=ab−a2subtract a2,(b+a)(b−a)=a(b−a)factor each side,(b+a)=acancel common factor,2a=aa=b,2=1cancel common factor.





	Exercise 1.1.5. Many types of logical error exist, including conflating an implication with its converse or inverse, assuming the conclusion, over-generalization (proof by example), using undefined terms or using the same name for different things, and logical disconnect (where a true statement is followed by “therefore the desired conclusion is true”).

Recall that an integer p greater than 1 is prime if the only positive divisors of p are 1 and p. Analyze the following arguments. Determine whether the hypotheses and conclusions of each are true, and whether one of the errors of the preceding paragraph has been made, or if the hypotheses justify the conclusions.


	(a)3 is prime, 5 is prime, 7 is prime. Each is an odd integer greater than 1. Therefore, every odd integer greater than 1 is prime.


	(b)Every even integer greater than 2 is not prime. Therefore, every prime greater than 2 is not even.


	(c)Every even integer greater than 2 is not prime. Therefore, every odd integer greater than 2 is prime.


	(d)Page 9It is repugnant to the nature of a prime to be even. Therefore, every prime greater than 2 is odd.





	Exercise 1.1.6. (★) A truthful promotional flier proclaims: You are the guaranteed recipient of at least two of the following.


	Hotel Resort Platinum Getaway!


	$2,500.00 Instant Scratch Ticket!


	Home Theater System (retail value $500)!


	$1,000.00 Instant Scratch Ticket!


	$10,000 in cash!




What is the maximum value of the guaranteed prizes? What is the minimum value of the guaranteed prizes? If one or both questions cannot be answered using information given, what additional information is needed?






1.2 Quantification

To accommodate classes of objects in the framework of statements, we allow statements to contain variables, so long as each variable is “quantified,” accompanied by the phrase “for every” or “there exists.” The quantifiers are crucial; pay close attention to them while reading, and do not omit them when thinking and writing.


Example 1.2.1.


	For every integer n, 0<1+n2. (True)


	For every integer n, 0<n2. (False)


	For every integer n, n2=1. (False) ♢





Page 10A variable preceded by “for every” or “for all” is said to be universally quantified. A universally quantified statement encapsulates multiple statements. For example, the first statement of the preceding example encapsulates an infinite collection of statements, one for each integer.


Example 1.2.2.


	There exists an integer n such that 0<1+n2. (True)


	There exists an integer n such that 0<n2. (True)


	There exists an integer n such that n2=1. (True)


	There exists an integer n such that n=n+1. (False) ♢





A variable preceded by “there exists” or “for some” is existentially quantified. An existentially quantified statement encapsulates multiple statements, expressing that at least one truism is found among the statements. The fourth compound statement is false because every individual statement is false.


Remark 1.2.3. Statements contain only “bound” variables, namely, variables that are universally or existentially quantified.

Sentences containing “free” or “unbound” variables (such as “n is even” or “x2+x−2=0 ”) are not statements. However, sentences containing unbound variables play the useful role of conditions in mathematics, selecting objects (perhaps integers n or real numbers x) for which the condition is true. ⋄


Many mathematical conclusions take the universally quantified form “For every x satisfying P(x), condition Q(x) is true.” For stylistic variety, such statements may be worded as implications involving arbitrary values of variables.


Example 1.2.4.


	If n is an integer such that n2+n−2=0, then n=1 or n=−2. (True)


	If n is an arbitrary integer, then there exist unique integers q and r such that n=4q+r and 0≤r<4. (True)


	If a, b, and c are positive integers, then a3+b3≠c3. (True) ♢






Quantifiers and Negation

The universal quantifier “for every” may be viewed as an enhancement of the “and” conjunction: “For every integer n, the condition P(n) is true” means that the infinitely many statements P(0), P(1), P(−1), and so forth, are all true.

The existential quantifier “there exists” may be viewed similarly as an enhancement of “or”: “There exists an integer n such that the condition P(n) is true” means that among the infinitely many statements P(0), P(1), P(−1), …, at least one is true.


Example 1.2.5. Logical negation “converts” a “for every” statement into a “there exists” statement of negations, and converts a “there exists” statement into a “for every” statement of negations:


	P:For every integer n, n2≥0.


	¬P: There exists an integer n such that n2<0.


	P:There exist integers m and n such that m2+n2=1.


	¬P: For all integers m and n, m2+n2≠1. ♢






Remark 1.2.6. A statement “For every x, P(x) ” can be disproved by finding a counterexample, but cannot be proved by exhibiting an example. ⋄



Remark 1.2.7. When the hypothesis of a logical implication contains a variable but no quantifier is explicitly present, the convention is to read “for every.” For Page 11example, “If n>0 then n2>0 ” should be read “For every integer n, if n>0 then n2>0 ” (assuming context dictates n is an integer).

If an implicitly quantified statement is negated, the existential quantifier must be added explicitly: “There exists a positive n such that n2≤0.”

To avoid confusion, including your own, include logical quantifiers explicitly. This book makes a special effort to set a good example. ⋄




Quantifiers and Contraposition

Contraposition tends to clarify implications having multiple hypotheses. Particularly in analysis, an implication may have infinitely many hypotheses.


Example 1.2.8.


	Assume x denotes a real number and n a positive integer.


	Direct implication: If x<1/n for every n, then x=0.


	Contrapositive: If x>0, then there exists an n such that 1/n≤x.


	The contrapositive is true: If x>0 and n is an integer such that n≥1/x, then 1/n≤x. The direct implication is therefore true, since its contrapositive is true. However, the direct implication exhibits a new phenomenon: The hypothesis consists of infinitely many statements, x<1, x<1/2, x<1/3, etc., but no finite number of these statements implies the conclusion. Indeed, if we assume only finitely many inequalities of the form x<1/n, then there exists a largest denominator, say N, and our collection of inequalities is equivalent to the single inequality x<1/N, which does not imply x=0.


	Incidentally, the converse “If x=0, then x<1/n for every positive integer n” is easily seen to be true, even though the conclusion consists of infinitely many statements: 0<1, 0<1/2, 0<1/3, etc. ♢







Multiple Quantifiers and Adversarial Games

Among the most subtle conditions in mathematics are those containing multiple quantifiers. The basic definitions of analysis entail multiple quantifiers. The good news is, multiply quantified definitions can be phrased as adversarial two-player games, and human intuition is remarkably strong in that arena, as we saw in Exercise 1.1.3.


Example 1.2.9. A joke the author often shared with students ran like this:


Let's play “Who can pick the larger integer?” I'll let you go first.



Students generally laughed immediately, even though the rules had not been specified, because human intuition is good at navigating potentially adversarial situations. The joke is, although letting someone play first in a new game is often a courtesy, here the second player can always win.

Page 12Consider the multiply quantified statement, “For every integer n, there exists an integer L such that n<L.” Probably this looks forbidding, but its truth encapsulates the outcome of “Who can pick the larger integer?”

Let's give our players names: Player n and Player L (for “larger”). The game is, Player n picks an integer n. Then Player L picks an integer L. The player with the larger integer wins. Because there is no largest integer, it's better to pick second (assuming the goal is to win). For definiteness, Player L may pick L=n+1. For every n (Player n's choice) there exists an integer L (Player L's choice, say L=n+1) such that n<L (Player L wins).

In a certain explanatory sense, the multiply quantified statement is true because Player L has a winning strategy against a perfect opponent. Player L's n-dependent strategy L=n+1 proves the truth of “For every integer n, there exists an integer L such that n<L.” ♢



Example 1.2.10. What if the game is “Who can pick the smaller natural number?” (The players may not choose the same number.) Would you rather play first or second? Before reading further, take a minute to write a multiply quantified sentence that encapsulates the outcome.

Let's call the players n and S (for “smaller”). We can write a multiply quantified sentence just as before: “For every natural number n, there exists a natural number S such that S<n.” The crucial mathematical difference is, there exists a smallest natural number, 0. So the truth of our multiply quantified statement implies “there exists a natural number S such that S<0.” Since no such S exists, our multiply quantified statement is false. And this proves Player n has a winning strategy against a perfect opponent. ♢



Example 1.2.11. In the spirit of giving a “live” example, here is the type of condition analysts work with:


For every (positive real number) ε (epsilon),

there exists a natural number N such that

if k≥N, then 1/(k+1)<ε.



This is not the place to explain what this statement means, but when the time comes (Chapter 6), you'll have in mind an adversarial game and strategic tools to show the statement is true. ♢



Remark 1.2.12. When you encounter multiply quantified statements, slow down, pay attention, and strive to understand the adversarial dependencies encoded in the type (universal or existential) and ordering of quantifiers. Changing word order can completely change meaning. The fundamental definitions of analysis, such as Definition 6.1.6, depend delicately on the precise wording. ⋄





Page 13Exercises for Section 1.2


	Exercise 1.2.1. (★) The phrases “for every,” “there exists,” and “such that” require practice. Explain why each of the following is anomalous, determine whether or not the statement is true, and give the presumed meaning.


	(a)There exists a real number x such that 2+2=4.


	(b)If 0<x for every x such that 1<x, then 0<1<x2.


	(c)If y=x2 for every x>0, then y>0.





	Exercise 1.2.2. Negate the statement, “For every even integer n≥6, there exist primes p1 and p2 such that n=p1+p2.” (At this writing, the truth of this statement is unknown.)

Discuss the possibilities for resolving this statement by checking examples.


	Exercise 1.2.3. (★) Let [0,1] be the set of real numbers x such that 0≤x≤1. Analyze the two-player game, “Who can pick the larger number in [0,1]?” Particularly, determine which player can force a win, and write a multiply quantified sentence whose truth value expresses which player wins.


	Exercise 1.2.4. Let (0,1) be the set of real numbers x such that 0<x<1. Analyze the two-player game, “Who can pick the larger number in (0,1)?” Particularly, determine which player can force a win, and write a multiply quantified sentence whose truth value expresses which player wins.


	Exercise 1.2.5. Consider the statement, “For every integer x, there exists an integer y greater than x such that for every integer z, if z<y then z≤x.”

Describe a two-player adversarial game whose outcome is described by this statement, and analyze this game. Does your analysis change if we replace “integer” by “rational number”?






1.3 Sets

Modern mathematics is built on the concept of a “set,” a collection of “elements.” These primitive notions will serve in lieu of definitions.


Remark 1.3.1. Abstract sets will be denoted with capital letters, such as X or Y. Elements are normally denoted with lower case letters, such as x and y. We write x∈X to mean “x is an element of (the set) X,” and y∉X for the negation “y is not an element of X.”

Page 14The set of natural numbers is denoted N. The set of integers is denoted Z (from the German, Zahl, number). The set of rational numbers is denoted Q (for quotients). The set of real numbers is denoted R.

We have 0∈N, −1∉N, and 1/2∉Z. ⋄



Definition 1.3.2. ⏎ Assume X and Y are sets. We say X is a subset of Y, denoted X⊆Y, if x∈X implies x∈Y: Every element of X is an element of Y. With the same meaning, Y is a superset of X, denoted Y⊇X.

Two sets X and Y are equal if X⊆Y and X⊇Y, namely if they have exactly the same elements: x∈X if and only if x∈Y. If X⊆Y and X≠Y, namely, Y contains an element not in X, we say X is a proper subset of Y.



Example 1.3.3. We have proper inclusions N⊆Z⊆Q⊆R. ♢



Example 1.3.4. Let X be a set. For each element x in X, there is a singleton set {x} contained in X. Take care to distinguish x and {x}; x is an object, while {x} is a “package” containing exactly one object. ♢



Example 1.3.5. ⏎ There exists an empty set ∅ containing no elements. For all x, the clause x∈∅ is false. In particular, for every set X the logical implication “x∈∅ implies x∈X ” is vacuous (has false hypothesis). Consequently, ∅⊆X is true for all X. ♢



Proposition 1.3.6. ⏎ The empty set is unique.



Remark 1.3.7. In logic and mathematics, unique has its literal meaning: There is precisely one. The phrase “very unique” is nonsensical in mathematics, and best avoided in colloquial English since it implicitly redefines “unique.” ⋄



Remark 1.3.8. Sometimes we want to introduce a name inline, such as calling the empty set X. The notation “X:=∅,” read “X, by definition equal to ∅,” signifies defining the symbol on the left to be the object on the right. ⋄



Proof of Proposition 1.3.6. The standard mathematical idiom for proving uniqueness is to assume two objects satisfy stated properties, and prove they are identical. Suppose ∅ and ∅′ are empty sets. To prove they are equal, it suffices to prove each is a subset of the other. But X:=∅′ is a set and ∅ is empty. By Example 1.3.5, ∅⊆∅′.

Similarly, X:=∅ is a set and ∅′ is empty. By Example 1.3.5, ∅′⊆∅. □



Remark 1.3.9. Since the structure of the final paragraph mirrors the structure of the preceding argument with the roles of ∅ and ∅′ exchanged, in practice we often simply write, “Exchanging the roles of ∅ and ∅′, [conclusion follows, here ∅′⊆∅].” ⋄



Example 1.3.10. ⏎ Page 15What sets can we construct at this stage? In the spirit of providing examples and motivating the need to introduce additional tools, let's see what we can conjure.

We know about the empty set, which has no elements. It may help to think of the empty set as a box (set) with nothing in it (no elements).

Can we give a set having one element? We can, because a set can be an element of another set. This leads us to consider the (non-empty) set {∅}, the singleton whose unique element is ∅. In our packing analogy, this set is a box (set) containing an empty box (an element, which happens to be a box).

Note carefully: We have both ∅⊆{∅} and ∅∈{∅}, but the first is true for every set while the second is particular to this singleton.

What about a set with two elements? The set {∅,∅} is equal to {∅} by Definition 1.3.2; multiply listed elements count only once. We have little choice but {∅,{∅}}. Inside this box we have two things (elements): One empty box (the empty set), and one box containing an empty box (the set {∅}).

Perhaps you can see how we might continue, though our notation quickly becomes unwieldy. ♢


To proceed further in constructing sets, it will help to return to logical operations and express them in terms of sets. Before doing that, we note a contradiction that arises if we are careless about what constitutes a set.


Example 1.3.11. (Russell's paradox). ⏎ A set X may be an element of itself (X∈X) or not (X∉X), and for every set, precisely one of these is true. Define R={X:X∉X}, “the set of all sets that are not elements of themselves.” Which statement is true, R∈R or its negation R∉R?

If R∈R, then R satisfies the membership criterion for R, which is to say R∉R. But, if R∉R, then R fails to satisfy the membership criterion for R, so ¬(R∉R), or R∈R. We have proven R∈R if and only if R∉R. This is a logical contradiction, see Remark 1.1.16. ♢



Remark 1.3.12. The problem was “the set of all sets” inside which we could speak of “the set of all sets that are not elements of themselves.” To avoid Russell's paradox, mathematicians always restrict attention, at least implicitly, to sets that are contained in a fixed set U, called a universe.

Specific subsets of U are conveniently described using set-builder notation, in which elements are selected according to logical conditions formally known as a predicates. The expression {xinU:P(x)} is read “the set of all x in U such that P(x).”

If U is a population whose elements are individuals, a subset X of U is a club or organization, and the predicate defining X is a membership card. We screen individuals x for membership in X by checking whether or not x carries the membership card for X, namely whether P(x) is true. ⋄



Example 1.3.13. Page 16The set of even integers is {ninZ:n=2k for some k in Z}. The set of odd integers is {ninZ:n=2k+1 for some k in Z}. ♢



Remark 1.3.14. For brevity, we sometimes write, for example, the set of even integers as {2n:n∈Z}, read “the set of 2n such that n is an integer.” This way of writing a set is convenient, and the meaning is generally clear, but it isn't technically proper grammar. To define a set formally, first give the universe, then specify the predicate. ⋄



Sets and Logic


Remark 1.3.15. Assume U is a universe, and X, Y are subsets of U. The predicates x∈X and x∈Y may be viewed as conditions P and Q on elements of U. By definition, the logical implication “x∈X implies x∈Y ” corresponds to “being a subset”: X⊆Y. ⋄


Logical negation, disjunction (or), and conjunction (and) similarly have natural interpretations in terms of X and Y.


Definition 1.3.16.


	Assume U is a universe, X and Y subsets of U.


	The complement of X is the set Xc={xinU:x∉X}.


	The union of X and Y is the set X∪Y={xinU:x∈X or x∈Y}.


	The intersection of X and Y is X∩Y={xinU:x∈X and x∈Y}.






Remark 1.3.17. A Venn diagram represents subsets of a universe U pictorially. The universe is depicted as a rectangle, and subsets are disks or, if necessary, more complicated shapes. The complement of X, or the union and intersection of two sets X and Y, might be drawn as indicated in Figure 1.1. ⋄


[image: A set diagram presents the complement of X, the union of X and Y, and the intersection of X and Y using three Venn regions.]
Long Description for Figure 1.1The first diagram on the left shows a circle labeled X inside the rectangle with the area outside the circle shaded, illustrating the complement of X. The second diagram in the middle contains two overlapping circles labeled X and Y with both circles shaded, including the intersection, indicating the union of X and Y. The third diagram on the right has the same two overlapping circles, but only the intersecting region is shaded, representing the intersection of X and Y.

Figure 1.1 The complement of a set; union and intersection of two sets. ⏎




Definition 1.3.18. Assume X and Y are subsets of U. Their difference is defined to be X∖Y={xinX:x∉Y}=X∩Yc.



Definition 1.3.19. We say X and Y are disjoint if X∩Y=∅, namely if X and Y have no elements in common.




Page 17Families of Sets


Definition 1.3.20. Let I (script-I) be a non-empty set, possibly containing infinitely many elements, and suppose we have a collection of sets Xi, one for each i in I, with each Xi contained in some fixed universe U. We denote the collection of sets by {Xi}i∈I, and say the collection is indexed by I.



Definition 1.3.21. Assume {Xi}i∈I is a collection of subsets of U. We define the union and intersection of the collection to be the following subsets of U:

⋃i∈IXi={xinU:x∈Xi for  some i in I},⋂i∈IXi={xinU:x∈Xi for  all i in I}.



Remark 1.3.22. If I={0,1,2,…,n−1}, a collection of sets indexed by I is often denoted {Xi}i=0n−1. The union and intersection are denoted

⋃i∈IXi=⋃i=0n−1Xi,⋂i∈IXi=⋂i=0n−1Xi.

By convention, the collection, union, and intersection are empty if n=0. ⋄



Theorem 1.3.23 (The complement laws and distributive laws) ⏎ Assume {Xi}i∈I is a collection of subsets of some set U. If Y⊆U, then


	(i)Y∖(⋃i∈IXi)=⋂i∈I(Y∖Xi) and Y∖(⋂i∈IXi)=⋃i∈I(Y∖Xi).


	(ii)(⋃i∈IXi)∩Y=⋃i∈I(Xi∩Y) and (⋂i∈IXi)∪Y=⋂i∈I(Xi∪Y).




Proof. See Exercise 1.3.5. □



Definition 1.3.24. Assume {Xk}k∈N is a collection of sets. We say {Xk}k∈N is nested outward if Xk⊆Xk+1 for every k in N.

We say {Xk}k∈N is nested inward if Xk⊇Xk+1 for every k in N.



Definition 1.3.25. The power set of X, P(X), is the set of all subsets of X.



Example 1.3.26. ⏎ If X={0,1} has two elements, the power set P(X) has four elements: P(X)={∅,{0},{1},X}. The empty set and X itself are always subsets of X, a.k.a., elements of P(X), so a power set is never empty. For example, P(∅)={∅} is the singleton we met earlier. ♢



Definition 1.3.27. If X is a set, a partition of X is a collection of non-empty sets {Xi}i∈I indexed by a set I such that Xi∩Xj=∅ if i≠j, and X=⋃i∈IXi.



Remark 1.3.28. Page 18In words, a partition of a set is a way of “dividing X into disjoint, non-empty subsets”: Each element of X is contained in precisely one of the Xi.

A partition of X is a particular type of subset of the power set P(X). ⋄



Example 1.3.29. The sets

2Z:={xinZ:x=2n for some integer n},2Z+1:={xinZ:x=2n+1 for some integer n}

of even and odd integers are a partition of Z: If we put X0:=2Z and X1:=2Z+1, then every integer x is even (x∈X0) or odd (x∈X1), and no integer is both: X0 and X1 are disjoint. The index set here is I={0,1}. ♢



Example 1.3.30. For each integer n, define Xn={xinR:n≤x<n+1}. The sets {Xn}n∈Z are a partition of R: Every real number x may be written uniquely as an integer n plus a real number x′ such that 0≤x′<1, see Corollary 4.3.2. The index set here is I=Z. ♢





Exercises for Section 1.3


	Exercise 1.3.1. (★) Assume X and Y are subsets of U. Prove X⊆Y if and only if Yc⊆Xc, and illustrate with a Venn diagram. How is this result related to contrapositives?


	Exercise 1.3.2. Let U be a universe. Prove that if A⊆U, then A⊆Ac=U∖A if and only if A=∅.


	Exercise 1.3.3. (★) Let P and Q denote arbitrary statements. Use truth tables to prove the indicated pairs of statements are logically equivalent.


	(a)“¬(P or Q) ” and “¬P and ¬Q.”


	(b)“¬(P and Q) ” and “¬P or ¬Q.”


	(c)Let X and Y be arbitrary subsets of a universe U. Prove the complement laws (X∪Y)c=Xc∩Yc and (X∩Y)c=Xc∪Yc.





	Exercise 1.3.4. (★) Assume X, Y and Z are subsets of a universe U. Prove the distributive laws

(X∪Y)∩Z=(X∩Z)∪(Y∩Z),(X∩Y)∪Z=(X∪Z)∩(Y∪Z).


	Exercise 1.3.5. Page 19Prove Theorem 1.3.23.


	Exercise 1.3.6. (★) If X={0,1,2}, list the elements of the power set P(X).


	Exercise 1.3.7. Assume n is a natural number and X is a set of n elements. How many elements does the power set P(X) have? Argue as formally as you can.






1.4 Mappings and Relations

“Mappings” and “binary relations” can be defined in a couple of paragraphs, but they underlie this entire book, as well as large swaths of mathematics and computer science. Ramifications of these brief definitions take years to explore.


Definition 1.4.1. Assume X and Y are sets, not necessarily different. If x∈X and y∈Y, the ordered pair (x,y) is a set such that for all x′ in X and all y′ in Y, we have (x,y)=(x′,y′) if and only if x=x′ and y=y′.

The set of all ordered pairs (x,y) such that x∈X and y∈Y is the ordered product X×Y, often read “X cross Y.”



Remark 1.4.2. ⏎ One construction is (x,y)={{x},{x,y}}, see Exercise 1.4.5. ⋄



Example 1.4.3. If R is the set of real numbers, the ordered product R×R is denoted R2, read “are two,” and is called the plane. The real numbers x and y are the rectangular coordinates of the point (x,y). The set of (x,y) such that x and y are positive is the (open) first quadrant. ♢



Definition 1.4.4. Assume X and Y are sets. A mapping f:X→Y (read “f from X to Y”) is a subset f⊆X×Y with the following property: For every x in X, there exists a unique y in Y such that (x,y)∈f.

If (x,y)∈f, we write y=f(x), and call y the value of f at input x.



Remark 1.4.5. The ordered product X×Y may be viewed schematically as a rectangle with base X and side Y. A mapping f:X→Y is then a set satisfying the vertical line test, see Figure 1.2. ⋄


[image: A curve illustrates a function f from X to Y with a marked point x mapped to y forming the pair x, y.]
Long Description for Figure 1.2The diagram represents a function f from set X to set Y using a rectangular coordinate region labeled X cross Y. The horizontal axis is marked X and the vertical axis is marked Y. A continuous curve is drawn within the rectangle, showing the behaviour of the function f. A specific point on the curve is marked as x comma y with dotted lines extending from the point horizontally to y on the vertical axis and vertically to x on the horizontal axis.

Figure 1.2 A mapping f:X→Y. ⏎




Definition 1.4.6. Let N denote the set of natural numbers, and let X be a non-empty set. A sequence in X is a mapping a:N→X. The value ak:=a(k) is called the kth term. The set of terms is {xinX:x=ak for some k}.



Remark 1.4.7. Sequences are among the most important concepts in this book. We usually view a sequence as an ordered list of elements of X, in which case we denote the sequence by (ak)k∈N, and its set of terms by {ak}k∈N. ⋄



Definition 1.4.8. Page 20Assume X is a non-empty set. A binary relation on X is a subset R⊆X×X. If x and x′ are arbitrary elements of X, we write “xRx′ ” and say “x is R-related to x′,” if (x,x′)∈R.



Example 1.4.9. In the set X=N of natural numbers, equality is a binary relation R comprising ordered pairs (x,x′) such that x=x′. Inequality, the logical negation, is the complement (N×N)∖R of pairs such that x≠x′.

Less-than (<) and less-than-or-equal (≤) are binary relations on N. ♢



Equivalence Relations and Partitions


Definition 1.4.10. Assume X is a non-empty set and R a binary relation on X. We say R is:


	(i)Reflexive if for all x in X, xRx;


	(ii)Symmetric if for all x, y in X, xRy implies yRx;


	(iii)Transitive if for all x, y, z in X, xRy and yRz imply xRz.






Remark 1.4.11. To personify, imagine X is a set of people, and xRy means “x is a friend of y.” Reflexivity means everyone is their own friend. Symmetry means all friendships are mutual. Transitivity means “a friend of a friend is a friend.” ⋄



Definition 1.4.12. Assume X is a non-empty set and R a binary relation on X. If R is reflexive, symmetric, and transitive, we say R is an equivalence relation on X.

If R is an equivalence relation on X, the set [x]:={x′inX:xRx′} is the equivalence class of x, and an element of [x] is called a representative.



Remark 1.4.13. In a set X where “is a friend of” is an equivalence relation, each person belongs to a “clique” of mutual friends. No one outside a clique is a friend of anyone in that clique. The set X is partitioned into cliques. ⋄Page 21



Proposition 1.4.14. ⏎ If X is a non-empty set and ≡ an equivalence relation on X, then the distinct equivalence classes are a partition of X.

Proof. By reflexivity, x∈[x] for all x, so every equivalence class is non-empty, and the union of all equivalence classes is X. It suffices to check that distinct equivalence classes are disjoint: For all x and z in X, [x]≠[z] as sets implies [x]∩[z]=∅.

We prove the contrapositive: If y∈[x]∩[z] for some y, then [x]=[z]. Our friendship example guides the proof: If y is a friend of both x and z, then x and z are friends by transitivity through y, so every friend of x is a friend of z by transitivity through x, and similarly every friend of z is a friend of x.

Formally, y∈[x] means x≡y. Similarly, y∈[z] means z≡y, so y≡z by symmetry. Since x≡y and y≡z, transitivity implies x≡z, so z∈[x]. Now assume z′∈[z]. By assumption, z≡z′. Transitivity through z implies x≡z′, that is, z′∈[x]. We have shown [z]⊆[x]. Reversing the roles of x and z, [x]⊆[z]. □



Remark 1.4.15. ⏎ Conversely, by Exercise 1.4.8, a partition {Xi}i∈I of a set X defines an equivalence relation whose equivalence classes are precisely the sets of the partition. Conceptually, equivalence relations on X and partitions of X are “the same thing.” ⋄




Induced Mappings

Mathematicians use equivalence relations to “ignore ‘irrelevant’ distinctions,” with “irrelevant” depending on context.


Example 1.4.16. Suppose a room has a single on-off light switch. When we left, the lights were off. Later when we arrived, the lights were on. How many times was the switch flipped while we were gone? There is no way to know, but we can be sure it was an odd number.

To a mathematician in this situation, natural numbers (counting flips of the light switch) come in two types, state-preserving (on remains on, off remains off) and state-reversing (on becomes off, off becomes on). Every number is one or the other, and no number is both: These sets partition the natural numbers. By Remark 1.4.15, they define an equivalence relation. When a mathematician “looks at” the natural numbers through the “glasses” of this relation, they see a set with two elements: state-preserving and state-reversing, or {[0],[1]}. ♢


Two definitions formalize this example: the quotient of a set by an equivalence relation, and induced mappings.


Definition 1.4.17. Assume X is a non-empty set and R an equivalence relation on X. The quotient of X by R is the partition into equivalence classes, viewed as a set: X/R:={Xi}i∈I.



Definition 1.4.18. Page 22Assume X is a non-empty set, R an equivalence relation on X, and f:X→Y a mapping. We say f is constant on equivalence classes of R, or well-defined mod R, if for all x and x′ in X, xRx′ implies f(x)=f(x′).

If f is well-defined mod R, we define the induced mapping f―:X/R→Y by f―([x])=f(x) for all x in X, and we say f factors through the quotient X/R.



Example 1.4.19. In the light switch example, X=N is the set of natural numbers, counting times the switch might have been flipped. The relation R distinguishes two types of natural number: the equivalence class [0]=2N of even numbers, and the equivalence class [1]=2N+1 of odd numbers.

Now let Y={F,T} be the set of truth values, representing state-preserving (F) and state-reversing (T), and let f be the mapping f:N→Y defined by f(n)=F if n flips preserve the state, and f(n)=T if n flips reverse the state. Because f is constant on equivalence classes of R, there is an induced mapping f―:X/R→Y. The induced mapping is defined by f―([0])=F and f―([1])=T. Existence of an induced mapping amounts to the claim that although we cannot tell how many times the switch was flipped, we can tell whether it was flipped an even or odd number of times. ♢



Example 1.4.20. A 52-card deck of playing cards has four “suits” and 13 “denominations” in each suit. The suits form a set S={♣,♢,♡,♠}: clubs, diamonds, hearts, and spades. Clubs and spades are black, diamonds and hearts are red. The denominations form a set D={A,2,3,4,5,6,7,8,9,10,J,Q,K}: ace, two through ten, jack, queen, and king. The entire deck is the ordered product C=D×S. Typical elements (cards) are the ace of diamonds (A,♢) and the jack of clubs (J,♣).

Let Y={black,red} be the set of colors, and let f:C→Y be the mapping that sends a card to its color. Before continuing with the next paragraph, take a minute to ponder and answer: If R is the relation “same suit as,” is f well-defined mod R? And if R′ is the relation “same denomination as,” is f well-defined mod R′? If the answer is “yes” in either case, describe the induced mapping.

Intuitively we're asking: If we know a card's suit, do we know its color? And, if we know a card's denomination, do we know its color?

Since each suit has a single color, f is well-defined mod R. The set of equivalence classes of R may be viewed as S, the set of suits. The induced mapping f―:S→Y sends each suit to its color.

By contrast, the denomination of a card does not determine its color; f is not well-defined mod R′, and there is no induced mapping. More explicitly, the hallmark of a mapping is having a unique value for each input. But while, for example, [(4,♢)]′=[(4,♠)]′ as R′-equivalence classes, at least one of the following equalities must be false:

red=f((4,♢))=f―([(4,♢)]′)=f―([(4,♠)]′)=f((4,♠))=black.

Page 23The first and last are true, so either the defining condition of an induced mapping fails (the second or fourth equality is false) or f― is not well-defined (takes two or more values at a single input). ♢





Exercises for Section 1.4


	Exercise 1.4.1. (★) Assume X={0,1,2}.


	(a)How many distinct mappings f:X→X are there?


	(b)How many mappings f:X→X take three distinct values? List all of them. Suggestion: Such a mapping is uniquely determined by its values (f(0),f(1),f(2)).





	Exercise 1.4.2. (★) Assume X is a set of 2 elements and Y a set of 5 elements.


	(a)How many distinct mappings f:X→Y are there? How many of these take distinct values at the two inputs?


	(b)How many partitions of Y are there into two subsets?





	Exercise 1.4.3. Assume X is a set of 3 elements and Y a set of 5 elements.


	(a)How many distinct mappings f:X→Y are there? How many of these take three distinct values?


	(b)How many partitions of Y are there into three subsets?





	Exercise 1.4.4. Suppose k and n are positive integers, X is a set of k elements, and Y is a set of n elements.


	(a)How many distinct mappings f:X→Y are there?


	(b)If k≤n, how many mappings f:X→Y take k distinct values?





	Exercise 1.4.5. (★) Assume X and Y are sets. Prove that if x, x′ are elements of X and y, y′ are elements of Y, then {{x},{x,y}}={{x′},{x′,y′}} if and only if x=x′ and y=y′. (See Remark 1.4.2.)


	Exercise 1.4.6. (H) Let Y={T,F} be the set of truth values (true and false). A truth function on X is a mapping f:X→Y.

Prove that if X is a set, subsets of X correspond to truth functions on X. Conclude that binary relations on X correspond to truth functions on X×X.Page 24


	Exercise 1.4.7. (A). Let X=Z be the set of integers. In the table, five binary relations R on Z are given by the condition mRn. Determine with justification whether each R is reflexive, symmetric, and/or transitive.

m≠nm<nm≤n0<mn0≤mnReflexiveSymmetricTransitive


	Exercise 1.4.8. Conversely to Proposition 1.4.14, suppose {Xi}i∈I is a partition of X, and define a binary relation ∼ on X by declaring x∼y if and only if there exists an index i such that {x,y}⊆Xi. Prove ∼ is an equivalence relation, and the equivalence classes of ∼ are the sets Xi.


	Exercise 1.4.9. (★) Let C denote a deck of playing cards, S the set of suits, and R the “same color” equivalence relation on C.


	(a)Describe the equivalence classes of R in S.


	(b)Is the mapping f:C→S that sends a card to its suit well-defined mod R?





	Exercise 1.4.10. Assume f:X→Y is a mapping and {Xi}i∈I a partition. If x and x′ are elements of X, write x≡x′ if there exists an i in I such that x and x′ are both elements of Xi.

Prove that “x≡x′ implies f(x)=f(x′) ” if and only if “there exists a mapping F:I→Y defined by F(i)=f(x) for all x in Xi.”


	Exercise 1.4.11. Assume X is a set and R a binary relation on X. Someone claims that in defining an equivalence relation, reflexivity is redundant: “Suppose x and y are arbitrary elements of X. If xRy, then yRx by symmetry. But now taking x=z, transitivity implies xRx.” Is this correct? If not, where is the error?


	Exercise 1.4.12. (★) Let X=Z be the set of integers.


	(a)Let R be the binary relation xRx′ if and only if x−x′ is even. Determine whether R is an equivalence relation. If so, determine its equivalence classes.


	(b)Let R be the binary relation xRx′ if and only if x−x′ is odd. Determine whether R is an equivalence relation. If so, determine its equivalence classes.





	Exercise 1.4.13. In this exercise, assume that for every integer n, there exist unique integers d and r such that n=3d+r and 0≤r<3.


	(a)Define a binary relation ≡3 on Z by n≡3n′ if and only if n−n′=3d for some integer d. Prove ≡3 is an equivalence relation.


	Page 25(b)Describe the equivalence classes of ≡3.


	(c)If m≡3m′ and n≡3n′, prove m+n≡3m′+n′ and m⋅n≡3m′⋅n′.


	(d)By part (c), addition of equivalence classes is well-defined: If we add two classes by picking representatives, adding, and taking the equivalence class of the sum, we get the same value regardless of representatives. It makes sense to write [r]+[s]=[r+s] for all r and s in {0,1,2}.

Similarly, [r]⋅[s]=[r⋅s] for all r and s in {0,1,2}.

Make a 3×3 “addition table” and “multiplication table” for equivalence classes.
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The set N of natural numbers is a mathematician's prototype of an infinite list. There is an “initial element” 0 and a concept of “successorship.” Every natural number arises by starting with 0 and taking successors, and every natural number except 0 is the successor of a unique natural number. We denote natural numbers with their familiar Hindu-Arabic symbols, N={0,1,2,3,4,5,…}.


2.1 Induction and Recursion

We first give axioms for the natural numbers. To avoid “lengthy start-up,” however, for now we'll assume the familiar structure of the natural numbers, including positional notation, addition, multiplication, and ordering.


Definition 2.1.1. There exists a set N, whose elements are called natural numbers, with an element 0 and successorship mapping S:N→N satisfying the following conditions.


	(i)0 is not the successor of any natural number.


	(ii)Every natural number other than 0 is the successor of a unique natural number.


	(iii)(The inductive property) If I⊆N is a subset such that 0∈I, and for every natural number k, k∈I implies k+1∈I, then I=N.





The inductive property lets us prove infinitely many statements that are logically structured in a list indexed by the natural numbers. This technique is one of our primary tools in this book.


Theorem 2.1.2. (Mathematical induction). ⏎ Assume P(n) is a collection of statements, one for each natural number n. If P(0) is true, and if P(k) implies P(k+1) for each k, then P(n) is true for all n.

Proof. Put I={ninN:P(n) is true}. By hypothesis, 0∈I (the statement P(0) is true) and if k∈I, then k+1∈I (for each natural number k, P(k) implies P(k+1)). By the inductive property, I=N, namely, P(n) is true for every natural number n. □



Remark 2.1.3. ⏎ Page 27In Theorem 2.1.2, P(0) is called the base case and “P(k) implies P(k+1) for every natural number k” is the inductive step.

It is sometimes convenient to take a positive index n0 for the base case. In this event, if P(n0) is true, and P(k) implies P(k+1) for k greater than or equal to n0, then P(n) is true for all n greater than or equal to n0. ⋄



Theorem 2.1.4. (Well-ordering) ⏎ If A⊆N is non-empty, then there exists a “smallest element” of A, namely, a natural number n0 such that every element of A occurs in the chain of successorship starting at n0.

Proof. We will prove the contrapositive: If A⊆N has no smallest element, then A is empty. For each natural number n, let P(n) be the statement “If m is a natural number such that m≤n, then m∉A.”

The base case P(0) is true, since if 0∈A then 0 is the smallest element of A by the inductive property. Assume inductively that P(k) is true for some natural number k, namely, A contains no natural number m such that m≤k. If k+1∈A, then k+1 is the smallest element of A. Since A has no smallest element by hypothesis, k+1∉A. Consequently, A contains no natural number m such that m≤k+1; thus P(k+1) is true. Since the base case P(0) is true and the inductive step P(k) implies P(k+1) for every k is true, P(n) is true for all n. Particularly, n∉A for all n, so A is empty. □


Before looking at “concrete” examples of induction, we'll give recursive definitions of summation and exponentiation. These will give us material to work with inductively.


Definition 2.1.5. If (ak)k∈N is a sequence of numbers (integers, rationals, reals, …), the sequence (sn)n∈N of partial sums is defined recursively by

s0=0,sn+1=sn+anif n≥0.



Example 2.1.6. Expanding this definition if n=3 gives

s3=s2+a2=(s1+a1)+a2=(s0+a0)+a1+a2=a0+a1+a2,

the sum of the terms ak such that 0≤k<n=3. ♢



Remark 2.1.7. Partial sums arise frequently enough to get special notation:

sn=∑k=0n−1ak=a0+a1+a2+⋯+an−1,

Page 28read, “the sum from k=0 to n−1 of a sub k.” Note that the sum is 0 if n=0. The recursion relation is written

∑k=0nak=[∑k=0n−1ak]+an,

which says the sum over 0≤k≤n is obtained by adding the nth term to the sum over 0≤k≤n−1. The summation sign is a stylized Σ (Sigma), for “sum.” ⋄



Definition 2.1.8. If m is a natural number, define m0=1. (Note: We define 00=1.) If n is a natural number, recursively define

mn+1=mn⋅mfor all m in N.

We read mn as “m to the nth power” and call this operation exponentiation of natural numbers.



Example 2.1.9. Expanding the definition if m=2 and n=3, we have

23=22⋅2=21⋅2⋅2=20⋅2⋅2⋅2=1⋅2⋅2⋅2=2⋅2⋅2=8.

After 20=1, the next twenty powers of 2 are:

21=226=64211=2048216=65,53622=427=128212=4096217=131,07223=828=256213=8192218=262,14424=1629=512214=16,384219=524,28825=32210=1024215=32,768220=1,048,576.

Note that 210=1024≈1000=103 and 220=1,048,576≈106. ♢


A useful but less common recursive operation related to both sums and powers is general products.


Definition 2.1.10. If (ak)k∈N is a sequence of numbers, the sequence (pn)n∈N of partial products is defined recursively by

p0=1,pn+1=pn⋅anif n≥0.



Remark 2.1.11. As with sums, partial products get special notation:

pn=∏k=0n−1ak=a0⋅a1⋅a2⋯an−1,

with the product equal to 1 if n=0. The product sign is a stylized Π (Pi), for “product.” ⋄



Example 2.1.12. Page 29If m is a natural number, then mn=∏k=0n−1m. ♢


We now turn to examples of mathematical induction.


Example 2.1.13. Suppose someone tells us the sum of the first n positive odd integers is equal to n2. What basis do we have for believing this claim?

As a start, we might verify instances by hand with the implicit hope of finding a counterexample. For example, 1+3+5=9=32, so the claim is true when n=3. Perhaps skeptical, we add the first ten odd integers, or the first twenty, each time verifying the claim. Perhaps we are starting to believe.

Logically, however, testing special cases leaves us no closer to mathematical certainty. Finding a single counterexample would prove the claim false, but no matter how many cases we verify there remain infinitely many unverified cases.

Induction allows us to resolve such questions with a finite proof. The idea is to structure the statement “For every natural number n, the sum of the first n odd positive integers is equal to n2” as an infinite list of statements indexed by n. Here, we let P(n) be the statement

∑j=0n−1(2j+1)=1+3+5+⋯+(2n−1)=n2.

To say P(100) is true, for example, means the sum of the first hundred odd integers is equal to 10,000=1002.

The original statement may be rephrased “For every natural number n, P(n) is true.” This single statement P encapsulates the infinite list of statements: P(0) is true, P(1) is true, P(2) is true, etc. To establish the truth of P by mathematical induction, it suffices to prove P(0), and to prove P(k) implies P(k+1) for all k in N.

The base case P(0) reads “0=02,” which is true.

Next, “assume inductively” that P(k) is true for some (fixed but arbitrary) k. By the recursive definition of summation, the sum of the first k+1 odd positive integers is equal to the sum of the first k plus the (k+1) th. By hypothesis, the sum of the first k is equal to k2. We therefore deduce

1+3+5+⋯+(2k−1)⏟=k2 by P(k)+(2k+1)=k2+(2k+1)=(k+1)2

by algebra. This equation says the sum of the first (k+1) odd positive integers is equal to (k+1)2. By assuming P(k), we proved P(k+1).

To summarize, the base case P(0) is true, and the inductive step, “P(k) implies P(k+1) for every k” is true. By Theorem 2.1.2, P(n) is true for all n. ♢



Remark 2.1.14. Page 30The preceding discussion contains explanation needed mostly because it was a first example. Here is a “final draft” argument.

For each natural number n, let P(n) be the statement

∑j=0n−1(2j+1)=n2.

We will prove by mathematical induction that P(n) is true for every n in N.

The base case P(0) reads 0=02, which is true.

Assume inductively that P(k) is true for some natural number k. By the recursive definition of summation, the inductive hypothesis, and algebra,

∑j=0k(2j+1)=[∑j=0k−1(2j+1)]+(2k+1)=k2+(2k+1)=(k+1)2;

that is, P(k+1) follows from P(k). We have proven P(0) is true, and P(k) implies P(k+1) for all k. By mathematical induction, P(n) is true for all n. ⋄



Remark 2.1.15. Our use of n or k to denote an arbitrary natural number in an inductive proof signifies a subtle but important conceptual distinction. In this book, P(n) connotes the general statement of an inductive list, whose truth value is to be established. By contrast, P(k) connotes a general statement that is “inductively true”: We grant for the sake of argument that P(k) is true for some (particular but arbitrary) k, and try to deduce P(k+1).

To emphasize, in an inductive proof we never assume P(k) is true without qualification. To do so (for arbitrary k) would be to assume the conclusion we wish to establish, namely that P(k) is true for every k. ⋄


Induction can be used to establish families of statements that are not formulas, such as inequalities.


Example 2.1.16. ⏎ Prove there exists a natural number n0 such that 2n+2≤3n if n≥n0. For reasons to be explained, we start with the inductive step.

Assume inductively that P(k) is true, namely, that 2k+2≤3k, for some k. By definition of powers, properties of inequalities, and the inductive hypothesis, we have

2(k+1)+2=2⋅2k+2≤2⋅3k≤3⋅3k=3k+1.

That is, P(k) implies P(k+1) for all k.

There is a curious and important feature here: Although the inductive step “P(k) implies P(k+1) for all k” is true, the statements P(n) themselves are initially false; the first few implications are vacuous. This highlights the need to prove both a base case and the inductive step, and emphasizes that “inductively true” does not mean “true.”

Page 31As for a base case, P(3) reads 25≤33, or 32≤27, which is false, while P(4) reads 26≤34, or 64≤81, which is true. We conclude that 2n+2≤3n if n≥4, so we may take n0=4 (or any larger integer). ♢




Exercises for Section 2.1


	Exercise 2.1.1. Prove ∑j=0n−1j2=n(n−1)(2n−1)6 for all natural numbers n.


	Exercise 2.1.2. Prove that for all natural numbers n:


	(a)∑j=0n−1j=n(n−1)2.


	(b)∑j=0n−1j3=[n(n−1)2]2.





	Exercise 2.1.3. If (ak)k∈N is a sequence of numbers, prove the telescoping sum identity:

an−a0=∑k=0n−1(ak+1−ak)for every n in N.


	Exercise 2.1.4. (★) If n is a natural number, define n!:=∏j=0n−1(j+1), and let P(n) be the statement 2n < n!. Following Example 2.1.16, prove P(k) implies P(k+1) if k≥1, and prove P(n) is true if n≥4.


	Exercise 2.1.5. If n is a natural number and X is a set of n elements, use induction to prove P(X) has 2n elements.


	Exercise 2.1.6. Assume n is a positive integer. The Tower of Hanoi puzzle consists of n disks of decreasing size, stacked on one of three spindles. The object is to move the entire stack to one of the other spindles, moving only one disk at a time, and never placing a larger disk atop a smaller one. The initial configuration (with seven disks) is shown in Figure 2.1.

[image: A tower of Hanoi puzzle with three vertical pegs mounted on a horizontal base. The leftmost peg has multiple discs stacked on it in decreasing diameter from bottom to top, forming a conical arrangement. The middle and right pegs are empty with no discs placed on them. Each disc is a flat rectangular shape centred on the peg, and the base beneath all pegs is a long horizontal rectangle supporting the structure.]
Figure 2.1 The Tower of Hanoi, initial configuration. ⏎



Determine how many individual transfers are required to “solve” the Tower of Hanoi, and prove your guess is correct.






2.2 Counting Subsets


Definition 2.2.1. If m and n are integers, the number of m-element subsets of a set of n elements is called the binomial coefficient (nm), read “n choose m.”



Remark 2.2.2. Page 32Each binomial coefficient is a non-negative integer, and (nm)=0 unless 0≤m≤n. Further, the binomial coefficients satisfy the symmetry (nm)=(nn−m): If X is a set of n elements, then each m-element subset A of X has a unique complement X∖A containing (n−m) elements. ⋄



Proposition 2.2.3. ⏎ If m and n are integers, then (n+1m)=(nm)+(nm−1).

Proof. If m<0 or n+1<m, each term is 0. Assume, therefore, that 0≤m≤n+1. Consider the set X={0,1,2,…,n} containing (n+1) elements, and assume A is a subset having precisely m elements.

If 0∉A, then A⊆{1,2,…,n}. By definition, there exist (nm) distinct sets of this type.

If 0∈A, then A∖{0}⊆{1,2,…,n}. By definition, there exist (nm−1) distinct sets of this type.

Since every m-element set A falls into exactly one of these categories, (n+1m)=(nm)+(nm−1). □



Remark 2.2.4. Proposition 2.2.3 leads us to construct the binomial table, Table 2.1, in which the top row contains a single 1 among infinitely many 0s, and each entry in subsequent rows is the sum of its “parents” in the preceding row. ⋄




Table 2.1 The binomial table, “classic” format (top) and tabular. ⏎
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	1
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	m = -1

	m = 0

	m = 1

	m = 2

	m = 3

	m = 4

	m = 5

	⋯




	n = 0

	0

	1

	0

	0

	0

	0

	0

	⋯




	n = 1

	0

	1

	1

	0

	0

	0

	0

	⋯




	n = 2

	0

	1

	2

	1

	0

	0

	0

	⋯




	n = 3

	0

	1

	3

	3

	1

	0

	0

	⋯




	n = 4

	0

	1

	4

	6

	4

	1

	0

	⋯




	n = 5

	0

	1

	5

	10

	10

	5

	1

	⋯




	⋮

	⋮

	⋮

	⋮

	⋮

	⋮

	⋮

	⋮

	







Remark 2.2.5. In addition to the binomial table, we seek a closed formula for the binomial coefficients: One that allows us to calculate (10050), for example, without computing the first 100 rows of the table. To this end, we'll informally count subsets in two ways, which gives a prospective formula. Then we'll prove the formula reproduces the first row of the binomial table and satisfies the recursion rule of Proposition 2.2.3.

The informal counting argument separates into two steps. First, there are n⋅(n−1)⋅(n−2)⋯(n−m+1) ways to pick an ordered list of m distinct elements in X: We have n choices for the first element, and then (n−1) choices for the second (because we cannot pick the same element twice), and then (n−2) choices for the third, etc., until at the mth step we have n−(m−1)=n−m+1 Page 33choices. Since these choices are independent, the total number of choices is the product of the individual numbers of choices at each step.

Second, to emphasize, the preceding paragraph does not count subsets of m elements, but ordered subsets of m elements. There are m⋅(m−1)⋯3⋅2⋅1 ways to order the elements of a m-element set: We have m choices for the first element, and then (m−1) choices for the second element, and then (m−2) choices for the third element, and so on.

Each of the (nm) m-element subsets of X gives rise to m⋅(m−1)⋯3⋅2⋅1 ordered m-element subsets. We have found two ways to count ordered m-element subsets of X:

n⋅(n−1)⋅(n−2)⋯(n−m+1)=(m⋅(m−1)⋯3⋅2⋅1)(nm).

Our informal argument has given us a formula we can try to verify formally by induction. Since products of consecutive integers arise repeatedly, it makes sense to introduce special terminology and notation. ⋄



Definition 2.2.6. If n is a natural number, the factorial n! of n is defined recursively by

0!=1,(n+1)!=(n+1)⋅n!if n≥0.



Remark 2.2.7. Page 34The convention 0!=1 may be viewed as “The empty set has a unique ordering.” ⋄



Example 2.2.8. Expanding the recursive definition if n=5 gives

5!=5⋅4!=5⋅4⋅3!=5⋅4⋅3⋅2!=5⋅4⋅3⋅2⋅1!=5⋅4⋅3⋅2⋅1⋅0!.

Since 0!=1, we have 5!=5⋅4⋅3⋅2⋅1=120.

Generally, if n is a positive integer, then n!=∏k=1nk is the product of the integers from 1 to n. The first several factorials are worth memorizing, and their approximate sizes worth remembering:

nn!nn! nn!nn!1151209362880136227020800226720103628800148717829120036750401139916800151307674368000424840320124790016001620922789888000

Since each successive factorial results from multiplying by an ever-larger number, factorials grow faster than exponentially. ♢


We are now ready to formally justify our informal counting argument.


Proposition 2.2.9. If m and n are integers, then

(nm)={n!m!(n−m)!if 0≤m≤n,0otherwise.

Proof. If m<0 or n<m, there are no m-subsets of an n-element set, and the stated formula is correct. It therefore suffices to establish the formula in the proposition for all natural numbers m and n. We proceed by induction on n. For each natural number n, let P(n) be the statement

For every natural number m,(nm)={n!m!(n−m)!if 0≤m≤n,0otherwise.

The base case P(0) reads “(0m)=0!0!0!=1 if m=0, and 0 if m≥1.” This is true: The empty set has a unique empty subset, and no subsets of m elements if m≥1.

Assume inductively that P(k) is true for some k. By Proposition 2.2.3,

(k+1m)=(km)+(km−1)for all m.

Page 35If 0<m<k+1, the inductive hypothesis gives

(k+1m)=(km)+(km−1)=k!m!(k−m)!+k!(m−1)!(k−m+1)!=k!(m−1)!(k−m)![1m+1k−m+1]=k!(m−1)!(k−m)![(k−m+1)+mm(k−m+1)]=(k+1)!m!(k−m+1)!.

If m=0, the second summand is 0, and the inductive hypothesis gives the true statement (k+10)=(k0)=1 (every set has a unique empty subset). Similarly, if m=k+1, the first summand is 0 and the inductive hypothesis gives (k+1k+1)=(kk)=1. In each case, P(k) implies P(k+1). By mathematical induction, P(n) is true for all n. □




Exercises for Section 2.2


	Exercise 2.2.1. (★) Without a calculator, determine how many ways 5 cards can be selected from a deck of 52.


	Exercise 2.2.2. Assume m and n are natural numbers. How many paths are there from (0,0) to (m,n) that consist solely of unit steps to the right or up?


	Exercise 2.2.3. (★) In the history of the world, counting every time a deck of 52 playing cards has been shuffled, has every possible ordering occurred? If so, about how many times? If not, what fraction of possible orderings have been seen? The point is to make order-of-magnitude estimates.


	Exercise 2.2.4. (A). The double factorial n!! of a natural number n is defined inductively by

0!!=1!!=1(n+2)!!=(n+2)n!!if n≥0.

Without a calculator, compute the double factorials up to 10!!. Use induction to prove

(2n+1)!!(2n)!!=(2n+1)!,(2n+2)!!(2n+1)!!=(2n+2)!,}for every n in N,

and find formulas for (2n)!! and (2n+1)!! in terms of factorials. (That is, informally find formulas, and use induction to prove them correct.)Page 36


	Exercise 2.2.5. (★) Assume B={0,1} is a two-element set. Define B0={0}, B1=B, and recursively define Bn+1=Bn×B if n≥1. The set Bn is the n-fold ordered product of B, and an element of Bn={0,1}n is an ordered n-tuple (bk)k=0n−1 such that bk∈B for each k.

If b0 and b0′ are elements of B, define their distance to be |b0′−b0|=0 if b0=b0′ and 1 if b0≠b0′. If n is a natural number and b and b′ are in Bn, define the distance from b to b′ to be

|b′−b|=∑k=0n−1|bk′−bk|.


	(a)Sketch the sets B1, B2, and B3, and label all their points as ordered tuples. Suggestion: After B1, each product amounts to two copies of the preceding. Use the recursive structure to be systematic about labeling.

Use induction on n to prove that for all b and b′ in Bn, |b′−b| is the number of components in which b and b′ differ.

Conclude that for all b, b′, and b′′ in Bn, we have |b′−b|=0 if and only if b=b′ (positivity), |b−b′|=|b′−b| (symmetry), and |b′′−b|≤|b′′−b′|+|b′−b| (the triangle inequality).


	(b)If n is a natural number, 0≤m≤n, and b∈Bn, how many elements of Bn are at distance m from b? Confirm this in your sketches. Write the number of elements in Bn in two different ways.





	Exercise 2.2.6. In probability, the set Bn of Exercise 2.2.5 models the sample space for n binary trials; think enumerating the set of possible outcomes if a two-sided coin is tossed n times. A probability density on Bn is an assignment of a non-negative real number, or probability, to each point of Bn so that the sum of all the probabilities is 1. This mathematical structure models a situation where the experiment “n binary trials” is performed many times, and the number attached to a point of Bn is the fraction of times that outcome is achieved. One interprets this idealized fraction as a quantitative, if “fuzzy,” prediction or description of what occurs if we perform n binary trials.

Assume p is a real number such that 0≤p≤1, outcome 0 has probability p, and (therefore) outcome 1 has probability (1−p). If trials are independent, intuitively if the outcome of any particular trial is not affected by prior trials, or “the process is memoryless,” the probability of an element (bk)k=0n−1 in Bn is defined to be the product of the individual probabilities. In symbols,

P((bk)k=0n−1)=∏k=0n−1P(bk).

Under these assumptions, find the probability of b=(bk)k=0n−1 if bk=0 for precisely m indices k. Find the probability, in n binary trials, of some outcome Page 37with precisely m trials equal to 0. If p=1, does your formula make intuitive sense?


	Exercise 2.2.7. Assume I=[0,1] is the set of real numbers x such that 0≤x≤1, and I∘=(0,1) the set of real numbers x such that 0<x<1. Define [0,1]0={0} and [0,1]1=[0,1], and recursively define [0,1]n+1=[0,1]n×[0,1] if n≥1. Call [0,1]n the unit n-cube.

The partition I={0}∪I∘∪{1} induces a partition of the unit n-cube into ordered n-tuples (Ik)k=0n−1 for which each Ik is either {0}, I∘, or {1}.

For each natural number m, we say a tuple (Ik)k=0n−1 is an m-face if Ik=I∘ for precisely m indices k.

Write out the m-faces of the unit 2-cube if 0≤m≤2, and sketch them. If n is a natural number and 0≤m≤n, determine with justification how many m-faces the unit n-cube has. Check your formulas if n=2 and 3, and calculate the result if n=4.






2.3 Binary Operations

Addition of natural numbers assigns a unique natural number m+n, the sum, to each ordered pair (m,n) of natural numbers, the summands. In other words, addition may be viewed as a mapping +:N×N→N. The same is true for multiplication and exponentiation of natural numbers. The underlying concept is both simple and widely occurring, and earns a special name.


Definition 2.3.1. Assume X is a non-empty set. A binary operation on X is a mapping ∗:X×X→X. The pair (X,∗) is called a magma.



Remark 2.3.2. If (X,∗) is a magma, and if x, x′ are elements of X, we use infix notation x∗x′ instead of prefix (function) notation ∗(x,x′).

Sometimes no operator symbol is used at all. For example, if (m,n) is a pair of natural numbers, the result of multiplication is often denoted mn rather than, say, m⋅n. Similarly, exponentiation is denoted mn; there is no standard infix notation at all. ⋄



Example 2.3.3. If X is a set and P(X) its power set, then union is a binary operation on P(X): To each pair of subsets A and B in X we associate A∪B. Intersection A∩B and difference A∖B are binary operations on P(X). ♢



Definition 2.3.4.


	Assume (X,∗) is a magma.


	We say * is associative if x∗(x′∗x′′)=(x∗x′)∗x′′ for all x, x′, x′′ in X.


	We say * is commutative if x′∗x=x∗x′ for all x, x′ in X.




Page 38If there exists an element e of X such that e∗x=x and x∗e=x for all x in X, we call e an identity element for *.

If * has an identity element e and x∈X, we say an element y of X is an inverse of x if x∗y=e and y∗x=e.



Remark 2.3.5. If (X,∗) is a magma and * is associative, we say (X,∗) is an associative magma. If * is commutative, (X,∗) is a commutative magma. ⋄



Example 2.3.6. The magma (N,+) is both associative and commutative, and has 0 as identity element. The only natural number with an inverse is 0.

Page 39The magma (N,⋅) is both associative and commutative, and has 1 as identity element. The only natural number with an inverse is 1.

Exponentiation in N is neither associative nor commutative, and there is no identity element for exponentiation. We do have n1=n for all n, but do not have 1n=n for all n. ♢



Proposition 2.3.7. ⏎ Assume (X,∗) is a magma with identity element e.


	(i)The identity element for * is unique.


	(ii)If * is associative, each x in X has at most one inverse.




Proof. See Exercise 2.3.5. □




Exercises for Section 2.3


	Exercise 2.3.1. (H) Assume n is a natural number and X={j}j=0n−1 is a set of n elements. Use informal counting (not induction) to answer the following.


	(a)How many binary relations are there on X? How many are reflexive? How many are both reflexive and symmetric? How many are symmetric?


	(b)How many binary operations are there on X? How many have 0 as identity element? How many have 0 as identity element and are commutative? How many are commutative?





	Exercise 2.3.2. (★) On the set Z of integers, define a binary operation by a∗b=a+b−1.


	(a)Prove * is associative and commutative.


	(b)Prove * has an identity element, and every integer has an inverse.





	Exercise 2.3.3. On the set Z of integers, define a binary operation by a∗b=ab+a+b.


	(a)Prove * is associative and commutative.


	(b)Determine whether * has an identity element. If so, which integers have an inverse?





	Exercise 2.3.4. (★) Assume X is a set, and P(X) its power set.


	(a)Prove ∪ is commutative and associative.


	(b)Determine whether ∪ has an identity element. If so, which subsets of X have an inverse?





	Exercise 2.3.5. Prove Proposition 2.3.7. Hint: As needed, re-read the proof of Proposition 1.3.6.


	Exercise 2.3.6. (H) Assume (X,∗) is an associative magma. Use induction to prove that if {xj}j=0n are elements of X, then the value x0∗x1∗⋯∗xn is independent of how consecutive operands are grouped. (By definition, a binary operation takes precisely two operands. If we are literal, no product of more than two operands is syntactically correct.)






2.4 Construction of Numbers

In this optional section, we construct the natural numbers recursively as sets, define addition and multiplication of natural numbers recursively, and show how to establish familiar laws of algebra with induction. Then we sketch constructions of the integers and rational numbers. The preceding material, especially mathematical induction, supplies motivation.


Definition 2.4.1. (Construction of the natural numbers). Define 0=∅. If n is a set, define S(n)=n∪{n}={n,{n}}. Let N be the smallest set containing 0 and closed under successorship: If n∈N then S(n)∈N.



Remark 2.4.2. This recapitulates and generalizes Example 1.3.10. ⋄



Definition 2.4.3. (Addition). We define 1=S(0). If n is a natural number, we define n+0=n. If n and m are natural numbers, we define n+S(m)=S(n+m), namely, n+(m+1)=(n+m)+1. Particularly, n+1=S(n).

We call n+m the sum of n and m, and call this operation addition.



Definition 2.4.4. (Ordering). If m and n are natural numbers, we say m is less than or equal to n, and write m≤n, if there exists a natural number k such that m+k=n. If k≠0, we say m is less than n, and write m<n.



Remark 2.4.5. Page 40If m and n are natural numbers, precisely one of the following is true: m<n, m=n, or n<m. ⋄



Definition 2.4.6. (Multiplication). For all natural numbers n and m, we define n⋅0=0 and n⋅(m+1)=(n⋅m)+n.

We call n⋅m the product of n and m, and call this operation multiplication.



Proposition 2.4.7. ⏎ Addition and multiplication of natural numbers are associative and commutative, and multiplication distributes over addition. That is, for all natural numbers ℓ, m, and n, we have

(ℓ+m)+n=ℓ+(m+n)associativity of +,m+n=n+mcommutativity of +,(ℓ⋅m)⋅n=ℓ⋅(m⋅n)associativity of ⋅,m⋅n=n⋅mcommutativity of ⋅,ℓ⋅(m+n)=(ℓ⋅m)+(ℓ⋅n)distributivity of ⋅ over +.

Proof. We prove addition is associative for illustration. Throughout, let k, ℓ, m, and n denote natural numbers. For each n, let P(n) be the statement

(ℓ+m)+n=ℓ+(m+n)for all ℓ and m.

The single statement P(1) says (ℓ+m)+1=ℓ+(m+1) for all ℓ and m, which is true by the recursive definition of addition. (Incidentally, P(0) is immediate from the “base case” of addition.)

Now assume inductively that P(k) is true for some k, that is,

(ℓ+m)+k=ℓ+(m+k)for all ℓ and m.

Then, for all ℓ and m, we have

(ℓ+m)+(k+1)=((ℓ+m)+k)+1(recursive definition of +)=(ℓ+(m+k))+1(inductive hypothesis P(k))=ℓ+((m+k)+1)(recursive definition of +)=ℓ+(m+(k+1))(recursive definition of +);

thus P(k+1) follows. Since P(0) is true and P(k) implies P(k+1) for all k, P(n) is true for all n. The remaining parts are Exercise 2.4.1. □



Integers

To define integers in terms of natural numbers, let's start with the school intuition that an integer is a “difference” of natural numbers, say m−n. For Page 41example, −3=0−3. We might therefore try to represent the integer m−n by the ordered pair (m,n) of natural numbers.

There is a snag: Infinitely many distinct pairs correspond to the same integer. For example, (0,3), (42,45), and (1965,1968) all represent −3. A pair is not an integer, but an “avatar” of an integer. In mathematical terms, the set N×N comprises representatives of integers. We'd like to construct an equivalence relation on N×N whose equivalence classes are integers.

Suppose (m,n) and (m′,n′) are integer avatars. These avatars are equal if and only if m=m′ and n=n′. On the other hand, using our school knowledge, m−n=m′−n′ if and only if m+n′=m′+n. This motivates a binary relation on N×N:


Definition 2.4.8. On the set N×N, define a binary relation ≡ by (m,n)≡(m′,n′) if and only if m+n′=m′+n.



Lemma 2.4.9. ⏎ ≡ is an equivalence relation on N×N.

Proof. See Exercise 2.4.3. □



Definition 2.4.10. (Construction of the integers). Assume m and n are natural numbers. The integer [(m,n)] is the set of all ordered pairs (m′,n′) such that m+n′=m′+n, namely, the ≡ equivalence class of the avatar (m,n).


To motivate addition and multiplication, let's add and multiply differences using laws of algebra and see what we get:

(m1−n1)+(m2−n2)=(m1+m2)−(n1+n2),(m1−n1)⋅(m2−n2)=(m1⋅m2)+(n1⋅n2)−((m1⋅n2)+(n1⋅m2)).

These formulas suggest we should define

[(m1,n2)]+[(m1,n2)]=[(m1+m2,n1+n2)],[(m1,n2)]⋅[(m1,n2)]=[(m1⋅m2)+(n1⋅n2),(m1⋅n2)+(n1⋅m2)].

As we saw in Chapter 1, however, there is a potential snag: These formulas are defined for integer avatars (ordered pairs), but an integer is an equivalence class. We need to check that the “sum” and “product” depend only on the integers, not on the specific avatars used. In other words, we need to prove these formulas are well-defined mod ≡.

Explicitly, we need to check that if a1=[(m1,n1)] and a1′=[(m1′,n1′)] are equal as integers, and if a2=[(m2,n2)] and a2′=[(m2′,n2′)] are equal as integers, then a1+a2=a1′+a2′ as integers, and similarly that a1⋅a2=a1′⋅a2′. The details (with substantial hints for multiplication) are left to you, Exercises 2.4.4 and 2.4.5. In light of these exercises:


Definition 2.4.11. Page 42If a=[(m,n)] and a′=[(m′,n′)] are integers, we define their sum and product to be the integers

a+a′=[(m+m′,n+n′)],a⋅a′=[(m⋅m′+n⋅n′,m⋅n′+n⋅m′)].


Exercise 2.4.6 establishes that integer addition and multiplication satisfy the associative, commutative, and distributive laws.



Rational Numbers

Conceptually, the construction of rational numbers from integers runs parallel to the construction of integers from natural numbers. In school, a rational number (or “fraction”) is an expression r=p/q with p and q integers and q≠0. This numerator/denominator representation is not unique: p/q=p′/q′ if and only if pq′=qp′.

The sum and product of fractions may be expressed in terms of numerators and denominators using only integer addition and multiplication:

pq+p′q′=pq′+qp′qq′,pq⋅p′q′=pp′qq′.


Definition 2.4.12. A “rational avatar” is an ordered pair (p,q) of integers such that q≠0. Two rational avatars (p,q) and (p′,q′) are equivalent if pq′=p′q. A rational number p/q:=[(p,q)] is the set of rational avatars equivalent to (p,q).

If r1=[(p1,q1)] and r2=(p2,q2) are rational numbers, we define

r1+r2=(p1,q1)+(p2,q2)=(p1q2+p2q1,q1q2),r1⋅r2=(p1,q1)⋅(p2,q2)=(p1p2,q1q2).


As with integers, the sum and product are well-defined: Sums of equivalent avatars are equivalent, and similarly for products. And again, this must be checked, see Exercises 2.4.8 and 2.4.9. It must also be checked that rational addition and multiplication satisfy the associative, commutative, and distributive laws, Exercise 2.4.10.



Real Numbers

Constructing the real numbers from the rationals turns out to be substantially more technical than constructing the rational numbers in set theory. Particularly, infinite sets of rationals are needed, see Corollary 17.1.7. Our perspective in Chapter 3 is to give axioms characterizing “the real number system”: the set of real numbers, the operations of addition and multiplication, and the relation of order (less-than).

Page 43In these axioms, the sets N of natural numbers, Z of integers, and Q of rational numbers are readily constructed inside the set R of real numbers.




Exercises for Section 2.4


	Exercise 2.4.1. In each part, use induction to establish part of Proposition 2.4.7. Earlier parts may be needed to do later parts, and one-variable induction may be needed for the base case of a multivariable induction.


	(a)Prove addition of natural numbers is commutative.


	(b)Prove multiplication of natural numbers distributes over addition. Hint: Do separate inductions on n using “ℓ(m+n)=ℓm+ℓn for all ℓ and m” and “(ℓ+m)n=ℓn+mn for all ℓ and m.”


	(c)Prove multiplication of natural numbers is associative.


	(d)Prove multiplication of natural numbers is commutative.





	Exercise 2.4.2. (★) If ℓ, m, and n are natural numbers, and if m<n, prove ℓ+m<ℓ+n. Prove ℓ⋅m≤ℓ⋅n, with equality if and only if ℓ=0.


	Exercise 2.4.3. (H) Prove Lemma 2.4.9.


	Exercise 2.4.4. (H) Prove that addition of integers is well-defined.


	Exercise 2.4.5. Prove multiplication of integers is well-defined. Systematic notation, such as a=[(m,n)], a1=[(m1,n1)], a1′=[(m1′,n1′)], etc., will help keep details organized.


	(a)Prove that avatar multiplication is commutative, namely, a1⋅a2=a2⋅a1.


	(b)Prove that if a1≡a1′, then a⋅a1≡a⋅a1′ and a1⋅a≡a1′⋅a.


	(c)Use part (b) to prove that if a1≡a1′ and a2≡a2′, then a1⋅a2≡a1′⋅a2′.





	Exercise 2.4.6. For the integers as constructed in the text, prove:


	(a)Addition is associative.


	(b)There exists an identity element e for addition. (We denote e by 0. This does not cause ambiguity with the natural number 0, see Exercise 2.4.7.)


	(c)Every integer a has an additive inverse b. (We denote b by the symbol −a, and call it the negative of a.)


	(d)Multiplication is associative and distributes over addition.Page 44





	Exercise 2.4.7. (★) If n is a natural number, write ϕ(n)=(n,0).


	(a)Prove that for all natural numbers m and n, ϕ(m)+ϕ(n)=ϕ(m+n) and ϕ(m)⋅ϕ(n)=ϕ(m⋅n).


	(b)For every integer a, precisely one of the following is true: (i) a=0. (ii) a≡(k,0) for some non-zero natural number k. In this case we say a is positive. (iii) a≡(0,k) for some non-zero natural number k. In this case we say a is negative.





	Exercise 2.4.8. Prove that addition of rational numbers is well-defined and commutative.


	Exercise 2.4.9. (★) Prove that multiplication of rational numbers is well-defined and commutative.


	Exercise 2.4.10. Establish the following properties of the rational numbers as constructed in the text.


	(a)Addition is associative.


	(b)Addition has an identity element e. (We denote e by 0. This does not cause ambiguity with the integer 0, see Exercise 2.4.11.)


	(c)Every rational number a has an additive inverse b. (We denote b by the symbol −a, and call it the negative of a.)


	(d)Multiplication is associative, distributes over addition, and has an identity element e. (From now on we denote e by 1.)


	(e)Every non-zero rational number a has a multiplicative inverse b. (We denote b by the symbol a−1 or 1/a, and call it the reciprocal of a.)





	Exercise 2.4.11.


	(a)If p is an integer, write ϕ(p)=(p,1). Prove that for all integers m and n, ϕ(m)+ϕ(n)=ϕ(m+n) and ϕ(m)⋅ϕ(n)=ϕ(m⋅n). (Note carefully: On the left the operations act on rational avatars, while on the right the operations act on integers.)


	(b)For every rational number a, precisely one of the following is true: (i) a=0. (ii) a=[(p,q)] for some positive integers p and q. In this case we say a is positive. (iii) a=[(−p,q)] for some positive integers p and q. In this case we say a is negative.









Page 45On Writing Proofs

This completes the book's introductions to logic, sets, and induction. Now that you have an idea what this book means by mathematics, a few general words may be in order about proofs.

As we have seen, a mathematical theorem is an idealized contract: If certain conditions are met (the hypotheses), then other conditions are guaranteed (the conclusion). No theorem has even one exception. To guarantee a theorem's correctness, a mathematical proof must leave no logical possibility unexamined, no contingency unresolved.

Most theorems make infinitely many guarantees, one for each assignment of values to variables. A proof often amounts to a calculation or other argument with arbitrary (unconstrained) values of variables. Any particular set of values in a theorem statement implicitly expands to a set of values throughout the proof. Exercise 1.1.4, and its solution in the back, illustrate this principle when locating errors.

Avoid pronouns when thinking, speaking, and writing, especially “it.” In the middle of even a simple proof, two or three objects tend to be under consideration, and “it” can often refer to any of them. If you're unable to decide exactly what “it” refers to, you've located something you don't fully understand.

There are times, in this book and beyond, where you are asked to prove two quantities are equal. Keep in mind the one moving target principle: It is easier to prove the difference is 0. The tools of analysis, based on inequalities, are particularly well-adapted to proving quantities are arbitrarily small, and therefore 0. (In analysis, small means close to 0 and large means far from 0. Thus we speak of large negative numbers like −106.)

Although the book illustrates proof organization, writing, and strategizing, first-hand experience is essential. Read actively: As you develop familiarity with idioms of real analysis, think about theorem statements when you first read them and try to prove them yourself, or sketch out a viable approach. Many exercises ask for proofs. In the book's earlier chapters, you will be able to find a comparable proof worked out, either in the text or in the back, and possibly advice on how you might have thought of the proof yourself.

Find your own writing style. Do write accurately and precisely, but don't be pedantic, excessively wordy, or terse. Declarative sentences expressing one idea are generally effective at conveying ideas. Additional suggestions may be found in [17].

Though it may feel awkward at first, read your proofs aloud, either to yourself or someone else. Speaking and listening engage different parts of the brain than writing. Lapses of grammar, narrative continuity, and logic can be Page 46more apparent when spoken aloud, partly because the more times you silently re-read your own prose and calculations, the more you skim.

Mathematical writing, like all formal communication, is a craft developed over a lifetime, not a toolbox skill picked up in an afternoon or a few weeks. “Good writing” is subjective and context-dependent. That said, in mathematics there are expository desiderata: clarity at levels from notation to word choice to organization, and effectiveness at conveying the structure and beauty of ideas.
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“Real analysis” originates with differential and integral calculus, systematic formal rules for working with rates of change, and total change. The “changing” objects are real-valued functions of one real variable, deterministic relationships between numerical quantities. “Numerical quantities” here are real numbers.

What exactly are real numbers? We usually depict the set of real numbers as a number line, and write individual real numbers as decimal expressions, such as 3.14159265358979…. The number line is a visual metaphor and guide. Infinite decimals are symbolic representations. Neither perspective really addresses the essence of “being a real number.”

There are two complementary philosophical viewpoints about the nature of real numbers (or any mathematical objects). The first specifies what “structure” and “properties” real numbers have, the types of formal rules we need to work with “generic” or “arbitrary” real numbers symbolically. If our properties “abstractly characterize” the real numbers, we may take our properties as axioms. In this book, axioms for the real numbers are our foundation.

The second viewpoint is construction: defining real numbers in terms of set theory or some other framework of primitive concepts, and proving that the objects constructed satisfy a set of axioms.


3.1 Axioms for the Real Numbers

Our legal contract for the real number system is a list of axioms. The remainder of the chapter is devoted to (mostly familiar) consequences of the algebraic and order axioms. Completeness is discussed in Chapter 4. Our axioms for the real number system fall into three categories:

Algebraic Properties. (A1.–A4., M1.–M4., D.) The algebraic axioms concern the operations of addition and multiplication: What properties each operation has (associativity, commutativity, existence of an identity element and inverses), and how the two operations interact (the distributive law).

Order Properties. (O1.–O3.) These three axioms formalize the idea of one real number being “greater than” or “less than” another, and the fact that every pair of real numbers is “comparable.” Geometrically, the order axioms Page 48guarantee that the real number system can be visualized on a line. “Less than” means “to the left of,” and “greater than” means “to the right of.”

Completeness. This axiom formalizes the geometric intuition that the real number system “has no gaps,” or that “any quantity that can be approximated by real numbers is itself a real number.” Geometrically, if A is a non-empty set on the number line, and if some point M lies to the right of every point of A, then there exists a leftmost point (i.e., smallest number) lying on or to the right of every element of A.


Definition 3.1.1. The real number system consists of a non-empty set R, two binary operations, + and ⋅, and a subset P of R (the set of “positive” real numbers) satisfying the following thirteen axioms:


	A1.Addition is associative: For all x, y, z in R, x+(y+z)=(x+y)+z.


	A2.Additive identity: There exists a unique element 0 in R such that for all x in R, 0+x=x+0=x.


	A3.Additive inverses: For every x in R, there exists a unique −x in R such that x+(−x)=(−x)+x=0.


	A4.Addition is commutative: For all x, y, in R, x+y=y+x.


	M1.Multiplication is associative: For all x, y, z in R, x⋅(y⋅z)=(x⋅y)⋅z.


	M2.Multiplicative identity: There exists a unique element 1 in R, distinct from 0, such that for all x in R, 1⋅x=x⋅1=x.


	M3.Multiplicative inverses: For every non-zero x in R, there exists a unique x−1 in R such that x⋅x−1=x−1⋅x=1.


	M4.Multiplication is commutative: For all x, y, in R, x⋅y=y⋅x.


	D.Multiplication (on the left) distributes over addition: For all x, y, z in R, x⋅(y+z)=(x⋅y)+(x⋅z).


	O1.Trichotomy: For every real number x, precisely one of the following holds: x∈P, −x∈P, or x=0.


	O2.Closure under addition: If x and y are in P, then x+y is in P.


	O3.Closure under multiplication: If x and y are in P, then x⋅y is in P.


	C.Completeness: If A is a non-empty subset of R that is bounded above, then A has a least upper bound in R.






Remark 3.1.2. The multiplication dot is often omitted: x⋅y=xy. ⋄



Remark 3.1.3. Page 49These axioms have minor redundancies built in for convenience. For example, if x+y=0, then by the commutative Axiom A4., y+x=0 as well; there is no need to assume both equations in A3. Further, the uniqueness conditions in the axioms for identity elements and inverses can be deduced from the other axioms, see the proof of Lemma 3.1.14.

To reiterate, the real number system, including the operations of addition and multiplication and the set of positive numbers, can be constructed from a much smaller number of axioms. Our axioms above would then be proven as theorems. ⋄



Auxiliary Concepts

We define the operations of subtraction and division in terms of addition and multiplication.


Definition 3.1.4. If x and y are real numbers, we define their difference x minus y to be x−y:=x+(−y).

If y≠0, the reciprocal of y is the real number 1/y:=y−1. The quotient x over y is defined to be x/y:=x⋅y−1=y−1⋅x.



Remark 3.1.5. Subtraction and division are neither associative nor commutative, as you should check. ⋄


We define the concepts of positive and negative numbers, and the relations greater-than and less-than, using Axioms O1.–O3.


Definition 3.1.6. Assume x, y and z are real numbers.

If z∈P, we say z is positive, or that 0 is less than z, and write 0<z.

If y−x∈P, we say x is less than y and write x<y. If x<y or x=y, we say x is less than or equal to y, and write x≤y.



Remark 3.1.7. If 0<z, we also say z is greater than 0 and write z>0.

If x<y, we also say y is greater than x and write y>x. If x≤y we also say y is greater than or equal to x and write y≥x. ⋄


Whole numbers and fractions constitute some of the most important classes of real numbers.


Definition 3.1.8. The set N of natural numbers is the smallest subset of R satisfying the following conditions: (i) 0∈N; (ii) If x∈N, then x+1∈N.

A real number x is an integer or whole number if either x or −x is a natural number. The set of integers is denoted Z, from the German Zahl.

A real number x is a rational number if there exist integers p and q such that q>0 and x=p/q. The set of rational numbers (a.k.a. ratios or quotients) is denoted Q.

A real number x is irrational if x is not a rational number.



Remark 3.1.9. Page 50In this book, 0 is a natural number. This convention makes natural numbers correspond to “cardinalities” of finite sets, but is not universal. The set of positive integers is denoted Z+. ⋄



Definition 3.1.10. A set F of two or more elements, together with two binary operations + and ⋅ that satisfy Axioms A1.–A4., M1.–M4., and D, is called a field. A field containing a subset P satisfying Axioms O1.–O3. is called an ordered field.



Remark 3.1.11. The real number system is an ordered field and is abstractly characterized by Axiom C. The rational number system is a non-complete ordered field. The integers are not a field; Axiom M3 fails. ⋄




Algebraic Properties

Though the axioms for the real numbers are numerous, we must still establish “familiar,” “elementary” properties needed for routine calculation. Doing so gives us a chance to see the axioms at work.

We first collect a few useful consequences of Axioms A1.–D. These properties hold in every field.


Lemma 3.1.12. Multiplication on the right distributes over addition: For all x, y, z in R, (y+z)⋅x=(y⋅x)+(z⋅x).

Proof. If x, y, and z are arbitrary real numbers, then

(y+z)⋅x=x⋅(y+z)Axiom M4.,=(x⋅y)+(x⋅z)Axiom D.,=(y⋅x)+(z⋅x)Axiom M4.◻

□



Remark 3.1.13. Because of the commutativity axioms, any identity involving addition or multiplication on the left has a corresponding version with the operation on the right. ⋄



Lemma 3.1.14. ⏎ Assume x, y, and z are real numbers.


	(i)If x+y=x+z, then y=z.


	(ii)If x≠0 and xy=xz, then y=z.




Proof.


	(i).Assume x+y=x+z, and −x is the additive inverse of x. Then

y=0+yAxiom A2.,=((−x)+x)+yAxiom A3.,=(−x)+(x+y)Axiom A1.,=(−x)+(x+z)hypothesis,=((−x)+x)+zAxiom A1.,=0+zAxiom A3.,=zAxiom A2.


	(ii).Page 51Mimic the proof of (i), replacing addition by multiplication and replacing the negative −x by the reciprocal x−1. □





Remark 3.1.15. These conclusions are called the “left cancellation laws.” There are corresponding “right cancellations laws.” For practice, state and prove these identities for yourself. ⋄



Lemma 3.1.16. ⏎ If x∈R, then −(−x)=x. If x≠0, then (x−1)−1=x, or 1/(1/x)=x.

Proof. The condition x+(−x)=0 asserts that the (unique) additive inverse of −x is x itself: −(−x)=x. Similarly, if x≠0, then x(x−1)=1 asserts that (x−1)−1=x. □



Proposition 3.1.17. ⏎ For all real numbers x and y:


	(i)x⋅0=0⋅x=0.


	(ii)If xy=0, then x=0 or y=0.


	(iii)−x=x⋅(−1)=(−1)⋅x.


	(iv)(−x)(−y)=xy. Particularly, (−1)(−1)=1.




Proof. Assume x and y are arbitrary real numbers.


	(i)Taking x=0 in A2, we have 0=0+0. Now let x denote an arbitrary real number. Multiplying on the left by x and using the distributive law, we have

0+(x⋅0)=(x⋅0)=x⋅(0+0)=(x⋅0)+(x⋅0).

By cancellation, 0=x⋅0. By the commutative Axiom M4., 0=0⋅x as well.


	(ii)Suppose xy=0. If x=0, there is nothing to prove. If x≠0,

y=(x−1x)y=x−1(xy)=x−1(0)=0.


	(iii)Multiply 0=(1+(−1)) on the left by x:

x+(−x)=0=x⋅0=x⋅(1+(−1))=x⋅1+x⋅(−1)=x+x⋅(−1).

By cancellation, −x=x⋅(−1). By commutativity, −x=(−1)⋅x.


	(iv)Taking x=−1 in (iii), we have (−1)(−1)=−(−1)=1 by Lemma 3.1.16. Thus

(−x)(−y)=((−1)x)((−1)y)=(−1)(−1)(xy)=xy.◻ □
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Definition 3.1.18. ⏎ If (ak)k∈N is a real sequence and ak>0 if k≥1, then for each n, the expression

[a0,a1,a2,…,an]:=a0+1a1+1a2+1⋱+1an

is called the finite continued fraction with coefficients (ak)k=0n. A continued fraction is a term of the sequence defined recursively by

[a0]=a0,[a0,a1,a2,…,an,an+1]=[a0,a1,a2,…,an+(1/an+1)].



Remark 3.1.19. Continued fractions having all numerators equal to 1 are called simple continued fractions, see for example Krishnan, [19]. In this book we consider only simple continued fractions, and omit “simple” for brevity. ⋄



Example 3.1.20. ⏎ Using the recursion repeatedly, we have

[1,2,3,4]=[1,2,3+(1/4)]=[1,2,13/4]=[1,2+(4/13)]=[1,30/13]=[1+13/30]=43/30.

Inversely, successive long division, terminating when the division is even, gives

17/12=[1+(5/12)]=[1,12/5]=[1,2+(2/5)]=[1,2,5/2]=[1,2,2,2].

♢



Remark 3.1.21. In practice, as in Example 3.1.20, continued fractions usually arise from integer sequences. The recursion rule itself, however, involves non-integers. ⋄



Remark 3.1.22. Continued fractions can be grouped from the right. Specifically, for all positive integers k and m we have

[a0,a1,…,ak,ak+1,…,ak+m]=[a0,a1,…,ak,[ak+1,…,ak+m]].

⋄



Proposition 3.1.23. ⏎ Assume (ak)k∈N is a real sequence such that ak is positive if k≥1. Recursively define real sequences (pn) and (qn) by

p−2=0,p−1=1,pn=anpn−1+pn−2,q−2=1,q−1=0,qn=anqn−1+qn−2.

For every natural number n, we have pn/qn=[a0,a1,a2,…,an].

Proof. See Exercise 3.1.6. □





Page 53Exercises for Section 3.1


	Exercise 3.1.1. (★) Assume x and y are real numbers. Using one axiom per step, prove that (x+y)2=x2+2xy+y2. Notes: By definition, 2=1+1; at each step but the last, there should be enough parentheses that no sub-expression contains more than two operands; this takes about ten steps.


	Exercise 3.1.2. (H) Assume a, b, c, and d are real numbers such that bd≠0. Use the axioms to prove


	(a)(bd)−1=b−1d−1.


	(b)ab⋅cd=acbd.


	(c)ab+cd=ad+bcbd.





	Exercise 3.1.3. (★) If x, y, u, and v are real, prove that

2u=x+y,2v=x−y,if and only ifx=u+v,y=u−v.

(Use algebra “normally” rather than one axiom per step.)


	Exercise 3.1.4. Assume x and y are real. Prove that x2=y2 if and only if x=y or x=−y. (Use the axioms and results from the text. Do not use properties of square roots, which have not yet been established.)


	Exercise 3.1.5. Consider the set Z2:=Z×Z⊆R2 of integer points, whose rectangular coordinates are integers. If α is real, does the equation y=αx always have a non-zero solution in Z2? If so, give a proof; if not, characterize α for which y=αx has a non-zero integer point solution. Does any equation y=αx have a unique non-zero integer point solution?


	Exercise 3.1.6. (★) Prove Proposition 3.1.23.


	Exercise 3.1.7. In this exercise, assume the integer division algorithm: If p and q are integers and q>0, there exist unique integers a and r such that p=aq+r and 0≤q<r.

Use repeated integer division to represent 5/7, −8/5, and 355/113 as continued fractions. Prove every rational number is a finite continued fraction [a0,a1,…,an] with ak an integer for all k, ak positive if k≥1, and an>1.






3.2 Order Properties

Mathematical inequalities are the bread and jam of analysis. The following properties of inequalities are among our most basic and common tools. A Page 54good habit upon encountering such a proposition or theorem is to express each part in procedural form, what each rule for manipulating inequalities “allows” us to do. For example, (i) says the less-than relation is transitive: less-than inequalities can be “daisy-chained” to obtain new less-than inequalities; (iii) says that multiplying an inequality by a positive number preserves the inequality.


Proposition 3.2.1. ⏎ For all real numbers x, y, and z:


	(i)If x<y and y<z, then x<z.


	(ii)If x<y, then x+z<y+z.


	(iii)If x<y and 0<z, then xz<yz.


	(iv)If x<y and z<0, then yz<xz.


	(v)If 0<x<y, then 0<1/y<1/x.





Two additional extensions are useful occasionally:


Corollary 3.2.2. ⏎ Assume x, y, z, and w are real numbers.


	(i)If x<y and w<z, then x+w<y+z.


	(ii)If 0<x<y and 0<w<z, then 0<xw<yz.

In particular, 0≤x⋅x, with equality if and only if x=0.






Remark 3.2.3. The set P of numbers mentioned by Axioms O1.–O3. is uniquely characterized by these axioms. Specifically, P turns out to be precisely the set

{yinR:y=x2 for some non-zero real x}

of squares of non-zero real numbers. Corollary 3.2.2 (ii) guarantees every non-zero square is positive. The converse implication, that every positive real number is the square of some real number, is Theorem 4.2.11. ⋄


To reduce the properties in Proposition 3.2.1 to Axioms O1.–O3., it is convenient first to establish special cases where one comparand is zero:


Lemma 3.2.4. ⏎ For all real numbers x and y,


	(i)If 0<x and y<0, then xy<0.


	(ii)If x<0 and y<0, then 0<xy.


	(iii)If 0<x, then 0<1/x.




Proof.


	(i)Page 55By trichotomy, y<0 if and only if −y∈P. By Axiom O3. and Proposition 3.1.17 (iii), −(xy)=x(−y)∈P; that is, xy<0.


	(ii)If −x and −y∈P, then by Axiom O3. and Proposition 3.1.17 (iv), 0<(−x)(−y)=xy.


	(iii)Since 1≠0 by Axiom M2., trichotomy implies 1∈P or −1∈P. Since P is closed under multiplication, either 1⋅1=1 is positive, or (−1)⋅(−1)=1 is positive. Under either alternative, we conclude 1 is positive, or 0<1.

Suppose 0<x. If x−1<0, then by (i), we have 1=x(x−1)<0, which we have just seen is false. Contrapositively, if 0<x, then 0<x−1. □ □






Proof of Proposition 3.2.1.


	(i)By definition, x<y if and only if y−x∈P, and y<z if and only if z−y∈P. By Axiom O2.,

z−x=(z−y)+(y−x)∈P,

which is equivalent to x<z.


	(ii)For all x, y, and z, we have y−x=(y+z)−(x+z). The claim follows immediately.


	(iii)If x<y and 0<z, then y−x∈P and z∈P. By Axiom O3., the product (y−x)z=yz−xz is in P. That is, xz<yz.


	(iv)Since x<y and 0<−z, part (iii) gives

0<(y−x)(−z)=(x−y)z=xz−yz,

or, yz<xz.


	(v)By Lemma 3.2.4 (iii), if 0<x<y, then 0<1/x and 0<1/y. Algebra gives 0<(y−x)/(xy)=1/x−1/y, or, 1/y<1/x. □ □






Proof of Corollary 3.2.2.


	(i)By Proposition 3.2.1 (ii), adding x to w<z and adding z to x<y gives x+w<x+z<y+z.


	(ii)follows similarly from Proposition 3.2.1 (iii).

For the assertion about squares, Proposition 3.1.17 (i) implies 0=0⋅0, while we have just shown that if x≠0, then 0<x⋅x. □ □






Definition 3.2.5. Assume x and y are real numbers. If t is real and 0≤t≤1, the expression (1−t)x+ty is called a convex linear combination of x and y.



Proposition 3.2.6. ⏎ Assume x and y are real numbers such that x<y.


	(i)If 0<t<1, then x<(1−t)x+ty<y.


	(ii)If s<t are real, then (1−s)x+sy<(1−t)x+ty.




Proof. See Exercise 3.2.8. □



Page 56The Triangle Inequalities


Definition 3.2.7. If x is a real number, the absolute value of x is

|x|={xif x≥0,−xif x<0.



Lemma 3.2.8. If x and y are real, then |xy|=|x||y|.

Proof. Immediate from Proposition 3.1.17 (iii) and (iv). □



Lemma 3.2.9. ⏎ If x is real, then −|x|≤x≤|x|.

Proof. If x≥0, then |x|=x and −|x|=−x≤0. Combining these inequalities, −|x|≤0≤x≤|x|, as claimed.

If instead x<0, then |x|=−x and 0<−x=|x|. Consequently, we have −|x|≤x<0<|x|. □



Proposition 3.2.10. ⏎ Assume x and b are real numbers.


	(i)|x|<b if and only if −b<x<b.


	(ii)If |x|≤b for all positive b, then x=0.




Proof.


	(i)For all real x, we have 0≤|x|. If |x|<b, then Proposition 3.2.1 (i) implies 0≤|x|<b, while Proposition 3.2.1 (iv) implies −b<−|x|. Combining with Lemma 3.2.9, we have −b<−|x|≤x≤|x|<b.

Conversely, assume −b<x<b. If 0≤x, then x=|x|, so in particular |x|<b. If instead x<0, then x=−|x|. By hypothesis, −b<x=−|x|. Multiplying by −1 implies |x|<b in this case as well.


	(ii)The hypothesis involves infinitely many statements, one for each positive real number b, and no finite number of these hypotheses implies the conclusion. It is therefore more natural to consider the contrapositive: To assume the conclusion is false (x≠0) and prove the hypothesis is false (there exists a positive real number b such that b<|x|). But if x≠0, then 0<|x|. Setting b=|x|/2, we have 0<b<|x|. □





We now state two of the most ubiquitous inequalities in analysis, the triangle inequality and reverse triangle inequality.


Proposition 3.2.11. ⏎ If x and y are real numbers, then


	(i)|x+y|≤|x|+|y|.


	(ii)||x|−|y||≤|x−y|.




Proof. See Exercise 3.2.4. □



Corollary 3.2.12. ⏎ Page 57For all real x and y, we have

||x|−|y||≤|x±y|≤|x|+|y|.

Proof. See Exercise 3.2.5. □



Remark 3.2.13. Conceptually, there are a priori lower and upper bounds on |x±y|, the absolute value of a sum or difference, in terms of |x| and |y|. ⋄



Definition 3.2.14. If x and y are real numbers, the number line distance between x and y is

|y−x|=|x−y|={y−xif x≤y,x−yif y<x.



Corollary 3.2.15. If x, y and z are real numbers, then


	(i)|x−z|≤|x−y|+|y−z|.


	(ii)||x−y|−|z−y||≤|x−z|.






Remark 3.2.16. These claims follow by applying the corresponding part of Proposition 3.2.11 to the identity

(x−z)=(x−y)+(y−z)=(x−y)−(z−y).

We may view real numbers x, y, and z as vertices of a (degenerate) triangle on the number line. Part (i) of the corollary says the length of a side of a triangle does not exceed the sum of the lengths of the other two sides. Part (ii) says the length of a side of a triangle is no shorter than the difference of the lengths of the other two sides. ⋄




Minimum and Maximum


Definition 3.2.17. ⏎ Assume A is a non-empty set of real numbers. A real number β (beta) is a maximum of A, or a largest element of A, if


	(i)β∈A, and


	(ii)x≤β for all x in A.




A real number α (alpha) is a minimum of A, or a smallest element of A, if


	(i)α∈A, and


	(ii)α≤x for all x in A.






Example 3.2.18. Page 58If a is a real number and A={a}, then a itself is both the largest and the smallest element of A, both in the ordinary English sense and (check this) according to Definition 3.2.17. ♢



Lemma 3.2.19. ⏎ Assume A is a non-empty set of real numbers. If β and β′ are largest elements of A, then β=β′. In words, a largest element, if it exists, is unique.

Proof. Suppose β and β′ are largest elements of A. Since x≤β for all x in A and β′∈A, we have β′≤β. The same argument with the roles reversed shows β≤β′. Consequently, β=β′. □



Remark 3.2.20. An analogous claim is true for smallest elements. Exercise 3.2.9 asks you to give a formal statement, and to prove your statement by modifying the proof above. ⋄



Remark 3.2.21. A non-empty set of real numbers may have both a largest and a smallest element, or it may have one but not the other, or it may have neither.

For example, the set of positive real numbers has neither: If x is a positive real number, then x/2 is smaller and positive, so x is not the smallest positive real. Similarly, 2x is larger and positive, so x is not the largest positive real.

Proposition 3.2.25 guarantees that every non-empty finite set of real numbers has both a smallest and a largest element. ⋄



Definition 3.2.22. ⏎ If a and b are real numbers, we define their maximum and minimum by

max(a,b)={bif a≤b,aif b<a,min(a,b)={aif a≤b,bif b<a.



Remark 3.2.23. If a and b are real and A={a,b}, then max(a,b) is the largest element of A and min(a,b) is the smallest element of A according to Definition 3.2.17. Take a minute to check this. We will give a separate proof shortly. ⋄



Proposition 3.2.24. ⏎ If a and b are real numbers, then

max(a,b)=a+b+|a−b|2,min(a,b)=a+b−|a−b|2.

Proof. Adding and subtracting the formulas for max(a,b) and min(a,b) in Definition 3.2.22 gives

max(a,b)+min(a,b)=a+bmax(a,b)−min(a,b)=|a−b|={b−aif a≤b,a−bif b<a.

Page 59The proposition follows by adding and subtracting these and dividing by 2, compare Exercise 3.1.3. □



Proposition 3.2.25. ⏎ If A={a1,a2,…,an} is a finite, non-empty set of real numbers, there exist unique elements maxA and minA in A such that

minA≤x≤maxAfor all x in A.

Proof. Uniqueness of largest elements was established in Lemma 3.2.19, while Exercise 3.2.9 handles smallest elements. It therefore suffices to establish existence of largest elements.

We proceed by induction on the number of elements. For each positive integer n, let P(n) be the statement,


Every set of n distinct real numbers has a largest element.



A set of one real number has a largest element; the base case P(1) is true.

Assume inductively that P(m) is true for some positive integer m. Assume Am+1={ak}k=1m+1 is a set of (m+1) distinct numbers, and write Am={ak}k=1m, so that Am+1=Am∪{am+1}. By the inductive hypothesis, Am has a largest element maxAm. Define

βm+1=max(maxAm,am+1).

We first show βm+1 is an element of Am+1: Either βm+1=maxAm, which is an element of Am⊆Am+1, or βm+1=am+1, which is an element of Am+1.

It remains to prove x≤βm+1 for all x in Am+1. Assume x is an arbitrary element of Am+1. If x∈Am, then x≤maxAm≤βm+1. If instead x∉Am, then x=am+1≤βm+1.

We have shown that βm+1∈Am+1 and x≤βm+1 for all x in Am+1. By definition, βm+1 is a largest element of Am+1. Since Am+1 was an arbitrary set of (m+1) elements, we have established the inductive step, “P(m) implies P(m+1) for every m.” By mathematical induction, P(n) is true for every positive integer n; every finite set of real numbers has a largest element.

The proof that every non-empty finite set has a smallest element is entirely analogous, see Exercise 3.2.10. □





Exercises for Section 3.2


	Exercise 3.2.1. In each part, assume n is a positive integer, and x, y are real numbers such that x<y. Use induction to prove:


	Page 60(a)If 0≤x, then 0≤xn<yn.


	(b)If n is odd, then xn<yn.





	Exercise 3.2.2. Assume x and y are real numbers. Prove that


	(a)2|xy|≤x2+y2, and the inequality is strict unless |x|=|y|.


	(b)0≤x2+xy+y2, and the inequality is strict unless x=y=0.





	Exercise 3.2.3. (H) Assume a, b, and c are real numbers.


	(a)If a is positive, prove ax2+bx+c≥(4ac−b2)/(4a) for all real x, with equality if and only if x=−b/(2a). Suggestion: Complete the square.


	(b)If a≠0, prove there exist two real numbers x such that ax2+bx+c=0 if and only if there exists a non-zero real number r such that r2=b2−4ac (if and only if 0<b2−4ac by Theorem 4.2.11).


	(c)(A) In (b), write r=b2−4ac. If x is real and ax2+bx+c=0, find a formula for x in terms of a, b, and c.





	Exercise 3.2.4. (H) Prove Proposition 3.2.11.


	Exercise 3.2.5. (★) Prove Corollary 3.2.12.


	Exercise 3.2.6. Give a formal proof by mathematical induction that if n≥2 and {xj}j=0n−1 are real numbers, then

|∑j=0n−1xj|≤∑j=0n−1|xj|.


	Exercise 3.2.7. Assume x0 and r are real numbers, and r>0. Prove, for all real x,


	(a)|x−x0|<r if and only if x0−r<x<x0+r.


	(b)0<|x−x0|<r if and only if x0−r<x<x0 or x0<x<x0+r.





	Exercise 3.2.8. Assume x and y are real numbers such that x<y.


	(a)Prove that x<12(x+y)<y and x<13(2x+y)<13(x+2y)<y.


	(b)Prove Proposition 3.2.6.


	(c)Interpret the conclusions of Proposition 3.2.6 geometrically.





	Exercise 3.2.9. Give a formal statement for smallest elements analogous to Lemma 3.2.19, and prove your statement.Page 61


	Exercise 3.2.10. (H) Complete the proof of Proposition 3.2.25 by showing every non-empty finite set of real numbers has a smallest element.


	Exercise 3.2.11. (H). If x0, y0, x, and y are real, prove that

|xy−x0y0|≤|x||y−y0|+|y0||x−x0|

and give a geometric interpretation.


	Exercise 3.2.12. (H). If x0≠0, and if |r|<|x0|/2, prove 1/|x0+r|≤2/|x0|.


	Exercise 3.2.13. (★) Use induction to prove that if n and m are natural numbers, then (n+1)mn!≤(n+m)! and the inequality is strict if m>1.


	Exercise 3.2.14. Assume m is an integer greater than 1. Prove there exists an integer N such that if n≥N, then mn≤n!.


	Exercise 3.2.15. This five-part exercise introduces the complex field. Although formally a complex number is an expression a+bi with a and b real and i a formal symbol satisfying i2=−1 and commuting with real numbers, the modern definition refers to nothing but real numbers and set-theoretic constructions: A complex number is an ordered pair (a,b) of real numbers. We call a the real part of (a,b) and b the imaginary part. If b=0, we say (a,b)=(a,0) is real.

If z=(x,y), w=(u,v) are complex, define their sum and product to be

z+w=(x,y)+(u,v)=(x+u,y+v),zw=(x,y)⋅(u,v)=(xu−yv,xv+yu).

These operations are called complex addition and complex multiplication.


	(a)Prove complex addition is commutative and associative, has an identity element, and every complex number has an additive inverse.


	(b)Prove complex multiplication is commutative, associative, and distributes over complex addition.


	(c)Prove (1,0) is an identity element for complex multiplication. If x and y are real, calculate (x,y)(x,−y). Prove that every non-zero complex number z=(x,y) has a complex reciprocal: There exists a complex number w such that zw=(1,0).


	(d)Find all complex numbers z=(x,y) such that z2=z⋅z=(−1,0).


	(e)If z=(x,y), the number z―=(x,−y) is called the complex conjugate of z. Prove that if z and w are complex, then z+w―=z―+w― and zw―=z―w―.
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Definition 3.3.1. ⏎ If x is a real number, we define powers of x recursively by

x0=1,xk+1=xk⋅xif k is a natural number.

If x is non-zero and k is a natural number, we define x−k=(xk)−1.



Remark 3.3.2. Particularly, we define 00=1. ⋄



Remark 3.3.3. The expression “xk,” read “x to the k,” is called “the kth power of x.” Intuitively, xk is the result of multiplying k factors of x. ⋄



Theorem 3.3.4. (The law of exponents). ⏎ If x and y are non-zero real numbers, then

(i)(xy)n=(xn)(yn),(ii)xm+n=xm⋅xn,(iii)xnm=(xn)m,}for all integers m and n.

In particular, x−n=(x−1)n for all non-zero real x and all integers n.

Proof. i For each natural number n, consider the statement P(n):

(xy)n=(xn)(yn).

The base case P(0) reduces to 1=1, which is true. Assume inductively that P(k) is true for some natural number k. We have

(xy)k+1=(xy)k(xy)definition of exponentiation,=(xkyk)(xy)inductive hypothesis,=xk(yk⋅x)yassociativity,=xk(x⋅yk)ycommutativity,=(xk⋅x)(yk⋅y)associativity,=(xk+1)(yk+1)definition of exponentiation.

Since P(0) is true and P(k) implies P(k+1) for all k, the statement P(n) is true for all n by mathematical induction.

To prove (xy)−n=(x−n)(y−n) if n>0, recall x−n=(xn)−1 by definition. The preceding argument and Exercise 3.1.2 (a) imply

(xy)−n=[(xy)n]−1=[(xn)(yn)]−1=(xn)−1(yn)−1=(x−n)(y−n).

Finally, xn(x−n)=1=(x⋅x−1)n=xn(x−1)n. By cancellation, x−n=(x−1)n for all n.

The proofs of (ii) and (iii) are Exercises 3.3.1 and 3.3.2. □


Page 63The “limiting behavior” of xn as n grows without bound plays a central role in analysis. We will use the following estimates repeatedly.


Proposition 3.3.5. ⏎ If u is a positive real number, then

1+nu≤(1+u)nif n≥0.

Particularly, n<1+n≤2n if n≥0.

Proof. We proceed by induction on n. Let P(n) denote the inequality in the theorem. The base case P(0) asserts 1≤1, which is true. Assume inductively that P(k) is true for some natural number k. We have

1+(k+1)u≤1+(k+1)u+ku20≤ku2=(1+ku)(1+u)algebra≤(1+u)k(1+u)inductive hypothesis=(1+u)k+1definition of exponentiation

so that P(k) implies P(k+1). □



Corollary 3.3.6. ⏎ If x is a real number such that 0<x<1, there exists a positive real number u such that x=1/(1+u), and

0<xn≤11+nuif n≥0.

Proof. If 0<x<1, then 1<1/x by Proposition 3.2.1 (v), so we may write 1/x=1+u for some positive real number u. By Proposition 3.3.5, we have 0<1+nu≤(1/x)n=1/(xn) if n≥0. Taking reciprocals again establishes the corollary. □



Geometric Sums

Finite sums whose terms form a geometric progression (consecutive terms all have the same ratio) play an important role in real analysis.


Definition 3.3.7. If a and r are real numbers, and n is a natural number, the geometric sum with first term a, ratio r, and n terms is

∑k=0n−1ark=a+ar+ar2+⋯+arn−1.



Proposition 3.3.8. ⏎ The geometric sum with first term a, ratio 1, and n terms is equal to an. If instead r≠1, then

∑k=0n−1ark=arn−1r−1=a1−rn1−r.

Proof. See Exercise 3.3.4. □



Remark 3.3.9. The form with positive denominator tends to be most useful. ⋄




Page 64The Binomial Theorem

If x and y are real numbers, then (x+y)2=x2+2xy+y2. The binomial theorem generalizes to arbitrary positive integer powers (x+y)n.


Theorem 3.3.10. (The binomial theorem). For all real numbers x and y and every non-negative integer n,

(x+y)n=∑k=0n(nk)xn−kyk=(n0)xn+(n1)xn−1y+(n2)xn−2y2+⋯+(nn)yn.



Example 3.3.11. From the binomial table, Table 2.1, if x and y are real, then

(x+y)3=x3+3x2y+3xy2+y3,(x+y)4=x4+4x3y+6x2y2+4xy3+y4.

♢



Example 3.3.12. The binomial theorem can be used with specific numbers. For example,

113=(10+1)3=103+3⋅102⋅1+3⋅10⋅12+13=1000+300+30+1=1331.

The digits comprise the fourth row of the binomial table. ♢



Proof of Theorem 3.3.10. Conceptually, the n-fold product

(x+y)n=(x+y)(x+y)⋯(x+y)

is expanded by the following procedure:


	Pick an arbitrary integer k such that 0≤k≤n;


	Distribute k check marks among the n copies of (x+y);


	If a copy of the factor (x+y) is unchecked, choose x from that copy; otherwise choose y. Multiply the resulting n factors to get xn−kyk.


	Sum over all k and all ways of distributing k check marks.




By Points 1. and 3., the expanded product has the form

(x+y)n=    ―xn+    ―xn−1y+    ―xn−2y2+⋯+    ―xyn−1+    ―yn

for some coefficients. By Points 2. and 4., the coefficient of xn−kyk is (nk), the number of distinct ways of distributing k check marks among n parenthesized binomials. This completes the proof. □





Page 65Exercises for Section 3.3


	Exercise 3.3.1. (H). Prove Theorem 3.3.4 (ii).


	Exercise 3.3.2. Prove Theorem 3.3.4 (iii).


	Exercise 3.3.3. Assume u>0. Use induction to prove

1+nu+n(n−1)2u2≤(1+u)nfor all n in N.


	Exercise 3.3.4. (H). Use induction on n to establish the geometric sum formula, Proposition 3.3.8.


	Exercise 3.3.5. (★) If x and y are real numbers, find a closed formula for

∑k=0n−1xn−k−1yk=xn−1+xn−2y+xn−3y2+⋯+xyn−2+yn−1.


	Exercise 3.3.6. (★) Assume n is a natural number, h and x real numbers such that h≠0. Use the binomial theorem to give a polynomial formula for ((x+h)n−xn)/h. To what does this formula reduce when h=0?


	Exercise 3.3.7. (★) Assume x is real and n a natural number. Express

12((1+x)n+(1−x)n),12((1+x)n−(1−x)n)

as polynomials in x. Write out the results explicitly if n=2, 3, and 4.


	Exercise 3.3.8. Use the binomial theorem to expand:


	(a)(x+y)3, (x−y)3, and 12((x+y)3±(x−y)3).


	(b)(x+y)4, (x−y)4, and 12((x+y)4±(x−y)4).


	(c)(x+y)6.





	Exercise 3.3.9. Assume x, y, and z are real. State and prove a trinomial theorem for (x+y+z)n.


	Exercise 3.3.10. (★) For each n in N, let P(n) be the inequality 3n<n!.


	(a)Prove that P(k) implies P(k+1) if k≥2.


	(b)Prove there exists an n0 such that P(n0) is true.





	Exercise 3.3.11. Page 66If m and n are positive integers such that m<n, then

[n+1n]m=[1+1n]m<1+m2n.


	Exercise 3.3.12. Assume m is an integer greater than 1. Prove there exists an integer N such that if n≥N, then nm≤2n. Hint: Use Exercise 3.3.11.


	Exercise 3.3.13. (H). Prove the binomial theorem by induction on the exponent, taking P(n) to be

(x+y)n=∑k∈Z(nk)xn−kyk.

The sum is taken over all integers k, but the summands are 0 unless 0≤k≤n.


	Exercise 3.3.14. (Binary, or base 2, representation of natural numbers) For purposes of this question, a bit string is a real sequence (bk)=(bk)k∈N such that bk=0 or 1 for each k, and bk=0 except for finitely many k. We say two bit strings (bk) and (bk′) are equal if bk′=bk for all k.

Suppose N is a natural number. If (bk) is a bit string such that k≥N implies bk=0, define its bitrep to be the natural number

∑k∈Nbk⋅2k=∑k=0N−1bk⋅2k=b0+b1⋅2+b2⋅22+b3⋅23+⋯+bN−1⋅2N−1.

Prove that every natural number is uniquely written as a bitrep.
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Fundamental concepts of real analysis, especially limits, depend not on individual numbers, but on infinite objects, especially sequences (Chapter 6) and intervals. This chapter introduces notation, definitions, theorems, and important examples related to infinite sets and the completeness axiom. Unless stated otherwise, a and b denote real numbers such that a<b.


4.1 Sets of Real Numbers


Definition 4.1.1. The sets

(a,b)={xinR:a<x<b}[a,b]={xinR:a≤x≤b}

are called the open interval and the closed interval with endpoints a and b.



Remark 4.1.2. There are also half-open intervals [a,b) and (a,b], though these play only passing roles in this book. ⋄



Definition 4.1.3. An interval of real numbers with endpoints a and b has center x0=12(b+a), radius r=12|b−a|, and length |b−a|=2r, Figure 4.1.


[image: A number line with an open interval is centred at x 0. The endpoints of the interval are marked as a equals x 0 minus r and b equals x 0 plus r. A double-headed arrow above the line spans the length of the interval with both arrowheads labelled r, indicating that the distance from x 0 to either endpoint is r.]
Figure 4.1 An interval represented using its center and radius. ⏎




Lemma 4.1.4. Assume a<b. If x0=12(b+a) and r=12|b−a|, then

(a,b)={xinR:|x−x0|<r},[a,b]={xinR:|x−x0|≤r}.

Page 68Proof. By Proposition 3.2.24, a=min(a,b)=x0−r and b=max(a,b)=x0+r. If x is real, then x∈(a,b) if and only if a<x<b, namely, x0−r<x<x0+r. Subtracting x0 from each term gives −r<x−x0<r. By Proposition 3.2.10 this is equivalent to |x−x0|<r. Replacing the “<”s with “≤” proves the assertion about the closed interval. □



Definition 4.1.5. Assume x0 and r are real numbers, and r>0. The open ball of radius r about x0 is the open interval

Br(x0)=(x0−r,x0+r).



Remark 4.1.6. Open balls are nested by transitivity of inequality: If r′<r, then |x−x0|<r′ implies |x−x0|<r, so Br′(x0)⊆Br(x0). ⋄



Definition 4.1.7. Assume x0 and r are real numbers, and r>0. The punctured ball of radius r about x0 is the set Br×(x0)=Br(x0)∖{x0}, Figure 4.2.


[image: An open ball and punctured ball around x 0 with radius r are marked between x 0 minus r and x 0 plus r.]
Long Description for Figure 4.2The lower line segment represents the open ball, extending from x 0 minus r to x 0 plus r, with both endpoints marked with open circles. The midpoint x 0 is marked but included. The upper line segment represents the punctured ball, identical in length and endpoints, but the midpoint at x 0 is not included. Vertical dashed lines connect the endpoints and midpoint between both segments. The labels B subscript r of x 0 and B subscript r superscript cross of x 0 are placed beside the upper and lower intervals, respectively.

Figure 4.2 The open ball and punctured ball of radius r about x0. ⏎




Remark 4.1.8. That is, Br×(x0) is the open ball Br(x0) from which the center x0 has been removed, namely the set

{xinR:0<|x−x0|<r}=(x0−r,x0)∪(x0,x0+r).

⋄



Remark 4.1.9. ⏎ Distinct real numbers are not “neighbors”: If x≠x0, there is a “gulf” separating x and x0. In order to bridge this gulf, we consider “neighbors” of x0 not as individual numbers, but as open balls and punctured balls. ⋄



Definition 4.1.10. If x0 is real, a neighborhood of x0 is a set containing Br(x0) for some positive real r. A punctured neighborhood of x0 is a neighborhood from which x0 has been removed.



Operations on Sets

We can build useful, surprisingly complicated sets of real numbers by recursively applying simple operations to simple sets.Page 69


Definition 4.1.11. ⏎ Assume A⊆R and k is real. The translate of A by k is the set

k+A={xinR:x=k+a for some a in A}.

The scaling of A by k is the set

kA={xinR:x=ka for some a in A}.

In particular, −A={−a:a∈A} is the reflection of A across the origin.



Remark 4.1.12. If k=0, then k+A=A and kA={0}. In practice, we usually assume k≠0. ⋄



Example 4.1.13. If q is a positive integer, the scaling of Z by 1/q,

(1/q)Z={xinR:x=p/q for some integer p},

consists of all rational numbers that can be represented as a (possibly improper and/or non-reduced) fraction whose denominator is precisely q. The elements of (1/q)Z are spaced regularly along the number line, with adjacent elements separated by a distance of 1/q, Figure 4.3.Page 70

[image: A number line grid displays the sets 1 over q Z for q equals 1 through 6 and Q subscript 6 along vertical positions.]
Long Description for Figure 4.3The diagram displays a vertical arrangement of seven horizontal number lines, each representing a different set of rational numbers. Each line is labeled on the right as Z, 1 half Z, 1 third Z, 1 fourth Z, 1 fifth Z, 1 sixth Z, and Q subscript 6. All lines span from negative 1 to 2 on the horizontal axis. The top line marked Z contains only integers. The line below marked 1 half Z includes points spaced at half-unit intervals. Each subsequent line increases in density, with 1 third Z containing points every third, and so on, until the bottommost line Q subscript 6 displays all rational numbers with denominator 6, including points such as negative 5 sixths, negative 2 thirds, and 11 sixths.

Figure 4.3 The sets 1qZ and QN. ⏎



If q and q′ are positive, then (1/q)Z⊆(1/q′)Z if and only if q divides q′. ♢



Example 4.1.14. For each positive integer N, the set

QN:=⋃q=1N(1/q)Z

consists of all rational numbers that can be represented as a fraction whose denominator is no larger than N, Figure 4.3.

The sets QN are nested outward: QN⊆QN+1=QN∪[1/(N+1)]Z.

The set of rational numbers can be expressed as

Q=⋃q∈Z+(1/q)Z=⋃N∈Z+QN.

♢



Definition 4.1.15. ⏎ A splitting of the closed interval I=[a,b] is a finite set Π⊆[a,b] (Pi) containing both endpoints. Every splitting may be written uniquely in the form {ti}i=0n with t0=a, tn=b, and ti<ti+1 if 0≤i<n. With this understanding, Ii:=[ti,ti+1] is called the ith piece of the splitting; its length is Δti:=ti+1−ti, see Figure 4.4.


[image: A line diagram represents a closed interval from a equals t 0 to b equals t subscript n partitioned into n subintervals.]
Long Description for Figure 4.4The interval is marked by successive points t 0, t 1, t 2, t 3 up to t subscript n, each joined by short horizontal line segments. Above each subinterval is a label delta t subscript 0, delta t subscript 1, delta t subscript 2 and so on. Below the segments, each subinterval is denoted as I subscript 0, I subscript 1, I subscript 2 through I subscript n minus 1.

Figure 4.4 Splitting a closed interval [a,b] into n pieces. ⏎




Example 4.1.16. Assume n is a positive integer, and put Δt=(b−a)/n. The equal-length splitting of [a,b] with n pieces is Πn={a+iΔt}t=0n. ♢



Example 4.1.17. Assume [a,b] is an arbitrary closed interval and Π3 is the equal-length splitting with 3 pieces. By definition, removing the open middle third of [a,b] gives the set

[a,b]ˇ:=[a,b]∖(t1,t2)=[t0,t1]∪[t2,t3].

♢



Definition 4.1.18. If {Ii}i=0n is a finite collection of disjoint closed intervals, we call each Ii a (connected) component of the union ⋃iIi.



Example 4.1.19. (The ternary set).⏎ Recursively construct sets (Kn)n∈N as follows. Let K0=[0,1] be the closed unit interval. Inductively, if n is a natural number and Kn=⋃iIi is a finite union of 2n disjoint closed intervals each of length 3−n, define Kn+1=⋃iIiˇ, the result of removing the open middle third of each component of Kn, Figure 4.5. The sets Kn are nested inward: Kn⊇Kn+1 for each n. The ternary set is defined to be the intersection,

K=⋂n∈NKn.

[image: An iterative construction of the ternary set over the interval from 0 through 1 using horizontal line segments labeled K subscript 0 through K subscript 6.]
Long Description for Figure 4.5The topmost line K subscript 0 spans the entire interval from 0 through 1. Below that, each successive line removes the middle third of every remaining segment from the previous step. K subscript 1 has two segments, K subscript 2 has four, and so on, doubling the number of segments at each step. Each line is aligned with a number line at the top marked with 0, 1 third, 2 thirds, and 1, along with evenly spaced subdivisions.

Figure 4.5 Approximations to the ternary set. ⏎



Each endpoint of Kn is an element of Kn+1, and consequently “persists” in K. The ternary set therefore contains the union of the endpoints of the Page 71sets Kn. Since Kn has 2n+1 endpoints, K has at least 2n+1 elements for each natural number n, and therefore has infinitely many elements.

The set K also contains “non-endpoint” elements. In a well-defined sense, and with terrific understatement, “most” elements of the ternary set are not endpoints of any Kn, see Remark 5.4.22.

The ternary set is self-similar. Specifically, K=(1/3)K∪(1/3)(K+2) is a union of two disjoint subsets, each a scaled copy one-third the size of the entire set. ♢




Upper and Lower Bounds

In Chapter 3 we saw “largest” and “smallest” elements of a set. These useful concepts are, unfortunately, too restrictive for real analysis. The limitation is already seen with an open interval such as (0,1). Loosely, the right endpoint 1 “should be” the largest element, but fails to be since 1 is not in the interval. Similarly, 0 should be the smallest element, but fails to be.

In Section 4.2, we isolate a suitable generalization of “largest element”: the “least upper bound” or “supremum” of a set A, the smallest real number greater than or equal to every element of A. The corresponding generalization for a “smallest element” is the “greatest lower bound” or “infimum” of a set. We approach these definitions in stages, first discussing “bounds” on a set.


Definition 4.1.20. Assume A is a set of real numbers. A real number U is an upper bound of A if x≤U for every x in A. If there exists an upper bound of A, we say A is bounded above (in R).

A real number L is a lower bound of A if L≤x for every x in A. If there exists a lower bound of A, we say A is bounded below (in R).

The set A is bounded if A is bounded above and bounded below.Page 72



Remark 4.1.21. If U is an upper bound of A and if U<U′, then U′ is an upper bound of A by transitivity of inequality. Similarly, if L is a lower bound of A and if L′<L, then L′ is also a lower bound of A, Figure 4.6. ⋄


[image: A number line shows a point x within a set A flanked by lower bounds L and upper bounds U.]
Long Description for Figure 4.6The diagram shows a horizontal number line with five marked points from left to right: L prime, L, x, U, and U prime. The points L prime and L are grouped under a labeled brace called lower bounds L. The point x lies in the middle and is grouped under the brace labeled A. The points U and U prime to the right are grouped under another brace labeled upper bounds U.

Figure 4.6 Upper and lower bounds for an interval. ⏎




Example 4.1.22. Every interval [a,b] is bounded. The left-hand endpoint a is a lower bound, and the right-hand endpoint b is an upper bound.

Every subset of a bounded set is bounded. (Why?) For example, the open interval (a,b) and the ternary set K⊆[0,1] are bounded. ♢



Remark 4.1.23. If A⊆R is non-empty, then the following are equivalent:


	(i)L is a lower bound of A and U is an upper bound of A.


	(ii)A⊆[L,U]. ⋄






Example 4.1.24. The set N of natural numbers is bounded below; 0 is a lower bound. In Section 4.3, see Theorem 4.3.1, we will prove N is not bounded above in R: For every real number x, there exists a natural number n such that x<n.

The set Z of integers is not bounded above or below in R, nor is any set that contains Z; thus Q and R are not bounded above or below in R. ♢



Lemma 4.1.25. ⏎ A subset A of R is bounded if and only if there exists a positive real number M such that |x|≤M for all x in A.



Remark 4.1.26. Practically speaking, when a set is bounded we may as well work with “symmetric” upper and lower bounds. ⋄

Proof. If there exists an M such that |x|≤M for all x in A, then −M≤x≤M for all x in A; that is, L=−M is a lower bound of A, and U=M is an upper bound of A.

Conversely, if L≤x≤U for all x in A, take M=max(|L|,|U|). For all x in A, we have −M≤−|L|≤L≤x≤U≤|U|≤M. □





Exercises for Section 4.1


	Exercise 4.1.1. (★) If r>0 and x0 is real, prove that Br×(x0)=x0+Br×(0).


	Exercise 4.1.2. Page 73Assume A is a non-empty set of real numbers, the real number L is a lower bound of A, and the real number U is an upper bound of A. If k is an arbitrary real number, find lower and upper bounds on k+A.

If k>0, find lower and upper bounds on the sets kA and (−k)A.


	Exercise 4.1.3. Assume b is a non-zero real number and 0<r≤|b|/2. If x∈Br(|b|), namely, if |x−|b||<r≤|b|/2, then |b|/2<|x| and 1/|x|<2/|b|.


	Exercise 4.1.4. Use the given strategies to prove that for every x in (a,b), there exists a positive real ε such that Bε(x)⊆(a,b).


	(a)If x∈(a,b), show ε=min(x−a,b−x) is positive, and use properties of real inequalities to prove Bε(x)⊆(a,b).


	(b)Write the interval (a,b) as an open ball with center x0 and radius r. If x∈Br(x0), show ε:=r−|x−x0| is positive, and use the triangle inequality to prove Bε(x)⊆Br(x0)=(a,b).





	Exercise 4.1.5. (★) Suppose J=[a,b] and J′=[a′,b′] are closed intervals whose union is an interval. Prove J∩J′ is non-empty.


	Exercise 4.1.6. (H). Suppose J=(a,b) and J′=(a′,b′) are open intervals whose union is an open interval. Prove J∩J′ is an open interval.


	Exercise 4.1.7. Assume a and b are real numbers such that a<b. Prove that for every positive real r, the intersection Br(b)∩(a,b) is non-empty.






4.2 The Completeness Axiom

A non-empty set of real numbers may be bounded (above and below) yet have neither a maximum nor a minimum.


Example 4.2.1. The open interval (a,b) is bounded below by a and bounded above by b, but contains no smallest or largest element: If x∈(a,b), namely, if a<x<b, then by Proposition 3.2.6,

a<12(a+x)<x<12(x+b)<b.

In words, 12(a+x)∈(a,b) and is smaller than x (so x is not the minimum of (a,b)), while 12(x+b)∈(a,b) and is larger (so x is not the maximum). ♢



Definition 4.2.2. ⏎ Assume A is a set of real numbers that is bounded above. A real number β is called a least upper bound or supremum of A if


	Page 74(i)x≤β for all x in A, namely, β is an upper bound of A.


	(ii)For every upper bound U of A, we have β≤U.






Lemma 4.2.3. ⏎ If A⊆R, and β and β′ are suprema of A, then β=β′.

Proof. By hypothesis, β′ is an upper bound of A, so β≤β′ by condition (ii). Reversing roles, β′≤β. □



Remark 4.2.4. Lemma 4.2.3 guarantees we may speak of the supremum of A rather than a supremum of A. We are further justified in writing supA to denote the supremum of A. For a given set A, the symbol supA may signify no real number at all, but it never signifies more than one. ⋄



Remark 4.2.5. The completeness axiom for the real number system says: If A is a non-empty set of real numbers that is bounded above, then A has a real supremum. Loosely, every set of real numbers that “should” have a real supremum does have a real supremum.

Completeness underpins all of real analysis. ⋄



Remark 4.2.6. If A has a largest element, then supA=maxA. In this sense, suprema generalize maxima.

For every non-empty set that is bounded above, supA is the leftmost number lying on or to the right of every element of A, Figure 4.7. ⋄


[image: A number line shows set A bounded between infimum and supremum, flanked by lower and upper bounds.]
Long Description for Figure 4.7The diagram presents a horizontal number line with three labeled regions. On the left, a brace encloses a segment labeled lower bounds L. To the right of this segment is the interval A, enclosed by a separate brace, spanning from infimum of A to supremum of A. A point x lies within this interval and is marked with a solid dot. Further right, a final brace marks the region labeled upper bounds U.

Figure 4.7 The supremum and infimum of an interval. ⏎



An adversarial game-like formulation of a supremum is useful in practice:


Lemma 4.2.7. ⏎ If A is a set of real numbers having a supremum β, then β is the unique real number satisfying the conditions


	(i)If x∈A, then x≤β.


	(ii)′ If ε>0, then there exists an x in A such that β−ε<x.




Proof. Conceptually, the conditions (ii) and (ii)′ are contrapositives.

In other words, β is the supremum of A if and only if every upper bound U of A satisfies β≤U. The contrapositive says every real M such that M<β fails to be an upper bound of A. That is, if ε>0, there exists an x in A such that M=β−ε<x. □


Page 75Everything said above for upper bounds has a corresponding concept or statement for lower bounds.


Definition 4.2.8. A real number α is called a greatest lower bound or infimum of A if


	(i)α is a lower bound of A, and


	(ii)If L is a real lower bound of A, then L≤α.






Remark 4.2.9. Geometrically, an infimum of A lies to the left of A, but is the rightmost such point. Infima are unique (if they exist), so we are justified in writing infA. For practice, write out an alternative characterization of infima corresponding to Lemma 4.2.7. ⋄



Lemma 4.2.10. (Constriction). ⏎ Assume A and B are non-empty sets of real numbers. If A⊆B, then infB≤infA≤supA≤supB.

Proof. Every lower bound of B is a fortiori a lower bound of A. In particular, infB≤infA since infB is a lower bound of B. Similarly, supA≤supB. Finally, if a∈A, then infA≤a≤supA. □


To illustrate the power of suprema, we'll establish that every positive real number b has a positive real square root b.


Theorem 4.2.11. (Real square roots). ⏎ If b is a positive real number, there exists a unique positive real number b such that (b)2=b.

Proof. We'll prove existence if b=2. Existence in general and uniqueness are Exercise 4.2.4. Consider the set A={xinR:x2<2}. It suffices to prove A is non-empty, bounded above, and (supA)2=2. In the course of the argument, we'll actually prove more: If U is a positive real number, then A is bounded above by U if and only if 2≤U2.

Since 12=1<2, we have 1∈A, so A is non-empty.

Next, assume U is positive and 2≤U2. By Proposition 3.2.1 (iii), if U≤U′ then 2≤U2≤U′2, so U′∉A. Contrapositively, if x∈A, then x<U; in other words, A is bounded above by every positive real U satisfying 2≤U2.

Since A is non-empty and bounded above, 2:=supA exists by completeness, and 1≤2. It suffices to prove (2)2=2. We'll prove, contrapositively:


	If 0<U and 2<U2, there exists a smaller upper bound of A, so U≠2;


	If 0<V and V2<2, then V is not an upper bound of A, so V≠2.




Page 76Trichotomy implies (2)2=2.

(Proof of 1). If 0<U and 2<U2, set U′=(1/2)(U+(2/U)). Since

0<U2−22U=12[U−2U]=U−12[U+2U]=U−U′,

we have U′<U. Further,

0<(U2−2)2(2U)2=(U2+2)2(2U)2−2=U′2−2,

so 2<U′2. This establishes 1.

(Proof of 2). By Proposition 3.2.1, if 0<V and V2<2, then U:=2/V is positive and 2<U2. If we define U′ as above and set V′:=2/U′, then V<V′ and V′2<2, so V′∈A. Consequently, V is not an upper bound of A. □


Getting comfortable with suprema takes practice. To illustrate the definition further, we'll establish three useful formal properties.


Proposition 4.2.12. ⏎ Assume A is a bounded, non-empty set of real numbers, and k is real.


	(i)sup(k+A)=k+supA.


	(ii)If k≥0, then sup(kA)=ksupA.


	(iii)If k>0, then sup(−kA)=−kinfA.






Example 4.2.13. If A=[a,b] is an interval, then k+A=[k+a,k+b]. If k≥0, then kA=[ka,kb] and −kA=[−kb,−ka]. In each case, the supremum can be read off by inspection. This is a useful way of remembering the conclusion of Proposition 4.2.12. ♢

Proof. The strategy in each part is to show that the right-hand side satisfies the two conditions for a supremum in Definition 4.2.2.


	(i).Since k+A={x′inR:x′=k+x for some x in A}, a real number U is an upper bound of A if and only if x≤U for all x in A,

if and only if x′:=k+x≤k+U for all x′ in k+A,if and only if k+U is an upper bound of k+A.

But supA is an upper bound of A, so k+supA is an upper bound of k+A. By Definition 4.2.2 (ii), sup(k+A)≤k+supA.

Conversely, sup(k+A) is an upper bound of k+A, so sup(k+A)−k is an upper bound of A. By Definition 4.2.2 (ii), supA≤sup(k+A)−k, or k+supA≤sup(k+A). This completes the proof. (Why?)


	(ii).Page 77If k=0, then kA={0} and the claim is immediate. Assume, therefore, that k>0. The proof in this case is a mechanical modification of the preceding argument. The main idea is, multiplication or division by k preserves the sense of an inequality since k is positive, so a real number U is an upper bound of A if and only if kU is an upper bound of kA. Just as in the preceding argument, ksupA is an upper bound of kA, so sup(kA)≤ksupA, and sup(kA)/k is an upper bound of A, so ksupA≤sup(kA).


	(iii).Since −k<0, multiplication or division by −k reverses inequalities. Consequently, L is a lower bound of A if and only if U′=−kL is an upper bound of −kA. Particularly, −kinfA is an upper bound of −kA, so sup(−kA)≤−kinfA. Conversely, sup(−kA)/(−k) is a lower bound of A, so sup(−kA)/(−k)≤infA, or −kinfA≤sup(−kA).

The proofs of the last two parts are only sketched. One hope is to convey the conceptual frame of the proofs uncluttered by details. A second, complementary aim is to coax you to study part (i) carefully, then fill in details for (ii) and (iii) as practice working with suprema yourself. □





Finally, we prove a technical result that recurs in multiple guises.


Theorem 4.2.14 (Interval induction). ⏎ Assume [a,b] is a closed, bounded interval of real numbers, I⊆R, and J:={tin[a,b]:[a,t]⊆I}. Assume J satisfies


	(i)(Priming) a∈J.


	(ii)(Climbing) If t∈J, then Br(t)∩[a,b]⊆J for some positive real r.


	(iii)(Capping) supJ∈J.




Then [a,b]⊆J.

Proof. Since a∈J⊆[a,b], climbing implies [a,a+r)∩[a,b]⊆J for some positive real r. Thus J is non-empty, so supJ is real and a<supJ≤b.

By construction, t∈J if and only if [a,t]⊆I, if and only if [a,s]⊆I for all s such that a≤s≤t, if and only if [a,t]⊆J.

Since supJ∈J by capping, [a,supJ]⊆J. It suffices to prove supJ=b. Contrapositively, if t∈J and t<b, then climbing implies Br(t)∩[a,b]⊆J for some positive real r. Particularly, t′:=min(t+12r,b) is in J and is greater than t, so t is not an upper bound of J. Since supJ is an upper bound of J, we have supJ=b and [a,b]⊆J. □




Exercises for Section 4.2


	Exercise 4.2.1. (★) Prove sup(a,b)=b. Suggestion: Use condition (ii)′.


	Exercise 4.2.2. Page 78Suppose A and B are non-empty sets of real numbers. State the converse of constriction, and determine whether the converse is true.


	Exercise 4.2.3. Assume C⊆(a,b) is a finite set of real numbers and that A=(a,b)∖C. Prove supA=b.


	Exercise 4.2.4. Assume b>0.


	(a)Finish the proof of Theorem 4.2.11, that b has a positive real square root.


	(b)Use Exercise 3.1.4 to prove b has a unique positive square root.


	(c)Prove every positive real number has a unique positive fourth root.





	Exercise 4.2.5. Assume A is a bounded, non-empty set of real numbers, and k is real. Formulate and prove a version of Proposition 4.2.12 for infima.


	Exercise 4.2.6. (H). Assume In=[an,bn] is a closed, bounded interval of real numbers for each natural number n. Prove that if the intervals are nested inward, namely, In⊇In+1 for every n, then the intersection ⋂nIn is non-empty.


	Exercise 4.2.7. (H). Assume [a,b] is a closed, bounded interval of real numbers, and that U and V are disjoint, non-empty open intervals whose union contains [a,b]. Prove that either [a,b]⊆U or [a,b]⊆V.


	Exercise 4.2.8. This exercise continues (and finishes) the introduction to complex numbers in Exercise 3.2.15, and uses the same notation. If z is complex, the non-negative real number |z|:=zz― is the magnitude of z. This exercise establishes properties of magnitude formally identical to the triangle and reverse triangle inequalities.


	(a)Prove that if z and w are complex, then |zw|=|z||w| and |z+w|≤|z|+|w|. Hint for the second: Square both sides. Note that zw―+z―w, is twice the real part of zw―, and thus no larger than 2|z||w|.


	(b)Prove that if z and w are complex, then ||z|−|w||≤|z±w|.









4.3 Finitude of Real Numbers

Although the set N of natural numbers is infinite, each specific natural number is finite. The completeness axiom implies, analogously, that there are no real infinities: Every real number is finite in the following sense.


Theorem 4.3.1. (Finitude). ⏎ For every number x, there exists a natural number n such that x<n.

Page 79Proof. Suppose ω (omega, the last letter of the Greek alphabet) is a real number and ω−1 is not an upper bound of N, that is, there exists a natural number n0 such that ω−1<n0. Adding 1 to both sides shows ω<n0+1. Since n0+1 is a natural number, ω is not an upper bound of N, either.

Contrapositively, if ω is a real upper bound of N, then ω−1 is also a real upper bound of N. But this means N has no real supremum: For every real upper bound of N there is a strictly smaller real upper bound. By the completeness axiom, N is not bounded above in R. In other words, for every real number x, there exists a natural number n such that x<n. □


In school, real numbers are introduced as having an “integer part” and a “decimal part.” This useful representation of real numbers is not immediate from the definition, but a consequence of finitude.


Corollary 4.3.2. ⏎ For every real number x, there exist a unique integer ⌊x⌋ and a unique real number x′ such that x=⌊x⌋+x′ and 0≤x′<1.

Proof. Exercise 4.3.5. □



Definition 4.3.3. If x is a real number, the floor of x is the integer ⌊x⌋ in Corollary 4.3.2.

The ceiling of x is the integer

⌈x⌉={⌊x⌋+1if x is not an integer,⌊x⌋if x is an integer.



Example 4.3.4. If x=42, then ⌊x⌋=⌈x⌉=x=42.

If x=3.14159, then ⌊x⌋=3, x′=0.14159, and ⌈x⌉=4.

If x=−3.14159, then ⌊x⌋=−4, x′=0.85841, and ⌈x⌉=−3.

Generally, every real number x is either an integer (and ⌊x⌋=⌈x⌉=x), or is strictly between two consecutive integers (⌊x⌋<x<⌈x⌉=⌊x⌋+1). ♢



Corollary 4.3.5 (The accretion principle). ⏎ For every real number M and every positive ε, there exists a positive integer n such that M<nε.



Remark 4.3.6. Metaphorically, a journey of 1000 miles (M) can be accomplished one step (ε) at a time, no matter how small the steps. ⋄

Proof. Since M/ε is real, finitude implies there exists a positive integer n such that M/ε<n. Multiplying by ε gives M<nε. □



Corollary 4.3.7. (Reciprocal finitude). ⏎ For every positive real number ε, there exists a positive integer n such that 1/n<ε. Contrapositively, if ε≤1/n for every n, then ε≤0.

Page 80Proof. By finitude, there exists a positive integer n such that 1/ε<n. Proposition 3.2.1 (v) implies 1/n<ε. □



Example 4.3.8. In this example, we'll denote the set {xinR:0<x} of positive real numbers by (0,⋅). (We'll introduce more suggestive notation shortly.) For each positive integer n, consider the intervals An=(0,2n). We will use finitude to prove

⋃n∈NAn=⋃n∈N(0,2n)=(0,⋅).

In particular, a union of bounded intervals may be unbounded.

Let's establish this equality of sets from the definitions. A real number x is in the union of the An if and only if x is an element of (0,2n) for some positive integer n. On the other hand, by definition x is an element of (0,⋅) if and only if 0<x. We must show each of these conditions implies the other.

If 0<x<2n for some n, then 0<x in particular; (0,2n)⊆(0,⋅) for all n. Consequently, the union of (0,2n) is contained in (0,⋅). In symbols, ⋃nAn⊆(0,⋅).

Conversely, assume 0<x. By finitude, there exists a natural number n such that x<n. By Proposition 3.3.5, n<2n. Thus x∈An for this n, and therefore x is in the union of the An. In symbols, ⋃nAn⊇(0,⋅). ♢



Example 4.3.9. For each positive integer n, let Bn=(0,2−n). The intervals {Bn}n∈N are nested inward: Bn⊇Bn+1. We will use reciprocal finitude to prove

⋂n∈NBn=⋂n∈N(0,2−n)=∅.

In particular, an intersection of nested, non-empty sets may be empty.

Again, let's establish this equality of sets from the definitions. The inclusion ⊇ is vacuous, so it suffices to show (⊆) that no real number is contained in the intersection.

Assume x∈R. If x≤0, then x∉B0=(0,1), so x∉⋂nBn. If instead 0<x, Corollaries 3.3.6 and 4.3.7 imply there exists a positive integer n such that 1/2n<1/n<x. For this n we have x∉Bn, which implies x∉⋂nBn. We have shown that every real number fails to be in the intersection, implying the intersection is empty. ♢



Density of the Rational Numbers


Definition 4.3.10. A set A of real numbers is dense (in R) if the complement R∖A contains no open interval.



Remark 4.3.11. Equivalently, for every real number x and every positive ε, there exists a number x0 in A such that |x−x0|<ε.

Page 81If A is dense in R, then every real number can be approximated arbitrarily closely by elements of A. ⋄



Theorem 4.3.12. (Density of the rationals). ⏎ If x and y are real numbers and x<y, then there exists a non-zero rational number r such that x<r<y. Particularly, the set Q of rational numbers is dense in R.

Proof. Assume first that 0≤x<y. The real number ε:=y−x is positive because x<y. By reciprocal finitude, there exists a positive integer n such that 1/n<ε. It suffices to prove that some integer multiple r=m/n lies between x and y. Geometrically this is plausible: By taking steps of size 1/n across the interval between x and y, we must step in the interior at least once.

Rigorously, consider the set S={pinZ+:y≤p/n}. By the accretion principle, there is a positive integer p such that y<p/n; that is, the set S is non-empty. By well-ordering, a non-empty set of positive integers has a smallest element, say m+1. By definition of the set S, we have m/n<y≤(m+1)/n. To complete the proof, it suffices to prove x<m/n. But

y−mn≤m+1n−mn=1n<y−x.

Rearranging the inequality gives x<m/n. We have proven that if 0≤x<y, then there exists a non-zero rational number r=m/n such that x<r<y.

If instead x<y≤0, then 0≤−y<−x. The preceding argument guarantees there exists a non-zero rational number r such that −y<r<−x. The non-zero rational number −r satisfies x<−r<y.

Finally, if neither alternative holds, then x<0<y; by the first part of the proof there is a rational number x<0<r<y. □



Corollary 4.3.13. The set R∖Q of irrational numbers is dense in R.

Proof. See Exercise 4.3.6. □



Remark 4.3.14. It may be tempting to conclude that rational and irrational numbers “alternate” along the number line, as if by painting rational numbers blue and irrational numbers red, the number line would consist of alternating red and blue points. Unfortunately, this picture is utterly incorrect. Distinct real numbers are never adjacent to each other, but instead are endpoints of an interval containing infinitely many rational and irrational numbers. ⋄




The Extended Real Numbers

Although every real number is finite, number-like notation for referring to arbitrarily large positive and negative numbers is convenient. Earlier, for example, we wrote (0,⋅) to denote the set of positive real numbers.Page 82


Definition 4.3.15. Let +∞ and −∞ denote objects that are not real numbers, and extend the ordering on the real numbers by declaring −∞<x<+∞ for every real number x. The set R―=R∪{−∞,+∞} is called the extended real number system.



Definition 4.3.16. If A⊆R, we write supA=+∞ if and only if A is not bounded above, and write infA=−∞ if and only if A is not bounded below.



Remark 4.3.17. Every set A of real numbers has an infimum and a supremum in the extended real number system.

If A=∅, then supA=−∞ (because every extended real number is an upper bound) and infA=+∞. The empty set is the only set whose supremum is smaller than its infimum. If a∈A, then

−∞≤infA≤a≤supA≤+∞.

⋄



Definition 4.3.18. If a is a real number, we define unbounded open and closed intervals by

(−∞,a)={xinR:x<a}(a,∞)={xinR:a<x},(−∞,a]={xinR:x≤a}[a,∞)={xinR:a≤x}.



Example 4.3.19. If a<b, then (a,b)=(−∞,b)∩(a,∞). ♢



Example 4.3.20. For every real a, we have (−∞,a)=R∖[a,∞). ♢



Remark 4.3.21. To emphasize, the symbols −∞ and ∞ do not denote real numbers, but are place-holders for an omitted inequality.

In the same spirit, a sequence (ak)k∈N may be denoted (ak)k=0∞, read, “a sub k for k=0 to infinity.” This flexibly handles sequences whose initial index is not naturally 0, such as (1/k)k=1∞. ⋄





Exercises for Section 4.3


	Exercise 4.3.1. (★) Assume N is a positive integer. Prove that for every real x, there exists an element x′ in QN such that |x−x′|≤1/N. Is there a smaller upper bound?


	Exercise 4.3.2. Prove that if A⊆R is dense, then for all real a and b such that a<b, we have inf[A∩(a,b)]=a and sup[A∩(a,b)]=b.


	Exercise 4.3.3. Assume A={xinR:x=1/n for some n in Z+}. Find supA and infA. (A sketch is not a proof, but may help you guess the answers and guide your construction of a proof.)


	Exercise 4.3.4. Page 83Assume K is the ternary set, and A=[0,1]∖K its complement in the closed unit interval [0,1]. Find infA and supA. Does A have a smallest element?


	Exercise 4.3.5. (H). Prove Corollary 4.3.2.


	Exercise 4.3.6. (H). Irrational numbers exist by Theorem 4.2.11.


	(a)If r is a non-zero rational and α is irrational, prove rα is irrational.


	(b)Prove the set R∖Q of irrational numbers is dense in R.





	Exercise 4.3.7. An element of the set Z[12]:=⋃n∈N2−nZ is called a dyadic rational. In other words, a dyadic rational has the form m⋅2−n for some integer m and some natural number n.


	(a)Determine whether Z[12] is closed under addition, multiplication, and/or taking negatives. Is Z[12] a field?


	(b)Prove Z[12] is dense in R.


	(c)A set A⊆R is midpoint-closed if {a,b}⊆A implies 12(a+b)∈A. Prove that if {0,1}⊆A and A is closed under addition, taking negatives, and is midpoint-closed, then Z[12]⊆A.





	Exercise 4.3.8. (★) One basic goal of real analysis, which we'll pursue systematically in Chapter 7, is to assign useful numerical values to “infinite sums.” Among the prototypical examples is the “geometric series with first term 1 and ratio 1/2 ”:

∑k=0∞12k=1+12+122+123+124+⋯,

which we define to be

supn∈N∑k=0n−112k=supn∈N[1+12+122+⋯+12n−1].

Evaluate the supremum with proof.


	Exercise 4.3.9. Assume 0<r<1.


	(a)Consider the set of powers A={rn:n∈N}, which is bounded below by 0. Find infA with proof.


	Page 84(b)The geometric series with first term 1 and ratio r is the formal expression

∑k=0∞rk=1+r+r2+r3+⋯,

which we define to be

supn∈N∑k=0n−1rk=supn∈N[1+r+r2+⋯+rn−1].

Evaluate the supremum in terms of r.





	Exercise 4.3.10. (★) For each natural number m, define

Hm=∑k=12m1k=1+12+13+⋯+12m.

Let H={Hm}m=0∞ denote the set of all these sums. Prove H is not bounded above. Hint: How many summands comprise the difference Hm+1−Hm, and what is the least each summand could be?


	Exercise 4.3.11. Assume p is an integer and p>1. For each positive integer m, define

Hm=∑k=12m−11kp=1+12p+13p+⋯+1(2m−1)p.

Let H={Hm}m=0∞ denote the set of all these sums. Prove H is bounded above. Hint: How many summands comprise the difference Hm+1−Hm, and what is the largest each summand could be?

Caution: Do not attempt to evaluate the supremum. The suprema are known for p even (each is a rational multiple of πp—yes, that π; the first few are π2/6, π4/90, π6/945), but at this writing all are unknown for p odd.






4.4 Topology

How is a real number x0 situated relative to a set A of real numbers? If we look at x0 in isolation, either x0∈A or x0∉A. If we use open balls and punctured balls in the spirit of Remark 4.1.9, however, we find four mutually exclusive logical conditions. We start with open balls. Throughout, ε connotes a positive real number.


Definition 4.4.1. ⏎ Assume A⊆R, and recall that Ac=R∖A. For each x0 in R, precisely one of the following three conditions holds:


	(i)Page 85There exists an ε such that Bε(x0)⊆A. In this case we say x0 is an interior point of A.


	(ii)There exists an ε such that Bε(x0)⊆Ac. In this case we say x0 is an exterior point of A.


	(iii)For every ε, the sets Bε(x0)∩A and Bε(x0)∩Ac are both non-empty. In this case we say x0 is a boundary point of A.




The interior of A is the set of interior points of A. The exterior and the boundary ∂A of A are defined analogously.



Example 4.4.2. Assume a and b are real numbers such that a<b.

AInteriorExteriorBoundaryZ∅R∖ZZQ∅∅RRR∅∅(−∞,a)(−∞,a)(a,∞){a}[a,b)(a,b)(−∞,a)∪(b,∞){a,b}[a,b)∩Q∅(−∞,a)∪(b,∞)[a,b]

♢



Remark 4.4.3. The exterior of A is the interior of Ac. The boundary of A is the boundary of Ac. In symbols, ∂A=∂(Ac). ⋄



Remark 4.4.4. An interior point of A is an element of A, since x0∈Bε(x0) regardless of ε. Similarly, an exterior point of A is not an element of A. However, a boundary point of A may lie in either A or its complement. ⋄


Now we turn to punctured open balls, which detect whether or not A∖{x0} “neighbors” x0.


Definition 4.4.5. Assume A is a set of real numbers. If Bε×(x0)∩A is non-empty for every ε, we say x0 is a limit point of A.

The closure A― of A is the union of A and its set of limit points.



Remark 4.4.6. Contrapositively, x0 is not a limit point of A if and only if there exists an ε such that Bε×(x0)∩A=∅. ⋄



Definition 4.4.7. We say x0 is an isolated point of A if there exists an ε such that Bε(x0)∩A={x0}, namely, x0∈A and x0 is not a limit point of A.

We say x0 is a border point of A if x0 is both a limit point of A and boundary point of A.



Proposition 4.4.8. Assume A⊆R. For every real number x0, precisely one of the following conditions holds:

Boundary=FBoundary=TLimit=FExteriorIsolatedLimit=TInteriorBorder

Page 86Proof. First assume x0 is not a boundary point of A. By Definition 4.4.1, x0 is either an interior or exterior point of A. If x0 is not a limit point, namely, if Bε×(x0)∩A=∅ for some positive ε, then x0 is an exterior point of A. If instead x0 is a limit point, then x0 is an interior point of A.

Next assume x0 is a boundary point of A: Every ε-ball about x0 contains points of A and points of Ac. If x0 is not a limit point of A, then Bε×(x0)∩A=∅ for some ε. That is, x0∈A, and x0 is an isolated point of A by definition. Otherwise, x0 is a border point of A by definition. □



Remark 4.4.9. By inspection, the boundary of A is the disjoint union of the isolated and border points of A. The set of limit points of A is the disjoint union of the interior and border points of A. The closure of A is the disjoint union of the interior, isolated, and border points of A, namely, the complement of the exterior of A. ⋄



Example 4.4.10. Assume a and b are real numbers such that a<b.

AInteriorBoundaryIsolatedBorderClosureQ∅R∅RR(−∞,0)∪N(−∞,0)NZ+{0}(−∞,0)∪N[a,b)∪{b+1}(a,b){a,b,b+1}{b+1}{a,b}[a,b]∪{b+1}[a,b)∩Q∅[a,b]∅[a,b][a,b]

♢



Definition 4.4.11. ⏎ Assume A⊆R. We say A is an open set if every element of A is an interior point of A, namely, if A contains none of its boundary points.

We say A is a closed set if A contains all of its limit points; that is, A―=A, or A contains all of its boundary points.



Remark 4.4.12. Generally, a set contains some, but not all, of its boundary points, and is therefore neither open nor closed. ⋄



Proposition 4.4.13. ⏎ If A⊆R, the following are equivalent:


	(i)A is closed.


	(ii)A―=A.


	(iii)∂A⊆A.


	(iv)Ac is open.




Proof. Interior and isolated points are in A. Exterior points are not in A. Each condition is equivalent to “A contains all its border points.” □



Proposition 4.4.14. ⏎ An arbitrary open interval (a,b) is an open set. An arbitrary closed interval [a,b] is a closed set.

Proof. Two proofs of the first claim were requested in Exercise 4.1.4.

For the second, let x0=12(b+a) be the midpoint and r=12|b−a| the radius. It suffices to prove the complement of [a,b]=[x0−r,x0+r] is open. Page 87Assume x is an arbitrary point of the complement. By hypothesis, |x−x0|>r, so ε:=|x−x0|−r>0. It suffices to prove Bε(x)∩[a,b] is empty. But if x′ is an arbitrary point of Bε(x), then |x′−x|<ε. The reverse triangle inequality implies

|x′−x0|=|(x′−x)+(x−x0)|≥|x−x0|−|x′−x|>|x−x0|−ε=r.

Since |x′−x0|>r, x′∉[a,b]. □



Proposition 4.4.15. ⏎ A union of open sets is open, and a finite intersection of open sets is open. Precisely:


	(i)If {Oi}i∈I is a collection of open subsets of R, then ⋃iOi is open.


	(ii)If {Oi}i=0n−1 is a finite collection of open subsets of R, then ⋂iOi is open.




Proof.


	(i).Assume {Oi}i∈I is an arbitrary collection of open sets, and let O denote the union ⋃iOi. If x∈O, then x∈Oi for some i. Since Oi is open, there exists an ε such that Bε(x)⊆Oi. But Oi⊆O, so x is an interior point of O; since x was arbitrary, the union O is open.


	(ii).Assume {Oi}i=0n−1 is a finite collection of open subsets of R, and let O denote the intersection ⋂iOi. If x∈O, then x∈Oi for all i, so there exist positive numbers {εi}i=0n−1 such that Bεi(x)⊆Oi. The minimum ε=min{εi}i=0n−1 is positive, and for all i we have Bε(x)⊆Bεi(x)⊆Oi, so Bε(x)⊆O. □






Remark 4.4.16. ⏎ By Proposition 4.4.13 and the complement laws, an intersection of closed sets is closed, and a finite union of closed sets is closed. ⋄



Proposition 4.4.17. ⏎ If O is a non-empty open set of real numbers, there exists a unique partition {Oi}i∈I of O into open intervals.

Proof. See Exercise 4.4.8. □



Definition 4.4.18. The sets {Oi}i∈I are the (connected) components of O.



Proposition 4.4.19. The ternary set K is closed, contains no interval, and contains no isolated points.

Proof. See Exercise 4.4.5. □




Exercises for Section 4.4


	Exercise 4.4.1. (★) For each positive integer n, the set On=(−1/n,1/n) is open. Is the intersection ⋂n=1∞On open?Page 88


	Exercise 4.4.2. For each positive integer n, the set Fn=[0,n/(n+1)] is closed. Is the union closed?


	Exercise 4.4.3. (★) Assume (Ak)k∈N is a sequence of non-empty sets of real numbers, each having no limit points.


	(a)Prove that A0∪A1 has no limit points.


	(b)Prove that ⋃k=0n−1Ak has no limit points.


	(c)Show by example that ⋃k∈NAk may have no limit points, or may be dense in R. (These are far from the only possibilities.)





	Exercise 4.4.4. (H). Assume A={xinR:x=1/n for some n in Z+}. Determine with proof which real numbers (if any) are interior points of A, exterior points of A, boundary points of A, isolated points of A, limit points of A. Is A closed?


	Exercise 4.4.5. Let K be the ternary set, Example 4.1.19.


	(a)Prove K is closed.


	(b)Prove K contains no intervals.


	(c)Prove K contains no isolated points.





	Exercise 4.4.6. If A is a set of real numbers, let P(A) be the statement, “The closure of the interior of A is equal to A―.” Is P(A) true for all A? If so, give a proof. If not, give a counterexample, and find necessary conditions on A for P(A) to be true, and sufficient conditions on A for P(A) to be true.


	Exercise 4.4.7. (H). Assume {Oi}i∈I is a collection of open sets of real numbers whose union contains [a,b]. Prove that [a,b] is finitely covered from this collection: There exist finitely many of these sets, say {Oij}j=1N whose union ⋃j=1NOij contains [a,b].


	Exercise 4.4.8. Prove Proposition 4.4.17. A suggested outline is provided.


	(a)(Existence.) Define a binary relation ∼ on O by declaring x∼y if there exists an open interval (a,b)⊆O such that {x,y}⊆(a,b). Prove ∼ is an equivalence relation, and its equivalence classes are disjoint open intervals whose union is O.


	(b)(Uniqueness.) Assume {Oi} is a partition of O into open intervals. If (a,b)⊆O is an arbitrary open interval, then (a,b)⊆Oi for some i.

Consequently, if {Oi′′} is a partition of O into open intervals, then for every i′ there exists an i such that Oi′′=Oi and conversely, so {Oi}={Oi′′}.





	Exercise 4.4.9. (★) Let O be {xinR:x≠0, x≠1/n for every n in Z+}. Sketch the set O, show O is open, and find the components of O, Exercise 4.4.8.






Page 89Rational Numbers in Real Analysis

Loosely, rational numbers are “arithmetically explicit” from the real axioms and irrational numbers are not. To substantiate this breezy assertion, let's briefly review what real numbers we can construct from which axioms.

The only real numbers explicitly mentioned by the axioms are 0 and 1. The only binary operations (taking two numbers and returning a number) mentioned in the real axioms are addition and multiplication. Each comes with its unary inversion operator; negatives for addition, reciprocals for multiplication.

The real number 0 forms a self-contained algebraic universe, in that the singleton set {0} is closed under addition and under multiplication.

A set S of real numbers containing 1 and also closed under addition contains the set Z+ of positive integers, finite sums of 1s. If further S is closed under taking negatives, then S contains the set Z of integers.

Although the set of integers is closed under addition and multiplication, it is not closed under taking reciprocals of non-zero numbers. Any set of reals containing 1, closed under addition and taking negatives, and closed under multiplication and taking reciprocals, contains the set Q of rational numbers. The rational numbers constitute the universe generated from the identity elements for addition and multiplication, the arithmetic operations themselves, and taking inverses. In this sense, the rational numbers, and no others, are arithmetically explicit.

To define irrational real numbers, we need more. Suprema, encoded in the order and completeness axioms, turn out to suffice: Every real number is the supremum of some subset of Q. In Chapter 6 we'll develop “limits” of real sequences, which serve, in part, as a “user-friendly front end” to suprema.
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Real numbers provide a mathematical model for “continuous quantities” such as position, length, duration, and mass. When scientists speak of the natural world being “predictable,” they generally mean natural phenomena are accurately described by numerical quantities satisfying deterministic mathematical models, such as “equations of motion.”

Functions, the subject of this chapter, are mathematical idealizations of deterministic relationships, the means by which we extrapolate information about unknown quantities from known quantities.

Our starting point is the simple, general, and widely useful concept of a “mapping,” introduced at the end of Chapter 1 and repeated below with a few extra features. Functions are a special case of mappings.


5.1 Mappings


Definition 5.1.1. Assume X and Y are sets. A mapping f:X→Y (read “f from X to Y”) is a set f of ordered pairs (x,y) with the property that for each x in X, there exists exactly one y in Y such that (x,y)∈f, see Figure 5.1.

[image: A curve illustrates a function f from X to Y with a marked point x mapped to y forming the pair x, y.]
Long Description for Figure 5.1The diagram represents a function f from set X to set Y using a rectangular coordinate region labeled X cross Y. The horizontal axis is marked X and the vertical axis is marked Y. A continuous curve is drawn within the rectangle, showing the behaviour of the function f. A specific point on the curve is marked as x comma y with dotted lines extending from the point horizontally to y on the vertical axis and vertically to x on the horizontal axis.

Figure 5.1 A mapping f:X→Y, and a point where y=f(x). ⏎



If (x,y)∈f, we write y=f(x) and call y the value of f at x. The set X is the domain of f; its elements are the “inputs” of f. The set Y is the codomain of f; its elements are “potential outputs” of f.



Remark 5.1.2. If X is a set and Y is a subset of R, a mapping f:X→Y is called a real-valued function on X, or often simply a “function on X.”

If in addition X is a union of non-empty intervals of real numbers, a mapping f:X→Y is called a function of one variable, or simply a function. ⋄



Remark 5.1.3. You may have seen a function defined as a “rule” sending each point of X to a unique point of Y. Our set-theoretic definition does precisely this, without our having to say what a “rule” is. The set f itself, namely the set of ordered pairs (x,y) such that y=f(x), is also called the graph of f. ⋄



Remark 5.1.4. A function is not merely a procedure such as “squaring” or formula such as f(x)=x2: To define a function, we must explicitly specify Page 91the domain X and the codomain Y. For example, changing the domain by removing a single point specifies a different function. ⋄


To emphasize the preceding remark, we introduce two recurring concepts:


Definition 5.1.5. Let f:X→Y be a mapping.

If A⊆X, the restriction of f to A is the mapping f|A:A→Y satisfying f|A(x)=f(x) for every x in A.

Dually, if X⊆X′, an extension of f to X′ is a mapping F:X′→Y whose restriction to X is f.



Polynomial Functions

Loosely, a “polynomial” in one variable x is an expression involving x and finitely many constants that can be evaluated using only addition and multiplication. Although polynomials are simple and explicit, they are surprisingly versatile. Every finite numerical sequence is generated by some polynomial, see Theorem 5.1.20. Polynomials are the basis for “power series” in Chapter 7. In Chapter 17 we prove every “continuous” function on a closed, bounded interval can be approximated as closely as we like by polynomials.


Definition 5.1.6. Let X be a set of real numbers. For each real number c, there is a constant function c:X→R defined by c(x)=c for all x in X.



Definition 5.1.7. If X is a set of real numbers, the function ιX:X→X defined by ιX(x)=x for all x in X is called the identity function on X.



Remark 5.1.8. Here, in practice, we may be lax about codomains. With the same notation, the (technically different) function ιX:X→R defined by ιX(x)=x for all x in X is also sometimes called the identity function on X. ⋄



Definition 5.1.9. Page 92If f and g are real-valued functions with domain X, then the functions f±g and fg with domain X are defined by the formulas

(f±g)(x)=f(x)±g(x),(fg)(x)=f(x)⋅g(x)

for each x in X. These functions are called the pointwise sum, difference, and product of f and g.



Definition 5.1.10. ⏎ If (aj)j=0n is a finite real sequence, the expression

p(x)=∑j=0najxj=a0+a1x+a2x2+⋯+anxn=a0+x(a1+x(a2+⋯+x(an)…))

is the polynomial (in one variable) with coefficients (aj).

A real number x0 is a root of p if p(x0)=0.

If an≠0, we say p has degree n, denoted degp=n. In this case, we write p(x)=anxn+⋯, and call anxn the top-degree term. The ellipsis signifies lower-degree terms. If an=1, namely p(x)=xn+⋯, we say p is monic.

If aj=0 for all j we call p(x) the zero polynomial and define degp=−∞.

If X is a non-empty set of real numbers and p is a polynomial, the function f:X→R defined by f(x)=p(x) is called a polynomial function on X.



Remark 5.1.11. The final expression for p(x) in Definition 5.1.10 entails at most n multiplications and n additions. “Backward inductively,” we define pn+1(x)=0, and pm(x)=am+xpm+1(x) if n≥m≥0, so that p0=p. ⋄



Example 5.1.12. A polynomial function of degree at most 1, defined by a formula f(x)=a0+a1x, is called an affine function. An affine function is constant if and only if a1=0. ♢



Remark 5.1.13. The term “linear” is often used because the graph of an affine function is (part of) a line. In real analysis and elsewhere in mathematics, however, “linear” has connotations that are not satisfied unless a0=0. ⋄



Example 5.1.14. A polynomial function of degree at most 2, defined by a formula f(x)=a0+a1x+a2x2, is called a quadratic function. A quadratic function is affine if and only if a2=0. ♢



Proposition 5.1.15. If p and q are polynomials, then deg(pq)=degp+degq.

Proof. If neither p nor q is the zero polynomial, we may write p(x)=anxn+⋯ and q(x)=bmxm+⋯. Since an and bm are non-zero, (pq)(x)=anbmxn+m+⋯, and consequently deg(pq)=n+m=degp+degq.

If instead either is the zero polynomial, then pq is the zero polynomial, and deg(pq)=−∞=degp+degq. □



Theorem 5.1.16. Page 93(Polynomial division). ⏎ If p and q are polynomials and q is not the zero polynomial, then there exist unique polynomials d(x) and r(x) such that p(x)=d(x)q(x)+r(x) and degr<degq.

Proof. See Exercise 5.1.4. □



Definition 5.1.17. If p and q are polynomials, we say q divides p if there exists a polynomial d such that p=qd.



Example 5.1.18. The polynomial q(x)=x−1 divides p(x)=x3−1 since x3−1=(x−1)(x2+x+1).

The polynomial q(x)=x2+2x+2 divides p(x)=x4+4 since

x4+4=(x2+2)2−4x2=(x2+2x+2)(x2−2x+2).

♢



Corollary 5.1.19. ⏎ If p is a polynomial and x0 is real, then p(x0)=0 if and only if (x−x0) divides p(x).

Proof. By polynomial division with q(x)=x−x0, there exist unique polynomials d and r such that p(x)=(x−x0)d(x)+r(x) and degr<degq=1; thus r is a constant polynomial. By definition, q divides p if and only if r(x)=0, if and only if r(x0)=p(x0)=0. □



Theorem 5.1.20. (Polynomial interpolation). ⏎ Assume {(xi,yi)}i=0n is a finite set of points in the plane, and xi<xi+1 if 0≤i<n. There exists a unique polynomial p of degree at most n such that yi=p(xi) for each i.

Proof. See Exercise 5.1.9. □




Rational Functions


Definition 5.1.21. Assume X is a non-empty set of real numbers. If f is a function on X, the zero set of f is the set Z(f)={xinX:f(x)=0}.



Definition 5.1.22. If X is a non-empty set of real numbers, f and g are functions on X, and Z=Z(g), then the formula (f/g)(x)=f(x)/g(x) defines the (pointwise) quotient f/g:X∖Z→R.



Definition 5.1.23. Assume p(x)=∑j=0najxj and q(x)=∑i=0mbixi are polynomials, and Z is the zero set of q on R. The formula

f(x)=p(x)q(x)=a0+a1x+a2x2+⋯+anxnb0+b1x+b2x2+⋯+bmxm

defines the rational function f=p/q:R∖Z→R. The set R∖Z, on which q(x)≠0, is called the natural domain of f.



Example 5.1.24. Page 94The formulas

f(x)=x1−x2,g(x)=x4+1x2+1

define rational functions. The natural domain of f is R∖{±1}. The natural domain of g is R ♢



Example 5.1.25. The formulas

f(x)=1−x1−x2,g(x)=11+x

define distinct rational functions that are equal everywhere both are defined. The natural domain of f is R∖{±1}. The natural domain of g is R∖{−1}. Particularly, f is a restriction of g, and g is an extension of f. ♢



Example 5.1.26. ⏎ A finite sum of “pure singularities” c/(x−x0)m defines a rational function. For example, putting terms over a common denominator gives

1x3+[3(x−1)2+1x−1]=1x3+x+2(x−1)2=1−2x+x2+2x3+x4x3(x−1)2.

♢


Conversely, a rational function whose denominator factors completely may be decomposed into a sum of this form. We first give a precise statement, then work through the preceding example “backward” to suggest how to prove the theorem.


Theorem 5.1.27. (Partial fractions). ⏎ Assume p and q are polynomials having no common root, and q(x)=∏j=0n−1(x−xj)mj for distinct real numbers {xj}j=0n−1, and for some positive integers {mj}j=0n−1. There exist real numbers cj,k, 0≤j<n and 1≤k≤mj, and a polynomial d, such that

p(x)q(x)=d(x)+∑j=0n−1[∑k=1mjcj,k(x−xj)k]if x∉{xj}j=0n−1.

Proof. See Exercise 5.1.6. □



Remark 5.1.28. Not every real polynomial factors completely over the reals. Every real polynomial does factor completely over the complex numbers, the so-called fundamental theorem of algebra. A proof of this, and details of the resulting partial fractions decomposition, lie beyond the scope of this book. ⋄



Example 5.1.29. Page 95Suppose we wished, ignorant of Example 5.1.26, to decompose in partial fractions the rational function

p(x)q(x)=1−2x+x2+2x3+x4x3(x−1)2.

Theorem 5.1.27 guarantees this rational function may be written

[c0,3x3+c0,2x2+c0,1x]+[c1,2(x−1)2+c1,1(x−1)].

In special cases there may be speedy tricks for evaluating the coefficients. Here, we'll proceed in a way that suggests how Theorem 5.1.27 might be proven.

First check for possible common factors. Since p(0)=1, Corollary 5.1.19 implies x does not divide p(x). Similarly, p(1)=1−2+1+2+1=3, so (x−1) does not divide p(x). (If either were 0, polynomial division would allow us to manually cancel common factors before proceeding.)

The strategy is to subtract off a highest-order singularity to reduce the degree of the denominator. Here we have two choices: c/x3 or c/(x−1)2. We pick the second, whose denominator has lower degree, since typically this involves less computation. Writing

p(x)q(x)=1−2x+x2+2x3+x4x3(x−1)2=(1−2x+x2+2x3+x4)/x3(x−1)2,

we evaluate the numerator to be p(1)/13=3. This motivates us to subtract 3/(x−1)2, obtaining

p(x)q(x)−3(x−1)2=(1−2x+x2+2x3+x4)−3x3x3(x−1)2=1−2x+x2−x3+x4x3(x−1)2.

This numerator (necessarily) vanishes at 1. Polynomial division gives

1−2x+x2−x3+x4x3(x−1)2=(x−1)(−1+x+x3)x3(x−1)2=−1+x+x3x3(x−1).

Having reduced the degree of the denominator by subtracting a suitable pure singularity, we can repeat the process inductively, stopping when we have a sum of pure singularities. Writing

−1+x+x3x3(x−1)=(−1+x+x3)/x3x−1

Page 96and setting x=1 in the numerator leads us to subtract 1/(x−1):

−1+x+x3x3(x−1)=−1x−1(−1+x+x3)−x3x3(x−1)=−1+xx3(x−1)=1x3.

What remains is a pure singularity, so we are done:

1−2x+x2+2x3+x4x3(x−1)2−3(x−1)2−1x−1=1x3,

which is visibly equivalent to the initial expression in Example 5.1.26. ♢




Secants


Definition 5.1.30. ⏎ Assume X is an interval of real numbers and f a function on X. Two numbers a and b in X such that a<b determine two points (a,f(a)) and (b,f(b)) of f. There is a unique affine function fa,b:X→R whose graph passes through these points, defined for all x in X by

fa,b(x)=f(a)+f(b)−f(a)b−a(x−a).

We call fa,b the affine interpolation of f on [a,b], and the graph of fa,b the secant line of f on [a,b], Figure 5.2.

[image: A curve f is shown with points a and b connected by a straight line f subscript a, b for affine interpolation.]
Long Description for Figure 5.2The diagram shows a curve labeled f plotted over a horizontal axis labeled X, along with a straight line labeled f subscript a comma b connecting two specific points on the curve. These two points are marked as a f of a and b f of b, each with dashed vertical lines dropping from the curve to the axis at a and b respectively. The straight line f subscript a b intersects the curve at both endpoints, forming a secant line.

Figure 5.2 Affine interpolation of f on [a,b]. ⏎



If f(x)≤fa,b(x) for all x in (a,b), we say f lies below its secant on [a,b]. If this condition holds for every [a,b] contained in X, we say f is convex on X.

If f<fa,b on (a,b) we say f lies strictly below its secant on [a,b]. If this condition holds for every [a,b] contained in X, we say f is strictly convex on X.



Remark 5.1.31. We say f is (strictly) concave on X if −f is (strictly) convex. This may be expressed in terms of “f lying above its secant lines.” ⋄



Remark 5.1.32. The function in Figure 5.2 is strictly convex on X: For each interval [a,b], we look only at the segment over [a,b], not the whole secant line.

The function in Figure 5.3 is neither convex nor concave. ⋄


[image: A graph displays six marked points along a horizontal axis, labeled x 0 through x 5.]
Long Description for Figure 5.3Each point has a corresponding vertical dashed line connecting it to a plotted point above, forming a discrete graph of a function. These points are joined by straight line segments, creating a piecewise linear curve that approximates the function. A smoother curve is also visible, passing through the same points, representing the original function. The straight segments represent the piecewise affine interpolation that connects each pair of consecutive points to approximate the function over the interval from x 0 through x 5.

Figure 5.3 A piecewise-affine interpolation of f on [a,b]. ⏎





Page 97Functions Defined by Multiple Formulas

A function may be defined by multiple formulas, each holding on part of the domain.


Definition 5.1.33. Assume f is a function on some closed interval [a,b]. Each splitting {xi}i=0n of [a,b] defines a piecewise-affine interpolation of f: The unique function whose graph over Ii=[xi,xi+1], for each i, is the affine interpolation over Ii, Figure 5.3.



Definition 5.1.34. A function f on [a,b] is a step function if there is a splitting {xi}i=0n such that for each i, f is constant on the open interval (xi,xi+1), namely if there exist real numbers {yi}i=0n−1, such that f(x)=yi if xi<x<xi+1.



Example 5.1.35. The functions f, g:[a,b]→R defined by f(x)=⌊x2⌋ and g(x)=⌈x2⌉ are step functions. Figure 5.4 shows the graphs, with compressed vertical scale, if [a,b]=[0,3]. ♢


[image: Two graphs compare floor and ceiling functions of x squared as step functions over the interval 0 through 3.]
Long Description for Figure 5.4The left graph plots the step function f of x equals floor of x squared for x from 0 through 3. A dashed curve represents the original function x squared, while the step function lies below it as a series of horizontal segments. Each segment starts with an open circle on the right and ends with a closed circle on the left, indicating integer floor values. The right graph shows g of x equals ceiling of x squared over the same interval. It also overlays the curve of x squared, but the step function lies above it. Each segment now starts with a closed circle on the left and ends with an open circle on the right, showing the ceiling values. Both vertical axes range from 0 to 9, and the horizontal axes from 0 through 3.

Figure 5.4 The step functions f(x)=⌊x2⌋ and g(x)=⌈x2⌉ on [0,3]. ⏎




Example 5.1.36. The function f:[0,1]→R defined by

f(x)={1/2nif 1/2n+1<x≤1/2n,0if x=0,

Page 98is not a step function because the domain has been divided into infinitely many pieces. For every δ (delta) in (0,1), however, the restriction of f to [δ,1] is a step function. (Why?) ♢



Definition 5.1.37. Let X be a set of real numbers. If A⊆X, the indicator of A (on X) is the function χA:X→R (chi sub A) defined by

χA(x)={1if x∈A,0if x∉A.



Remark 5.1.38. The indicator χA inquires of each real number x in X, “Are you an element of A?” and returns 1 (yes) or 0 (no) accordingly, see Figure 5.5. ⋄


[image: A step graph of y equals chi subscript A of x indicates values of 1 on set A and 0 elsewhere.]
Long Description for Figure 5.5The horizontal axis represents x and the vertical axis represents the function value, taking only 0 or 1. Three intervals are marked on the horizontal axis, with closed and open circles indicating the boundaries of the set A. Vertical dashed lines rise from the ends of each interval to the horizontal line at y equals 1, and horizontal segments at y equals 1 connect the intervals within the set. At all other x-values not in A, the function value remains at y equals 0.

Figure 5.5 The indicator of a set. ⏎




Example 5.1.39. The indicator of Q, the set of rational numbers, is stylistically portrayed in Figure 5.6. ♢


[image: A vertical line connects two dense rows of dots at 0 and 1, representing the indicator function of Q.]
Figure 5.6 The indicator χQ of Q. ⏎




Definition 5.1.40. If X is a non-empty set of real numbers and f:X→R is a function, we define the positive part f+ and negative part f- of f by the formulas

f+(x)=max(f(x),0)=|f(x)|+f(x)2,f−(x)=−min(f(x),0)=|f(x)|−f(x)2.

Each function is non-negative, and we have f=f+−f− and |f|=f++f−.
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	Exercise 5.1.1. (★) Assume p and q are polynomials of degree at most n.


	(a)Prove that p+q is a polynomial of degree at most n. If p and q both have degree n, does p+q have degree n?


	(b)Prove that if c is a real number, then cp is a polynomial of degree at most n. Is the degree of cp always equal to n?


	(c)Suppose {xj}j=0n are real numbers, and p(xj)=0 for all j. Prove that p(x)=0 for all real x.





	Exercise 5.1.2. (★) Find the positive and negative parts of p(x)=x(x−1)2; express your answer as a piecewise-polynomial function.


	Exercise 5.1.3. For each function f:R→R, sketch the graphs y=f(x), y=f+(x), and f−(x) on the same set of axes.


	(a)f(x)=x.


	(b)f(x)=1−|x|.


	(c)f(x)=x3−x.





	Exercise 5.1.4. (H). Assume p and q are polynomials, q not the zero polynomial. Prove Theorem 5.1.16: There exist unique polynomials d(x) and r(x) such that p(x)=d(x)q(x)+r(x) and degr<degq.


	Exercise 5.1.5. (★) Decompose x4−x3+3x2−6x+1x3−2x2+x in partial fractions.


	Exercise 5.1.6. (★) Use induction on the degree of q to prove Theorem 5.1.27.


	Exercise 5.1.7. (A). Assume a≠b. Decompose the following into partial fractions:


	(a)1(x−a)(x−b).


	(b)1x4−a2x2.


	(c)1x2(x−a)(x−b).





	Exercise 5.1.8. (★) In this question we construct a polynomial of degree at most 2 whose graph (a line or parabola) passes through specified points (x0,y0), (x1,y1), and (x2,y2) such that x0<x1<x2.


	(a)The following formulas define polynomials ei of degree 2:

f0(x)=(x−x1)(x−x2),e0(x)=f0(x)/f0(x0),f1(x)=(x−x0)(x−x2),e1(x)=f1(x)/f1(x1),f2(x)=(x−x0)(x−x1),e2(x)=f2(x)/f2(x2),

Prove ei(xj)=1 if i=j and ei(xj)=0 if i≠j.


	(b)Page 100Prove the polynomial p(x)=y0e0(x)+y1e1(x)+y2e2(x) has degree at most 2, and the points (x0,y0), (x1,y1), and (x2,y2) satisfy y=p(x).


	(c)Use parts (a) and (b) to find the unique quadratic polynomial p(x) whose graph passes through the points (−1,y0), (0,y1), and (1,y2). Under what conditions does p(x) have degree less than 2?





	Exercise 5.1.9. (H). Suppose {(xi,yi)}i=0n is a finite set of points in the plane, and xi<xi+1 if 0≤i<n.


	(a)For each i, define a monic polynomial ei of degree n by the formula

fi(x)=∏j≠i(x−xj),ei(x)=fi(x)fi(xi),

with the product taken over j such that 0≤j≤n and j≠i, compare Exercise 5.1.8. Prove that ei(xj)=1 if i=j and ei(xj)=0 if i≠j.


	(b)Prove the polynomial p(x)=∑j=0nyjej(x) has degree at most n, and the points (xi,yi) satisfy y=p(x).


	(c)(H) Assume y=q(x) is a polynomial of degree at most n and yi=q(xi) if 0≤i≤n. Prove q(x)=p(x) for all real x. (In words, the interpolation polynomial in (b) is unique.)





	Exercise 5.1.10. Suppose A and B are subsets of R. Establish the following:


	(a)1−χA=χAc, the indicator of Ac.


	(b)min(χA,χB)=χA⋅χB=χA∩B.


	(c)max(χA,χB)=χA+χB−min(χA,χB)=χA∪B.





	Exercise 5.1.11. (H). Assume I is an interval of real numbers and f:I→R satisfies |f(x′)−f(x)|≤|x′−x|2 for all x, x′ in I. Prove f is constant.






5.2 Composition

Applying a function may be viewed as “acting on” on a quantity. In this section we study a useful auxiliary concept: Acting with functions successively, plugging the output of one function into another as input.Page 101


Definition 5.2.1. Assume X, Y, Y′, and Z are sets of real numbers, and f:X→Y, g:Y′→Z are mappings. If f(x)∈Y′ for every x in X, we say g is composable with f. Particularly, if Y⊆Y′ then g is composable with f.

If g is composable with f, the composition g∘f:X→Z, read “g of f,” is defined by

(g∘f)(x)=g(f(x))for all x in X.



Example 5.2.2. The polynomial functions f(x)=x+1 (“adding one”) and g(x)=x2 (“squaring”) are composable in either order, and

(g∘f)(x)=g(x+1)=(x+1)2=x2+2x+1,(f∘g)(x)=f(x2)=x2+1.

♢



Remark 5.2.3. ⏎ Note carefully that g∘f and f∘g are different functions: Mapping composition is not commutative. The same is true of everyday operations: Putting on your socks and then your shoes is not the same as putting on your shoes and then your socks.

By contrast, composition is associative: (h∘g)∘f=h∘(g∘f) if the compositions are defined, see Exercise 5.2.2. ⋄



Symmetries of Functions

In this section we'll refer to the Greek letters ρ (rho), a small r here suggesting “reflection,” and τ (tau), a small t here suggesting “translation.”


Example 5.2.4. ⏎ Assume g:R→R. The function Rg:R→R defined by Rg(x)=g(−x), whose graph results from “reflecting” the graph of g across the vertical axis, may be written as a composition: If we define ρ(x)=−x for all x, then Rg=g∘ρ.

More generally, if the domain of g is a set X of real numbers, we may view ρ:−X→X, and Rg(x)=g(−x) is the composition Rg=g∘ρ:−X→R. (The notation −X is introduced in Definition 4.1.11.) ♢



Remark 5.2.5. If X is an interval [−a,a], or generally a non-empty set of real numbers satisfying −X=X, namely “symmetric with respect to 0,” then the function Rg of Example 5.2.4 has the same domain as g itself.

This situation invites a useful abstraction: Let F(X) denote the set (or “space”) of all functions on X. The function g is an element of F(X). The function Rg=g∘ρ is another element of F(X), and is uniquely determined by g. In mathematics we have a name for this: mapping. We may view R as a mapping on functions. In symbols, R:F(X)→F(X).

A mapping on functions is often called an operator. The operator R is called the domain reflection operator on F(X).

Page 102Incidentally, the operator R can be composed with itself since its domain and codomain are the same set, F(X). Because “reflecting twice is the identity,” or −(−x)=x for all x, we have

R(Rg)(x)=Rg(−x)=g(−(−x))=g(x)for all x.

Composing R with itself is the identity operator on F(X). ⋄



Definition 5.2.6. ⏎ Assume X is a non-empty set of real numbers such that −X=X. A function g:X→R is said to be even if g(−x)=g(x) for all x in X, and is said to be odd if g(−x)=−g(x) for all x in X.



Remark 5.2.7. In our operator formalism, g is even if and only if Rg=g: The graph of g is invariant (unchanged) under reflection about the vertical axis. Similarly, g is odd if and only if Rg=−g: The graph of g is invariant by reflection in both axes, namely under a half-turn rotation about the origin. ⋄



Lemma 5.2.8. ⏎ Assume X is a non-empty set of real numbers such that −X=X, and f:X→R is a function. The functions

f even(x)=12(f(x)+f(−x)),fodd(x)=12(f(x)−f(−x)),

are even and odd respectively, and satisfy f even(x)+fodd(x)=f(x).

Proof. See Exercise 5.2.5. □



Definition 5.2.9. The functions f even and fodd of Lemma 5.2.8 are called the even part of f and the odd part of f.


From reflection, we now turn to a different domain symmetry, translation.


Example 5.2.10. Assume g:R→R is a function. For each real number c, the function Tcg:R→R defined by Tcg(x)=g(x−c) may be written as a composition: If we define τc(x)=x−c, then Tcg=g∘τc. The graph of Tcg results from translating the graph of g horizontally by c, to the right if c is positive and to the left if c is negative, Figure 5.7.

[image: A wave g is translated horizontally by c to form a new wave T sub c g.]
Figure 5.7 The domain translation operator Tc acting on a function g. ⏎



More generally, if X is an arbitrary non-empty set of real numbers, then the formula τc(x)=x−c defines a mapping τc:c+X→X. If g:X→R is a function, then Tcg(x)=g(x−c) is the composition Tcg=g∘τc:c+X→R. ♢



Definition 5.2.11. Assume ℓ is a positive real number. A function f:R→R is ℓ -periodic if f(x−ℓ)=f(x) for all real x.



Remark 5.2.12. A function f:R→R is ℓ-periodic if and only if Tℓf=f. ⋄



Example 5.2.13. Page 103The indicator χZ is 1-periodic. ♢



Example 5.2.14. The indicator χQ of Q is ℓ-periodic for every positive rational ℓ. ♢



Lemma 5.2.15. ⏎ If f is ℓ-periodic, then for every integer n, we have

f(x+nℓ)=f(x)for all real x.

Proof. See Exercise 5.2.11. □



Example 5.2.16. No non-constant polynomial or rational function f is periodic: If y is real, the equation y=f(x) is equivalent to a non-constant polynomial equation in x, and therefore has at most finitely many solutions x. If f is periodic, however, Lemma 5.2.15 implies each equation y=f(x) has either no solutions, or infinitely many. ♢



Proposition 5.2.17. ⏎ Assume a<b, and put ℓ=b−a. If f:[a,b)→R is a function, there exists a unique ℓ-periodic extension of f.

Proof. See Exercise 5.2.12. □




Invertibility

Suppose f:X→Y is a mapping. The equation y=f(x) may be viewed as a “true/false condition” (or “truth function”) on the ordered product X×Y: true if (x,y)∈f and false otherwise.

If x is given, the definition of a mapping guarantees there is a unique y such that y=f(x). Conceptually, we can solve y=f(x) uniquely for y, though here the term “solve” sounds strange: we are merely evaluating f at x.

What about the reverse: If y is given, can we solve y=f(x) for x? More precisely, if we are given an arbitrary y in Y, does there exist a unique x in X such that y=f(x)? If “yes,” we may view x as a function of y and write the relation y=f(x) in the form x=g(y) for some mapping g:Y→X.


Definition 5.2.18. If f:X→Y and g:Y→X are mappings, we say f and g are inverses if (g∘f)(x)=x for every x in X and (f∘g)(y)=y for every y in Y.

A mapping f:X→Y is invertible if there exists an inverse g:Y→X.



Remark 5.2.19. Page 104Recall that ιX denotes the identity mapping on a set X. A mapping f:X→Y is therefore invertible if and only if there exists a mapping g:Y→X such that g∘f=ιX and f∘g=ιY. ⋄



Example 5.2.20. Assume c is a non-zero real number. The scaling function μc:R→R (mu sub c) defined by μc(x)=cx is invertible. The inverse function is μ1/c. ♢



Example 5.2.21. If X=R∖{0} is the set of non-zero real numbers, then the reciprocal function f:X→X defined by f(x)=1/x is invertible. In fact, this mapping is its own inverse: 1/(1/x)=x for all non-zero x. ♢



Remark 5.2.22. A mapping has at most one inverse: If f is invertible, then g(y)=x if and only if y=f(x), so the values of f uniquely determine the values of g. If f is invertible, we denote g by the symbol f−1, read “f inverse.” The inverse “undoes” the action of f. An equation y=f(x) is “solved” for x by applying f−1 to both sides. ⋄





Exercises for Section 5.2


	Exercise 5.2.1. (★) Consider the rational function f(x)=(1+x)/(1−x). Calculate the compositions f∘f, f∘f∘f, and f∘f∘f∘f, giving the domain of each, and simplifying formulas as much as possible.


	Exercise 5.2.2. (★) Mapping composition is associative, see Remark 5.2.3.


	Exercise 5.2.3. (★) Find the even and odd parts of p(x)=x(x−1)2.


	Exercise 5.2.4. Use the definition to find the even and odd parts of:


	(a)f(x)=3−2x+5x2+x5.


	(b)g(x)=2χ[0,1](x).





	Exercise 5.2.5. Assume X is a non-empty set of real numbers satisfying −X=X, and f is a function on X. Prove Lemma 5.2.8, and prove f is written uniquely as the sum of an even function and an odd function.


	Exercise 5.2.6. If n is an integer, define f:R∖{0}→R by f(x)=xn. Prove f is an even function if and only if n is an even integer, and f(x) is odd if and only if n is an odd integer.


	Exercise 5.2.7. Assume p(x) is a polynomial function.


	(a)Prove p is an even function if and only if every term has even degree, if and only if there exists a polynomial q such that p(x)=q(x2) for all real x.


	(b)Page 105Prove p is an odd function if and only if every term has odd degree, if and only if there exists a polynomial q such that p(x)=xq(x2) for all real x.





	Exercise 5.2.8. Assume X is a non-empty set of real numbers such that −X=X, and f, g are functions on X.


	(a)Prove that if f and g are both even or both odd, then fg is even.


	(b)Prove that if f is even and g is odd, then fg is odd.


	(c)Suppose f is even, and h is an arbitrary function defined on all of R. Is either f∘h or h∘f necessarily even? Give a proof or counterexample.





	Exercise 5.2.9. Assume f:R→R is ℓ-periodic, and that g:R→R. Must f∘g be ℓ-periodic? Must g∘f be ℓ-periodic?


	Exercise 5.2.10. Assume f and g are ℓ-periodic functions.


	(a)Prove that f+g and fg are ℓ-periodic.


	(b)Prove that the even and odd parts of f are ℓ-periodic.


	(c)Prove that the positive and negative parts of f are ℓ-periodic.





	Exercise 5.2.11. (★) Prove Lemma 5.2.15.


	Exercise 5.2.12. Prove Proposition 5.2.17.


	Exercise 5.2.13. Assume ℓ>0. We say a function f:R→R is ℓ -anti-periodic if f(x+ℓ)=−f(x) for all real x. Prove that such a function is 2ℓ-periodic.






5.3 Injectivity and Surjectivity

There are two reasons a mapping f:X→Y might not be invertible. First, for some y there might exist distinct points x1, x2 in X such that y=f(x1)=f(x2). There might even exist infinitely many such points, for example if f is periodic.

Second, for some y, there might exist no points x in X such that y=f(x). For example, if f is constant, say f(x)=y0 for all x, then the equation y=f(x) has no solutions if y≠y0.

Each of these alternatives is important enough to deserve a name. As we develop tools, especially continuity and derivatives, we will establish powerful theorems for checking whether or not functions satisfy these properties.Page 106


Definition 5.3.1. Assume f:X→Y is a mapping and {x1,x2}⊆X. If x1≠x2 and f(x1)=f(x2), we say f identifies x1 and x2.



Remark 5.3.2. If X is a collection of people, Y a set of names, and f an assignment of names, then two people are identified by f (namely, are made identical by f) if they have the same name. Knowing only a name (value of f), we are unable to uniquely determine an individual (input of f). ⋄


Reiterating, to say f:X→Y is invertible means that for every y in Y, there exists exactly one x in X such that y=f(x). Invertibility may therefore be separated into two useful criteria:


Definition 5.3.3. A mapping f:X→Y is injective if f(x1)=f(x2) implies x1=x2. Contrapositively, f is injective if x1≠x2 implies f(x1)≠f(x2), namely, if f does not identify any points, or f takes distinct values at distinct inputs. An injective mapping is called an injection.



Definition 5.3.4. A mapping f:X→Y is surjective if for every y in Y, there exists an x in X such that f(x)=y. A surjective mapping is called a surjection.



Definition 5.3.5. A mapping f:X→Y is bijective if f is both injective and surjective. A bijective mapping is called a bijection.



Example 5.3.6. Define f:R→R by f(x)=x2. We wish to determine whether or not f is injective and/or surjective.

For injectivity, the general strategy is to assume f(x1)=f(x2) and either deduce that x1=x2, or find a specific pair of distinct inputs having equal output values. Here, x12=x22 if and only if

0=x12−x22=(x1−x2)(x1+x2),

if and only if x1−x2=0 or x1+x2=0. The second equation has solutions for which x1≠x2, such as x1=1=−x2, so f is not injective.

For surjectivity, assume y is an arbitrary element of the codomain, and attempt to solve the equation y=f(x) for x in the domain of f.

Here, we wish to solve x2=y for x, with y an arbitrary real number. By Lemma 3.2.4 (ii), x2≥0 for all real x. Consequently, the equation x2=−1 has no real solution; that is, y=−1 is not a value of f, so f is not surjective. ♢



Example 5.3.7. Define g:(0,∞)→R by g(x)=x2. Since the domain of g differs from the domain of f in the preceding example, g and f are different functions even though they are defined by the same formula.

Though g is not surjective for the same reasons as f above, g is injective: If g(x1)=g(x2) for some positive real numbers x1 and x2, then either x1−x2=0 or x1+x2=0. But since x1 and x2 are positive, their sum is positive; thus x1−x2=0, or x1=x2. ♢



Example 5.3.8. Page 107Define h:(0,∞)→(0,∞) by g(x)=x2. Since the codomain of h differs from the codomain of g in the preceding example, h and g are different functions.

The function h is injective for the same reasons as g. By Theorem 4.2.11, h is surjective. In words, squaring is a bijection on (0,∞). ♢



Images and Preimages

A mapping f:X→Y acts on subsets of X and on subsets of Y.


Definition 5.3.9. Let f:X→Y be a mapping. If A⊆X, the set

f(A)={yinY:y=f(x) for some x in A}

is called the image of A under f, Figure 5.8a. In particular, the set f(X) of values of f is called the image of f.


[image: Two graphs show the image f of A and the preimage f star of B under the mapping f from X through Y.]
Long Description for Figure 5.8The left graph, labeled A, shows a function f mapping from domain X to codomain Y. A subset A of X is highlighted on the horizontal axis, and its image f of A is marked on the vertical axis within the overall range f of X. Horizontal and vertical dashed lines enclose the region f of A, which is a portion of the curve's output corresponding to input set A. The right graph, labeled B, shows the preimage under the same function. A subset B of Y is selected on the vertical axis, and the corresponding preimage f star of B is shown on the horizontal axis. Vertical dashed lines indicate the domain points that map into B, enclosing the region f star of B.

Figure 5.8 The forward and backward actions of a mapping f:X→Y. ⏎




Remark 5.3.10. A mapping f:X→Y is surjective if and only if the image of f is the entire codomain, f(X)=Y.

By contrast with the domain of a mapping, the codomain of a general mapping is relatively unimportant. Specifically, if the codomain is not fixed by context, we may harmlessly replace a mapping f:X→Y with the surjection f:X→f(X), in effect “assuming f is surjective without loss of generality.” Sometimes, however, context does fix the codomain, see for example [15]. ⋄



Definition 5.3.11. Let f:X→Y be a mapping. If B⊆Y, the set

f∗(B)={xinX:f(x)∈B}

is called the preimage of B under f, Figure 5.8b.



Proposition 5.3.12. ⏎ Let f:X→Y be a mapping. For all subsets S1 and S2 of X, and all subsets T1 and T2 of Y, we have


	Page 108(i)f(S1∪S2)=f(S1)∪f(S2).


	(ii)f(S1∩S2)⊆f(S1)∩f(S2).


	(iii)f∗(T1∪T2)=f∗(T1)∪f∗(T2).


	(iv)f∗(T1∩T2)=f∗(T1)∩f∗(T2).




Proof. For illustration we prove (i). Suppose y is an arbitrary element of f(S1∪S2). By definition, there exists an x in S1∪S2 such that y=f(x). By definition of a union, either x∈S1 and y=f(x)∈f(S1), or x∈S2 and y=f(x)∈f(S2). In either case, y∈f(S1)∪f(S2). Since y was arbitrary, f(S1∪S2)⊆f(S1)∪f(S2).

Conversely, suppose y∈f(S1)∪f(S2). By definition of a union, either y∈f(S1) and there exists an x in S1 such that y=f(x), or y∈f(S2) and there exists an x in S2 such that y=f(x). In either case, x∈S1∪S2, so y∈f(S1∪S2). Since y was arbitrary, f(S1∪S2)⊇f(S1)∪f(S2).

The remaining parts are Exercise 5.3.8. □



Remark 5.3.13. Assume f:X→Y is a mapping, and y∈Y.

If f is injective, the equation y=f(x) has at most one solution: The preimage f∗({y}) contains at most one element for each y.

If f is surjective, y=f(x) has at least one solution: The preimage f∗({y}) is non-empty for each y.

Thus, f is bijective if and only if y=f(x) has exactly one solution for every y in Y, if and only if f is invertible. ⋄



Remark 5.3.14. We may apply a function to both sides of an equation, obtaining a new equation. We do this when we “square both sides.” Inversely, if f is injective, we may “cancel” f from both sides of an equation. That is, if f is injective and f(x1)=f(x2) we may deduce x1=x2, see also [8]. ⋄




Monotone Functions

Analysis deals in inequalities as well as equations. In this section we'll introduce names for functions that can be applied to inequalities, obtaining new inequalities. There are (unfortunately) four useful criteria, depending on (i) whether applying f preserves strict inequalities or possibly not, and (ii) whether f preserves or reverses the sense of inequalities.


Definition 5.3.15. Let X be a non-empty set of real numbers. A function f:X→R is strictly increasing on X if for all x and x′ in X, x<x′ implies f(x)<f(x′).



Lemma 5.3.16. ⏎ If n is a positive integer, then the function f:(0,∞)→R defined by f(x)=xn, is strictly increasing: If 0<x1<x2, then 0<x1n<x2n.

Proof. Use Proposition 3.2.1 (iii) and induction on n. □



Lemma 5.3.17. A strictly increasing function is injective.

Page 109Proof. If x1≠x2, then x1<x2 without loss of generality (swapping names if necessary), so f(x1)<f(x2), and therefore f(x1)≠f(x2). □



Lemma 5.3.18. If f:X→Y is strictly increasing and surjective, then the inverse function f−1:Y→X is strictly increasing.

Proof. Assume y and y′ are arbitrary elements of Y, and write x=f−1(y) and x′=f−1(y′). If x′<x, then y′<y because f is increasing. Contrapositively, if y<y′, then x<x′, or f−1(y)<f−1(y′). Since y and y′ were arbitrary, f−1 is increasing. □



Definition 5.3.19. Assume X is a non-empty set of real numbers. A function f:X→R is non-decreasing on X if for all x and x′ in X, x<x′ implies f(x)≤f(x′).



Example 5.3.20. The floor and ceiling functions are non-decreasing on R. Neither is injective. ♢



Remark 5.3.21. Non-decreasing functions preserve non-strict inequalities. Since the conclusion f(x)≤f(x′) is automatic if x=x′, the hypothesis may be expressed freely as x<x′ or x≤x′, whichever is convenient. ⋄



Remark 5.3.22. The corresponding conditions for functions that reverse the sense of inequalities are “strictly decreasing” and “non-increasing.” For brevity, we generally omit explicit discussion of these conditions.

Properties of strictly increasing or non-decreasing functions have analogs for strictly decreasing or non-increasing functions. Writing out formal statements and proofs may provide beneficial practice. ⋄



Definition 5.3.23. A function that is either non-decreasing or non-increasing is monotone. A function that is either strictly increasing or strictly decreasing is strictly monotone.



Lemma 5.3.24. ⏎ A composition of strictly decreasing functions is strictly increasing. Generally, a composition of monotone functions is monotone.

Proof. See Exercise 5.3.4 for the first part. (There are sixteen contingencies in general, but the idea is identical for each.) □



Example 5.3.25. The restriction of the reciprocal function f(x)=1/x to (0,∞) is strictly decreasing by Proposition 3.2.1 (v). The composition with itself is the identity, which is strictly increasing.

The reciprocal function itself, defined on R∖{0}, is invertible (indeed, f−1=f), hence injective. Note carefully, however, that f is not monotone: −1<1 but f(−1)<f(1), so f is not non-increasing; and 1<2 but f(2)<f(1), so f is not non-decreasing. ♢
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	Exercise 5.3.1. (★) Assume a<b, and X=(a,b)∖{0} is the set of non-zero real numbers between a and b. Find, with justification, the image of X under the reciprocal function f(x)=1/x, assuming:


	(a)0≤a.


	(b)b≤0.


	(c)a<0<b.





	Exercise 5.3.2. Assume a and b are real and a<b. Prove there exists a unique affine bijection f:(0,1)→(a,b), and find its inverse.


	Exercise 5.3.3. Prove that f(x)=x1−|x| defines a bijection f:(−1,1)→R.


	Exercise 5.3.4. Prove the first statement of Lemma 5.3.24.


	Exercise 5.3.5. (★) Assume f:X→Y and g:Y→Z are mappings.


	(a)If f and g are bijections, prove that the composition g∘f:X→Z is a bijection. Express the inverse (g∘f)−1 in terms of f−1 and g−1.


	(b)Conversely, assume the composition g∘f:X→Z is a bijection. Must f be injective? Surjective? What can you deduce about g?





	Exercise 5.3.6. If f is an injective, non-vanishing real function, it has an inverse mapping f−1 and a reciprocal 1/f. One might ask if these can be equal. Prove that if f:X→Y is bijective and f−1=1/f, then successive application of f sends each point x to f(x), to 1/x, to f(1/x)=1/f(x) to x. What constraints does this put on the domain and codomain?


	Exercise 5.3.7. (A). Let X be the set of points (x,y) in the plane satisfying x2+y2=1 and (x,y)≠(0,1). This exercise introduces inverse stereographic projection, the mapping Π:R→X (Pi, for projection) defined by joining (0,1) to (t,0) by a ray and letting Π(t)=(x,y) be the point of intersection with the circle, Figure 5.9.


	(a)Use similar triangles to find a formula for (x,y) in terms of t.


	(b)Prove Π is bijective, both geometrically and by finding a formula for Π−1, that is, expressing t in terms of x and y.


	(c)Prove t is rational if and only if x and y are rational. Conclude that if A, B, and C are positive coprime integers satisfying A2+B2=C2, then there exist positive integers p and q such that C=p2+q2, and {A,B}={2pq,p2−q2}.


	(d)Page 111Assume f(t)=1/t for non-zero t. Show that Π∘f∘Π−1(x,y)=(x,−y), reflection of the circle across the x-axis.


	(e)Assume f(t)=(1+t)/(1−t) if t∉{−1,0,1}, compare Exercise 5.2.1. Show similarly that Π∘f∘Π−1(x,y)=(−y,x), the counterclockwise quarter turn of the circle.




[image: A unit circle diagram maps point t from the real line to point x, y on the circle by inverse stereographic projection.]
Long Description for Figure 5.9The diagram displays a unit circle centred at the origin, defined by the equation x squared plus y squared equals one. The horizontal and vertical axes intersect at the origin. A point labeled t lies on the extended real axis below the circle. A straight line connects the point 0, 1, located at the top of the circle, to t and intersects the circle at a point labeled capital pi of t, which equals the ordered pair x comma y. Horizontal and vertical dashed lines from this point reach the x axis and y axis respectively. A second real point, labeled t prime, is mapped similarly via a line from 0, 1, intersecting the circle at a point marked capital pi of t prime.

Figure 5.9 Inverse stereographic projection of the unit circle. ⏎




	Exercise 5.3.8. Prove parts (ii)–(iv) of Proposition 5.3.12.


	Exercise 5.3.9. If f:X→Y is a mapping, prove f is injective if and only if f(S1∩S2)⊇f(S1)∩f(S2) for all subsets S1 and S2 of X. (Compare Proposition 5.3.12 (ii).)


	Exercise 5.3.10. Assume α is irrational, and define f:Z×Z→R by f(m,n)=m+nα. Prove f is injective, and the image A=f(Z×Z) is dense.






5.4 Cardinality

For each natural number n there exists a set of n elements, for example, the initial segment n―={j}j=0n−1⊆N. (By convention 0―=∅.) In everyday life, “counting” a set X establishes a bijection from X to some initial segment n―.

In mathematics, there are also “infinite” sets. In the late 19th century, German mathematician Georg Cantor extended the concept of counting to infinite sets, and showed there are “different sizes” of infinity. We can only splash a bit in the shallows of this deep ocean, but different sizes of infinity have bearing on real analysis, and we cannot avoid getting our feet wet.


Definition 5.4.1. Two sets X and Y are said to have the same cardinality if there exists a bijection f:X→Y.



Remark 5.4.2. Page 112A finite set X does not have the same cardinality as any proper subset Y. This property characterizes finite sets, namely, is false for infinite sets. ⋄



Example 5.4.3. If n is an arbitrary natural number, the set N has the same cardinality as n+N={minN:m≥n}={n,n+1,n+2,…}. The function f:N→n+N defined by f(k)=n+k is a bijection. ♢



Lemma 5.4.4. ⏎ If a and b are extended real numbers such that a<b, there exists an increasing bijection from (0,1) to (a,b).

Proof. See Exercise 5.4.1 □



Definition 5.4.5. A set X is countable if X has the same cardinality as N, the set of natural numbers. We say X is at most countable if X is either finite or countable. If X is not at most countable, we say X is uncountable.



Lemma 5.4.6. ⏎ Every subset of N is at most countable.

Proof. Assume X⊆N. If X is empty or has a largest element, X is finite.

Otherwise, X is non-empty and unbounded. Define f:N→X recursively as follows. Let f(0) be the smallest element of X, which exists by well-ordering, Theorem 2.1.4, and define X1=X∖{f(0)}. For each positive integer m, define f(m) to be the smallest element of Xm, and define Xm+1=Xm∖{f(m)}. The mapping f is bijective, so X is countable. □



Corollary 5.4.7. Every subset of a countable set is at most countable.

Proof. Assume X is countable and A⊆X. Fix a bijection f:N→X. The preimage f∗(A) is a subset of N, hence at most countable by Lemma 5.4.6, and the restriction of f to the preimage is a bijection to A. □



Corollary 5.4.8. ⏎ If Y is a set and f:N→Y is a surjection, then Y is at most countable.

Proof. See Exercise 5.4.2. □



Proposition 5.4.9. ⏎ The ordered product N×N is countable.

Proof. See Exercise 5.4.3. □



Corollary 5.4.10. ⏎ If Xk is a countable set for each natural number k, then the union ⋃kXk is countable.

Proof. See Exercise 5.4.4. □



Corollary 5.4.11. ⏎ The set of polynomials with rational coefficients is countable.

Page 113Proof. See Exercise 5.4.6. □



Definition 5.4.12. A real number x is algebraic if there exists a polynomial f with integer coefficients such that f(x)=0. A non-algebraic real number is transcendental.



Example 5.4.13. Every rational number is algebraic: If r=p/q is rational, the affine polynomial f(x)=qx−p has r as a root.

Square roots of positive rational numbers are algebraic; if f(x)=qx2−p, then r=p/q is a root (in the sense of polynomials) of f.

Since a polynomial of degree n has at most n distinct real roots and the set of polynomials with integer coefficients is countable, there are only countably many algebraic numbers.

Could every real number be algebraic? And if not, can we hope to describe a single transcendental number? Without jumping too far ahead in the story, we will see momentarily that “most” real numbers are not algebraic.

In Chapter 12 we will carefully study the specific real number known as e, which is transcendental according to Theorem 12.4.12. ♢



Uncountable Sets

Despite looking at larger and larger sets of real numbers, including the set of algebraic numbers, rife with irrationals, we have not escaped the realm of the countable. Remarkably, the set of real numbers is uncountable; there exists no surjection f:N→R. We'll first establish a more modest-looking result.


Definition 5.4.14. A mapping a:N→{0,1} is a binary sequence.



Remark 5.4.15. Recall that the value ak=a(k) is the kth term. We write (ak)k=0∞ to denote a sequence as an ordered list of terms. ⋄



Proposition 5.4.16. The set X of binary sequences is uncountable.

Proof. Our method of proof is the diagonal argument. We will show that if f is an arbitrary mapping from N to X, then f is not surjective; there exists a sequence not in the image of f.

If f:N→X, the value f(n)=(an,k)k=0∞ is a binary sequence for each natural number n. Define a sequence b in X by the formula bk=1−ak,k; that is, take the kth term of b to be the “opposite” of the kth term of the sequence f(k). By construction, b≠f(n) for every n; these sequences do not have the same nth term. In other words, b is not in the image of f. But f:N→X was an arbitrary mapping. Consequently, no mapping from N to X is surjective. □



Remark 5.4.17. Page 114If this proof leaves you with nagging thoughts similar to, “Why can't we just prepend the ‘missing’ sequence to our list of values?” you are not alone. To reiterate, however, the argument proves that if f:N→X is an arbitrary mapping, then f is not surjective. In the adversarial game Who can construct a surjection f:N→X ?, Player f loses. The “missing” sequence constructed is not the only binary sequence “missed” by f; there are others, necessarily uncountably many. ⋄



Corollary 5.4.18. ⏎ The set R of real numbers is uncountable.

Proof. Let X be the set of binary sequences, and define a mapping f:X→R by sending each binary sequence to the corresponding infinite decimal whose digits are all either 0 or 1:

f((ak)k=0∞)=∑k=0∞ak⋅10−k:=supn∈N∑k=0n−1ak⋅10−k.

This mapping is injective, see Exercise 5.4.7, hence bijective to its image. Since R has an uncountable subset, R itself is uncountable. □



Remark 5.4.19. In Chapter 4 we saw that the set Q of rationals is dense in R: Between any two real numbers, there is a rational number. We can now see a bit more deeply the complexity with which the rationals sit inside the reals, since the set of irrational numbers has larger cardinality than the set of rationals. ⋄



Example 5.4.20. The set of binary sequences is in bijective correspondence with the ternary set K. The geometric idea is natural. Recall that the ternary set is the intersection of sets Kn, each obtained by removing the middle third of each component of Kn−1. Assume x∈K, and imagine “homing in” on x by answering an infinite number of “yes-no” questions. The answer to each question tells us whether to pass to a left-hand or right-hand piece when we remove the middle third.

In more detail, we know initially that x∈K0=[0,1]. If x is in [0,1/3], set a0=0; if x is in [2/3,1], set a0=1. Inductively, assume we have constructed a finite sequence (aj)j=0n−1, and we have located x in a particular component of Kn. This component is split into two pieces in Kn+1. If x lies in the left piece, take an=0; otherwise take an=1, Figure 5.10.

[image: A hierarchical structure of intervals labeled with binary sequences that represent subdivisions of the unit interval in the construction of the ternary set.]
Long Description for Figure 5.10At the top level, the interval is split into two parts labeled 0 and 1. Each of these is further subdivided into two smaller intervals. The interval labeled 0 splits into intervals labeled 00 and 01, while the interval labeled 1 splits into 10 and 11. At the next level, each of those four intervals is subdivided again into two subintervals, producing binary labels of three digits: 000, 001, 010, 011, 100, 101, 110, and 111. These intervals correspond to levels K subscript 1, K subscript 2, and K subscript 3.

Figure 5.10 Binary sequences and intervals in the ternary set. ⏎



Each x in K gives rise to a unique binary sequence, each binary sequence determines a unique element of K, and these associations are inverse to each other. It follows that K is uncountable. ♢



Remark 5.4.21. Exercise 7.1.15 outlines an algebraic/analytic proof of these claims. Exercise 8.3.8 constructs a non-decreasing surjection from the ternary set to the unit interval [0,1]. ⋄Page 115



Remark 5.4.22. ⏎ The ternary set may appear to consist entirely of endpoints of the approximating intervals. In fact, nearly the opposite is true: Only countably many elements of K are endpoints of some Kn. Each set Kn has only finitely many endpoints. The set of all endpoints in K is therefore a countable union of finite sets. The endpoints of Kn correspond to sequences that are constant after the nth term, see also Exercise 7.1.15, and there are only countably many such sequences. ⋄



Remark 5.4.23. In Alan Turing's mathematical formalization of computation, there exist only countably many algorithms, countably many computer programs. There are more real numbers than there are computer programs. Only countably many computable real numbers have a decimal representation that can be output by a computer program.

This is not an issue of decimals having infinitely many digits: There do exist algorithms that output the infinite, non-repeating digits of algebraic irrational numbers such as 2, or of transcendental numbers we will meet later, such as e or π. The blunt fact is, there exist individual binary sequences that are not output by any computer program.

Computability of a binary sequence is not a property of any initial finite sequence. No matter how many terms we examine, the resulting sequence is computable. If we attempt to search for a non-computable binary sequence, we enter the exponentially growing labyrinth of finite binary sequences, knowing that the property we seek is not determined by the portion we have examined, no matter how far into the sequence we look.

If instead we ask an oracle to show us a non-computable binary sequence, we have no algorithmic way to verify the oracle's claim. This is awkward: We have proven that uncountably many binary sequences exist, but only countably are output by some computer program. In any practical sense, cannot exhibit a single non-computable sequence or real number.

Pondering seriously how this mathematical theorem interacts with the physical world, we eventually founder on our ignorance about the natures of space and time. Jorge Luis Borges' The Library of Babel, [4, 2], and Richard Preston's The Mountains of Pi, [23], provide thought-provoking reading. ⋄
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	Exercise 5.4.1. Prove Lemma 5.4.4.


	Exercise 5.4.2. Prove Corollary 5.4.8.


	Exercise 5.4.3. (★) Prove that the function f:N×N→N defined by

f(m,n)=12((m+n)2+3n+m)

is a bijection. (This establishes Proposition 5.4.9.)


	Exercise 5.4.4. (★) Prove Corollary 5.4.10.


	Exercise 5.4.5. Prove that the set of finite subsets of N is countable.


	Exercise 5.4.6. Prove Corollary 5.4.11.


	Exercise 5.4.7. Use Exercise 4.3.9 to prove that the mapping f in the proof of Corollary 5.4.18 is injective.


	Exercise 5.4.8. (H). Show that the set of mappings f:N→{0,1} is in bijective correspondence with the power set P(N).


	Exercise 5.4.9. Assume X is an arbitrary set and f:X→P(X) a mapping. Prove f is not surjective by considering Nf:={xinX:x∉f(x)}. (This is the only proof by contradiction in the book.)
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Assume x0 is a real number. Every real number distinct from x0, and therefore (by induction) every finite set not containing x0, is separated from x0 by a gap of positive length. To “approach” x0 we need some type of infinite set.

In Chapter 4, we saw how every punctured interval Br×(x0) neighbors x0. A punctured interval, however, is uncountable. In this chapter, we use real sequences, which are countable objects and therefore “closer to finite.” The primary concept is a limit of a sequence, which represents “large-index behavior.” Every real number is the limit of some rational sequence. In effect, limits provide a user-friendly front end to suprema.


6.1 Convergence and Limits


Remark 6.1.1. By definition, a real sequence is a mapping a:N→R. We usually denote a sequence by (ak)k∈N or (ak)k=0∞, emphasizing the interpretation as an ordered list of real numbers. The ordering is crucial; a sequence must be carefully distinguished from its set of terms {ak}k∈N={ak}k=0∞.

If k0 is an integer and ak is defined for k greater than or equal to k0, we usually write (ak)k=k0∞ —rather than the literally correct (ak+k0)k=0∞ —to signify “the sequence starting at k0.” We have done this a few times already in prior chapters, as you may have noticed.

If the starting index k0 is unimportant we may simply write (ak). ⋄



Example 6.1.2. The formulas ak=1/(k+1) and bk=(−1)k define real sequences. The respective sets of terms are A={ak}k=0∞={1/k}k=1∞, and the finite set B={bk}k=0∞={1,−1}. ♢



Example 6.1.3. For each real number x, the formula ak=xk defines a real sequence whose set of terms is {ak}k=0∞={1,x,x2,x3,…}. ♢



Example 6.1.4. ⏎ The recursive rule a0=2, ak+1=12(ak+(2/ak)) defines a real sequence. The next three terms are a1=3/2, a2=17/12, and a3=577/408. ♢



Remark 6.1.5. The definition of limits refers a positive real number ε (epsilon), the small Greek e. To say ε is arbitrary, or to say for every ε, means there is no positive lower bound on the choice. ⋄



Definition 6.1.6. ⏎ Page 118Assume (ak) is a real sequence, and a∞ is real. We say (ak) converges to a∞, and write (ak)→a∞, if the following condition is true:


For every ε,

there exists an index N such that

if k≥N, then |ak−a∞|<ε.





Remark 6.1.7. Operationally, (ak)→a∞ if we can make the terms ak as close as we like to a∞ (within a distance ε, for arbitrary positive ε) by considering only terms with sufficiently large index (k≥N for some N). ⋄



Remark 6.1.8. Geometrically, (ak)→a∞ if every open ball Bε(a∞) contains ak for all but finitely k. ⋄



Proposition 6.1.9. ⏎ If (ak) is a real sequence that converges to a∞ and to a∞′, then a∞=a∞′.

Proof. We will prove |a∞′−a∞|<ε for every positive ε, which implies a∞=a∞′. (Why?) Assume ε is arbitrary. Since (ak)→a∞, there exists an index N1 such that if k≥N1, then |ak−a∞|<ε/2. Similarly, since (ak)→a∞′, there exists an index N1′ such that if k≥N1′, then |ak−a∞′|<ε/2.

Put N=max(N1,N1′). Since N≥N1 and N≥N1′, the triangle inequality implies

|a∞′−a∞|=|(a∞′−aN)+(aN−a∞)|≤|a∞′−aN|+|aN−a∞|<ε/2+ε/2=ε.

Since ε was arbitrary, a∞′−a∞=0. □



Remark 6.1.10. Proposition 6.1.9 guarantees uniqueness of limits: A real sequence converges to at most one number. If (ak)→a∞, we call a∞ the limit of (ak), and write a∞=limk→∞ak. ⋄



Remark 6.1.11. Informally, we say “ak approaches a∞ as k→∞.” Indeed, the notation a∞ is meant to suggest “setting k=∞ in the limit.” Logically, however, this is not what convergence means. The terms ak of a sequence (ak) are merely individual real numbers. Convergence only makes sense for a sequence a=(ak), an ordered list of terms. Further, convergence either happens or does not; we do not need to “wait,” possibly forever, for k to run from 0 to ∞. ⋄



The ε-N Game

Convergence of a sequence may be understood as an adversarial “challenge-response” game. A sequence (ak) and a putative limit a∞ are specified in advance. Player ε chooses a positive “tolerance” ε, which defines a target, the interval Bε(a∞)=(a∞−ε,a∞+ε).

Page 119Player N now tries to “hit the target,” namely, to ensure |ak−a∞|<ε, solely by taking k to be sufficiently large. A “successful response” to the “challenge” of Player ε is an index N such that if k≥N, then |ak−a∞|<ε.

If Player N is able to respond successfully to a particular ε, they “win the round.” Otherwise Player ε wins the round.

To say (ak)→a∞ means that Player N has a winning strategy against a perfect opponent: No matter how “skillful” Player ε is (if ε is arbitrary, no matter how small ε is chosen), Player N can issue a successful response.

The ε-N game and its variants studied later are the essence of analysis. If you read proofs elsewhere, you may find that elaborate, seemingly magical choices of N are made. To make these choices, the author imagined an arbitrary ε was given, and formulated a strategy for choosing a “winning” index N, making idiomatic choices. The proof itself is merely a demonstration that Player N wins.


Example 6.1.12. ⏎ Assume c∈R. The sequence ak=c is called a constant sequence. A constant sequence converges to a∞=c: For every ε and for every k, we have |ak−a∞|=|c−c|=0<ε. That is, Player N cannot lose against a perfect opponent when playing with a constant sequence! ♢



Example 6.1.13. ⏎ The sequence (ak)=(1/k)k=1∞ converges to 0. Before giving a proof, we'll play a few rounds of the ε-N game.

If ε=100, Player N cannot lose, namely, may take N=1: Indeed, |ak−0|=1/k≤1<ε for every positive integer k. Note carefully: This fact does not prove (ak)→0; Player N must be able to win against an arbitrary ε.

If ε=0.01=1/100, Player N may take N=101: If k≥101, then |ak−0|=1/k≤1/101<1/100=ε.

If ε=1/200, Player N's goal is to ensure 1/N<ε=1/200, or after rearranging, 200<N2. The smallest choice, N=15, is easy to find in this example, but there is no harm in taking, say, N=200.

To prove (ak)→0, it suffices to construct a winning strategy for Player N. Fix ε arbitrarily. By reciprocal finitude, Corollary 4.3.7, there exists a positive integer N such that 1/N<ε. This N is a winning response. If k≥N, then |ak−0|=1/k≤1/N<ε. ♢



Remark 6.1.14. If an index N wins against some challenge ε, then every larger integer N′≥N also wins, because k≥N′ implies k≥N. To reiterate, it is not necessary (or always desirable) to pick the smallest winning N.

Correspondingly, making ε smaller makes the target smaller, which makes the condition |ak−a∞|<ε “harder to meet,” and generally forces N to be larger. But note carefully: Player ε has no “optimal” choice: There exists no smallest positive real number. ⋄



Example 6.1.15. ⏎ Page 120The sequence defined by ak=(−1)k has terms that are alternately 1 and −1: The “even” terms a2ℓ are all 1 and the “odd” terms a2ℓ+1 are −1. Intuitively, (ak) does not approach a real limit.

Using the definition, we will prove (ak) does not converge. That is, for every real number a∞, the statement “(ak)→a∞ ” is false. To establish this, we fix a putative limit a∞ arbitrarily, then take the side of Player ε and look for a winning strategy:


No matter what N is, k=2N is even, and k=2N+1 is odd, and both are greater than N. We are therefore assured that |ak−a∞| takes both values |1−a∞| and |−1−a∞|=|1+a∞| for some k greater than N. In order to win, Player N must make both of these quantities smaller than ε. But in that event, the triangle inequality implies 2≤|1−a∞|+|1+a∞|<ε+ε=2ε, or 2<2ε. If this inequality is not satisfied, Player N loses.



Having reasoned thusly, Player ε chooses any ε such that 0<ε≤1, say ε=1. There does not exist an N such that if k≥N, then |ak−a∞|<ε=1; if such an N exists, then

2≤|1−a∞|+|1+a∞|=|a2N−a∞|+|a2N+1+a∞|<ε+ε=2,

or 2<2, which is false. Since “(ak)→a∞ ” is false for every real number a∞, the sequence defined by ak=(−1)k does not converge. ♢



Proposition 6.1.16. ⏎ If x is a real number such that −1<x≤1, then the sequence ak=xk converges; the limit is 1 if x=1, and is 0 if −1<x<1.

Proof. If x=1, the sequence (ak) is constant (since ak=1k=1 for all k), and therefore converges to 1 by Example 6.1.12. Similarly, if x=0, then ak=0 for all k.

For the remainder of the proof, assume 0<|x|<1, and set a∞=0. By Corollary 3.3.6, if we write |x|=1/(1+u), then |xk|≤1/(1+ku) for all k.

Fix ε arbitrarily. By the accretion principle, Corollary 4.3.5, there exists a natural number N such that 1/ε<Nu, or 1/(Nu)<ε. If k≥N, then

|xk−a∞|=|xk|≤11+ku<1ku≤1Nu<ε.

Since ε was arbitrary, (xk)→a∞=0 if 0<|x|<1. □



Example 6.1.17. ⏎ For x=1/2 or x=−4/5, say, the conclusion of Proposition 6.1.16 is not intuitively surprising. However, for a number such as x=0.99999999999999999999=1−10−20, a “fairly large” exponent n may be needed to make the power xn “small,” compare Exercise 6.1.6. ♢




Page 121Boundedness


Definition 6.1.18. A real sequence (ak) is bounded above if its set of terms is bounded above, namely, if there exists a real number M such that ak≤M for all k. Any such M is called an upper bound for the sequence.

Similarly, we say (ak) is bounded below if there exists a real number m such that m≤ak for all k.

We say the real sequence (ak) is bounded if (ak) is bounded above and bounded below, namely (Lemma 4.1.25), if there exists a positive real number M such that −M≤ak≤M, or (Proposition 3.2.10) |ak|≤M, for all k.



Proposition 6.1.19. ⏎ If (ak) is a convergent real sequence with limit a∞, then


	(i)(ak) is bounded.


	(ii)The sequence (|ak|) converges to |a∞|.




Proof. By hypothesis, for every ε, there exists an N such that if k≥N, then |ak−a∞|<ε.


	(i).Particularly, if ε=1, there exists an N such that |ak−a∞|<1 if k≥N. It suffices to prove |ak|≤M:=2+max({|aj|}j=0N) for all k.

If 0≤k≤N, then |ak|<M by construction. If instead k≥N, the triangle inequality applied to ak=(ak−a∞)+(a∞−aN)+aN implies

|ak|≤|ak−a∞|+|a∞−aN|+|aN|<1+1+|aN|≤M.

This completes the proof that |ak|≤M for all k.


	(ii).Assume ε>0, and choose N such that if k≥N, then |ak−a∞|<ε. By the reverse triangle inequality, k≥N implies ||ak|−|a∞||≤|ak−a∞|<ε. Since ε was arbitrary, (|ak|)→|a∞|. □






Remark 6.1.20. Contrapositively, an unbounded sequence does not converge. In words, boundedness is necessary for convergence.

Example 6.1.15 shows that a bounded sequence may fail to converge. In words, boundedness is not sufficient for convergence. ⋄





Exercises for Section 6.1


	Exercise 6.1.1. (★) Using the ε-N definition, prove limk→∞4k−53k+2=43.


	Exercise 6.1.2. Using the ε-N definition, evaluate limk→∞2−7k2k−5.


	Exercise 6.1.3. Page 122(★) Someone tells you a certain sequence (ak) is eventually constant. Give a precise definition for this condition.


	Exercise 6.1.4. (H). Assume (ak) is a real sequence and a∞ a real number. Consider the following conditions:


	(i)For every ε, there exists an N such that if k≥N then |ak−a∞|<ε.


	(ii)There exists an N such that for every ε, if k≥N then |ak−a∞|<ε.




Are these conditions logically equivalent? If so, give a proof. If not, find a “familiar” condition equivalent to (ii), and give an example of a sequence satisfying (i) but not (ii).


	Exercise 6.1.5. Assume (ak) is a real sequence and a∞ a real number. Consider the following conditions:


	(i)There exists an ε such that for every N, if k≥N then |ak−a∞|<ε.


	(ii)For every N, there exists an ε such that if k≥N then |ak−a∞|<ε.




Are these conditions logically equivalent? If so, give a proof. If not, find a “familiar” condition equivalent to (ii), and give an example of a sequence satisfying (i) but not (ii).


	Exercise 6.1.6. Assume x=1−10−20. In the proof of Proposition 6.1.16, what is the smallest N that makes the upper bound at most 1/2?


	Exercise 6.1.7. In calculus, limits of sequences are sometimes investigated by examining terms. For instance, if x0=1.75 and xn+1=12(xn+(3/xn)), the next two terms in decimal are

97/56≈1.732142857…,18817/10864≈1.73205081…,

while the mathematical limit, to the accuracy of a calculator display, is 1.732050808…. Discuss what we learn about convergence of a sequence by examining terms. Can we formulate convergence using numerical evidence of initial terms? If so, describe how; if not, explain why not in detail.


	Exercise 6.1.8. If (ak) and (bk) are real sequences, define a new sequence (ck) by “shuffling” the terms, setting c2k=ak and c2k+1=bk for every natural number k.

Write out the first six terms of (ck). Prove that (ck) converges if and only if (ak) and (bk) converge to the same limit.


	Exercise 6.1.9. Assume (ak) is an integer sequence, namely, ak is an integer for all k. Prove that (ak) converges if and only if (ak) is eventually constant.






Page 1236.2 Algebraic Properties of Limits

The ε-N definition of convergence puts sequential limits on a firm logical foundation, but the definition is a little onerous to use. In this section, we establish formal rules for algebraically manipulating limits in equations.


Proposition 6.2.1. ⏎ Assume (ak) is a real sequence converging to a∞, and (bk) is a real sequence converging to b∞.


	(i)The sequence (ak+bk) converges to a∞+b∞.


	(ii)The sequence (akbk) converges to a∞b∞.


	(iii)If bk≠0 for all k and if b∞≠0, then (ak/bk) converges to a∞/b∞.




Proof.


	(i).We'll start with “scratch work,” adopting the perspective of Player N: Strategizing a response is how analysis gets done, and our object is not just to prove statements, but to explain how to develop estimates.


By hypothesis, we can make |ak−a∞| and |bk−b∞| as small as we like. Our goal is to ensure |(ak+bk)−(a∞+b∞)| is smaller than ε. Algebra and the triangle inequality give

|(ak+bk)−(a∞+b∞)|=|(ak−a∞)+(bk−b∞)|≤|ak−a∞|+|bk−b∞|

We have a total “error budget” ε. Idiomatically, we'll ensure each summand is smaller than ε/2.

We can ensure |ak−a∞|<ε/2 if k≥N1, and ensure |bk−b∞|<ε/2 if k≥N2. To get a single index satisfying both conditions, idiomatically we pick N=max(N1,N2). We're ready to face Player ε.



The “conventional” proof follows.

Assume ε>0. Since (ak)→a∞ by hypothesis, there exists an integer N1 such that if k≥N1, then |ak−a∞|<ε/2. Similarly, there exists an integer N2 such that if k≥N2, then |bk−b∞|<ε/2. Let N=max(N1,N2). If k≥N, the triangle inequality implies

|(ak+bk)−(a∞+b∞)|≤|ak−a∞|+|bk−b∞|<ε/2+ε/2=ε.

Since ε was arbitrary, (ak+bk)→a∞+b∞.


	(ii).Again we'll start by strategizing as Player N:


By hypothesis, we can make |ak−a∞| and |bk−b∞| as small as we like. Our goal is to ensure |akbk−a∞b∞| is arbitrarily small. Operationally, we are trying to control the change in the product of two numbers, but we only have direct Page 124control over each number separately. This suggests we “vary one factor at a time,” see also Exercise 3.2.11. Doing so amounts to subtracting and adding a product where only one factor changes, say a∞bk:

|akbk−a∞b∞|=|akbk−a∞bk+a∞bk−a∞b∞|≤|akbk−a∞bk|+|a∞bk−a∞b∞|=|ak−a∞||bk|+|a∞||bk−b∞|.

The triangle inequality gives us two summands, each a product having one “small” factor. If we bound the “other” factor in each summand, we can make each summand, and therefore their sum, as small as we like. The factor |a∞| is just a number, already bounded. The factor |bk| might range over infinitely many numbers, but those numbers are terms of a convergent sequence, hence are bounded by Proposition 6.1.19.

Let L and M be positive numbers such that |a∞|<L and |bk|<M for all k. To bring our estimate in under budget, it suffices to ensure each summand is smaller than ε/2, or |ak−a∞|<ε/(2M) and |bk−b∞|<ε/(2L). We're ready to face Player ε.



The “conventional” proof follows.

Assume ε>0. Put L=1+|a∞| (to ensure L>0). By Proposition 6.1.19, there exists a positive real number M such that 1+|bk|≤M for all k. Put r=ε/(2M) and s=ε/(2L). Since (ak)→a∞, there exists an integer N1 such that if k≥N1, then |ak−a∞|<r. Since (bk)→b∞, there exists an integer N2 such that if k≥N2, then |bk−b∞|<s. Let N=max(N1,N2). If k≥N, then

|akbk−a∞b∞|=|akbk−a∞bk+a∞bk−a∞b∞|≤|akbk−a∞bk|+|a∞bk−a∞b∞|=|ak−a∞||bk|+|a∞||bk−b∞|<ε/(2M)⋅M+L⋅ε/(2L)=ε.

Since ε was arbitrary, (akbk)→a∞b∞.


	(iii).We'll prove the special case (1/bk)→1/b∞, then use (ii) to deduce the full claim. Again, we adopt the viewpoint of Player N:


By hypothesis, we can make |bk−b∞| as small as we like. Our goal is to ensure

|1bk−1b∞|=|b∞−bk||bk||b∞|=|bk−b∞|⋅1|bk||b∞|

is arbitrarily small. The factor |b∞| is just a positive real number. The obstacle is to bound 1/|bk| for large k, namely, to bound bk away from zero, or find a positive lower bound for |bk|.

Figure 6.1 depicts the situation geometrically, and suggests an estimate: If bk is no further than r=|b∞|/2 from b∞, then |b∞|/2≤|bk|, and 1/|bk|≤2/|b∞|.

[image: A decreasing curve shows values of the reciprocal function bounded between 0 and 2 divided by absolute value of b subscript infinity.]
Long Description for Figure 6.1The horizontal axis is marked with three tick positions: absolute value of b subscript infinity divided by two, absolute value of b subscript infinity, and three times absolute value of b subscript infinity divided by two. The vertical axis is labeled with a value two divided by absolute value of b subscript infinity. Horizontal dashed lines extend from the vertical values to meet the curve, highlighting bounding levels. Dots mark three points on the curve at the corresponding horizontal tick values, showing that the function is bounded above by two divided by absolute value of b subscript infinity in the neighbourhood around b subscript infinity.

Figure 6.1 Bounding the reciprocal on a neighborhood of a non-zero number. ⏎



It therefore suffices in addition to ensure |bk−b∞|<r=ε⋅|b∞|2/2.






Page 125The conventional proof follows. To avoid a technical digression mid-estimate, we'll start with bounding |bk| away from 0.


Lemma 6.2.2. ⏎ Assume b is a non-zero real number and 0<r≤|b|/2. If |x−b|<r, namely, if x∈Br(b), then |b|/2<|x| and 1/|x|<2/|b|.

Proof. The reverse triangle inequality applied to x=b+(x−b) implies

|x|≥||b|−|x−b||≥|b|−|x−b|>|b|−r≥|b|−|b|/2=|b|/2,

or |b|/2<|x|. Taking reciprocals implies 1/|x|<2/|b|. □

Assume ε>0. Put r=min(|b∞|/2, ε⋅|b∞|2/2). By construction, r≤|b∞|/2, so Lemma 6.2.2 guarantees that if |bk−b∞|<r, then 1/|bk|<2/|b∞|.

Since 0<r and (bk)→b∞, there exists an integer N such that if k≥N, then |bk−b∞|<r≤ε⋅|b∞|2/2, and consequently

|1bk−1b∞|=|bk−b∞||bk||b∞|<2r|b∞|2≤ε.

We have shown: For every ε, there exists an index N such that if k≥N, then |1/bk−1/b∞|<ε. Since ε was arbitrary, (1/bk)→1/b∞.

(iii) now follows from (ii) by writing ak/bk=ak⋅(1/bk). □



Example 6.2.3. If m is a positive integer, the sequence (ak)k=1∞ defined by ak=k−m=1/km converges to 0. If m=1, this is Example 6.1.13. For larger m, Proposition 6.2.1 (ii) establishes the inductive step. ♢



Example 6.2.4. ⏎ In practice, Proposition 6.2.1 grants license to move a limit into or out of an arithmetic expression:

limk→∞k−1k+1=limk→∞1−(1/k)1+(1/k)=1−limk(1/k)1+limk(1/k)=11=1;limk→∞2kk2+1=limk→∞(2k)/k21+(1/k2)=2limk(1/k)1+limk(1/k2)=01=0;limk→∞[k+1k]m=[limk→∞k+1k]m=(1)m=1;etc.

Page 126In the third example, the integer exponent m≥0 is arbitrary but “fixed,” independent of k. Note carefully: Proposition 6.2.1 does not imply

limk→∞[k+1k]k

exists. As we will see in Chapter 12, the limit does exist, but is not 1. Instead, this limit is e≈2.718281828…, a transcendental number that pervades pure and applied mathematics. For now, see Exercise 6.2.6. ♢




Exercises for Section 6.2


	Exercise 6.2.1. (★) With justification, evaluate the limits, or show the limit does not exist.


	(a)limk→∞4k2−5k+75k2+1.


	(b)limk→∞4k5−5k+75k4+1.





	Exercise 6.2.2. (H). Prove that if p is a polynomial function, and if (xk) is a convergent real sequence, then limkp(xk)=p(limkxk).


	Exercise 6.2.3. (★) If k≥1, define fk:[0,1]→R by fk(x)=xk.


	(a)Prove that for each x in [0,1], f(x):=limkfk(x) exists.


	(b)Prove that sup{|fk(x)−f(x)|:0≤x≤1}↛0.





	Exercise 6.2.4. Suppose ϕ:R→R is defined by ϕ(x)=x/(1+x2), and put fk(x)=ϕ(kx)/k for positive integer k. Prove that sup{|fk(x)|:x∈R}→0.


	Exercise 6.2.5. (H). Find the limit of the sequence whose general term is:


	(a)ak=k!/kk.


	(b)bk=10k/k!.


	(c)ck=(k!)2/(2k)!.





	Exercise 6.2.6. If k≥1, prove 2≤[(k+1)/k]k≤∑j=0k1/j!.






6.3 Limits and Inequalities

Concepts of monotonicity from Chapter 5 make sense for real sequences. Since convergence depends only on “arbitrary tails” of a sequence, it is convenient Page 127in practice to “forget” finitely many initial terms and consider “eventually monotone” sequences. In this section we'll see how limits and suprema (or infima) amount to the same thing for eventually monotone sequences, and show that limits respect non-strict inequalities.


Definition 6.3.1. A real sequence (ak) is eventually non-decreasing if there exists an index N0 such that ak≤ak′ whenever N0≤k≤k′.



Lemma 6.3.2. ⏎ A real sequence (ak) is eventually non-decreasing if and only if there exists an N0 such that k≥N0 implies ak≤ak+1.

Proof. Since k<k′:=k+1, an eventually non-decreasing sequence satisfies the condition in the lemma. Conversely, write k=N0+k0, k′=k+n, and argue by induction on n, see also Exercise 6.3.1. □



Example 6.3.3. The real sequence defined by ak=k2/(k2−500) is eventually non-decreasing, since

k2k2−500=k2−500+500k2−500=1−500k2−500,

and if k2>500, that is, if k≥23=N0, the denominator increases with k. ♢



Example 6.3.4. The real sequences defined by the formulas ak=(−1)kk and bk=(−1)k/k are not eventually non-decreasing. ♢



Proposition 6.3.5. ⏎ If (ak) is an eventually non-decreasing sequence, then


	(i)(ak) is bounded below.


	(ii)(ak) converges if and only if it is bounded above.




Proof. By hypothesis, there exists an integer N0 such that ak≤ak′ whenever N0≤k≤k′. Particularly, aN0≤ak if N0≤k.


	(i).The real number m=min(aj)j=0N0 is a lower bound for (ak): By construction, m≤ak if 0≤k≤N0. On the other hand, if N0≤k, then m≤aN0≤ak as noted above.


	(ii).Convergent implies bounded above: By Proposition 6.1.19, a convergent sequence is bounded, hence bounded above.




Bounded above implies convergent: Suppose there exists a real number M such that ak≤M for all k. The set A={ak:N0≤k} is non-empty and bounded above by M, so a∞:=supA exists by the completeness axiom. It suffices to prove (ak)→a∞.

Assume ε>0. By definition of a supremum, the number a∞−ε<a∞ is not an upper bound of A, so there exists an integer N≥N0 such that a∞−ε<aN. If k≥N, then aN≤ak≤supA, so

a∞−ε<aN≤ak≤a∞<a∞+ε.

That is, if k≥N, then |ak−a∞|<ε. Since ε was arbitrary, (ak)→a∞. □


Page 128For practice, give definitions of eventually non-increasing and eventually monotone real sequences, and modify of the statements and proofs of Lemma 6.3.2 and Proposition 6.3.5 for eventually non-increasing sequences.


Example 6.3.6. Consider the sequence (ak) in Example 6.1.4. As in the proof of Theorem 4.2.11, (ak) is decreasing and bounded below, hence convergent. Further, the limit is 2, the unique positive real number whose square is 2. ♢



Proposition 6.3.7. ⏎ Assume (ak) and (bk) are convergent real sequences, with respective limits a∞ and b∞.


	(i)If 0≤ak for all but finitely many k, then 0≤a∞.


	(ii)If ak≤bk for all but finitely many k, then a∞≤b∞.


	(iii)If c≤ak≤d for all but finitely many k, then c≤a∞≤d.




Proof.


	(i).We prove the contrapositive: If a∞<0, then ak<0 for infinitely many k.

Put ε=−a∞/2, so ε>0 by hypothesis. Since (ak)→a∞, there exists an N such that if k≥N, then |ak−a∞|<ε. But |ak−a∞|<ε if and only if a∞/2<ak−a∞<−a∞/2, and this implies ak<a∞/2<0. That is, if k≥N, then ak<0.


	(ii).Define ck=bk−ak. By hypothesis, 0≤ck for all but finitely many k. By Proposition 6.2.1, (ck) converges to b∞−a∞. Part (i) implies 0≤b∞−a∞, or a∞≤b∞.


	(iii).This follows immediately from (ii). □






Divergence to Infinity

The definition of sequential convergence makes no sense if a∞=+∞ or a∞=−∞. The objects ∞:=+∞ and −∞ are not real numbers, so formal inequalities such as |ak−∞|<ε have no meaning.

Nonetheless, it is useful to be able to study sequences that “approach” ∞ or −∞. Such sequences diverge (do not have a real limit), but they still enjoy some special properties of convergent sequences.


Definition 6.3.8. Assume (ak) is a real sequence. We say (ak) diverges to ∞, denoted (ak)→∞, if the following condition holds:


For every real number M,

there exists an index N such that

if k≥N, then ak>M.



We say (ak) diverges to −∞, denoted (ak)→−∞, if:
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there exists an index N such that

if k≥N, then ak<M.





Remark 6.3.9. These conditions differ by one character. ⋄



Example 6.3.10. The sequence ak=k diverges to ∞: By finitude, if M is an arbitrary real number, there exists a natural number N such that N>M. If k≥N, then ak=k≥N>M. ♢



Example 6.3.11. ⏎ If x>1, then the sequence ak=xk of Example 6.1.17 diverges to ∞. To prove this, note that x=1+u for some positive u. By Proposition 3.3.5, 1+ku≤xk=ak for every natural number k. If M∈R, there exists a natural number N such that M<Nu by the accretion principle. If k≥N, then

M<Nu<1+Nu≤1+ku≤xk=ak.

Since M was an arbitrary real number, (xk)→∞. ♢



Remark 6.3.12. If (ak) is a real sequence that is eventually non-decreasing, then either (ak) is bounded above (hence convergent to a finite limit), or not bounded above (hence divergent to ∞).

Analogous remarks hold for a real sequence that is eventually non-increasing. Consequently, an eventually monotone sequence always has an extended real “limit.” ⋄



Proposition 6.3.13. ⏎ If (ak)→∞ and (bk)→b∞ for some real number b∞, then


	(i)(ak+bk)→∞.


	(ii)If b∞>0, then (akbk)→∞. If b∞<0, then (akbk)→−∞.


	(iii)If ak≠0 for all k, then (bk/ak)→0.




Proof.


	(i).Since a convergent sequence is bounded (Proposition 6.1.19) and (bk)→b∞, there exists a positive real B such that |bk|≤B for all k. Let M be arbitrary. Since (ak)→∞, there exists an N such that if k≥N, then ak>M+B, which implies

ak+bk≥ak−|bk|>(M+B)−B=M.

Since M was arbitrary, (ak+bk)→∞.


	(ii).Assume b∞>0. Taking ε=b∞/2>0, there exists an N1 such that if k≥N1, then |bk−b∞|<ε=b∞/2. Rearranging gives b∞/2<bk if k≥N1.

Page 130Fix M arbitrarily. Since (ak)→∞, there exists an index N greater than N1 such that if k≥N, then ak>2M/b∞. But this implies

akbk>(2M/b∞)⋅(b∞/2)=M.

Since M was arbitrary, (akbk)→∞. To handle the case b∞<0, multiply appropriately by −1 in the preceding proof.


	(iii).Suppose ak≠0 for all k, so the quotient sequence (bk/ak) is defined. As in (i), let B be a positive bound for |bk|, and fix ε arbitrarily. Since (ak)→∞, there is an N such that if k≥N, then ak>B/ε, which implies bk/ak<B(ε/B)=ε. Since ε was arbitrary, (bk/ak)→0. □






Remark 6.3.14. Proposition 6.3.13 may be interpreted as assigning values to certain arithmetic expressions containing infinity: If L>0 is real, then

∞±L=∞,∞⋅(±L)=±∞,±L/∞=0.

Modifications of the preceding arguments, see Exercise 6.3.12, establish that

∞+∞=∞,−∞+(−∞)=−∞,±∞⋅∞=±∞.

However, ∞ and −∞ are not real numbers, and the preceding “equations” must be understood as theorems about how particular sequences diverge, not as equalities in the sense of real numbers.

Moreover, the following expressions are indeterminate, loosely because the “value” depends on the approximating sequences:

∞−∞,0⋅(±∞),(±∞)/(±∞),0/0.

Consequently, care is required when manipulating algebraic expressions involving ∞. For example, it is true in the “divergent limit” sense above that ∞+1=∞, but not correct to subtract ∞, “deducing” that 1=0. ⋄





Exercises for Section 6.3


	Exercise 6.3.1. (★) Assume (ak)k=0∞ is a real sequence. Use mathematical induction to prove the following are equivalent: (i) ak≤ak+1 for every natural number k. (ii) ak≤ak+n for all natural numbers k and n.


	Exercise 6.3.2. (★) In each part, prove that the sequence with given kth term is eventually monotone.


	Page 131(a)ak=1/(2k−13).


	(b)bk=(8k−3)/(2k−13).





	Exercise 6.3.3. Give a proof or counterexample: If (ak)→a∞ and (bk)→b∞ are convergent real sequences, then max(ak,bk)→max(a∞,b∞).


	Exercise 6.3.4. (★) Construct a sequence a of positive real numbers such that a→0 but a is not eventually monotone.


	Exercise 6.3.5. True or false: If (ak) is eventually positive and ℓ=limak exists, then 0<ℓ.


	Exercise 6.3.6. (★) (The squeeze theorem.) Suppose (ak), (bk), and (ck) are real sequences, and assume there exists an N0 such that if k≥N0, then ak≤ck≤bk. Prove that if (ak) and (bk) converge to the same limit L, then limkck exists is equal to L. (Caution: Proposition 6.3.7 does not apply.)


	Exercise 6.3.7. Assume (ak) and (bk) are real sequences. Prove that if (bk) is bounded and (ak)→0, then (akbk)→0. (Caution: The hypotheses do not imply (bk) converges.)


	Exercise 6.3.8. Prove (k)k=0∞→∞ as many ways as you can.


	Exercise 6.3.9. (★) Assume (ak) is a sequence of positive real numbers, and put bk=1/ak. Prove that if (ak)→0, then (bk)→∞.


	Exercise 6.3.10. Assume a is a non-increasing sequence of positive real numbers, and a→0. Prove there exists a positive, non-increasing sequence b such that b→0 but (bk/ak)→∞.


	Exercise 6.3.11. (H). Assume b>0, and define a sequence (bk)k=0∞ recursively by b0=b, and bk+1=b⋅bk.. Prove (bk) converges, and find the limit.


	Exercise 6.3.12. State and prove theorems asserting:

∞+∞=∞,−∞+(−∞)=−∞,±∞⋅∞=±∞.






6.4 Subsequences, Condensing Sequences

Suppose (ak) is a real sequence. By selecting infinitely many terms in the same order, or “taking a subsequence,” we can sometimes ensure “better” behavior, such as selecting a convergent subsequence from an arbitrary sequence. Separately, it is desirable to have a convergence criterion that refers only to the sequence itself, not to the limit. This section develops these tools.Page 132


Definition 6.4.1. An index sequence is a strictly increasing sequence ν (nu) of natural numbers; that is, ν(k)∈N and ν(k)<ν(k+1) for all k.



Lemma 6.4.2. ⏎ If ν is an index sequence, then k≤ν(k) for all k. If the inequality is strict for some k0, then the inequality is strict for all larger k.

Proof. Immediate by mathematical induction. □



Definition 6.4.3. Assume a is a real sequence and ν an index sequence. The sequence b=a∘ν defined by bk=aν(k) is called a subsequence of a.



Remark 6.4.4. In words, a subsequence of (an) is a sequence obtained by selecting an infinite number of terms aν(0), aν(1), …, aν(k), …, in their original order, namely, subject to ν(0)<ν(1)<ν(2)<⋯<ν(k)<…. ⋄



Example 6.4.5. The subsequence (a2k), for which we take ν(k)=2k, consists of the even terms of (an). The subsequence (a2k+1), taking ν(k)=2k+1, consists of the odd terms of (an). ♢



Example 6.4.6. Assume (an)n=0∞ is a real sequence. For each N in N, the subsequence (an)n=N∞=(aN+k)k=0∞ is a tail of (an), obtained by discarding the head (aj)j=0N−1. Here ν(k)=N+k. ♢



Remark 6.4.7. Convergence of a sequence is determined solely by convergence of an arbitrary tail; intuitively, prepending or omitting finitely many terms does not change the convergence or divergence of a sequence. ⋄



Remark 6.4.8. If some tail of a sequence has a property P, we say the original sequence is “eventually P.” Terms such as “eventually non-decreasing” have already been introduced. Similarly, we might say a sequence is “eventually positive,” “eventually less than 1 in absolute value,” or “eventually constant.”

Conditions such as “eventually bounded” or “eventually convergent” are syntactically well-formed, but convey no distinction: a tail is not bounded, unbounded, convergent, or divergent unless the original sequence already possesses the same property. ⋄



Lemma 6.4.9. ⏎ Assume (an) is a real sequence and (an)→a∞. If (bk)=(aν(k)) is an arbitrary subsequence, then (bk)→a∞.

Proof. Fix ε arbitrarily, and pick N such that if n≥N, then |an−a∞|<ε. If k≥N, then ν(k)≥N by Lemma 6.4.2, so |bk−a∞|=|aν(k)−a∞|<ε. □



Definition 6.4.10. Assume a is a real sequence. We say an index n is a vista of a if m>n implies am≤an.



Remark 6.4.11. Intuitively, a vista is a location n from which, standing at height an and looking to the right, we can see all the way to infinity. ⋄Page 133



Example 6.4.12. ⏎ If an=(−1)n4/(4+n), then every even index is a vista, Figure 6.2. (Arrows indicate selected unobstructed lines of sight.) ♢


[image: A sequence of points plotted over the integers from zero to twenty on the horizontal axis. The vertical values of the sequence alternate up and down, forming a zigzag pattern. Initially, the oscillations are wide but gradually narrow as the sequence progresses, creating a visually converging trend. Four horizontal arrows are drawn above the sequence, each beginning at different indices and pointing rightward.]
Figure 6.2 Vistas of the sequence in Example 6.4.12. ⏎




Example 6.4.13. A sequence a is non-increasing if and only if every natural number is a vista of a.

If a is non-decreasing, then a has no vistas.

If a is unbounded above, then a has no vistas. ♢



Proposition 6.4.14. ⏎ Every real sequence has a monotone subsequence.

Proof. We consider two cases: The sequence a has infinitely many vistas, or only finitely many. In each case, we construct a monotone subsequence recursively.

(Infinitely many vistas). Let ν(0) be a vista. Now assume inductively that we have constructed a finite increasing sequence (ν(k))k=0m of vistas. Since a has infinitely many vistas, there exists a vista ν(m+1) larger than ν(m). The subsequence (aν(k)) is non-increasing: By definition of a vista, aν(k+1)≤aν(k) for all k.

(Finitely many vistas). There is an index ν(0) greater than every vista. Now assume inductively that we have constructed a finite increasing sequence (ν(k))k=0m such that if 0≤k<m, then aν(k)<aν(k+1). Since ν(m) is not a vista, there exists an index ν(m+1) greater than ν(m) such that aν(m)<aν(m+1). The subsequence (aν(k)) is strictly increasing by construction. □



Theorem 6.4.15. (Convergent subsequence theorem). ⏎ Every bounded real sequence has a convergent subsequence.

Proof. If a is a bounded sequence, then by Proposition 6.4.14, there exists a monotone subsequence (aν(k)). But a bounded, monotone sequence converges by Proposition 6.3.5. □



Condensing Sequences

Convergence of a sequence makes reference to a limit, which need not be a term of the sequence. The “condensing criterion” depends only on the sequence itself, and therefore provides a useful convergence-like condition when a limit is not known to exist.Page 134


Definition 6.4.16. A real sequence a is condensing if the following condition holds:


For every ε,

there exists an index N such that

if k and k′≥N, then |ak′−ak|<ε.





Remark 6.4.17. In practice, we often write k′=k+m. The “condensing predicate” becomes “If k≥N and m>0, then |ak+m−ak|<ε.” ⋄



Proposition 6.4.18. ⏎ If (ak) is a real sequence, then (ak) converges to some real number a∞ if and only if (ak) is condensing.

Proof. (Convergent implies condensing). Assume (ak)→a∞, and fix ε arbitrarily. There exists an index N such that if k≥N, then |ak−a∞|<ε/2. If k and k′≥N, the triangle inequality implies

|ak′−ak|≤|ak′−a∞|+|a∞−ak|<ε/2+ε/2=ε.

Since ε was arbitrary, (ak) is condensing.

(Condensing implies convergent). The proof proceeds as follows. We first prove that every condensing sequence is bounded. By Theorem 6.4.15, a condensing sequence has a convergent subsequence. Finally, we prove that a condensing sequence having a convergent subsequence is itself convergent to the same limit.

Taking ε=1 in the condensing criterion, there is an index N such that if k and k′≥N, then |ak′−ak|<1. In particular, if k≥N, then |ak−aN|<1. Let M=1+max({|aj|}j=0N). Just as in the proof of Proposition 6.1.19 (ii), it follows that |ak|≤M for all k.

Since the condensing sequence (ak) is bounded, Theorem 6.4.15 guarantees there is a subsequence (aν(k)) converging to some real number a∞. To complete the proof, it suffices to show (ak)→a∞.

Fix ε, and use the fact that (aν(k))→a∞ to pick an index N1 such that if k≥N1, then |aν(k)−a∞|<ε/2. Now use the fact (ak) is condensing to pick N greater than N1 such that if k and k′≥N, then |ak−ak′|<ε/2.

Since ν(N)≥N, we have |aν(N)−a∞|<ε/2, and |ak−aν(N)|<ε/2 if k≥N. By the triangle inequality, if k≥N, then

|ak−a∞|≤|ak−aν(N)|+|aν(N)−a∞|<ε/2+ε/2=ε.

Since ε was arbitrary, (ak)→a∞. □



Remark 6.4.19. In Chapter 16, we use the term complete to refer to abstract settings in which every condensing sequence is convergent. Although this represents a formally distinct meaning of the term “complete” than in the axioms for the real number system, in the number line the general sense is logically equivalent to the completeness axiom. ⋄




Page 135Limes Superior and Inferior

Assume (ak) is an arbitrary real sequence. For each index n, consider the set An={ak:k≥n} of terms of the tail (ak)k=n∞, and define

αn=infAn≤supAn=βn.

The sets An are nested inward: An⊇An+1 for each n. By constriction, the sequence (αn) is non-decreasing and the sequence (βn) is non-increasing. Each sequence therefore has an extended real limit.


Definition 6.4.20. With the preceding notation,

lim infak=limninfk≥nak=limnαn

is called the lim inf, or limes inferior, of (ak), and

lim supak=limnsupk≥nak=limnβn

is called the lim sup, or limes superior, of (ak).



Example 6.4.21. ⏎ If ak=(−1)k, then lim infak=−1 and lim supak=1.

If bk=k(−1)k, then lim infak=0 and lim supak=∞. ♢



Proposition 6.4.22. ⏎ Assume (ak) is a real sequence.


	(i)There exists a subsequence of (ak) converging to lim infak, and there exists a subsequence of (ak) converging to lim supak.


	(ii)If (aν(k)) is a convergent subsequence of (ak), then

lim infak≤limaν(k)≤lim supak.


	(iii)The sequence (ak) converges if and only if lim infak=lim supak∈R.




Proof. See Exercise 6.4.14. □



Remark 6.4.23. In words, lim infak is the smallest subsequential limit of (ak), and lim supak is the largest subsequential limit. ⋄





Exercises for Section 6.4


	Exercise 6.4.1. (★) Use Lemma 6.4.9 to prove the sequence ak=(−1)k does not converge.Page 136


	Exercise 6.4.2. Consider the real sequence defined by ak=k(−1)k. Prove lim infak=0 and lim supak=∞. (This is claimed in Example 6.4.21.)


	Exercise 6.4.3. Suppose (ak) is unbounded above. Prove that (ak) has no vistas.


	Exercise 6.4.4. Assume a is a real sequence that is not bounded above. Without using Proposition 6.4.14, prove there exists a strictly increasing subsequence.


	Exercise 6.4.5. (★) Assume a is a sequence of positive real numbers, and a→0.


	(a)Prove that for every natural number m, there exists a natural number n>m such that an<am.


	(b)Without Proposition 6.4.14, prove a has a strictly decreasing subsequence.





	Exercise 6.4.6. (H). Assume a is a sequence that is not eventually constant.


	(a)If a is non-increasing, prove a has a strictly decreasing subsequence.


	(b)Prove a has a strictly monotone subsequence.





	Exercise 6.4.7. (★) Assume α is an arbitrary real number.


	(a)Prove there exists a rational sequence converging to α.


	(b)Prove there exists a set of rational numbers whose supremum is α.





	Exercise 6.4.8. Let (ak)k=0∞ be an enumeration of the rationals: For every rational number r, there exists a unique k such that ak=r. Prove that if α is an arbitrary real number, there exists a subsequence (aν(k)) converging to α. (This strengthens Exercise 6.4.7 (a) by obtaining the same conclusion after fixing an ordering of Q.)


	Exercise 6.4.9. Assume (ak)k=0∞ is an integer sequence such that ak positive if k≥1, and recursively define integer sequences (pn)n=−2∞ and (qn)n=−2∞ by

p−2=0,p−1=1,pn=anpn−1+pn−2,q−2=1,q−1=0,qn=anqn−1+qn−2,

see Proposition 3.1.23.


	(a)Prove that if n≥0, then

pn+1qn+1−pnqn=(−1)nqnqn+1.

Conclude that

pnqn=[a0,a1,a2,…,an]=a0+∑k=0n−1(−1)kqkqk+1.


	(b)Page 137Prove the rational sequence (pn/qn) converges.


	(c)If x is irrational, recursively define sequences (ak)k∈N and (xk)k∈N by x0=x, a0=⌊x0⌋, xk+1=1/(xk−ak), and ak+1=⌊xk+1⌋.

Prove ak is a positive integer if k≥1, and the resulting sequence (pn/qn) converges to x.


	(d)In the notation of (c), prove

|x−pnqn|<1qnqn+1,for every natural number n,

and if n≥2, then pn/qn is the point of Qqn closest to x.





	Exercise 6.4.10. Express the following as continued fractions, see Exercise 6.4.9 (c), and calculate the first six rational approximations.


	(a)2.


	(b)12(1+5).


	(c)3.





	Exercise 6.4.11. Write a general element x of the plane R2 in rectangular coordinates as (x0,x1). Define three functions on ordered pairs from R2:

d1(x,y)=|y0−x0|+|y1−x1|;d2(x,y)=|y0−x0|2+|y1−x1|2;d∞(x,y)=max(|y0−x0|,|y1−x1|).

Prove that d∞(x,y)≤d2(x,y)≤d1(x,y)≤2d∞(x,y) for all x and y.


	Exercise 6.4.12. (H). If (xk) and (yk) are real sequences, we say (xk,yk) is the plane sequence with coordinates (xk) and (yk).


	(a)Give formal ε-N definitions of convergence and condensing for a plane sequence.


	(b)Your conditions in part (a) depend on a choice of distance function, or metric. To be precise, we should speak a priori of “convergence with respect to d2” rather than simply “convergence.” Happily, this is not necessary if we define “convergence” using the distance functions of Exercise 6.4.11: Prove that a plane sequence converges with respect to d2 if and only if it converges with respect to d∞, if and only if it converges with respect to d1, if and only if both (xk) and (yk) converge as real sequences. Do analogous conclusions hold for condensing plane sequences?


	(c)Prove that a plane sequence converges if and only if it is condensing.Page 138





	Exercise 6.4.13. In this question, assume S and C are functions such that C2+S2=1. Consider the plane sequence xk=(C(k),S(k)), and assume (in the notation of Exercise 6.4.11) that d2(xk,xk+1), the squared distance between xk and xk+1, takes the same positive value for every integer k.


	(a)Does (xk) converge?


	(b)Does each component of (xk) have a convergent subsequence?


	(c)Does (xk) have a convergent subsequence?





	Exercise 6.4.14. Prove Proposition 6.4.22.
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Some of the most useful sequences in mathematics arise by summing the terms of another sequence of numbers. On one hand, summing merely reformulates abstract definitions. On the other, summing provides a distinct and useful technical and psychological viewpoint.


7.1 Summability


Definition 7.1.1. Assume (ak)k=0∞ is a real sequence, and (sn)n=0∞ is the sequence of partial sums. We say (ak) is summable if (sn) converges to a real number s, and we write

∑k=0∞ak=limn→∞∑k=0n−1ak=limn→∞sn=s.

The expression on the left is called the infinite series with terms ak, and is said to converge to s.

If (sn) does not converge, we say the infinite series ∑kak diverges.



Remark 7.1.2. Think of a real sequence as an infinite list of credits (non-negative terms) and debits (negative terms). The partial sums are the “running totals” of the terms taken in a specified order. The sum of a series, if it exists, is the net value in the limit, when “all the terms have been added” in order. ⋄



Proposition 7.1.3. ⏎ Assume (ak) and (bk) are summable real sequences, and c∈R. The sequences (ak+bk) and (cak) are summable, and

∑k=0∞(ak+bk)=∑k=0∞ak+∑k=0∞bk,∑k=0∞(cak)=c∑k=0∞ak.

Proof. If (sn) and (tn) denote the respective sequences of partial sums of (ak) and (bk), then (sn+tn) and (csn) are the respective partial sums of (ak+bk) and (cak). The proposition follows immediately from Proposition 6.2.1. □Page 140



Proposition 7.1.4. If (ak) is a real sequence, then for all natural numbers N and m, we have:

sN+m−sN=∑k=NN+m−1ak,and therefore|sN+m−sN|≤∑k=NN+m−1|ak|.



Proposition 7.1.5. ⏎ A real sequence (ak) is summable if and only if the sequence of partial sums is condensing. In particular, if (ak) is summable, then (ak)→0.

Proof. The first assertion is immediate from Proposition 6.4.18. For the second, fix ε arbitrarily and choose N such that if k and k′≥N, then |sk′−sk|<ε. In particular, if k≥N, then |ak|=|sk+1−sk|<ε. This means (ak)→0. □



Definition 7.1.6. Assume a and r are real numbers. The infinite series

∑k=0∞ark=a+ar+ar2+ar3+⋯

is called the geometric series with first term a and ratio r.



Theorem 7.1.7. (The geometric series formula). ⏎ If a≠0, the geometric series with first term a and ratio r converges if and only if |r|<1, and the sum is

∑k=0∞ark=a1−r.

Proof. Assume a≠0. If |r|≥1, then |ark|=|a||r|k does not converge to 0, see Example 6.3.11, so the geometric series diverges.

Inversely, suppose −1<r<1. By Proposition 3.3.8, the partial sums are

sn=∑k=0n−1ark=a1−rn1−r.

By Example 6.1.17, (rn)→0 since −1<r<1. Proposition 6.2.1 implies

∑k=0∞ark=limn→∞a(1−rn)1−r=a(1−limnrn)1−r=a1−r.◻

□



Example 7.1.8. ⏎ The terms of the harmonic series decrease to 0,

∑k=1∞1k=1+12+13+⋯+1n+⋯.

Nonetheless, the harmonic series diverges, see also Exercise 4.3.10. To prove this, it suffices to show the partial sums, depicted in Figure 7.1, are unbounded.

[image: A number line shows points s subscript 1 through s subscript 9 spaced by decreasing fractions from one half to one ninth. The number line is labeled from s subscript 1 through s subscript 9, with their values indicated as one half, one third, one fourth, one fifth, up to one ninth. The spacing between ticks becomes progressively smaller. A point labeled one is placed before all the s subscript n points.]
Figure 7.1 Partial sums of the harmonic series. ⏎



Page 141The first two terms add to 1+(1/2). The next two terms, 1/3 and 1/4, are each no smaller than 1/4, so their sum is greater than 2⋅1/4=1/2.

The next four terms, 1/5, 1/6, 1/7, and 1/8, are each at least 1/8, so their sum is greater than 4⋅1/8=1/2.

Similarly, the next eight terms, 1/9, 1/10, …, 1/16, sum to at least 8⋅1/16=1/2, the sixteen terms after that sum to at least 1/2, and so on ad infinitum. More formally, if m is a positive integer, then

∑k=2m−1+12m1k≥∑k=2m−1+12m12m=2m−12m=12

since there are 2m−1 terms, each at least 2−m. Consequently,

∑k=12n1k=1+∑m=1n[∑k=2m−1+12m1k]≥1+∑m=1n12=1+n2.

The sequence of partial sums has an unbounded subsequence, hence is itself unbounded. ♢



Lemma 7.1.9. ⏎ Assume (ak) and (bk) are real sequences, with respective partial sums (sn) and (tn). If (bk) is summable, and if there exists a natural number N0 such that

|sm′−sm|≤|tm′−tm|whenever m′>m≥N0,

then (ak) is summable.

Proof. If (bk) is summable, namely, if the sequence (tn) of partial sums converges, then (tn) is condensing: For every ε, there exists an N greater than N0 such that if m′>m≥N, then |tm′−tm|<ε. By the hypotheses of the lemma, if m′>m≥N, then |sm′−sm|<ε as well. This implies the sequence (sn) is condensing, hence convergent by Proposition 6.4.18. □



Theorem 7.1.10. (Comparison). Assume (ak) and (bk) are real sequences, and |ak|≤bk eventually. If (bk) is summable, then (ak) is summable. Contrapositively, if (ak) is not summable, then (bk) is not summable.

Proof. Let (sn) and (tn) denote the sequences of partial sums of (ak) and (bk) respectively. By hypothesis, there exists an index N0 such that |ak|≤bk for Page 142all k such that k≥N0. If n≥N0 and m>0, then

|sn+m−sn|=|∑k=nn+m−1ak|≤∑k=nn+m−1|ak|≤∑k=nn+m−1bk=|tn+m−tn|.

The theorem follows from Lemma 7.1.9. □




Exercises for Section 7.1


	Exercise 7.1.1. (★) Determine whether the following converge. If so, find the sum.


	(a)∑k=0∞4[−35]k.


	(b)∑k=0∞0.01[75]k.


	(c)∑k=0∞0⋅1000k.





	Exercise 7.1.2. (★) Write the repeating decimal 0.12345345― as a fraction. Suggestion: Multiply by 1000 and subtract.


	Exercise 7.1.3. Prove that every repeating decimal represents a rational number.


	Exercise 7.1.4. (H). Assume (bk)k∈N is a convergent sequence. Define the sequence (ak) by ak=bk+1−bk. Prove (ak)k=0∞ is summable, and find the sum. (The series ∑kak is said to be telescoping.)


	Exercise 7.1.5. Each part refers to the series ∑k=1∞1k(k+1).

Calculate the first four partial sums, and evaluate the series with proof.


	Exercise 7.1.6. (H). If a is a positive integer, evaluate the series ∑k=1∞ak(k+a).


	Exercise 7.1.7. Prove that if 1<|x|, then −∑k=1∞1xk+1=11−x.


	Exercise 7.1.8. (★) Determine where each series converges, and find the sums as functions of x.


	(a)∑k=0∞x2k;


	(b)∑k=0∞(12+x2)k;


	(c)∑k=0∞(1−x2)k.





	Exercise 7.1.9. Assume (ak) is a non-increasing positive sequence. Prove the exponential sampling test: ∑kak converges if and only if ∑k2ka2k converges. Suggestion: Modify the idea in Example 7.1.8.


	Exercise 7.1.10. Page 143Assume p is a natural number. Use the exponential sampling test, Exercise 7.1.9, to prove ∑kk−p converges if and only if p>1.


	Exercise 7.1.11. Assume A={ak}k=1∞ is a countable set of real numbers. Prove that for every ε, there exists a countable collection of open intervals {Ok}k=1∞ such that A⊆⋃kOk and the sum of the lengths of the Ok is less than ε.


	Exercise 7.1.12. Assume (ak)k=0∞ is a real sequence. For natural numbers m and n, define

tm=∑k=0m−1ak,s0=0,sn=1n∑m=0n−1tm, n≥1.

If (sn)→s for some real s, we say (ak) is mean summable (“mean” in the sense of “average”), and we call s the mean sum.


	(a)Prove that if (ak) is summable, then (ak) is mean summable, and the mean sum is the ordinary sum.


	(b)Prove that if (ak) is eventually non-negative, then (ak) is mean summable if and only if (ak) is summable.


	(c)Show the alternating sequence ak=(−1)k is mean summable, and find the mean sum.





	Exercise 7.1.13. (H). Assume (ak)k=1∞ is a “digit sequence,” namely, a sequence all of whose terms are integers between 0 and 9 inclusive.


	(a)Prove that the series

∑k=1∞ak10k=a110+a2100+a31000+⋯=0.a1a2a3…

converges to a real limit between 0 and 1.


	(b)Prove the digit sequences (4,9,9,9,…) and (5,0,0,…) give the same sum in part (a).


	(c)(H) Under what conditions do two distinct digit sequences define the same sum in part (a)?





	Exercise 7.1.14. (A). Define f:P(Z+)→R by f(A)=∑k∈A2−k.

Find the image of f. Either prove f is injective or characterize distinct subsets on which f takes the same value.Page 144


	Exercise 7.1.15. Assume (ak)k=1∞ is a binary sequence, all of whose terms are either 0 or 1, and (bk)k=1∞ a sequence all of whose terms are either 0 or 2.


	(a)Prove that the series

∑k=1∞ak2k=a12+a222+a323+⋯

converges to an element of the unit interval [0,1]. Conversely, show that every element of [0,1] has a binary representation of this form.


	(b)Prove that the series

x=∑k=1∞bk3k=b13+b232+b333+⋯

converges to an element of the ternary set K. Conversely, show that every element of K can be expressed uniquely in this form.

Prove x is an endpoint of the set Kn if and only if (bk) is eventually constant.


	(c)Construct a surjection from K to [0,1].









7.2 Absolute Summability


Definition 7.2.1. A real sequence (ak) is absolutely summable if the sequence (|ak|) is summable.



Proposition 7.2.2. If a real sequence (ak) is absolutely summable, then it is summable, and

|∑k=0∞ak|≤∑k=0∞|ak|.

Proof. Let (sn) and (tn) denote the sequences of partial sums of (ak) and (|ak|) respectively. By the triangle inequality,

|sn+m−sn|=|∑k=nn+m−1ak|≤∑k=nn+m−1|ak|=|tn+m−tn|

for all natural numbers n and m. If (tn) converges, then (sn) converges by Lemma 7.1.9. Since

|∑k=0n−1ak|≤∑k=0n−1|ak|if n≥0

the inequality in the proposition holds by Proposition 6.3.7. □



Remark 7.2.3. Page 145Alternatively, an infinite series ∑kak is absolutely convergent if ∑k|ak| is convergent. ⋄



Definition 7.2.4. If (ak) is a real sequence, the real sequences (ak+) and (ak−) defined by

ak+=max(ak,0)=|ak|+ak2,ak−=−min(ak,0)=|ak|−ak2,

are called the sequence of positive terms of (ak) and the sequence of negative terms of (ak), respectively.



Example 7.2.5. If ak=(−1/2)k, then

k=012345…ak=1−1/21/4−1/81/16−1/32…|ak|=11/21/41/81/161/32…ak+=101/401/160…ak−=01/201/801/32…

♢



Remark 7.2.6. Each sequence (ak±) is non-negative, hence summable if and only if its sequence of partial sums is bounded, Proposition 6.3.5 (ii). Further,

|ak|=ak++ak−,ak=ak+−ak−,

and 0≤ak±≤|ak| for all k. ⋄



Proposition 7.2.7. Assume (ak) is a real sequence.


	(i)(ak) is absolutely summable if and only if (ak+) and (ak−) are summable.


	(ii)If (ak) is summable but not absolutely, (ak+) and (ak−) are non-summable.




Proof.


	(i).If (ak) is absolutely summable, namely, if (|ak|) is summable, then each sequence (ak±) is summable by comparison with (|ak|).

Conversely, if (ak+) and (ak−) are both summable, then (|ak|)=(ak++ak−) is summable by Proposition 7.1.3.


	(ii).By hypothesis, (ak) is summable. Contrapositively, if either of (ak±) is summable, then (|ak|) is as well by Proposition 7.1.3, since |ak|=2ak±∓ak.

Since (|ak|) is not summable, both of (ak±) are non-summable. □
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Theorem 7.2.8. (The ratio test). Assume (ak) is a real sequence. If the limiting ratio

ρ=limk→∞|ak+1ak|

exists, and if ρ<1, then (ak) is absolutely summable.

Proof. Put r=(1+ρ)/2, so that ρ<r<1, and put ε=r−ρ, Figure 7.2. Since |ak+1/ak|→ρ, there exists an index N such that if k≥N, then

|ak+1ak|<ρ+ε=r<1.

[image: A number line marks rho minus epsilon, rho, and rho plus epsilon between zero and one to show ratio bounds.]
Figure 7.2 Bounding ratios in the ratio test. ⏎



Rearranging, |ak+1|<|ak|r if k≥N. By induction on m,

|aN+m|<|aN|rmfor all positive m.

Consequently,

∑k=N∞|ak|=∑m=0∞|aN+m|≤|aN|∑m=0∞rm.

This upper bound is a convergent geometric series, so (|ak|) is summable by comparison. □



Corollary 7.2.9. ⏎ Let r be a real number such that |r|<1. For each positive integer m, the sequence (kmrk)k∈N is absolutely summable. Consequently, (kmrk) converges to 0, and in particular is bounded.

Proof. Setting ak=kmrk and using Example 6.2.4, we have

limk→∞|(k+1)mrk+1kmrk|=limk→∞(1+(1/k))m|r|=|r|<1,

so (kmrk) is absolutely summable by the ratio test. The remaining assertions are immediate. □




Page 147Products of Series


Definition 7.2.10. If (aj)j=0∞ and (bk)k=0∞ are summable sequences, their product is the infinite series

∑k=0∞∑j=0kajbk−j=a0b0+(a0b1+a1b0)+(a0b2+a1b1+a2b0)+⋯.



Proposition 7.2.11. If (aj)j=0∞ is absolutely summable with sum A and (bk)k=0∞ is absolutely summable with sum B, and if (cm) is an arbitrary enumeration of the set {ajbk:j∈N, k∈N}, then (cm) is absolutely summable, and

∑m=0∞cm=[∑j=0∞aj][∑k=0∞bk].

Proof. For convenience, introduce

An=∑j=0n−1aj,Bn=∑k=0n−1bk,Cn=∑m=0n−1cm,An=∑j=0n−1|aj|,Bn=∑k=0n−1|bk|.

Finally, put A=limnAn, B=limnBn, A=limnAn, and B=limnBn.

The sequence AnBn converges to AB by Proposition 6.2.1 (ii). Similarly, AnBn converges to AB.

Fix ε arbitrarily, and choose N1 such that if n≥N1, then

|AB−AnBn|<ε/2and|AB−AnBn|<ε/2.

Now choose N greater than N1, so every product ajbk such that j, k<N1 is among the terms cm such that 0≤m≤N. If n≥N, then

|Cn−AnBn|≤∑j or k>L|aj||bk|=|AB−AnBn|<ε/2.

Consequently, if n≥N, then

|AB−Cn|≤|AB−AnBn|+|AnBn−Cn|<ε.◻

□



Remark 7.2.12. The same conclusion holds if only one sequence is absolutely summable, though the estimates require more care. ⋄





Page 148Exercises for Section 7.2


	Exercise 7.2.1. If (ak) is absolutely summable, prove the sequence (ak2) is absolutely summable.


	Exercise 7.2.2. (★) For which natural numbers p does

∑k=0∞(−1)k(k+1)p

converge? Converge absolutely?


	Exercise 7.2.3. For which real x does ∑k=0∞(x−5)k(k+1)⋅3k converge absolutely?


	Exercise 7.2.4. Recall that if |x|<1, then

11−x=∑k=0∞xk=1+x+x2+x3+x4+⋯.


	(a)Prove that 1(1−x)2=∑k=0∞(k+1)xk if |x|<1.


	(b)Find a series representation of 1(1−x)3 if |x|<1.





	Exercise 7.2.5. Suppose r and s are positive real numbers less than 1, and

∑k=0∞rk=∑k=0∞(k+1)sk.

Find r in terms of s. Hint: Use Exercise 7.2.4.


	Exercise 7.2.6. (A). If (ai)i=0∞, (bj)j=0∞, and (ck)k=0∞ are real sequences such that

[∑i=0∞aixii!][∑j=0∞bjxjj!]=[∑k=0∞ckxkk!],

find a formula for ck in terms of (ai) and (bj).
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Alternating Series


Definition 7.3.1. If (ak) is a sequence of positive terms, an infinite series ±∑k(−1)kak is said to be alternating.



Theorem 7.3.2. (The alternating series test). ⏎ If (ak) is a non-increasing positive real sequence, and if (ak)→0, then the alternating series ∑k(−1)kak converges, and

|an−an+1|≤|∑k=n∞(−1)kak|≤|an|.

Proof. Multiplying by −1 and re-indexing if necessary, we may assume without loss of generality that the series starts with a0. The partial sums

sn=∑k=0n−1(−1)kak

are shown qualitatively in Figure 7.3.

[image: An alternating series with partial sums labeled s 0 through s 3 and terms a 0 through a 3, indicating sign and direction of contribution.]
Long Description for Figure 7.3The visual presents a horizontal number line marked with the value 0 at the far left and four points labelled s 1, s 3, s 2, and s 0 from left to right along the line. A curved arrow from 0 to s 0 above the line is labeled a 0 greater than 0. From s 0, a curved arrow below the line returns to s 1, labelled a 1 less than 0. From s 1, another upward arrow reaches s 2, labeled a 2 greater than 0. From s 2, a curved arrow below points to s 3, labeled a 3 less than 0. The point between s 1 and s 2 is marked with l, representing the series limit.

Figure 7.3 Partial sums of an alternating series. ⏎



If n is an arbitrary odd index, then we have sn+2=sn−an+an+1≤sn since an+1≤an. With the same n, sn+1=sn−1+an−1−an≥sn−1. Writing n=2m+1 and combining these inequalities,

s2m≤s2m+2≤s2m+3≤s2m+1

for every m. Consequently, the even partial sums form a non-decreasing sequence that is bounded above by every odd partial sum, and is therefore convergent to a real number ℓ−=supms2m. Similarly, the odd partial sums form a non-increasing sequence that is bounded below by every even partial sum, and is therefore convergent to a real number ℓ+=infms2m+1. Since (ak)→0 and

ℓ+−ℓ−≤s2m−1−s2m=a2m

for all m, we have ℓ+=ℓ−; that is, the sequence of partial sums converges to some real number ℓ. The bounds are Exercise 7.3.3. □



Example 7.3.3. Page 150The alternating harmonic series

∑k=0∞(−1)kk+1=1−12+13−14+15−16+17−18+19+⋯

converges to a real number between s1=1/2 and s2=5/6. ♢




Reordering

When we add a finite list of real numbers, we may order the summands any way we like without changing the sum. The same turns out to be true for absolutely summable sequences, Theorem 7.3.8 (i). For summable sequences that are not absolutely summable, however, reordering the terms can change the sum to an arbitrary real number, or can result in a divergent series.


Definition 7.3.4. A reordering of N is a bijection ν:N→N.

Assume (ak)k=0∞ is a sequence. A sequence (bk)k=0∞ is a reordering if there exists a reordering ν of N such that bk=aν(k). In this situation, we say the series ∑kbk is a reordering of ∑kak.



Remark 7.3.5. If m=ν(k), it will be convenient to write k=ν−1(m). ⋄



Remark 7.3.6. Intuitively, a reordering of a series is “the running total of the same summands, but in a different order.” ⋄



Example 7.3.7. Consider the reordering of the alternating harmonic series in which each positive term is followed by two negative terms:

(1−12)−14+(13−16)−18+(15−110)−112+⋯.

The parentheses emphasize a subsequence of the partial sums:

12−14+16−18+110−112+⋯,

formally one-half the alternating harmonic series. Reordering a convergent series can change the sum. ♢



Theorem 7.3.8. (Reordering). ⏎ Assume (ak)k=0∞ is a summable sequence.


	Page 151(i)If (ak) is absolutely summable, then every reordering is summable and has the same sum.


	(ii)If (ak) is summable but not absolutely, then for every real number S, there exists a reordering of (ak) that sums to S.




Proof.


	(i).Assume (aj) is absolutely summable, and (bk)=(aν(k)) is a reordering. Fix ε arbitrarily, and use absolute summability to pick an index n such that

∑j=n∞|aj|<ε.

Now pick N>max{ν−1(j)}j=0n−1, so that if k≥N, then j=ν(k)≥n. Every term of (bk)k=N∞ is a term of (aj)j=n∞, so

∑k=N∞|bk|≤∑j=n∞|aj|<ε.

This proves (bk) is absolutely summable. To evaluate the sum, note that

|∑j=0∞aj−∑k=0N−1bk|≤|∑j=n∞aj|≤∑j=n∞|aj|<ε.


	(ii).Assume without loss of generality that ak≠0 for all k. Since (ak) is summable but not absolutely, the sequences (ak±) are separately non-summable: Each sums to ∞. Since (ak) itself is summable, however, (ak±)→0.

Suppose S≥0. Re-index each of (ak±) to remove all 0s from each sequence. Add terms of (ak+) sequentially until the partial sum exceeds S, then subtract terms of (ak−) sequentially until the partial sum is smaller than S. Perform this algorithm iteratively.

If ak+ is a term that causes the partial sum sn to exceed s, then |s−sn|≤ak+, and similarly if ak− is a term that causes the partial sum to be strictly smaller than s. Since limnsupk≥n|ak|=0, the partial sums are a condensing sequence converging to s.

If S<0, successively subtract positive terms of (ak−) until the partial sum is smaller than S, the proceed as above. □








Exercises for Section 7.3


	Exercise 7.3.1. (★) Give bounds on |∑k=n∞(−1)kk2| that decrease to 0.


	Exercise 7.3.2. Each part refers to the series

∑k=1∞ak=∑k=1∞(−1)k−1k.


	(a)Write out the sixth partial sum.


	(b)Page 152Prove this series converges. Is the convergence absolute?


	(c)Using the error bound for alternating series, how many terms suffice so that the partial sum approximates the sum to four decimal places, namely, with an error smaller than 0.5×10−4?


	(d)Does ∑kak2 converge?





	Exercise 7.3.3. (★) In Theorem 7.3.2, establish the tail estimates

|an−an+1|≤|∑k=n∞(−1)kak|≤|an|.


	Exercise 7.3.4. (★) For each real x, define

C(x)=∑k=0∞(−1)kx2k(2k)!=1−x22!+x44!−x66!+⋯.


	(a)Prove the series converges absolutely for all real x.


	(b)If Cn denotes the partial sum over 0≤k<n, what is the smallest n that suffices to guarantee |C(x)−Cn(x)|<0.5×10−6 for all x in [−2,2]?





	Exercise 7.3.5. For each real x, define

S(x)=∑k=0∞(−1)kx2k+1(2k+1)!=x−x33!+x55!−x77!+⋯.


	(a)Prove the series converges absolutely for all real x.


	(b)If Sn denotes the partial sum over 0≤k<n, what is the smallest n that suffices to guarantee |S(x)−Sn(x)|<0.5×10−6 for all x in [−1,1]?


	(c)What is the smallest n that suffices to guarantee |S(x)−Sn(x)|<0.5×10−6 for all x in [−1/2,1/2]?





	Exercise 7.3.6. Assume (ak) is summable but not absolutely. Prove that some reordering of ∑kak diverges to ∞.






7.4 Power Series

A polynomial function in one variable depends on a finite sequence of coefficients, and is evaluated using only addition and multiplication. Power series are a generalization where we have a sequence of coefficients, and view evaluation as summing terms of successively higher degree.Page 153


Definition 7.4.1. Assume (ak)k=0∞ is a real sequence and x0 is real. The infinite series

∑k=0∞ak(x−x0)k=a0+a1(x−x0)+a2(x−x0)2+a3(x−x0)3+⋯

is called the power series with center x0 and coefficients (ak). A power series is called a germ if it converges for some x≠x0.



Remark 7.4.2. The name germ is short for germ of a real-analytic function, and refers to “seed,” not “pathogen.” No other types of germ appear in this book, so the nickname suffices.

Let I denote the set of real x at which a power series converges. When x=x0, every term (except possibly the 0th) vanishes, and the series converges; that is, x0∈I. As we will show in Proposition 7.4.9, if the power series converges at some real number x not equal to x0, then the series converges absolutely at each point of the open ball with center x0 and radius |x−x0|; that is, I comprises either a single point or an interval centered at x0 (possibly closed or half-open), called the interval of convergence of the power series. If I has positive length, then the germ defines a real-valued function f in I. ⋄



Example 7.4.3. ⏎ By the geometric series formula, Theorem 7.1.7

∑k=0∞xk=1+x+x2+x3+⋯

converges if and only if |x|<1. The interval of convergence is I=(−1,1), and

f(x)=∑k=0∞xk=11−x.

Replacing x by −x gives the power series representation

11+x=11−(−x)=∑k=0∞(−x)k=∑k=0∞(−1)kxk

on (−1,1). ♢



Example 7.4.4. The algebraic identity

11−x2=12[11−x+11+x],x≠±1,

may be checked by putting the right-hand side over a common denominator. If −1<x<1, however, this identity has a remarkable interpretation in terms of Page 154geometric series:

11−x=1+x+x2+x3+x4+x5+x6+x7+⋯,11+x=1−x+x2−x3+x4−x5+x6−x7+⋯,11−x2=1+x2+x4+x6+⋯;

the third line is half the term-by-term sum of the first two lines.

Generally, convergent power series can be added, subtracted, and multiplied by constants “just as if they were polynomials,” because of Proposition 7.1.3. ♢



Example 7.4.5. ⏎ Assume c≠0. By Example 7.4.3,

1c−x=1c(1−(x/c))=1c∑k=0∞(xc)k=∑k=0∞xkck+1

provided |x/c|<1, namely, on the interval I=(−|c|,|c|). Similarly,

1c+x=1c∑k=0∞(−1)k(xc)k=∑k=0∞(−1)kck+1xkon I=(−|c|,|c|).

♢



Definition 7.4.6. Assume I is a non-empty open set of real numbers. A function f:I→R is real-analytic if for every x0 in I, there is a positive R and a germ on BR(x0) representing f, namely, there exist coefficients (ak)k=0∞ such that

f(x)=∑k=0∞ak(x−x0)kif |x−x0|<R.



Example 7.4.7. The reciprocal function f(x)=1/x is real-analytic on R∖{0}. Fix a non-zero x0 arbitrarily. By Example 7.4.5 with c=x0,

1x=1x0+(x−x0)=1x0∑k=0∞(−1)k(x−x0x0)k

provided |(x−x0)/x0|<1, namely in the open ball B|x0|(x0). ♢



Remark 7.4.8. ⏎ If

g(x)=∑k=0∞ak(x−x0)k=a0+a1(x−x0)+a2(x−x0)2+⋯

is a germ in BR(x0), then f(x)=g(x0+x) is a germ in BR(0)=(−R,R):

f(x)=∑k=0∞akxk=a0+a1x+a2x2+a3x3+⋯.

In proving theorems about germs, we may usually assume the center to be 0, gaining notational simplicity without loss of generality. ⋄



Proposition 7.4.9. ⏎ Page 155Assume (ak)k=0∞ is a real sequence, x0 a real number. If the series ∑kakRk converges for some non-zero R, then the power series

∑k=0∞ak(x−x0)k

converges absolutely for every x such that |x−x0|<|R|. That is, the interval of convergence I contains the open ball B|R|(x0)=x0+(−|R|,|R|).

Proof. By hypothesis, the sequence (akRk) is summable, hence convergent to 0 by Proposition 7.1.5. Proposition 6.1.19 implies (akRk) is bounded; there exists a real number M such that

|akRk|=|ak|⋅|R|k≤Mfor all k.

By Remark 7.4.8, we may assume x0=0. Let x be an arbitrary number such that |x|<|R|, and put ρ=|x|/|R|, so that 0≤ρ<1 and |x|=|R|⋅ρ. We have

|akxk|=|ak|⋅|x|k=|ak|⋅|R|k⋅ρk≤Mρk.

Since Mρk is the general term of a convergent geometric series, (|akxk|) is summable by comparison. □



Corollary 7.4.10. ⏎ Assume (ak) is a real sequence and x0 is real. There exists a unique non-negative extended real number R with the following properties: The power series ∑kak(x−x0)k converges absolutely for all real x such that |x−x0|<R, and diverges for all x such that R<|x−x0|.

Proof. Consider the set of real numbers J={xinR:∑k|ak||x|k converges}, and put R=supJ. Since 0∈J, we have 0≤R. Since |−x|=|x| for all real x, the set J is symmetric about the origin.

Assume x is real and |x|<R=supJ. By definition of a supremum, there exists an r in J such that |x|<r. By Proposition 7.4.9, (−r,r)⊆J. Since x in (−R,R) is arbitrary, (−R,R)⊆J.

Conversely, if R<|x|=r, the power series ∑kakxk diverges; if the series converged, Proposition 7.4.9 would imply that (−r,r)⊆J, contrary to the fact that R=supJ. □



Definition 7.4.11. The extended real number R in Corollary 7.4.10 is called the radius of the power series ∑kak(x−x0)k.



Remark 7.4.12. If R=0, the condition |x−x0|<R is empty, and the power series diverges if x≠x0. Similarly, if R=∞, the condition R<|x−x0| is empty, and the series converges absolutely for all real x. The corollary gives no information about convergence if |x−x0|=R. ⋄



Proposition 7.4.13. Page 156A germ on BR(x0) defines a real-analytic function f.

Proof. At issue is whether f(x) can be written as the sum of a convergent power series centered at an arbitrary point of BR(x0). Without loss of generality, assume the germ is centered at 0,

f(x)=∑k=0∞akxkif |x|<R.

This frees up x0 to stand for an arbitrary point of (−R,R). If we write x=(x−x0)+x0, the binomial theorem implies

f(x)=∑k=0∞ak((x−x0)+x0)k=∑k=0∞ak∑j=0k(kj)x0k−j(x−x0)j=∑j=0∞bj(x−x0)j,withbj=∑k=j∞ak(kj)x0k−j.

This series has radius no smaller than r=R−|x0|>0, since if |x−x0|<r, then |x|≤|x−x0|+|x0|<r+|x0|=R. □



Theorem 7.4.14. (The ratio test). ⏎ Assume (ak)k=0∞ is a sequence of coefficients. If

|x−x0|limk→∞|ak+1ak|<1,

namely, the limit exists and is smaller than 1, then the power series

∑k=0∞ak(x−x0)k

converges absolutely at x.

Proof. For each real x, a power series is an ordinary numerical series, with terms bk=ak(x−x0)k. By the ratio test, if |bk+1/bk|→ρ and ρ<1, the series converges absolutely. But by algebra,

limk→∞|bk+1bk|=limk→∞|ak+1(x−x0)k+1ak(x−x0)k|=|x−x0|limk→∞|ak+1ak|.◻

□



Remark 7.4.15. The statement of Theorem 7.4.14 is convenient for many purposes, but the method of proof applies more generally to power series having some coefficients equal to 0. In general, let bk denote the kth term (which is a function of x), and apply the ratio test to the series ∑kbk. ⋄



Example 7.4.16. Page 157The power series

∑k=0∞(−1)kx2k+1(2k+1)!=x−x33!+x55!−x77!+⋯

converges for all real x, or R=∞. Here, bk=(−1)kx2k+1/(2k+1)!,

limk→∞|bk+1bk|=limk→∞|(−1)k+1x2k+3(2k+3)!⋅(2k+1)!(−1)kx2k+1|=limk→∞|x2(2k+1)!(2k+3)!|=limk→∞|x2(2k+3)(2k+2)|=0,

and this is less than 1 for all real x. ♢




Exercises for Section 7.4


	Exercise 7.4.1. Find the set of real x for which the following converge:


	(a)∑k=0∞xkk+1.


	(b)∑k=0∞k2xk.


	(c)∑k=0∞xkk!.


	(d)∑k=0∞k!xk.





	Exercise 7.4.2. Determine the interval of convergence of ∑k=0∞kmxk, m>0.


	Exercise 7.4.3. If x is a real number, define

C(x)=∑k=0∞(−1)kx2k(2k)!=1−x22!+x44!−x66!+x88!−⋯,S(x)=∑k=0∞(−1)kx2k+1(2k+1)!=x−x33!+x55!−x77!+x99!−⋯.

Prove that C(x) and S(x) converge absolutely for all real x.


	Exercise 7.4.4. If n is a natural number, define

Cn(x)=∑k=0n−1(−1)kx2k(2k)!,C(x)=∑k=0∞(−1)kx2k(2k)!,Sn(x)=∑k=0n−1(−1)kx2k+1(2k+1)!,S(x)=∑k=0∞(−1)kx2k+1(2k+1)!.


	(a)If x is real and |x|<2n, prove that

|C(x)−Cn(x)|≤|x|2n(2n)!.


	(b)Page 158Fix a positive r arbitrarily. Prove that for every positive ε, there exists an N such that if n≥N, then |C(x)−Cn(x)|<ε if |x|≤r. State and prove analogous estimates for Sn and S.





	Exercise 7.4.5. (★) The Fibonacci sequence (Fk) is defined recursively by

F0=F1=1,Fn+2=Fn+Fn+1.


	(a)Prove that Fn≤ϕn:=(12(1+5))n for every natural number n.


	(b)Write out the first seven terms of the power series

f(x)=∑k=0∞Fkxk,

and show this series converges absolutely on some open interval containing 0.


	(c)Prove that on the interval in part (b), f(x)=1/(1−x−x2).





	Exercise 7.4.6. If x is a real number and n is a non-negative integer, define

E(x)=∑k=0∞xkk!=1+x+x22!+x33!+x44!+⋯,En(x)=∑k=0n−1xkk!=1+x+x22!+x33!+⋯+xn−1(n−1)!.


	(a)Prove E(x) converges absolutely for all real x, and E(x)E(y)=E(x+y) for all real x and y.


	(b)Prove |E(−1)−En(−1)|≤1/n!.


	(c)Prove E(1)−En(1)=∑k=0∞1(n+k)!≤1(n−1)⋅(n−1)!.


	(d)What n suffices to ensure En(1)=E(1)±0.5×10−6 (six-decimal approximation)?





	Exercise 7.4.7. (H). With notation as in Exercise 7.4.6, prove:


	(a)If q is a positive integer, then q!Eq(1) is an integer.


	(b)For every positive integer q, we have Eq(1)<E(1)<Eq(1)+1/(q⋅q!).


	(c)(H) E(1) is irrational.





	Exercise 7.4.8. (The root test.) Assume (ak) is a real sequence and x0 is a real number. Prove that the power series

∑k=0∞ak(x−x0)k

converges absolutely if ρ=lim sup|ak|1/k|x−x0|<1 and diverges if 1<ρ.
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Familiar objects do not teleport, do not change position “discontinuously” in an instant. If f(t) represents the location of a particle at time t, intuition says we can ensure the change in f(t) can be made as small as we like by looking at a sufficiently short interval of time. We are ready to formalize this intuition.


8.1 Continuity

Throughout this chapter, X denotes a non-empty set of real numbers, ε continues to denote an arbitrary positive real number, and δ (delta) denotes an arbitrary positive real number.


Definition 8.1.1. Assume f:X→R is a function, and x=(xk) a sequence in X, namely, a real sequence such that xk∈X for all k. We define the image sequence y=(yk) by setting yk=f(xk) for each k, namely, by applying f to the terms of (xk).



Example 8.1.2. Suppose f(x)=1/x on the set where x≠0. For every positive integer k:

If xk=(k+1)/k, then yk=k/(k+1).

If xk=1/k, then yk=k.

If xk=(−1)k/k, then yk=(−1)kk. ♢



Example 8.1.3. The signum function sgn:R→R is defined by sgn(x)=1 if x>0; sgn(x)=−1 if x<0, and sgn(0)=0.

If xk=1/k, then yk=1.

If xk=(−1)k/k, then yk=(−1)k. ♢



Definition 8.1.4. Assume f:X→R is a function, and assume x∈X. We say f is continuous at x] if the following condition holds:


For every sequence (xk) in X that converges to x, the image sequence (f(xk)) converges to f(x).



If f is continuous at x for each x in X, we say f is continuous on X.



Remark 8.1.5. Page 160Symbolically, f is continuous at x if and only if

limk→∞f(xk)=f(x)=f(limk→∞xk)

whenever (xk) is a sequence in X and (xk)→x. ⋄



Remark 8.1.6. If f:X→R is continuous on X, and if A is a non-empty subset of X, the restriction f|A is continuous on A, since every sequence in A is a sequence in X. ⋄


The following observation is immediate, yet useful enough to state explicitly.


Lemma 8.1.7. The identity function is continuous on R. Every constant function is continuous on R.



Proposition 8.1.8. ⏎ Assume f and g are continuous functions on X. The functions f±g and fg are continuous on X. If Z is the set of x in X such that g(x)=0, then the quotient f/g is continuous on X∖Z.

Proof. In effect, this restates Proposition 6.2.1: If x is an arbitrary element of X, and (xk) is a sequence in X converging to x, then

limk→∞(f+g)(xk)=limk→∞(f(xk)+g(xk))definition of f+g]=limk→∞f(xk)+limk→∞g(xk)Proposition 6.2.1 (i)]=f(x)+g(x)f, g continuous at x]=(f+g)(x).

The remaining assertions are proven entirely similarly. □



Corollary 8.1.9. ⏎ Assume p and q are polynomials, X={xinR:q(x)≠0}. The rational function f=p/q:X→R is continuous on X. In particular, every polynomial function is continuous on R.

Proof. Intuitively, polynomials are obtained from the identity function and constant functions by adding and multiplying, so all polynomials are continuous. Exercise 8.1.3 requests a formal proof by induction. □



Proposition 8.1.10. If g and f are composable, f is continuous at x, and g is continuous at y=f(x), then g∘f is continuous at x.

Proof. Assume (xk) is an arbitrary sequence in the domain of f converging to x, and let (yk)=(f(xk)) be the image sequence. Since f is continuous at x, the image sequence converges to y=f(x). Since g is continuous at y, the sequence (g(yk))=((g∘f)(xk)) converges to g(y)=(g∘f)(x). Since (xk) was arbitrary, g∘f is continuous at x. □



Page 161Conceptualizing Continuous Functions

In calculus, continuous functions are normally depicted as “smooth” graphs with finitely many corners or cusps. “Zooming in” on most points causes the graph to “flatten out” into a line. As we will see in Chapter 10, this behavior corresponds to differentiability.

By contrast, a “typical” continuous function has a graph qualitatively similar to Figure 8.1, more like the tracing of an electrocardiogram, a seismograph, or stock price tracker.

[image: A jagged continuous curve with frequent small oscillations rises and falls gradually from left to right across the graph.]
Figure 8.1 The graph of a “typical” continuous function. ⏎



Imagine the graph as a mountain range. Zooming in reveals cliffs and crags, then surfaces of rocks, which are “rough” at scales visible to the naked eye and do not appear more smooth when viewed under a microscope.

Mathematically, a “typical” continuous function possesses detail at arbitrarily small scales. Since the graph does not become more line-like upon zooming in on an arbitrary point, a typical continuous function is nowhere differentiable.

The full ramifications of these qualitative observations impose an intuition of continuous functions almost completely different from the picture presented in calculus. For instance, the graph of a typical continuous function is so rough that its length between an arbitrary pair of points is infinite. The only reason we can pretend to draw such a function is that a drawing instrument such as a sharp pencil, a laser printer, or chalk, does not delimit a mathematical point, but a small region. Our drawing instruments “cannot see” details smaller than the diameter of the tip, and they manage to “cover” the graph with a region of finite area, which can be “painted” in finite time.

Many theorems in this book apply to continuous functions. For visual simplicity, proofs are illustrated using “smooth” functions. To sharpen your understanding, it's a good idea to ponder how the same arguments succeed against a general continuous function.




Exercises for Section 8.1


	Exercise 8.1.1. (★) Assume f(x)=x if x≤0, and 1/x if x>0.


	(a)Page 162Sketch the graph of f. Suppose xk=−1/k if k≥1. Sketch this sequence in your graph. Does f(xk) converge to f(0)?


	(b)Suppose xk=1/k if k≥1. Sketch this sequence in your graph from (a). Does f(xk) converge to f(0)?


	(c)Is f continuous at 0? Explain.





	Exercise 8.1.2. (★) Suppose f(x)=x/|x| if x≠0.


	(a)Sketch the graph of f. Prove from the definition that f is continuous on its domain. Hint: Let ℓ be an arbitrary non-zero real number, and assume (xk)→ℓ. By using a suitable choice of ε, prove f(xk) is eventually constant.


	(b)Is there a way to define f(0) to get a function continuous on R? Hint: The sequence xk=(−1)k−1/k converges to 0.





	Exercise 8.1.3. Prove Corollary 8.1.9, using induction on the degree to handle polynomials.


	Exercise 8.1.4. (★) Let χQ be the indicator of the rationals,

χQ(x)={1if x is rational,0if x is irrational.


	(a)Prove χQ is discontinuous at every real number.


	(b)Assume f is continuous. Prove that the product f⋅χQ is continuous at x if and only if f(x)=0.





	Exercise 8.1.5. (H). Assume f is the denominator function, Figure 8.2, defined by

f(x)={1/qif x=p/q in lowest terms,0if x is irrational.

[image: A set of dense vertical spikes centred at integers between negative 2 and 2, forming symmetrical triangular groupings of dots.]
Figure 8.2 The graph of the denominator function. ⏎



Prove f is discontinuous at every rational number and continuous at every irrational.






8.2 Limits and Continuity

For theoretical work, it is convenient to have an “adversarial” criterion for continuity that does not refer to arbitrary sequences. Recall that when X⊆R, a limit point of X is a real number x0 (possibly not an element of X) such that Bδ×(x0)∩X≠∅ for every positive real number δ.Page 163


Definition 8.2.1. Assume f:X→R is a function, and x0 is a limit point of X. We say the real number L is a limit of f at x0 if the following condition holds:


For every ε, there exists a δ such that if x is an element of Bδ×(x0)∩X, namely x∈X and 0<|x−x0|<δ, then |f(x)−L|<ε.





Remark 8.2.2. Just as with sequential limits, the preceding definition may be regarded as an adversarial game between Player ε, who issues a challenge, and Player δ, who attempts to respond, making the distance from f(x) to L smaller than ε merely by constraining x to within distance δ of x0 (but distinct from x0). The number L is a limit of f at x0 if and only if Player δ has a winning strategy against a perfect opponent, compare Figures 8.3a and 8.3b. ⋄


[image: Two limit diagrams compare function behaviour at x 0, with one approaching L and the other failing due to a jump between left and right sides.]
Long Description for Figure 8.3In graph A, a continuous curve passes through the shaded horizontal band bounded between L plus epsilon and L minus epsilon. The function value at x 0 lies within this band, and the horizontal axis is marked at x 0. A solid dot appears on the curve at x 0, and the shaded band indicates that the limit as x approaches x 0 equals L. In graph B, a discontinuous curve approaches x 0 from both sides but with different behaviours. From the left, the curve increases toward L, while from the right, it approaches a point above L, marked by a hollow circle. The band between L plus epsilon and L minus epsilon is shown again, but the function fails to stay within it near x 0, illustrating that the limit at x 0 does not exist.

Figure 8.3 A geometric interpretation of limits. ⏎



As with a sequential limit, a functional limit is unique if it exists.


Lemma 8.2.3. ⏎ If L and L′ are limits of f at x0, then L=L′.

Proof. Let ε be arbitrary. Because L and L′ are limits of f at x0, there exists a δ such that if x∈X and 0<|x−x0|<δ, then |f(x)−L|<ε/2 and |f(x)−L′|<ε/2. For any such x, the triangle inequality implies

|L−L′|≤|L−f(x)|+|f(x)−L′|<ε/2+ε/2=ε.

Page 164Since ε was arbitrary, L=L′. □



Remark 8.2.4. If f has limit L at x0, Lemma 8.2.3 justifies our writing

L=lim(f,x0)orL=limx→x0f(x)

and manipulating limits algebraically. ⋄



Remark 8.2.5. If L=lim(f,x0), we sometimes say f(x) approaches L as x approaches x0, or write “f(x)→L as x→x0.” This “dynamical” language can be convenient, but is potentially misleading: The limit of f at x0 either exists or it doesn't. There is no contingency on x approaching the point x0, “getting closer and closer without reaching x0.” We do not have to “wait” (possibly forever) to find out whether or not the limit exists. ⋄



Proposition 8.2.6. ⏎ Assume f is a real-valued function with domain X, and x∞∈X. The function f is continuous at x∞ if and only if one of the following mutually exclusive conditions holds:


	(i)x∞ is an isolated point of X.


	(ii)x∞ is a limit point of X, and lim(f,x∞)=f(x∞).




Proof.


	((i)implies continuity). Suppose x∞ is an isolated point of X. If (xk) is a sequence in X that converges to x∞, then (xk) is eventually equal to x∞, namely, there is an index N such that xk=x∞ if k≥N. Continuity of f at x∞ follows immediately.


	((ii)implies continuity). Suppose (ii) holds. Let ε be arbitrary. By (ii), there exists a positive δ such that if x∈X and 0<|x−x∞|<δ, then |f(x)−f(x∞)|<ε. Since |f(x∞)−f(x∞)|=0<ε automatically, f satisfies the slightly stronger predicate:


If x∈X and |x−x∞|<δ, then |f(x)−f(x∞)|<ε.






Let (xk) be an arbitrary sequence in X that converges to x∞; using the δ of the preceding paragraph as a “challenge,” there exists an index N such that if k≥N, then |xk−x∞|<δ. But as just noted, this implies |f(xk)−f(x∞)|<ε. Since ε was arbitrary, the image sequence (f(xk)) converges to f(x∞); thus f is continuous at x∞.

(Continuity implies (i) or (ii)). Contrapositively, we show that if both (i) and (ii) are false, then f is not continuous at x∞.

Since (i) is false, x∞ is a limit point of X. Since (ii) is false, Player ε has a winning strategy: There exists an ε such that no matter how δ is chosen, there is some x in X such that |x−x∞|<δ but |f(x)−f(x∞)|≥ε.

Page 165Construct a sequence (xk) as follows: For each positive integer k, pick xk in X such that |xk−x∞|<1/k=δ but |f(xk)−f(x∞)|≥ε. The sequence (xk) converges to x∞, but the image sequence (f(xk)) does not converge to f(x∞).

We have proven that if (i) and (ii) are false, then f is discontinuous at x∞, which is the contrapositive of what was to be shown. □


Continuity of f at x0 may be formulated as an adversarial game.


Corollary 8.2.7. (The ε-δ criterion). ⏎ If f:X→R is a function and x0∈X, then f is continuous at x0 if and only if:


For every positive real ε,

there exists a positive real δ such that

if x∈X and |x−x0|<δ, then |f(x)−f(x0)|<ε.




In another direction, properties of a continuous function at one point “propagate” to some neighborhood. Two examples recur repeatedly:


Corollary 8.2.8. ⏎ Assume f:X→R is continuous at some point x0 in X.


	(i)There exist positive real numbers M and δ such that |f(x)|<M provided x∈X and |x−x0|<δ.


	(ii)If f(x0)≠0, there is a δ such that if x∈X and |x−x0|<δ, then |f(x)|>|f(x0)|/2.






Remark 8.2.9. Conclusion (i) is expressed by saying a continuous function is locally bounded. Conclusion (ii) says if a continuous function is non-zero at some point, then the function is locally bounded away from zero; not merely is |f(x)| non-zero, there is a positive lower bound, |f(x0)|/2. ⋄

Proof.


	(i).Put M=|f(x0)|+1. By continuity of f at x0 with ε=1, there exists a δ such that if x∈X and |x−x0|<δ, then |f(x)−f(x0)|<1. The triangle inequality implies

|f(x)|≤|f(x0)|+|f(x)−f(x0)|<|f(x0)|+1=M.


	(ii).Take ε=|f(x0)|/2, which is positive by hypothesis. Use continuity of f at x0 to pick a positive δ such that if x∈X and |x−x0|<δ, then |f(x)−f(x0)|<ε=|f(x0)|/2. By the reverse triangle inequality, if x∈X and |x−x0|<δ, then

|f(x)|≥|f(x0)|−|f(x)−f(x0)|>|f(x0)|/2.◻ □






Corollary 8.2.10. ⏎ Assume I is an interval of real numbers and A⊆I a dense subset. If f and g are functions on I whose restrictions to A are equal, then f=g on I.

Page 166Proof. See Exercise 8.2.7. □



Proposition 8.2.11. ⏎ Assume X is an open interval of real numbers. If f is strictly monotone on X, then the inverse function f−1:f(X)→X is continuous.

Proof. See Exercise 8.2.8. □


One-Sided Limits

For every real x0 and every δ, we have Bδ×(x0)=(x0−δ,x0)∪(x0,x0+δ). Using the interval components gives two useful “one-sided” criteria. When a property below corresponds to a property of ordinary limits, the proof is effectively identical, and is omitted.


Definition 8.2.12. Assume X is a non-empty set of real numbers, f:X→R a function, and x0 a real number. We say x0 is approachable from above in X if X∩(x0,x0+δ) is non-empty for every positive δ.

Assume x is approachable from above in X. We say a real number L is a limit from above of f at x if for every sequence (xk) in X such that (xk)→x and xk>x for all k, we have (f(xk))→L.



Proposition 8.2.13. Assume f:X→R is a function and x0 a limit point of X. If x0 is approachable from above in X, and if L and L′ are both limits of f at x0 from above, then L=L′.



Remark 8.2.14. If the limit from above of f at x0 exists, we denote it f(x0+). Notations in other sources include lim(f,x0+) and limx→x0+f(x). ⋄



Proposition 8.2.15. Assume f:X→R is a function. If x0 is approachable from above in X, then L=f(x0+) if and only if:


For every positive real ε,

there exists a positive real δ such that

if x∈X∩(x0,x0+δ), then |f(x)−L|<ε.





Remark 8.2.16. Everything above regarding limits from above has a version for limits from below, and is left as an exercise for practice. If the limit from below of f at x0 exists, we denote it f(x0−). Notations in other sources include lim(f,x0−) and limx→x0−f(x).

A limit from above or from below is called a one-sided limit of f at x0. ⋄



Proposition 8.2.17. Assume X is a set of real numbers, f:X→R a function, and x0 a real number. If x0 is approachable both from above and from below in X, then lim(f,x0) exists and is equal to L if and only if both one-sided limits of f at x0 exist and are equal to L.



Definition 8.2.18. Page 167Assume f is defined in some open ball Br(x0). If the one-sided limits lim(f,x0±) exist and are distinct, we say f has a jump at x0.



Example 8.2.19. The function f(x)=x/|x| on R∖{0} is continuous everywhere in its domain. Every extension of f to R has a jump at 0. ♢



Remark 8.2.20. If lim(f,x0) exists and lim(f,x0)≠f(x0), many authors say f has a removable discontinuity at x0. Loosely, by redefining f at one point, the discontinuity can be removed. (Literally, the redefined function is not f.) ⋄


One-sided limits of monotone functions are analogous to limits of eventually-monotone sequences.


Proposition 8.2.21. ⏎ Assume f:X→R is bounded and monotone.


	(i)For every real x0, if x0 is approachable from above in X, then f(x0+) exists.


	(ii)For every real x0, if x0 is approachable from below in X, then f(x0−) exists.






Remark 8.2.22. The boundedness hypothesis may be dropped, with the understanding that the one-sided limits of f at the “extremities” of X may be infinite. ⋄



Remark 8.2.23. By Proposition 8.2.21, the only discontinuities of a monotone function on an open interval are jumps. ⋄

Proof.


	(i).Assume x0 is approachable from above in X. The non-empty set

A={f(x):x∈X and x0<x}

is bounded below by f(x0). It suffices to show f(x0+)=infA.




Let ε be arbitrary. Since infA+ε is not a lower bound of A, there exists an x1 greater than x0 in X such that infA≤f(x1)<infA+ε, Figure 8.4. Put δ=x1−x0>0.

[image: A graph of a monotone increasing function showing a right-hand limit at x 0 defined by the infimum of a set A within an epsilon band.]
Long Description for Figure 8.4The horizontal axis is marked with two points, x 0 and x 1, with a double-headed arrow between them labelled delta. A curve rises from the origin and passes through these points, increasing steadily. At x 0, a hollow circle on the curve corresponds to the value infimum A, and a filled dot appears slightly below it. The shaded horizontal band spans from infimum A to infimum A plus epsilon, with a dotted line indicating both bounds. Another hollow circle lies within the band to the right of x 0, and a filled point further right lies on the curve.

Figure 8.4 A monotone function has one-sided limits at each point. ⏎



If x0<x<x0+δ=x1, then infA≤f(x)≤f(x1)<infA+ε by monotonicity. Rearranging, 0≤f(x)−infA<ε, so |f(x)−infA|<ε. Since ε was arbitrary, f(x0+)=infA.

The proof of (ii) is entirely similar, see Exercise 8.2.9. □





Page 168Exercises for Section 8.2


	Exercise 8.2.1. (★) Assume f:X→R is continuous at some limit point c of X, and g:X→R is equal to f everywhere in X except possibly at c.

Prove that lim(g,c) exists and is equal to lim(f,c). In words, limits do not depend on function values at individual points.


	Exercise 8.2.2. (★) Show from the ε-δ condition that f(x)=3x−5 is continuous at c for every real c.


	Exercise 8.2.3. (H). Show from the ε-δ condition that f(x)=x2 is continuous at c for every real c.


	Exercise 8.2.4. (H). Show from the ε-δ condition that f(x)=1/x is continuous at c for every non-zero real c.


	Exercise 8.2.5. Recall that for each real number x, the floor ⌊x⌋ of x is the largest integer n such that n≤x, and the ceiling ⌈x⌉ of x is the smallest integer n such that x≤n.


	(a)Sketch the graphs: y=⌊x⌋, y=⌈x⌉, y=x−⌊x⌋, y=⌈x⌉−⌊x⌋.


	(b)Prove the function f(x)=x−⌊x⌋ on R has a jump at each integer.


	(c)Let g(x)=⌈x⌉−⌊x⌋. At which points x0 does lim(g,x0) exist? At which points is g continuous?





	Exercise 8.2.6. Prove that every continuous function of one variable can be written as a difference of continuous, non-negative functions.


	Exercise 8.2.7. Prove Corollary 8.2.10.


	Exercise 8.2.8. Prove Proposition 8.2.11.


	Exercise 8.2.9. Prove Proposition 8.2.21 (ii).


	Exercise 8.2.10. Assume f is the denominator function, see Exercise 8.1.5. Prove that lim(f,x0)=0 for all real x0.


	Exercise 8.2.11. Assume X is non-empty. A subset O of X is relatively open (in X) if there exists an open subset G of R such that O=X∩G. For example, O=[0,1) is relatively open in X=[0,2].


	Page 169(a)Prove that ∅ and X are relatively open in X.


	(b)Prove that if {Oi}i∈I is an arbitrary collection of relatively open subsets of X, then ⋃iOi is relatively open in X.


	(c)Prove that if {Oi}i=0n−1 is a finite collection of relatively open subsets of X, then ⋂iOi is relatively open in X.


	(d)Suppose f:X→R is a function. Prove that f is continuous on X if and only if: For every open set V of real numbers, the preimage f∗(V) is relatively open in X.





	Exercise 8.2.12. Assume X is a set of real numbers, A⊆X a dense subset, and f:X→R a continuous function. Prove f(A) is dense in f(X).


	Exercise 8.2.13. Let U:R→R be the unit step function, defined by U(x)=0 if x<0, U(x)=1 if 0<x, and U(0)=1/2, namely U=(1+sgn)/2.

Assume (ak)k=0∞ is a sequence enumerating the rationals (i.e., every rational number appears exactly once as an ak), and define

f(x)=∑k=0∞U(x−ak)2k+1.


	(a)Prove the series f(x) converges absolutely for every real x, the sum is between 0 and 1, and the function f is strictly increasing.


	(b)Prove that f is continuous at every irrational number and discontinuous at every rational.





	Exercise 8.2.14. (★) Assume f:R→R satisfies the “mean value property” f(12(a+b))=12(f(a)+f(b)) for all real a and b. What can you say about f? What if in addition f is continuous?






8.3 Continuity of Power Series

Analysis is founded on approximation and estimates. Convergent power series are one of the primary computational tools in this book. In this section we prove that real-analytic functions, those defined by convergent power series, are continuous. (This is something of a laughable understatement.) Before proving that, we introduce algebraic little-o and big-O notations for working with limits and approximations that are particularly well-suited to power series.


Little-o and Big-O Notation


Definition 8.3.1. Assume X is a real interval and x0 is an interior point or endpoint of X, namely a point of the closure. If f is a function on X, we write f≈o(1) (read “f is little-o of 1”) near x0 if lim(f,x0)=0.



Remark 8.3.2. Page 170If f is defined by a formula f(x), we express the same idea by writing f(x)≈o(1) if x≈x0. ⋄



Remark 8.3.3. We use this notation in algebraic manipulation. For example, if g is defined on X, then g≈f+o(1) near x0 means g−f≈o(1) near x0. ⋄



Example 8.3.4. If f is defined on an interval X and x0∈X, Corollary 8.2.7 asserts that f≈f(x0)+o(1) near x0 if and only if f is continuous at x0. ♢



Example 8.3.5. Proposition 8.1.8 and the preceding example guarantee that approximations f≈f(x0)+o(1) and g≈g(x0)+o(1) near x0 can be added, multiplied, and (if the denominator is non-zero) divided like equations:

f±g≈f(x0)±g(x0)+o(1),f⋅g≈f(x0)⋅g(x0)+o(1),f/g≈f(x0)/g(x0)+o(1).

In particular, o(1)±o(1)≈o(1), o(1)⋅o(1)≈o(1), and M⋅o(1)≈o(1) for arbitrary real M. ♢



Remark 8.3.6. The notational benefit of little-o quickly becomes clear; an “error term” o(1) acts like a sponge, absorbing (and therefore hiding) “ignorable” cross terms. This magic works because we may “shrink δ inside o(1),” retaining an open interval on which the approximation of interest holds. ⋄



Definition 8.3.7. Assume g is non-zero on some punctured neighborhood of x0. We write

f(x)≈o(g(x))if x≈x0,

or “f is little-o of g near x0,” to mean f(x)/g(x)≈o(1) if x≈x0.



Remark 8.3.8. Intuitively, “f≈o(g) near x0” means |f(x)| is infinitesimally small compared to |g(x)| provided x is sufficiently close to x0. ⋄



Example 8.3.9. For every natural number k, we have xk+1≈o(xk) if x≈0, since xk+1/xk=x≈o(1) if x≈0.

Inductively, if m>0, then xk+m≈o(xk) if x≈0. If x0 is an arbitrary real number and if m>0, then (x−x0)k+m≈o(x−x0)k if x≈x0. ♢


Supplementary to little-o notation, which expresses relative vanishing, we have big-O notation, which expresses relative boundedness:


Definition 8.3.10. Assume f is a function on X. We write f≈O(1) near x0, read “f is big-O of 1,” if |f| is locally bounded near x0, namely, if there exist positive real numbers M and δ such that |f(x)|≤M provided x∈X and |x−x0|<δ.

Page 171If g is non-vanishing in some punctured neighborhood of x0, we write

f(x)≈O(g(x))if x≈x0,

read “f is big-O of g,” to mean f/g≈O(1) near x0.



Example 8.3.11. If f(x0) is defined and f(x)≈f(x0)+O(x−x0) if x≈x0, then f is continuous at x0: Indeed, there exist positive real numbers M and δ such that |f(x)−f(x0)|<M|x−x0| provided |x−x0|<δ.

Generally, there is an infinite hierarchy of approximations. For each natural number m, f(x)≈O(x−x0)m+1 implies f(x)≈o(x−x0)m, which implies f(x)≈O(x−x0)m. ♢




Continuity of Power Series


Proposition 8.3.12. ⏎ If ∑kakzk is a power series with positive radius R and x0 is real, then the real-analytic function

f(x)=∑k=0∞ak(x−x0)k

is continuous on the interval BR(x0)=x0+(−R,R).



Remark 8.3.13. As usual, replacing x−x0 by x reduces to the case x0=0.

The proof of Proposition 8.3.12 proceeds by showing that (i) for each r less than R, the partial sums of f “converge uniformly” to f on the interval [−r,r], see Definition 8.3.14; and (ii) if a sequence of continuous functions converges uniformly to f, then f is continuous. For both clarity and subsequent use, we separate these steps. The proof of Proposition 8.3.12 given below establishes (ii) for the partial sums. The general case of (ii) is Exercise 8.3.5. ⋄



Definition 8.3.14. ⏎ Assume X is a non-empty set of real numbers, f:X→R is a function, and (fn) is a sequence of functions on X. We say (fn) converges uniformly to f on X] if supx∈X|fn(x)−f(x)|→0.



Proposition 8.3.15. ⏎ Assume f(x)=∑kakxk is a convergent power series with positive radius R. For each natural number n, define

fn(x)=∑k=0n−1akxk=a0+a1x+a2x2+⋯+an−1xn−1.

If 0<r<R, then the sequence (fn) converges uniformly to f on [−r,r].

Proof. Fix positive ε and r such that r<R arbitrarily. It suffices to show there exists an N such that if n≥N, then sup|x|≤r|f(x)−fn(x)|<ε.Page 172

By Corollary 7.4.10, ∑k|akrk| converges, so its tails converge to 0; specifically, there exists an N such that if n≥N, then

∑k=n∞|akrk|≤∑k=N∞|akrk|<ε/2.

But for all x in [−r,r], namely if |x|≤r, we have

|f(x)−fn(x)|=|∑k=0∞akxk−∑k=0n−1akxk|=|∑k=n∞akxk|≤∑k=n∞|akxk|≤∑k=n∞|akrk|≤∑k=N∞|akrk|<ε/2.

Consequently, sup|x|≤r|f(x)−fn(x)|≤ε/2<ε. □



Proof of Proposition 8.3.12. Each partial sum fn of the series for f is a polynomial, hence continuous on (−R,R). If x∈(−R,R), and ε is arbitrary, we will build a closed interval [−r,r] contained in (−R,R) on which |f−fN| is small, and having x as an interior point; and then a neighborhood Bδ(x) contained in [−r,r] on which |fN(t)−fN(x)| is small. Finally, we will use the triangle inequality to guarantee |f(t)−f(x)| is small in Bδ(x), Figure 8.5.

[image: A curved function f is closely approximated by a partial sum f N within an epsilon over 3 band, across a delta ball around x.]
Long Description for Figure 8.5The graph presents two curves on a horizontal axis extending from negative R to R, with vertical dashed lines at negative r and r enclosing a central region. A bold curve labelled f represents the function defined by the power series, and a thinner curve labelled f N represents a partial sum approximation. A shaded region surrounds f, bounded above and below by curves marked f plus epsilon over 3 and f minus epsilon over 3, forming a tolerance band. The approximation f N lies within this band across the interval between negative r and r. The point x is marked near the middle of this interval, and a small open interval around it, denoted B delta of x, is indicated on the axis. Both endpoints at negative R and R are marked with open circles, indicating they are not included in the interval.

Figure 8.5 Approximating a power series by partial sums. ⏎



Fix x in (−R,R) and ε arbitrarily. Put r=12(|x|+R), so |x|<r<R, and use Proposition 8.3.15 to choose N such that |f−fN|<ε/3 on [−r,r].

Since fN is continuous at x, there exists a δ such that if |t−x|<δ, then |fN(t)−fN(x)|<ε/3. Without loss of generality, we may further assume δ<r−|x|, so that Bδ(x)⊆[−r,r].

Page 173By the triangle inequality applied twice (Exercise 3.2.6), if |t−x|<δ, then

|f(t)−f(x)|≤|f(t)−fN(t)|⏟<ε/3+|fN(t)−fN(x)|⏟<ε/3+|fN(x)−f(x)|⏟<ε/3<ε.

Since ε was arbitrary, f is continuous at x. Since x was an arbitrary point of (−R,R), f is continuous on (−R,R). □



Corollary 8.3.16. If ∑kak(x−x0)k converges with positive radius R, then for each non-negative integer n,

∑k=0∞ak(x−x0)k≈∑k=0n−1ak(x−x0)k+O(x−x0)nif x≈x0.

Proof. By re-indexing, the tail may be written

∑k=n∞ak(x−x0)k=(x−x0)n∑k=0∞an+k(x−x0)k.

The convergent power series on the right is continuous by Proposition 8.3.12, hence is locally bounded near x0. □



Theorem 8.3.17 (The identity theorem for power series). ⏎ Assume

f(x)=∑k=0∞ak(x−x0)k

is a convergent power series with positive radius R. If f(x)=0 for all x in some neighborhood of x0, then ak=0 for all k.



Remark 8.3.18. Theorem 8.3.17 guarantees that if two convergent power series centered at x0 agree on some neighborhood of x0, they are identical (i.e., have the same coefficients). ⋄

Proof. As usual, assume x0=0. We will establish the contrapositive: If some coefficient is non-zero, then f(x) is not identically zero near x0. Let n be the smallest index such that an is non-zero. We have

f(x)=anxn+an+1xn+1+an+2xn+2+⋯=xn(an+an+1x+an+2x2+⋯)=xng(x).

The power series g(x) is convergent with radius R. Proposition 8.3.12 implies g is continuous at 0, and g(0)=an by direct evaluation. By Corollary 8.2.8, there is an open ball Bδ(0) on which g(x)>|an|/2. On the punctured ball Bδ×(0), we have |f(x)|>|an/2||x|n>0. □


Page 174An analytic function expanded in a power series centered at 0 is easily separated into its even and odd parts (Definition 5.2.6).


Proposition 8.3.19. ⏎ Assume R>0, and f(x)=∑ℓaℓxℓ converges absolutely if |x|<R. In the interval (−R,R), the even and odd parts of f are given by the convergent power series

f even(x)=∑k=0∞a2kx2k=a0+a2x2+a4x4+⋯,fodd(x)=∑k=0∞a2k+1x2k+1=a1x+a3x3+a5x5+⋯,

the sums of the even-degree terms and odd-degree terms, respectively.

Proof. Substituting −x for x, we have

f(−x)=∑ℓ=0∞aℓ(−x)ℓ=∑ℓ=0∞(−1)ℓaℓxℓ=a0−a1x+a2x2−a3x3+⋯.

Adding this to the series for f(x), the odd-degree terms cancel and the even-degree terms are doubled. The even part of f is therefore the sum of the even-degree terms of the power series.

Similarly, subtracting the series for f(−x) from the series for f(x), the even-degree terms cancel and the odd-degree terms are doubled. The odd part of f is therefore the sum of the odd-degree terms of the power series. □





Exercises for Section 8.3


	Exercise 8.3.1. (★) Suppose f(x)=x2 for all real x.


	(a)Show that f(x0+h)≈x02+O(h) if h≈0.


	(b)Show that f(x0+h)≈x02+2x0h+O(h2) if h≈0.





	Exercise 8.3.2. Suppose f(x)=x3 for all real x.


	(a)Show that f(x0+h)≈x03+O(h) if h≈0.


	(b)Show that f(x0+h)≈x03+3x02h+O(h2) if h≈0.





	Exercise 8.3.3. Repeat Exercise 8.3.2 if n is an integer greater than 3 and f(x)=xn. Hint: Use the binomial theorem.


	Exercise 8.3.4. Page 175Suppose

f(x+h)=f(x)+Ah+o(h),g(x+h)=g(x)+Bh+o(h)}if h≈0.


	(a)Find C so that f+g≈f(x)+g(x)+Ch+o(h).


	(b)Write fg as an approximation in the same form.


	(c)Show that if x≠0, then 1x+h≈1x−hx2+O(h2) if h≈0.


	(d)Find C=C(x,h) so that 1x+h≈1x−hx2+Ch2+O(h3) if h≈0.





	Exercise 8.3.5. Assume f:[a,b]→R, and (fk) is a sequence of continuous functions that converges uniformly to f on [a,b]. Prove f is continuous.


	Exercise 8.3.6. Assume I is an open interval of real numbers, possibly unbounded, f is a function on I, and (fk) is a sequence of continuous functions on I. Prove that if (fk)→f uniformly on [a,b] for every closed, bounded subinterval [a,b]⊆I, then f is continuous on I.


	Exercise 8.3.7. If f:R→R is defined by a germ of infinite radius, prove f is continuous.


	Exercise 8.3.8. This exercise describes a construction of the ternary function f:[0,1]→[0,1], which is continuous, non-decreasing, and maps the ternary set K onto [0,1].

Define f0(x)=x on [0,1]. Inductively, for each component [a,b] of Kn, if fn(a)=c and fn(b)=d, then fn+1|[a,b] is the piecewise-affine graph through the points (a,c), (2a+b3,c+d2), (a+2b3,c+d2), and (b,d). If x∉Kn, define fn+1(x)=fn(x). The left graph in Figure 8.6 shows the step from f0 to f1. The right graph shows the general effect on a component of Kn.


	(a)Prove fn:[0,1]→[0,1] is affine on each component of Kn, constant on each component of [0,1]∖Kn, non-decreasing, continuous, and surjective.


	(b)Prove sup{|fn(x)−fn+1(x)|:0≤x≤1}≤2−(n+1) for every n. (The optimal bound is 6−(n+1), but requires a bit more work to establish. The weaker bound suffices here.) Figure 8.7 shows three consecutive terms.

Conclude that sup{|fn(x)−fn+k(x)|:0≤x≤1}≤2−n for every k, and f(x)=limfn(x) exists for all x in [0,1].


	(c)Prove the function f in (b) is continuous (hint: Exercise 8.3.5), non-decreasing, and maps K onto [0,1].




[image: Two stepwise linear functions illustrate ternary construction using three segments within subdivided intervals along horizontal and vertical axes.]
Long Description for Figure 8.6On the left, the x-axis spans from 0 to 1 and the y-axis from 0 to 1. A piecewise linear function starts at the origin, increases to one-third, rises vertically to one-half, then continues increasing to 1 at the point (1, 1). Below this, a second piecewise function follows the same start but continues linearly through (0, 0), (1 divided by 3, 1 divided by 3), (2 divided by 3, 2 divided by 3), and (1, 1). On the right graph, the horizontal axis runs from a to b, and the vertical axis from c to d. The same piecewise structure is replicated, with horizontal tick marks labelled a, two a plus b divided by 3, a plus two b divided by 3, and b. The vertical ticks are marked c, c plus d divided by 2, and d. The upper function follows a stepwise increase that flattens midway, while the lower function is linear throughout, representing uniform interpolation.

Figure 8.6 The iterative step in constructing the ternary function. ⏎



[image: Three stepwise graphs labeled f 2, f 3, and f 4 show increasingly finer approximations to the ternary function over the interval 0 to 1.]
Long Description for Figure 8.7The figure consists of three adjacent coordinate grid graphs titled y equals f 2 of x, y equals f 3 of x, and y equals f 4 of x. Each graph has the horizontal axis ranging from 0 to 1, marked with tick divisions at 1 divided by 3 and 2 divided by 3, and the vertical axis ranging from 0 to 1, marked at one-half. The first graph, f 2, presents a stepwise function composed of three horizontal segments interspersed with sharp vertical jumps. The second graph, f 3, refines this pattern by increasing the number of steps to seven, showing more detailed jumps at shorter intervals. The third graph, f 4, continues the refinement, displaying a highly stepped function with fifteen short horizontal segments and vertical rises.

Figure 8.7 Successive approximations to the ternary function. ⏎




	Exercise 8.3.9. Page 176This exercise constructs a continuous, nowhere-monotone function. Let f0(x)=x on [0,1]. Inductively, obtain fn+1 from fn by performing the construction indicated in Figure 8.8 on each maximal affine segment of the graph:


	(a)Page 177Prove (fn) converges to a continuous function f on [0,1]. Exercise 8.3.5 may be helpful.


	(b)If n and k are non-negative integers, and if 0≤m≤3n, the functions fn and fn+k (and therefore fn and f) agree at every point of the form a+m⋅3−n(b−a).


	(c)If n≥0 and 0≤m<3n, then the function fn+1 is not monotone on [a+m⋅3−n(b−a),a+(m+1)⋅3−n(b−a)]. Conclude f is non-monotone on every interval.




[image: Two piecewise linear graphs show recursive refinement from a coarse zigzag path to a dense, non-monotonic curve with no consistently increasing or decreasing parts.]
Long Description for Figure 8.8On the left, a coarse grid displays a polygonal path beginning at point a 1 comma b 1 and ending at a 2 comma b 2. The curve zigzags with alternating peaks and valleys, creating sharp turns between segments. On the right, a finer grid reveals a more detailed version of the same construction. The zigzag pattern is replicated with increased frequency, producing a continuous but highly irregular path.

Figure 8.8 Constructing a nowhere-monotone function. ⏎








8.4 The Intermediate Value Theorem


Theorem 8.4.1. (The intermediate value theorem). ⏎ Assume f:[a,b]→R is a continuous function such that f(a)≠f(b). If y0 is a real number between f(a) and f(b), then there exists an x0 in (a,b) such that f(x0)=y0.

Proof. Without loss of generality we may assume y0=0 and f(a)<0<f(b): For either choice of sign, the function g defined by g(x)=±(f(x)−y0) is continuous, and satisfies g(x0)=0 if and only if f(x0)=y0. For one choice of sign, g(a)<0<g(b).

Let A={xin[a,b]:f(x)<0} be the set of points at which f(x) is negative. Since f(a)<0, we have a∈A; consequently, A is a non-empty set of real numbers that is bounded above (by b). Define x0=supA. It suffices to prove x0∈(a,b) and f(x0)=0.

By Corollary 8.2.8, if f(x)<0, there exists an open interval centered at x on which f is negative, and if f(x)>0, there exists an open interval centered at x on which f is positive. In particular, there exists a positive δ1 such that f is negative on (a,a+δ1) (so a<a+δ1≤x0), and there exists a positive δ2 such that f is positive on (b−δ2,b) (so x0≤b−δ2<b). This completes the proof that a<x0<b.

By trichotomy, exactly one of the following alternatives holds: f(x0)<0, f(x0)>0, or f(x0)=0. It suffices to prove the first two are false.

If f(x0) is negative, Corollary 8.2.8 implies there is a δ such that f(x)<0 if x0<x<x0+δ; this means x0 is not an upper bound of A. Since x0=supA is an upper bound of A, f(x0) is not negative.

If f(x0) is positive, Corollary 8.2.8 implies there is a δ such that f(x)>0 if x0−δ<x<x0; this means x0−δ<x0 is an upper bound of A. Since x0=supA is the least upper bound of A, f(x0) is not positive. □



Remark 8.4.2. Page 178The same conclusion holds if f(b)<0<f(a): Apply the theorem to the continuous function g(x)=−f(x), which satisfies the condition g(a)<0<g(b). ⋄



Remark 8.4.3. The intermediate value theorem guarantees that the image of a closed, bounded interval [a,b] under a continuous function f is itself an interval. (In Section 8.5, see Theorem 8.5.1, we will prove the image is actually a closed, bounded interval.) ⋄



Example 8.4.4. The rational function f(x)=1/x, defined if x≠0, is continuous on R∖{0}. Moreover, f(−1)=−1<0 and f(1)=1>0. However, f(x)≠0 for all x. This does not contradict the intermediate value theorem because the domain is not an interval.

In accord with the intermediate value theorem, the sign of f does not change on any interval contained in the domain of f. ♢



Existence of Real Roots


Proposition 8.4.5. If c is a positive real number and n a positive integer, there exists a unique positive real number x0 such that x0n=c.

Proof. Let f:R→R be the function f(x)=xn. We have f(0)=0<c, while by Proposition 3.3.5,

f(1+c)=(1+c)n≥1+nc≥1+c>c.

The intermediate value theorem applied to f on the interval [0,1+c] guarantees there exists a real number x0 such that 0<x0<1+c and x0n=c.

There cannot be more than one such number: By Lemma 5.3.16, f is strictly increasing, hence injective. □



Definition 8.4.6. A number x satisfying xn=c is called an nth root of c. The unique positive nth root of a positive real number c is customarily denoted cn or c1/n.

The number c=c1/2 is called the square root of c. The number c3=c1/3 is called the cube root of c.



Proposition 8.4.7. If n is a positive integer, the nth root function, defined by f(x)=x1/n and viewed as a mapping f:[0,∞)→[0,∞), is bijective and continuous.

Proof. The nth power function g(x)=xn is the inverse of f, so f is bijective.

Since g is strictly increasing, Proposition 8.2.11 implies f=g−1 is continuous on (0,∞). To establish continuity at x0=0, fix ε arbitrarily, put δ=εn, and note that if 0≤x<δ, then 0≤x1/n<ε. □


Page 179We can now extend the definition of exponentiation to rational exponents.


Definition 8.4.8. Assume x is a positive real. If m and n are integers and n≠0, we define

xm/n=(x1/n)m=(xm)1/n,

the unique positive real number whose nth power is xm.



Proposition 8.4.9. ⏎ Assume x and y are positive real numbers. If r and s are rational, then

(xy)r=xr⋅yr,xr+s=xr⋅xs,xrs=(xr)s.

Proof. Exercise 8.4.1. □



Remark 8.4.10. See Exercise 8.4.2 for the situation if x≤0. One point deserves emphasis: If x<0, we insist r=m/n is in lowest terms before we write xr. For example, 1/3=2/6 as rational numbers, but while (−1)1/3=−1 unambiguously, (−1)2/6 is multiply problematic: [(−1)2]1/6=11/6=1 is the wrong value, and [(−1)1/6]2 is not defined. ⋄





Exercises for Section 8.4


	Exercise 8.4.1. (H). Prove Proposition 8.4.9.


	Exercise 8.4.2. If r is rational and positive, we define 0r=0. If x<0 and r=m/n in lowest terms, with n odd, we define xr=(−1)r|x|r=(−1)m|x|r. We leave xm/n undefined if n is even or if m and n have a common factor.

Does Proposition 8.4.9 hold for all non-zero x, y and all rational r and s with odd denominator? Explain why we do not define 0r for negative r.


	Exercise 8.4.3. (★) Assume ρ>0. Prove that ρ1/n=ρn→1 as n→∞. Suggestion: First assume ρ≥1.


	Exercise 8.4.4. Use Exercise 3.3.3 to prove n1/n=nn→1 as n→∞.


	Exercise 8.4.5. Assume y is an arbitrary real number. Determine how many real numbers x satisfy 2x/(1+x2)=y. (The answer depends on y.)


	Exercise 8.4.6. (★) Suppose f:[−2,2]→R is a continuous function satisfying f(−2)=−5, f(−1)=−7, f(0)=2, f(1)=−3, and f(2)=0. Based on this information, what is the smallest possible number of real solutions of f(x)=0? Of f(x)=−6?


	Exercise 8.4.7. Page 180(★) Prove f(x)=x5+3x+1 defines a bijection f:R→R.


	Exercise 8.4.8. Define p:R→R by p(x)=x5−5x.


	(a)Prove p is surjective.


	(b)Assume p is strictly monotone on the intervals (−∞,−1], [−1,1], and [1,∞). If y is an arbitrary real number, determine how many real solutions x the equation y=p(x) has. (The answer depends on y.)





	Exercise 8.4.9. Assume

p(x)=a0+a1x+a2x2+⋯+anxn,q(x)=b0+b1x+b2x2+⋯+bmxm,

are polynomial functions, an≠0 and bm≠0, and consider the rational function f(x)=p(x)/q(x), defined on its natural domain. Prove:


	(a)If n<m, then f(x)→0 as |x|→∞.


	(b)If n=m, then f(x)→an/bm as |x|→∞.


	(c)If n>m, then f(x)→sgn(an/bm)⋅∞ as x→∞.





	Exercise 8.4.10. (★) Assume y0 is a real number and n a positive integer.


	(a)Prove that y0 has at most two real nth roots. That is, the equation xn=y0 has at most two real solutions.


	(b)Prove that if n is odd, then f(x)=xn is a bijection from R to R.





	Exercise 8.4.11. (H). Suppose f:[a,b]→[a,b] is a continuous mapping. Prove that f has a fixed point: There exists an x0 in [a,b] such that f(x0)=x0.


	Exercise 8.4.12. If I is an interval and f:I→Q a continuous function, prove f is constant.


	Exercise 8.4.13. Assume I is a real interval and f:I→R is continuous and injective. Prove f is strictly monotone.


	Exercise 8.4.14. Assume I is a real interval and f:I→f(I) a bijection such that f−1=1/f, compare Exercise 5.3.6. Prove f is discontinuous.






Page 1818.5 The Extreme Value Theorem


Theorem 8.5.1 (The extreme value theorem). ⏎ If f:[a,b]→R is a continuous function, then there exist points xmin and xmax in [a,b] such that

f(xmin)≤f(x)≤f(xmax)for all x in [a,b].

Proof. (Continuous implies bounded). Assume contrapositively that f is unbounded on [a,b]. We will prove there exists a point x∞ at which f is discontinuous.

Since f is unbounded, for every natural number n, there exists a point xn in [a,b] such that |f(xn)|≥n. Choosing one such point for each natural number n gives a sequence (xn) in [a,b]. The convergent subsequence theorem implies there exists a subsequence (xν(k)) that converges to some real number x∞. By construction, a≤xν(k)≤b for all k, so Proposition 6.3.7 implies x∞∈[a,b]. Further, for each positive integer k we have

|f(xν(k))|≥ν(k)≥k.

Particularly, the image sequence yk=f(xν(k)) is unbounded, and hence divergent. Since (xν(k))→x∞ but the image sequence is not convergent, f is discontinuous at x∞.

(Extrema are achieved). Since f is bounded, the image of f has a supremum β and an infimum α. It remains to prove there exist points xmin and xmax such that f(xmin)=α and f(xmax)=β.

If k≥1, then β−(1/k)<β, so β−(1/k) is not an upper bound of the image of f: For each positive integer k, there exists a point xk in [a,b] such that β−(1/k)<f(xk)≤β. By the convergent subsequence theorem, (xk) has a subsequence (xν(k)) converging to some point xmax in [a,b]. Since

β−(1/k)≤β−(1/ν(k))<f(xν(k))≤β

for every k, continuity of f implies f(xmax)=limkf(xν(k))=β.

Achievement of the infimum α is proven entirely similarly. □



Example 8.5.2. The function f:[1,∞)→R defined by f(x)=1/x is continuous throughout its domain and is bounded, but does not achieve a minimum. This does not contradict the extreme value theorem, because the domain of f is not a bounded interval. ♢



Example 8.5.3. The function f:(−1,1)→R defined by f(x)=x/(1−x2) is continuous, but unbounded both above and below. This does not contradict the extreme value theorem because (−1,1) is not a closed interval. ♢



Page 182Limits at Infinity


Definition 8.5.4. ⏎ Assume X is unbounded above, f:X→R is a function, and L is a real number. If (f(xk))→L for every sequence (xk) in X such that (xk)→∞, we say L is a limit of f at ∞ and write L=lim(f,∞)=limx→∞f(x).



Remark 8.5.5. If L=lim(f,∞), we also write f(x)→L as x→∞. ⋄



Remark 8.5.6. A limit at infinity is unique (if it exists). There is an analogous definition for the limit of f at −∞ if the domain of f is unbounded below. ⋄



Remark 8.5.7. If L=±∞, the sequential condition in Definition 8.5.4 formally makes sense. We must remember, however, that “f(x)→∞,” say, means “f diverges to ∞,” and does not mean f has a limit at ∞. Particularly, it is best not to write “lim(f,∞)=∞ ” and the like. ⋄


Propositions 6.2.1 and 6.3.13 immediately imply corresponding properties for functional limits:


Proposition 8.5.8. ⏎ Assume X is unbounded above, and that f and g are functions on X.

If lim(f,∞) and lim(g,∞) exist, then


	(i)lim(f±g,∞)=lim(f,∞)±lim(g,∞).


	(ii)lim(fg,∞)=lim(f,∞)⋅lim(g,∞).


	(iii)If lim(g,∞)≠0, then lim(f/g,∞)=lim(f,∞)/lim(g,∞).

If f→∞ and lim(g,∞)=L is finite, then


	(iv)f+g→∞.


	(v)If ±L>0, then fg→±∞.


	(vi)If f(x)≠0 for all x in X, then lim(g/f,∞)=0.




The analogous assertions hold at −∞.



Example 8.5.9. ⏎ If p is a monic polynomial, namely the degree is at least 1 and the leading coefficient is 1, then p(x)→∞ as x→∞, and p(x)→(−1)n∞ as x→−∞. To prove this, write (if x≠0)

p(x)=xn+an−1xn−1+⋯+a1x+a0=xn(1+an−1/x+⋯+a1/xn−1+a0/xn).

Inside the parentheses, each summand except the first approaches 0 as |x|→∞, so the terms in parentheses approach 1. The assertions follow from Proposition 8.5.8 (v). ♢





Page 183Exercises for Section 8.5


	Exercise 8.5.1. (★) Assume p is a polynomial of degree at most 3, and put f(x)=p(x)/(1+x4). If p(5)=4.2, prove f achieves an absolute maximum.


	Exercise 8.5.2. Prove the function p(x)=x4−7x3+5x2−3x+12 achieves an absolute minimum on R. Hint: First show that there exists a positive R so that if |x|>R, then |p(x)|>12. Then use the extreme value theorem on [−R,R] to finish the proof.


	Exercise 8.5.3. Assume p is a non-constant polynomial of even degree whose top-degree coefficient is positive. Prove p achieves an absolute minimum on R.


	Exercise 8.5.4. Assume p:R→R is a polynomial function. Prove:


	(a)If degp is odd, then p is surjective.


	(b)If degp is even, then p has an absolute extremum.





	Exercise 8.5.5. Fix n in Z+, and define C={(x,y)inR2:xn+yn=1}.


	(a)Prove that the portion of C in the first quadrant is bounded.


	(b)Under what condition on n is C bounded?





	Exercise 8.5.6. Suppose f:[a,b]→R is continuous. Prove that the image f([a,b]) is a closed, bounded interval.


	Exercise 8.5.7. (★) Suppose that I is a half-open interval, and f:I→R is continuous.


	(a)Does it follow that f has either an absolute maximum or an absolute minimum in I?


	(b)Does it follow that f is either bounded above or bounded below in I?









8.6 Discrete Dynamical Systems


Definition 8.6.1. Assume f:X→X is a function, so that f is composable with itself. We recursively define the (forward) iterates of f by

f[0]=ι,f[k+1]=f∘f[k]if k≥0.

That is, f[1]=f, f[2]=f∘f, f[3]=f∘f∘f, etc.

The pair (X,f) is called a discrete dynamical system.Page 184



Example 8.6.2. If f(x)=x2−1, then

f[2](x)=f(x)2−1=(x2−1)2−1=x4−2x2,f[3](x)=(f[2](x))2−1=(x4−2x2)2−1=x8−4x6+4x4−1,f[4](x)=(f[3](x))2−1=(x8−4x6+4x4−1)2−1,

and so forth. ♢



Definition 8.6.3. If (X,f) is a discrete dynamical then for each “seed” or “initial value” x0 in X, there is a recursive sequence (xk) defined by

xk+1=f(xk)if k≥0.

Figure 8.9 depicts the geometry: Starting at x0 we alternately travel up or down to the graph of f, then left or right to the diagonal.


[image: Two geometric diagrams illustrate function iteration by tracing paths between a curve and diagonal, with vertical projections and horizontal connections.]
Long Description for Figure 8.9In the left diagram, a concave curve intersects a diagonal line from the bottom left to the top right corner. Vertical dashed lines divide the horizontal axis at points x 0 through x 4. The iteration path begins at x 0, projects upward to the curve, then horizontally to the diagonal, then vertically back to the x-axis to x 1, and continues this process through points x 2, x 3, and x 4. Each vertical and horizontal segment creates a stepwise path that spirals inward toward a fixed point near the curve's peak. The right diagram displays a similar setup but rearranges the x-values as x 0, x 2, x 4, x 3, and x 1 along the axis.

Figure 8.9 Iterating a function geometrically. ⏎




Proposition 8.6.4. ⏎ Assume X is non-empty, and f:X→X is continuous. If a recursive sequence converges to a point x∞ in X, then f(x∞)=x∞.

Proof. Since f is continuous,

f(x∞)=f(limk→∞xk)=limk→∞f(xk)=limk→∞xk+1=x∞.◻

□



Definition 8.6.5. Assume f:X→X. A point x such that f(x)=x is called a fixed point of f.



Remark 8.6.6. The proposition says that if a recursive sequence converges, the limit is a fixed point of f. This deceptively simple concept is connected to a variety of subtle mathematical problems. ⋄Page 185



Remark 8.6.7. Dynamical systems comprise an entire area of mathematics, whose surface this book barely scratches. Even “simple” mappings f can lead to “chaotic” behavior. Think of a kitchen mixer, whose blades move regularly in circles, but whose action quickly and thoroughly scrambles colloidal regions of space; or of plane fractals obtained by iterating a complex quadratic polynomial. ⋄



Example 8.6.8. (Approximating square roots). ⏎ Assume c>1, and define the function f:(0,∞)→(0,∞) by

f(x)=12[x+cx]=x2+c2x.

Pick a seed x0 satisfying x02>c, such as x0=c. If k≥0, algebra gives

xk+12−c=(xk2+c)2(2xk)2−c=(xk4+2cxk2+c2)−4cxk2(2xk)2=xk4−2cxk2+c2(2xk)2=(xk2−c)2(2xk)2,

which is positive by induction since x02−c>0. Consequently,

xk−xk+1=xk−12[xk+cxk]=12[xk−cxk]=xk2−c2xk>0.

We have shown that the recursive sequence (xk) is positive (hence bounded below) and strictly decreasing, so (xk) converges to a non-negative limit x∞. By Proposition 8.6.4, we have

x∞=f(x∞)=x∞2+c2x∞.

Rearranging, x∞2=c, so x∞=c since the limit is non-negative.

The convergence is remarkably rapid. For clarity, introduce ek:=xk2−c. Since c<xk for all k,

|xk−c|=xk−c<(xk+c)(xk−c)2c=xk2−c2c=ek2c.

As shown above,

ek+1=xk+12−c=[xk2−c2xk]2=ek24xk2<ek24c.

That is, the number of decimals of accuracy more than doubles with each step of the iteration. ♢Page 186




Exercises for Section 8.6


	Exercise 8.6.1. If I is an interval, we say a function T:I→I is a contraction if there exists a positive real number λ (lambda) less than 1 such that if x, x′ are elements of I, then |T(x)−T(x′)|≤λ|x−x′|.


	(a)Prove that a contraction has at most one fixed point.


	(b)Assume x0 is an element of I, and (xk) is the recursive sequence with seed x0. Prove that |xk+1−xk|≤λk|x1−x0| for every natural number k.


	(c)Prove that for all non-negative k and all positive m,

|xk+m−xk|≤|x1−x0|λk1−λ.

Conclude that (xk) is condensing.


	(d)If I is closed, prove a contraction on I has a fixed point.





	Exercise 8.6.2. (★) Define f:(1,∞)→(1,∞) by f(x)=x+(1/x).


	(a)Prove that |f(x)−f(x′)|<|x−x′| for all positive real numbers x and x′. Is f a contraction on (1,∞)?


	(b)Assume (xk) is the recursive sequence defined by f and having seed x0=2. Is (xk) condensing?





	Exercise 8.6.3. Fix a positive real b, and define f(x)=b+x if x≥0.


	(a)There is a unique positive fixed point of f; find it (in terms of b).


	(b)For which b is f a contraction on (0,∞)? Suggestion: Multiply and divide by the conjugate expression.


	(c)Assume x0 is a positive seed for the recursive sequence (xk) generated by f. Prove that (xk) converges to the fixed point (whether or not f is a contraction).


	(d)Evaluate 1+1+1+… and 2+2+2+….





	Exercise 8.6.4. Assume a>0, and define the function fa:[0,∞)→[0,∞) by fa(x)=1/(a+x).


	(a)Prove fa[2]=fa∘fa is a contraction, and evaluate the continued fraction [0,a,a,a,…], see Definition 3.1.18 and Exercise 6.4.9.


	(b)Prove fa is a contraction if and only if a>1.





	Exercise 8.6.5. Page 187Assume I is an interval and f:I→I a function. A fixed point x∞ of f is repelling if there exists a positive δ and a λ greater than 1 such that if |x−x∞|<δ, then |f(x)−f(x∞)|≥λ|x−x∞|.

Suppose x0∈I. Prove that if the sequence (xk) of iterates, xk+1=f(xk), converges to x∞, then xN=x∞ for some N, and the sequence is eventually constant.


	Exercise 8.6.6. (The logistic mapping.) If 0≤k≤4, prove fk(x)=kx(1−x) maps [0,1] to itself. If k > 1, prove fk has two fixed points: One repelling (Exercise 8.6.5) if k>1 and both repelling if k>3.


	Exercise 8.6.7. Take c=3 and x0=2 in Example 8.6.8. Find the next three terms of the sequence. Using 1.7<3<1.8, find the smallest integer k such that |xk−3|<0.5×10−8.


	Exercise 8.6.8. Take c=5 and x0=9/4 in Example 8.6.8. Find the next two terms of the sequence. Using 2.2<5<2.3, what upper bound on |x2−5| does Example 8.6.8 guarantee?
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Suppose f is a real-valued function on a closed, bounded interval [a,b]. In analysis, “integration” refers to a procedure that defines the signed area enclosed by the graph of f. There are multiple ways to define an integral, though all agree when f is continuous. Generally, the length of the definition correlates with the generality of functions that can be integrated. The definition here is simple, but suffices for the needs of this book.


9.1 Integrability

Recall that a splitting of the closed interval I=[a,b] is a finite set Π⊆[a,b] that contains both endpoints, Definition 4.1.15. Every splitting may be written uniquely as {ti}i=0n for some positive integer n, with t0=a, tn=b, and ti<ti+1 if 0≤i<n. The ith piece of Π, Ii=[ti,ti+1], has length Δti=ti+1−ti.


Lower and Upper Sums


Definition 9.1.1. If Π and Π′ are splittings of I, we say Π′ is a refinement of Π if Π⊆Π′.



Remark 9.1.2. A refinement of Π is obtained by adding finitely many points to Π. If Π and Π′ are splittings of I, their union Π′′=Π∪Π′ is a “common refinement,” namely, a refinement of each. ⋄



Example 9.1.3. If n and n′ are positive integers, an equal-length splitting Πn′ is a refinement of Πn if and only if n divides n′. ♢



Definition 9.1.4. Assume f:[a,b]→R is a bounded function and Π is a splitting of [a,b] with n pieces. For each i, put

mi=inf{f(t):t∈Ii},Mi=sup{f(t):t∈Ii}.

We define the lower sum and upper sum of f with respect to Π by

L(f,Π)=∑i=0n−1miΔti,U(f,Π)=∑i=0n−1MiΔti.



Lemma 9.1.5. ⏎ Page 189Assume f:[a,b]→R is a bounded function. If Π and Π′ are splittings of [a,b] and Π′ is a refinement of Π, then

L(f,Π)≤L(f,Π′)≤U(f,Π′)≤U(f,Π).

Proof. Since every refinement of Π is obtained by appending finitely many points to Π, induction on the number of points in Π′∖Π reduces the claim to the case Π′=Π∪{z} for some z.

Assume z∈Ij for definiteness, and write Ij=[tj,z]∪[z,tj+1]. As in Figure 9.1, let mj′ and mj′′ denote the respective infima of f on the pieces Ij′=[tj,z] and Ij′′=[z,tj+1]. Since each piece is contained in Ij, we have mj≤mj′ and mj≤mj′′ by constriction, Lemma 4.2.10. Consequently,

mjΔtj=mj(Δtj′+Δtj′′)≤mj′Δtj′+mj′′Δtj′′.

[image: Two graphs compare coarse and refined rectangular approximations using lower and upper sums over a curved region between t j and t j plus 1.]
Long Description for Figure 9.1The left graph shows a single subinterval from t j to t j plus 1 along the horizontal axis. A curve arches over this interval, bounded below by a horizontal segment at m j and above at M j. The grey rectangle beneath the curve uses m j as its height and spans delta t j in width, representing the lower sum for that subinterval. In the right graph, the same interval is split at a point z into two subintervals of widths delta t prime j and delta t double prime j. Each new subinterval has its own minimum and maximum values marked as m prime j, M prime j and m double prime j, M double prime j.

Figure 9.1 The effect of refinement on upper and lower sums. ⏎



Since the lower sums L(f,Π) and L(f,Π′) have identical summands if i≠j, we have L(f,Π)≤L(f,Π′).

A completely analogous argument shows U(f,Π′)≤U(f,Π). □



Proposition 9.1.6. ⏎ Assume f:[a,b]→R is a bounded function. If Π and Π′ are arbitrary splittings of [a,b], then L(f,Π)≤U(f,Π′).

Proof. The splitting Π′′=Π∪Π′ is a refinement of both Π and Π′. By Lemma 9.1.5, L(f,Π)≤L(f,Π′′)≤U(f,Π′′)≤U(f,Π′). □



Remark 9.1.7. Proposition 9.1.6 guarantees every lower sum of f is bounded above by every upper sum. Particularly, the set of lower sums of f,

L(f,[a,b])={L(f,Π):Π a splitting of [a,b]},

is non-empty and bounded above, and the set of uppersums of f,

U(f,[a,b])={U(f,Π):Π a splitting of [a,b]},

is non-empty and bounded below. ⋄



Definition 9.1.8. Page 190Assume f:[a,b]→R is bounded. The lower integral of f on [a,b] is the real number L(f,[a,b])=supL(f,[a,b]). The upper integral of f on [a,b] is the real number U(f,[a,b])=infU(f,[a,b]).

If L(f,[a,b])=U(f,[a,b]), we say f is integrable on [a,b], and call

L(f,[a,b])=U(f,[a,b])=∫abf=∫abf(t)dt

the integral of f over [a,b].



Proposition 9.1.9. ⏎ A bounded function f:[a,b]→R is integrable on [a,b] if and only if the following condition holds:


For every ε,

there exists a splitting Π of [a,b] such that

U(f,Π)−L(f,Π)<ε.





Remark 9.1.10. Geometrically, we can make the shaded area in Figure 9.2 as small as we like for some splitting. ⋄

[image: A curved function is approximated using upper and lower sums over partition P; shaded regions between rectangles represent the difference U of f P minus L of f P.]
Figure 9.2 The difference between an upper and lower sum. ⏎



Proof. If f is integrable and ε>0, then by definition of supremum and infimum there exist splittings Π′ and Π′′ such that

U(f,Π′′)−[∫abf]<ε/2,[∫abf]−L(f,Π′)<ε/2.

If Π=Π′∪Π′′, then L(f,Π′)≤L(f,Π)≤U(f,Π)≤U(f,Π′′), so

U(f,Π)−L(f,Π)≤U(f,Π′′)−L(f,Π′)<ε.

Inversely, if f is not integrable and ε=infU−supL, then we have U(f,Π)−L(f,Π)≥ε>0 for every splitting Π. □



Remark 9.1.11. ⏎ Page 191Any particular upper or lower sum may be viewed as an approximation of f by a step function. ⋄


We next compute several examples from the definition.


Example 9.1.12. If f is a constant function, say f(t)=c for all t, then for every splitting of [a,b] and for every piece of the splitting, mi=c=Mi. Consequently, every lower sum and every upper sum is equal to c(b−a), so

∫abf=∫abcdt=c(b−a).

♢



Example 9.1.13. ⏎ Assume a<x0<b, and f=χ{x0}, namely, f(t)=1 if t=x0 and f(t)=0 otherwise. We will prove the function f is integrable on [a,b], and the integral is equal to 0.

Fix ε arbitrarily. We seek a splitting Π of the form

t0=a,t1=x0−δ,t2=x0+δ,t3=b

for which U(f,Π)−L(f,Π)<ε, Figure 9.3. It suffices to arrange that a<x0−δ, x0+δ<b, and 2δ<ε: Under these conditions, we have

imiMiΔti(Mi−mi)Δti,000(x0−δ)−a01012δ2δ200b−(x0+δ)0

[image: A single rectangle spans the interval from t 1 through t 2 around x 0 on the axis from a to b; its height is 1, and width 2 delta is less than epsilon.]
Figure 9.3 An upper sum for χ{x0} on [a,b]. ⏎



Thus U(f,Π)−L(f,Π)=2δ<ε. Since ε was arbitrary, Proposition 9.1.9 implies f is integrable on [a,b]. Every lower sum is 0, so the integral of f is 0.

Modifications of this argument handle the possibilities x0=a or x0=b. ♢



Example 9.1.14. If f=χQ is the indicator of Q, then f is not integrable on [a,b]. Indeed, let Π be an arbitrary splitting of [a,b]. In each piece, there exist both rational numbers and irrational numbers by density of the rationals Page 192and irrationals, so f takes both values 0 and 1 in every piece. Consequently, mi=0 and Mi=1 for every i. Thus,

L(f,Π)=∑i=0n−10Δti=0,U(f,Π)=∑i=0n−11Δti=(b−a),

independently of Π. This means 0=L(f,[a,b])<U(f,[a,b])=b−a. Proposition 9.1.9 implies f is not integrable on [a,b]. ♢



Proposition 9.1.15. If 0<a<b and k is a positive integer, then the monomial function f(t)=tk is integrable on [a,b], and

∫abtkdt=bk+1−ak+1k+1.

Proof. It is convenient to use a “geometric” splitting, for which the ratio of the lengths of consecutive intervals is constant, Figure 9.4.

[image: A curve increasing from a to b is approximated using geometric partitioning; smaller rectangles represent lower sums and outlined taller rectangles represent upper sums.]
Figure 9.4 The lower and upper sums for a geometric splitting. ⏎



Assume n is a positive integer and put ρ=(b/a)1/n, so ρ>1 and b=aρn. We'll use Π={ti}i=0n with ti=aρi, for which Δti=aρi+1−aρi=a(ρ−1)ρi if 0≤i<n. Since f is increasing on [a,b], we have mi=f(ti)=(aρi)k and Mi=f(ti+1)=(aρi+1)k. Because Mi=ρkmi for each i, the upper sum is ρk times the lower sum.

The general term of the lower sum is

f(ti)Δti=(aρi)ka(ρ−1)ρi=ak+1(ρ−1)⋅(ρk+1)i.
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L(f,Π)=∑i=0n−1f(ti)Δti=ak+1(ρ−1)⋅∑i=0n−1(ρk+1)i=ak+1(ρ−1)⋅(ρk+1)n−1ρk+1−1=ak+1(ρ−1)⋅(ρn)k+1−1ρk+1−1=ak+1((ρn)k+1−1)⋅ρ−1ρk+1−1.

To simplify, recall that ρn=b/a, so

ak+1((ρn)k+1−1)=ak+1((b/a)k+1−1)=bk+1−ak+1.

Note further that

ρk+1−1ρ−1=∑i=0kρi=1+ρ+ρ2+⋯+ρk.

Call this sum S(ρ) for brevity. By Exercise 8.4.3, ρ=(b/a)1/n→1 as n→∞. Since S is a polynomial, S(ρ)→lim(S,1)=k+1. Consequently,

L(f,Π)=(bk+1−ak+1)ρ−1ρk+1−1=bk+1−ak+1S(ρ)⟶bk+1−ak+1k+1.

Since L(f,Π)≤L(f,[a,b]) for every Π, namely, the lower integral is no smaller than any particular lower sum,

bk+1−ak+1k+1=limn→∞bk+1−ak+1S(ρ)≤L(f,[a,b]).

As noted earlier, U(f,Π)=ρk⋅L(f,Π), so

U(f,[a,b])≤limn→∞U(f,Π)=limn→∞ρk⋅L(f,Π)=bk+1−ak+1k+1.

The lower and upper integrals therefore have the same value; this simultaneously proves that f is integrable on [a,b], and evaluates the integral. □
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	Exercise 9.1.1. (★) Assume [a,b] is a real interval, and f and g are integrable on [a,b]. Prove that if f≤g on [a,b], then ∫abf≤∫abg.


	Exercise 9.1.2. Suppose |f| is integrable on [a,b]. Is f necessarily integrable?


	Exercise 9.1.3. (★) Assume f(t)=t on [0,b], and let Πn={ib/n}i=0n be the equal-length splitting of [0,b] with n pieces.


	(a)Evaluate L(f,Πn) and U(f,Πn). Hint: Use Exercise 2.1.2 (a).


	(b)Use (a) to prove supL(f,Π)=infU(f,Π), and evaluate the integral ∫0bf.





	Exercise 9.1.4. Repeat Exercise 9.1.3 if f(t)=t2. Hint: Use Exercise 2.1.1.


	Exercise 9.1.5. (★) Define f:[0,1]→R by f(t)=1 if t=1/k for some positive integer k, f(t)=0 otherwise. Prove f is integrable on [0,1], and evaluate the integral.


	Exercise 9.1.6. Prove the denominator function f of Exercise 8.1.5 is integrable on arbitrary intervals, and evaluate the integral.






9.2 Properties of the Integral

Calculating specific integrals from the definition is generally onerous. We can, however, deduce useful abstract properties of the integral that eventually lead us toward evaluating integrals easily.


Proposition 9.2.1. ⏎ Assume a<b, and f, g are bounded functions on [a,b].


	(i)(Linearity) If f and g are integrable on [a,b], and if k is a real number, then the functions f±g and kf are integrable on [a,b], and

∫ab(f+g)=∫abf+∫abg,∫ab(kf)=k∫abf.


	(ii)(Monotonicity) If f and g are integrable on [a,b], and if f(t)≤g(t) for all t in [a,b], then

∫abf≤∫abg.


	(iii)Page 195(Triangle inequality) If f is integrable on [a,b], then |f| is integrable on [a,b], and

|∫abf|≤∫ab|f|.


	(iv)(Integral patching) If c is a real number and a<c<b, then f is integrable on [a,b] if and only if f is integrable on the two intervals [a,c] and [c,b], and in this event

∫abf=∫acf+∫cbf.




Proof. (Linearity). Let Π={ti}i=0n be an arbitrary splitting of [a,b]. For each i such that 0≤i<n, put mif=inf{f(t):t∈Ii}, mig=inf{g(t):t∈Ii}, and mif+g=inf{(f+g)(t):t∈Ii}. Since

{f(t)+g(t):t∈Ii}⊆{f(s)+g(t):s,t∈Ii}

(a more restrictive predicate defines a smaller set), constriction implies

mif+mig=inf{f(s):s∈Ii}+inf{g(t):t∈Ii}=inf{f(s)+g(t):s,t∈Ii}≤inf{f(t)+g(t):t∈Ii}=mif+g.

(Loosely, we expect equality when the infima of f and g are achieved at the same point of Ii.) With analogous notation for the suprema, Mif+g≤Mif+Mig. Adding up these inequalities,

L(f,Π)+L(g,Π)≤L(f+g,Π)≤U(f+g,Π)≤U(f,Π)+U(g,Π)

for every splitting Π. Taking suprema over Π for the lower sums and infima over Π for the upper sums,

∫abf+∫abg≤L(f+g,[a,b])≤U(f+g,[a,b])≤∫abf+∫abg.

This shows simultaneously that f+g is integrable on [a,b], and that the integral has the stated value.

Integrability of f−g=f+(−1)g will follow once we prove kg is integrable for each real number k. To establish the latter claim, we consider two cases: k≥0, and k=−1.

Assume k is real. With notation as above, if Π is an arbitrary splitting of [a,b] and 0≤i<n, then

{(kf)(t):t∈Ii}=k{f(t):t∈Ii};
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mikf=inf{(kf)(t):t∈Ii}=kinf{f(t):t∈Ii}=kmif,Mikf=sup{(kf)(t):t∈Ii}=ksup{f(t):t∈Ii}=kMif

by Proposition 4.2.12 and Exercise 4.2.5. Forming lower and upper sums,

L(kf,Π)=∑i=0n−1mikfΔti=k∑i=0n−1mifΔti=kL(f,Π),U(kf,Π)=∑i=0n−1MikfΔti=k∑i=0n−1MifΔti=kU(f,Π).

Since f is integrable on [a,b],

L(kf,[a,b])=supΠL(kf,Π)=supΠkL(f,Π)=ksupΠL(f,Π)=kinfΠU(f,Π)=infΠkU(f,Π)=infΠU(kf,Π)=U(kf,[a,b]),

proving that kf is integrable on [a,b], and the value of the integral is k times the integral of f.

If instead k=−1, Proposition 4.2.12 and Exercise 4.2.5 imply

mi−f=inf{(−f)(t):t∈Ii}=−sup{f(t):t∈Ii}=−Mif,Mi−f=sup{(−f)(t):t∈Ii}=−inf{f(t):t∈Ii}=−mif.

Forming lower and upper sums gives

L(−f,Π)=∑i=0n−1mi−fΔti=−∑i=0n−1MifΔti=−U(f,Π),U(−f,Π)=∑i=0n−1Mi−fΔti=−∑i=0n−1mifΔti=−L(f,Π).

Taking the supremum of the lower sums and the infimum of the upper sums,

L(−f,[a,b])=−U(f,[a,b])=−L(f,[a,b])=U(−f,[a,b]),

so −f is integrable on [a,b], and the integral of −f is minus the integral of f.

(Monotonicity). This was proven in Exercise 9.1.1.

(Triangle inequality). Assume f is integrable on [a,b]. Fix ε arbitrarily and choose a splitting Π of [a,b] such that U(f,Π)−L(f,Π)<ε.
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|f(x)|−|f(y)|≤|f(x)−f(y)|for all x, y in [a,b].

In particular, letting Ii be the ith piece of Π and taking the supremum over x in Ii, then taking the infimum over y in Ii, we have

Mi|f|−mi|f|≤|Mif−mif|=Mif−mif.

Multiplying by Δti and summing over i,

U(|f|,Π)−L(|f|,Π)≤U(f,Π)−L(f,Π)<ε.

Since ε was arbitrary, |f| is integrable on [a,b].

Finally, −|f(t)|≤f(t)≤|f(t)| for all t in [a,b]. Monotonicity gives

−∫ab|f|≤∫abf≤∫ab|f|,or|∫abf|≤∫ab|f|.

(Integral patching). Assume f:[a,b]→R is a function, a<c<b, and fix ε arbitrarily.

Suppose f is integrable on [a,b]. Choose a splitting Π of [a,b] such that

∑i=0n−1(Mif−mif)Δti=U(f,Π)−L(f,Π)<ε.

Replacing Π with Π∪{c} if necessary, we may assume c∈Π while preserving the preceding inequality.

The set Π′=[a,c]∩Π is a splitting of [a,c]. Since every piece of Π′ is a piece of Π, and every summand in U(f,Π)−L(f,Π) is non-negative, U(f,Π′)−L(f,Π′)<ε. By Proposition 9.1.9, f is integrable on [a,c]. A similar argument proves f is integrable on [c,b].

Conversely, suppose f is integrable on [a,c] and on [c,b]. Choose splittings Π′ and Π′′ of [a,c] and [c,b] such that

U(f,Π′)−L(f,Π′)<ε/2,U(f,Π′′)−L(f,Π′′)<ε/2.

The union Π=Π′∪Π′′ is a splitting of [a,b] for which

U(f,Π)−L(f,Π)=(U(f,Π′)−L(f,Π′))+(U(f,Π′′)−L(f,Π′′))<ε.

Since ε was arbitrary, f is integrable on [a,b].

In either situation, L(f,Π)=L(f,Π′)+L(f,Π′′), which proves

∫abf=∫acf+∫cbf.

This completes the proof of Proposition 9.2.1. □Page 198



Corollary 9.2.2. ⏎ Assume f and g are functions on some interval [a,b], and f(t)=g(t) except at finitely many points. If f is integrable on [a,b], then g is integrable on [a,b], and the integral of g is equal to the integral of f.

Page 199Proof. Consider the function h=g−f, which by hypothesis is non-zero at only finitely many points. That is, there exist points {xj}j=0m−1 in [a,b] and real numbers {kj}j=0m−1 such that

h=∑j=0m−1kjχ{xj}

By Example 9.1.13, each function χ{xj} is integrable and has integral equal to 0. By linearity of the integral, h itself is integrable, and

∫abh=∑j=0m−1kj∫abχ{xj}=0.

Since g=f+h, linearity implies g is integrable, and

∫abg=∫ab(f+h)=∫abf+∫abh=∫abf.◻

□



Corollary 9.2.3. If f:[a,b]→R is integrable, and if m≤f(t)≤M for all but finitely many t in [a,b], then

m(b−a)≤∫abf≤M(b−a).

Proof. This follows immediately from monotonicity and Corollary 9.2.2. □


When we work with integrals, “closed intervals” [a,b] such that b<a naturally arise. The following convention turns out to be particularly useful.


Definition 9.2.4. If I is a real interval and f:I→R is integrable, we define

∫baf=−∫abffor all a and b in I.

Particularly, ∫aaf=0 for all a in I.



Corollary 9.2.5. (The cocycle property). Assume I is an interval of real numbers, and f:I→R is integrable. For all a, b, c in I,

∫abf+∫bcf+∫caf=0.

Proof. First assume a≤c≤b. By integral patching and our conventions on swapping limits of integration,

∫abf=∫acf+∫cbf=−[∫bcf+∫caf],

so the cocycle property holds in this case. But the stated equality is invariant under permutation of the symbols a, b, and c, and is therefore true regardless of the ordering of the numbers a, b, and c. □



Theorem 9.2.6. (The triangle inequality for integrals). ⏎ If a and b are real and f is integrable on the interval with endpoints a and b, then

|∫abf|≤|∫ab|f||.

Proof. If a<b, the conclusion is Proposition 9.2.1 (iii). Since each side is unchanged by swapping a and b, the conclusion holds if b≤a as well. □



Remark 9.2.7. When we study functions defined by integration, there is real convenience in a triangle inequality that applies even then the limits of integration are “out of order.” ⋄



A Transformation Theorem

For immediate use and for illustration, we prove an “affine change of variables” result. Below, τ (tau) connotes transformation and μ (mu) multiplication.


Proposition 9.2.8. ⏎ Assume I=[a,b] is a domain of integration, and f is integrable on I.


	(i)For every real number c,

∫a+cb+cf(t−c)dt=∫abf(t)dt.


	(ii)If μ is real and non-zero, then

μ∫a/μb/μf(μt)dt=∫abf(t)dt.




Proof.


	(i).Define τ:I+c→I by τ(t)=t−c. For each splitting Π={ti}i=0n of [a+c,b+c], there is a unique splitting Π′={ti′}i=0n of [a,b] defined by ti′=τ(ti)=ti−c.

Since (f∘τ)(Ii)=f(τ(Ii))=f(Ii′) as sets, we have

mi′f=mif∘τ,Mi′f=Mif∘τ.
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L(f,Π′)=∑i=0n−1mi′fΔti′=∑i=0n−1mif∘τΔti=L(f∘τ,Π),

and similarly U(f,Π′)=U(f∘τ,Π). The theorem follows at once by taking the supremum of the lower sums and the infimum of the upper sums.


	(ii).Define τ:I/μ=[a/μ,b/μ]→I by τ(t)=μt. The preceding proof goes through with straightforward modifications, notably that Δti′=μΔti. □






Corollary 9.2.9. ⏎ Assume a>0 and f is integrable on [−a,a].


	(i)If f is even, namely, if f(−t)=f(t) for all t, then

∫−aaf(t)dt=2∫0af(t)dt.


	(ii)If f is odd, namely, if f(−t)=−f(t) for all t, then

∫−aaf(t)dt=0.




Proof. By part (ii) of Proposition 9.2.8, with μ=−1,

∫−a0f(t)dt=−∫a0f(−t)dt=∫0af(−t)dt.

Breaking up the integral at 0,

∫−aaf(t)dt=∫−a0f(t)dt+∫0af(t)dt=∫0af(−t)dt+∫0af(t)dt=∫0a(f(−t)+f(t))dt.

Both parts follow immediately. □





Exercises for Section 9.2


	Exercise 9.2.1. (★) Assume k is a natural number. Prove

∫abtkdt=bk+1−ak+1k+1for all real a and b.

Hint: First establish integrability on [0,b], using an equal-length splitting Π and noting that U(f,Π)−L(f,Π) is telescoping.Page 201


	Exercise 9.2.2. Prove the conclusion of Proposition 9.2.1 (ii) under the weaker hypothesis that f(t)≤g(t) with at most finitely many exceptions.


	Exercise 9.2.3. Assume f is a function on [0,1], and f is integrable on [δ,1] for every δ in (0,1). Give a proof or counterexample to each of the following:


	(a)If limδ→0∫δ1f(t)dt exists, then f is integrable on [0,1].


	(b)If lim(f,0+) exists, then f is integrable on [0,1].





	Exercise 9.2.4. (★) Assume f=χQ is the indicator of Q.


	(a)Prove there exists a sequence (fk) of integrable functions such that for all real x, we have fk(x)→f(x).


	(b)Prove that for every ε, there exists a sequence (Ik)k=0∞ of closed, bounded intervals of total length ε whose union contains Q.


	(c)What numerical value is sensible to assign to the integral of f over [a,b]?





	Exercise 9.2.5. (H). Suppose (fk) is a sequence of integrable functions on [0,1], and that for every ε, there exists an N such that if N≤k<k′, then sup{|fk′(x)−fk(x)|:x∈[0,1]}<ε. Prove the sequence converges pointwise, namely, f(x)=limfk(x) exists for each x in [0,1]; the limit function is integrable; and the integral of the limit is the limit of the integrals:

limk→∞∫01fk=∫01f=∫01limk→∞fk.






9.3 Criteria for Integrability

In this section we prove monotone functions are integrable, continuous functions are integrable, and products of integrable functions are integrable.


Proposition 9.3.1. If f:[a,b]→R is monotone, then f is integrable on [a,b].

Proof. Replacing f by −f if necessary, we may assume f is non-decreasing. Particularly, f(a)≤f(t)≤f(b) for all t in [a,b], so f is bounded.

Fix ε arbitrarily, and use reciprocal finitude to choose a positive integer n such that (f(b)−f(a))(b−a)/n<ε. Let Πn be the equal-length splitting with n pieces. On the ith piece Ii=[ti,ti+1], we have mi=f(ti), Mi=f(ti+1), and Δti=(b−a)/n independently of i. Writing Δt instead of Δti,

U(f,Πn)−L(f,Πn)=∑i=0n−1(Mi−mi)Δti=[∑i=0n−1(f(ti+1)−f(ti))]Δt.
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U(f,Πn)−L(f,Πn)=(f(tn)−f(t0))Δt=(f(b)−f(a))b−an<ε.

Since ε was arbitrary, f is integrable on [a,b]. □



Integrability of Continuous Functions


Definition 9.3.2. A function f:[a,b]→R is uniformly continuous on [a,b] if: For every positive ε, there exists a positive δ such that if t and t′∈[a,b] and |t−t′|≤δ, then |f(t)−f(t′)|<ε.



Remark 9.3.3. Comparing with Corollary 8.2.7, for every ε, there is a single δ that “wins” the ε-δ game for Player δ at each point of [a,b]. ⋄



Proposition 9.3.4. ⏎ Every continuous function f:[a,b]→R whose domain is a closed, bounded interval of real numbers is uniformly continuous.

Proof. We proceed contrapositively. If f is not uniformly continuous on [a,b], then Player ε can force a win; that is, there exists an ε such that for every δ, there are points t and t′ in [a,b] such that |t−t′|≤δ but |f(t)−f(t′)|≥ε. We will prove that in this situation, f is discontinuous at some point of [a,b].

Fix ε as in the preceding paragraph. For each positive integer n, choose points tn and tn′ in [a,b] such that |tn−tn′|≤1/n, but |f(tn)−f(tn′)|≥ε. Since [a,b] is a closed, bounded interval, Theorem 6.4.15 implies there exists a subsequence (tν(k)) of (tn) convergent to some point t∞ in [a,b]. Since

|tν(k)′−t∞|≤|tν(k)′−tν(k)|+|tν(k)−t∞|≤1/k+|tν(k)−t∞|,

the sequence (tν(k)′) also converges to t∞. But by construction, the image sequences (f(tν(k))) and (f(tν(k)′)) do not have the same limit (even if both limits exist), because |f(tν(k))−f(tν(k)′)|≥ε for all k. By definition, f is discontinuous at t∞. □



Proposition 9.3.5. ⏎ A continuous function f:[a,b]→R is integrable.

Proof. Fix ε arbitrarily. Since f is uniformly continuous by Proposition 9.3.4, there exists a δ such that if t and t′ are elements of [a,b] such that |t−t′|≤δ, then

|f(t)−f(t′)|<ε/(b−a).

By reciprocal finitude, there exists a positive integer n such that (b−a)/n<δ. Let Π=Πn be the equal-length splitting of [a,b] into n pieces.

If 0≤i<n, and if {t,t′}⊆Ii, then |t−t′|≤(b−a)/n<δ, which implies |f(t)−f(t′)|<ε/(b−a). Since f is continuous, f achieves a maximum Page 203value and a minimum value in Ii by the extreme value theorem. Consequently, Mif−mif<ε/(b−a). Summing over i,

U(f,Π)−L(f,Π)=∑i=0n−1(Mif−mif)Δti<εb−a∑i=0n−1Δti=ε.

Since ε was arbitrary, f is integrable by Proposition 9.1.9. □




Integrals of Products


Proposition 9.3.6. ⏎ If f and g are integrable functions on [a,b], then the product fg is integrable on [a,b].



Remark 9.3.7. There is no general formula for the integral of fg in terms of the integrals of f and g. ⋄

Proof. By the “polarization identity”

fg=12((f+g)2−f2−g2),

it suffices to prove that if f is integrable, then f2 is integrable.

Fix ε. Since f is integrable, there exists a positive real number M such that |f(t)|≤M for all t in [a,b], and there exists a splitting Π of [a,b] such that

U(f,Π)−L(f,Π)<ε/(2M).

Assume {t,t′}⊆Ii for some i. By the difference of squares identity,

f(t)2−f(t′)2=(f(t)+f(t′))⋅(f(t)−f(t′))≤2M⋅(Mif−mif).

Taking the supremum over t and then the infimum over t′,

Mif2−mif2≤2M⋅(Mif−mif)for each i.

Multiplying by Δti and summing over i,

U(f2,Π)−L(f2,Π)≤2M⋅(U(f,Π)−L(f,Π))<ε.

Since ε was arbitrary, f2 is integrable on [a,b]. □




Numerical Methods

In practice, infima and suprema of f on Ii may be difficult to calculate. “Sampled sums” give a convenient way of approximating an integral numerically.Page 204


Definition 9.3.8. Assume f:[a,b]→R, and Π={ti}i=0n is a splitting of [a,b]. A set t∗={ti∗}i=0n−1 such that ti≤ti∗≤ti+1 for each i is called a set of sample points from Π. The corresponding sampled sum from Π is the expression

S(f,Π,t∗)=∑i=0n−1f(ti∗)Δti.

If ti∗=ti for each i, LEFT(f,Π):=S(f,Π,t∗) is called the left-hand sum.

If ti∗=ti+1 for each i, RIGHT(f,Π):=S(f,Π,t∗) is the right-hand sum.

If ti∗=12(ti+ti+1) for each i, MID(f,Π):=S(f,Π,t∗) is the midpoint sum.

The average of the left and right sums is the trapezoid sum TRAP(f,Π).




Averages


Definition 9.3.9. If f is integrable on [a,b], we define the average of f on [a,b] to be the real number

f―=1b−a∫abf=1b−a∫abf(t)dt.



Remark 9.3.10. Exercise 9.3.11 shows that if f is continuous, the average value is, in a precise sense, the limit of the average of sampled values. ⋄





Exercises for Section 9.3


	Exercise 9.3.1. (★) Assume (a,b) is a bounded real interval and f:(a,b)→R is continuous and bounded. Prove f is integrable on (a,b) in the sense that if we define f(a) and f(b) arbitrarily, then f is integrable on [a,b] and the integral does not depend on the endpoint values.


	Exercise 9.3.2. (★) Assume f is continuous and non-negative on [a,b] but not identically 0. Prove the integral is strictly positive.


	Exercise 9.3.3. (H). Assume f:(0,∞)→R is continuous, and that for all positive a and b, we have

∫1af(t)dt=∫babf(t)dt.

Prove f(t)=f(1)/t for all positive t, and give a geometric interpretation.


	Exercise 9.3.4. Assume f is bounded on [a,b] and Π is an arbitrary splitting. Prove L(f,Π)≤S(f,Π,t∗)≤U(f,Π) for every sampled sum of f from Π.


	Exercise 9.3.5. Page 205In each part, f is a function on [a,b] and Π is a splitting.


	(a)Prove that if f is non-decreasing on [a,b], then

LEFT(f,Π)≤∫abf≤RIGHT(f,Π).


	(b)Prove that TRAP(f,Π) is the sum of the areas of the trapezoids bounded by the secant lines joining the points (ti,f(ti)).


	(c)Prove that MID(f,Π) is the sum of the areas of the trapezoids bounded by arbitrary non-vertical lines passing through the points (t―i,f(t―i)).





	Exercise 9.3.6. (★) Assume f(t)=t2 on [a,b], and Π={a,b} is the splitting with one piece. Calculate the left, right, trapezoid, and midpoint sums, and illustrate each sum with a sketch. Prove that the parabolic sum,

PARA(f,Π):=13(TRAP(f,Π)+2MID(f,Π))

gives the exact value of the integral.


	Exercise 9.3.7. Assume f(t)=t3 on [a,b], and Π={a,b} is the splitting with one piece. Calculate the left, right, trapezoid, and midpoint sums. By how much does the parabolic sum 13(TRAP(f,Π)+2MID(f,Π)) differ from the exact value of the integral?


	Exercise 9.3.8. (A). Assume a and b are real numbers and a<b.


	(a)Calculate the average value of f(t)=t over [a,b].


	(b)Prove the average value of f(t)=t2 over [a,b] is (a2+ab+b2)/3.


	(c)Assuming k>0, calculate the average value of f(t)=tk over [a,b].





	Exercise 9.3.9. Suppose f is integrable on [a,b], and let f― be the average value of f on [a,b].


	(a)Prove that the integral of f−f― over [a,b] is equal to 0.


	(b)(The mean value theorem for integrals) Prove that if f is continuous on [a,b], there exists a number c in (a,b) such that f(c)=f―.


	(c)If f(t)=t2 on [0,1], find the value of c in (0,1) that satisfies the mean value theorem for integrals, and carefully sketch f and its average value.





	Exercise 9.3.10. Assume f is integrable on every closed subinterval of Br(x0).


	Page 206(a)Prove that if 0<|h|<r, the average value of f on the closed interval with endpoints x0 and x0+h is

1h∫x0x0+hf.


	(b)Assume f is continuous at x0. Prove

limh→01h∫x0x0+hf(t)dt=f(x0).


	(c)Show by example that the result of part (b) may be either true or false if f is discontinuous at x0.





	Exercise 9.3.11. This exercise justifies the definition of the average value of a continuous function f on [a,b].


	(a)Fix ε arbitrarily. By Proposition 9.3.4, there exists a δ such that if t and t′ are points in [a,b] and |t−t′|<δ, then |f(t)−f(t′)|<ε/[2(b−a)]. Prove that if Π is a splitting such that Δti<δ for all i, then

|S(f,Π,t∗)−∫abf|<εfor every sampled sum of f from Π.


	(b)Assume n is a positive integer, and Δt=(b−a)/n. Prove

limn→∞1n∑i=0n−1f(a+iΔt)=1b−a∫abf(t)dt.





	Exercise 9.3.12. Assume ρ is a continuous, non-negative (but not identically zero) function on an interval [a,b]. The ρ -weighted average of an integrable function f is defined to be

f―ρ=[∫abfρ]/[∫abρ].

State and prove a mean value theorem for weighted averages.


	Exercise 9.3.13. Fix natural numbers k and n. Assume 0<a<b, and ρ(t)=tk. Calculate the ρ-weighted average of f(t)=tn on [a,b].


	Exercise 9.3.14. Assume [a,b] is a closed, bounded interval of real numbers, and f:[a,b]→R is bounded. Let D denote the set of x in [a,b] such that f is discontinuous at x, and assume that for every ε, there exist finitely many open intervals of total length at most ε whose union contains D. Prove f is integrable on [a,b].


	Exercise 9.3.15. (H). For x real define f(x)=(−1)k if k<x<k+1 for some positive integer k, and f(x)=0 otherwise. Prove f is integrable over every closed, bounded interval [a,b].






Page 2079.4 Definite Integrals

Using integrals to define functions genuinely enlarges our class of functions. For example, the integral of the reciprocal function is not rational.


Definition 9.4.1. Assume f:[a,b]→R is integrable. For each x in [a,b], the function f is integrable on [a,x]. The function F:[a,b]→R defined by

F(x)=∫axf=∫axf(t)dt

is called the definite integral of f from a.



Lemma 9.4.2. ⏎ The signum function sgn:R→R, defined by sgn(t)=t/|t| if t≠0, and sgn(0)=0, is integrable on every closed, bounded interval [a,b], and

∫0xsgn(t)dt=|x|for all real x.

Proof. See Exercise 9.4.1. □



Remark 9.4.3. If f is integrable on some interval containing a, x1, and x2, and F is the definite integral of f, the cocycle property gives

F(x2)−F(x1)=∫ax2f−∫ax1f=∫x1x2f.

⋄



Proposition 9.4.4. ⏎ Assume f is integrable on [a,b], and define F on [a,b] by

F(x)=∫axf.


	(i)If |f(t)|≤M for all but finitely many t, then

|F(x2)−F(x1)|≤M|x2−x1|for all x1, x2 in [a,b].

In particular, F is uniformly continuous on [a,b].


	(ii)If f is non-negative, then F is non-decreasing.


	(iii)If f is continuous, non-negative, and non-zero somewhere in every open interval, then F is strictly increasing on [a,b].




Proof.


	(i).We may as well assume |f(t)|≤M for all t, since by Corollary 9.2.2 we may change the value of f at finitely many points without changing the integral. If a≤x1,x2≤b, the triangle inequality (Theorem 9.2.6) implies

|F(x2)−F(x1)|=|∫x1x2f|≤|∫x1x2|f||≤|∫x1x2M|=M|x2−x1|.

Page 208To prove F is uniformly continuous, fix ε arbitrarily, and put δ=ε/(M+1). (Adding 1 accommodates M=0.) If x1 and x2 are arbitrary points of [a,b], then |x2−x1|<δ implies |F(x2)−F(x1)|≤M|x2−x1|≤Mδ<ε.


	(ii).Suppose f is non-negative. If a≤x1<x2≤b, then

0=∫x1x20dt≤∫x1x2f(t)dt=F(x2)−F(x1),or F(x1)≤F(x2).


	(iii).Assume a≤x1<x2≤b. By hypothesis, there exists a point t0 such that x1<t0<x2 and 0<f(t0). By Exercise 9.3.2,

0<∫x1x2f(t)dt=F(x2)−F(x1).

Since x1 and x2 were arbitrary, F is strictly increasing. □






Proposition 9.4.5. If k is a natural number and x1, x2 are real, then

∫x1x2tkdt=x2k+1−x1k+1k+1.

Proof. Although this restates Exercise 9.2.1, we give another proof to illustrate our new tools. Since each side is continuous in x1, taking limits as x1→0 gives

∫0x2tkdt=x2k+1k+1for all non- negative x2.

If w≤0, namely 0≤−w, then taking μ=−1 in Proposition 9.2.8 gives

∫0wtkdt=−∫0−w(−t)kdt=(−1)k+1∫0−wtkdt=wk+1k+1.

We have established that F(w), the integral of tk from 0 to w, is equal to wk+1/(k+1) for all real w. If x1, x2 are arbitrary, then

∫x1x2tkdt=F(x2)−F(x1)=x2k+1−x1k+1k+1.◻

□



Example 9.4.6. ⏎ Assume p is a polynomial, say

p(x)=∑k=0nakxk=a0+a1x+a2x2+⋯+anxn.

Since p is continuous on R, p is integrable on every interval [0,x], and

∫0xp(t)dt=∫0x∑k=0naktkdt=∑k=0nak∫0xtkdt=∑k=0nakk+1xk+1.

If we call this new polynomial P, then

∫abp(t)dt=∫0bp(t)dt−∫0ap(t)dt=P(b)−P(a).

♢



Remark 9.4.7. Page 209To evaluate a definite integral from the definition for even a single x, we must compute the supremum of the set of lower sums of f as Π ranges over the set of splittings of [a,x]. In general this is somewhere between laborious and genuinely difficult.

The preceding example shows that for a polynomial function, the definite integral (laborious to evaluate) is equal to a particular polynomial (trivial to evaluate) that can be found by inspection. That these functions are one and the same is a substantial and non-trivial piece of information. ⋄



Integration and O Notation


Proposition 9.4.8. Assume f is integrable on some interval containing x0, and that for some natural number k, f(x)≈O(x−x0)k if x≈x0. If

F(x)=∫x0xf(t)dt

is the definite integral of f from x0, then F(x)≈O(x−x0)k+1 if x≈x0.

Proof. By hypothesis, there exist positive real numbers M and δ such that |f(t)|≤M|t−x0|k if |t−x0|<δ. By Theorem 9.2.6, if |x−x0|<δ, then

|F(x)|≤|∫x0x|f(t)|dt|≤M|∫x0x|t−x0|kdt|=Mk+1|x−x0|k+1.

Particularly, F(x)≈O(x−x0)k+1 if x≈x0. □



Remark 9.4.9. Qualitatively, integrating from x0 increases by 1 the degree of approximation near x0. ⋄




Integration of Power Series

A convergent power series can be integrated term by term, in exactly the same way (formally) as a polynomial, compare Example 9.4.6.


Proposition 9.4.10. Assume f is defined by a germ of radius R:

f(x)=∑k=0∞ak(x−x0)k=a0+a1(x−x0)+a2(x−x0)2+⋯.

For every x such that |x−x0|<R, f isintegrable on [x{0},x], and

∫x0xf(t)dt=∑k=0∞akk+1(x−x0)k+1=a0(x−x0)+a12(x−x0)2+a23(x−x0)3+⋯.

Page 210Proof. As usual, assume x0=0 without loss of generality. Proposition 8.3.12 implies f is continuous on (−R,R), and therefore integrable on every closed, bounded subinterval by Proposition 9.3.5.

For each natural number n, introduce the polynomials

fn(t)=∑k=0n−1aktk,Fn(x)=∫0xfn(t)dt=∑k=0n−1akk+1xk+1,

and define

F(x)=∫0xf(t)dt,G(x)=∑k=0∞akk+1xk+1.

The power series G(x) converges absolutely for every x such that |x|<R, by comparison with the series xf(x)=∑kakxk+1.

To prove F(x)=G(x) if |x|<R, it suffices to prove that if 0<r<R, and if ε is arbitrary, then |F−G|<ε on [−r,r]. By Proposition 8.3.15, there exists an index N such that

sup|x|≤r|f(x)−fN(x)|<ε/(2r).

If x∈[−r,r], the triangle inequality for integrals, Theorem 9.2.6, guarantees

|F(x)−FN(x)|≤|∫0x|f(t)−fN(t)|dt|<|x|ε/(2r)≤ε/2.

Furthermore,

|G(x)−FN(x)|≤∑k=N∞|akk+1||x|k+1≤|r|∑k=N∞|ak||r|k<ε/2.

That is, |FN−G|<ε/2 on [−r,r]. Adding these estimates,

|F−G|≤|F−FN|+|FN−G|<εon [−r,r].

Since ε was arbitrary, F≡G on [−r,r]. Since r was an arbitrary positive real number less than R, |x|<R implies F(x)=G(x). □




The Natural Logarithm

One of the most important functions in analysis may be defined as a definite integral.


Definition 9.4.11. ⏎ The natural logarithm function log:(0,∞)→R is defined by

logx=∫1xdtt.



Proposition 9.4.12. ⏎ Page 211For all positive real numbers x and y,

logxy=logx+logy,log(1/x)=−logx.

The natural logarithm is strictly increasing and surjective. There exists a unique real number e such that loge=1, and 2<e<3.

Proof. Exercise 9.4.5. □



Corollary 9.4.13. ⏎ If x0>0, then

logx−logx0=∑k=0∞(−1)kx0k+1(x−x0)k+1k+1on (0,2x0).

Proof. See Exercise 9.4.7. □





Exercises for Section 9.4


	Exercise 9.4.1. (★) Prove Lemma 9.4.2.


	Exercise 9.4.2. Prove that ∫0x|t|dt=x|x|2 for all real x.


	Exercise 9.4.3. Assume a, b, c are real. Evaluate ∫ab(c+t)2dt in two ways.


	Exercise 9.4.4. Assume f is integrable on [a,b]. Prove there exists an x such that a≤x≤b and

∫axf(t)dt=∫xbf(t)dt.


	Exercise 9.4.5. This exercise establishes the properties of log in Proposition 9.4.12. Throughout, x and y denote positive real numbers.


	(a)Prove that log(xy)=logx+logy. Hints: Split the integral over [1,xy] into [1,x]∪[x,xy], then use Proposition 9.2.8 with μ=x.


	(b)Prove that log(1/x)=−logx.


	(c)Prove log is strictly increasing, and log2<1<log3. Show there exists a unique real number e such that loge=1. Hint: To prove 1<log3, first show 1−(t/4)≤1/t for all positive t, with equality if and only if t=2.


	(d)Use parts (a) and (b) to prove log(en)=n for every integer n. Conclude that log:(0,∞)→R is surjective.





	Exercise 9.4.6. (H). Page 212This exercise continues Exercise 9.4.5, expressing exponentiation with rational exponents in terms of log.


	(a)Prove log(xp)=plogx for all positive real x, and for all integers p.


	(b)If r=p/q is rational, prove log(xr)=rlogx for all positive real x.





	Exercise 9.4.7. (H). Prove Corollary 9.4.13.


	Exercise 9.4.8. Define

f(t)=∑k=0∞(−1)kt2k2kk!,F(x)=∫0xf(t)dt.

Verify the series for f has infinite radius, expand F as a power series, and determine how many terms suffice to approximate F(x) on [−2,2] with error at most 0.5×10−5.
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For functions describing natural phenomena, incrementing the input by a small amount typically results in a nearly proportional increment in the output. Symbolically, if f is a function and x0 is a point of the domain, then for small Δx (Delta x) we have f(x0+Δx)−f(x0)≈m(x0)Δx for some function m. Functions with this property are the subject of this chapter.


10.1 Differentiability


Definition 10.1.1. Assume X is a non-empty set of real numbers, f:X→R a function, and x0 an interior point of X; that is, there exists a δ such that Bδ(x0)⊆X. If 0<|h|<δ and x=x0+h, define the difference quotient

Δf(x0,h)=f(x0+h)−f(x0)h=f(x)−f(x0)x−x0.

If Δf(x0,h) has a limit as h→0, we say f is differentiable at x0, and call

f′(x0)=limh→0Δf(x0,h)=limh→0f(x0+h)−f(x0)h=limx→x0f(x)−f(x0)x−x0

the derivative of f at x0.

If X is open and f is differentiable at x0 for each x0 in X, we say f is differentiable on X.



Remark 10.1.2. The difference quotient Δf(x0,h) represents the “average rate of change” of f on the interval between x0 and x=x0+h, namely, the change in f on this interval divided by the length of the interval.

To say f is differentiable at x0 means these rates of change approach a finite limit as h→0, in which case the derivative represents, by definition, the “instantaneous rate of change” of f at x0. ⋄



Example 10.1.3. If f is a constant function on some open interval X, then f is differentiable on X. Indeed, f′(x0)=0 for all x0 since every difference quotient of f is zero. ♢



Example 10.1.4. Page 214The signum function sgn is differentiable on R∖{0}, and sgn′(x)=0 for all x in R∖{0}, but sgn is not constant. ♢



Example 10.1.5. The identity function ι is differentiable on an arbitrary open interval. Since every difference quotient is equal to 1, we have ι′(x0)=1 for all x0. ♢



Example 10.1.6. The quadratic polynomial f(x)=1+2x+x2 is differentiable on R, and f′(x0)=2+2x0. To prove this, we calculate

Δf(x0,h)=f(x)−f(x0)x−x0=(1+2x+x2)−(1+2x0+x02)x−x0=2(x−x0)+(x2−x02)x−x0=2+(x+x0),

since x≠x0. Fixing x0 and taking the limit as x→x0, we have

f′(x0)=limx→x0f(x)−f(x0)x−x0=limx→x02+(x+x0)=2+2x0.

♢



Example 10.1.7. The square root function f(x)=x is differentiable on (0,∞), and f′(x0)=1/(2x0): If x0>0 and |h|<x0, then

Δf(x0,h)=x0+h−x0h=x0+h−x0h⋅x0+h+x0x0+h+x0=(x0+h)−x0h(x0+h+x0)=1x0+h+x0.

Since the square root function is continuous,

f′(x0)=limh→0Δf(x0,h)=limh→01x0+h+x0=12x0.

The square root function is not differentiable at 0. First, 0 is not an interior point of the domain X=[0,∞). Even if we restrict to h→0+, however, the difference quotient Δf(0,h)=h/h=1/h diverges to ∞. ♢



Local Extrema


Definition 10.1.8. Assume f:X→R is a function and x0 is a limit point of X. We say x0 is a local minimum of f in X if there exists a δ such that f(x0)≤f(x) for all x in X∩Bδ(x0), namely, for all x in X such that |x−x0|<δ. The real number f(x0) is called a local minimum value of f in X.

If instead x∈X∩Bδ×(x0) implies f(x0)<f(x), we say x0 is a strict local minimum of f.

Analogously, we define local maximum and strict local maximum points of X. A local extremum of f in X is a point that is either a local minimum or local maximum.



Example 10.1.9. Page 215On the set X=[0,1], the function f(x)=x has a local minimum at 0 and a local maximum at 1.

On the open interval (0,1), the function f(x)=x is bounded, but has no local extrema. ♢



Proposition 10.1.10. ⏎ If f:[a,b]→R is a continuous function, and x0 is a local extremum of f in X, then x0 is precisely one of the following:


	(i)An endpoint of [a,b].


	(ii)An interior point at which f′(x0) does not exist.


	(iii)An interior point at which f′(x0)=0.




Proof. Suppose x0 is a local extremum. If x0 is an endpoint, or if f′(x0) does not exist, there is nothing to prove. Assume, therefore, that x0∈(a,b), and

f′(x0)=limx→x0f(x)−f(x0)x−x0

exists. We may assume without loss of generality that x0 is a local minimum; if not, replace f by −f. By definition of a local minimum, f(x0)≤f(x) if x≈x0. That is, the numerator of the difference quotient is non-negative.

Letting x→x0 from below, that is, assuming x−x0<0, we have f′(x0)≤0. Letting x→x0 from above, that is, assuming x−x0>0, we have f′(x0)≥0. Consequently, f′(x0)=0. □




Approximate Linearity


Proposition 10.1.11. ⏎ Assume m is a real number. A function f is differentiable at an interior point x0, with m=f′(x0), if and only if

f(x0+h)≈f(x0)+mh+o(h)if h≈0.

Proof. By definition, f is differentiable at x0 and m=f′(x0) if and only if

0=limh→0f(x0+h)−f(x0)h−m=limh→0f(x0+h)−f(x0)−mhh.

Again by definition, f(x0+h)−f(x0)−mh≈o(h) if h≈0. □



Definition 10.1.12. If f is differentiable at x0 with derivative f′(x0), the polynomial Px01f(x)=f(x0)+f′(x0)(x−x0) is called the first-degree germ of f at x0. The graph y=Px01f(x) is the tangent line to y=f(x) at x0.



Remark 10.1.13. The first-degree germ Px01f is the unique polynomial p of degree at most 1 satisfying f(x)≈p(x)+o(x−x0) if x≈x0.

Geometrically, f′(x0) exists if and only if zooming in on the graph at x0 causes the graph to look more and more like a line with slope f′(x0). ⋄



Proposition 10.1.14. ⏎ Page 216If f is differentiable at x0, then f is continuous at x0.

Proof. If f is differentiable at x0, Proposition 10.1.11 implies

f(x)≈f(x0)+f′(x0)(x−x0)+o(x−x0)≈f(x0)+o(1)if x≈x0.◻

□



Example 10.1.15. The converse of Proposition 10.1.14 is false. The absolute value function, f(x)=|x|, is continuous everywhere, but not differentiable at 0:

Δf(0,h)=f(h)−f(0)h−0=|h|h=sgnh,

which has no limit at 0. (Geometrically, zooming in at the origin preserves the graph, and the graph is not a line.) As noted in Chapter 8, a “typical” continuous function is nowhere differentiable: Zooming in does not stabilize the graph at all, much less cause the graph to look like a line. ♢



Remark 10.1.16. A functional relation y=f(x) determines the “dependent variable” y in terms of the “independent variable” x, and a difference quotient may be written Δy/Δx=Δy(x0,Δx)/Δx. If f is differentiable at x, the limit of Δy/Δx as Δx→0 may be written in differential notation, dy/dx=dy/dx(x0) rather than f′(x0), and viewed as a formal ratio of “infinitesimal increments” dy and dx. Literally, reciprocal finitude of the reals, Corollary 4.3.7, asserts no such real numbers exist. Nonetheless, properties we will establish in Section 10.2 may be viewed as granting license to manipulate ratios of infinitesimals as if they were ordinary (real) fractions, see Exercise 10.2.9. The rules for symbolically representing differential expressions and manipulating them to obtain correct results is self-descriptively called differential calculus. ⋄




Derivatives as Functions

If f is differentiable at each point of its domain, we may view the derivative f′ as a function, and ask about properties of f′, such as continuity.


Definition 10.1.17. Assume X is a non-empty open set in R and f:X→R is a function. If f is differentiable on X, the function f′:X→R is the (first) derivative of f, and we say f is a primitive of f′. (Thus, “primitive” is a noun in real analysis, not an adjective.) If in addition f′ is a continuous function on X, we say f is of class C1 on X.



Remark 10.1.18. In an inductive spirit, we may ask whether f(1):=f′ is itself differentiable. If so, we may form the second derivative f(2):=(f(1))′=f′′, and ask the same questions recursively. Doing so builds a tower of increasingly stringent conditions a function may or may not satisfy. ⋄



Definition 10.1.19. Page 217Assume X is a non-empty open set of real numbers, n a positive integer, and f:X→R an n-times differentiable function with nth derivative function f(n). If f(n) is continuous on X, we say f is of class Cn on X.

If f(n) is differentiable on X, we inductively define f(n+1)=(f(n))′, and say f is (n+1) times differentiable on X


Most functions in this book are n times differentiable for every n≥1.


Definition 10.1.20. Assume X is a non-empty open set of real numbers, and f:X→R a function. If f is n times differentiable for every positive integer n, we say f is smooth, or of class C∞, on X.



Remark 10.1.21. The nth derivative of a smooth function is automatically continuous by Proposition 10.1.14.

A function of class Cn is sometimes said to be n times continuously differentiable, and a smooth function is sometimes said to be infinitely differentiable. This book does not use either term. ⋄





Exercises for Section 10.1


	Exercise 10.1.1. (H). If f(x)=5x2−473x+1040, calculate f′(x) from the definition.


	Exercise 10.1.2. (★) Analyze the difference quotient at 0 if f1/3(x)=x1/3.


	Exercise 10.1.3. Analyze the difference quotient at 0 if f2/3(x)=x2/3.


	Exercise 10.1.4. Analyze the difference quotient at 0 if f4/3(x)=x4/3.


	Exercise 10.1.5. Assume f(x)=x3 if x>0. Calculate f′ from the definition.


	Exercise 10.1.6. (★) Assume f:R→R is differentiable and ℓ-periodic. Prove f′ is ℓ-periodic. Does f necessarily have a periodic primitive?


	Exercise 10.1.7. Suppose f is differentiable in a neighborhood of x0, and f′(x0)>0. Prove there is a δ such that if 0<h<δ then f(x0−h)<f(x0) and f(x0)<f(x0+h).


	Exercise 10.1.8. (★) Suppose we are solving an equation f(x)=g(x) for x. May we differentiate both sides to obtain f′(x)=g′(x)? Explain carefully.


	Exercise 10.1.9. (★) In each part, assume f:R→R is a function.


	Page 218(a)If |f(x)|≤x2 for all real x, prove f is differentiable at 0 and f′(0)=0.


	(b)Construct a function that is differentiable at 0 and discontinuous at x for all non-zero x.





	Exercise 10.1.10. For each positive integer N, there is a function f:R→R that is discontinuous at x for every non-zero x, but is o(|x|1+(1/N)) if x≈0, so f′(0)=0.


	Exercise 10.1.11. (★) Assume f is defined in a neighborhood of x0, and put y0=f(x0). Find the equation of the graph y=f(x) after zooming in at (x0,y0) with factor c. Prove f is differentiable at x0 if and only if the limit as c→∞ of the zoomed-in graph is a line.






10.2 Differentiation Rules


Theorem 10.2.1. (Linearity of the derivative). Assume f and g are differentiable at x and c is a real number. The functions f±g and cf are differentiable at x, and

(f±g)′(x)=f′(x)±g′(x),(cf)′(x)=cf′(x).

Page 219Proof. By hypothesis, there exist real numbers f′(x) and g′(x) such that

f(x+h)≈f(x)+hf′(x)+o(h)g(x+h)≈g(x)+hg′(x)+o(h)}if h≈0.

Adding,

(f+g)(x+h)≈(f+g)(x)+h(f′(x)+g′(x))+o(h).

By Proposition 10.1.11, this simultaneously proves f+g is differentiable at x and shows the derivative is f′(x)+g′(x).

The proofs for f−g and cf are entirely similar. □



Theorem 10.2.2. (The product and quotient rules). If f and g are differentiable at x, then fg is differentiable at x, and

(fg)′(x)=f′(x)g(x)+f(x)g′(x).

If g(x)≠0, then f/g is differentiable at x, and

(fg)′(x)=f′(x)g(x)−f(x)g′(x)g(x)2.

Proof. By hypothesis,

f(x+h)≈f(x)+hf′(x)+o(h)g(x+h)≈g(x)+hg′(x)+o(h)}if h≈0.

Multiplying these approximations gives

(fg)(x+h)=[f(x)+hf′(x)+o(h)][g(x)+hg′(x)+o(h)]=(fg)(x)+h[f′(x)g(x)+f(x)g′(x)]+o(h).

By Proposition 10.1.11, this establishes the product rule.

For quotients, algebra and the preceding substitutions give

Δ(f/g)(x,h)=1h[f(x+h)g(x+h)−f(x)g(x)]=1h[f(x+h)g(x)−f(x)g(x+h)g(x+h)g(x)]=1h[h(f′(x)g(x)−f(x)g′(x))+o(h)g(x+h)g(x)]=f′(x)g(x)−f(x)g′(x)g(x+h)g(x)+o(1).

Since g is differentiable at x, g(x+h)≈g(x)+O(h) if h≈0. □



Corollary 10.2.3. Assume n is a natural number.


	(i)f(x)=xn is differentiable on R, and f′(x)=nxn−1.


	(ii)g(x)=x−n is differentiable on R∖{0}, and g′(x)=−nx−n−1.




Proof.


	(i).Although the function f(x)=x0=1 is constant by Definition 3.3.1, the formula f′(x)=nxn−1=0⋅x−1 is an edge case: We interpret it as meaning f′(x)=0 for all real x, including by continuity at x=0.

Properly, therefore, our induction starts with n=1, for which f(x)=x is the identity function ι, and f′(x)=1=x0=nxn−1 for all real x.

Assume inductively for some positive integer n that the derivative of f(x)=xn is f′(x)=nxn−1 for all real x. Taking g(x)=x and using the product rule, the derivative of (fg)(x)=xn+1 is

(fg)′(x)=f′(x)g(x)+f(x)g′(x)=(nxn−1)⋅x+xn⋅1=(n+1)xn.


	(ii).Assume n≥1 and g(x)=x−n=1/xn=1/f(x). By the quotient rule,

g′(x)=(1f)′(x)=−f′(x)f(x)2=−nxn−1(xn)2=−nx−n−1.◻ □






Corollary 10.2.4. ⏎ Page 220A polynomial function

p(x)=∑k=0nakxk=a0+a1x+a2x2+⋯+anxn

is differentiable on R, and

p′(x)=∑k=1nkakxk−1=a1+2a2x+3a3x2+⋯+nanxn−1.

Since p′ is itself a polynomial, p is smooth.



Example 10.2.5. Every rational function is smooth in its natural domain: If p and q are polynomials and f(x)=p(x)/q(x), then f is differentiable for all real x where q(x)≠0, and f′ is a rational function with the same natural domain as f. For example, using differential notation for convenience,

ddx11+x+x2=−1+2x(1+x+x2)2,ddxx1+x2=(1+x2)−x(2x)(1+x2)2=1−x2(1+x2)2.

♢



Theorem 10.2.6. (The chain rule). Assume g and f are composable functions. If f is differentiable at x and g is differentiable at y=f(x), then g∘f is differentiable at x, and

(g∘f)′(x)=g′(f(x))⋅f′(x)=g′(y)⋅f′(x).

Proof. By hypothesis,

f(x+h)≈f(x)+hf′(x)+o(h)if h≈0,g(y+k)≈g(y)+kg′(y)+o(k)if k≈0.

If we write y=f(x) and y+k=f(x+h), then

k=f(x+h)−f(x)≈hf′(x)+o(h).

Thus k≈O(h) if h≈0, so o(k)≈o(h). Consequently,

(g∘f)(x+h)−(g∘f)(x)=g(y+k)−g(y)≈kg′(y)+o(k)≈(hf′(x)+o(h))g′(y)+o(h)≈hg′(f(x))⋅f′(x)+o(h).

By Proposition 10.1.11, (g∘f)′(x)=g′(f(x))⋅f′(x). □



Example 10.2.7. Page 221If n is an integer, then for all real x,

ddx(1+x+x2)n=n(1+x+x2)n−1(1+2x),ddx[x1+x2]n=n[x1+x2]n−11−x2(1+x2)2.

♢



Remark 10.2.8. The preceding functions would be all but impossible to differentiate without the chain rule; the only recourse would be to multiply out, differentiate term by term, and attempt to factor the result. ⋄



Example 10.2.9. The absolute value function a(x)=|x| is differentiable except at 0, and a′(x)=x/|x|. If f is differentiable, then |f| is differentiable except possibly where f=0, and |f|′(x)=f(x)f′(x)/|f(x)|. ♢



Differentiability of Inverse Functions


Theorem 10.2.10. (The inverse function theorem in one variable). ⏎ Assume I is an open interval in R, and f:I→R a continuous, strictly monotone function. If f is differentiable at some x0 in I, then the inverse g=f−1 is differentiable at y0=f(x0) if and only if f′(x0)≠0, and in this event

g′(y0)=1f′(x0).

Proof. For every real number h such that x0+h=x∈I, we may write y=f(x)=f(x0+h) and k=y−y0=f(x0+h)−f(x0), see Figure 10.1. Since f is injective, k is uniquely determined by h, and since f and f−1 are continuous (see Proposition 8.2.11), o(h)≈o(k) if k≈0. By algebra, or reading off Figure 10.1, Δ(f−1)(y0,k)=h/k=1/Δf(x0,h). If f′(x0)≠0, then

(f−1)′(y0)=limk→0Δ(f−1)(y0,k)=limh→01Δf(x0,h)=1f′(x0).

[image: A curve y equals f of x is drawn with two vertical dashed lines at x 0 and x 0 plus h. Horizontal dashed lines extend from the curve to label y 0 equals f of x 0 and y 0 plus k equals f of x 0 plus h. A right triangle is formed below the curve with base h and height k. The expressions y equals f of x and x equals g of y are written in the upper right corner.]
Figure 10.1 The difference quotient of an inverse function. ⏎



Page 222Conversely, x=f−1(f(x)) for all x in I. If f−1 is differentiable at y0=f(x0), the chain rule implies 1=(f−1)′(y0)⋅f′(x0), and therefore f′(x0)≠0. □



Corollary 10.2.11. ⏎ If r is rational and f:(0,∞)→R is defined by f(x)=xr, then f is differentiable, and f′(x)=rxr−1.

Proof. See Exercise 10.2.5. □





Exercises for Section 10.2


	Exercise 10.2.1. (★) Find all the derivatives of the following functions:


	(a)s(x)=x−(x3/3!).


	(b)c(x)=1−(x2/2!)+(x4/4!).


	(c)e(x)=1+x+(x2/2!)+(x3/3!).





	Exercise 10.2.2. (★) Assume n is a natural number and f(x)=xn. Find all the derivatives of f, expressing them in terms of factorials and powers of x. In particular, show that f(n)(x)=n!, and that f(k)(x)=0 if k>n.


	Exercise 10.2.3. If n≥2 and f(x)=|x|n, find a formula for f′(x).


	Exercise 10.2.4. Define f:(0,∞)→R by f(x)=1/x.


	(a)Prove f is differentiable and calculate f′(x) from the definition.


	(b)Prove f is differentiable and calculate f′(x) using Theorem 10.2.10.





	Exercise 10.2.5. (★) Prove Corollary 10.2.11.


	Exercise 10.2.6. Define f:(−1,∞)→R by f(x)=(1+x)1/2. Find all the derivatives of f. Express f(k)(0) in terms of factorials.


	Exercise 10.2.7. In each part, m and n denote natural numbers. Use algebraic identities, and the product, quotient, and chain rules to calculate the derivatives of the indicated functions. Re-use answers to earlier parts where possible. In your answers, it should be possible to tell by inspection where the derivative is zero or undefined.


	(a)f(t)=(1+t)n(1−t)n,  g(t)=(1+t2)n(1−t2)n.


	(b)f(t)=(1+t)m(1−t)n,  g(t)=(1+t2)m(1−t2)n.


	(c)Page 223f(t)=1−t1+t,  g(t)=1−t21+t2,  h(t)=[1−t21+t2]n.





	Exercise 10.2.8. (★) In each part, n denotes a natural number. By reverse-engineering the chain rule if possible, or other means if not, find primitives of the indicated functions. Note that if r is rational and r≠−1, then Φ(u)=1r+1ur+1 is a primitive of ϕ(u)=Φ′(u)=ur.


	(a)f(t)=(1+t)n/2f(t)=(1+t)n,  g(t)=2t(1+t2)n/2g(t)=t(1+t2)n,  h(t)=(1+t2)n.


	(b)f(t)=(1+t)n/2,  g(t)=2t(1+t2)n/2,  h(t)=t/(2+t2)n/2, n≠2.





	Exercise 10.2.9. (★) Match each differential formula with the corresponding proposition or theorem from this chapter, and specify the appropriate functional relationships.


	(a)d(cy+z)dx=cdydx+dzdx.


	(b)d(uv)dx=udvdx+vdudx.


	(c)dzdx=dzdydydx.


	(d)dxdy=1dy/dx.





	Exercise 10.2.10. Assume f is a function of class C2; that is, f′′ exists and is continuous. Assume f(x0)>0, and define g(x)=1/f(x) provided f(x)≠0.

Find a formula for g′′ in a neighborhood of x0. Your formula should depend only on the values of f and its first two derivatives at x0.

If f′′(x0)>0 what (if anything) is guaranteed about the sign of g′′(x0)? What if f′′(x0)<0?


	Exercise 10.2.11. Assume f is of class C2, and f′(x0)>0, so f is invertible near x0, and set y0=f(x0).

If g is the branch of f−1 satisfying g(y0)=x0, prove g is twice differentiable at y0, and find an expression for g′′ near y0.

If f′′(x0)>0 what (if anything) is guaranteed about the sign of g′′(y0)? What if f′′(x0)<0?


	Exercise 10.2.12. Suppose f:R→R is differentiable and satisfies f′=1−f2. Prove f is smooth, and calculate f′′ and f′′′ as functions of f.


	Exercise 10.2.13. Prove that a differentiable function f:R→R satisfies

f′(s+t2)=f(t)−f(s)t−sfor all real s, t

if and only if f is a polynomial of degree at most 2.


	Exercise 10.2.14. Page 224(Unexpected tangents.) Assume f is a differentiable function, ℓ a non-vertical line through an arbitrary point (x0,f(x0)), and ε arbitrary. This three-part exercise constructs a differentiable function g that differs from f everywhere by at most ε, and has ℓ as a tangent line at x0.


	(a)Define ϕ(x)=x/(1+x2). Calculate ϕ′, and determine the absolute maximum and minimum values of ϕ. Let m be an arbitrary real number, and define ϕm(x)=ϕ(mx). Show that the line y=mx is tangent to the graph of ϕm at x=0.


	(b)If n is a positive integer, define ψn(x)=(1/n)ϕm(nx). Prove that the line y=mx is tangent to the graph of ψn at the origin, and for sufficiently large n, |ψn(x)|<ε for all real x.


	(c)Assume f:R→R is differentiable, and ℓ is a non-vertical line through an arbitrary point (x0,f(x0))=(x0,y0) on the graph of f.

Use a function ψn from part (b) to prove that for every ε, there exists a differentiable function g, defined on the same set as f, satisfying the conditions: (i) g(x0)=f(x0), (ii) The line ℓ is tangent to the graph of g at (x0,y0), and (iii) |g(x)−f(x)|<ε for all x in the domain of f.




In words, by perturbing f by an arbitrarily small amount in the vertical direction, we can make the graph “unexpectedly” tangent to an arbitrary line. Strictly speaking, we have no visual basis for saying any particular line is mathematically tangent to any particular graph.






10.3 The Mean Value Theorem


Theorem 10.3.1. (The mean value theorem). If f:[a,b]→R is a continuous function that is differentiable on (a,b), then there exists an x0 in (a,b) such that

f′(x0)=f(b)−f(a)b−a.



Remark 10.3.2. Analytically, the derivative at some point of (a,b) is equal to the secant slope over [a,b]. In terms of position and speed: If on a car trip you cover 60 miles in a certain one-hour period of time, then at some instant during that hour your speed must have been exactly 60 miles per hour.

The true power of the mean value theorem, however, arises because if x1 and x2 are arbitrary real numbers such that a≤x1<x2≤b, we can apply the mean value theorem to f on the interval [x1,x2]. That is, when traveling Page 225from Point A to Point B, your average speed over every time interval is equal to your instantaneous speed at some instant during that interval. ⋄

Proof. By subtracting the affine interpolation fa,b, we may as well assume our function vanishes at a and b. Specifically, define g:[a,b]→R by

g(x)=f(x)−fa,b(x)=f(x)−[f(a)+f(b)−f(a)b−a(x−a)].

The function g is continuous on [a,b], differentiable on (a,b) with derivative

g′(x)=f′(x)−f(b)−f(a)b−afor all x in (a,b),

and g(a)=0=g(b). It suffices to prove g′(x0)=0 for some x0 in (a,b).

By the extreme value theorem, there exist points xmin and xmax in [a,b] such that

g(xmin)≤g(x)≤g(xmax)for all x in [a,b].

Suppose at least one of xmin and xmax is in (a,b), and call it x0. By Proposition 10.1.10, g′(x0)=0 and the proof is complete.

Otherwise, each of our points xmin and xmax is an endpoint of [a,b]. Since the endpoint values g(a)=0=g(b) are equal, the extreme values are equal; that is, g(x)=0 for all x. Consequently, g′(x0)=0 for every point x0 in (a,b). □



Theorem 10.3.3. (The identity theorem). ⏎ Assume f and g are differentiable functions on some interval I. If f′(x)=g′(x) for every interior point x of I, then there exists a real number C such that f(x)=g(x)+C for all x in I.

Proof. The function h=f−g is differentiable, and by hypothesis the derivative h′(x)=f′(x)−g′(x) is 0 for all x in the interior of I. It suffices to prove h is constant. Since the hypothesis consists of infinitely many conditions, no finite number of which imply the conclusion, we prove the contrapositive.

If h is non-constant, there exist numbers a and b in I such that a<b and h(a)≠h(b). By the mean value theorem applied to h on [a,b], there exists an x0 in (a,b) such that

h′(x0)=h(b)−h(a)b−a≠0.◻

□



Example 10.3.4. The floor function on R∖Z has derivative identically 0, but is non-constant, equal to n on the open interval (n,n+1) for each integer n. This type of example shows the importance of assuming the domain is an interval in the identity theorem. ♢



Definition 10.3.5. Page 226Assume that X is a non-empty set of real numbers and f:X→R is a function. We say f has bounded stretch on X if there exists a real M such that |f(x2)−f(x1)|≤M|x2−x1| for all x1 and x2 in X. The infimum of all such M is called the stretch of f (on X).

We say f has locally bounded stretch on X if for every x0 in X, there exists a positive r such that f has bounded stretch on Br(x0).



Remark 10.3.6. Assume {x1,x2}⊆X. Since |f(x2)−f(x1)|≤M|x2−x1| is automatic if x1=x2, f has bounded stretch on X if and only if there is a real M such that

|f(x2)−f(x1)x2−x1|≤Mif x1<x2.

If f is differentiable and |f′|≤M on some interval I⊆X, then f has bounded stretch on I: By the mean value theorem, the quotient on the left is |f′(x0| for some x0 in (x1,x2). Every C1 function has locally bounded stretch. ⋄



Monotonicity

Together with the intermediate value theorem (Theorem 8.4.1), derivatives provide a powerful computational tool for showing a function is injective and/or surjective on a real interval.


Theorem 10.3.7. (The monotonicity theorem). ⏎ If f:[a,b]→R is continuous, differentiable on (a,b), and if f′(z)>0 for all z in (a,b), then f is strictly increasing in [a,b], and f is a bijection to the closed interval [f(a),f(b)].

Proof. Assume x and y are arbitrary numbers such that a≤x<y≤b. By the mean value theorem applied to f on [x,y], there is an x0 in (x,y) such that

f(y)−f(x)y−x=f′(x0).

By hypothesis, f′(x0)>0, and since x<y, it follows that f(x)<f(y). Since x and y were arbitrary, f is Page 227strictly increasing on [a,b].

In particular, f is injective, and the image of f is contained in [f(a),f(b)]: If a≤x≤b, then f(a)≤f(x)≤f(b). Conversely, if f(a)<y<f(b), the intermediate value theorem guarantees there exists an x in (a,b) such that y=f(x); that is, [f(a),f(b)] is contained in the image of f. □



Remark 10.3.8. An entirely analogous argument shows that if f is continuous on [a,b] and f′(x)<0 for all x in (a,b), then f is decreasing on [a,b], and the image of f is [f(b),f(a)]. ⋄



Example 10.3.9. ⏎ The polynomial function f(x)=x3−3x is differentiable on R, and f′(x)=3x2−3=3(x−1)(x+1). Since f′(x)>0 if x<−1, f is strictly increasing on the closed interval (−∞,−1]. Further, the image of f on this interval is the interval (−∞,2], since f(x)→−∞ as x→−∞ and f(−1)=2, Figure 10.2.

[image: Two graphs compare a non-invertible function and its inverse branches. The left graph shows y equals f of x, a cubic curve y equals x cubed minus 3 x, crossing the origin and bending twice, with vertical axis y and horizontal axis x. The line y equals x is drawn faintly. The right graph shows x equals f inverse of y, illustrating the inverse branches with a sideways S-shaped curve, using horizontal axis y and vertical axis x. The inverse relation x of y equals h is marked.]
Figure 10.2 Branches of f−1 for f(x)=x3−3x. ⏎



Since f′(x)<0 if −1<x<1, f is strictly decreasing on the closed interval [−1,1], and f maps this interval to [−2,2]. Similarly, f is strictly increasing on [1,∞), and f maps this interval to [−2,∞).

It follows from this analysis that f:R→R is surjective; the equation y=x3−3x has at least one solution x for every real y. In fact, we have shown more. If |y|<2, the equation y=x3−3x has precisely three solutions: one of them less than −1, one between −1 and 1, and one greater than 1. If y=±2, there are precisely two solutions (one being ∓1). If |y|>2, there is exactly one solution of y=x3−3x.

This analysis also demonstrates the existence of a unique continuous function g:(−∞,2]→(−∞,−1] satisfying g(x3−3x)=(g∘f)(x)=x if x≤−1 and g(y)3−3g(y)=(f∘g)(y)=y if y≤2. The function g, a branch of f−1, is differentiable on the open interval (−∞,2), and

g′(y)=1f′(x)=13(x2−1)=13(g(y)2−1).

Similarly, there is a continuous branch of f−1 from [−2,2] to [−1,1], and a continuous branch of f−1 from [−2,∞) to [1,∞). ♢





Exercises for Section 10.3


	Exercise 10.3.1. (★) Assume n is a positive integer, b a positive real number, and f(x)=xn. Prove there is a unique c in (0,b) satisfying the mean value theorem for f on [0,b].Page 228


	Exercise 10.3.2. (A). In each part, define f(x)=(x2−1)2.


	(a)Use the techniques of Example 10.3.9 to find branches of f−1.


	(b)Solve the equation y=f(x) for x in terms of y. Match each formula you find with a branch of f−1 found in (b).





	Exercise 10.3.3. In each part, define f(x)=x/(1+x2).


	(a)Use the techniques of Example 10.3.9 to find branches of f−1.


	(b)Solve the equation y=f(x) for x in terms of y. Match each formula you find with a branch of f−1 found in (a).





	Exercise 10.3.4. (A). Suppose I is an open set of real numbers and f is a differentiable function on I. Proof or counterexample:


	(a)If f′(x)=0 for all x in I, then f is constant on I.


	(b)If f′(x)>0 for all x in I, then f is strictly increasing on I.





	Exercise 10.3.5. (★) Assume f is defined in some neighborhood of x0.


	(a)Assuming f is differentiable at x0, evaluate

limh→0f(x0+h)−f(x0−h)2h.


	(b)If the limit in part (a) exists at x0, does it follow that f is differentiable at x0? Continuous?





	Exercise 10.3.6. If f is of class C2 in a neighborhood x0, prove

f′′(x0)=limh→0+f(x0+h)+f(x0−h)−2f(x0)h2.


	Exercise 10.3.7. (H). Assume f, g:R→R are differentiable functions satisfying f′=f and g′=g. If g is non-vanishing, prove that f(x)=f(0)g(x)/g(0).


	Exercise 10.3.8. (H). This exercise gives a generalization of the mean value theorem. Assume f and g are continuous on some interval [a,b] and differentiable on (a,b). Prove there exists a point x0 in (a,b) such that

f′(x0)(g(b)−g(a))=g′(x0)(f(b)−f(a)).


	Exercise 10.3.9. (H). This exercise outlines the zooming rule, a computational procedure for evaluating certain indeterminate limits of the form 0/0.


	Page 229(a)Suppose f and g are differentiable in (c,c+r) for some r, g is non-vanishing, and lim(f,c+)=lim(g,c+)=0. Prove that if lim(f′/g′,c+)=ℓ, then lim(f/g,c+)=ℓ.

In words, if the (one-sided or two-sided) limit of a quotient is formally 0/0, try differentiating the numerator and denominator and re-evaluating. If the limit is ℓ, the original limit is also ℓ.


	(b)Suppose f and g are differentiable and g is non-vanishing on some interval (R,∞), and lim(f,∞)=0, lim(g,∞)=0. Prove that if lim(f′/g′,∞)=ℓ, then lim(f/g,∞)=ℓ.





	Exercise 10.3.10. In each part, assume r is a rational number and c a positive real. Use Exercise 10.3.9 to evaluate the stated limit.


	(a)limx→cxr−crx−c.


	(b)limx→c(x2+c2)r−(2c2)rx−c.









10.4 Applications

The mean value theorem connects properties of f on an interval, such as monotonicity, to the derivative f′. This section gives additional applications.


The Intermediate Value Property


Definition 10.4.1. Assume I is an interval of real numbers. A function f:I→R satisfies the intermediate value property (on I) if the following holds: For all a and b in I, and for every real number m between f(a) and f(b), there exists a real c in [a,b] such that f(c)=m.



Remark 10.4.2. This can be phrased succinctly at the level of sets: If we put A=min(f(a),f(b)) and B=max(f(a),f(b)), then [A,B]⊆f([a,b]). ⋄



Proposition 10.4.3. ⏎ If the function f is differentiable on some open interval I, then its derivative f′ satisfies the intermediate value property on I.

Proof. See Exercise 10.4.5 □



Remark 10.4.4. Exercises 10.4.8 and 10.4.9 show that a derivative need not be continuous. Examples are harder to visualize than might be expected. ⋄




Page 230Smooth Patching

Suppose f is given “piecewise” by formulas on abutting intervals. Theorem 10.4.5 guarantees the patched function is differentiable if it is continuous (“the graphs have the same height where they meet”) and “the one-sided slopes agree.” These hypotheses are not necessary, see Exercises 10.4.8 and 10.4.9.


Theorem 10.4.5. (Smooth patching). ⏎ Assume f is defined on some open ball Br(x0), differentiable on the punctured ball Br×(x0), and the one-sided limits f′(x0−) and f′(x0+) exist. Under these hypotheses, f is differentiable at x0 if and only if f is continuous at x0 and f′(x0−)=f′(x0+).

Proof. See Exercise 10.4.6. □



Example 10.4.6. Assume f(x)=ax2+bx+c if x<1 and f(x)=x3 if 1≤x. For which a, b and c is f differentiable?

Both formulas define smooth functions on R. If x<1, Corollary 10.2.4 gives f′(x)=2ax+b, while if 1<x (strict inequality) we have f′(x)=3x2.

The one-sided limits of f and f′ may be calculated by evaluation. Particularly, f is continuous at 1 if and only if

a+b+c=f(1−)=f(1+)=1,

and “f has equal slopes” at 1 if and only if

2a+b=f′(1−)=f′(1+)=3.

By smooth patching, f is differentiable on R if and only if f is differentiable at 1, if and only if a+b+c=1 and 2a+b=3.

The second gives b=3−2a; substituting in the first gives a+(3−2a)+c=1, or c=a−2. For each real a, the resulting function, which is given by f(x)=ax2+(3−2a)x+(a−2) if x<1, is differentiable. ♢




Convexity

Recall Definition 5.1.30: A function f defined on an interval is convex if f lies below its secants. We start with useful alternative characterizations.


Proposition 10.4.7. ⏎ Assume I is an interval of real numbers and f:I→R is a function. If x, y, and z denote arbitrary points of I, then the following are equivalent:


	(i)f is convex on I: f(z)≤fx,y(z)=f(x)+f(y)−f(x)y−x(z−x) if x<z<y.


	(ii)f((1−s)x+sy)≤(1−s)f(x)+sf(y) if x<y and 0<s<1.


	(iii)Page 231f(z)−f(x)z−x≤f(y)−f(x)y−x≤f(y)−f(z)y−z if x<z<y.




Proof. Since each z in (x,y) may be written x+s(y−x)=(1−s)x+sy for a unique s in (0,1), convexity is equivalent to (ii). Operationally, applying a convex function to a convex linear combination “distributes upward.”

If [x,y]⊆I and 0<s<1, then (ii) may be rearranged to

f((1−s)x+sy)−f(x)≤s(f(y)−f(x))≤f(y)−f(sx+(1−s)y).

Taking s=(z−x)/(y−x) in the first and s=(y−z)/(y−x) in the second shows (ii) is equivalent to (iii). Operationally, if [x,y] is split into two pieces at z, the secant slope over [x,z] is no larger, and the secant slope over [z,y] no smaller, than the secant slope over [x,y]. □



Proposition 10.4.8. ⏎ Assume I is an open interval. If f:I→R is convex, then f has locally bounded stretch in I. Particularly, f(x)−f(x0)≈O(x−x0) for each x0.

Proof. See Exercise 10.4.12. □



Remark 10.4.9. A convex function can be discontinuous at endpoints of its domain. For example, f(x)=0 if 0≤x<1 and f(1)=1 is convex. ⋄



Lemma 10.4.10. ⏎ If f is continuous on [a,b], vanishes at the endpoints, is twice-differentiable on (a,b), and if f′′(x)≥0 for all x in (a,b), then f(z)≤0 for all z in (a,b).

Proof. Assume contrapositively that there exists a z in (a,b) such that f(z)>0. It suffices to prove f′′(x)<0 for some x in (a,b). By the mean value theorem applied to f on [a,z], there exists a y1 in (a,z) such that

f′(y1)=f(z)−f(a)z−a=f(z)z−a>0.

Similarly, there is a point y2 in (z,b) such that f′(y2)<0, Figure 10.3.

[image: A concave downward curve from a to b is shown with tangents at y 1 and y 2; f prime of y 1 is greater than 0, f prime of y 2 is less than 0, and the secant from a to b lies below the curve. Vertical dashed lines mark y 1, y 2, and midpoint z, indicating f double prime is less than 0 throughout the interval.]
Figure 10.3 Determining the sign of f′′ from the value of f. ⏎



Page 232Applying the mean value theorem to f′ on [y1,y2], there is an x in (y1,y2) such that

f′′(x)=f′(y2)−f′(y1)y2−y1<0.◻

□



Proposition 10.4.11. ⏎ If f is twice differentiable on [a,b], and f′′(z)≥0 for all z in (a,b), then f is convex on [a,b].

Proof. Assume a≤x<y≤b, and consider the function

g(z)=f(z)−fx,y(z)=f(z)−[f(x)+f(y)−f(x)y−x(z−x)].

By construction, g(x)=g(y)=0 and g′′=f′′≥0. Lemma 10.4.10 implies g(z)≤0 on [x,y]. Since x and y were arbitrary, f is convex on [a,b]. □



Corollary 10.4.12. ⏎ If f is continuous on [a,b], twice-differentiable, f′′≥0 on (a,b), and if f′′=0 only at isolated points in (a,b), then f is strictly convex on [a,b].

Proof. Assume a≤x<y≤b. In the notation above, it suffices to prove g(z)<0 (strict inequality) if x<z<y. By Lemma 10.4.10, g≤0 on (x,y). However, g cannot be identically zero, because g′′=0 only at isolated points. Thus, g(z0)<0 for some z0 in (x,y).

Since g is convex by Proposition 10.4.11 and g(x)=0,

g(z)≤g(x)+g(z0)−g(x)z0−x(z−x)=g(z0)z0−x(z−x)<0

if x<z≤z0. A similar argument shows g(z)<0 if z0<z<y. □



Definition 10.4.13. Assume f is continuous in some neighborhood of a real number x0. We say the point (x0,f(x0)) on the graph y=f(x) is an inflection point if “the concavity of f changes at x0,” namely, if there exists an open ball Br(x0) such that f is strictly convex on (x0−r,x0) and strictly concave on (x0,x0+r), or else is strictly concave on (x0−r,x0) and strictly convex on (x0,x0+r).



Example 10.4.14. The function f(x)=x1/3 is continuous on R, though not differentiable at 0, and f′′(x)=(−2/9)x−5/3 changes sign at x=0. Corollary 10.4.12 implies f is convex on [−1,0] and concave on [0,1], so the graph of f has an inflection point at the origin. ♢



Example 10.4.15. The function f(x)=x4 is smooth, and f′′(x)=12x2≥0 for all real x, with equality only if x=0. By Corollary 10.4.12, f is strictly convex on R. ♢



Remark 10.4.16. In calculus, convexity tends to get conflated with positivity of the second derivative. In fact, a convex function can fail to be twice-differentiable at every point of its domain, see Exercise 10.4.11. ⋄
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	Exercise 10.4.1. Find all values of a1, a2, b1, b2 such that the function

f(x)={a1+(a2/x)x<−1,4−x2−1≤x≤1,b1+(b2/x2)1<x

is differentiable on R.


	Exercise 10.4.2. (★) Define f:R→R by f(x)=(x2−1)2. Find the maximal intervals of monotonicity and convexity of f, zeros of f, and any local extrema and inflection points.


	Exercise 10.4.3. Define f(x)=x/(1+x2). Find the maximal intervals of monotonicity and convexity of f, zeros of f, and any local extrema and inflection points. Use this to sketch the graph y=f(x).


	Exercise 10.4.4. Suppose f(x)=2x1−x2 if x≠±1.


	(a)Calculate f′(x) and f′′(x). Find the intervals of monotonicity and convexity of f, the zeros of f, and any local extrema and inflection points. Use this information to sketch the graph y=f(x).


	(b)Use techniques of Example 10.3.9 to find corresponding branches of f−1.


	(c)Solve the equation y=f(x) for x in terms of y. Match each formula you find with a branch of f−1 found in (a).





	Exercise 10.4.5. Prove Proposition 10.4.3. Hint: In the notation of the theorem, put g(x)=f(x)−mx on the interval [a,b] and prove g takes its absolute minimum in (a,b).


	Exercise 10.4.6. (H). Prove Theorem 10.4.5, smooth patching. Ideas: If (i) holds and (ii) does not, use Proposition 10.4.3 to prove f is not differentiable at x0.

Inversely, if (i) and (ii) are both true, apply the mean value theorem to intervals contained in Br(x0) and having x0 as an endpoint.


	Exercise 10.4.7. (A). Prove there exists a non-constant, 1-periodic function ψ (psi) of class C1 on R.


	Exercise 10.4.8. Let ψ:R→R be a non-constant, 1-periodic function of class C1, so ψ(x+1)=ψ(x) for all real x. (See Exercise 10.4.7.) Define f(x)=x2ψ(1/x) if x≠0, and f(0)=0.


	(a)Page 234Prove that ψ is bounded.


	(b)For x≠0, calculate f′(x) in terms of ψ(x) and ψ′(x). Prove f′ is locally bounded near 0.


	(c)Prove f′(0) exists, but f′ is discontinuous at 0.





	Exercise 10.4.9. With notation of Exercise 10.4.8, define f(x)=x2ψ(1/x2) if x≠0, and f(0)=0. Prove that f is differentiable on R, but f′ is unbounded in every neighborhood of 0.


	Exercise 10.4.10. Assume I is an interval, f:I→R a non-decreasing (hence integrable) function, a∈I, and F the definite integral of f from a. Prove F is convex, and f is strictly increasing if and only if F is strictly convex. Caution: f need not be continuous on any interval.


	Exercise 10.4.11. Let f be the function constructed in Exercise 8.2.13, and define

F(x)=∫0xf(t)dt.

Prove that F is strictly increasing and strictly convex, but is differentiable at x if and only if x is irrational, and therefore twice-differentiable nowhere.


	Exercise 10.4.12. (H). Assume I is a real interval and f:I→R convex.


	(a)If x0 is an interior point of I, prove f(x)−f(x0)≈O(x−x0) near x0. Explicitly, prove there exists an M and a positive r such that Br(x0)⊆I and |f(x)−f(x0)|≤M(x−x0) if |x−x0|≤r.


	(b)Prove Proposition 10.4.8.





	Exercise 10.4.13. (★) In this exercise we'll compare several types of continuity on an interval [a,b], and examine the adversarial games corresponding to three of them: ordinary continuity, uniform continuity, and bounded stretch.


	(a)Write out formal definitions of “f is continuous on [a,b]”; “f is uniformly continuous on [a,b]”; “f has bounded stretch on [a,b].” Treat this either as a review exercise or a short research assignment with the book's index.


	(b)Prove that bounded stretch implies uniform continuity, but not conversely. (If you have done Exercise 10.4.9, give a differentiable function that is uniformly continuous but does not have bounded stretch.)


	(c)If f is continuous on [a,b], then for each x0 in [a,b] and each positive ε, Player δ has a “largest winning response” δ(x0,ε) against Player ε. Write δ(x0,ε) as a supremum, and prove it is non-decreasing in ε.


	Page 235(d)What condition on δ(x0,ε) is equivalent to uniform continuity? What condition is equivalent to bounded stretch?


	(e)Prove that if f has bounded stretch in [a,b], then f(x)≈f(x0)+O(x−x0) for every x0. Is the converse true?


	(f)Assume r is a rational number in (0,1). We'll say a function f:[a,b]→R is r-continuous on [a,b] if there exists a real positive number M such that |f(x2)−f(x1)|≤M|x2−x1|r for all x1 and x2 in [a,b]. (Once we define powers with irrational exponent we can assume r is real.) Assume 0<s<r<1. Prove that bounded stretch implies r-continuous, which implies s-continuous, which implies uniformly continuous.


	(g)In the notation of part (f), find all functions that are “1.0001-continuous” on [a,b].
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At first glance, integrals and derivatives are not closely related. On closer inspection, they are nearly inverses as operators on functions. In Chapter 9 we calculated the integral of f(x)=xn over an interval [a,b]. Despite fairly substantial effort, the end result was simple: Find a primitive, a function satisfying F′=f, such as F(x)=xn+1/(n+1). The integral of F′=f turned out to be F(b)−F(a)=(bn+1−an+1)/(n+1). This chapter establishes sweeping generalizations.


11.1 Integrals and Derivatives

There are two fundamental theorems of calculus. One describes differentiating a definite integral, the other integrating a derivative.


Theorem 11.1.1. (Derivative of an integral). ⏎ Assume f is integrable on [a,b], and F is the definite integral

F(x)=∫axf,defined for x in [a,b].

If f is continuous at a point x0 in (a,b), then F is differentiable at x0, and F′(x0)=f(x0). In differential notation,

ddx∫axf(t)dt=f(x)if f is continuous at  x.

Proof. If x0+h lies in (a,b), then

ΔF(x0,h)=F(x0+h)−F(x0)h=1h[∫ax0+hf−∫ax0f]=1h∫x0x0+hf,

see Figure 11.1. Viewing f(x0) as a constant function, we deduce

ΔF(x0,h)−f(x0)=1h[∫x0x0+hf]−f(x0)=1h∫x0x0+h(f−f(x0)).

[image: Two diagrammatic representation show areas under the curve y equals f of t. The left graph shades the region from a to x 0, representing F of x 0 equals the integral from a to x 0 of f of t d t. The right graph shades the region from x 0 to x 0 plus h, labelled F of x 0 plus h minus F of x 0, illustrating the increment of the definite integral.]
Figure 11.1 The increment of a definite integral. ⏎



Page 237Since f is continuous at x0, f(x)−f(x0)≈o(1) if x≈x0, so

ΔF(x0,h)−f(x0)≈1h∫x0x0+ho(1)≈o(1)if h≈0.

Letting h→0 shows F′(x0)=f(x0). □



Theorem 11.1.2. (Integral of a derivative). ⏎ Assume F is of class C1 on some open interval I. If a∈I, then

∫axF′(t)dt=F(x)−F(a)for all x in I.

Proof. Consider the definite integral

G(x)=∫axF′(t)dt.

By Theorem 11.1.1, G is differentiable in I, and G′(x)=F′(x) for all x in I. By the identity theorem, there exists a real number C such that G(x)=F(x)+C.

To evaluate C, set x=a: We deduce 0=G(a)=F(a)+C, so C=−F(a), or G(x)=F(x)−F(a). □



Remark 11.1.3. The hypotheses in Theorem 11.1.2 can be weakened. For example, if F is differentiable and f=F′ is integrable, the same conclusion holds, see Exercise 11.1.14. ⋄



Change of Variables

Proposition 9.2.8 has a useful, far-reaching generalization.


Theorem 11.1.4. (Change of variables). If a<b, τ is a function of class C1 on [a,b], and f is a continuous function whose domain contains the image of τ, then

∫τ(a)τ(b)f=∫ab(f∘τ)⋅τ′.



Remark 11.1.5. Page 238In differential notation, put t=τ(s), so that dt=τ′(s)ds. The conclusion of the theorem reads

∫τ(a)τ(b)f(t)dt=∫abf(τ(s))⋅τ′(s)ds.

This type of formal symbolic manipulation for correctly adding up infinitely many infinitesimal increments is self-descriptively called integral calculus. ⋄

Proof. Consider the functions

G(x)=∫τ(a)xf,F(s)=(G∘τ)(s)=∫τ(a)τ(s)f,

which are of class C1. By the chain rule and Theorem 11.1.1,

F′=(G′∘τ)⋅τ′=(f∘τ)⋅τ′.

By Theorem 11.1.2,

∫τ(a)τ(b)f=F(b)−F(a)=∫abF′=∫ab(f∘τ)⋅τ′.◻

□




Differentiation of Power Series


Proposition 11.1.6. ⏎ Suppose

f(x)=∑k=0∞ak(x−x0)k=a0+a1(x−x0)+a2(x−x0)2+a3(x−x0)3+⋯

is a germ on BR(x0). Thereal-analytic function f is differentiable on BR(x0), and

f′(x)=∑k=1∞kak(x−x0)k−1=∑k=0∞(k+1)ak+1(x−x0)k=a1+2a2(x−x0)+3a3(x−x0)2+4a4(x−x0)3+⋯.

Proof. As usual, assume x0=0. Throughout the proof, let

fn(x)=∑k=0nakxk,the polynomial approximators of f(x);g(x)=∑k=1∞kakxk−1,the termwise derived series;fn′(x)=∑k=1nkakxk−1,the polynomial approximators of g(x).

Page 239Our first task is to prove that the series g(x) converges absolutely for all x in (−R,R). Write r=12(|x|+R), and |x|=rρ, so that |x|<|r|<R and ρ<1. The terms of g(x) are therefore bounded in absolute value by

|kakxk−1|≤|akrk−1|⋅|kρk−1|.

By Corollary 7.2.9, (kρk−1)→0, so the second factor is bounded. The first factor is, aside from a “missing” factor of r, the general term of the series for f(r), which converges absolutely by hypothesis. The derived series g(x) therefore converges absolutely on (−R,R), and consequently may be integrated term by term:

∫0xg(t)dt=∫0xlimn→∞fn′(t)dt=limn→∞∫0xfn′(t)dtProposition 9.4.10=limn→∞fn(x)−fn(0)Theorem 11.1.2=f(x)−f(0).

By Theorem 11.1.1,

f′(x)=ddx∫0xg(t)dt=g(x).◻

□



Remark 11.1.7. Computationally, a convergent power series can be differentiated term by term in its interval of convergence, just as if it were a polynomial.

Proposition 11.1.6 guarantees the termwise derived series has the same radius as the original power series. This has an important “bootstrapping” consequence: Since f′ is real-analytic on (−R,R), the second derivative f′′ can be represented by a convergent power series on (−R,R), obtained by differentiating the series for f′ term by term, and so forth. That is, a real-analytic function is smooth. ⋄





Exercises for Section 11.1


	Exercise 11.1.1. (★) Let U be the unit step function, U(t)=0 if t<0, U(t)=1 if 0<t, and U(0)=1/2. Calculate F(x)=∫0xU and sketch the graph of F.


	Exercise 11.1.2. Define F:R→R by F(x)=∫0x(1+t)(2+2t+t2)3dt.

Evaluate F(x) as an algebraic formula, and find F′(x) in two ways.Page 240


	Exercise 11.1.3. (A). Suppose f:R→R is continuous.


	(a)Define G:R→R by

G(x)=∫0x2f(t)dt.

Prove that G is differentiable, and find G′(x).


	(b)Define H:R→R by

H(x)=∫xx2f(t)dt.

Show that H is differentiable, and find H′(x).


	(c)Assume ϕ and ψ are differentiable on (α,β), and define

Φ(x)=∫ψ(x)ϕ(x)f(t)dtfor x in (α,β).

Show that Φ is differentiable, and find Φ′(x) in terms of f, ϕ, and ψ.





	Exercise 11.1.4. Consider the functions F, G:R→R defined by

F(x)=∫0x2tdt1+t33,G(x)=∫0xt2dt1+t63.

Calculate F′ and G′. Determine which (if either) is larger: F(1/2) or G(1/2).


	Exercise 11.1.5. (★) Assume I is an open interval and f:I→R continuous. Prove that for every c in R and every x0 in I, there exists a unique C1 function F:I→R satisfying the “initial-value problem”

F′=f,f(x0)=c.


	Exercise 11.1.6. (★) Does there exist an integrable function f:[−1,1]→R such that

∫−1xf(t)dt=1−x2for all x in [−1,1]?


	Exercise 11.1.7. Assume A:(−1,1)→A(−1,1) is the C1 function defined by

A′(x)=11−x2,A(0)=0.


	(a)Prove A is invertible. If S=A−1, prove S′=1−S2.


	(b)Prove S is C2, and find S′′ in terms of S.





	Exercise 11.1.8. Page 241(★) Assume f:R→R is continuous. This exercise constructs a function F such that F′′=f.


	(a)Find the derivatives of g(x)=∫0xtf(t)dt and h(x)=∫0xxf(t)dt.


	(b)Prove F(x)=∫0x(x−t)f(t)dt=∫0x[∫0sf(t)dt]ds satisfies F′′=f.





	Exercise 11.1.9. (H). Assume I is an open interval and f:I→R is continuous. Prove that for every c0 and c1 in R and every x0 in I, there exists a unique C2 function F:I→R satisfying the initial-value problem

F′′=f,f(x0)=c,f′(x0)=c1.


	Exercise 11.1.10. (H). Assume I is an open interval, x0 a point of I, and f:I→R a continuous function. Prove that the initial-value problem

y′′=f(y),y(x0)=y0,y′(x0)=y0′

has a solution in some neighborhood of x0 if y0′≠0.


	Exercise 11.1.11. (H). If n is an integer and n≥2, define fn(t)=tn(1−t)n if 0≤x≤1 and 0 otherwise, and put

cn=∫01fn(t)dt,Fn(x)=1cn∫0xfn(t)dt.


	(a)Prove that Fn is of class Cn, non-decreasing, and that Fn(x)=0 if x≤0, Fn(x)=1 if x≥1.


	(b)Assume [c,d]⊆(a,b). Use part (a) to show there exists a non-negative function f of class Cn defined on R such that f(x)=1 if c≤x≤d; f(x)=0 if x≤a or b≤x; and 0≤f(x)≤1 for all real x.





	Exercise 11.1.12. Assume f:R→R is continuous and ℓ-periodic. Prove:


	(a)For every real number a, ∫aa+ℓf(t)dt=∫0ℓf(t)dt.


	(b)There exists an ℓ-periodic function F such that F′=f if and only if

∫0ℓf(t)dt=0.


	(c)The function F(x)=∫0xf(t)dt−xℓ∫0ℓf(t)dt is ℓ-periodic.





	Exercise 11.1.13. (H). Page 242Assume F is of class C1 on some interval I. Prove there exist non-decreasing C1-functions F+ and F- on I such that F=F+−F−.


	Exercise 11.1.14. Assume F is a differentiable function on [a,b], and the derivative f=F′ is integrable (though not necessarily continuous). Assume Π={ti}i=0n is an arbitrary splitting of [a,b]. Prove there exists a set t* of sample points from Π such that F(ti+1)−F(ti)=f(ti∗)Δti. Conclude

∫abf(t)dt=F(b)−F(a).






11.2 Approximation by Germs


Theorem 11.2.1 (Integration by parts). If u and v are of class C1 on [a,b], then

∫abuv′=uv|ab−∫abvu′.

Proof. By the product rule for derivatives, (uv)′=u′v+uv′, or

uv′=(uv)′−vu′.

The proposition follows from Theorem 11.1.2 by integrating over [a,b]. □



Definition 11.2.2. ⏎ If f is n times differentiable in some neighborhood of x0, the nth-degree germ of f at x0 is the polynomial

Px0nf(x)=∑k=0nf(k)(x0)k!(x−x0)k=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)n.

The nth-degree remainder is Rx0nf(x)=f(x)−Px0nf(x).



Remark 11.2.3. If f is a germ (convergent power series) at x0, each partial sum is an nth-degree germ at x0 for some n, and each tail is a remainder. ⋄



Theorem 11.2.4. (The remainder theorem). ⏎ If n is a natural number and f is of class Cn+1 in some open interval X containing x0, then for each x in X:


	(i)(Integral form)

Rx0nf(x)=1n!∫x0xf(n+1)(t)(x−t)ndt.


	(ii)Page 243(Sampled form) There is a zn+1 between x0 and x such that

Rx0nf(x)=f(n+1)(zn+1)(n+1)!(x−x0)n+1.




Proof. If n=0, Theorem 11.1.2 gives the integral form of the remainder:

Rx00f(x)=f(x)−Px00f(x)=f(x)−f(x0)=∫x0xf′(t)dt.

Assume inductively that

Rx0kf(x)=1k!∫x0xf(k+1)(t)(x−t)kdt

for some natural number k. Integrating by parts with

u(t)=f(k+1)(t),v(t)=−1(k+1)!(x−t)k+1,u′(t)=f(k+2)(t),v′(t)=1k!(x−t)k,

gives

Rx0kf(t)=−f(k+1)(t)(k+1)!(x−t)k+1|t=x0t=x+1(k+1)!∫x0xf(k+2)(t)(x−t)k+1dt=f(k+1)(x0)(k+1)!(x−x0)k+1+1(k+1)!∫x0xf(k+2)(t)(x−t)k+1dt,

or

f(x)=Px0kf(x)+Rx0kf(x)=Px0k+1f(x)+1(k+1)!∫x0xf(k+2)(t)(x−t)k+1dt,

the asserted form of Rx0k+1f(x). This establishes the inductive step.

To establish the sampled form of the remainder, note that f(n+1) is continuous on the interval between x0 and x, so f(n+1) achieves an absolute minimum value m and an absolute maximum value M in this interval. By monotonicity of the integral,

1n!∫x0xm(x−t)ndt≤1n!∫x0xf(n+1)(t)(x−t)ndt≤1n!∫x0xM(x−t)ndt,

or

m(x−x0)n+1(n+1)!≤Rx0nf(x)≤M(x−x0)n+1(n+1)!.

Again since f(n+1) is continuous, the intermediate value theorem guarantees there exists a zn+1 between x0 and x such that

Rx0nf(x)=f(n+1)(zn+1)(n+1)!(x−x0)n+1.◻

□



Remark 11.2.5. Page 244Philosophically, the remainder theorem says that on an interval about a point x0, a function of class Cn+1 “behaves like a polynomial of degree at most n up to order (n+1).” Particularly, if f is smooth, then for every n,

f(x)≈Px0nf(x)+O(x−x0)n+1if x≈x0,

with the constant in O bounded by the maximum of |f(n+1)| on X. When x≈x0, a larger degree corresponds to a better approximation. ⋄



Applications

The remainder theorem has a multitude of applications. Two are introduced here, and explored in the exercises.

In calculus, a function f is often defined to be “convex” if the graph of f “lies above each tangent line,” namely if Px01f(x)≤f(x) for all x0 and x. The secant criterion for convexity in Definition 5.1.30, which is standard in real analysis, makes no assumption of differentiability, much less continuity of the second derivative, and is therefore both simpler and more general than the common calculus definition.


Proposition 11.2.6. ⏎ If f′′ is continuous and f′′(x0)>0, then on some open ball Br(x0), the graph of f lies above each of its tangent lines.

Proof. See Exercise 11.2.6. □


The second application is error bounds on numerical methods of integration, see also the discussion of sampled sums in Chapter 9.


Definition 11.2.7. Assume f:[a,b]→R is a function and Π={xi}i=0n is a splitting of [a,b].

The trapezoid sum for Π is the average of the left- and right-hand sums:

TRAP(f,Π)=∑i=0n−112[f(xi)+f(xi+1)]Δxi.

The midpoint sum for Π is the sampled sum with xi∗=x―i=12(xi+xi+1):

MID(f,Π)=S(f,Π,x∗)=∑i=0n−1f(x¯i)Δxi.

The parabolic sum is the weighted average

PARA(f,Π)=13[TRAP(f,Π)+2MID(f,Π)]=∑i=0n−116[f(xi)+4f(x―i)+f(xi+1)]Δxi.



Remark 11.2.8. Page 245Exercise 9.3.5 gives useful geometric interpretations of the trapezoid and midpoint sums. The parabolic sum with one piece is the area enclosed by the quadratic graph through the endpoints and midpoint, see also Exercise 9.3.6.

Error bounds for equal-length splittings are developed in Exercises 11.2.9, 11.2.10, and 11.2.11, assuming f is sufficiently smooth. Particularly, if f is of class C4, the error for the parabolic sum is no larger than O(1/n4), with constant jointly proportional to K4:=max|f(4)| and (b−a)5. ⋄





Exercises for Section 11.2


	Exercise 11.2.1. By Definition 9.4.11, the natural logarithm log is the unique function satisfying log1=0 and log′t=1/t for all positive t.


	(a)If r is rational and r≠−1, use integration by parts to evaluate

f(x)=∫extrlogtdt,x positive.


	(b)Use substitution to evaluate the integral in part (a) if r=−1.





	Exercise 11.2.2. Use Definition 11.2.2 to expand f(x)=11−x about x0=0.


	Exercise 11.2.3. Assume n is a natural number, x0 is real, I is an open interval containing x0 (possibly all of R), and f is a real-valued function of class Cn on I.


	(a)Assume qn is a polynomial, degqn≤n, and f(x)≈qn(x)+o(x−x0)n if x≈x0. Prove qn is the nth-degree germ of f at x0.


	(b)If f is a polynomial of degree n, then the nth-degree germ of f at x0 is f itself, expanded in powers of (x−x0).


	(c)Use Definition 11.2.2 to expand the polynomial f(x)=ax2+bx+c in powers of (x−x0). Use algebra to verify that the result is equal to f.


	(d)Similarly, expand f(x)=xn in powers of (x−x0). (The result is consistent with the binomial theorem.)





	Exercise 11.2.4. (★) Assume f is of class Cn on an interval I symmetric about 0, and let pn denote the nth-degree germ of f at 0. Find the nth-degree germs of the even part and odd part of f.


	Exercise 11.2.5. Page 246(★) Suppose f is smooth on R, and pn is the nth-degree germ of f at 0. If g(x)=f(x2), prove q2n(x):=pn(x2) is the (2n+1) th-degree germ of g at 0.


	Exercise 11.2.6. Prove Proposition 11.2.6.


	Exercise 11.2.7. (H). Assume f is of class Cn+1 in some open ball Br(x0), and f(n+1)(x0)≠0.

If |x−x0|<r, the number zn in the sampled remainder can be written uniquely as a convex linear combination zn=x0+tn(x−x0) for some real number tn in (0,1). Prove tn=1/(n+1)+o(1).


	Exercise 11.2.8. Assume f is of class C2 on [a,b], and let Π be an arbitrary splitting. Prove that if f′′≥0 on [a,b], then

MID(f,Π)≤∫abf≤TRAP(f,Π),

and illustrate with a sketch.


	Exercise 11.2.9. (H). (Midpoint sum error bound). Assume f is of class C2 on [a,b], and that |f′′|≤K2 on [a,b]. Prove that for every positive integer n, if Π is the equal-length splitting of [a,b] with n pieces, then

|∫abf−MID(f,Π)|≤K2(b−a)324n2.


	Exercise 11.2.10. (H). (Trapezoid sum error bound). Assume f is of class C2 on [a,b], and that |f′′|≤K2 on [a,b]. Prove that for every positive integer n, if Π is the equal-length splitting of [a,b] with n pieces, then

|∫abf−TRAP(f,Π)|≤K2(b−a)312n2.


	Exercise 11.2.11. (H). (Parabolic sum error bound). Assume f is of class C4 on [a,b], and that |f(4)|≤K4 on [a,b]. Prove that for every positive integer n, if Π is the equal-length splitting of [a,b] with n pieces, then

|∫abf−PARA(f,Π)|≤K4(b−a)52880n4.


	Exercise 11.2.12. (★) We are asked to tabulate values of

F(x)=∫0x1+t4dt,0≤x≤1

correct to four decimal places, an error of at most 0.5×10−4. Determine how many pieces suffice for the midpoint sum, according to the error bound of Exercise 11.2.9.


	Exercise 11.2.13. Page 247(H). Repeat the analysis of Exercise 11.2.12 for the parabolic sum, using the error bound in Exercise 11.2.11.


	Exercise 11.2.14. Assume f is a smooth, real-valued function on some open interval I, and that for every x0 in I, there exist positive real numbers M and R such that

|f(n+1)(z)Rn+1(n+1)!|≤Mfor all  z such that |z−x0|<R.

Prove f is real-analytic on I: The remainder in Theorem 11.2.4 converges to 0 as n→∞.


	Exercise 11.2.15. (★) Use Exercises 10.2.6 and 11.2.14 to prove the function f(x)=(1+x)1/2 is real-analytic on (−1,∞).


	Exercise 11.2.16. Assume p is a rational number that is not an integer. Prove that the function f(x)=(1+x)p is real-analytic on (−1,∞).


	Exercise 11.2.17. Use differentiation and algebra to manipulate the geometric series with first term 1 and ratio x on (−1,1), giving closed-form expressions for the power series:


	(a)∑k=1∞kxk=x+2x2+3x3+⋯.


	(b)∑k=1∞k2xk=x+4x2+9x3+⋯.





	Exercise 11.2.18. Assume f is an increasing function of class C1 on some interval [a,b]. Use the substitution y=f(x) and integration by parts to prove that

∫f(a)f(b)f−1(y)dy=bf(b)−af(a)−∫abf(x)dx,

and illustrate with a sketch.


	Exercise 11.2.19. Assume p and q are positive rational numbers satisfying 1/p+1/q=1. (The arguments here apply to powers with irrational exponent, but we have not yet defined these, so must restrict the statement for now.)


	(a)Prove the graphs y=xp−1 and x=yq−1 in the first quadrant are identical.


	(b)Show that if a and b are positive, then

ab≤app+bqq.

Suggestion: Make a sketch using part (a), and interpret each term of the inequality as an area.
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Definition 11.3.1. An integral ∫abf is called a basic improper integral if one of the following holds:


	(i)Exactly one endpoint a or b is infinite, and f is bounded.


	(ii)Both endpoints are finite and f is unbounded, but only in a neighborhood of one endpoint.




An integral is improper if the interval of integration can be divided into finitely many subintervals, on each of which the integral is a basic improper integral.



Example 11.3.2. If p>0 is real, the following are basic improper integrals:

∫01dxxp,∫−30dx|x|p,∫1∞dxxp.

The following are improper and are split into basic improper pieces:

∫0∞dxxp=∫01dxxp+∫1∞dxxp,∫−1∞dx|x|p=∫−10dx|x|p+∫01dx|x|p+∫1∞dx|x|p.

♢



Definition 11.3.3. A basic improper integral ∫a∞f is said to converge to L if

L=limb→∞∫abf.

Basic improper integrals ∫−∞bf are handled similarly.

A basic improper integral ∫abf with f unbounded near b is said to converge to L if

L=limx→b−∫axf.

An analogous definition is made for ∫ab if f is unbounded near a.

A basic improper integral that does not converge is said to diverge.

An improper integral is said to converge to L if the integral can be split into finitely many basic sub-integrals, each of which converges, and the sum of the sub-integrals is L. Otherwise, the improper integral is said to diverge.



Proposition 11.3.4. ⏎ If p>0, define fp(x)=1/xp if x>0, and fp(0)=0.


	(i)The improper integral ∫01fp converges to 11−p if and only if p<1.


	(ii)The improper integral ∫1∞fp converges to 1p−1 if and only if p>1.




Page 249Both integrals diverge otherwise.



Remark 11.3.5. We have not yet defined exponentiation with irrational exponents, so strictly speaking the proof below applies only to rational exponents p. Thanks to Proposition 12.1.6 in Chapter 12, the proof below goes through without modification for arbitrary positive real p. ⋄

Proof. First suppose p=1. The definite integral of 1/x from 1 is the natural logarithm, see Definition 9.4.11. In Chapter 9, we showed there exists a real number e such that 2<e<3 and

∫1endxx=n=∫e−n1dxx.

In particular, the basic improper integrals

∫01dxxand∫1∞dxx

both diverge.

If p≠1, the function Fp(x)=x1−p/(1−p) is a primitive of fp on the set of positive real numbers.


	(i)If 0<p<1, then 1−p>0, so

lima→0+∫a1dxxp=lima→0+x1−p1−p|x=ax=1=lima→0+1−a1−p1−p=11−p.

If p>1 instead, then 1−p<0, and a1−p→∞ as a→0+, so the integral diverges.


	(ii).If 1<p, then 1−p<0, so

limb→∞∫1bdxxp=limb→∞x1−p1−p|x=1x=b=limb→∞b1−p−11−p=1p−1.

If 0<p<1 instead, then 1−p>0, and b1−p→∞ as b→∞, so the integral diverges. □






Definition 11.3.6. An improper integral ∫abf converges absolutely if the improper integral ∫ab|f| converges.



Remark 11.3.7. To avoid stating results with four (or more) closely related parts, we focus for the rest of this section on basic improper integrals over an unbounded interval [a,∞). Analogous results are true for other types of improper integral. ⋄



Proposition 11.3.8. Assume a is a real number and f, g are integrable on every interval [a,b] such that a<b.


	(i)Page 250If f is non-negative, then

∫a∞fconverges if and only ifF(x)=∫axfis bounded.


	(ii)If f+=max(f,0) and f−=−min(f,0), then

∫a∞fconverges absolutely if and only if∫axf±both converge,

and this implies ∫a∞f converges.


	(iii)If |g|≤|f| except at finitely many points, and if ∫a∞f converges absolutely, then ∫a∞g converges absolutely, and

|∫a∞g|≤∫a∞|f|.




Proof. These assertions follow immediately from the corresponding facts about ordinary (proper) integrals, infinite sequences, and series. Indeed, if (bk) is a real sequence diverging to ∞, consider the sequence

Bk=∫abkf

and note that the improper integral of f converges to L if and only if every such sequence (Bk) converges to L. □



Proposition 11.3.9. If f is integrable on [a,b] for all b greater than a, and if τ:[α,β)→[a,∞) is of class C1 and satisfies τ(α)=a and τ(x)→∞ as x→β−, then

∫αβf(τ(s))⋅τ′(s)ds=∫a∞f(t)dt,

in the sense that the right-hand integral converges if and only if the left-hand integral converges, and in this event the two have the same value.

Proof. By the change of variables theorem for ordinary integrals,

∫αxf(τ(s))⋅τ′(s)ds=∫aτ(x)f(t)dt

if α≤x<β. The proposition follows by taking x→β−. □



Example 11.3.10. If f is continuous and bounded on [1,∞), then

∫01f(1/t)t2dt=−∫10f(1/t)t2dt=∫1∞f(x)dx,

in the sense that both integrals converge or diverge, and if both converge, they have the same value. ♢



Remark 11.3.11. In Chapters 12 and 13 we will meet new functions for which “improper” change of variables is more interesting a tool than it might appear given the scant examples we currently have. ⋄
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Proposition 11.3.12. Assume f is a non-increasing, positive, real-valued function, defined for all non-negative x. For every positive integer n,

∑k=1nf(k)≤∫0nf(x)dx≤∑k=0n−1f(k).

In particular, the real sequence (ak)k=0∞ defined by ak=f(k) is summable if and only if f is improperly integrable.

Proof. Let k be an arbitrary natural number. Because f is non-increasing,

0<f(k+1)≤f(x)≤f(k)if k≤x≤k+1.

Integrating over [k,k+1],

f(k+1)≤∫kk+1f(x)dx≤f(k).

Summing over k and patching integrals gives, see Figure 11.2,

∑k=1nf(k)=∑k=0n−1f(k+1)≤∫0nf(x)dx≤∑k=0n−1f(k).

[image: A decreasing curve from 0 to n is bounded above and below by a series of adjacent rectangles; shaded rectangles represent partial sums from k to n minus 1, approximating the integral.]
Figure 11.2 Bounding an integral by partial sums of a series. ⏎



All three are non-decreasing in n, and the two sums differ by f(0)−f(n), which is bounded, so all three converge or diverge together. □



Corollary 11.3.13. ⏎ If f is non-increasing, positive, and improperly integrable on [0,∞), then for every positive integer n,

∑k=0n−1f(k)+∫n∞f(x)dx≤∑k=0∞f(k)≤∑k=0n−1f(k)+∫n−1∞f(x)dx.

Proof. See Exercise 11.3.6. □
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	Exercise 11.3.1. (★) Write each improper integral as a sum of basic improper integrals if necessary, and determine convergence. (Do not attempt to evaluate.)


	(a)∫−∞∞dx1+x2.


	(b)∫01dx1−x2.


	(c)∫0∞x3dxx4+1.


	(d)∫−11dxx2.





	Exercise 11.3.2. Assume m is a non-negative integer, r is a positive real number, and f:[0,∞)→R is integrable on [0,b] for every positive b. If

Im(r):=∫0∞f(rt)tmdt

converges, express Im(r) in terms of Im(1). Particularly, prove I1 is constant.


	Exercise 11.3.3. Assume p is a positive rational. Determine whether each improper integral converges. If so, evaluate.


	(a)∫e∞dx(logx)px.


	(b)∫ee∞dx[log(logx)]p(logx)x.





	Exercise 11.3.4. (★) Evaluate

∫0xdt1−t2.

For which real x does the integral converge?


	Exercise 11.3.5. (A). Assume −1<a, and m is a positive integer.


	(a)Prove the improper integral

Im(a):=∫1∞dttm(t+a)

converges, Im(a) decreases to 0 as m→∞, and evaluate.

Suggestion: Use partial fractions and write tm−(−a)mt−(−a) as a geometric sum.


	(b)Use (a) to give a formula for log(1+a) if −1<a, and evaluate the alternating harmonic series

∑k=1∞(−1)k−1k=1−12+13−14+⋯.





	Exercise 11.3.6.


	(a)Page 253Prove Corollary 11.3.13.


	(b)In the same notation, put In=∫n−1∞f(x)dx. If

∑k=0∞f(k)=∑k=0n−1f(k)+12(In+In+1)+En,

prove |En|≤12(In−In+1)=12∫n−1nf(x)dx.





	Exercise 11.3.7. The sums of the infinite series

∑k=0∞1(k+1)2,∑k=0∞1(k+1)3,∑k=0∞1(k+1)5

are to be estimated to within ε=0.5×10−6. With notation as in Exercise 11.3.6, for the estimates Sn given, determine the smallest n such that En<ε.


	(a)Sn=∑k=0n−1f(k) and En=In. (This is a standard calculus estimate.)


	(b)Sn=∑k=0n−1f(k)+12(In+In+1) and En=12(In−In+1).
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In this chapter we use our collection of tools—integrals, derivatives, power series, the fundamental theorems, and the mean value theorem—to define and study exponential functions. The roots of the story go back to Definition 9.4.11, see also Figure 12.1, which introduced the natural logarithm log:(0,∞)→R by

logx=∫1x1tdt.

[image: A decreasing curve y equals 1 over t is drawn from t equals 1 to t equals x; the shaded region under the curve from 1 to x represents the area, equal to log x.]
Figure 12.1 The natural logarithm as an area. ⏎



Proposition 9.4.12 guarantees the “multiplication-to-addition” identities

logxy=logx+logy,log(1/x)=−logxfor all positive x, y.

There exists a unique real number e satisfying loge=1, for which 2<e<3. Since log is continuous and log(en)=n for every integer n, the logarithm is surjective by the intermediate value theorem.

By Theorem 11.1.1, log is differentiable, log′x=1/x>0, and therefore is strictly increasing by Theorem 10.3.7. Although the tangent lines to the graph y=logx become arbitrarily close to horizontal, log is unbounded above.


12.1 The Natural Exponential Function


Definition 12.1.1. The natural exponential function exp:R→(0,∞) is the inverse of log.



Remark 12.1.2. If y is real and x>0, then x=expy if and only if y=logx, Figure 12.2. We need not be fussy about the codomain; if convenient we view exp:R→R as real-valued. In any case, expy>0 for all real y. ⋄


[image: A curve y equals log x is plotted, with vertical lines at x equals 1, x equals e, and x equals exp y. Horizontal lines intersect the curve at heights 0, 1, and y.]
Figure 12.2 The natural exponential function is the inverse of log. ⏎




The Differential Characterization of exp


Proposition 12.1.3. ⏎ For all real x, exp′x=expx. Conversely, if f:R→R is a differentiable function such that f′=f, then f(x)=f(0)expx for all x.

Proof. For all real x, we have x=log(expx). Since log is differentiable and has non-vanishing derivative, its inverse function exp is differentiable, and by Page 255the inverse function theorem, Theorem 10.2.10,

exp′x=1log′(expx)=11/expx=expx.

Conversely, assume f:R→R is differentiable and f′=f. Since expx>0 for all real x, the quotient g(x):=f(x)/expx is differentiable. Since exp′=exp, the quotient rule gives

g′(x)=(expx)f′(x)−f(x)(expx)(expx)2=f′(x)−f(x)expx=0for all x.

By the identity theorem, g is a constant function: g(x)=g(0)=f(0) for all real x. That is, f(x)=f(0)expx for all x. □
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Proposition 12.1.4. ⏎ If a>0 and r=p/q is rational, then

logar=rloga,namely,ar=exp(rloga).

Proof. Mathematical induction together with logxy=logx+logy shows that logbm=mlogb for every positive real number b and every integer m.

Set b=ar=ap/q, so that bq=ap. Taking logarithms and using the preceding paragraph, qlogb=ploga, or

logar=logb=(p/q)loga=rloga.◻

□


Proposition 12.1.4 suggests the definition of exponentiation with arbitrary real exponent.


Definition 12.1.5. If a>0 and x is real, we define

ax=exp(xloga).

In particular, ex=expx for all real x.



Proposition 12.1.6. ⏎ If r is real and f:(0,∞)→R is defined by f(x)=xr, then f is differentiable, and f′(x)=rxr−1.

Proof. By definition, f(x)=exp(rlogx). The chain rule gives

f′(x)=exp′(rlogx)rlog′x=xr(r/x)=rxr−1.◻

□



Proposition 12.1.7. ⏎ Assume b>0. The function expb:R→R defined by expbx=bx=exp(xlogb) is differentiable, and

expb′x=(logb)expbxfor all real x.

Conversely, if k is a real number and f is a differentiable function satisfying f′=kf, then f(x)=f(0)exp(kx) for all x.

Proof. If k is real and f(x)=exp(kx), Proposition 12.1.3 and the chain rule give f′(x)=kf(x). The first assertion follows by taking k=logb.

The converse is analogous to Proposition 12.1.3, see Exercise 12.1.10. □



Corollary 12.1.8. ex+y=exey and exy=(ey)x for all real x and y.

Proof. Fix a real number y arbitrarily, and define f(x)=ex+y. By the chain rule, f is differentiable, and f′=f. Since f(0)=ey, Proposition 12.1.3 implies ex+y=exey for all real x.

To prove the second assertion, consider g(x)=(ey)x. By the first part of Proposition 12.1.7 with b=ey,

g′(x)=log(ey)(ey)x=yg(x).

By the second part of Proposition 12.1.7 g(x)=exy, since g(0)=1.

As a fringe benefit, (ey)x=(ex)y, since each is equal to exy. □



Remark 12.1.9. Page 257The identity exp(x+y)=expxexpy may also be proven algebraically. Set u=expx and v=expy. Applying exp to both sides of the identity x+y=logu+logv=loguv gives

exp(x+y)=exp(loguv)=uv=expxexpy.

⋄



Corollary 12.1.10. ⏎ If b>0, then bx+y=bxby and bxy=(bx)y for all real x and y.

Proof. Exercise 12.1.11. □



Remark 12.1.11. ⏎ Although we define 00=1, if L is real and 0≤L<1, there exist functions f and g such that lim(f,0)=0 and lim(g,0)=0 but lim(fg,0)=L, see Exercise 12.1.6. ⋄



Definition 12.1.12. If b>0, the inverse of expb, denoted logb, is called the base-b logarithm.



Proposition 12.1.13. For all positive b and x, we have logbx=(logx)/(logb).

Proof. The equation y=logbx means x=by=exp(ylogb). Taking the natural logarithm, y=(logx)/(logb). □





Exercises for Section 12.1


	Exercise 12.1.1. (★) Assume a, b, and c are positive real numbers. Is it more sensible to agree that abc is equal to (ab)c or to a(bc), or does it matter?


	Exercise 12.1.2. If a and b are positive real numbers, then bloga=alogb.


	Exercise 12.1.3. (A). One sometimes reads whimsical claims along the lines of, “If a hundred monkeys type characters at random, they will eventually type the complete works of Shakespeare.” Is this true? Discuss.


	Exercise 12.1.4. (★) Assume u is differentiable. Find the derivative of exp∘u, and the derivative of log∘|u| at points where u is non-zero.


	Exercise 12.1.5. (A). Find the even and odd parts of f(t)=t/(1−et). As needed, write each in a form that is manifestly symmetric.


	Exercise 12.1.6. Assume L is a real number such that 0≤L<1. Find a pair of positive functions f and g such that lim(f,0)=lim(g,0) but lim(fg,0)=L, see Remark 12.1.11.


	Exercise 12.1.7. (H). Define f:R→R by f(x)=(x2−1)e−x.


	Page 258(a)Sketch the graph of f, using information about the first two derivatives to determine intervals on which f is monotone, convex, and concave.


	(b)Assume y is real. Determine, with justification, how many solutions the equation f(x)=y has. (The answer depends on y.)





	Exercise 12.1.8. For x real and non-negative, define

F(x)=∫0x2et3t3+1dt,G(x)=∫0x3et2t2+1dt.

Which is larger, F(1/2) or G(1/2)?


	Exercise 12.1.9. Assume n is a positive integer, and define fn(x)=xne−x on [0,∞). Prove fn has a unique maximum, and find it with justification.


	Exercise 12.1.10. Complete the proof of Proposition 12.1.7: If k is a real number and f is a differentiable function satisfying f′=kf, then we have f(x)=f(0)exp(kx) for all real x.


	Exercise 12.1.11. Prove Corollary 12.1.10: If b>0, then bx+y=bxby and bxy=(bx)y for all real x, y.


	Exercise 12.1.12. (★) This question relates base-10 logarithms with the number of digits in decimal notation.


	(a)If n and N are positive integers, prove that

n≤log10N<n+1if and only if10n≤N<10n+1,

if and only if N is an integer having n+1 digits. In words, the integer part of the base 10 logarithm of N is one less than the number of digits of N.


	(b)Which is larger, 222222 or 1010100? About how many digits does each have?





	Exercise 12.1.13. Define f:R→R by f(x)=exp(−1/x2) if x>0 and f(x)=0 if x≤0. Prove that f(k)(0) exists and is equal to zero for every natural number k. Conclude that f is smooth, but not real-analytic in any neighborhood of 0. Suggestion: First use induction on the degree to prove that for every polynomial p,

limx→0p(1/x)f(x)=0.

Then show inductively that every derivative of f is of this form.


	Exercise 12.1.14. This exercise constructs smooth bump functions. Assume a<c<d<b, and let f be the smooth function of Exercise 12.1.13.


	Page 259(a)Prove that g(x)=f(x)f(1−x) is smooth, strictly positive in (0,1), and identically 0 off [0,1], and that

h(x)=∫0xg(t)dt/∫01g(t)dt

is smooth, non-decreasing, identically 0 if x≤0, identically 1 if 1≤x, and strictly increasing on [0,1].


	(b)Prove that

ϕ(x)=h(x−ac−a)h(b−xb−d)

is smooth, and satisfies 0≤ϕ(x)≤1 for all x, ϕ(x)=1 if and only if x∈[c,d], and ϕ(x)=0 if and only if x∉(a,b).





	Exercise 12.1.15. (H). (The convexity bound.) If f is integrable on [a,b] and if p>1, define the p-norm of f to be the non-negative real number

∥f∥p=[1b−a∫ab|f|p]1/p.

This exercise outlines a proof that if p, q are positive real numbers such that 1/p+1/q=1, and if f and g are integrable on [a,b], then

1b−a∫ab|fg|≤∥f∥p∥g∥q=[1b−a∫ab|f|p]1/p[1b−a∫ab|g|q]1/q.(‡)


	(a)Assume 0<α<1. Prove tα≤αt+(1−α) for all non-negative t.


	(b)Let β=1−α, so that 0<β<1. Prove

uαvβ≤αu+βvfor all positive u, v.

Suggestion: Set t=u/v in part (a).


	(c)Assume p>1, and put q=p/(p−1), so 1/p+1/q=1. Prove

AB≤Ap/p+Bq/qfor all non-negative A, B.


	(d)(H) If 1/p+1/q=1 and (ak)k=0n−1 and (bk)k=0n−1 are finite real sequences, prove that

∑k=0n−1|akbk|≤[∑k=0n−1|ak|p]1/p[∑k=0n−1|bk|q]1/q.


	(e)(H) Prove the inequality (‡).









Page 26012.2 Representations of exp

In this section we establish two famous representations of ex: As a limit of “discrete compounding” and as a power series. Many authors take one of these as the definition.


Proposition 12.2.1. ⏎ For all real x,

ex=limn→∞[1+xn]n.

Proof. The theorem is immediate if x=0. Otherwise, if 0<h<1/|x| then 1+xh>0. Since log1=0, we may write

1hlog(1+xh)=log(1+xh)−log1h=xlog(1+xh)−log1xh.

As h→0, this approaches xlog′1=x. Writing h=1/n and using continuity of exp,

limn→∞[1+xn]n=limh→0+(1+xh)1/h=limh→0+exp(1hlog(1+xh))=exp(limh→0+1hlog(1+xh))=ex.◻

□



Remark 12.2.2. Proposition 12.2.1 characterizes the natural exponential function as a limit of geometric growth. If, for example, x is the annual interest rate on a savings account, and there are n compoundings per year, then the multiplier on the right gives the factor by which the savings increase over one year. As the number of compoundings per year grows without bound, the balance does not become infinite in a finite time. Instead, if $1 is allowed to accrue interest with continuous compounding, then in the time it would take the savings to double without compounding, the balance increases to $2.72 (rounded to the nearest penny). ⋄



Proposition 12.2.3. ⏎ ex=∑k=0∞xkk! for all real x.

Proof. Let f(x) denote the sum of the power series. The coefficients are ak=1/k!, and

limk→∞|ak+1xk+1akxk|=limk→∞k!|x|(k+1)!=limk→∞|x|k+1=0.

Page 261Since this is less than 1 independently of x, the series converges absolutely for all x. By Proposition 11.1.6, the series may be differentiated term by term:

f′(x)=∑k=1∞1k!kxk−1=∑k=0∞xkk!=f(x).

Since f(0)=1, Proposition 12.1.3 implies f(x)=ex for all x. □



Remark 12.2.4. The exponential series could have been found using Definition 11.2.2, since f(n)(0)=exp0=1 for all n. The series can be easily remembered: The constant term is 1=e0, and each successive term is the integral from 0 of the preceding term. ⋄



Corollary 12.2.5. ⏎ For every real M, limx→∞xMexpx=0.

For every positive ε, limx→∞logxxε=0.

Proof. For the first, use finitude to pick an integer N>|M|. By Proposition 12.2.3, xN+1/(N+1)!<expx for all non-negative x, so

limx→∞|xMexpx|≤limx→∞(N+1)!|xNxN+1|=limx→∞(N+1)!x=0.

For the second, substitute x=exp(t/ε), so

limx→∞logxxε=limt→∞t/εexpt=0.◻

□



Corollary 12.2.6. e=∑k=0∞1k!=1+11!+12!+13!+14!+⋯ is irrational.

Proof. (This was also established in Exercise 7.4.7.) The series representation follows by setting x=1 in the exponential power series. We will prove that if e is rational, then there exist integers N and M such that N<M<N+1. Contrapositively, since such integers do not exist, e is irrational.

If ℓ and m are natural numbers, Exercise 3.2.13 gives

1(ℓ+m)!≤1(ℓ+1)mℓ!,

with strict inequality if m>1. By the geometric series formula,

∑m=1∞1(ℓ+1)m=1/(ℓ+1)1−1/(ℓ+1)=1(ℓ+1)−1=1ℓ,

Page 262and so

∑k=ℓ+1∞1k!=∑m=1∞1(ℓ+m)!<∑m=1∞1(ℓ+1)mℓ!=1ℓ⋅ℓ!.

Since every term in the series for e is positive, we have

∑k=0ℓ1k!<e=∑k=0∞1k!=∑k=0ℓ1k!+∑k=ℓ+1∞1k!<∑k=0ℓ1k!+1ℓ⋅ℓ!

for every positive integer ℓ. Multiplying through by ℓ!,

∑k=0ℓℓ!k!<ℓ!e<∑k=0ℓℓ!k!+1ℓ.

Each term ℓ!/k! of the sum is an integer since 0≤k≤ℓ, so the sum represents some integer N(ℓ) depending on ℓ.

If e is rational, then there exist positive integers p and q such that e=p/q. But then N(q)=N and q!e=p(q−1)!=M are integers, and the preceding inequality implies N<M<N+(1/q)<N+1. Since no such integers M and N exist, e is not rational. □



Remark 12.2.7. ⏎ The preceding proof shows that for every positive integer ℓ,

e=[∑k=0ℓ1k!]+12ℓ⋅ℓ!+Eℓ,|Eℓ|<12ℓ⋅ℓ!.

For example, taking ℓ=10 gives a rational estimate for e that is accurate to within ε=1/(20⋅10!)=1/72,576,000<1.4×10−8:

e≈197,282,02172,576,000≈2.718281815.

(To fifteen decimals, the value of e is 2.718281828459045….) ⋄




Exercises for Section 12.2


	Exercise 12.2.1. (★) Evaluate the following limits:


	(a)limx→0+xlogx.


	(b)limx→0+xx.


	(c)limx→∞x1/x.





	Exercise 12.2.2. Define f(x)=xx if x>0. Calculate f′, and find f′(0+).

Prove f has a unique minimum, and find the location and minimum value.


	Exercise 12.2.3. Evaluate the following limits:


	Page 263(a)limx→0log(1+x)/x.


	(b)limx→0(1+x)1/x.


	(c)limx→∞(1+x)1/x.





	Exercise 12.2.4. Prove that limx→∞(logx)nx=0 for every positive integer n.


	Exercise 12.2.5. (★) Determine which of the following converge:


	(a)∑n=1∞lognn3/2.


	(b)∑n=1∞(−1)nlognn.


	(c)∑n=2∞1n(logn)2.





	Exercise 12.2.6. Define functions F, G:(e,∞)→R by

F(x)=∫eexdttlogt[log(logt)],G(x)=∫eexdttlogt[log(logt)]1.0001,

compare Exercise 11.3.3, and write f=F′ and g=G′.


	(a)Show supF=∞; calculate supG.


	(b)For what x is F(x)=100? For what x′ is G(x′)=100? Which number is larger? Use a calculator to estimate how many digits x has.


	(c)Prove f(x)/g(x) is increasing and unbounded. Use a calculator to estimate f/g at 10100. For what x is f(x)/g(x)=100, namely, at which point is “F increasing 100 times faster than G?” Use a calculator to estimate how many digits x has in decimal notation.





	Exercise 12.2.7. Using the estimate of Remark 12.2.7, what is the smallest multiple of a hundred terms guaranteeing an accuracy ε<0.5×10−1000?


	Exercise 12.2.8. Assume n is a positive integer. Prove limx→∞xne−x=0 in as many ways as you can, and prove limx→0+x−ne−1/x=0.


	Exercise 12.2.9. If b≥1, define a non-decreasing sequence (xk(b))k=0∞ by

x0(b)=1,xk+1(b)=bxk(b)if k≥0.

Thus x1(b)=b, x2(b)=bb, x3(b)=bbb, and so forth. If (xk(b)) converges, denote the limit by x∞(b).


	(a)Prove x∞ is increasing. For which positive b is x∞(b) defined?


	(b)Two people are arguing. One says that if b=21/2, then x∞(b)=2, since (21/2)2=2; the other says x∞(b)=4 because (21/2)4=4. Who, if either, is correct, and why?





	Exercise 12.2.10. Fix a real number b greater than 1. Prove that expb is not an algebraic function: For every positive integer N, there do not exist polynomial functions (pk)k=0N such that

0=∑k=0Npk(x)ykif and only ify=bx.
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Definition 12.3.1. The hyperbolic cosine and hyperbolic sine functions, Figure 12.3, are defined to be the even and odd parts of exp:

coshx=ex+e−x2,sinhx=ex−e−x2.

[image: A set of curves for hyperbolic sine, cosine, and exponential functions is drawn on a coordinate grid from negative 2 through 2.]
Long Description for Figure 12.3The diagram shows four mathematical curves plotted on a coordinate grid. The horizontal axis is labeled with values from negative 2 through 2, and the vertical axis is labeled from negative 2 through 3. The solid curve labeled sinh begins at approximately negative 2.3 at x equals negative 2, passes through the origin, and increases to approximately 2.3 at x equals 2. Another solid curve labeled cosh starts at approximately 2.5 at x equals negative 2, decreases to 1 at the origin, and increases back to 2.5 at x equals 2, forming a symmetric U shape. A dashed curve represents y equals one half e to the power of x, starting below 0.2 at x equals negative 2 and rising steeply beyond 2.5 at x equals 2. Another dashed curve for y equals one half e to the power of negative x begins above 2.5 at x equals negative 2 and decreases steeply to below 0.2 at x equals 2.

Figure 12.3 Hyperbolic cosine and sine. ⏎



The hyperbolic tangent and hyperbolic secant functions, shown in Figure 12.4, are defined by

tanhx=sinhxcoshx=ex−e−xex+e−x,sechx=1coshx.


[image: A graph of hyperbolic tangent and secant functions from negative 3 to 3 with curves labeled tanh and sech.]
Long Description for Figure 12.4The graph displays two curves on a coordinate grid with the horizontal axis labeled from negative 3 through 3 and the vertical axis labeled from negative 1 through 1. One curve labeled tanh starts just below negative 1 at x equals negative 3, increases smoothly through the origin at 0, 0, and levels off just below 1 at x equals 3. The second curve labeled sech forms a symmetric peak, starting near 0 at x equals negative 3, rising to a maximum of 1 at the origin, and decreasing back to near 0 at x equals 3. The tanh curve represents a sigmoidal shape, while the sech curve forms a bell-shaped arch centered at the vertical axis.

Figure 12.4 Hyperbolic tangent and secant. ⏎




Remark 12.3.2. The functions “cosh” and “sech” are pronounced phonetically; sinh is pronounced “cinch,” and tanh rhymes with “ranch.” As the notation suggests, these functions have a close kinship with the circular functions of ordinary trigonometry. ⋄



Proposition 12.3.3. ⏎ The functions cosh, sinh, tanh, and sech are defined for all real numbers, and satisfy the identities cosh2−sinh2=1,

cosh′=sinh,sinh′=cosh,tanh′=sech2.

Page 265cosh maps [0,∞) bijectively to [1,∞). sinh maps R bijectively to R. tanh maps R bijectively to (−1,1).

Every point (x,y) on the right nappe of the hyperbola x2−y2=1 is of the form (cosht,sinht) for a unique real t.

Proof. See Exercise 12.3.1 □


Proposition 8.3.19 and the power series for exp immediately give series expansions for cosh and sinh.


Proposition 12.3.4. For all real x,

coshx=∑k=0∞x2k(2k)!=1+x22!+x44!+x66!+⋯,sinhx=∑k=0∞x2k+1(2k+1)!=x+x33!+x55!+x77!+⋯.



Proposition 12.3.5. For all real x and y,

cosh(x+y)=coshxcoshy+sinhxsinhy,sinh(x+y)=coshxsinhy+sinhxcoshy,tanh(x+y)=tanhx+tanhy1+tanhxtanhy.

Particularly, for all real x,

cosh(2x)=cosh2x+sinh2x,sinh(2x)=2coshxsinhx.



Inverse Hyperbolic Functions


Proposition 12.3.6. ⏎ The inverse hyperbolic functions are as follows:

cosh−1x=log(x±x2−1),x≥1;sinh−1x=log(x+x2+1),x real;tanh−1x=12log(1+x1−x),−1<x<1.

Page 266Their derivatives are

(cosh−1)′(x)=±1x2−1,x≥1;(sinh−1)′(x)=1x2+1,x real;(tanh−1)′(x)=11−x2,−1<x<1.



Remark 12.3.7. Because cosh is even, the two branches of cosh−1 must be negatives of each other. By the difference of squares identity, x≥1 implies

x−x2−1=1x+x2−1>0,

so indeed, log(x±x2−1)=±log(x+x2−1). Similar arguments show sinh−1 and tanh−1 are odd. ⋄

Proof. If x≥1, then x=coshy=(ey+e−y)/2 if and only if

(ey)2−(2x)ey+1=0.

This is a quadratic in ey. By the quadratic formula, ey=x±x2−1, or

y=cosh−1x=log(x±x2−1).

Similarly, x=sinhy=(ey−e−y)/2 if and only if

(ey)2−(2x)ey−1=0.

The quadratic formula gives ey=x+x2+1, or

y=sinh−1x=log(x+x2+1).

There is no sign ambiguity because only this choice leads to a real-valued function when x is real.

Finally,

x=tanhy=ey−e−yey+e−y=e2y−1e2y+1

if and only if xe2y+x=e2y−1, or e2y=(1+x)/(1−x), or

y=tanh−1x=12log(1+x1−x).

The derivatives are found by direct calculation, see Exercise 12.3.4. □
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	Exercise 12.3.1. Prove Proposition 12.3.3.


	Exercise 12.3.2. Define f:R→R2 by f(t)=(secht,tanht). Prove the image is contained in the unit circle {(x,y):x2+y2=1}. Describe the image exactly.


	Exercise 12.3.3. (★) Establish the given identities where each makes sense:


	(a)cosh(sinh−1t)=t2+1.


	(b)sinh(cosh−1t)=±t2−1.





	Exercise 12.3.4. Finish the proof of Proposition 12.3.6 by calculating the derivatives of cosh−1, sinh−1, and tanh−1.


	Exercise 12.3.5. (★) Use the substitution u=sinht to show

∫0xu2+1du=12(xx2+1+log(x+x2+1)).


	Exercise 12.3.6. Evaluate ∫1xu2−1du if x≥1.


	Exercise 12.3.7. (★) Assuming 0≤t, calculate the shaded area in Figure 12.5 as a function of t.

[image: A shaded region represents a hyperbolic sector on a coordinate grid with x and y axes marked. The curve x squared minus y squared equals 1 begins at the point 1, 0 on the x-axis and opens rightward. A straight line segment from the origin extends outward, intersecting the curve at the point labeled cosh t, sinh t, which is marked with a dot.]
Figure 12.5 The hyperbolic sector for [0,t]. ⏎




	Exercise 12.3.8. Page 268Evaluate ∫−∞∞sech2xdx.


	Exercise 12.3.9. (H). If x and y are in (−1,1), define

x⊕y=x+y1+xy.

Prove this is a binary operation on (−1,1), and determine whether ⊕ is associative, commutative, has an identity element, and if so, which elements have inverses.


	Exercise 12.3.10. Each part refers to the function f(t)=(et−1)/t, extended by continuity so f(0)=1, and its reciprocal g(t)=1/f(t).


	(a)Define the hyperbolic cotangent coth = cosh/sinh. Prove g(t)+t2=t2cotht2.


	(b)Write f and g as power series

f(t)=∑i=0∞aitii!,g(t)=∑j=0∞bjtjj!.

Find a formula for the ai, and prove bk=−1k+1∑j=0k−1(k+1j)bj.


	(c)Use the (bk) to express tcotht as a power series.









12.4 Factorials


An Exponential Estimate

Factorials are closely connected with the natural exponential function.


Theorem 12.4.1. (Factorial growth rate). ⏎ For every positive integer n,

e7/8(ne)nn<n!<e(ne)nn.

Proof. Integrating by parts with u=logx, we have

∫1nlogxdx=xlogx−x|x=1n=nlogn−n+1=log(nnen⋅e).

The natural logarithm function is concave, so for every splitting Π of [1,n], we have TRAP(log,Π)<∫1nlog, see Figure 12.6. Particularly, if Π is the Page 269equal-length splitting of [1,n] with n−1 pieces of length 1, the inequality TRAP(log,Π)<∫1nlog becomes

12(log1+log2)+12(log2+log3)+⋯+12(log(n−1)+logn)=−12logn+∑k=1nlogk=log(n!n)<log(nnen⋅e).

[image: A curved graph of y equals log x is approximated using trapezoids between x equals 1 and x equals n.]
Long Description for Figure 12.6The diagram displays a curve of the function y equals log x above a horizontal axis extending from x equals 1 to x equals n. The curve rises gradually from left to right. Beneath the curve, a series of adjacent shaded trapezoids approximates the area under the curve. These trapezoids span intervals marked at x equals 1, k, k plus 1, and n, dividing the region into segments of varying height. Each top edge follows the curve, while each bottom edge lies on the horizontal axis, forming a stepped shading that closely estimates the integral from 1 to n of log x.

Figure 12.6 Trapezoid approximation of the integral. ⏎



Exponentiating and rearranging gives the asserted upper bound for n!.

On the other hand, [1,n]=[1,32]∪[32,n−12]∪[n−12,n], see Figure 12.7. The (unshaded) “end piece” integrals satisfy

∫13/2logxdx<∫13/2(x−1)dx=1/8,∫n−(1/2)nlogxdx<(1/2)logn.

[image: A curve of y equals log x is approximated using step-shaped rectangles from x equals 1 to x equals n.]
Long Description for Figure 12.7The diagram presents the curve y equals log x rising gradually from x equals 1 to x equals n on a horizontal axis. Below the curve, a set of shaded rectangles represents a modified midpoint approximation of the integral. Each rectangle spans one unit along the x-axis, with vertical sides drawn at positions such as x equals 1, 2, k, n minus 1, and n. The top right corners of the rectangles touch the curve, while the tops lie above or below it, forming a stepped profile. Dashed vertical lines within each rectangle indicate the midpoint used for height evaluation.

Figure 12.7 Modified midpoint approximation of the integral. ⏎



For the middle interval, let Π be the equal-length splitting with (n−2) pieces of length 1. Concavity of log implies ∫3/2n−(1/2)]log<MID(log,Π), compare Exercise 11.2.8. The midpoints from Π are integers k such that 2≤k≤n−1, so MID(log,Π)=∑klogk.

Page 270Summing these estimates gives

log(nnen⋅e)=∫1nlog<[∫13/2log+∫n−(1/2)nlog]+MID(log,Π)=(1/8)+(1/2)logn+∑k=2n−1logk=(1/8)−(1/2)logn+∑k=1nlogk=log(e1/8⋅n!n).

Rearranging gives the asserted lower bound for n!. □




The Gamma Function

The Gamma function is a “smooth interpolation” of factorials for positive real numbers. The development here follows an exercise in Rudin, [25].


Lemma 12.4.2. ⏎ For every positive real number x, tx/et→0 as t→∞.

Proof. The series representation for et guarantees that if n is an integer greater than x and if t>0, then et>tn+1/(n+1)!. Consequently, if t>0, then tx/et≤tn/et<(n+1)!/t, and the upper bound goes to 0 as t→∞. □



Proposition 12.4.3. For every real x>0, the improper integral

∫0∞tx−1e−tdt

converges.

Proof. Since e−t<1 if t>0,

∫01tx−1e−tdt<∫01tx−1dt=1x,

so the improper integral on the left converges.

If n is a positive integer and n≥x−1, then et>tn+2/(n+2)! for positive t by the same idea as in the proof of Lemma 12.4.2. Thus

∫1∞tx−1e−tdt≤∫1∞tne−tdt≤(n+2)!∫1∞t−2dt=(n+2)!,

so the improper integral on the left converges. □



Definition 12.4.4. The Gamma function Γ:(0,∞)→R is defined by

Γ(x)=∫0∞tx−1e−tdt.


Page 271The main result of this section is the following characterization of Γ, due to Harald Bohr and Johannes Mollerup.


Proposition 12.4.5. ⏎ The function Γ satisfies the following properties:


	(i)Γ(x+1)=xΓ(x) for all x.


	(ii)Γ(n+1)=n! for every positive integer n.


	(iii)logΓ is convex.




Conversely, if f:(0,∞)→R satisfies these properties, then f=Γ.

Proof.


	(i).If b>0, integrating by parts with u=tx and dv=e−tdt gives

∫0btxe−tdt=−txe−t|t=0t=b+x∫0btx−1e−tdt=−bxe−b+x∫0btx−1e−tdt.

By Lemma 12.4.2, −bxe−b→0 as b→∞, so

Γ(x+1)=∫0∞txe−tdt=x∫0∞tx−1e−tdt=xΓ(x).


	(ii).If n=0, we have

Γ(n+1)=∫0∞e−tdt=limb→∞−e−t|t=0t=b=limb→∞(1−e−b)=1=0!.

By (i) and mathematical induction, Γ(n+1)=n! if n≥0.


	(iii).If 1/p+1/q=1, the integrand of Γ((x/p)+(y/q)) may be written

t(x/p)+(y/q)−1e−t=t(x/p)+(y/q)−(1/p)−(1/q)e−t[(1/p)+(1/q)]=(tx−1e−t)1/p(ty−1e−t)1/q.




Since tx−1e−t>0 on (0,∞), the convexity bound, Exercise 12.1.15, implies

Γ((x/p)+(y/q))≤[∫0∞tx−1e−tdt]1/p[∫0∞ty−1e−tdt]1/q=Γ(x)1/pΓ(y)1/q.

Taking logarithms,

logΓ((x/p)+(y/q))≤(1/p)logΓ(x)+(1/q)logΓ(y),

which is the desired convexity statement.

Page 272Conversely, assume f:(0,∞)→R satisfies properties (i), (ii), and (iii), and set φ=logf. Property (i) says φ(x+1)=φ(x)+logx if x>0; that is, the difference quotient of φ on [y,y+1] is logy. By induction on n,

φ(x+n+1)=φ(x)+log∏j=0n(x+j).

Property (ii) says φ(n+1)=log(n!) for every positive integer n and (iii) says φ is convex.

Fix a positive integer n. If 0<x<1 arbitrarily, consider the four points n<n+1<n+1+x<n+2. Since φ is convex, the difference quotients of φ on the intervals [n,n+1], [n+1,n+1+x], and [n+1,n+2] are in non-decreasing order by Proposition 10.4.7 (iii), namely

logn≤φ(n+1+x)−φ(n+1)x≤log(n+1).

Multiplying by x and substituting (*),

xlogn≤φ(x)+[log∏j=0n(x+j)]−log(n!)≤xlog(n+1),

or

0≤φ(x)−log[n!nx∏j=0n(x+j)]≤xlog(1+1n).

As n→∞, the upper bound goes to 0, so

φ(x)=limn→∞log[n!nx∏j=0n(x+j)]if 0<x<1.

By property (i), φ satisfies this equation for all positive x.

We have shown that if f satisfies properties (i)–(iii), then logf is the limit on the right. Since Γ satisfies (i)–(iii), the limit on the right must be equal to logΓ(x). □



Remark 12.4.6. In particular, we obtain the representation

Γ(x)=limn→∞n!nx∏j=0n(x+j)if 0<x,

analogous to the characterization of exp in Proposition 12.2.1. ⋄



Corollary 12.4.7. If a>0, then ∫0∞tx−1e−t/adt=ax⋅Γ(x).

Proof. Making the substitution t=au,

∫0∞tx−1e−t/adt=ax−1⋅a∫0∞ux−1e−udu=ax⋅Γ(x).◻

□



Definition 12.4.8. Page 273The β function is defined by

β(x,y)=∫01tx−1(1−t)y−1dtx, y positive.



Proposition 12.4.9. ⏎ β(x,y)=Γ(x)Γ(y)Γ(x+y) for all positive x, y.

Proof. See Exercise 12.4.9. □



Definition 12.4.10. Define the ζ function (zeta) on (1,∞) by

ζ(s)=∑m=1∞1ms=1+12s+13s+⋯.



Proposition 12.4.11. ⏎ If s>1, then ζ(s)=1Γ(s)∫0∞xs−1ex−1dx.

Proof. See Exercise 12.4.10. □


We end with a widely cited result proven in the late 19th century.


Theorem 12.4.12. (e is transcendental). ⏎ There exists no non-zero polynomial p with integer coefficients such that p(e)=0.

Proof. See Exercise 12.4.11. □





Exercises for Section 12.4


	Exercise 12.4.1. (★) Without calculation, explain why:


	(a)∑n=0∞xnn!ex=1 for all real x.


	(b)∫0∞xndxn!ex=1 for all n in N.





	Exercise 12.4.2. For every natural number n, ∫01(logx)ndx=(−1)nn!.


	Exercise 12.4.3. If m, n are natural numbers, evaluate ∫01xm(logx)ndx.


	Exercise 12.4.4. (★) Prove that ∫0∞e−t2dt converges. (Do not evaluate.)


	Exercise 12.4.5. Granted that ∫−∞∞e−x2dx=π (the number π is defined in Chapter 13, see also Corollary 13.2.12), evaluate the following in terms of π:


	Page 274(a)∫0∞e−xxdx=Γ(1/2).


	(b)∫−∞∞e−x2/a2dx, a>0.


	(c)∫0∞xne−x2/a2dx.


	(d)∫−∞∞xne−x2/a2dx, a>0.





	Exercise 12.4.6. (★) Find lower and upper bounds for (2nn)=(2n)!/(n!)2 that do not contain factorials.


	Exercise 12.4.7. Determine which of the following converge:


	(a)∑n=1∞(n+1)nnn+1.


	(b)∑n=1∞n!nn.


	(c)∑n=1∞(n!)2(2n)!.





	Exercise 12.4.8. This question asks you to mimic the estimates in the proof of Theorem 12.4.1 for the function f(x)=1/x on the interval [1,n], with n a positive integer. (The limit in (c) is often denoted γ (gamma).)


	(a)Use secant lines on the intervals [k,k+1] to prove

logn<12+[∑k=2n−11k]+12n.


	(b)Use tangent lines at k=2, 3, …, n−1, and suitably handle the intervals at the ends, to prove

log3/2+[∑k=2n−11k]+12n<logn.


	(c)Prove that [∑k=1n1k]−logn is increasing and bounded above.





	Exercise 12.4.9. (H). Prove Proposition 12.4.9.


	Exercise 12.4.10. (H). Prove Proposition 12.4.11, including that the integral converges.


	Exercise 12.4.11. This exercise outlines a proof of Theorem 12.4.12, that e is transcendental, not the root of a polynomial equation with integer coefficients. The argument here is adapted from Lecture VII. of Klein, [Klein]. This exercise is unusual, filling in details in a provided sketch rather than requesting a proof from scratch. The mathematical importance of the result justifies its inclusion, but the proof here hinges on a particular sequence of polynomials with integer coefficients and all terms of large degree:

qm(x)=xm[∏j=1n(x−j)]m+1=xm[(x−1)(x−2)⋯(x−n)]m+1.
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0=∑k=0nakek=a0+a1e+⋯+anen,

then there exist a real number r such that |r|<1 and a non-zero integer N such that 0=r+N. Since no such r and N exist, there exist no integers (ak) as above.

To prove r and N exist if (*) is satisfied, multiply (*) by 1m!qm(x)e−xdx and integrate from 0 to ∞, splitting the kth integral at k:

0=∑k=0nakekm!∫0kqm(x)e−xdx+∑k=0nakekm!∫k∞qm(x)e−xdx=∑k=1nakekm!∫0kqm(x)e−xdx⏟=rm+∑k=0nakm!∫0∞qm(x+k)e−xdx⏟=Nm.

Establish the following two claims and complete the proof.


	(i)There is an M such that |(x−1)(x−2)⋯(x−n)|≤M if 0≤x≤n, and

|rm|:=|∑k=1nakekm!∫0kqm(x)e−xdx|≤∑k=1n|ak|ek(kM)m+1(m+1)!→0.


	(ii)If

Nk,m:=ekm!∫k∞qm(x)e−xdx=1m!∫0∞qm(x+k)e−xdx

for all k such that 0≤k≤n, then N0,m=a0(−n!)m+1+(m+1)(integer), while if 1≤k≤n, then Nk,m=(m+1)(integer). If m is sufficiently large, the sum Nm is a non-zero integer. Hints: For non-negative integer m, we have ∫0∞xme−xdx=m!. The qm have integer coefficients and all terms have large degree.
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Trigonometric functions are usually introduced via geometry, either as ratios of sides in a right triangle, or in terms of points on the unit circle. Our analytic development loosely follows Ahlfors, [1]. One advantage over a geometric approach is that the definitions, based on the axioms of R, fit neatly into the framework established so far. Fringe benefits include illustration of solving differential equations by power series, the ability to express and prove geometric theorems analytically, and easy generalization to complex variables.


13.1 Cosine and Sine


Proposition 13.1.1. ⏎ There exist unique functions C and S:R→R of class C2 satisfying

C′′+C=0,C(0)=1,C′(0)=0;S′′+S=0,S(0)=0,S′(0)=1.



Definition 13.1.2. The function C in Proposition 13.1.1 is called the cosine function, cos:R→R. The function S is called the sine function sin:R→R.



Proof of Proposition 13.1.1. (Existence). We use an Ansatz, or “guess.” Suppose provisionally that there exists a real-analytic solution y of the second-order differential equation y′′+y=0 in some neighborhood of 0. Write

y(x)=∑k=0∞akxk=a0+a1x+a2x2+⋯,

and use term by term differentiation and index-shifting to deduce

y′(x)=∑k=0∞(k+1)ak+1xk,y′′(x)=∑k=0∞(k+2)(k+1)ak+2xk.

Page 277By assumption, y satisfies

0=y′′+y=∑k=0∞(k+2)(k+1)ak+2xk+∑k=0∞akxk=∑k=0∞[(k+2)(k+1)ak+2+ak]xk.

The coefficients of this series must all be zero by the identity theorem for power series (Theorem 8.3.17), so we get a recursion relation

ak+2=−ak(k+2)(k+1),k≥0.

The initial conditions y(0)=a0 and y′(0)=a1 determine the first two coefficients. The first two coefficients, together with the recursion relation, determine all the remaining coefficients:

a2k=(−1)ka0(2k)!,a2k+1=(−1)ka1(2k+1)!.

The respective initial conditions for C (a0=1 and a1=0) and S (a0=0 and a1=1) give

C(x)=∑k=0∞(−1)kx2k(2k)!=1−x22!+x44!−x66!+⋯,S(x)=∑k=0∞(−1)kx2k+1(2k+1)!=x−x33!+x55!−x77!+⋯.

To determine the interval of convergence for each series, apply the ratio test. For C(x), we have

limk→∞|x2k+2/(2k+2)!x2k/(2k)!|=limk→∞|x|2(2k)!(2k+2)!=limk→∞|x|2(2k+2)(2k+1),

which is 0 for all real x; that is, the series for C(x) converges absolutely for every real x. The calculation for S(x) is similar.

In summary, there exist real-analytic functions C and S satisfying the conditions of Proposition 13.1.1.

(Uniqueness). The existence proof implicitly showed that the conditions of Proposition 13.1.1 uniquely define real-analytic functions C and S. However, there could conceivably exist non-analytic solutions.


Lemma 13.1.3. ⏎ Assume y:R→R is a twice-differentiable function satisfying y′′+y=0 on R. If y(0)=y′(0)=0, then y(x)=0 for all x.

Page 278Proof. If y′′+y=0 for all real x, then

((y′)2+y2)′=2y′y′′+2yy′=2y′⋅(y′′+y)=0.

By the identity theorem (Theorem 10.3.3), the function (y′)2+y2 is constant:

y′(x)2+y(x)2=y′(0)2+y(0)2=0for all real x.

In particular, y(x)=0 for all real x. □


We now complete the proof of uniqueness. Assume a and b are arbitrary real numbers, and f is any twice-differentiable function satisfying f′′+f=0, f(0)=a and f′(0)=b. By linearity of the derivative, the function

y(x)=f(x)−(aC(x)+bS(x))

satisfies y′′+y=0, y(0)=0, and y′(0)=0. By Lemma 13.1.3, y(x)=0 for all real x, so f(x)=aC(x)+bS(x). That is, the differential equation f′′+f=0 and the conditions f(0)=a and f′(0)=b uniquely determine f. This completes the proof of Proposition 13.1.1. □


For later use, we record the final step of the proof:


Proposition 13.1.4. ⏎ If a and b are real numbers and f is a twice-differentiable function satisfying f′′+f=0, f(0)=a and f′(0)=b, then

f(x)=acosx+bsinxfor all real x.



Proposition 13.1.5. ⏎ The sine and cosine functions satisfy the following identities for all real x, y:


	(i)cos(−x)=cosx, sin(−x)=−sinx.


	(ii)sin′(x)=cos(x), cos′(x)=−sin(x).


	(iii)sin2x+cos2x=1.


	(iv)cos(x+y)&=cosxcosy−sinxsiny,sin(x+y)&=sinycosx+sinxcosy.

In particular, sin(2x)=2sinxcosx and cos(2x)=cos2x−sin2x.




Proof.


	(i).It is apparent that sin is an odd function from its power series; however, a direct proof (in the spirit of the proposition) can be given using Proposition 13.1.4: The function f(x)=sin(−x) satisfies f′′+f=0, f(0)=0, and (by the chain rule) f′(0)=−1, so f=−sin. Evenness of cos is similar.


	(ii).Page 279If f=sin′, then f′′+f=0 by differentiating sin′′+sin=0. But f(0)=sin′0=1 by definition of sin, and f′(0)=sin′′(0)=−sin0=0. By Proposition 13.1.4, sin′=cos. A similar argument shows cos′=−sin.


	(iii).Consider the function f=sin2+cos2. Part (ii) gives

f′=2sinsin′+2coscos′=2sincos+2cos(−sin)=0,

so f is constant. Thus f(x)=f(0)=sin20+cos20=1 for all x.


	(iv).To prove the addition formulas, fix a real number y and consider the function f(x)=sin(x+y). The chain rule gives f′′+f=0, and the derivative formula for sin implies f′(x)=cos(x+y) for all x. Substituting x=0, we find f(0)=siny and f′(0)=cosy. Proposition 13.1.4 with a=siny and b=cosy gives

sin(x+y)=f(x)=sinycosx+sinxcosy

The addition formula for cos is similar. □





Several auxiliary formulas are listed here for reference. These need not be memorized, but their technique of proof is worth remembering.


Corollary 13.1.6. ⏎ For all real x and y,

cosxcosy=12(cos(x−y)+cos(x+y)),sinxsiny=12(cos(x−y)−cos(x+y)),sinxcosy=12(sin(x+y)+sin(x−y));cosx+cosy=2cos(12(x+y))cos(12(x−y)),cosx−cosy=2sin(12(x+y))sin(12(x−y)),sinx+siny=2sin(12(x+y))cos(12(x−y)).

Proof. From the addition theorem for cos and the fact that sin is odd,

cos(x−y)=cosxcosy+sinxsiny,cos(x+y)=cosxcosy−sinxsiny.

Adding and subtracting these (and dividing by 2) gives the first two formulas. The third is derived similarly from the addition theorem for sin.

To derive the fourth, write the first as

cos(u+v)+cos(u−v)=2cosucosv.

Put u=12(x+y) and v=12(x−y), noting that x=u+v and y=u−v. The fifth and sixth formulas are similar. □
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	Exercise 13.1.1. (★) Use termwise differentiation to give an alternative proof that sin′=cos and cos′=−sin.


	Exercise 13.1.2. Use the trigonometric power series to evaluate:


	(a)limx→01−cosxx2.


	(b)limx→0∫0x21−costx6dt.





	Exercise 13.1.3. Show that the power series

f(x)=∑k=0∞(−1)kxk(2k)!=1−x2!+x24!−x36!+⋯

has infinite radius, and f(x2)=cosx and f(−x2)=coshx if x≥0.


	Exercise 13.1.4. Using the sampled form of the remainder, how large could

|cosx−∑k=0n−1(−1)kx2k(2k)!|

be if |x|≤π/2<1.6? How many terms are sufficient to estimate cosx on this interval to within ε<10−6? ε<10−8?






13.2 Periodicity


Proposition 13.2.1. ⏎ There exists a unique positive real number τ such that cos is positive on (−τ,τ), and cosτ=0. Further,

2<τ<6−12.

Proof. To prove there exists a smallest positive root τ of the cosine function, we establish the estimates

x−x33!≤sinx≤xfor all non-negative real x,1−x22!≤cosx≤1−x22!+x44!for all real x.

The identity sin2t+cos2t=1 implies −1≤cost≤1 for every real t. Integrating from 0 to x gives, for every non-negative x,

−x≤∫0xcostdt=sint|t=0x=sinx≤x.
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−x22≤∫0xsintdt=1−cosx≤x22.

Again replacing x with t and rearranging, we find 1−(t2/2)≤cost≤1 for non-negative t. Another integration gives

x−x36≤sinx≤x,

and a fourth gives x2/2−x4/24≤1−cosx≤x2/2, or

1−x22≤cosx≤1−x22+x424

for all non-negative x. This inequality is true if x<0 as well because each term is even in x. Figure 13.1 depicts these inequalities geometrically.

[image: A cosine curve is shown with two bounding curves, one quadratic and one quartic, surrounding it symmetrically.]
Long Description for Figure 13.1The diagram shows three curves plotted on a coordinate grid. The central curve represents y equals cosine x, forming a smooth wave that peaks at 1 and dips symmetrically below the x-axis. A second curve, y equals 1 minus 1 divided by 2 factorial times x squared, is a downward-opening parabola that intersects the cosine curve at the origin and lies above it for small x. A third curve, y equals 1 minus 1 divided by 2 factorial times x squared plus 1 divided by 4 factorial times x to the power of 4, is a quartic function that curves upward more gently and encloses the cosine curve from above.

Figure 13.1 Upper and lower bounds on the cosine function. ⏎



Put p2(x)=1−(x2/2) and p4(x)=1−(x2/2)+(x4/24). We have p2(x)>0 if 0<x<2, and by the quadratic formula, p4(x)>0 if 0<x<6−12. The preceding inequality for cos implies

cos(6−12)≤0≤cos2.

By the intermediate value theorem, cos has a zero between 2≈1.41421 and 6−12≈1.59245, Figure 13.2. This is the unique zero in [0,6], because

cos′x=−sinx≤−x+x36<0if 0<x<6.

[image: A cosine curve and its polynomial bounds are shown between 0 and 3 with key markers near the smallest positive root.]
Long Description for Figure 13.2The diagram shows three curves between x equals 0 and x equals 3. The main curve represents y equals cosine x, which starts at 1 when x equals 0 and curves downward to cross the x-axis near x equals 1.57. Two additional curves represent the Taylor polynomial approximations: y equals 1 minus 1 divided by 2 factorial times x squared, and y equals 1 minus 1 divided by 2 factorial times x squared plus 1 divided by 4 factorial times x to the power of 4. These curves approximate the cosine function from below and above, respectively. Three positions on the x-axis are marked: square root of 2, tau, and square root of 6 minus square root of 12, all clustered near the point where cosine x becomes zero.

Figure 13.2 The smallest positive zero of the cosine function. ⏎



Evenness of cos implies 0<cosx if −τ<x<τ. □



Definition 13.2.2. Page 282π:=2τ.



Remark 13.2.3. The number π is the familiar ratio of the circumference of a circle to its diameter, see Remark 13.2.14. Proposition 13.2.1 guarantees

2.82842≤π≤3.1849.

⋄



Proposition 13.2.4. The functions cos and sin are 2π-periodic:

cos(x+4τ)=cosx,sin(x+4τ)=sinx,for all real x.

Proof. Since cos(π/2)=0, we have sin(π/2)=±1. The proof of Proposition 13.2.1 guarantees 0≤x−x3/6≤sinx if 0≤x≤6, so we have sin(π/2)=1. The addition formulas for sin and cos give

sin(x+π/2)=sinxcos(π/2)+cosxsin(π/2)=cosx,cos(x+π/2)=cosxcos(π/2)−sinxsin(π/2)=−sinx.

Bootstrapping, we have sin(x+π)=cos(x+π/2)=−sinx, and therefore sin(x+2π)=−sin(x+π)=sinx for all real x. The cosine function is 2π-periodic as well since cosx=sin(x+π/2) for all x. □



Remark 13.2.5. The proof shows sin and cos are π-anti-periodic:

sin(x+π)=−sinx,cos(x+π)=−cosxfor all real x.

Consequently, sinx=0 if and only if x=kπ for some integer k, while cosx=0 if and only if x=(k+12)π for some integer k. ⋄



Proposition 13.2.6. ⏎ For all real x, cosx=sin(π/2−x). Further,

sin(π/4)=cos(π/4)=2/2,sin(π/6)=cos(π/3)=1/2,cos(π/6)=sin(π/3)=3/2.

Page 283Proof. The identity cosx=sin(π/2−x) follows from the addition formula for sin and evenness of cos. Taking x=π/4 shows that cos(π/4)=sin(π/4); since each is positive and the sum of their squares is 1, each is equal to 1/2=2/2.

Repeated use of the addition formulas gives, for all real x,

cos3x=cos(2x+x)=cos(2x)cosx−sin(2x)sinx=(cos2x−sin2x)cosx−(2sinxcosx)sinx=cosx(cos2x−3sin2x)=cosx(1−4sin2x).

If x=π/6, then cos3x=cos(π/2)=0. Since cosx>0, we have 1=4sin2x. But sinx>0 since 0<x<π/2. We conclude that sin(π/6)=1/2, and therefore that cos(π/3)=sin(π/6)=1/2.

If 0≤x≤π/2, then cosx=1−sin2x since both cos and sin are non-negative on this interval. The preceding conclusions immediately imply cos(π/6)=sin(π/3)=3/2. □



Remark 13.2.7. The series of sin at 0 contains only terms of odd degree. For each n, consequently, the (2n+1) th-degree germ at 0 is the (2n+2) th-degree germ, and the remainder is O(x2n+3). Exercise 13.2.4 guarantees the odd-degree germs alternately under- and over-estimate, so the “first omitted term” bounds the remainder. Figure 13.3 depicts the germs, with shades of gray depicting regions bounded by successive (2n+1) th-degree germs, darker with increasing degree. Table 13.1 shows the rate of convergence on the half-period [−π2,π2], which in principle suffices to determine the function everywhere. Similar remarks are true for cos.

[image: A curve of the sine function extends from negative pi to pi. Centered at x equals 0, the sine curve rises smoothly through pi divided by 2, reaches a peak, and symmetrically decreases through 0 to a minimum at negative pi divided by 2. Around this curve, several shaded regions of increasing width and depth are formed.]
Figure 13.3 Polynomial germs of sin at 0. ⏎




Table 13.1 Approximating sinx on [−π2,π2] by nth-degree germs. ⏎


	Degree (2n+2)

	P02n+2sin(x)

	Error Bound






	2

	x

	0.646




	4

	x - x33!

	0.08




	6

	x - x33! + x55!

	0.0047




	8

	x - x33!+x55!−x77!

	0.000161




	10

	x - x33!+x55!−x77!+x99!

	0.0000036






⋄



Proposition 13.2.8. ⏎ Assume n is a positive integer. For all real numbers a and b,

∫abcosnxdx=1ncosn−1xsinx|x=ax=b+n−1n∫abcosn−2xdx,∫absinnxdx=−1nsinn−1xcosx|x=ax=b+n−1n∫absinn−2xdx,

Page 284Proof. See Exercise 13.2.5. □



Corollary 13.2.9. ⏎ For every natural number n, if

I(n)=∫0π/2cosnxdx=∫0π/2sinnxdx,

then

I(2k)=(2k−1)(2k)⋅(2k−3)(2k−2)⋯56⋅34⋅12⋅π2=(2k)!(2k⋅k!)2⋅π2,I(2k+1)=(2k)(2k+1)⋅(2k−2)(2k−1)⋯67⋅45⋅23=(2k⋅k!)2(2k+1)!.

Proof. See Exercise 13.2.6. □



Proposition 13.2.10. ⏎ 2∫0π/2(sint)2x−1(cost)2y−1dt=Γ(x)Γ(y)Γ(x+y).

Proof. Substitute t=sin2t in the definition of the β function and use Proposition 12.4.9. □



Remark 13.2.11. Taking x=1/2 or y=1/2 expresses the integrals of powers of sin and cos in terms of Γ, compare Corollary 13.2.9. ⋄



Corollary 13.2.12. ⏎ ∫−∞+∞e−u2du=π.

Proof. See Exercise 13.2.7. □



The Unit Circle


Proposition 13.2.13. ⏎ Page 285Assume x and y are real numbers satisfying x2+y2=1. There exists a unique real number θ (theta) such that 0≤θ<2π, x=cosθ, and y=sinθ.

Proof. Since cos is continuous and strictly decreasing on [0,π], and cos0=1, cosπ=−1, Theorem 10.3.7 implies cos maps [0,π] bijectively to [−1,1]. A similar argument shows cos maps (π,2π) bijectively to (−1,1).

If a point (x,y) on the circle x2+y2=1 lies in the closed upper half-plane, namely, if 0≤y≤1, then y=1−x2. By the preceding paragraph there exists a unique θ in [0,π] such that x=cosθ. Since sinθ≥0 if 0≤θ≤π, the point (cosθ,sinθ) is equal to (x,y).

If instead (x,y) lies in the open lower half-plane, namely, −1≤y<0, then y=−1−x2 and −1<x<1. There is a unique θ in (π,2π) such that x=cosθ. Since sinθ<0 if π<θ<2π, the point (cosθ,sinθ) is equal to (x,y).

In summary, the mapping θ↦(cosθ,sinθ) is a bijection from the half-open interval [0,2π)=[0,π]∪(π,2π) to the unit circle. □



Remark 13.2.14. ⏎ If a particle has position (cosθ,sinθ) for θ in [0,2π], the preceding argument shows that the particle traces the unit circle once. The particle's speed at time θ is (cos′θ)2+(sin′θ)2=1, so the distance traveled, a.k.a., the circumference of the unit circle, is 2π. ⋄



Definition 13.2.15. If (x,y) is a point of the plane, we say a real ordered pair (r,θ) is a set of polar coordinates for (x,y) if

x=rcosθ,y=rsinθ.



Corollary 13.2.16. ⏎ If (x,y) is a point of the plane, there exists a set of polar coordinates for (x,y). If (x,y)≠(0,0), we may assume r>0. Subject to this condition, r=x2+y2 and θ is unique up to an added integer multiple of 2π.

Proof. For all real θ, (0,θ) is a set of polar coordinates for (0,0). For the remainder of the proof, assume (x,y)≠(0,0).

(Existence). Set r=x2+y2. By Proposition 13.2.13 applied to the numbers u=x/r and v=y/r, which satisfy u2+v2=1, there exists a real θ in [0,2π) such that u=x/r=cosθ and v=y/r=sinθ.

(Uniqueness). If r is real, then (x/r)2+(y/r)2=(x2+y2)/r2=1 if and only if r2=x2+y2, if and only if r=±x2+y2. Only one branch is positive.

Now suppose θ is real and

u=xx2+y2=cosθ,v=yx2+y2=sinθ.

Page 286The real number θ/(2π) is written uniquely as an integer k=⌊θ/(2π)⌋ plus a real number x′ such that 0≤x′<1, Corollary 4.3.2. Writing θ0=2πx′, we have 0≤θ0<2π and θ=2πk+θ0. Since cos and sin are 2π-periodic, we have

u=cosθ=cosθ0,v=sinθ=sinθ0.

By Proposition 13.2.13, θ0 is the only real number in [0,2π) satisfying the preceding equations; that is, θ is unique up to an added integer multiple of 2π. □





Exercises for Section 13.2


	Exercise 13.2.1. (★) Evaluate sin(π/8) and cos(π/8) exactly. (Your answers should involve only square roots and rational numbers.) Hint: Use the double-angle formula for cos to develop half-angle formulas for cos and sin.


	Exercise 13.2.2. Evaluate sin(π/12) and cos(π/12) exactly. (Your answers should involve only square roots and rational numbers.)


	Exercise 13.2.3. (H). Evaluate the improper integral

∫0πlogsinxdx.


	Exercise 13.2.4. By continuing the estimates in the proof of Proposition 13.2.1, prove that for every natural number n and all non-negative real x,

∑k=02n+1(−1)kx2k(2k)!≤cosx≤∑k=02n(−1)kx2k(2k)!,∑k=02n+1(−1)kx2k+1(2k+1)!≤sinx≤∑k=02n(−1)kx2k+1(2k+1)!.

In words, successive germs of cos and sin alternately under-estimate and over-estimate the function values on the positive reals. (The fact that the coefficients alternate in sign is not enough to deduce this result, but is a good way of remembering it.)


	Exercise 13.2.5. Prove Proposition 13.2.8.


	Exercise 13.2.6. Prove Corollary 13.2.9.


	Exercise 13.2.7. (H). Prove Corollary 13.2.12.


	Exercise 13.2.8. Page 287(H). Assume F is differentiable in some neighborhood of 0, and that f=F′ is differentiable at 0. Must there exist a punctured neighborhood of 0 on which f is continuous?


	Exercise 13.2.9. (H). Assume α is irrational, and define cα(t)=cost+cos(αt) and sα(t)=sint+sin(αt). Prove these functions are not periodic, and determine whether each has an absolute maximum or an absolute minimum.






13.3 Auxiliary Functions


Definition 13.3.1. On the set of real numbers x such that cosx≠0, define the secant function secx=1/cosx.



Remark 13.3.2. The secant is even, π-anti-periodic, and |secx|≥1 for all x in the domain, Figure 13.4. (Tick marks are integers.) ⋄


[image: A cosine curve is shown along with a secant curve with vertical asymptotes at odd multiples of pi divided by 2.]
Long Description for Figure 13.4The diagram displays two curves on a coordinate grid: the cosine function and its reciprocal, the secant function. The cosine curve is a smooth wave oscillating between 1 and negative 1, passing through points such as 0, pi, and 2 pi with peaks and troughs aligned at regular intervals. The secant curve forms upward and downward-facing arches centered on the peaks and troughs of the cosine function but breaks at vertical dashed lines. These vertical lines represent asymptotes at x equals negative 3 pi divided by 2, negative pi divided by 2, pi divided by 2, and 3 pi divided by 2, where the cosine function reaches zero and the secant function becomes undefined. The secant arches increase sharply as they approach these asymptotes.

Figure 13.4 The cosine and secant functions. ⏎




Definition 13.3.3. On the set of real numbers x such that sinx≠0, define the cosecant function cscx=1/sinx.



Remark 13.3.4. The cosecant function is odd, π-anti-periodic, and satisfies the identity csc(x+π2)=secx, Figure 13.5. (Tick marks are integers, dashed lines are zeros of sin.) ⋄


[image: A sine curve is shown with the reciprocal cosecant curve and vertical asymptotes at multiples of pi.]
Long Description for Figure 13.5The diagram features two curves on a coordinate grid: a sine wave and its reciprocal, the cosecant function. The sine curve oscillates smoothly between 1 and negative 1, crossing the x-axis at x equals negative pi, 0, and pi. The cosecant curve forms a series of U-shaped and inverted U-shaped arches centered above and below the peaks and troughs of the sine curve. Vertical dashed lines are drawn at x equals negative pi, 0, and pi.

Figure 13.5 The sine and cosecant functions. ⏎




Definition 13.3.5. On the set of real numbers x such that cosx≠0, define the tangent function, tanx=sinx/cosx.



Remark 13.3.6. Page 288The tangent function is odd, as a quotient of an odd function by an even function, and periodic with period π, Figure 13.6:

tan(x+π)=sin(x+π)cos(x+π)=−sinx−cosx=tanx.

[image: A periodic tangent curve with vertical asymptotes at odd multiples of pi divided by 2 is shown.]
Long Description for Figure 13.6The horizontal axis is labeled with values including negative 3 pi divided by 2, negative pi, negative pi divided by 2, 0, pi divided by 2, pi, and 3 pi divided by 2. The tangent curve passes through the origin and repeats periodically. Each segment of the curve rises steeply from negative infinity to positive infinity between vertical dashed asymptotes, which occur at every odd multiple of pi divided by 2. The function is undefined at these positions, resulting in gaps. The curve is smooth and increases monotonically within each interval.

Figure 13.6 The tangent function. ⏎



⋄



Proposition 13.3.7. The tangent function is differentiable on the “period interval” (−π/2,π/2), satisfies tan′x=sec2x for all x in the domain, and maps the period interval bijectively to R.

For all real x and y,

tan(x+y)=tanx+tany1−tanxtany.

Page 289Proof. The quotient rule gives

tan′=cossin′−sincos′cos2=cos2+sin2cos2=1cos2=sec2≥1.

In particular, tan is strictly increasing (hence injective) on (−π/2,π/2). Since cos and sin are positive on (0,π/2), tanx=sinx/cosx→∞ as x→π/2−. Since tan is odd, tanx→−∞ as x→−π/2+. An intermediate value theorem argument shows tan maps the period interval surjectively to R.

For all real x and y,

tan(x+y)=sin(x+y)cos(x+y)=sinxcosy+cosxsinycosxcosy−sinxsiny=tanx+tany1−tanxtany;

the final equality follows from dividing both the numerator and denominator by cosxcosy. □



Corollary 13.3.8. ⏎ For every integer k, there exists a unique real number x such that (k−12)π<x<(k+12)π and tanx=x.

Proof. The function f(x)=tanx−x is differentiable, and has derivative f′(x)=sec2x−1≥0. Since the derivative vanishes at isolated points, namely at x=kπ, f is strictly increasing on ((k−12)π,(k+12)π). On this interval, x is bounded while tan approaches −∞ at the left endpoint and approaches ∞ at the right endpoint. By the intermediate value theorem, f maps ((k−12)π,(k+12)π) bijectively to R, and in particular is equal to 0 exactly once in this interval. □



Definition 13.3.9. For x not an integer multiple of π, define the cotangent function cotx=cosx/sinx.



Remark 13.3.10. The cotangent is periodic with period π. Away from integer multiples of π/2, tan=sin/cos and cot=cos/sin are reciprocals, and cot(x+π/2)=−tanx. The derivative of cot is −1/csc2, so cot is decreasing on every interval (kπ,(k+1)π) with k an integer. ⋄



Example 13.3.11. Power series representations of reciprocals and quotients are not generally easy to calculate. For the circular functions, direct calculation of derivatives quickly becomes onerous. Algebra does allow calculation of any finite germ, however. To illustrate, we'll expand sec and tan as fourth-degree germs at 0. (See also the recursive approach in Exercise 12.3.10.) The starting ingredient is an expansion of the denominator to the desired order, here

cosx=1−12x2+124x4+O(x6)=1−e(x),e(x)=12x2−124x4+O(x6).

Because e(x)≈O(x2) is a convergent power series, there is a positive r such that |e(x)|<1 if |x|<r. In such an interval, the geometric series formula gives

secx=1cosx=11−e(x)=1+e(x)+e(x)2+O(x6).

Page 290We need not multiply out e(x)2 completely; retaining terms of degree at most 4 suffices:

e(x)2≈(12x2−124x4)2≈14x4+O(x6).

We conclude that secx=1+12x2+524x4+O(x6).

For an expansion of tanx, we multiply the preceding fourth-degree germ by the fourth-degree germ of sinx;

tanx=sinxcosx=[x−16x3+O(x5)][1+12x2+524x4+O(x6)]=x−16x3+12x3+O(x5)=x+13x3+O(x5).

The same ideas handle functions that vanish at the center. For example

cotx=1tanx=1x[1+13x2+O(x4)]=1−13x2+O(x4)x.

♢




Exercises for Section 13.3


	Exercise 13.3.1. (★) Prove sec′=sec⋅tan, including that the domains are the same.


	Exercise 13.3.2. Prove that cot(2x)=12(cotx−tanx) if x∉(π/2)Z.


	Exercise 13.3.3. (H). Prove that if |θ|<π, then

tanθ2=sinθ1+cosθ=1−cosθsinθ.


	Exercise 13.3.4. (★) In (a)–(e), SI denotes the sine integral defined by

s(t)=sintt,SI(x)=∫0xsintdtt.


	(a)Prove s has a continuous extension to R: We can define s(0) to make s continuous everywhere. Find power series representations for s and SI and show each has infinite radius.


	(b)Find the points where SI′=0, and for each, give the value of SI.


	(c)Prove that for each positive integer k, SI has a unique inflection point xk satisfying (k−12)π<xk<(k+12)π.


	(d)Prove that for every natural number k,

2(k+1)π≤|∫kπ(k+1)πsinttdt|=|ak|≤2kπ.

Find the absolute maximum of SI as an integral.


	Page 291(e)Prove

∫0∞sintdtt=limx→∞SI(x)

exists, but the integral is not absolutely convergent.





	Exercise 13.3.5. Prove that for all positive r,

∫0∞sin(rt)tdt=∫0∞sinxxdx=∫0∞sin2xx2dx=1r∫0∞sin2(rt)t2dt,

and the last two integrals converge absolutely.


	Exercise 13.3.6. (★) Assume I⊆R and f:I→R is a function. The polar graph r=f(θ) is the set of points (x,y)=(f(θ)cosθ,f(θ)sinθ) for θ in I, namely the set of points (x,y)=(rcosθ,rsinθ) such that r=f(θ) and θ∈I.

Describe the hyperbola x2−y2=1 as a polar graph r=f(θ) including a domain I for which the hyperbola is traced one time.


	Exercise 13.3.7. Describe the parabola y=x2 as a polar graph r=f(θ) including a domain I for which the parabola is traced one time.


	Exercise 13.3.8. (★) Let X=R2∖{(0,0)}. The mapping that sends each point with polar coordinates (r,θ) to (1/r,θ) is called inversion in the unit circle.

Find polar and rectangular equations for the image of the unit hyperbola x2−y2=1 under inversion in the unit circle.


	Exercise 13.3.9. Give rectangular equations for the polar graphs r=secθ, r=1, and r=cosθ, and describe each geometrically. If a is real and positive, describe the image of the line y=1/(2a) under inversion in the unit circle.


	Exercise 13.3.10. Expand secx and tanx as sixth-degree germs at 0.


	Exercise 13.3.11. Prove that cscx−1x2 extends continuously to (−π,π).






13.4 Inverse Functions

Each circular function is periodic, hence has no “global” inverse. Instead, we restrict each function to an interval on which the function is injective, obtaining a branch of inverse, Figure 13.7.

[image: Graph A shows sine from negative pi divided by 2 to pi divided by 2. Graph B shows arcsine from negative 1 through 1.]
Long Description for Figure 13.7Graph A displays the principal branch of the sine function. The curve is plotted from x equals negative pi divided by 2 to pi divided by 2, passing through the origin and reaching maximum and minimum values of 1 and negative 1. Solid portions of the curve represent the defined principal interval, while the extensions beyond these limits are shown as dashed. Graph B presents the inverse sine function, or arcsine. It is defined from x equals negative 1 to 1 and spans the y-values from negative pi divided by 2 to pi divided by 2. The arcsine curve passes through the origin and is increasing, forming a smooth S-shaped curve that reflects the restricted sine function across the line y equals x.

Figure 13.7 The principal branches of sine and arcsin. (a) Sin. (b) Sin−1. ⏎



Remarkably, while the inverse functions are not algebraic, their derivatives are algebraic. This is no accident, but a consequence of the differential equations that characterize the elementary trig functions, see also Exercise 11.1.7.


Page 292Inverse Sine and Cosine


Definition 13.4.1. The restriction of sin to the interval [−π/2,π/2] is denoted Sin. The inverse function Sin−1:[−1,1]→[−π/2,π/2], sometimes denoted arcsin, is called the principal branch of arcsin.



Remark 13.4.2. By definition,

sin(Sin−1x)=xfor all x in [−1,1],Sin−1(siny)=yfor all y in [−π/2,π/2].

Sine is decreasing on [π/2,3π/2] because sin(π−x)=sinx. Periodicity implies sin is monotone on [(k−12)π,(k+12)π] for every integer k. For each k, there is a corresponding branch of arcsin. On rare occasions when one considers a non-principal branch of arcsin, it is denoted sin−1, and k is supplied by context. ⋄



Proposition 13.4.3. ⏎ The function Sin−1 is continuous on [−1,1], differentiable on (−1,1), and

(Sin−1)′(x)=11−x2.

Proof. By Theorem 10.2.10, Sin−1 is differentiable since sin′y=cosy≠0 if −π/2<y<π/2, and

(Sin−1)′(x)=1cos(Sin−1x)=11−sin2(Sin−1x)=11−x2.◻

□



Corollary 13.4.4. Page 293If a>0, then ∫0adxa2−x2=π2.

Proof. If 0≤x<a,

1a2−x2=1(a+x)(a−x)≤1a(a−x),

and the upper bound is improperly integrable by Proposition 11.3.4. The smaller improper integral therefore converges. Factoring a2 from the radicand and using the substitution u=x/a gives

∫0adxa2−x2=∫0adx/a1−(x/a)2=∫01dx1−x2.

By Proposition 13.4.3 and Theorem 11.1.2, this is Sin−11−Sin−10=π/2. □



Definition 13.4.5. The restriction of cos to the interval [0,π] is denoted Cos. The inverse function Cos−1:[−1,1]→[0,π], sometimes denoted arccos, is called the principal branch of arccos.



Remark 13.4.6. For each integer k there is a branch of arccos taking values in [kπ,(k+1)π]. The identity cosy=x=sin(π/2−y) on [0,π] becomes

Cos−1x=y=(π/2)−Sin−1xon [−1,1].

⋄




Inverse Tangent


Definition 13.4.7. The inverse of tan on the interval (−π/2,π/2) is the principal branch of arctan, denoted Tan−1:R→(−π/2,π/2), Figure 13.8.


[image: An arctangent curve increasing from negative pi divided by 2 to pi divided by 2 with horizontal asymptotes.]
Figure 13.8 The principal branch of arctan. ⏎




Remark 13.4.8. By definition,

tan(Tan−1x)=xfor all real x,Tan−1(tany)=yfor all y in (−π/2,π/2).

⋄



Proposition 13.4.9. The function Tan−1 is differentiable on R, and

(Tan−1)′(x)=11+x2for all real x.

Proof. Since tan′x=sec2x>0 for all real x, Theorem 10.2.10 guarantees that Tan−1 is differentiable, and

(Tan−1)′(x)=1sec2(Tan−1x)=11+tan2(Tan−1x)=11+x2.◻

□



Corollary 13.4.10. Page 294If a>0, then ∫0∞dxa2+x2=π2a.

Proof. The integrand is non-negative and bounded above by min(1/a2,1/x2), so the improper integral converges by Proposition 11.3.4. If a=1, we have

∫0∞dx1+x2=limb→∞∫0bdx1+x2=limb→∞Tan−1b−Tan−10=π2.

If a≠1, use the substitution u=x/a:

∫0∞dxa2+x2=∫0∞a⋅dx/aa2(1+(x/a)2)=1a∫0∞du1+u2=π2a.◻

□



Corollary 13.4.11. For x in (−1,1), Tan−1x is expanded in a power series

Tan−1x=∑k=0∞(−1)kx2k+12k+1=x−x33+x55−x77+⋯.

Proof. The geometric series

11+t2=∑k=0∞(−1)kt2k=1−t2+t4−t6+⋯

converges absolutely for all t in (−1,1). Integrating term by term,

Tan−1x=∫0xdt1+t2=∫0x∑k=0∞(−1)kt2kdt=∑k=0∞(−1)k∫0xt2kdt=∑k=0∞(−1)kx2k+12k+1.◻

□



Remark 13.4.12. Page 295In fact, at x=1 the series converges to Tan−11=π/4, see Exercise 13.4.4. The convergence is too slow to be of practical use, however. ⋄



Corollary 13.4.13. π=23∑k=0∞(−1)k13k(2k+1).

Proof. By Proposition 13.2.6, tan(π/6)=sin(π/6)/cos(π/6)=1/3, so π=6Tan−1(1/3). Setting x=1/3 in the power series for Tan−1 and noting that x2k+1=1/(3k3) and 6/3=23,

π=6∑k=0∞(−1)k13k3(2k+1)=23∑k=0∞(−1)k13k(2k+1).◻

□



Remark 13.4.14. This series alternates, so “the tail is bounded by the size of the first omitted term”:

|π3−2∑k=0n−1(−1)k13k(2k+1)|≤23n(2n+1).

For example, taking n=11 terms gives a rational estimate of π/3 that is accurate to within ε=2/4,074,382<0.5×10−6. ⋄





Exercises for Section 13.4


	Exercise 13.4.1. Assume 0<x<1. Draw a right triangle in the first quadrant with angle θ=Sin−1x at the origin, use geometry to find the third side, and read off the ratios cos(Sin−1x), sec(Sin−1x), tan(Sin−1x), and cot(Sin−1x) as algebraic functions of x.

Similarly, find cos(Tan−1x), sec(Tan−1x), and sin(Tan−1x) for x real.


	Exercise 13.4.2. Describe the domain and image of the principal branch of arcsec, formally the inverse of the reciprocal of cosine restricted to [0,π].


	Exercise 13.4.3. (★) Assume inverse functions are principal branches. Prove that the specification

Θ(x,y)={arctan(y/x)if x>0,arccot(x/y)if y>0,arccot(x/y)−πif y<0,

is well-defined, namely, two formulas give the same value if both are defined. Suggestion: Prove that if −π<θ<π, r>0, and (x,y)=(rcosθ,rsinθ), then Θ(x,y)=θ.


	Exercise 13.4.4. Page 296Prove ∑k=0∞(−1)k(2k+1)=limx→1−∑k=0∞(−1)kx2k+1(2k+1)=π4.


	Exercise 13.4.5. Use the substitution u=x−(1/x) to evaluate the improper integral

∫0∞x2+1x4+1dx.
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Points in the plane may be viewed as numerical entities in a way that extends the familiar real number line. Exercise 3.2.15 defines complex numbers as ordered pairs of real numbers and establishes the field axioms for the complex numbers. Exercise 4.2.8 introduces the concept of magnitude, which plays a role in analysis analogous to the absolute value function on the real numbers.

Now that we have constructed the exponential and circular functions over the real numbers and established some of their properties, there are substantial (and possibly surprising) benefits to making a close, formal visit to the complex numbers.


14.1 Algebra and Geometry


Definition 14.1.1. A complex number is an ordered pair α=(a,b) of real numbers. The set of complex numbers is denoted C.

The real number Reα=a is called the real part of α. We say α is real if b=0, and non-real if b≠0. The set of all real complex numbers (a,0) is the real axis.

The real number Imα=b is called the imaginary part of α. We say α is imaginary if a=0. The set of imaginary complex numbers (0,b) is the imaginary axis.

The complex number i=(0,1) is the imaginary unit.



Remark 14.1.2. A subtle point lurks in this definition: We have chosen an imaginary unit. Much of complex analysis rests on a choice of imaginary unit.

In abstract algebra, by contrast, the two imaginary units, which we call i=(0,1) and −i=(0,−1), are on a more equal footing. If a complex number α can be identified with the real ordered pair (a,b), it can equally well be identified with (a,−b), see also Remark 14.1.9. ⋄



Definition 14.1.3. If α=(a,b) and α′=(a′,b′) are complex numbers, we define their sum α+α′ and their product α⋅α′ to be the complex numbers

α+α′=(a+a′,b+b′),α⋅α′=(aa′−bb′,ba′+ab′).



Remark 14.1.4. Page 298To conform with “classical” notation, we write complex numbers not as ordered pairs (a,b)=a(1,0)+b(0,1), but as expressions a+bi. Viewing the real and imaginary parts of a complex number α=a+bi as rectangular coordinates, we identify α=a+bi with the point (a,b), Figure 14.1. ⋄


[image: A complex number and its conjugate, rotations, and labels are plotted in the complex plane with real and imaginary axes.]
Long Description for Figure 14.1The diagram represents the complex plane with the horizontal axis labeled Re for the real part and the vertical axis labeled Im for the imaginary part. A point labeled alpha equals a plus b i lies in the first quadrant with horizontal and vertical dashed lines marking its real and imaginary parts a and b i. A point reflected below the real axis is labeled alpha bar equals a minus b i, indicating the complex conjugate. Another point along the imaginary axis is marked i alpha equals negative b plus a i, showing a ninety-degree rotation. A third point on the negative real axis is labeled i squared alpha equals negative alpha, representing a one hundred eighty-degree rotation.

Figure 14.1 The complex plane. ⏎




Definition 14.1.5. The conjugate of α=a+bi is the complex number α―=a−bi, obtained geometrically by reflecting α across the real axis.



Proposition 14.1.6. The set of complex numbers together with the operations of addition and multiplication is a field.

Proof. See Exercise 3.2.15, (a)–(c). □



Remark 14.1.7. The set of real complex numbers (a,0) is a field under complex addition and multiplication. In fact, if we define ϕ:R→C by ϕ(a)=(a,0), then ϕ is injective, and for all real numbers a and a′, we have

ϕ(a+a′)=ϕ(a)+ϕ(a′),ϕ(a⋅a′)=ϕ(a)⋅ϕ(a′).

In words, complex addition and multiplication reduce to real operations on real complex numbers; we may write a instead of a+0i without ambiguity. ⋄



Proposition 14.1.8. For all complex α and α′,

α+α′―=α―+α′―,α⋅α′―=α―⋅α′―.

Proof. See Exercise 3.2.15 (e). □



Remark 14.1.9. ⏎ Page 299Conceptually, complex conjugation “respects field operations,” or “is a field isomorphism.” This is the algebraic sense in which there is no distinguished choice of imaginary unit. ⋄



Remark 14.1.10. Imaginary numbers may seem tainted with suspicion, as if they don't really exist but it's mathematically expedient to pretend they do. This sentiment presumably traces back to the Ancient Greeks, who viewed numbers as lengths, or “real numbers.” Indeed, no real number has square equal to −1.

The complex number i has a perfectly concrete existence as the point (0,1) in the plane. By definition of multiplication, i2=(0,1)2=(−1,0). Even the mysterious equation i2=−1 has a natural geometric interpretation: If α=(a,b), then iα=(−b,a) and i2α=i(iα)=(−a,−b). Multiplication by i is a counterclockwise quarter-turn of the complex plane about the origin. Multiplying by i twice, a half-turn, multiplies each complex number by −1. ⋄



Geometry of Addition and Multiplication

Geometrically, complex addition is the parallelogram law for vector addition in the plane, see Figure 14.2.

[image: A schematic diagram shows vectors in the complex plane with the origin labeled 0.]
Long Description for Figure 14.2Two vectors, alpha 1 and alpha 2, extend from the origin at different angles. Vector alpha 1 plus alpha 2 is drawn as the diagonal of the parallelogram formed by these two vectors, while alpha 1 minus alpha 2 extends from the tip of alpha 2's negative counterpart to the tip of alpha 1. A vector labeled negative alpha 2 is drawn pointing in the opposite direction of alpha 2, and the vector alpha 1 minus alpha 2 connects from the origin to the tip of this opposite vector.

Figure 14.2 Adding and subtracting complex numbers. ⏎




Definition 14.1.11. Assume r is a non-negative real number, and θ real. The complex number

α=rcosθ+irsinθ=r(cosθ+isinθ)

is said to be written in polar form.

The radius r is the magnitude of α, denoted |α|, and θ is the polar angle of α. If −π<θ≤π, we say θ is the principal angle of α.



Remark 14.1.12. Page 300The expression cosθ+isinθ is convenient to denote cisθ, short for “cosine plus i sine θ.”

The magnitude is given by |α|=r=a2+b2=αα―. Combining, the polar form of a complex number is written α=|α|cisθ. ⋄



Proposition 14.1.13. If α=|α|cisθ and α′=|α′|cisθ′ are in polar form, then α⋅α′=|α|⋅α′|cis(θ+θ′).

Proof. The sum-of-angles formulas for cos and sin, Proposition 13.1.5 (iv), imply

cisθ⋅cisθ′=(cosθ+isinθ)⋅(cosθ′+isinθ′)=(cosθcosθ′−sinθsinθ′)+i(cosθsinθ′+cosθ′sinθ)=cos(θ+θ′)+isin(θ+θ′)=cis(θ+θ′).

Consequently,

α⋅α′=(|α|⋅cisθ)(|α′|⋅cisθ′)=(|α|⋅|α′|)cis(θ+θ′).◻

□



Remark 14.1.14. To multiply two complex numbers geometrically, we multiply their magnitudes (compare Exercise 4.2.8) and add their polar angles, see Figure 14.3. The action of multiplication by α is the unique scaling-and-rotation of the plane about the origin that carries 1 to α. ⋄


[image: Vectors z 1, z 2, and z 3 are rotated by angle theta to form new vectors alpha z 1, alpha z 2, and alpha z 3.]
Long Description for Figure 14.3The diagram displays a set of vectors on the complex plane, all originating from the origin labeled 0. Three vectors labeled z 1, z 2, and z 3 are represented in exponential form as r 1 e to the i theta 1, r 2 e to the i theta 2, and r 3 e to the i theta 3. These vectors lie at increasing angles from the positive real axis. A fixed angle theta is marked at the origin. For each vector z, a corresponding vector labeled alpha z 1, alpha z 2, and alpha z 3 is drawn, each rotated counterclockwise by the same angle theta.

Figure 14.3 Complex multiplication by α=|α|(cosθ+isinθ). ⏎




Remark 14.1.15. Since i=0+1⋅i=cos(π/2)+isin(π/2), the magnitude of i is 1 and the principal angle of i is π/2. Consequently,

iα=i|α|cisθ=|α|cis(θ+(π/2));

again we see that multiplication by i rotates the plane about the origin by a quarter turn counterclockwise. ⋄





Page 301Exercises for Section 14.1


	Exercise 14.1.1. (★) If α=a+bi≠0, write 1/α in rectangular form.


	Exercise 14.1.2. Write 2−i4+3i=a+bi with a and b real.


	Exercise 14.1.3. Assuming (C,+,⋅) is a field, prove the difference of squares identity: For all complex α and β, (α+β)(α−β)=α2−β2.


	Exercise 14.1.4. (★) State and prove a binomial theorem for complex numbers.


	Exercise 14.1.5. (Geometric sums.) Assume a and r are complex numbers, r≠1, and n is a natural number. Prove the geometric sum formula with first term a, ratio r, and n terms:

∑k=0n−1ark=arn−1r−1.


	Exercise 14.1.6. (A). Let i be the complex unit, satisfying i2=−1. Use the complex binomial theorem, Exercise 14.1.4, to expand the following, and separate the real and imaginary parts.


	(a)(x+iy)2.


	(b)(x+iy)3.


	(c)(x+iy)4.





	Exercise 14.1.7. (Square roots.) This exercise establishes that every non-zero complex number w has precisely two complex square roots.


	(a)Suppose z1 and z2 are complex numbers such that z12=w and z22=w. Prove that either z2=z1 or z2=−z1.


	(b)Assume u and v are real numbers, not both zero, and w=u+iv. If x and y are real, prove that z=x+iy is a square root of w if and only if u=x2−y2 and v=2xy.


	(c)Solve the equations in (b) for x and y in terms of u and v.





	Exercise 14.1.8. (The quadratic formula.) If α, β, and γ are complex and α≠0, prove that αz2+βz+γ=0 if and only if

z=−β±β2−4αγ2α.


	Exercise 14.1.9. (★) In each part, define A=Z+iZ.


	(a)Show A is closed under multiplication.


	(b)Which elements of A have a reciprocal (multiplicative inverse) in A?
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Following mathematical convention, we'll write z=x+iy for a complex variable with real part x and imaginary part y. Assume (αk) is a complex sequence, z0 a complex number, and

f(z)=∑k=0∞αk(z−z0)k=α0+α1(z−z0)+α2(z−z0)2+⋯

is the power series in z centered at z0 with coefficients (αk). Because the complex numbers form a field and the magnitude satisfies the triangle inequality and reverse triangle inequality (Exercise 4.2.8), convergence properties established earlier for real power series extend without modification. Particularly, if the preceding series converges for some positive real number R, then the series converges absolutely at each z such that |z−z0|<R, and defines a continuous, complex-valued function in the disk BR(z0). In many examples, the radius can be computed using the ratio test: If

limk→∞|αk+1(z−z0)k+1αk(z−z0)k|=|z−z0|limk→∞|αk+1||αk|

exists and is less than 1, then the power series converges absolutely at z. The definition of differentiability makes sense without formal modification:

f′(z0)=limh→0f(z0+h)−f(z0)h=limz→z0f(z)−f(z0)z−z0

if the limit exists. The complex chain rule holds for complex-differentiable functions. A convergent complex power series is differentiable on its disk of convergence.


Remark 14.2.1. The integral, by contrast, does not generalize without substantial modification. For real-valued functions we use ordering to split the domain. The “standard” theory of complex integration is not over plane regions, but instead closely resembles line integration in multivariable calculus. ⋄



Definition 14.2.2. The complex exponential function exp:C→C is defined by

exp(z)=∑k=0∞zkk!.



Definition 14.2.3. The complex cosine and sine, denoted cos and sin:C→C just as over the real numbers, are defined by

cosz=∑k=0∞(−1)kz2k(2k)!,sinz=∑k=0∞(−1)kz2k+1(2k+1)!.



Theorem 14.2.4. Page 303(The polar formula). For every complex z,

exp(iz)=cosz+isinz.

Proof. Since i2=−1, we have i2k=(−1)k and i2k+1=i(−1)k. Substituting iz into the exponential series and separating even-degree (real) and odd-degree (imaginary) terms, we have

exp(iz)=∑k=0∞(iz)kk!=∑k=0∞[(iz)2k(2k)!+(iz)2k+1(2k+1)!]=∑k=0∞[(−1)kz2k(2k)!+i(−1)kz2k+1(2k+1)!]=∑k=0∞(−1)kz2k(2k)!+i∑k=0∞(−1)kz2k+1(2k+1)!=cosz+isinz.◻

□



Remark 14.2.5. A formal argument along the lines of characterizing exp and the circular functions using differential equations may be memorable. Although these calculations can be justified, we will not fully do so.

If we define f(z)=exp(iz) for complex z, then f′(z)=iexp(iz)=if(z). Differentiating again gives f′′(z)=i2f(z)=−f(z). This means f′′+f=0, f(0)=1, and f′(0)=i. The formal conclusion of Proposition 13.1.4 reads f(z)=cosz+isinz for all complex z. (The conclusion here is “formal” because the proof of Proposition 13.1.4 in Chapter 13 hinged on the implication “a2+b2=0 implies a=b=0.” This implication is true for real numbers but not for complex numbers. Pointedly, 12+i2=0.) ⋄



Remark 14.2.6. Assume θ is a real number. By the polar formula, we have eiθ=cisθ. Our earlier calculation using the sum-of-angles formulas implies

eiθ1⋅eiθ2=cisθ1⋅cisθ2=cis(θ1+θ2)=ei(θ1+θ2).

In words, the law of exponents holds for imaginary exponents. Because the law of exponents is familiar and simple, many people find it a useful way to remember the sum-of-angle formulas for cosine and sine. ⋄



Proposition 14.2.7. ⏎ If z and w are complex, then exp(z)⋅exp(w)=exp(z+w).

Proof. By the series product formula and binomial theorem,

exp(z)⋅exp(w)=[∑j=0∞zjj!][∑k=0∞wkk!]=∑n=0∞∑j+k=nzjj!wkk!=∑n=0∞∑k=0nzn−k(n−k)!wkk!=∑n=0∞1n!∑k=0n(nk)zn−kwk=∑n=0∞(z+w)nn!=exp(z+w).◻

□



Corollary 14.2.8. ⏎ Page 304For every real θ and every integer n, (eiθ)n=einθ.

Proof. See Exercise 14.2.5. □



Corollary 14.2.9. ⏎ If z and z′ are complex, then expz=expz′ if and only if there exists an integer k such that z−z′=2πki.

Proof. If z=x+iy for some real x and y, then by Proposition 14.2.7,

expz=exp(x+iy)=exp(x)⋅exp(iy)=ex(cosy+isiny).

This is the polar form of the complex number with magnitude |exp(z)|=ex and polar angle y. Similarly, if z′=x′+iy′, then exp(z′)=ex′(cosy′+isiny′) has magnitude |exp(z′)|=ex′ and polar angle y′.

Particularly, if exp(z)=exp(z′), then ex=ex′, so x=x′; and cisy=cisy′, so y−y′=2πk for some integer k by Corollary 13.2.16. □



Proposition 14.2.10. ⏎ ∫0∞sin(rt)tdt=π2 for every positive real r.

Proof. See Exercise 14.2.13. □



Roots of Unity

Assume n is a positive integer. In the real numbers, the equation xn=1 has either one solution (if n is odd) or two (if n is even). The situation over the complex numbers is both algebraically satisfying and geometrically beautiful.


Definition 14.2.11. If n is a positive integer, a complex number ω is an nth root of unity if ωn=1.



Proposition 14.2.12. There exist precisely n distinct nth roots of unity:

ωnk=ei(2πk/n),0≤k<n.

These are vertices of the regular n-gon inscribed in the unit circle and having 1 as a vertex.

Proof. A complex number ω=reiθ is an nth root of unity if and only if

e0=1=ωn=(reiθ)n=rneinθ.

(The rightmost equality is Corollary 14.2.8.) Equating magnitudes implies r=1. By Corollary 14.2.9, e0=einθ if and only if there exists an integer m such that inθ=2πmi, or equivalently, θ=2πm/n. Conversely, for every integer m, the complex number ω=ei(2πm/n) is an nth root of unity by Corollary 14.2.8.

Page 305By integer division, for every integer m there exist unique integers d and k such that m=dn+k and 0≤k<n. Since exp is (2πi)-periodic,

ei(2πm/n)=ei(2π(dn+k)/n)=e2πdi⋅ei(2πk/n)=ei(2πk/n).

That is, every nth root of unity is written uniquely as ω=ei(2πk/n) for some integer k such that 0≤k<n. If ωn=e2πi/n, then ωnk=ei(2πk/n). □



Example 14.2.13. For n=4, we have ω4=ei(2π/4)=i. The fourth roots of unity are {ω40,ω41,ω42,ω43}={1,i,−1,−i}, Figure 14.4a. Particularly, in this set we see the non-trivial square root of unity, ω2=ei(2π/2)=−1.

[image: A circle centered at 0 displays four labeled points on the edge. The point on the right is labeled exponential of i times 0 equals 1. The top point is labeled exponential of i times pi divided by 2 equals i. The left point is labeled exponential of i times pi equals negative 1. The bottom point is labeled exponential of i times 3 times pi divided by 2 equals negative i. These points are evenly spaced around the circle, representing complex numbers on the unit circle using Euler's formula.]
Figure 14.4 Complex roots of unity in the unit circle. ⏎



For n=6, we have ω6=ei(2π/6)=ei(π/3)=12(1+i3). The sixth roots of unity are

{ω6k}k=05={1, 12(1+i3), 12(−1+i3), −1, −12(1+i3), 12(1−i3)}

shown in Figure 14.4b. In this set we see also the non-trivial cube roots of unity, ω3=ei(2π/3)=12(−1+i3) and ω32=ei(4π/3)=−12(1+i3). ♢





Exercises for Section 14.2


	Exercise 14.2.1. (★) List the 8th roots of unity in polar and rectangular form.


	Exercise 14.2.2. List the 12th roots of unity in polar and rectangular form.


	Exercise 14.2.3. Find the two square roots of i in polar and rectangular form.


	Exercise 14.2.4. Page 306Put ω=ω3=12(−1+3), and A=Z+ωZ. Prove A is closed under addition and under multiplication. Which elements of A have a reciprocal in A?


	Exercise 14.2.5. Prove Corollary 14.2.8.


	Exercise 14.2.6. Use the polar formula eiθ=cosθ+isinθ to show the angle-sum identities are equivalent to the law of exponents.


	Exercise 14.2.7. We define cosh and sinh to be the even and odd parts of exp: For all complex z,

coshz=12[exp(z)+exp(−z)],sinhz=12[exp(z)−exp(−z)].


	(a)Prove that for all complex z,

cosz=12[exp(iz)+exp(−iz)],sinz=12i[exp(iz)−exp(−iz)].


	(b)Prove cos(iz)=coshz and sin(iz)=isinhz for all complex z.


	(c)Prove that up to domain translation and rotation and codomain rotation, the four functions cos, sin, cosh, and sinh are identical.


	(d)You may have noticed that various hyperbolic identities look similar to trig identities. Find at least three “analogous pairs” of identities, and use part (b) to explain why the pairs are equivalent.





	Exercise 14.2.8. (★) This exercise briefly introduces complex exponentiation, compare Corollary 14.2.8. Take care: The full story is more complex, as it were, than can be detailed in an exercise. Heedless symbolic manipulation guided by “real” expectations leads to devastating errors, such as the four-line “proof”

expz=ez=(e2πi)z/(2πi)=1z/(2πi)=1for all complex z.

Let u and v denote real numbers, and consider the period strip, by definition the complex set H={u+iv:−π<v≤π}. Prove exp maps H bijectively to C×:=C∖{0}, the set of non-zero complex numbers.

By definition, the inverse mapping Log:C×→H is the principal logarithm. If α and β are complex and α≠0, we define αβ=exp(βLogα).

Prove that if α is real and positive, and β is real, this definition reduces to real exponentiation in Chapter 12.

Calculate Logi, Log(−1), and Log(−i). Calculate ii, (−1)i, and (−i)i. Which laws of exponents hold?

The principal square root of a complex number z is z1/2. Find i1/2, (−1)1/2, and (−i)1/2.


	Exercise 14.2.9. Page 307(A). In Exercise 12.3.10 a sequence (bk) is defined that satisfies

tcotht=∑k=0∞b2k4kt2k(2k)!.

Use (bk) to express tcott as a germ at 0.


	Exercise 14.2.10. Prove ∫0∞eix2dx converges, but not absolutely. (Do not evaluate.)


	Exercise 14.2.11. Under modest technical assumptions, to be studied in Section 17.5, a complex-valued function f on the interval [−π,π] can be approximated arbitrarily closely by spectral sums

α02+∑m=1N[αmcos(mϕ)+βmsin(mϕ)],αm, βm complex scalars.

The identities below are useful in showing that a suitable sequence of spectral sums “converges to f.”

Assume ϕ is a real number. Recall that by Exercise 14.2.7,

cosϕ=eiϕ+e−iϕ2,sinϕ=eiϕ−e−iϕ2i.


	(a)Prove that if n≥0, then

∑m=−nneimθ=1+2∑m=1ncos(mθ).


	(b)Sum the left-hand series in the preceding part, and prove that

1+2∑m=1ncos(mθ)=sin(n+12)θsin12θ.





	Exercise 14.2.12. If n is even, ∫−π/2π/2einxdx=π if n=0 and 0 otherwise.


	Exercise 14.2.13. This exercise outlines a proof of Proposition 14.2.10, see Chapman, [5]. Throughout, expressions are extended continuously to 0 where necessary. By Exercise 13.3.5 and evenness of the integrand, it suffices to prove

∫−∞∞sin2xx2dx=π.

Establish the following.


	(a)Page 308For every positive integer n,

∑k=0n−1e(2k−n+1)ix=sin(nx)sinxandπ=1n∫−π/2π/2sin2(nx)sin2xdx.


	(b)For every positive integer n,

∫−nπ/2nπ/2sin2tt2dt=1n∫−π/2π/2sin2(nx)x2dx.

Subtract from (a) and use Exercise 13.3.11 to finish the proof.





	Exercise 14.2.14. Assume n≥2, and put ω=e2πi/n.


	(a)Show that the polynomial zn−1 factors as

zn−1=∏k=0n−1(z−ωk)=(z−1)(z−ω)(z−ω2)⋯(z−ωn−1).


	(b)Use part (a) and the geometric sum formula to prove

∑j=0n−1zj=∏k=1n−1(z−ωk)=1+z+z2+⋯+zn−1.


	(c)By setting z=1 in part (b), prove that

n=∏k=1n−1(1−ωk)=∏k=1n−1|1−ωk|.

This identity has a beautiful geometric interpretation: Inscribe a regular n-gon in the unit circle. Fix a vertex, and consider the (n−1) chords joining that vertex to each of the other vertices. The product of the lengths of these chords is n, the number of sides of the polygon.
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Until now, we have viewed functions as collections of points and used sequences to study the behavior of individual functions. We now take a step of abstraction: A function may be viewed as a point in a space of functions. Concepts such as sequences and convergence make sense in this abstraction, and theorems of analysis may be viewed in terms of sequential convergence, such as a sequence of polynomials converging to an arbitrary continuous function.

In this chapter we introduce function spaces and “linear” tools for speaking of distance: inner products generalizing the dot product, and norms generalizing length of vectors.


15.1 Function Spaces


Definition 15.1.1. Assume X is a set. The vector space of real-valued functions on X is the set F(X)=F(X,R) of functions f:X→R equipped with the pointwise operations of addition and scalar multiplication. Specifically, if f and g are functions and c is real, we define f+g and cf by

(f+g)(x)=f(x)+g(x),(cf)(x)=cf(x)for all x in X.

The zero vector 0=0X is the zero function, whose value at each point is 0.



Remark 15.1.2. “The vector space F(X) ” implicitly includes pointwise addition and real scalar multiplication. We do not give axioms for a “vector space” here, but merely note that they abstract the algebraic properties of pointwise addition and scalar multiplication. ⋄



Remark 15.1.3. There is a “vector space of complex-valued functions on X,” comprising the set F(X,C) of functions f:X→C equipped with pointwise addition and pointwise multiplication by complex scalars. ⋄



Remark 15.1.4. Sometimes in mathematics we also want to consider pointwise multiplication of functions, defined by (fg)(x)=f(x)g(x). In this situation we speak of F(X) as the algebra of functions on X. ⋄



Example 15.1.5. ⏎ Page 310Assume n is a positive integer, and X is a set with n elements. If we identify X with the initial segment n―=(0,1,2,…,n−1), each x:X→R becomes the ordered n-tuple (xk)k=0n−1=(x0,x1,…,xn−1) whose terms, or components, are the values xk=x(k). Under this identification, F(X)=F(n―) is the vector space Rn equipped with the usual operations of vector addition and real scalar multiplication.

Particularly, F(n―) comes with a standard basis, the indicators ej=χ{j} defined by ej(j)=1 and ej(k)=0 if k∈n― and k≠j. ♢



Remark 15.1.6. By convention, R0=F(∅) is the real vector space {0} with one element. ⋄



Example 15.1.7. A complex-valued function z:n―→C may similarly be viewed as the ordered n-tuple (zk)k=0n−1=(z0,z1,…,zn−1). The complex vector space of all such functions is the vector space Cn equipped with the usual operations of vector addition and complex scalar multiplication. ♢



Example 15.1.8. Extending Example 15.1.5, Rω:=F(N) denotes the real vector space of real sequences (xk)k=0∞, a.k.a., mappings x:N→R. For each n, the space Rn may be identified with the set of sequences (xk) satisfying xk=0 if k≥n. These subspaces are nested outward: Rn⊆Rn+1 for each n.

The union R∞:=⋃nRn is the space of finite sequences. While the space of finite sequences is infinite-dimensional, with standard basis (ej)j=0∞, each element of R∞ has only finitely many non-zero terms. Particularly, R∞ is not all of Rω in the same sense that not all subsets of N are finite. ♢



Definition 15.1.9. If X is a set of real numbers, the space of continuous, real-valued functions on X is the set C(X)=C(X,R) of continuous functions f:X→R equipped with pointwise operations.



Lemma 15.1.10. If X⊆R, then C(X)⊆F(X) is a vector subspace.

Proof. This is a fancy way of saying “a sum of continuous functions is continuous” and “a scalar multiple of a continuous function is continuous.” □



Inner Products

To do analysis in a vector space, we need additional structure to specify “nearness.” In this book we consider three forms of structure: inner products, which define length and angle; norms, which define length compatibly with vector space structure; and, in Chapter 16, metrics, which define distance independently of vector space structure.


Definition 15.1.11. Assume (V,+,⋅) is a real vector space. An inner product on V is a function ⟨ ⟩:V×V→R satisfying


	(i)Page 311Symmetry: For all u and v in V, ⟨v,u⟩=⟨u,v⟩.


	(ii)Bilinearity: For all u, v and v′ in V and all real c,

⟨u,cv+v′⟩=c⟨u,v⟩+⟨u,v′⟩.


	(iii)Positivity: For all v in V, 0≤⟨v,v⟩, with equality if and only if v=0.




In an inner product space, the induced norm is the function ∥v∥=⟨v,v⟩1/2.



Remark 15.1.12. Bilinearity amounts to a formal distributive law:

⟨∑j=0m−1ajuj,∑k=0n−1bkvk⟩=∑j=0m−1∑k=0n−1ajbk⟨uj,vk⟩

for all vectors uj and vk, and all real scalars aj and bk.

Symmetry amounts, similarly, to a formal commutative law. For example, ⟨u,v⟩+⟨v,u⟩=2⟨u,v⟩ in an inner product space, so

⟨u+v,u+v⟩=⟨u,u⟩+2⟨u,v⟩+⟨v,v⟩,

just as if we were expanding a real binomial. ⋄



Definition 15.1.13. ⏎ For each natural number n, flat n-space refers to the vector space Rn equipped with the standard inner product

⟨u,v⟩=∑k=0n−1ukvk,u=(uk)k=0n−1,v=(vk)k=0n−1.



Definition 15.1.14. Assume a<b. The standard inner product on C([a,b]) is

⟨f,g⟩=1b−a∫abfg=1b−a∫abf(x)g(x)dx.



Remark 15.1.15. The scale factor is not essential (or universal), but ensures ∥1∥=1 regardless of the interval. In this book, real function spaces have the standard inner product unless explicitly stated otherwise. ⋄



Remark 15.1.16. Although the standard inner product is defined for continuous functions, the formula makes sense if f and g are integrable, see Proposition 9.3.6. The issue is positivity: A non-zero function can have integral 0. ⋄



Example 15.1.17. Let V=C([0,1]). If p≥0, define fp by fp(x)=xp. For all p and q,

⟨fp,fq⟩=∫01xpxqdx=xp+q+1p+q+1|x=01=1p+q+1.

♢



Theorem 15.1.18. Page 312(The cross-term bound). Assume (V,+,⋅) is a real vector space and ⟨ , ⟩ an inner product. If u and v are elements of V, then

|⟨u,v⟩|≤∥u∥∥v∥,

with equality if and only if one of u and v is a multiple of the other.

Proof. If u=0 or v=0, the cross-term bound is an equality. Otherwise, for all real s and t, positivity applied to the linear combination su+tv implies

0≤⟨su+tv,su+tv⟩=s2∥u∥2+2st⟨u,v⟩+t2∥v∥2,

with equality if and only if su+tv=0 for some real s and t. Taking s=±∥v∥ and t=∥u∥ gives 0≤2∥u∥∥v∥(∥u∥∥v∥±⟨u,v⟩). Consequently, 0≤∥u∥∥v∥±⟨u,v⟩, or ∓⟨u,v⟩≤∥u∥∥v∥, or |⟨u,v⟩|≤∥u∥∥v∥. □



Proposition 15.1.19. ⏎ For all u and v in an inner product space,


	(i)(Parallelogram law.) 2(∥u∥2+∥v∥2)=∥u+v∥2+∥u−v∥2.


	(ii)(Polarization identity.) ⟨u,v⟩=14(∥u+v∥2−∥u−v∥2).




Proof. See Exercise 15.1.4. □



Definition 15.1.20. A real sequence u=(uk)k=0∞ is square-summable if ∑kuk2 converges.



Proposition 15.1.21. ⏎ If u=(uk)k=0∞ and v=(vk)k=0∞ are square-summable, then (ukvk)k=0∞ is absolutely summable.

Proof. If n≥0, the cross-term bound in flat n-space implies

∑k=0n−1|ukvk|≤[∑k=0n−1uk2]1/2⋅[∑k=0n−1vk2]1/2≤[∑k=0∞uk2]1/2⋅[∑k=0∞vk2]1/2<∞.

Since the partial sums are bounded, (ukvk)k=0∞ is absolutely summable. □



Corollary 15.1.22. ⏎ The space of square-summable sequences is a real vector space, and

⟨u,v⟩=∑k=0∞ukvk

defines an inner product.

Proof. If u and v are square-summable, then

∑k=0∞(uk+vk)2=∑k=0∞(uk2+2ukvk+vk2)

is absolutely convergent by Proposition 15.1.21, so u+v is square-summable. The conditions for ⟨u,v⟩ to be an inner product are immediately verified. □



Example 15.1.23. Page 313If s>1/2, the real sequence u=(uk)k=0∞ with terms uk=1/(1+k)s is square-summable, and

⟨u,u⟩=∑k=0∞1(1+k)2s=∑k=1∞1k2s=ζ(2s).

♢




Complex Inner Products

If (V,+,⋅) is a complex vector space, the definition of an inner product has two small modifications: Symmetry is replaced by conjugate symmetry, and bilinearity is replaced by complex linearity in one argument and conjugate linearity in the other:


	(i)′For all u and v in V, ⟨v,u⟩=⟨u,v⟩―.


	(ii)′For all u, v and v′ in V and all complex c,

⟨cv+v′,u⟩=c⟨v,u⟩+⟨v′,u⟩,⟨u,cv+v′⟩=c―⟨u,v⟩+⟨u,v′⟩.





Definition 15.1.24. The standard complex inner product on Cn is defined by

⟨z,w⟩=∑k=0n−1zkw―k,z=(zk)k=0n−1,w=(wk)k=0n−1.



Definition 15.1.25. Assume a<b. The standard complex inner product on C([a,b],C) is

⟨f,g⟩=1b−a∫abf(x)g(x)―dx.



Example 15.1.26. Assume V=C([0,2π],C), and for each integer n, put en(x)=einx. Since einx―=e−inx for all real x, we have

⟨en,en⟩=12π∫02πeinxe−inxdx=12π∫02πdx=1,

and, if m≠n,

⟨em,en⟩=12π∫02πei(m−n)xdx=12πi(m−n)(ei(m−n)x)|02π=1−1=0.

♢



Proposition 15.1.27. Assume (V,+,⋅) is a complex vector space and ⟨ ⟩ a complex inner product. If u and v are elements of V, then

|⟨u,v⟩|≤∥u∥∥v∥,

with equality if and only if one of u and v is a complex multiple of the other.

Proof. The proof for real inner products requires one modification:

⟨u,v⟩+⟨v,u⟩=⟨u,v⟩+⟨u,v⟩―=2Re⟨u,v⟩≤2|⟨u,v⟩|.◻

□
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	Exercise 15.1.1. (★) Assume X and Y are sets. Explain why a mapping f:X→Y may be viewed as a family of elements of Y indexed by X, and why the notation YX is reasonable for the set of all mappings from X to Y, analogous to Rn for the set of mappings from n― to R.


	Exercise 15.1.2. If [a,b] and [c,d] are real intervals, their ordered product [a,b]×[c,d] is the rectangle consisting of pairs (x,y) such that a≤x≤b and c≤y≤d. Explain why an element F of F([a,b]×[c,d]) may be viewed as a mapping f:[a,b]→F([c,d]), namely, as a path in F([c,d]).


	Exercise 15.1.3. (H). Assume a<b, and let R:C([a,b])→C((a,b)) denote the restriction map, which sends each function f:[a,b]→R to its restriction Rf=f|(a,b). Prove that R is an injective linear map whose image is the subspace of uniformly continuous functions.


	Exercise 15.1.4. Prove Proposition 15.1.19.






15.2 Geometry of Inner Product Spaces

Throughout, (V,⟨ , ⟩) denotes a real inner product space. Motivated by the situation in flat n-space, we use the inner product to define length of vectors and angle between non-zero vectors.


Definition 15.2.1. The length of a vector v is its induced norm ∥v∥=⟨v,v⟩1/2. A vector u is unit if ∥u∥=1.



Lemma 15.2.2. If u and v are non-zero vectors, there exists a unique θ in [0,π] satisfying ⟨u,v⟩=∥u∥∥v∥cosθ.

Proof. Since ∥u∥ and ∥v∥ are positive, |⟨u,v⟩|≤∥u∥∥v∥ may be written

−1≤⟨u,v⟩∥u∥∥v∥≤1.

By the proof of Proposition 13.2.13, cos:[0,π]→[−1,1] is bijective. □



Definition 15.2.3. The angle between two non-zero vectors u and v is the unique θ in [0,π] satisfying ⟨u,v⟩=∥u∥∥v∥cosθ.

Particularly, vectors u and v are orthogonal if ⟨u,v⟩=0. We write u⊥v to indicate that u and v are orthogonal.



Example 15.2.4. Page 315Assume a is a positive real number and V=C([−a,a]). Every even function E is orthogonal to every odd function O: The product EO is odd, so Corollary 9.2.9 implies

⟨E,O⟩=12a∫−aaE(x)O(x)dx=0.

♢



Example 15.2.5. Let V=C([−1,1]). If we define fn(x)=xn for non-negative integer n, then

⟨fm,fn⟩=12∫−11xm+ndx={1m+n+1if m+n is even,0if m+n is odd.

Thus, ∥fn∥=1/2n+1 for each n. If m+n is odd, fm⊥fn. Otherwise, m and n are both even or both odd, and the angle between fm and fn is

θ=arccos⟨fm,fn⟩∥fm∥∥fn∥=arccos(2m+1)(2n+1)m+n+1.

♢



Theorem 15.2.6. (The hypotenuse theorem). For all u and v in V, we have ∥u+v∥2=∥u∥2+∥v∥2 if and only if u⊥v.

Proof. In an inner product space,

∥u+v∥2=⟨u+v,u+v⟩=∥u∥2+2⟨u,v⟩+∥v∥2.

This is equal to ∥u∥2+∥v∥2 if and only if ⟨u,v⟩=0, or u⊥v. □



Parallel and Orthogonal Components


Proposition 15.2.7. Assume u is non-zero. For every v, there exist unique vectors projuv and v⊥ such that projuv is proportional to u, v⊥ is orthogonal to u, and v=projuv+v⊥.

Proof. (Uniqueness). Suppose v=cu+v⊥ for some real c and some vector v⊥ such that ⟨u,v⊥⟩=0. Taking the inner product with u gives ⟨u,v⟩=c⟨u,u⟩. Since u is non-zero, ⟨u,u⟩>0 by positivity, so c=⟨u,v⟩/⟨u,u⟩. That is, if projuv is proportional to u, v⊥ is orthogonal to u, and their sum is v, then

projuv=⟨u,v⟩⟨u,u⟩u,v⊥=v−⟨u,v⟩⟨u,u⟩u.

(Existence). The preceding vectors satisfy the stated conditions. □



Definition 15.2.8. Assume u is non-zero. For every v, we call projuv the parallel component of v on u, and we call v⊥=v−projuv the orthogonal component of v on u, Figure 15.1.


[image: A diagramatic representation presents a vector v originating from the origin and extending diagonally to the upper right. A vector u extends horizontally from the origin. A dashed vertical line from the head of v intersects the horizontal extension from u, marking the tip of the projection of v onto u, labeled proj sub u v. A dashed horizontal line extends from this point vertically upward, meeting the head of v. This vertical segment represents the orthogonal component of v, labeled v perpendicular.]
Figure 15.1 Parallel and orthogonal components of v on u. ⏎




Remark 15.2.9. If u≠0, we have projcuv=projuv for all v and all non-zero real c. Particularly, if u is a unit vector, then projuv=⟨u,v⟩u. ⋄
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Definition 15.2.10. A subset A of V is orthonormal if ∥u∥=1 for all u in A, and ⟨u,v⟩=0 for all distinct u and v in A.



Example 15.2.11. For each natural number n, the standard basis (ej)j=0n−1 of Rn is orthonormal in the standard inner product. Similarly, every finite sequence is square-summable, and the standard basis (ej)j=0∞ of R∞ is orthonormal.

In flat 4-space, the vectors

u0=12(1,1,1,1),u1=12(1,1,−1,−1),u2=12(1,−1,1,−1),u3=12(1,−1,−1,1),

form an orthonormal set: Each has unit norm, and any two agree in two components and agree up to sign in the other two. ♢



Example 15.2.12. In the vector space C([−π,π]) of continuous functions on [−π,π], the set (sn)n=1∞ defined by sn(x)=2sin(nx) is orthonormal. Corollary 13.1.6 facilitates the necessary integrals. ♢



Remark 15.2.13. When a vector v in flat n-space is written v=∑jvjej in terms of the standard basis, the components of v are dot products with basis elements, and the squared norm of v is the sum of the squares of its components: vj=⟨v,ej⟩ for each j, and ∥v∥2=∑jvj2.

Proposition 15.2.14 shows that with a definition of convergence motivated by norms, these properties generalize to countably infinite orthonormal sets. This is the conceptual basis of “spectral decomposition” in Chapter 17. ⋄



Proposition 15.2.14. ⏎ Assume (ej)j=0∞ is an orthonormal set in an inner product space, (vj)j=0∞ a square-summable real sequence, and define (vn)n=0∞ by

vn=∑j=0n−1vjej.

If ∥v−vn∥→0 for some v in V, then vj=⟨v,ej⟩ for each j, and ∥v∥2=∑jvj2.

Page 317Proof. By hypothesis, there exists a v such that ∥v−vn∥→0. Since ∥ej∥=1 for all j, bilinearity and the cross-term bound imply

|⟨v,ej⟩−⟨vn,ej⟩|=|⟨v−vn,ej⟩|≤∥v−vn∥→0

for all j. But if n>j, then

⟨vn,ej⟩=⟨∑k=0n−1vkek,ej⟩=∑k=0n−1vk⟨ek,ej⟩=vj.

That is, the sequence |⟨v−vn,ej⟩| is eventually constant and converges to both |⟨v,ej⟩−vj| and 0. We conclude vj=⟨v,ej⟩, and also ej⊥(v−vn) if 0≤j<n.

Consequently, vn⊥(v−vn) for each n. Since v=vn+(v−vn), the hypotenuse theorem implies ∥v∥2=∥vn∥2+∥v−vn∥2 independently of n. Taking the limit as n→∞,

∥v∥2=limn→∞[∑j=0n−1vj2]+limn→∞∥v−vn∥2=∑j=0∞vj2.◻

□


In an inner product space, a recursive algorithm converts an ordered basis into an orthonormal set.


Proposition 15.2.15. ⏎ If (vk)k=0∞ is a linearly independent set in an inner product space, then there exists an orthonormal set (ek)k=0∞ such that for each m, the sets (vk)k=0m and (ek)k=0m have the same span.

Proof. Define e0=v0/∥v0∥. Recursively, if an orthonormal set (ej)j=0m has been constructed with the same linear span as (vj)j=0m, define

um+1=vm+1−∑j=0m⟨vm+1,ej⟩ej,em+1=um+1∥um+1∥.

Linear independence of (vk) ensures um+1≠0, so this procedure does not involve division by 0. □



Example 15.2.16. In C([0,1]), consider the sequence (fk)k=0∞ of monomials defined by fk(x)=xk. Since f0(x)=1 is a unit vector, we have e0(x)=1. Proceeding recursively,

u1(x)=x−⟨x,1⟩1=x−∫01xdx=x−12.

Since

∥u1∥2=∫01(x−12)2dx=∫01(x2−x+14)dx=13−12+14=112,

Page 318we have 1/∥u1∥=12=23, and therefore e1(x)=3(2x−1). Continuing,

u2(x)=x2−⟨x2,1⟩1−⟨x2,e1⟩e1(x)=x2−13−316⋅3(2x−1)=x2−x+16.

Calculation gives 1/∥u2∥=65, so e2(x)=5(6x2−6x+1), and so forth. ♢





Exercises for Section 15.2


	Exercise 15.2.1. (A). In C([−1,1]) equipped with the L2 inner product, apply the algorithm of Proposition 15.2.15 to the sequence (xk)k=04.


	Exercise 15.2.2. (★) Let 1=(1,1,…,1) in flat n-space.


	(a)Calculate the angle between 1 and the standard basis vector e1. What is this angle when n=2, 3, or 4? What happens to this angle as n→∞?


	(b)Prove that in R30,000, a 1cm cube (30,000-fold product of 1cm intervals) contains a 3-dimensional cube of side length 1m.





	Exercise 15.2.3. In flat n-space, put 1:=(1,1,…,1) and assume x=(xk)k=0n−1 is arbitrary. We view x as a data set of n real numbers.


	(a)Prove proj1x=x―1 is the arithmetic mean of x multiplied by the vector 1.


	(b)Prove that ∥x−proj1x∥ is the standard deviation of x.





	Exercise 15.2.4. Assume V is the space of polynomials. For f and g in V, define

⟨f,g⟩=12∫−∞∞f(x)g(x)e−|x|dx.


	(a)Prove that this formula defines an inner product on V, and that the space of even polynomials is orthogonal to the space of odd polynomials.


	(b)Calculate the norm of fn(x)=xn for each natural number n.


	(c)Apply the algorithm of Proposition 15.2.15 to the ordered set (1,x,x2,x3) to give an orthonormal basis of the set of cubic polynomials.





	Exercise 15.2.5. Assume ϕ:[a,b]→R is integrable. Find necessary and sufficient conditions on ϕ so that

⟨f,g⟩=∫abf(x)g(x)ϕ(x)dx

defines an inner product on C([a,b]).


	Exercise 15.2.6. Page 319In an inner product space, prove that u+v and u−v are orthogonal if and only if ∥u∥=∥v∥, and give a geometric interpretation.


	Exercise 15.2.7. (★) Fix a positive integer n, and let V be flat n-space. If A is an n×n real matrix, prove ⟨Au,Av⟩=⟨u,v⟩ for all u and v if and only if AtA=In is the identity matrix, namely, TA(v)=Av is an orthogonal linear transformation.


	Exercise 15.2.8. Assume Rn is equipped with an inner product. Let (ej)j=0n−1 denote the standard basis, and let B denote the n×n real matrix with entries Bj,k=⟨ej,ek⟩. Prove B uniquely determines the inner product, and B is symmetric and positive-definite. (Thus, in Rn an inner product depends on only finitely many real parameters.)


	Exercise 15.2.9. (H). A doubly infinite complex sequence z=(zk)k=−∞∞ is a mapping z:Z→C. We say z is square-summable if

∑k=−∞∞|zk|2:=∑k=−∞−1|zk|2+∑k=0∞|zk|2

converges. Prove the set of square-summable doubly infinite complex sequences is a complex vector space, and ⟨z,w⟩=∑kzkw―k is a complex inner product.


	Exercise 15.2.10. (H). Assume (V,⟨ , ⟩) is a real inner product space, U a vector subspace, v an element of V, and r:=infu∈U∥v−u∥>0. This exercise establishes geometric properties related to minimizing ∥v−u∥ over u in U.


	(a)Assume δ>0, and u1, u2 are vectors in U such that ∥v−uj∥2<r2+δ if j=1, 2. Prove ∥u2−u1∥2<4δ. Conclude, in particular, that there is at most one u0 in U such that ∥v−u0∥=r.


	(b)Prove that if ∥v−u0∥=r for some u0 in U, then ⟨v−u0,u⟩=0 for all u in U.





	Exercise 15.2.11. Assume (V,⟨ ⟩) is an inner product space, and (ek)k=0∞ is an orthonormal sequence. Fix a natural number n, and put Vn=span(ek)k=0n−1.


	(a)For every v in V, there is a unique vn in Vn such that u⊥(v−vn) for all u in Vn.


	(b)For all v′ in Vn, ∥v−vn∥2≤∥v−v′∥2, with equality if and only if v′=vn.


	(c)Assume f is continuous on [a,b]. Prove that for each natural number n, there exists a unique polynomial pn of degree at most n minimizing ∥f−pn∥2.
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Inner products allow us to define both length and angle in a vector space. For many applications in analysis, however, no inner product is available. A useful abstraction of length alone is provided by a “norm” in a vector space.


Definition 15.3.1. Assume (V,+,⋅) is a real vector space. A norm on V is a function ∥ ∥:V→R satisfying


	(i)Positivity: For all v in V, 0≤∥v∥, with equality if and only if v=0.


	(ii)Homogeneity: For all v in V and all real c, ∥cv∥=|c|∥v∥.


	(iii)The triangle inequality: For all u, v in V, ∥u+v∥≤∥u∥+∥v∥.




If ∥ ∥ is a norm on V, the pair (V,∥ ∥) is a normed vector space.



Proposition 15.3.2. If (V,⟨ , ⟩) is an inner product space, the induced norm function ∥ ∥:V→R defined by ∥v∥=⟨v,v⟩ is a norm.

Proof. (Positivity). This is condition (iii) in the definition of an inner product.

(Homogeneity). If v∈V and c is real, then

∥cv∥=⟨cv,cv⟩=c2⟨v,v⟩=|c|∥v∥.

(Triangle inequality). The cross-term bound |⟨u,v⟩|≤∥u∥∥v∥ implies

∥u+v∥2=⟨u+v,u+v⟩=∥u∥2+2⟨u,v⟩+∥v∥2≤∥u∥2+2∥u∥∥v∥+∥v∥2=(∥u∥+∥v∥)2.

Taking square roots gives ∥u+v∥≤∥u∥+∥v∥. □



Lemma 15.3.3. ⏎ If (V,∥ ∥) is a normed vector space, then |∥u∥−∥v∥|≤∥u+v∥ for all u and v in V.

Proof. See Exercise 15.3.2. □



Definition 15.3.4. ⏎ If 1≤p≤∞, the p-norm on R∞ is defined by

∥u∥p=[∑k=0∞|uk|p]1/p,p<∞;∥u∥∞=max0≤k|uk|.



Remark 15.3.5. This is an idiomatic way of defining the p-norm on Rn for each natural number n. For each u, the sum is finite, and the maximum is taken over a finite set. ⋄



Proposition 15.3.6. Page 321If 1≤p≤∞, the p-norm ∥ ∥p is a norm on R∞.

Proof. It suffices to work in Rn for some positive integer n. Positivity and homogeneity are immediate. The triangle inequality for the 1-norm follows from the real triangle inequality: If u=(uk) and v=(vk), then

∥u+v∥1=∑k=0n−1|uk+vk|≤∑k=0n−1(|uk|+|vk|)=∥u∥1+∥v∥1.

For the ∞-norm, we have simply

∥u+v∥∞=maxk|uk+vk|≤maxk|uk|+maxj|vj|=∥u∥∞+∥v∥∞.

The triangle inequality if 1<p<∞ is Exercise 15.3.15. □



Remark 15.3.7. If 0<p<1, the function ∥ ∥p of Definition 15.3.4 is positive and homogeneous, but does not satisfy the triangle inequality. ⋄



Remark 15.3.8. ⏎ A norm induced by an inner product on Rn satisfies the parallelogram law of Proposition 15.1.19. If n>1, not every norm does so. For example, the p-norm ∥ ∥p satisfies the parallelogram law only if p=2. ⋄



Proposition 15.3.9. ⏎ Let V=C([a,b]). If 1≤p, the function on V defined by

∥f∥p=[1b−a∫ab|f(x)|pdx]1/p

is a norm. The function ∥f∥∞=maxa≤x≤b|f(x)| is a norm.

Proof. See Exercise 15.3.16 □



Example 15.3.10. If f(x)=x on [0,1], then ∥f∥p=1/(p+1)1/p. Particularly, ∥f∥1=1/2, ∥f∥2=1/3, and ∥f∥∞=1. ♢



Definition 15.3.11. If 0<p, the set of real sequences u=(uk)k=0∞ with (|uk|p) summable is denoted ℓp(N), and we define

∥u∥p=[∑k=0∞|uk|p]1/p.

On the set ℓ∞(N) of bounded sequences, we define ∥u∥∞=supk|uk|.



Proposition 15.3.12. ⏎ If 1≤p, then ℓp(N) is closed under addition, hence is a real vector space, and ∥ ∥p defines a norm.

Proof. See Exercise 15.3.17. □



Proposition 15.3.13. Page 322If 1≤p<q, then ℓp(N)⊆ℓq(N).

Proof. See Exercise 15.3.18. □



Remark 15.3.14. ⏎ A sum of norms on a vector space V is a norm on V. A positive real multiple of a norm is a norm. If (V,∥ ∥) and (V′,∥ ∥′) are normed vector spaces, the following define norms on the ordered product V×V′:

∥(v,v′)∥1=∥v∥+∥v′∥′,∥(v,v′)∥2=(∥v∥2+∥v′∥′2)1/2,∥(v,v′)∥∞=max(∥v∥,∥v′∥′).

⋄



Definition 15.3.15. Assume V is a real vector space. If ∥ ∥ and ∥ ∥′ are norms on V, we say ∥ ∥′ is equivalent to ∥ ∥ if there exist positive c and C such that c∥v∥≤∥v∥′≤C∥v∥ for all v in V.



Lemma 15.3.16. ⏎ On Rn, the 1-, 2-, and ∞-norms are mutually equivalent.

Proof. See Exercise 15.3.9. □




Exercises for Section 15.3


	Exercise 15.3.1. (★) Show that in a normed vector space, every non-zero vector v is proportional to precisely two vectors of norm 1, and give formulas for these in terms of v and its norm.


	Exercise 15.3.2. (H). Prove Lemma 15.3.3.


	Exercise 15.3.3. Assume a<b, and V=C([a,b]) with the p-norm of Proposition 15.3.9. Define fn(x)=xn for each non-negative integer n.


	(a)Assuming 0≤a, calculate ∥fn∥p.


	(b)Not assuming 0≤a, calculate ∥fn∥1, ∥fn∥2, and ∥fn∥∞.





	Exercise 15.3.4. (★) Assume V is a vector space with a norm ∥ ∥. If r>0, the closed ball of radius r is the set {v:∥v∥≤r}.


	(a)Sketch the closed unit (r=1) ball in the plane with the 1-norm, the 2-norm, and the ∞-norm.


	(b)Prove that ∥v∥∞≤∥v∥2≤∥v∥1≤2∥v∥∞ for all v, and interpret these inequalities geometrically.





	Exercise 15.3.5. Page 323Assume V=R2 with the 2-norm, and V′=R with the absolute value norm. For each of the three norms in Remark 15.3.14, describe and sketch the closed unit ball in V×V′.


	Exercise 15.3.6. (★) Prove that the unit ball in a normed vector space is convex: If u and v are in the unit ball, then so is (1−t)u+tv if 0≤t≤1.

Assume n≥2. Prove the function ∥ ∥p on Rn is not a norm if 0<p<1.


	Exercise 15.3.7. Assume V is the vector space of restrictions of C1 functions to [0,1]. Does either of the formulas

∥f∥0=∫01|f′(x)|dx,∥f∥1=∫01(f(x)2+f′(x)2)1/2dx

define a norm on V?


	Exercise 15.3.8. For each integer k greater than 1, let fk be the piecewise-affine function whose graph joins (0,0) to (1/k2,k) to (2/k2,0) to (1,0).


	(a)Prove fk(x)→0 for every x in [0,1].


	(b)Calculate ∥fk−0∥p if 1≤p≤∞. For which p does ∥fk−0∥p→0?





	Exercise 15.3.9.


	(a)Prove that “equivalent to” for norms is an equivalence relation.


	(b)Prove Lemma 15.3.16.





	Exercise 15.3.10. (★) Assume V is a finite-dimensional real vector space, ∥ ∥ a norm on V, and (ek)k=0n−1 an ordered basis. Prove that for each v in V, the function Nv:Rn→R defined by

Nv((tk)k=0n−1)=‖v+∑k=0n−1tkek‖

has bounded stretch at 0 relative to the 2-norm.


	Exercise 15.3.11. Assume 0<a<1, and define a=(ak)k=0∞. Prove a∈ℓp if 1≤p≤∞, and calculate its p-norm.


	Exercise 15.3.12. (★) Assume p≥1. Prove that if v∈ℓp and ε>0, there exists a u in R∞ such that ∥v−u∥p<ε.


	Exercise 15.3.13. (A). Let V=C([0,1]).


	(a)If V is equipped with the 1-norm, find two elements of V that do not satisfy the parallelogram law. Conclude that the 1-norm is not induced by an inner product.


	Page 324(b)If V is equipped with the ∞-norm, find two elements of V that do not satisfy the parallelogram law. Conclude that the ∞-norm is not induced by an inner product.





	Exercise 15.3.14. Prove that if n>1, the p-norm on Rn comes from an inner product only if p=2, see Remark 15.3.8.


	Exercise 15.3.15. (★) Suppose 1<p<∞. Prove that if (ak)k=0n−1 and (bk)k=0n−1 are finite real sequences in Rn, then

[∑k=0n−1|ak+bk|p]1/p≤[∑k=0n−1|ak|p]1/p+[∑k=0n−1|bk|p]1/p.

Hints: If q is the “dual exponent” defined by 1/p+1/q=1, then

|a+b|p=|a+b||a+b|p/q≤|a||a+b|p/q+|b||a+b|p/q.

Sum over k and use Exercise 12.1.15 (d) separately on each piece.


	Exercise 15.3.16. (H). Prove Proposition 15.3.9.


	Exercise 15.3.17. (H). Prove Proposition 15.3.12.


	Exercise 15.3.18. Prove that if 1≤p<q, then ℓp⊆ℓq.
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The concepts of open and closed sets, sequences and convergence, and continuity of functions, rely on just a few properties of the real number line and the ordinary distance function. In this chapter we extend concepts of analysis by axiomizing the concept of distance. As usual, ε and δ connote arbitrary positive real numbers.


16.1 Metrics and Topology


Definition 16.1.1. A metric space is a pair (X,d) comprising a non-empty set X and a function d:X×X→R such that for all x, x′, and x′′ in X:


	(i)Positivity: 0≤d(x,x′), with equality if and only if x=x′.


	(ii)Symmetry: d(x′,x)=d(x,x′).


	(iii)The triangle inequality: d(x,x′′)≤d(x,x′)+d(x′,x′′).




We call d the metric. The value d(x,x′) is the distance between x and x′.



Remark 16.1.2. If a non-empty set X and prospective metric d:X×X→R are given, the triangle inequality is usually the only non-trivial item to check. ⋄



Lemma 16.1.3. ⏎ If (V,∥ ∥) is a normed vector space, then d(u,v)=∥u−v∥ defines a metric on V.

Proof. Exercise 16.1.1. □



Definition 16.1.4. The number line (R,d) is the set R equipped with the metric d(x,x′)=|x′−x|. Generally, if n≥1, flat n-space refers to Rn with the flat metric d(x,x′)=∥x′−x∥2, compare Definition 15.1.13.



Lemma 16.1.5. ⏎ Assume X is a non-empty set. The function d(x,x′)=1 if x≠x′, and d(x,x)=0, is a metric.

Proof. Positivity and symmetry are immediate. The triangle inequality follows from the observation that if x, x′, and x′′ are not all equal, then

d(x,x′′)≤1≤d(x,x′)+d(x′,x′′).◻

□



Definition 16.1.6. Page 326The metric in Lemma 16.1.5 is called the discrete metric on X. A set equipped with the discrete metric is a discrete metric space.



Example 16.1.7. A two-point discrete space may be viewed as {0,1} in the number line. A three-point discrete space may be viewed as vertices of an equilateral triangle with unit sides. A four-point discrete space may be viewed as vertices of a regular unit tetrahedron. Discrete spaces with more than four points cannot be “accurately represented” in flat 3-space. ♢



Lemma 16.1.8. If (X,d) is a metric space, the function d′=min(d,1) is a metric.

Proof. See Exercise 16.1.7. □



Definition 16.1.9. If d is the flat metric in the plane, d′=min(d,1) is called the radar screen metric.



Lemma 16.1.10. (The reverse triangle inequality). If (X,d) is a metric space, then for all x, x′, and x′′ in X,

|d(x,x′)−d(x′,x′′)|≤d(x,x′′).

Proof. Assume x, x′, and x′′ are arbitrary points of X. The triangle inequality d(x,x′)≤d(x′,x′′)+d(x,x′′) implies

d(x,x′)−d(x′,x′′)≤d(x,x′′).

Similarly, d(x′,x′′)≤d(x,x′)+d(x,x′′) implies

d(x′,x′′)−d(x,x′)≤d(x,x′′).

But if a≤b and −a≤b, then |a|≤b. The lemma follows at once. □


In Chapter 4 we often spoke of intervals in terms of center and radius. The same idea makes sense in a metric space, and many concepts and proofs from earlier go through without modification.


Definition 16.1.11. Assume (X,d) is a metric space. For each x0 in X and each real number r>0, the set

Br(x0)={xinX:d(x0,x)<r}

is called the open ball of radius r about x0. The set

Br×(x0)={xinX:0<d(x0,x)<r}

is the punctured open ball of radius r about x0. The set

{xinX:d(x0,x)≤r}

is the closed ball of radius r about x0.



Remark 16.1.12. If multiple metrics are under consideration, we write Brd(x0), and may speak of the d-open ball. ⋄
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The next several definitions and statements are, except for replacing the number line with a metric space (X,d), taken verbatim from Chapter 4, with the unit number in parentheses. Statements’ proofs are immediate from the corresponding arguments in Chapter 4 and are omitted here, but make good review exercises.


Definition 16.1.13. (cf. 4.4.1). Assume (X,d) is a metric space, A⊆X, and Ac=X∖A. For each x0 in X, precisely one of the following conditions three holds:


	(i)There exists an ε such that Bε(x0)⊆A. In this case we say x0 is an interior point of A.


	(ii)There exists an ε such that Bε(x0)⊆Ac. In this case we say x0 is an exterior point of A.


	(iii)For every ε, the sets Bε(x0)∩A and Bε(x0)∩Ac are both non-empty. In this case we say x0 is a boundary point of A.




The interior of A is the set of interior points of A. The exterior and the boundary ∂A of A are defined analogously.



Remark 16.1.14. (cf. 4.4.3). The exterior of A is the interior of Ac. The boundary of A is the boundary of Ac. In symbols, ∂A=∂(Ac). ⋄



Remark 16.1.15. (cf. 4.4.4). An interior point of A is an element of A, since x0∈Bε(x0) regardless of ε. Similarly, an exterior point of A is not an element of A. However, a boundary point of A may lie in either A or its complement. ⋄



Definition 16.1.16. (cf. 4.4.5). Assume (X,d) is a metric space and A⊆X. If Bε×(x0)∩A is non-empty for every ε, we say x0 is a limit point of A.

The closure A― of A is the union of A and its set of limit points.



Remark 16.1.17. (cf. 4.4.6). Contrapositively, x0 is not a limit point of A if and only if there exists an ε such that Bε×(x0)∩A=∅. ⋄



Definition 16.1.18. (cf. 4.4.7). We say x0 is an isolated point of A if there exists an ε such that Bε(x0)∩A={x0}, namely, x0∈A and x0 is not a limit point of A.

We say x0 is a border point of A if x0 is both a limit point of A and boundary point of A.



Proposition 16.1.19. (cf. 4.4.8). Assume A⊆X. For every x0 in X, precisely one of the following conditions holds:

Boundary=FBoundary=TLimit=FExteriorIsolatedLimit=TInteriorBorder



Remark 16.1.20. Page 328(cf. 4.4.9). By inspection, the boundary of A is the disjoint union of isolated and border points of A. The limit points of A are the disjoint union of interior and border points of A. The closure of A is the disjoint union of the interior, isolated, and border points of A, namely, the complement of the exterior of A. ⋄



Definition 16.1.21. (cf. 4.4.11). Assume (X,d) is a metric space, and A⊆X. We say A is an open set if every element of A is an interior point of A, that is, if A contains none of its boundary points.

We say A is a closed set if A contains all of its limit points, that is, A―=A, or A contains all of its boundary points.



Proposition 16.1.22. ⏎ (cf. 4.4.13). Assume (X,d) is a metric space. For every subset A of X, the following are equivalent:


	(i)A is closed.


	(ii)A―=A.


	(iii)∂A⊆A.


	(iv)Ac is open.






Proposition 16.1.23. (cf. 4.4.14). In a metric space (X,d), an arbitrary open ball Br(x0) is an open set. An arbitrary closed ball is a closed set.



Proposition 16.1.24. (cf. 4.4.15). Assume (X,d) is a metric space. A union of open sets is open, and a finite intersection of open sets is open. Precisely:


	(i)If {Oi}i∈I is a collection of open subsets of (X,d), then ⋃iOi is open.


	(ii)If {Oi}i=0n is a finite collection of open subsets of (X,d), then ⋂iOi is open.






Remark 16.1.25. (cf. 4.4.16). By Proposition 16.1.22 and the complement laws, an intersection of closed sets is closed, and a finite union of closed sets is closed. ⋄


This concludes our parallel development from Chapter 4.


Definition 16.1.26. Assume X is a set. A collection T (script T) of subsets of X is a topology on X if ∅ and X are in T, and if T is closed under arbitrary unions and finite intersections.

A property of metric spaces is topological if it depends only on open sets.



Remark 16.1.27. Just as a metric furnishes an axiomization of “distance,” a topology furnishes an axiomization of “openness” or “nearness.”

Metric topologies have a “countable flavor” due to finitude and reciprocal finitude. General non-metric topologies can be distinctly different, ranging from T={∅,X} to topologies with unavoidably uncountable local and/or global structure, and are beyond the scope of this book. Munkres, [Munkres] is an excellent introduction. ⋄



Definition 16.1.28. If X is a non-empty set and Y⊆X, a collection {Xi}i∈I (script I) of subsets of X covers Y if Y⊆⋃iXi.
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If (X,d) is a metric space and Y⊆X, the restriction of d to Y is a metric. If A⊆Y, we may ask about “openness” or “closedness” of A in two senses: Viewing A as a subset of (Y,d), or as a subset of (X,d).


Definition 16.1.29. If (X,d) is a metric space and Y⊆X, a subset A⊆Y is relatively open in Y if there exists an open set G⊆X such that A=G∩Y.

Similarly, A⊆Y is relatively closed in Y if there exists a closed set F⊆X such that A=F∩Y.



Example 16.1.30. Assume (X,d) is the number line, and Y=[−1,1]. The half-open interval (0,1]=(0,2)∩Y is relatively open in Y, though not open in X.

If instead Y=(0,∞), the half-open interval (0,1]=[0,1]∩Y is relatively closed in Y, though not closed in X. ♢



Example 16.1.31. In the number line, assume Y=Q is the set of rational numbers. The set A={xinQ:x2<2}={xinQ:x2≤2} is both relatively open in Y (because A=(−2,2)∩Q) and relatively closed in Y (because A=[−2,2]∩Q). ♢



Example 16.1.32. Let (X,d)=(R2,d) be the flat plane, and Y the horizontal axis, identified with the real number line R. An open interval (a,b) is relatively open in Y, though no subset of Y is open in X. ♢



Lemma 16.1.33. If (X,d) is a metric space and Y⊆X, then A⊆Y is relatively open in Y if and only if A is open in the metric space (Y,d).

Consequently, A⊆Y is relatively closed in Y if and only if A is closed in the metric space (Y,d).

Proof. For every point a in Y and every positive r, the intersection Br(a)∩Y is, by definition, the open ball of radius r about a in (Y,d).

Assume A is relatively open in Y, so that A=G∩Y for some open set G. If a∈A, there exists a positive real number r such that Br(a)⊆G. Consequently, Br(a)∩Y⊆G∩Y=A, so A is open in Y.

Conversely, assume A is open in Y. For each a in A, there exists an r such that Br(a)∩Y⊆A. The union of this collection of balls over all points of a is an open subset G⊆X, and A=G∩Y, so A is relatively open in Y. □




Sequences in Metric Spaces

In an arbitrary metric space (X,d), for every point x0, there exists a “countable base” {B1/n(x0)}n=1∞ of neighborhoods such that every neighborhood of x0 contains some set of the base. Sequences consequently play an important role in the study of metric spaces. Convergence-related properties of sequences generalize immediately to metric spaces.


Definition 16.1.34. Page 330A sequence (xk) in X is condensing if for every ε, there exists an index N such that n, m≥N implies d(xn,xm)<ε.

A sequence (xk)k=k0∞ in X converges to a point x∞ in X if for every ε, there exists an index N such that k≥N implies d(xk,x∞)<ε.

If x is a sequence in X and ν:N→N is strictly increasing, the mapping x―=x∘ν, namely, x―k=xν(k), is a subsequence of x.



Definition 16.1.35. Assume (X,d) is a metric space. We say (X,d) is complete if every condensing sequence in X converges to a point of X.




Continuity of Mappings

Like sequential convergence, continuity of mappings generalizes immediately from the real definition.


Definition 16.1.36. (cf. 8.1.4). Assume (X,d) and (Y,e) are metric spaces, f:X→Y is a mapping, and x is a point of X. We say f is continuous at x (with respect to the given metrics) if the following condition holds:


(f(xk))→f(x) in (Y,e) for every sequence (xk)→x in (X,d).



If f is continuous at x for every x in X, we say f is continuous on X.


The ε-δ criterion for continuity holds without modification:


Proposition 16.1.37. (cf. 8.2.7). Assume (X,d) and (Y,e) are metric spaces. A mapping f:X→Y is continuous at x0 if and only if:


For every ε, there is a δ such that d(x0,x)<δ implies e(f(x0),f(x))<ε.




As for one-variable functions, continuity has a topological characterization:


Proposition 16.1.38. ⏎ (cf. Exercise 8.2.11). Assume (X,d) and (Y,e) are metric spaces. A mapping f:X→Y is continuous on X if and only if for every open subset V⊆Y, the preimage f∗(V) is open in X.

Proof. Suppose f is continuous on X, and that V⊆Y is open. If f∗(V)=∅ there is nothing to prove. Otherwise, assume x0 is an arbitrary element of f∗(V), and write y0=f(x0). Fix ε so that Bε(y0)⊆V. Since f is continuous at x0, there exists a δ such that if d(x0,x)<δ, then e(y0,f(x))<ε, or f(x)∈Bε(y0)⊆V. That is, Bδ(x0)⊆f∗(V), so x0 is an interior point. Since x0 was an arbitrary point of f∗(V), f∗(V) is open.

Conversely, fix x0 in X arbitrarily, put y0=f(x0), and fix ε arbitrarily. The ball V=Bε(y0) is open, so by hypothesis f∗(V) is open. Since x0∈f∗(V), there exists a δ such that Bδ(x0)⊆f∗(V). In other words, if d(x0,x)<δ, then f(x)∈V=Bε(y0), or e(y0,f(x))<ε. □
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Some properties of metric spaces depend not on the metric, but only on the induced topology of the metric. For topological purposes including convergence of sequences and continuity of mappings, we may replace a metric by an “equivalent” metric if doing so is convenient.


Definition 16.1.39. Assume X is a non-empty set. Two metrics d and d′ on X are equivalent if for every subset O⊆X, O is d-open if and only if O is d′-open.



Lemma 16.1.40. ⏎ Assume X is a non-empty set, and d, d′ are metrics on X.


	(i)The metrics d and d′ are equivalent if and only if every d-open ball is d′ -open and every d′ -open ball is d-open.


	(ii)If d and d′ are equivalent, then a sequence (xk) in X converges to x∞ with respect to d if and only if it converges to x∞ with respect to d′.




Proof. Exercise 16.1.8. □



Lemma 16.1.41. ⏎ If V is a real vector space with equivalent norms ∥ ∥ and ∥ ∥′, the induced metrics are equivalent.

Proof. Exercise 16.1.9. □



Example 16.1.42. If (X,d) is a metric space, the metric d′=min(d,1) is equivalent to d because every d-open set may be written as a union of open balls of radius less than 1, and vice versa. ♢



Example 16.1.43. On R, the flat metric d and discrete metric d′ are not equivalent: Every singleton is d′-open, since {x0}=B1(x0), so every subset of R is d′ -open, while “most” subsets of R are not d-open. ♢




Products of Metric Spaces


Definition 16.1.44. If (X,d) and (X′,d′) are metric spaces, their product is the ordered product X×X′ equipped with the metric

D((x,x′),(y,y′))=(d(x,y)2+d′(x′,y′)2)1/2.



Remark 16.1.45. The product of the number line with itself is the flat plane. Generally, our definition ensures the product of flat spaces is a flat space. This choice is not universal; take care when consulting other sources. ⋄



Lemma 16.1.46. ⏎ Assume (X,d) and (X′,d′) are metric spaces. If r>0, x0 in X, and x0′ in X′, then

Br/2d(x0)×Br/2d′(x0′)⊆Brd×d′(x0,x0′)⊆Brd(x0)×Brd′(x0′).

Page 332Proof. If u and v are real and max(|u|,|v|)<r/2, then |u|2+|v|2<r2/2<r2. Further, if |u|2+|v|2<r2, then max(|u|,|v|)<r. The lemma follows at once if we let x be an arbitrary point of X, x′ be an arbitrary point of X′, and we put u=d(x,x0) and v=d′(x′,x0′). □





Exercises for Section 16.1


	Exercise 16.1.1. Prove Lemma 16.1.3.


	Exercise 16.1.2. (★) Suppose A is an open set. For each x in A, there exists a positive rx such that Brx(x)⊆A. Prove that for every such family of choices, A is the union ⋃xBrx(x)⊆A.


	Exercise 16.1.3. Sketch the following sets, and determine whether or not each is open in R2 with the flat metric:


	(a)H+={(x,y)inR2:x>0}.


	(b)H―−={(x,y)inR2:x≤0}.


	(c)A={(x,y)inR2:x≠0}.





	Exercise 16.1.4. (★) Assume (X,d) is a metric space. Prove the reverse quadrangle inequality: If x, x′, y, and y′ are elements of X, then

|d(x,y)−d(x′,y′)|≤d(x,x′)+d(y,y′).

In words, the difference between two sides of a quadrangle is no larger than the sum of the other two sides.


	Exercise 16.1.5. Referring to the sets in Exercise 16.1.3:


	(a)Is H―−∩B1(0,0) relatively open in H―−?


	(b)Is H―−∩B1(0,0) open in R2?


	(c)Can A be partitioned into two relatively open subsets?





	Exercise 16.1.6. (★) Assume (X,d) is a metric space and A⊆X. Prove that A――=A―: The closure of the closure of A is the closure of A.


	Exercise 16.1.7. Assume (X,d) is a metric space. Prove that the function d―(x,x′)=min(d(x,x′),1) is a metric on X.


	Exercise 16.1.8. Page 333(★) Prove Lemma 16.1.40.


	Exercise 16.1.9. Prove Lemma 16.1.41.


	Exercise 16.1.10. (H). Assume f:[0,∞)→[0,∞) is a concave, non-decreasing function such that f(0)=0 and f(x)>0 if x>0.


	(a)(H) Prove that if d is a metric on X, then df=f∘d is a metric on X.


	(b)Let d be the absolute value metric on R. Find a concave, non-decreasing function f such that df is the radar screen metric.


	(c)Prove that if d is a metric, then d/(1+d) is a metric.





	Exercise 16.1.11. Assume a<b, and V=C([a,b]) is the vector space of continuous functions on [a,b].


	(a)Prove that ∥f∥1≤∥f∥∞ for all f in V.


	(b)Prove the 1-norm and ∞-norm are not equivalent on V.





	Exercise 16.1.12. (★) Assume n and m are positive integers, and equip Rn and Rm with the flat metrics. Assume U⊆Rn is open and f=(fk)k=0m−1:U→Rm a mapping. Prove f is continuous if and only if each component fk is continuous.


	Exercise 16.1.13. To state this question, we'll introduce multi-index notation in Rn. A multi-index is an ordered n-tuple of natural numbers, I=(ik)k=0n−1. If x=(xk)k=0n−1 is a point of Rn, we define

xI=∏k=0n−1xkik=x0i0⋅x1i1⋯xn−1in−1.

A polynomial function in n variables is a function p defined by a formula p(x)=∑IaIxI with only finitely many non-zero coefficients aI. A rational function in n variables is a function defined by a quotient of polynomials functions having no common factor, defined on the complement of the zero set of the denominator.

Prove that every rational function in n variables is continuous. Suggestion: Use induction on the number of variables to prove polynomials are continuous.


	Exercise 16.1.14. (★) Define inverse stereographic projection f:R2→R3 by

f(u,v)=(2uu2+v2+1,2vu2+v2+1,u2+v2−1u2+v2+1).

Prove f is a continuous injection whose image is the punctured unit sphere, {(x,y,z)inR3:x2+y2+z2=1} with the point (0,0,1) removed.

Suggestion: Write (x,y,z)=f(u,v), solve for (u,v), and prove the resulting mapping inverts f on a suitable domain.
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The intermediate and extreme value theorems in one variable are set on closed, bounded intervals of real numbers. We naturally seek to generalize these theorems to arbitrary metric spaces. As we have just seen, continuity of mappings generalizes to metric spaces as easily as the definitions and properties of open sets. Generalizing “closed and bounded” from the real numbers to arbitrary metric spaces is another matter, and takes three entire sections.

“Closed and bounded” makes sense in an arbitrary metric space, but generally imposes no conditions on continuous mappings: An arbitrary set with the discrete metric is closed and bounded. Because every point in a discrete metric space is isolated, every mapping on a discrete metric space is continuous, compare Proposition 8.2.6 (i).

This section introduces properties that either name familiar conditions in the number line, or else suitably generalize number line concepts to arbitrary metric spaces. Illustrating definitions and proofs with sketches as you read may provide helpful assistance in assimilating these concepts.


Distance Between Subsets


Definition 16.2.1. If (X,d) is a metric space and if A, B are non-empty subsets, the distance between A and B is

d(A,B)=inf{d(a,b):a∈A, b∈B}.

If x∈X, then d(x,A)=inf{d(x,a):a∈A}.



Example 16.2.2. If A and B are not disjoint, then d(A,B)=0. In particular, despite the notation d is not a metric on the power set P(X).

In (R,| |), A=(−1,0) and B=(0,1) are disjoint but d(A,B)=0. ♢



Example 16.2.3. In the number line, d(x,Z)≤1/2 for every real x, since for every real x, ⌊x⌋∈Z and Corollary 4.3.2 implies ⌊x⌋≤x≤1+⌊x⌋. ♢




Denseness and Separability

For the remainder of the book, metric spaces (X,d) are assumed to be infinite, namely to contain infinitely many points, unless explicitly stated otherwise.


Definition 16.2.4. Assume (X,d) is a metric space. A subset A⊆X is dense if the closure of A in X is X, namely, if the exterior is empty.

We say (X,d) is separable if X contains a countable dense subset.



Example 16.2.5. The set Q of rational numbers is dense in the number line. Since Q is countable, the number line is separable. ♢



Example 16.2.6. Page 335No proper subset of a discrete metric space is dense, because every singleton is open. A discrete metric space is separable if and only if it is countable. ♢



Lemma 16.2.7. ⏎ Assume (X,d) is a metric space. A subset A⊆X is dense if and only if d(x,A)=0 for every x in X.

Proof. See Exercise 16.2.1. □


When (X,d) contains a countable dense subset A, the collection of open balls centered at a point of A and with rational radius is itself countable. For later use, we establish an “encapsulation” property of balls with center in a dense set and having rational radius.


Lemma 16.2.8. ⏎ Assume (X,d) is a metric space and A⊆X a dense subset. If U⊆X is open and x is an arbitrary point of U, there exists a point x0 of A and a positive rational r such that x∈Br(x0)⊆U.

Proof. Since U is open, there is an ε such that B3ε(x)⊆U. Since A is dense, there is a point x0 of A in Bε(x). Assume r is a rational number in (ε,2ε). Since d(x0,x)<ε<r, we have x∈Br(x0). Further, if x′∈Br(x0), then d(x,x′)≤d(x0,x)+d(x0,x′)<ε+r<3ε, so x′∈B3ε(x)⊆U. □




Boundedness


Definition 16.2.9. Assume (X,d) is a metric space and A a non-empty subset of X. The diameter of A is the extended real number

diamA=sup{d(x,x′):x, x′∈A}∈[0,∞].

We say A is bounded if diamA<∞.



Example 16.2.10. In the number line, an interval with endpoints a and b has diameter |b−a|. The set of natural numbers has diameter ∞. ♢



Example 16.2.11. The flat plane is unbounded. Generally, a non-trivial vector space V with metric coming from a norm is unbounded.

The plane with the radar screen metric has diameter 1. ♢



Example 16.2.12. A discrete metric space is bounded. Every singleton set has diameter 0, and every set containing at least two points has diameter 1. ♢



Example 16.2.13. In a metric space, every ball Br(x0) has diameter at most 2r, Exercise 16.2.2 (d).

In a discrete metric space, open unit balls have diameter 0. ♢



Lemma 16.2.14. ⏎ Assume (X,d) is a metric space. A subset A⊆X is bounded if and only if for every x0 in X there exists a positive r such that A⊆Br(x0).

Proof. Exercise 16.2.6. □




Page 336Total Boundedness

Discrete spaces and the radar screen metric show that boundedness in an arbitrary metric space is weaker than we might like. A stronger condition, total boundedness, better captures number line intuition.


Definition 16.2.15. Assume (X,d) is a metric space and A⊆X. We say A is totally bounded if for every positive r, there exists a finite set C={cj}j=0N in X (C for “centers”) such that A⊆⋃j=0NBr(cj).



Example 16.2.16. An infinite discrete space is bounded (every open ball of radius 1+ε is the entire space) but not totally bounded (the space is not covered by finitely many open balls of radius 1). ♢



Example 16.2.17. The vector space Rn equipped with the radar-screen metric d′ is bounded but not totally bounded: The diameter is 1, but finitely many d′-balls of radius 1/2, which are balls of radius 1/2 in the flat metric, do not cover. ♢



Proposition 16.2.18. ⏎ A totally bounded metric space (X,d) is separable.

Proof. By hypothesis, for each positive integer n there exists a finite set Cn such that the balls of radius 1/n centered at points of Cn cover X, which implies d(x,Cn)<1/n for every x in X.

The set A=⋃nCn is a countable union of finite sets, hence countable, and d(x,A)<1/n for every positive integer n, so d(x,A)=0, for all x in X. By Lemma 16.2.7, A is dense in X. □



Proposition 16.2.19. Assume (X,d) is a metric space. A totally bounded subset A is bounded.

Proof. If A is totally bounded, there exists a finite set C={cj}j=0N in X such that A⊆⋃j=0NB1(cj). Put r=1+diamC. By the triangle inequality, B1(cj)⊆Br(c0) for each j, so A⊆⋃j=0NB1(cj)⊆Br(c0). □



Proposition 16.2.20. ⏎ In (R,| |), a bounded set is totally bounded.

Proof. Assume A⊆R is a bounded set, namely, there exists a real M such that A⊆[−M,M], and that r>0. By the accretion principle, Corollary 4.3.5, there exists a positive integer n such that M<nr. Consequently, the set rZ∩[−M,M]⊆{jr:|j|≤n} is finite, and A⊆[−M,M]⊆⋃j=−nnBr(jr). □



Remark 16.2.21. If you are in the habit of emphasizing your utterances with totally, it is safe to do so when describing bounded sets in the number line. ⋄



Proposition 16.2.22. ⏎ Assume (X,d) and (X′,d′) are metric spaces. If A⊆X, A′⊆X′ are totally bounded, then A×A′ is totally bounded in (X×X′,d×d′).

Page 337Proof. Assume r>0. Since A is totally bounded, there exists a finite set C={ci}i=0N in X such that A⊆⋃i=0NBr/2d(ci). (Note the usage of balls of radius r/2.) Similarly there is a finite set C′={cj′}j=0N′ in X′ such that A′⊆⋃j=0N′Br/2d′(cj′). By Lemma 16.1.46, Br/2d(ci)×Br/2d′(cj′)⊆Brd×d′(ci,cj′) for all (i,j). Consequently,

A×A′⊆[⋃i=0NBr/2d(ci)]×[⋃j=0N′Br/2d′(cj′)]=⋃i=0N⋃j=0N′Br/2d(ci)×Br/2d′(cj′)⊆⋃i=0N⋃j=0N′Brd×d′(ci,cj′).◻

□



Corollary 16.2.23. A bounded set in flat n-space is totally bounded.

Proof. Immediate from Propositions 16.2.20 and 16.2.22 by induction on n. □





Exercises for Section 16.2


	Exercise 16.2.1. (★) Prove Lemma 16.2.7.


	Exercise 16.2.2. Assume (X,d) is a metric space and A⊆X.


	(a)Prove diamA=0 if and only if A is a singleton.


	(b)In the number line, prove diamBr(x0)=2r.


	(c)In a discrete metric space, what is diamBr(x0)?


	(d)In an arbitrary metric space, prove that diamBr(x0)≤2r.





	Exercise 16.2.3. Assume (X,d) is a metric space, x0∈X, and r>0. Is the closure of Br(x0) equal to the closed ball of radius r about x0? If so, give a proof. If not, does either inclusion hold in general?


	Exercise 16.2.4. Assume (X,d) is a metric space, A⊆X a dense subset, and B⊆A dense in (A,d). Prove B is dense in (X,d).


	Exercise 16.2.5. Assume f:(X,d)→(Y,e) is continuous and A is dense in (X,d). Prove the image f(A) is dense in the image f(X).


	Exercise 16.2.6. (★) Prove Lemma 16.2.14: A subset A of a metric space is bounded if and only if A is contained in some open ball.


	Exercise 16.2.7. Prove the closure of a bounded set is bounded.


	Exercise 16.2.8. Page 338An infinite-dimensional inner product space (V,⟨ ⟩) is separable if there exists a countable, dense subset of V in the 2-norm metric. An orthonormal set B⊆V is an L2 -basis if the algebraic span of B is dense.

Prove V is separable if and only if V has a countable L2-basis.


	Exercise 16.2.9. Assume (Y,e) is a metric space and f:X→Y is a bijection. Prove that the function d(x,x′)=e(f(x),f(x′)) defines a metric on X. (We call d=f∗e the pullback of e by f. Conceptually, (X,d) “is” (Y,e), except the underlying sets are different.)


	Exercise 16.2.10. Let X=R∖{0} be the set of non-zero real numbers. Prove that the function d(x,x′)=|x′−x|/|xx′| defines a metric on X.


	Exercise 16.2.11. Let n denote a positive integer. In this exercise we'll use geometry and calculus to find the volume of a ball in flat n-space without systematically developing a theory of volume. The closed ball of radius r in Rn is the set of (xj)j=0n−1 such that ∑jxj2≤r2. The key fact we assume is, scaling a ball in flat n-space by a factor r scales the volume by rn: If Vn(r) denotes the volume of the closed ball of radius r in Rn, then Vn(r)=rnVn(1).


	(a)Show that if −1≤t≤1, the intersection of the unit ball in Rn+1 with Rn×{t} is (congruent to) a ball of radius (1−t2)1/2 in Rn. Use this to express Vn+1(1) as an integral of n-dimensional volumes in terms of Vn(1).


	(b)Use Proposition 13.2.10 to express the recursion from (a) in terms of the Γ function, and prove that Vn(1)=πn/2/Γ(n2+1). Check that this formula agrees with your geometric knowledge if n=2 and n=3.


	(c)In flat Rn, the complement of the closed ball of radius r−dr (about 0) in the closed ball of radius r is a thin shell whose volume is approximately dr times the (n−1)-dimensional volume of the sphere of radius r. Use this to find the (n−1)-dimensional volume of the sphere in Rn.


	(d)Prove that the volume of the unit ball converges to 0 as n→∞. Prove that the volume concentrates at the boundary.









16.3 Connectedness and Compactness

This section introduces intrinsic (namely, non-relative), topological conditions in an arbitrary metric space: connectedness for generalizing “intervals,” and compactness for generalizing “closed and bounded.” Section 16.4 establishes that subsets of flat n-space are compact if and only if they are closed and Page 339bounded, and characterizes compact subsets of arbitrary metric spaces as being complete and totally bounded. Section 16.5 contains sweeping yet simple generalizations of the extreme value theorem and intermediate value theorem.


Connectedness


Definition 16.3.1. Assume (X,d) is a metric space, A⊆X. A disconnection of A is a partition of A into two relatively open subsets, namely, a pair of disjoint open sets U and V such that A⊆U∪V and the intersections A∩U and A∩V are non-empty.

If A admits a disconnection, A is disconnected. Otherwise A is connected.



Example 16.3.2. Every singleton is trivially connected. Every set with more than one element in a discrete space is disconnected: every partition into two subsets is a disconnection.

In the number line, the set A=[−1,0)∪(0,1] is disconnected, as is Q, the set of rational numbers, and K, the ternary set. ♢



Remark 16.3.3. The standard idiom for proving A is connected is to assume U and V are disjoint, non-empty open sets whose union contains A, to assume A∩U is non-empty, and to prove A⊆U, or equivalently, A∩V=∅. ⋄



Remark 16.3.4. Connectedness is topological by definition. Further, as noted above, connectedness is intrinsic: If A⊆X⊆(X′,d), then A is connected as a subspace of (X,d) if and only if A is connected as a subspace of (X′,d). ⋄



Proposition 16.3.5. ⏎ If J is a subset of the number line, then J is connected if and only if J is an interval.

Proof. If J is not an interval, there exist real numbers a, b, and x such that a<x<b, a∈J and b∈J, but x∉J. The open sets U=(−∞,x) and V=(x,∞) are a disconnection of J.

The converse is proven in Exercises 16.3.3 and 16.3.4. □




Compactness


Definition 16.3.6. Assume (X,d) is a metric space and A⊆X. An open-cover of A indexed by a set I is a cover {Oi}i∈I of A by open subsets of (X,d).

A subcover of A from {Oi}i∈I is a subcollection {Oi}i∈F for some F⊆I whose union contains A. If the set F is finite, we speak of a finite subcover.



Remark 16.3.7. In mathematics, the red herring principle states, “A red herring is in general neither ‘red’ nor a ‘herring.”’ The hyphenated noun open-cover reminds us that an “open cover” is not an “open” “cover,” but a cover consisting of open sets. ⋄



Example 16.3.8. Page 340In the number line, the sets Ox=B1(x)=(x−1,x+1) with radius 1 and arbitrary center comprise an open-cover {Ox}x∈R indexed by real numbers. The subcollection {Ox}x∈Z centered at integers is a subcover.

Generally, if r>0, the collection {Br(x)}x∈A of balls of radius r centered at points of A is an open-cover of A. ♢



Example 16.3.9. In the number line, the sets Or=Br(0)=(−r,r) of fixed center and arbitrary radius comprise an open-cover {Or}r>0 of R. The subcollection {Or}r∈Z+ is a subcover.

Generally, if x0∈X, the collection {Br(x0)}r>0 of open balls of radius r centered at x0 is an open-cover of X: An arbitrary point x is contained in the ball of radius 1+d(x0,x). ♢



Definition 16.3.10. Assume (X,d) is a metric space. A set K⊆X is compact if every open-cover of K has a finite subcover.



Remark 16.3.11. The definition of compactness may be viewed as an adversarial game. The referee specifies a metric space (X,d) and the subset K. Player O picks an open-cover of K, a collection {Oi} of open sets whose union contains K. Player S tries to find a finite subcover, finitely many sets among the {Oi} whose union contains K. The set K is compact if and only if Player S has a winning strategy against a perfect opponent. ⋄



Remark 16.3.12. Compactness is topological by definition. Further, compactness is intrinsic, not relative: If K⊆X⊆(X′,d), then K is compact as a subspace of (X,d) if and only if K is compact as a subspace of (X′,d). ⋄



Example 16.3.13. If (X,d) is an arbitrary metric space, then every finite subset of X is compact.

In a discrete space, inversely, every infinite set is non-compact: The singleton subsets constitute an open-cover with no finite subcover. ♢



Example 16.3.14. In the number line, the open interval (0,1) is non-compact: The intervals On=(2−(n+1),1) form an open-cover {On}n∈N having no finite subcover.

The number line is non-compact. For instance, if On=(−n,n) for each positive integer n, the collection {On} is an open-cover by finitude, but there is no finite subcover. ♢



Proposition 16.3.15. ⏎ Assume (X,d) is a metric space, K⊆X a compact set.


	(i)The set K is totally bounded, hence bounded.


	(ii)The set K is closed in X.


	(iii)Page 341If F⊆X closed, the intersection K∩F is compact.




Proof.


	(i).Assume r>0. The open-cover {Br(x)}x∈K has a finite subcover by compactness of K. Since K is covered by finitely many r-balls for every r, K is totally bounded by definition.


	(ii).Assume x0 is an arbitrary point of X∖K. It suffices to show x0 is interior to X∖K, or that X∖K is open.

If x∈K, put rx=12d(x0,x). The open balls Brx(x0) and Brx(x) are disjoint, and the collection {Brx(x)}x∈K is an open-cover of K. Since K is compact, this covering has a finite subcover, say {Brj(xj)}j=0N. The finite intersection ⋂jBrj(x0) is open, contains x0, and is disjoint from the union ⋃jBrj(xj), hence disjoint from K.


	(iii).Assume {Oi} is an arbitrary open-cover of K∩F. Since F is closed, the complement X∖F is open. The collection {Oi}∪{X∖F} is an open-cover of K. By compactness of K, this new open-cover has a finite subcover. Deleting X∖F if necessary, we have extracted a finite subcover of K∩F from {Oi}. □






Lemma 16.3.16. (Uniform radius). ⏎ Assume (X,d) is a compact metric space and {Oi}i∈I an open-cover of X. There exists a positive real number r, independent of x, such that for every x in X, the ball Br(x) is contained in some open set Oi of the covering.

Page 342Proof. For each x in X, there is a positive rx such that B2rx(x) is contained in some set of the covering. By compactness, there exist finitely many points {xj}j=0N with corresponding radii rj such that the balls {Brj(xj)}j=0N cover X. (Note carefully: We choose rx so that the balls of radius rx cover X but each ball of radius 2rx is contained in some covering set.) Let r=min{rj}j=0N.

If x∈X, then x∈Brj(xj) for some j. But by the triangle inequality, if d(x′,x)<r, then d(x′,xj)≤d(x′,x)+d(x,xj)<r+rj≤2rj. That is, Br(x)⊆B2rj(xj), which is contained in some covering set. □



Theorem 16.3.17. (Finite intersection property). ⏎ Assume (X,d) is a metric space and (Kn)n=0∞ a collection of non-empty compact sets such that Kn⊇Kn+1 for each n. The intersection ⋂nKn is empty if and only if KN=∅ for some N.

Proof. See Exercise 16.3.6. □




Products of Compact Sets


Lemma 16.3.18. ⏎ Assume (X,d) and (X′,d′) are metric spaces and x′ an arbitrary point of X′. If K⊆X is compact, and if {Oi}i∈I is an arbitrary open-cover of K×{x′} in the product metric, then there exists a positive r′ and a finite subcover {Oj}j=0N of K×Br′(x′).

Proof. For each x in K, the point (x,x′) is contained in Oi for some i in I, so there exists a positive rx such that Brxd(x)×Brxd′(x′)⊆Oi. The collection {Brxd(x)}x∈K is an open-cover of K, so there exists a finite subcover, say {Brjd(xj)}j=0N. Put r′=min{rj:0≤j≤N}. Since 0<r′≤rj for each j, we have Br′d′(x′)⊆Brjd′(x′) for each j.

By construction, each of the finitely many products Brjd(xj)×Br′d′(x′) is contained in some open set Oj from the original covering. The collection {Oj}j=0N is a finite subcover of K×Br′(x′). □



Proposition 16.3.19. ⏎ Assume (X,d) and (X′,d′) are metric spaces. If K⊆X and K′⊆X′ are compact, then K×K′ is compact in the product metric space.

Proof. Assume {Oi}i∈I is an arbitrary open-cover of K×K′. By Lemma 16.3.18, for each x′ in K′, there exists a positive r′(x′) and a finite collection {Oj}j=0N whose union contains K×{Br′(x′)d′(x′)}.

The collection {Br′(x′)d′(x′)}x′∈K′ is an open-cover of K′. Since K′ is compact, there exists a finite subcover, say {Brk′d′(xk′)}k=0N′. To each set in this finite subcover is associated a finite covering of K×Brk′d′(xk′) from the collection {Oi}i∈I. This finite union of finite collections is a finite subcover of K×K′. □





Exercises for Section 16.3


	Exercise 16.3.1. (★) True or false: An intersection of two connected sets is connected.


	Exercise 16.3.2. (The hub lemma.) Let (X,d) be a metric space and x0 a point of X. Assume {Ci}i∈I is a collection of connected subsets of X, and that x0∈Ci for all i in I. Prove ⋃i∈ICi⊆X is connected.


	Exercise 16.3.3. If a<b, prove that the interval [a,b] is connected in the number line. Suggestion: Use interval induction.


	Exercise 16.3.4. (H). Prove that every interval (closed, open, or half-open; bounded or unbounded) is connected in the number line.


	Exercise 16.3.5. Assume (X,d) is a metric space, and define a binary relation ∼ on X by x∼x′ if and only if there exists a connected subset A⊆X such that {x,x′}⊆A. Prove that ∼ is an equivalence relation. (The equivalence classes are called the (connected) components of (X,d).)


	Exercise 16.3.6. (★) Prove the finite intersection property, Theorem 16.3.17.


	Exercise 16.3.7. Assume (X,d) is a metric space and (ak)k∈N a convergent sequence in (X,d). Prove the set of terms A={ak}k∈N has compact closure.
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Proving compactness from the definition involves handling arbitrary open-covers. In this section we prove a subset of flat n-space is compact if and only if it is closed and bounded. We also prove a metric space is compact if and only if every sequence has a convergent subsequence, if and only if the space is complete and totally bounded.


Theorem 16.4.1. (Closed intervals are compact). Let (R,| |) be the number line. If a<b, the closed interval [a,b] is compact.

Proof. Fix an open-cover {Oi}i∈I of [a,b]. We'll say a subset A of [a,b] is finitely covered if A is contained in the union of finitely many of the Oi. We will proceed by interval induction, Theorem 4.2.14, using the set

J={tin[a,b]:[a,t] is finitely covered}⊆[a,b].

(Priming). Since a∈Oi for some i, a∈J.

(Climbing). If t∈J, then there exist finitely many sets {Oj}j=0n−1 such that [a,t]⊆On′:=⋃j=0n−1Oj. Since On′ is open, Br(t)⊆On′⊆J for some r.

(Capping). Since supJ∈[a,b], we have supJ∈Ok for some index k. Since Ok is open, there is an ε such that Bε(supJ)⊆Ok. By definition of a supremum, there is a t in J such that (supJ)−ε<t. Since [a,t] is finitely covered, appending Ok to a finite covering collection shows [a,t′] is finitely covered for all t′ in Bε(supJ)∩[a,b]. Particularly, supJ∈J. □



Remark 16.4.2. To be sure you understand, determine where the argument fails for the open interval (a,b) and for the half-open interval [a,b), neither of which is compact. ⋄



Example 16.4.3. The ternary set, Example 4.1.19, is compact as a closed subset of the compact interval [0,1]. ♢



Theorem 16.4.4. (Closed, bounded theorem). ⏎ Let (Rn,d) be flat n-space. If K⊆Rn, then the following are equivalent:


	(i)K is closed and bounded.


	(ii)K is compact.




Proof. ((i) implies (ii)). If K is bounded, there exist a point x0 of Rn and an R>0 such that K⊆BR(x0)⊆x0+[−R,R]n. But x0+[−R,R]n is a product of compact intervals, hence compact by Proposition 16.3.19 and induction on the number of factors. Proposition 16.3.15 implies K itself is compact as a closed subset of a compact set.

((ii) implies (i)). Immediate from Proposition 16.3.15. □



Example 16.4.5. Page 344If x0 is an arbitrary point of flat n-space, and if r>0, the closed ball Br(x0)― is closed and bounded, hence compact. Its boundary, the sphere Srn−1(x0)={xinRn:d(x0,x)=r}, is also closed and bounded, hence compact. ♢



Example 16.4.6. Assume n≥1, and (Rn,d) is the n-dimensional vector space with the discrete metric. Every infinite set is closed and bounded, but not compact in this metric space. ♢



Example 16.4.7. Assume n≥1, and Rn∖{0} is flat n-space with the origin removed. The set {x:∥x∥≤1} is closed and bounded, but not compact. In Theorem 16.4.4, “closed” means closed in flat n-space. ♢



Sequential Compactness

In the number line, sequences detect compactness via existence of convergent subsequences. In this section we generalize to arbitrary metric spaces.


Definition 16.4.8. A metric space (X,d) is sequentially compact if every sequence in K has a subsequence convergent to a point of K.



Proposition 16.4.9. ⏎ If (K,d) is a sequentially compact metric space, then (K,d) is totally bounded.

Proof. We'll argue contrapositively. If (K,d) is not totally bounded, there exists a positive r such that no finite collection of r-balls covers K. Pick x0 in K arbitrarily. Inductively, use the fact that no finite collection of r-balls covers K to pick xk+1 in K∖⋃j=0kBr(xj). By construction, d(xm,xn)≥r for all m and n, so the sequence (xn)n=0∞ has no convergent subsequence. □



Corollary 16.4.10. If (K,d) is sequentially compact, then (K,d) is separable.

Proof. A totally bounded metric space is separable by Proposition 16.2.18. □



Proposition 16.4.11. ⏎ If (X,d) is separable, then every open-cover {Oi}i∈I of X has a countable subcover.

Proof. Assume A⊆X is a countable, dense set and consider the countable collection N:={Br(x0)}x0∈A, r∈Q+ of open balls centered at a point of A and having rational radius. Suppose {Oi}i∈I is an arbitrary open-cover of X. For each x in X, there exists an index i in I such that x∈Oi. By Lemma 16.2.8, there exists a ball Br(x0) in N such that x∈Br(x0)⊆Oi. The set of balls arising this way covers X, and is countable as a subset of N, so can be written {Bj}j=0∞. For each j, pick an index i(j) in I such that Bj⊆Oi(j). The collection {Oi(j)}j=0∞ is a countable subcover. □



Theorem 16.4.12. Page 345(Convergent subsequence theorem). ⏎ A metric space (K,d) is compact if and only if it is sequentially compact.

Proof. (Compactness implies sequential compactness). Assume K is compact and x=(xk) is a sequence in K. Since K is totally bounded, finitely many closed 1/2-balls (diameter at most 1) cover K. At least one of these balls, K0⊆K say, contains infinitely many terms of x. Let xk0 be a term of x in K0.

Inductively, suppose Km is a compact set of diameter at most 2−m containing infinitely many terms of x and we have picked a term xkm in Km. Use total boundedness to cover Km with finitely many closed balls of radius 2−(m+2). At least one of these balls, Bm+1 say, contains infinitely many terms of x. Pick an index km+1 greater than km such that xkm+1∈Km+1:=Bm+1∩Km.

We have constructed a sequence of compact sets, K0⊇K1⊇… with the property that diam(Km)≤2−m for each m. The finite intersection property, Theorem 16.3.17, implies K∞:=⋂mKm is non-empty. For every natural number m, diamK∞≤diamKm≤2−m. Thus diamK∞=0, so K∞={x∞} for some x∞ in K. But d(xnm,x∞)≤2−m for each m, so (xnm)→x∞.

(Sequential compactness implies compactness). Assume {Oi}i∈I is an open-cover of K. By Proposition 16.4.9, K is separable. By Proposition 16.4.11, there exists a countable subcover {Oi(j)}j=0∞ of {Oi}i∈I, and therefore a countable nested cover On′:=⋃j=0nOi(j). It suffices to prove there is a natural number N such that K⊆ON′, namely, the sets {Oi(j)}j=0N cover K. But the closed sets Kn=K∖On′⊆K are compact and nested inward, and their intersection is empty. By the finite intersection property, KN=∅ for some N, or K⊆ON′. □



Corollary 16.4.13. A metric space (K,d) is compact if and only if it is complete and totally bounded.

Proof. (Complete and totally bounded implies compact). Suppose (K,d) is complete and totally bounded, and (xk) is an arbitrary sequence in K. The argument in the forward direction of the convergent subsequence theorem shows (xk) has a condensing subsequence. Since (K,d) is complete, the subsequence converges. Thus every sequence in K has a convergent subsequence; that is, (K,d) is sequentially compact, hence compact by Theorem 16.4.12.

(Compact implies complete and totally bounded). By Proposition 16.3.15, a compact metric space is totally bounded. If (xk) is a condensing sequence in K, Theorem 16.4.12 implies (xk) has a convergent subsequence, which implies the sequence (xk) itself converges. That is, (K,d) is complete. □



Remark 16.4.14. In a topological space, compactness is usually defined by every open-cover having a finite subcover. Sequences, namely countable ordered lists, do not characterize compactness in this more general setting. ⋄





Page 346Exercises for Section 16.4


	Exercise 16.4.1. (★) Assume f:Rn→Rm is continuous relative to the flat metrics. For each c in Rm, the level of f at c is the preimage f∗({c}). Prove that if the level at c is bounded, it is compact.


	Exercise 16.4.2. (H). Assume (X,d) is a metric space and C⊆X a closed subset. Prove there exists a continuous function f:X→R whose zero set is precisely C.


	Exercise 16.4.3. Which of the following subsets of the flat plane are compact?


	(a)The unit circle x2+y2=1.


	(b)The unit hyperbola x2−y2=1.


	(c)The parabola y=x2.


	(d)A rectangle (a,b)×(c,d).


	(e)The disk {(x,y):x2+y2≤1}.


	(f)The polar graph r=e−θ2.





	Exercise 16.4.4. (★) Let n be a positive integer, Rn×n the set of real n×n matrices, AT the transpose of a matrix, and trA the trace of a square matrix, the sum of the diagonal entries. Prove that the formula ⟨A,B⟩=tr(ATB) defines an inner product on Rn×n, which amounts to the standard inner product on Rn2.


	Exercise 16.4.5. (★) Let n be a positive integer. Is the set SL(n,R)⊆Rn×n of n×n real matrices of determinant 1 compact? Closed? Use the metric defined by the inner product of Exercise 16.4.4.


	Exercise 16.4.6. Let n be a positive integer. Recall that an n×n real matrix A is orthogonal if ATA=In, the identity matrix. Is the set O(n)⊆Rn×n of n×n real orthogonal matrices compact? Use the metric defined by the inner product of Exercise 16.4.4.


	Exercise 16.4.7. Equip R∞ with the metric induced by the 2-norm. Is the closed unit ball compact?


	Exercise 16.4.8. A set X of real numbers has measure zero if for every ε, there exist countably many intervals (aj,bj) covering X whose total length ∑j(bj−aj) is at most ε. Prove that:


	(a)A countable set has measure zero. The ternary set has measure zero.


	(b)A countable union of sets of measure zero has measure zero.


	(c)A compact set of measure zero can be covered by finitely many intervals of arbitrarily small total length.


	(d)Page 347If a<b and (aj,bj) is a collection of open intervals whose union contains [a,b], then finitely many of these intervals cover [a,b]. Conclude that [a,b] does not have measure zero.





	Exercise 16.4.9. (H). Assume X⊆R is a set of real numbers and f is a real-valued function on X. For each c in X, define functions on the set of positive reals by

Ucf(δ)=sup{f(x):x∈X,|x−c|<δ},Lcf(δ)=inf{f(x):x∈X,|x−c|<δ}.


	(a)Prove Ucf is non-decreasing and bounded above, and Lcf is non-increasing and bounded below.


	(b)The quantity

osccf:=limδ→0+(Ucf(δ)−Lcf(δ))

is the oscillation of f at c. Prove that osccf≥0, with equality if and only if f is continuous at c.


	(c)(H) If r>0, prove the set Dr:={cinI:osccf≥r} is closed in I.


	(d)Calculate the oscillation at each point for χQ and for the denominator function of Exercise 8.1.5.





	Exercise 16.4.10. (H). Assume a<b. Prove a function f on [a,b] is integrable if and only if f is bounded and the set D of discontinuities of f has measure zero.






16.5 Properties of Continuous Mappings

Now that we have found a suitable abstract characterization of closed, bounded sets, the extreme value theorem generalizes to arbitrary metric spaces with gratifying simplicity.


Continuous Images of Compact Spaces


Theorem 16.5.1. (The compact image theorem). ⏎ Assume (X,d) and (Y,e) are metric spaces, and f:X→Y is continuous. If K⊆X is compact, the image f(K) is compact.

Proof. Assume {Oi}i∈I is an arbitrary open-cover of f(K). Since f is continuous, each preimage f∗(Oi) is open in X by Proposition 16.1.38. The collection Page 348{f∗(Oi)}i∈I is an open-cover of K, so by compactness there exists a finite subcover {f∗(Oi(j))}j=0N. The images {Oi(j)}j=0N are a finite subcover of the image f(K). □



Corollary 16.5.2. (The extreme value theorem). Suppose (X,d) is a metric space and f:X→R is continuous with respect to the flat metric on R. If K⊆X is compact, then f achieves minimum and maximum values on K. That is, there exist elements xmin and xmax in K such that f(xmin)≤f(x)≤f(xmax) for all x in K.

Proof. By Theorem 16.5.1, the image f(K)⊆R is compact, hence closed and bounded in the number line. But a closed, bounded set of real numbers contains its supremum ymax and infimum ymin. Since these are in the image of f, there exist elements xmin and xmax in K such that ymin=f(xmin) and ymax=f(xmax). □



Proposition 16.5.3. ⏎ If V is a finite-dimensional real vector space, then any two norms on V are equivalent.

Proof. Exercise 16.5.8. □



Definition 16.5.4. Assume (X,d) and (Y,e) are metric spaces. A bijective mapping f:X→Y is a homeomorphism if f is continuous and the inverse mapping f−1:Y→X is continuous.



Proposition 16.5.5. ⏎ Assume (X,d) and (Y,e) are metric spaces, and that f:X→Y is continuous. If K⊆X is compact and f is injective on K, then f is a homeomorphism from (K,d) to its image (f(K),e).

Proof. It suffices to prove that the preimage of an arbitrary closed set in (X,d) under f−1 is closed in (Y,e), namely, that f maps closed subsets of K to closed subsets of f(K). But a closed subset of a compact set is compact, so its image is compact, hence closed. □



Example 16.5.6. The formula f(t)=(cost,sint) defines a continuous bijection from the (non-compact) half-open interval [0,2π) with the flat metric to the (compact) unit circle in the flat plane. The inverse mapping is discontinuous at (1,0), so f is not a homeomorphism.

This does not contradict Proposition 16.5.5 because the half-open interval is not compact. ♢




Continuous Images of Connected Spaces


Theorem 16.5.7. (The connected image theorem). Assume (X,d) and (Y,e) are metric spaces, f:X→Y continuous. If A⊆X is connected, the image f(A) is connected.

Page 349Proof. We prove the contrapositive. If {U,V} is a disconnection of f(A), the preimages {f∗(U),f∗(V)} are disjoint, have non-empty intersections with A, and their union is A; that is, they constitute a disconnection of A. □



Corollary 16.5.8. (The intermediate value theorem). Suppose (X,d) is a metric space and f:X→R is continuous with respect to the flat metric on R. If A⊆X is connected, then f(A) is an interval.

Particularly, if a and b are elements of A, and if y is a real number satisfying f(a)<y<f(b), there exists an x in A such that y=f(x).

Proof. By Proposition 16.3.5, connected subsets of the number line are precisely intervals. □




Uniform Continuity

Uniform continuity generalizes immediately to metric spaces.


Definition 16.5.9. Assume (X,d) and (Y,e) are metric spaces, f:X→Y a mapping. We say f is uniformly continuous on X if the following condition holds:


For every ε, there exists a δ such that for all x and x′ in X, d(x,x′)<δ implies e(f(x),f(x′))<ε.





Proposition 16.5.10. ⏎ Assume (X,d) is a compact metric space, (Y,e) a metric space. A continuous mapping f:X→Y is uniformly continuous.

Proof. A contrapositive proof can be given along the lines in Chapter 8. Here we give a direct proof using the uniform radius lemma, Lemma 16.3.16.

Fix ε arbitrarily. For each x in X, use continuity to pick δx such that if d(x,x′)<δx, then e(f(x),f(x′))<ε/2. The collection N={Bδx(x)}x∈X is an open-cover of X. By the uniform radius lemma, there exists a δ such that for every x in X, the ball Bδ(x) is contained in some element of N.

If x and x′ are arbitrary elements of X such that d(x,x′)<δ, then x′∈Bδ(x), which is contained in some some element Bδj(xj) of N. That is, d(x,xj)<δj and d(xj,x′)<δj. If we write y=f(x), y′=f(x′), and yj=f(xj) for simplicity, the triangle inequality gives

e(y,y′)≤e(y,yj)+e(yj,y′)<ε/2+ε/2=ε.◻

□


Bounded stretch for real-valued functions generalizes immediately to metric spaces, and implies uniform continuity.


Definition 16.5.11. Assume (X,d) and (Y,e) are metric spaces, and that f:X→Y is a mapping. We say f has bounded stretch if there exists a real M Page 350such that e(f(x),f(x′))≤Md(x,x′) for all x and x′ in X. The infimum of all such M is called the stretch of f.

We say f has locally bounded stretch if for every x0 in X, there is an open ball Br(x0) such that f has bounded stretch in Br(x0).




Isometry


Definition 16.5.12. Assume (X,d) and (Y,e) are metric spaces. We say f:X→Y is distance-preserving if e(f(x),f(x′))=d(x,x′) for all x, x′ in X.

A distance-preserving surjection i:(X,d)→(Y,e) is an isometry. If there exists an isometry i:(X,d)→(Y,e), we say (X,d) and (Y,e) are isometric.



Remark 16.5.13. The noun isometry is usually accented on the second syllable. The adjective isometric is usually accented on the third. ⋄



Remark 16.5.14. An isometry and its inverse both have stretch 1. Isometric spaces are “the same” in regard to properties of metric spaces. ⋄



Proposition 16.5.15. ⏎ Assume (X,d) is a metric space. The set of isometries of (X,d) is a group under composition, namely: A composition of isometries is an isometry, every isometry is invertible as a mapping, and the inverse mapping is an isometry.

Proof. See Exercise 16.5.11. □



Remark 16.5.16. An isometry is uniformly continuous, hence a homeomorphism by Proposition 16.5.15.

The set of isometries of (X,d), viewed as a group under mapping composition, called the isometry group of (X,d). ⋄



Example 16.5.17. If b>0, the mapping f:(0,∞)→(0,∞) defined by f(x)=b+x is distance-preserving and an isometry onto its image, but not surjective, so not an isometry of (0,∞). ♢



Theorem 16.5.18. (The rigid motion theorem). ⏎ A mapping f:Rn→Rn is an isometry of flat n-space if and only if there exist a real orthogonal n×n matrix A and a b in Rn such that f(x)=Ax+b for all  x in Rn.

Proof. See Exercise 16.5.12. □



Corollary 16.5.19. Let O(n) denote the set of n×n real orthogonal matrices. The isometry group of flat n-space is the set O(n)×Rn, equipped with the binary operation (A′,b′)∘(A,b)=(A′A,A′b+b′).

Proof. For all x in Rn, A′(Ax+b)+b′=A′Ax+(A′b+b′). □




Page 351Contraction


Definition 16.5.20. Assume (X,d) is a metric space. A mapping T:X→X is a contraction if T has stretch λ for some λ<1.



Remark 16.5.21. A contraction moves points closer by fixed ratio λ<1. It is not enough that d(T(x),T(x′))<d(x,x′) for all x, x′ in X. ⋄



Definition 16.5.22. If X is a set and T:X→X a mapping, a fixed point of T is an element x of X such that T(x)=x.



Theorem 16.5.23. (The contraction theorem, cf. Exercise 8.6.1). ⏎ Assume (X,d) is a complete metric space. If T:X→X is a contraction, then T has a unique fixed point x∞ in X.

Proof. Pick x0 in X arbitrarily and recursively define a sequence (xk)k=0∞ by xk+1=T(xk). Set d0=d(x0,x1). Since T is a contraction,

d(xk,xk+1)=d(T(xk−1),T(xk))≤λd(xk−1,xk)

if k≥1. Induction on k shows d(xk,xk+1)≤λkd0.

Fix ε arbitrarily. Since 0≤λ<1, there exists a positive integer N such that λNd0/(1−λ)<ε. If m and n are integers such that N≤m<n, the triangle inequality gives

d(xm,xn)≤∑k=mn−1d(xk,xk+1)≤∑k=mn−1λkd0≤∑k=m∞λkd0=λmd01−λ<ε.

Thus (xk) is a condensing sequence. Since (X,d), is complete, (xk) converges to some point x∞ of X. Since T is continuous and xk+1=T(xk) for each k,

T(x∞)=limk→∞T(xk)=limk→∞xk+1=x∞.

Finally, a contraction has at most one fixed point: If T(x′)=x′, then

d(x,x′)=d(T(x),T(x′))≤λd(x,x′).

Since λ<1, we have d(x,x′)=0, or x=x′. □





Exercises for Section 16.5


	Exercise 16.5.1. (★) Assume n is a positive integer, ℓ>0, and f:R→Rn an ℓ-periodic continuous mapping. Prove the image f(R)⊆Rn is compact.


	Exercise 16.5.2. Page 352Let A⊆R2 be image of the mapping f:(−π,π)→R2 defined by f(t)=(sint,sin2t). Determine whether A is compact.


	Exercise 16.5.3. Assume (X,d) is a metric space, A⊆X non-empty. Define f:X→R by f(x)=d(x,A). Prove f is uniformly continuous on X, and f(x)=0 if and only if x∈A―.


	Exercise 16.5.4. Assume (X,d) is a metric space, and A, B are disjoint, closed, non-empty subsets of X.


	(a)If A is compact, prove d(A,B)>0.


	(b)Assume f:A∪B→R is a function whose restrictions f|A and f|B are uniformly continuous. Must f be uniformly continuous? Does it matter whether or not A is compact?





	Exercise 16.5.5. Assume (X,d) and (X,d′) are metric spaces with the same underlying set.


	(a)Prove that d and d′ are equivalent if and only if the identity mapping i:(X,d)→(X,d′) is a homeomorphism (i.e., continuous in both directions).


	(b)Assume d and d′ are equivalent and (X,d) is compact. If f:(X,d)→(Y,e) is uniformly continuous, prove f is uniformly continuous when viewed as a mapping from (X,d′) to (Y,e).


	(c)In part (b), can the compactness hypothesis be omitted?





	Exercise 16.5.6. Assume (X,d), (Y,e) are metric spaces, and f:X→Y a mapping.


	(a)Prove that if f is uniformly continuous and (xk) is a condensing sequence in (X,d), then the image sequence (f(xk)) in (Y,e) is condensing.


	(b)Weaken the hypothesis in (a) to continuity of f, or find a continuous mapping that maps some condensing sequence to a non-condensing sequence.


	(c)Suppose conversely that f maps condensing sequences to condensing sequences. Prove f is continuous. Caution: In general, a condensing sequence in Y need not converge.


	(d)Strengthen the conclusion in (c) to uniform continuity, or find a continuous mapping that is not uniformly continuous, yet maps condensing sequences to condensing sequences.





	Exercise 16.5.7. (★) Assume I=[a,b] is an interval of real numbers and C∞(I) is equipped with the metric d(f,g)=∥f−g∥∞.


	Page 353(a)Prove the definite integration operator I:V→V, I(f)(x)=∫axf(t)dt, has stretch (b−a).


	(b)Prove that the derivative operator D:V→V, Df=f′, is discontinuous. Hint: A function of small absolute value can have arbitrarily large slopes.





	Exercise 16.5.8. (H). Prove Proposition 16.5.3.


	Exercise 16.5.9. (H). Assume (V,⟨ ⟩) is a real inner product space, viewed as a metric space with the 2-norm. Prove:


	(a)For each v in V, the linear function λv:V→R defined by λv(u)=⟨v,u⟩ is continuous.


	(b)If U⊆V is a vector subspace, its orthogonal complement

U⊥={vinV:⟨u,v⟩=0 for all u in U}

is a closed subspace.


	(c)(H) If U is a closed subspace and V is complete with respect to the 2-norm, then (U⊥)⊥=U.





	Exercise 16.5.10. (H). Assume g is continuous on [−1,1], and that for all C1 functions ϕ satisfying ϕ(−1)=ϕ(1)=0, we have ∫−11gϕ′=0. Prove g is constant.


	Exercise 16.5.11. (★) Prove Proposition 16.5.15.


	Exercise 16.5.12. (H). Prove Theorem 16.5.18.


	Exercise 16.5.13. Assume (X,d) is a metric space. We say (X,d) is path-connected if for all x, x′ in X, there exists a continuous mapping c:[0,1]→X such that c(0)=x and c(1)=x′. (That is, x and x′ can be joined by a path in X.)


	(a)Prove that a path-connected space is connected.


	(b)Define a binary relation on X by x∼x′ if and only if x and x′ can be joined by a path in X. Prove ∼ is an equivalence relation. (The equivalence classes are the path components of (X,d).)


	(c)Prove that an open connected subset X of flat n-space (Rn,d) is path-connected. Hint: If x can be joined to x′ by a path in X, there exists an open ball about x′ whose points can be joined to x by a path in X.


	(d)Prove that the set X=({0}×[−1,1])∪{(x,sin(1/x)):0<x} is connected but not path-connected in the flat plane.





	Exercise 16.5.14. Page 354(H). In this exercise, we construct a metric on a particular quotient of the number line, R/(2πZ), obtaining the simplest non-trivial “compact manifold” and a motivating example of a “covering space.”

Let S1⊆R2 denote the unit circle, viewed as a metric space (S1,d) in the flat plane. Define a relation ∼ on the number line by t∼t′ if and only if t−t′∈2πZ, and define a mapping f:R→S1 by f(t)=(cost,sint).


	(a)Prove ∼ is an equivalence relation, and f factors through the quotient.


	(b)(H) If d1 denotes the number line distance, prove that

d―([t],[t′])=d1(t+2πZ,t′+2πZ))for all [t] and [t′]

defines a metric on the quotient R/∼, the angular separation metric.


	(c)Is the induced mapping f―:(R/∼,d―)→(S1,d) a homeomorphism? An isometry?





	Exercise 16.5.15. (H). Let Λ (Lambda, for lattice) denote the set 2π(Z×Z) in the flat plane. Define an equivalence relation on R2 by (s,t)∼(s′,t′) if and only if (s′−s,t′−t)∈Λ. (Check this is an equivalence relation if the claim is not apparent, paying attention to the properties of Λ that correspond to reflexivity, symmetry, and transitivity.)

Let S1⊆R2 denote the unit circle equipped with the angular separation metric of Exercise 16.5.14 (b).


	(a)Define f:R2→S1×S1 by f(s,t)=(coss,sins,cost,sint). Prove there is an induced mapping f―:(R2/∼)→S1×S1, namely, that f factors through the quotient.

Prove that

d―([(s,t)],[(s′,t′)])=d((s,t)+Λ,(s′,t′)+Λ)

defines a metric on the quotient R2/∼, and the induced mapping is an isometry. (Thus, our use of d― to denote both is practically unambiguous.) The metric space (S1×S1,d―) is called the flat Λ-torus, or (here) simply “the torus.”


	(b)For each real α, let ℓα={(s,t)inR2:t=αs} denote the line of slope α through the origin. Prove f∗(f(ℓα))=ℓα+Λ, the set of translates of ℓα by elements of Λ.


	(c)Prove f(ℓα) is compact if and only if α is rational, and is dense in the torus if and only if α is irrational. (If α is irrational, the image f(ℓα) is called an irrational winding on the torus.)


	(d)Prove that the complement of an irrational winding is connected but has uncountably many path components, see Exercise 16.5.13.
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Metric spaces provide a conceptual framework for studying “limits of well-understood objects.” In this chapter, the language and machinery of sequences is applied toward approximation problems: embedding an arbitrary metric space as a dense subset of a complete metric space, approximating continuous functions using polynomials and periodic functions with trigonometric polynomials, solving first-order ordinary differential equations. This small selection only hints at the variety of applications illuminated by metric spaces.


17.1 Completion of a Metric Space

Rational numbers, ratios of integers, are as simple and concrete as the ordered field axioms. Unfortunately, the rational number system is not complete: a condensing sequence of rationals need not converge in the rationals. In Chapter 3 we started from axioms for the real number system that included completeness. (In the axioms, completeness referred to existence of suprema, which is equivalent to convergence of arbitrary condensing sequences.) Now, in the final chapter, we'll use condensing sequences to prove an arbitrary metric space has a completion, unique up to isometry. As a special case, we construct the real number system as a completion of the rationals.


Definition 17.1.1. Assume (X,d) is a metric space. A completion of (X,d) is a complete metric space (X―,d―) together with a distance-preserving mapping i:X→X― whose image is dense.



Theorem 17.1.2. (The completion theorem). ⏎ Assume (X,d) is a metric space. There exists a completion (X―,d―). Moreover, any two completions of (X,d) are isometric.



Remark 17.1.3. Despite the sweeping generality, the conceptual strategy is straightforward. Loosely, we'll represent “limits from X” as condensing sequences (xk) from X. Precisely, we'll view two condensing sequences (xk) and (xk′) as equivalent if d(xk,xk′)→0, and we'll define points of X― to be equivalence classes of condensing sequences. The key point is, “a condensing Page 356sequence of condensing sequences is represented by a condensing sequence,” or a condensing sequence in X― converges to a point of X―. The approximation idiom is a “diagonal sequence.”

A sequence in X is a mapping x:N→X. A sequence of sequences in X] is, in effect, a mapping x:N×N→X. For each n, we get a sequence xn=x(n,⋅) by letting the second variable run from 0 to ∞. The diagonal sequence has kth term x―k=x(k,k), the kth term of the kth sequence. ⋄



Proposition 17.1.4. (Existence of a completion). ⏎ Let CX denote the set of all condensing sequences in (X,d). Define a relation ≡ on CX by (xk)≡(xk′) if and only if limd(xk,xk′)=0.


	(i)If (xk) and (yk) are in CX, then d((xk),(yk))=limd(xk,yk) exists as a real number. The relation ≡ is an equivalence in CX and the distance function d on CX is well-defined mod ≡, namely, if (xk)≡(xk′) and (yk)≡(yk′), then limd(xk,yk)=limd(xk′,yk′).


	(ii)If X―=CX/≡ is the set of equivalence classes, and if [xk] denotes the equivalence class of a condensing sequence (xk), then the function d―([xk],[yk])=limd(xk,yk) is a complete metric on X―.


	(iii)If x∈X and (x) denotes the constant sequence, the mapping i:X→X― defined by i(x)=(x) is an isometry with dense image.




Proof. Exercise 17.1.3. □



Proposition 17.1.5. (Uniqueness of a completion). ⏎ Assume (X,d) is a metric space and (X―,d―) is a complete metric space such that X⊆X― is dense.


	(i)If (Y,e) is a complete metric space and f:(X,d)→(Y,e) is uniformly continuous, there exists a unique continuous extension f―:X―→Y of f.


	(ii)If (X―′,d―′) is an arbitrary completion of (X,d), then there exists a unique isometry i:(X―,d―)→(X―′,d―′) acting as the identity mapping on X.




Proof. Exercise 17.1.4. □



Example 17.1.6. If X=C([a,b]) equipped with the (incomplete) metric induced by the 1-norm,

d(f,g)=∫ab|f(x)−g(x)|dx,

the completion is denoted L1([a,b]). Elements of this space are equivalence classes of limits of integrable functions. The integral, viewed as a real-valued function on X, extends to an integral built on “measurability,” a generalized theory of length for subsets of the number line. Instead of using indicators of intervals, the extended integral uses indicators of measurable sets. ♢


Page 357To construct the real number system, namely, the ordered field structure on the completion of (Q,| |), we must further show that sums, products, and ordering pass from the rational numbers to equivalence classes of condensing sequences. This amounts to material from Chapter 6.


Corollary 17.1.7. (Construction of the real number system). ⏎ Let (Q,d) be the ordered rational field equipped with the number line metric, and let (R,| |) denote the completion of Theorem 17.1.2.


	(i)Addition and multiplication are well-defined mod ≡, and induce field operations on R.


	(ii)Ordering is well-defined mod ≡, and defines a subset P⊆R satisfying the order axioms.


	(iii)If A⊆R is non-empty and bounded above in R, then A has a supremum in R.




Proof. See Exercise 17.1.5. □



Continuous Extension


Corollary 17.1.8. Assume (X,d) is a metric space, A⊆X a set with compact closure, and (Y,e) complete. A mapping f:(A,d)→(Y,e) is uniformly continuous if and only if there exists a continuous extension f―:A―→Y.

Proof. If f:(A,d)→(Y,e) is uniformly continuous, part (i) of Proposition 17.1.5 guarantees there exists a continuous extension f―:A―→Y.

Conversely, if there exists a continuous extension f―:A―→Y of f, the extension is uniformly continuous by Proposition 16.5.10 because A― is compact, so the restriction f is a fortiori uniformly continuous. □



Example 17.1.9. The signum function sgn(x)=x/|x| on B1×(0) does not extend continuously to B1(0), and therefore is not uniformly continuous on the punctured unit ball. The same is true of f(x)=sin(1/x). ♢



Example 17.1.10. If 0<δ<1, the signum function on [−1,1]∖[−δ,δ] does extend continuously to the closure [−1,−δ]∪[δ,1], and therefore is uniformly continuous on the complement of Bδ(0) in the unit ball. The same is true of f(x)=sin(1/x). ♢



Example 17.1.11. If 0<r<1, the power function f(x)=xr is uniformly continuous on (0,1). Note that f′ is unbounded on this interval. ♢



Example 17.1.12. The polar angle function θ defined on the slit plane R2∖(−∞,0] is not uniformly continuous: There is a jump discontinuity across the negative x-axis, hence no continuous extension to the negative axis. ♢
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	Exercise 17.1.1. Assume I is a bounded real interval and f a bounded monotone function on I. Prove f is uniformly continuous. If f is strictly monotone, can we drop the hypothesis I is an interval?


	Exercise 17.1.2. Define f:(0,1)2→R by f(x,y)=x/(x+y). Prove f is bounded, and is uniformly continuous in each variable (give a careful definition for a function defined on an open rectangle), but not uniformly continuous.


	Exercise 17.1.3. (H). Prove Proposition 17.1.4.


	Exercise 17.1.4. (H). Prove Proposition 17.1.5.


	Exercise 17.1.5. (H). Prove Corollary 17.1.7.


	Exercise 17.1.6. Assume (X,d) is a metric space, and fix a point x0 in X arbitrarily. For each x′ in X, define a function fx′:X→R by

fx′(x)=d(x,x′)−d(x,x0)for all x in X.

Prove fx′ is uniformly continuous for each x′, that |fx′(x)|≤d(x′,x0) for all x in X, and that ∥fx′′−fx′∥∞=d(x′,x′′) for all x′ and x′′ in X.

(If we equip C(X,R) with the metric d(f,g)=sup|f(x)−g(x)|, then the mapping Φ:X→C(X,R) defined by Φ(x′)=fx′ is an isometry onto its image. The closure of the image is therefore a completion of (X,d).)






17.2 The Uniform Metric

Metrics on function spaces are nearly as varied as approximation problems themselves. In this section we'll study convergence in the “uniform metric” generalizing the ∞-norm. This metric avoids technical complications that occur with most metrics on function spaces. Particularly, convergent sequences in the uniform metric converge pointwise, so limits are mappings rather than equivalence classes of mappings. Separately, a uniform limit of continuous mappings is continuous.


Definition 17.2.1. Assume (X,d) and (Y,e) are metric spaces, and B(X,Y) is the set of bounded mappings f:X→Y, namely, mappings whose image is bounded. The uniform metric is defined, for f and g in B(X,Y), by

d∞(f,g)=supx∈Xe(f(x),g(x)).
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Remark 17.2.2. The elements (or “points”) of B(X,Y) are mappings. In the uniform metric, the distance between two mappings f and g is the supremum of the distances between the elements f(x) and g(x) in Y. To say “d∞(f,g)≤ε ” is to say e(f(x),g(x))≤ε for all x in X. ⋄



Lemma 17.2.3. (Fundamental idiom of uniform approximation). ⏎ If f and g are bounded mappings from (X,d) to (Y,e), then

e(f(x),f(x′))≤2d∞(f,g)+e((g(x),g(x′))for all x, x′ in X.

Proof. Consider the chain of points f(x), g(x), g(x′), f(x′). Apply the triangle inequality to the ends, noting that e(f(x),g(x)))≤d∞(f,g) for all x. □



Remark 17.2.4. Assume (X,d) and (Y,e) are metric spaces, X=B(X,Y) equipped with the uniform metric d∞. Classically, a condensing sequence (fk) in (X,d∞) is said to be uniformly condensing on X. Similarly, a convergent sequence in (X,d∞) is uniformly convergent on X.

If (fk) is condensing in (X,d∞), then for each x in X, (fk(x)) is a condensing sequence in (Y,e). “Uniform” refers to “at the same rate for all x”: For every ε, there exists an N independent of x] such that if N≤k<n, then e(fk(x),fn(x))<ε for all x in X. ⋄



Proposition 17.2.5. ⏎ Suppose (X,d) is a metric space and (Y,e) is complete.


	(i)The metric space (B(X,Y),d∞) is complete.


	(ii)The set C(X,Y)∩B(X,Y) of bounded continuous mappings is a closed subset. Particularly, if (X,d) is compact, then C(X,Y) is closed.




Proof. Assume (fk) is a condensing sequence in (B(X,Y),d∞). Claim (i) says there exists a bounded mapping f in B(X,Y) such that (fk)→f. Claim (ii) says if each fk is continuous and bounded, then f is continuous and bounded. That is, C(X,Y)∩B(X,Y) contains all its limit points.

(Existence of the pointwise limit). For each x in X, the sequence (fk(x)) in Y is condensing. Since (Y,e) is complete, (fk(x))→y for some y in Y. Let f:X→Y be the mapping defined by y=f(x) for each x in X.

(Convergence). Although (fk)→f pointwise, we must prove convergence relative to the uniform metric, a stronger condition. Fix ε arbitrarily. Since (fk) is condensing, there exists an N such that if N≤k<n, then

d∞(fk,fn)=supx∈Xe(fk(x),fn(x))<ε/2.
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d∞(fk,f)=supx∈Xe(fk(x),f(x))≤ε/2<ε

if k≥N, so (fk) converges to f in the uniform metric. It remains to prove the mapping f:(X,d)→(Y,e) is bounded. But in the preceding notation, if x and x′ are arbitrary points of X, the fundamental idiom (Lemma 17.2.3) with g=fN implies

e(f(x),f(x′))≤2(ε/2)+e(fN(x),fN(x′)).

Taking the supremum over x and x′, diam(f(X))≤ε+diam(fN(X)). Since fN is bounded, f is bounded.

(Continuity of the limit). Now assume each fk is bounded and continuous. Fix x in X and ε arbitrarily. Since (fk)→f, there exists a positive integer N such that d∞(fN,f)<ε/3.

Since fN is continuous at x, there exists a positive δ such that if x′∈X and d(x,x′)<δ, then e(fN(x),fN(x′))<ε/3. The fundamental idiom with g=fN implies

e(f(x),f(x′))≤2(ε/3)+e(fN(x),fN(x′))<ε.

Since ε was arbitrary, f is continuous at x. Since x was an arbitrary element of X, f is continuous on X. □


A striking application of these ideas is existence of space-filling curves:


Proposition 17.2.6. For each positive integer n, there exist a continuous surjection c:[0,1]→[0,1]n, a uniformly continuous surjection c:R→Rn, and a continuous surjection c:(0,1)→Rn. If n≥2, no such mapping is injective.

Proof. See Exercises 17.2.2, 17.2.4, and 17.2.5. □



Remark 17.2.7. Visually, if n=2, it may be tempting to imagine scribbling with a pen to fill in a region on a piece of paper. If so, that picture is technically inadequate. A real pen draws sets of positive width, while an ideal path has width 0. Though we will not prove this, it turns out the image of a differentiable path has measure zero, so does not contain any non-empty open set. ⋄



Equicontinuity

In the same way the closed, bounded theorem gives an easily verified criterion for compactness in flat n-space, Theorem 17.2.11 gives a sufficient condition for compactness in an infinite-dimensional function space.Page 361


Definition 17.2.8. Assume (X,d) and (Y,e) are metric spaces. A family F of mappings f:X→Y is equicontinuous if for every ε and x in X, there exists a δ(x) such for all x′ in Bδ(x)(x), e(f(x),f(x′))<ε for all f in F.



Remark 17.2.9. Loosely, not only is each f in F continuous on X, but at each x, for a given challenge ε, we can pick the same response δ for all f in F. ⋄



Lemma 17.2.10. ⏎ If F is an equicontinuous family of mappings from a compact metric space (X,d) to a metric space (Y,e), then for every ε, there exists a δ such that for all x, x′ in X, and for all f in F, d(x,x′)<δ implies e(f(x),f(x′))<ε.

Proof. Fix ε arbitrarily. By equicontinuity of F, for each x0 in X, there exists a δ(x0)>0 such that if x∈Bδ(x0)(x0), then e(f(x0),f(x))<ε/2 for all f in F. By the uniform radius lemma (Lemma 16.3.16), there exists a δ such that for all x and x′ in X, d(x,x′)<δ implies x and x′ are in some ball Bδ(x0)(x0). For all f in F, the triangle inequality implies,

e(f(x),f(x′))≤e(f(x0),f(x))+e(f(x0),f(x′))<ε.◻

□



Theorem 17.2.11. (The equicontinuity theorem). ⏎ Assume (X,d) is compact and (Y,e) is flat n-space. If F is a bounded, equicontinuous family of mappings from X to Y, then F has compact closure in the uniform metric.

Proof. It suffices to prove every sequence (fm)m=0∞ in F has a condensing subsequence in the uniform metric: Since (Y,e) is complete, Proposition 17.2.5 implies a condensing sequence has a bounded, continuous limit.

The compact space (X,d) is separable. Fix a countable, dense subset A={aj}j=0∞. We first construct a sequence of subsequences of (fm) that converge at points of A. For clarity, write ν(k,m) to denote the index of the mth term of the kth subsequence, so that the kth subsequence is (fν(k,m))m=0∞.

Since (fm(a0)) is a bounded sequence in flat n-space, there is a subsequence (fν(0,m)) such that (fν(0,m)(a0)) converges. Inductively, if (fν(k,m)) is a sequence such that (fν(k,m)(aj)) converges for all j such that 0≤j≤k, pick a subsequence (fν(k+1,m)) of (fν(k,m)) such that (fν(k+1,m)(ak+1)) converges. The diagonal sequence ϕm:=fν(m,m) converges at each point of A. It suffices to prove (ϕm) condenses in the uniform metric.

Fix ε arbitrarily. By Lemma 17.2.10, there exists a δ such that for all x and x′ in X, and for all f in F, d(x,x′)<δ implies e(f(x),f(x′))<ε/3. Because (X,d) is totally bounded, there exist finitely many δ/2-balls, say {Oj}j=0J, that cover X. For each j, pick a point ak(j) in Oj and an index Nj such that if Nj≤m<n, then e(ϕm(ak(j)),ϕn(ak(j)))<ε/3. Let N=max{Nj}j=0J. If N≤m<n, Page 362then for all x in X, we have d(x,ak(j))<δ for some j. The triangle inequality applied to the chain ϕm(x), ϕm(ak(j)), ϕn(ak(j)), ϕn(x) as in the proof of Lemma 17.2.3 implies e(ϕm(x),ϕn(x))<ε independently of x. □





Exercises for Section 17.2


	Exercise 17.2.1. Assume (ak) is an arbitrary real sequence. Find a sequence (fk) of continuous functions on [0,1] that converges to 0 uniformly on every compact subset of (0,1), but for which ∫01fk=ak for all k.

Qualitatively, uniform convergence on arbitrary compact subsets of the interior gives no control over integrals. What, if anything, can we guarantee if the sequence (fk) is bounded?


	Exercise 17.2.2. Put X=[0,1] and Y=[0,1]2, each with the usual metric.

Use the sketch provided to prove there exists a continuous surjection c:X→Y. We'll construct c recursively. Let c0 be the constant-speed piecewise-affine path from (0,0) to (1,0) on the left in Figure 17.1, and let c1 be the piecewise-affine path with 8 segments in the middle diagram. If we bisect each edge of the square, c1 comprises four pieces that up to reflection and translation are c0 scaled by a factor 1/2.

[image: Three square grids show stages of recursive path construction, each adding complexity to a continuous curve.]
Long Description for Figure 17.1In the first panel, a simple triangular path begins at the lower-left corner and ends at the lower-right corner, passing through the center and forming a V-shaped route. In the second panel, the square is divided into four smaller squares, and within each, the original triangular path shape is mirrored and connected, forming a more intricate zigzag pattern. In the third panel, the square is divided again into sixteen smaller squares. Each smaller square contains a recursively refined version of the path with sharp turns and mirrored directions, producing a dense, connected structure.

Figure 17.1 Recursively constructing a space-filling path. ⏎



Now suppose inductively that cm has been constructed for some m, and that cm consists of finitely many ∧-shaped pieces parameterized at constant speed over intervals Ii=(i/4m,(i+1)/4m), 0≤i<4m. Let cm+1 be the piecewise-affine path that results from replacing cm|Ii with four ∧s, each half the size and four times as fast, but collectively defined over the same interval. The diagram on the right shows the image of c2.

Prove that cm+1(i/4m)=cm(i/4m) if 0≤i≤4m, and

∥cm+2−cm+1∥∞≤12∥cm+1−cm∥∞for all m.

Page 363Conclude that (cn)n=0∞ is condensing in C(X,Y) with the uniform metric, so the pointwise limit c exists and is continuous. Finally, prove the image of c is dense in Y, and conclude the image is all of Y.


	Exercise 17.2.3. (H). Prove that no continuous surjection c:[0,1]→[0,1]2 is injective.


	Exercise 17.2.4. (H). Use Exercise 17.2.2 to prove that if N≥2, there exists a continuous surjection cN:[0,1]→[0,1]N.


	Exercise 17.2.5. (★) Use Exercise 17.2.4 to prove there exists a uniformly continuous surjection c:R→Rn, and consequently a continuous surjection c:(0,1)→Rn.

Prove there is no continuous surjection c:[0,1]→Rn. Prove there is no uniformly continuous surjection c:(0,1)→Rn. See how many different proofs you can give.






17.3 Uniform Approximation by Polynomials

Assume a<b, and the vector space V=C([a,b]) is equipped with the uniform metric, d(f,g)=∥f−g∥∞. In Chapter 8 we saw that a typical element of V is “infinitely jagged.” Polynomials, by contrast, are as smooth as functions come. In this section we prove that polynomials are dense in (V,∥ ∥∞). Our approach is, loosely, to “blur” an arbitrary continuous function f suitably to obtain polynomials, but so that as we sharpen our view, f emerges.


Convolution

In finite-dimensional linear algebra, a vector in Rn is an ordered n-tuple v=(vk) of real numbers. A matrix is an n×n array A=[Aji] with row index i and column index j. Matrix multiplication defines a linear operator TA:Rn→Rn given by TA(v)=Av=∑iAjivi.

In Chapter 15, we viewed Rn as the space of real-valued functions on a set n― of n elements. In the same spirit, a matrix is a “function of two variables,” with domain n―×n―.

This perspective generalizes to infinite-dimensional linear algebra. For simplicity we will work in a space of functions unconnected to any particular real interval.


Definition 17.3.1. A function f:R→R is rapidly decreasing if for every positive integer n, |x|nf(x)→0 as |x|→∞.



Example 17.3.2. Page 364If f=0 outside some bounded set, then f is rapidly decreasing. If f is continuous on some interval [a,b] and f(a)=f(b)=0, we may extend f by 0, obtaining a continuous, rapidly decreasing function. ♢



Example 17.3.3. The functions f(x)=e−x2 and g(x)=e−|x| are rapidly decreasing. The product of a rapidly decreasing function and an arbitrary polynomial is rapidly decreasing. A sum or product of rapidly decreasing functions is rapidly decreasing. ♢


Returning to our matrix multiplication analogy, we may view a continuous, rapidly decreasing function f as a vector. Our analog of a matrix is a continuous function of two variables K:R2→R that is rapidly decreasing in each variable separately. The linear operator motivated by matrix multiplication is

TK(f)(x)=∫−∞∞K(x,y)f(y)dy.

(The integral converges absolutely for each x; why?) That is, TK(f) is a function, whose value at x is given by this formula. For our needs we can specialize to K(x,y)=g(x−y) for some continuous, rapidly decreasing function g.


Definition 17.3.4. If f and g are continuous and rapidly decreasing, their convolution is the function

(f∗g)(x)=∫−∞∞g(x−t)f(t)dt.



Example 17.3.5. A discontinuous example conveys the intuition of convolution. For each positive integer n, let χ[−1/n,1/n] be the indicator of [−1/n,1/n], and define gn=(n/2)χ[−1/n,1/n]. If f is integrable, then

(f∗gn)(x)=n2∫−∞∞f(t)χ[x−(1/n),x+(1/n)]dt=12/n∫x−(1/n)x+(1/n)]f(t)dt

is the average of f over the interval [x−(1/n),x+(1/n)]. Particularly, if f is continuous at x, then (f∗gn)(x)→f(x) as n→∞. If f is rapidly decreasing and uniformly continuous on R, then (f∗gn)→f in the uniform metric, see Proposition 17.3.11.

Generally, we think of g as a “filter” and the convolution f∗g as a weighted average of f as we translate g. ♢



Lemma 17.3.6. The convolution product is commutative on the space of rapidly decreasing functions.

Proof. The substitution u=x−t, or t=x−u, gives

(f∗g)(x)=∫−∞∞g(x−t)f(t)dt=∫−∞∞g(u)f(x−u)du=(g∗f)(x).◻

□
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Can we represent the identity operator I(f)=f as convolution, say I∗f=f? If so, then

f(x)=∫−∞∞I(x−y)f(y)dy

for all x. Taking f=1, we have ∫I=1. Taking f positive in some short interval (−δ,δ) and identically 0 outside, we find that I(y)=0 if |y|>2δ. Since δ is arbitrary, I(y)=0 except at y=0, and integrates to 1 over the real line. Formally, the graph of I is a spike of area 1 and width 0; or I is the “derivative of the unit step function.” Mathematically no such function exists. Using sequences of functions, however, we can get as close to this ideal behavior as we like.


Definition 17.3.7. A unit spike is a sequence (In) of non-negative, continuous, rapidly decreasing functions satisfying the following conditions:


	(i)For each n, ∫−∞∞In=1.


	(ii)For every δ, ∫|x|≥δ|In|→0 as n→∞.






Remark 17.3.8. Intuitively, condition (ii) guarantees that the integral of In concentrates in an arbitrarily small interval about 0. ⋄



Example 17.3.9. If ϕ is non-negative, continuous, rapidly decreasing, and has integral 1, then the functions In(x)=nϕ(nx) are a unit spike. Particularly, the functions In(x)=(n/2π)e−(nx)2/2 are a unit spike. ♢



Example 17.3.10. ⏎ If n is a positive integer, define

1cn=∫−11(1−x2)ndx=2∫01(1−x2)ndx.

Note that

1cn>2∫01/n(1−x2)ndx>2∫01/n(1−nx2)dx=43n.

The piecewise-polynomials

In(x)={cn(1−x2)n,|x|≤1,01<|x|,

constitute a unit spike. Condition (i) is immediate. For (ii), the preceding estimate gives 0≤In(x)≤(3n/4)(1−x2)n. Thus, if 0<δ≤1 and |x|≥δ, we have 0≤In(x)≤(3n/4)(1−δ2)n→0. ♢



Proposition 17.3.11. ⏎ Page 366If f:R→R is bounded and uniformly continuous, and (In) is a unit spike, then (f∗In)→f in the uniform metric on R.

Proof. For all n, we have

fn(x)=∫−∞∞f(x−t)In(t)dt,f(x)=∫−∞∞f(x)In(t)dt.

If δ>0 and x is real, we have

|f(x)−fn(x)|=|∫−∞∞(f(x)−f(x−t))In(t)dt|≤|∫−δδ(f(x)−f(x−t))In(t)dt|+|∫|t|≥δ|(f(x)−f(x−t))In(t)dt|≤∫−δδ|f(x)−f(x−t)|In(t)dt+∫|t|≥δ||f(x)−f(x−t)|In(t)dt.

Conceptually, for small t, the increment of f is small (so the first term is small) because f is uniformly continuous on R, while for large t the second term is small because f is bounded and the In concentrate at 0.

Fix ε arbitrarily. Because f is uniformly continuous on R, there exists a positive δ such that |t|≤δ implies |f(x)−f(x−t)|<ε/2. Because f is bounded, there exists an M such that |f(x)−f(x−t)|≤M for all x and t in R. By property (ii) of a unit spike, there is an N such that

∫|t|≥δIn(t)dt<ε2M+1 if n≥N.

If n≥N, then we have, independently of x,

∫−δδ|f(x)−f(x−t)|⏟<ε/2In(t)dt+∫|t|≥δ|f(x)−f(x−t)|⏟≤MIn(t)dt<ε2∫−δδIn(t)dt+∫|t|≥δMIn(t)dt<ε2+M⋅ε2M+1<ε.◻

□



Theorem 17.3.12. (Uniform polynomial approximation). ⏎ If f:[a,b]→R is continuous, there exists a sequence (pn) of polynomials such that (pn)→f in the uniform metric on [a,b].

Proof. We can approximate f by polynomials if and only if we can approximate

g(x)=f(x)−fa,b(x)=f(x)−f(a)−f(b)−f(a)b−a(x−a)

by polynomials. Further, we may substitute x=a+(b−a)u, reducing to the case [a,b]=[0,1]. In more detail, if we write ϕ~(u)=ϕ(x), then (pn)→f Page 367on [a,b] if and only if (pn~)→f~ on [0,1]. Thus it suffices to prove the theorem for a continuous function f:[0,1]→R satisfying f(0)=f(1)=0.

Let (In) be the unit spike of Example 17.3.10, and set pn=f∗In. Because f=0 outside [0,1],

pn(x)=∫−∞∞f(t)In(x−t)dt=∫01f(t)In(x−t)dt.

If x∈[0,1], then x−t∈[−1,1] for all t in [0,1]. Consequently, the integrand f(t)In(x−t)=cn(1−(x−t)2)nf(t) is a polynomial in x whose coefficients are continuous functions of t. Integrating from t=0 to t=1 shows pn is a polynomial in x. By Proposition 17.3.11, (pn)→f in the uniform metric. □





Exercises for Section 17.3


	Exercise 17.3.1. Assume γ:[0,1]→Rn is a continuous path in the flat metric. Prove there exists a sequence (pk) of polynomial mappings that uniformly approximates γ on [0,1].


	Exercise 17.3.2. In a well-defined sense, “most” continuous functions do not have a power series expansion. Why does this not contradict Theorem 17.3.12?


	Exercise 17.3.3. Prove C([a,b]) is separable with respect to the uniform metric.


	Exercise 17.3.4. (H). Assume I is an open real interval, and f:I→R is a continuous function. Can we extend Theorem 17.3.12, namely, can f be uniformly approximated by polynomials on I? What if the interval is bounded, and/or f is assumed to be uniformly continuous?






17.4 Differential Equations

Historically, the study of differential equations is motivated by classical physics, where the acceleration of a point mass is proportional to the net forces acting on the mass, and the forces typically depend on position and velocity of the mass. Throughout this section, Rn denotes flat n-space.


Example 17.4.1. A point mass m attached to a thin, rigid, massless pendulum of length ℓ in a constant, vertical gravitational field with acceleration g is free to swing. According to Newton's second law of motion, the angle θ from vertical obeys the equation θ′′=(g/ℓ)sinθ.

Page 368To convert this “second-order” equation into two “coupled first-order” equations, physicists introduce “phase space” variables x0=θ and x1=θ′, so x0′=x1 and x1′=θ′′=(g/ℓ)sinx0. ♢



Remark 17.4.2. In a physical system with N interacting particles in ordinary flat 3-space, such as planets, the positions and velocities of the particles may be described by a system of 6N equations in 6N unknowns: Three spatial coordinates and three velocity components for each particle.

Classically, a first-order ordinary differential equation is a set of n conditions on a set of n functions of one variable:

xk′=fk(x0,x1,…,xn−1),0≤k<n.

The modern definition packages these unknown functions into a single vector-valued function x=(xk)k=0n−1 of one variable, and views f=(fk)k=0n−1 as a vector field, which assigns to each location a vector in Rn. The preceding system of conditions becomes x′=f∘x as vector-valued functions on some real interval. Naturally, to prove theorems we must specify properties of f. ⋄



Definition 17.4.3. Assume U⊆Rn is a non-empty open set. A vector field on U is a continuous mapping f:U→Rn. If I is a non-empty open interval, a flow line of f on I is a C1 mapping x:I→U satisfying the first-order differential equation x′=f∘x.


[image: A curved path labeled x subscript 0 passes through a vector field of arrows showing directional flow.]
Figure 17.2 A vector field (gray) and a flow line.




Definition 17.4.4. Assume U⊆Rn is a non-empty open set, f:U→Rn a continuous mapping. For each x0 in U, the conditions x′=f∘x and x(0)=x0 constitute an initial-value problem. A solution is a C1 mapping x:I→U on some open interval containing 0 and satisfying x′=f∘x and x(0)=x0.


In this section we give sufficient conditions for a first-order system to have, for each initial condition, a unique solution.
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Theorem 17.4.5. (The existence-uniqueness theorem). ⏎ Assume U⊆Rn is a non-empty open set, f:U→Rn a mapping with locally bounded stretch, and x0 an arbitrary point of U. There exist a positive real number a and a unique mapping x:(−a,a)→U satisfying the initial-value problem

x′=f∘x,x(0)=x0.

Proof. Integrating the differential equation from 0 to t gives

x(t)−x(0)=∫0tx′(s)ds=∫0t(f∘x)(s)ds,

or after substituting the initial condition and rearranging,

x(t)=(Tx)(t):=x0+∫0t(f∘x)(s)ds.

Conversely, any function x satisfying x=Tx is a solution of the initial-value problem by Theorem 11.1.1. Technically, solving this “integral equation” is preferable: Differentiation is a discontinuous operator by Exercise 16.5.7, while under the hypotheses of the theorem, integration on a sufficiently small interval is a contraction. If we construct a complete function space on which the operator T is a contraction, Theorem 16.5.23 guarantees the existence of a unique fixed point, namely, a solution of our initial-value problem.

Since f has locally bounded stretch in U, there exists a positive r and a non-negative real M such that ∥f(v2)−f(v1)∥≤M∥v2−v1∥ for all v1 and v2 in B2r(x0). Let Y=Br(x0)―⊆Rn be the closed ball of radius r about x0. Since Y is compact and ∥f∥ is continuous, L:=max{∥f(v)∥:v∈Y} exists. Set a=min(r/(L+1),1/(M+1)), and put I=[−a,a].

Let C(I,Y) be the space of continuous mappings equipped with the uniform metric d∞. By Proposition 17.2.5, C(I,Y) is d∞-complete. The subset X of mappings satisfying x(0)=x0 is a closed subset (why?), hence also complete. It suffices to prove T:X→X is a contraction.

Since x is continuous and f has locally bounded stretch, f∘x is continuous. By Proposition 9.4.4, Tx is continuous in I. The triangle inequality gives

∥Tx(t)−x0∥=‖∫0t(f∘x)(s)ds‖≤|∫0t‖(f∘x)(s)‖ds|≤aL<r

for all t in I. This means Tx:I→Y, or Tx∈X, so T:X→X.

To complete the argument, it suffices to prove T is a contraction. By the choice of a, λ:=Ma<1. If x1 and x2 are elements of X and |t|≤a, then

∥Tx2(t)−Tx1(t)∥=‖∫0t(f∘x2)(s)−(f∘x1)(s)ds‖≤|∫0t‖(f∘x2)(s)−(f∘x1)(s)‖ds|≤M|∫0t∥x2(s)−x1(s)∥ds|≤M|∫0td∞(x1,x2)ds|≤(Ma)d∞(x1,x2)=λd∞(x1,x2).

Page 370Taking the supremum over t, we have d∞(Tx1,Tx2)≤λd∞(x1,x2) that is, T is a contraction. □



Corollary 17.4.6. ⏎ If U⊆Rn is non-empty and open, f:U→Rn has locally bounded stretch, and x0 is an arbitrary point of U, viewed as a constant mapping, then there exists an a such that the sequence (xk)k=0∞ defined by

xk+1(t)=x0+∫0t(f∘xk)(s)ds

converges in the uniform metric on [−a,a] to the solution of the initial-value problem x′=f∘x, x(0)=x0.



Example 17.4.7. Consider the differential equation x′=x2, which we might view as the equation of motion of a point particle whose velocity is x2 when the particle is at x. Since f(x)=x2 has locally bounded stretch, Theorem 17.4.5 guarantees that for each real x0, there is a unique solution of the corresponding initial-value problem on some interval. In this case we can find the solutions explicitly. If x(0)=0, then x(t)=0 for all t. Otherwise, x0:=x(0)≠0, and

[−1x]′(t)=x′(t)x(t)2=1.

Integrating from 0 to t and solving for x gives

−1x(t)+1x0=torx(t)=x01−x0t.

Although the vector field f is smooth on R, the solutions are not defined for all t. Particularly, if x0>0, then the solution blows up in finite time. Specifically, x→∞ as t→1/x0. The maximal interval containing 0 on which the solution exists is (−∞,1/x0). For large x0, the interval of positive time for which the solution exists is small. ♢



Example 17.4.8. Consider x′=x1/3. Separating variables as above gives x(t)=(23t+x02/3)3/2. If x0=0 we have x(t)=(23t)3/2.

Note that x(t)≡0 is also a solution with initial data x0=0. That is, this initial-value problem has non-unique solutions. There is no contradiction: The function f(x)=x1/3 does not have locally bounded stretch at 0. ♢




Page 371Global Solutions


Definition 17.4.9. A continuous dynamical system is a metric space (X,d) together with a family of homeomorphisms {ft}t∈R such that ft′∘ft=ft+t′ for all real t and t′.



Remark 17.4.10. The prototypical example is a non-empty open set in flat n-space with a vector field whose flow lines are defined for all time. ⋄



Theorem 17.4.11. (Global existence-uniqueness). Assume f:Rn→Rn has finite stretch. For every x0 in Rn, there is a unique x:R→Rn satisfying x′=f∘x and x(0)=x0.


We separate the proof into several steps.


Lemma 17.4.12. ⏎ Assume t0>0. If u is continuous and non-negative on [0,t0], and there are non-negative numbers U0 and M such that

u(t)≤U(t):=U0+∫0tMu(s)ds,on [0,t0],

then u(t)≤U0eMt on [0,t0].

Proof. We have U′(t)=Mu(t)≤MU(t), so

ddt(e−MtU(t))=e−Mt(U′(t)−MU(t))≤0.

Integrating from 0 to t gives e−MtU(t)−U(0)≤0, and therefore

u(t)≤U(t)≤U(0)eMt=U0eMt.◻

□



Lemma 17.4.13. ⏎ Assume f has stretch M. If x and y are solutions of x′=f∘x on some interval [a,b] containing 0, with respective initial data x0 and y0, then

∥x(t)−y(t)∥≤∥x0−y0∥eM|t|on [a,b].

If x(t0)=y(t0) for some t0 in [a,b], then x(t)=y(t) for all t in [a,b].



Remark 17.4.14. Everyday experience suggests predictions become less accurate the farther ahead they go. In a discrete setting, such as the space of binary sequences, exponential growth has a natural interpretation: At “each step” there is some fixed set of possibilities, so each successive step of prediction expands the space of possibility by some factor. Lemma 17.4.13 may be interpreted as a continuous version: Solutions of a differential equation move apart exponentially rapidly over time intervals of fixed length, with the exponential coefficient equal to the stretch of the vector field f. ⋄

Page 372Proof. Define u(t)=∥x(t)−y(t)∥. Using the integral equations that x and y satisfy,

u(t)=‖x0−y0+∫0t((f∘x)(s)−(f∘y)(s))ds‖≤∥x0−y0∥+|∫0t∥(f∘x)(s)−(f∘y)(s)∥ds|≤∥x0−y0∥+|∫0tM∥x(s)−y(s)∥ds|=∥x0−y0∥+|∫0tMu(s)ds|.

Hence u satisfies the hypotheses of Lemma 17.4.12, and therefore

u(t)≤∥x0−y0∥eMt.◻

□



Lemma 17.4.15. ⏎ Assume f:Rn→Rn has stretch M and put a=1/(M+1). For all x0 in Rn, the initial-value problem x′=f∘x, x(0)=x0, has a unique solution x:[−a,a]→Rn.

Proof. Using notation in the proof of Theorem 17.4.5, if a≤1/(M+1), then for all x0 in Rn, the mapping T is a contraction on C([−a,a],Rn). □



Proof of Theorem 17.4.11. Assume f has stretch M, and put a=1/(M+1). For each x0 in Rn, Lemma 17.4.15 guarantees there is some x1 defined on [−a,a] such that x1′=f∘x1 and x1(0)=x0.

Now put y0=x(a). Lemma 17.4.15 implies there is a unique y so that y′=f∘y if −a≤t≤a and y(0)=y0. Define x2(t)=y(t−a). We have x2′=f∘x2 if 0≤t≤2a, and x2(a)=y(0)=y0=x1(a). Hence x1 and x2 are solutions on [0,a] that agree at t=a. By the last part of Lemma 17.4.13, x1(t)=x2(t) if 0≤t≤a.

The solution x1, defined on [−a,a], may be extended to a solution on [−a,2a] by defining x1=x2 on [a,2a]. Inductively, we may extend to a unique solution on arbitrarily large intervals, hence on (−∞,∞). □




Matrix Exponentiation

In this section we study systems of first-order differential equations with constant coefficients, namely having the form x′=Ax for some real n×n matrix A=[Aji].


Definition 17.4.16. If A is an n×n real matrix, its exponential series is

exp(tA)=∑k=0∞(tA)kk!=I+tA+t2A22!+t3A33!+⋯.



Lemma 17.4.17. Page 373For every n×n real matrix A=[Aji], its exponential series converges absolutely in each entry.

Proof. Since there are only finitely many entries of A, there is a real number M such that |Aji|≤M for all i and j. It suffices to prove that for every k, |(Ak)ji|≤(Mn)k for all i and j. The base case (k=0) is true since A0=In has all entries 0 or 1. Assume inductively that the stated inequality holds for some m. By definition of matrix multiplication,

|(Am+1)ji|=|∑ℓ=0n−1(Am)ℓiAjℓ|≤∑ℓ=0n−1|(Am)ℓiAjℓ|≤(Mn)m∑ℓ=0n−1|Ajℓ|≤(Mn)m+1.

By induction, the stated inequality holds for all k. Consequently, each entry in the exponential series is bounded in absolute value by the convergent series

∑k=0∞(tMn)kk!=etMn.◻

□



Example 17.4.18. ⏎ If A=diag[d1,d2,…,dn], then Am is the diagonal matrix whose entries are the mth powers of the entries of A, so

exp(tA)=diag[etd1,etd2,…,etdn].

♢



Example 17.4.19. If N is the 4×4 nilpotent block, its fourth power is 04×4, so N, N2, N3, and exp(tN) are

[0100001000010000],[0010000100000000],[0001000000000000],[1tt22!t33!01tt22!001t0001].

♢



Example 17.4.20. If N=Bn(0) is the n×n nilpotent block, then Nm has a diagonal of 1s lying m rows above the main diagonal, and Nn=0n×n. The exponential series is consequently a polynomial, and

exp(tN)=[1tt22!…tn−2(n−2)!tn−1(n−1)!01t…tn−3(n−3)!tn−2(n−2)!⋮⋮⋮⋱⋮⋮000…tt22!000…1t000…01].

♢



Proposition 17.4.21. Assume A and B are n×n matrices.


	Page 374(i)If P is an invertible n×n matrix, then exp(tP−1AP)=P−1exp(tA)P.


	(ii)If BA=AB, then exp(t(A+B))=exp(tA)exp(tB).


	(iii)If A is diagonalizable, then detexp(tA)=ettr(A).


	(iv)exp(tAT)=(exp(tA))T.


	(v)If AT=−A, then exp(tA) is orthogonal and has determinant 1.




Proof.


	(i).This is a consequence of the identity (P−1AP)k=P−1AkP:

exp(tP−1AP)=∑k=0∞(tP−1AP)kk!=∑k=0∞P−1(tA)kk!P=P−1exp(tA)P.


	(ii).This is formally identical to the proof for complex numbers. Since A and B commute, there is a binomial theorem

(A+B)kk!=∑i=0kAii!Bk−i(k−i)!=∑i+j=kAii!Bjj!.

The product formula for absolutely convergent double series gives

exp(t(A+B))=∑k=0∞(t(A+B))kk!=∑k=0∞∑i+j=k(tA)ii!(tB)jj!=[∑i=0∞(tA)ii!][∑j=0∞(tB)jj!]=exp(tA)exp(tB).


	(iii).Suppose P−1AP=A′=diag[d1,…,dn] for some invertible matrix P. By (i) and Example 17.4.18,

P−1exp(tA)P=exp(tA′)=diag[etd1,etd2,…,etdn].

Taking determinants,

detexp(tA)=detexp(tA′)=∏k=1netdk=et∑kdk=ettr(A′)=ettr(A).


	(iv).This is an immediate consequence of (Ak)T=(AT)k.


	(v).We have exp(0n×n)=In. By (ii), exp(−tA)=exp(tA)−1. If AT=−A. then

exp(tA)−1=exp(−tA)=exp(tAT)=exp(tA)T,

which proves exp(tA) is orthogonal.




Since the diagonal entries of a skew-symmetric matrix are all 0, tr(A)=0. By (iii), detexp(tA)=ettr(A)=e0=1. □



Remark 17.4.22. Page 375An orthogonal n×n matrix of determinant 1 is, by definition, a rotation. Part (v) of the theorem says that a skew-symmetric matrix is an “infinitesimal” rotation. ⋄



Example 17.4.23. A matrix version of the polar formula holds: If

J=[0−110],then exp(tJ)=[cost−sintsintcost].

To prove this, note that J2=−I2, from which it follows immediately that J2k=(−1)kI2 and J2k+1=(−1)kJ. Splitting the exponential series into terms of even and odd degree and recalling the power series for the circular functions,

cost=∑k=0∞(−1)kt2k(2k)!,sint=∑k=0∞(−1)kt2k+1(2k+1)!,

we have

exp(tJ)=∑k=0∞(tJ)2k(2k)!+∑k=0∞(tJ)2k+1(2k+1)!=[∑k=0∞(−1)kt2k(2k)!]I2+[∑k=0∞(−1)kt2k+1(2k+1)!]J=(cost)I2+(sint)J.

♢



Example 17.4.24. Consider the linear system x′=Ax, x(0)=x0. Iteration as in Corollary 17.4.6, with initial function x0(t)≡x0 gives

x1(t)=x0+∫0tAx0ds=(I+tA)x0,x2(t)=x0+∫0t(I+tA)x0ds=(I+tA+12t2A2)x0,

and generally, by induction on n,

xn−1(t)=[∑k=0n−1tkAkk!]x0,

the partial sums of the series for the unique solution, x(t)=etAx0. ♢





Exercises for Section 17.4


	Exercise 17.4.1. (H). Assume ϕ:(−1,1)→R is continuous and positive.


	(a)Page 376Prove that

x=∫0u(x)dtϕ(t)

defines an increasing, C1 function u satisfying u′=ϕ∘u.


	(b)Prove that

f(x)=∫0u(x)tdtϕ(t)

defines a C2 function f satisfying f′=u.


	(c)If ϕ(t)=1−t2, find u and f as explicit functions of x.


	(d)If ϕ(t)=1+t2, find u and f as explicit functions of x.





	Exercise 17.4.2. Throughout, a, b, and c denote real numbers, and put

A=[a00−a]B=[0bb0],C=[0−cc0]X=[acb−a].

Calculate exp(tA), exp(tB), exp(tC), and exp(tX). Hint: Start by calculating powers of each matrix.


	Exercise 17.4.3. Let x(t) represent the position of a point particle at time t. A simple model of one-dimensional oscillation has a point mass m attached to a spring with spring constant k, subject to friction proportional to velocity. If no outside forces act, the law of motion F=ma reads mx′′=−bx′−kx, or mx′′+bx′+kx=0.

Find all complex r such that x(t)=ert is a solution. Under what conditions on m, b, and k are the values of r real?

If r is not real, prove that the real and imaginary parts of x(t)=ert solve the same differential equation.

If there exists a unique (necessarily real) r such that x(t)=ert solves the differential equation, prove that tert is also a solution.






17.5 Spectral Series

For every positive integer n, the circular functions cos(nx) and sin(nx) are 2π-periodic, as is the constant function 1=cos(0), and every convergent series in these functions. Conversely, if f:R→R is 2π-periodic, can f be written as a trigonometric series? In this section we introduce “piecewise C1 ” functions, and prove the answer for these is “yes (except possibly at jump discontinuities).”


Definition 17.5.1. Page 377Assume a<b. If I is an interval (open, closed, or half-open) with endpoints a and b, a function f:I→R has C1 extension on I if there exists an open interval J⊇[a,b] and a C1 extension of f to J.



Lemma 17.5.2. Assume a<b. If I is an interval with endpoints a and b, then f:I→R has C1 extension on I if and only if f is of class C1 on (a,b), extends continuously to [a,b], and the one-sided limits f′(a+) and f′(b−) exist.

Proof. If f has a C1 extension to an open interval J containing [a,b], then the restriction to [a,b] of the extension is of class C1 on (a,b), continuous on [a,b], and the one-sided limits of f′ exist at the endpoints.

Conversely, if f is of class C1 on (a,b), extends continuously to [a,b], and the one-sided limits of f′ exist at the endpoints, we can extend f to a larger open interval using line segments of matching height and slope at each endpoint.

In more detail, define f(x)=f(a)+f′(a+)(x−a) if x<a, and define f(x)=f(b)+f′(b−)(x−b) if b<x. The extended function is differentiable on R by smooth patching, and the derivative is continuous. □



Lemma 17.5.3. ⏎ Assume I is a bounded real interval. If f and g:I→R have C1 extension on I, then f+g and fg have C1 extension on I. If in addition g is bounded away from 0, then f/g has C1 extension on I.



Definition 17.5.4. ⏎ If a<b, a function f:[a,b]→R is piecewise C1 if there exists a splitting Π={ti}i=0n of [a,b] such that for each i, the restriction of f to Ii=(ti,ti+1) has C1 extension on Ii.



Remark 17.5.5. If f is piecewise C1, then at all but finitely many splitting points we have f(x)=12(f(x−)+f(x+)). ⋄



Lemma 17.5.6. ⏎ Assume I is a bounded real interval. If f and g are piecewise C1 on I, then f+g and fg are piecewise C1. If in addition g is bounded away from 0, then f/g is piecewise C1.

Proof. If Πf is a splitting for f in the sense of Definition 17.5.4 and similarly Πg is a splitting for g, then Π=Πf∪Πg is a splitting for both. The claims follow immediately from Lemma 17.5.3. □



Corollary 17.5.7. If a<b, the set of piecewise C1 functions on [a,b] is a vector subspace of F([a,b]), and a subalgebra if we consider pointwise multiplication.


Without further mention, we work in C([−π,π]) with the standard inner product

⟨f,g⟩=12π∫−ππf(x)g(x)dx.


Lemma 17.5.8. ⏎ Page 378The functions

c0=1,cm(x)=2cos(mx),sm(x)=2sin(mx)(m≥1)

form an orthonormal set.

Proof. See Exercise 17.5.1. □



Definition 17.5.9. Assume f is integrable and 2π-periodic. The spectral amplitudes of f are the inner products ⟨f,cm⟩ and ⟨f,sm⟩. The circular amplitudes of f are the more conveniently scaled numbers

am=1π∫−ππf(t)cosmtdt,bm=1π∫−ππf(t)sinmtdt.

If n is a natural number, the nth spectral sum of f is

fn(x)=a02+∑m=1n[amcos(mx)+bmsin(mx)].Thespectral seriesoffisf∞(x)=a02+∑m=1∞[amcos(mx)+bmsin(mx)].



Remark 17.5.10. The summand 12a0=⟨f,c0⟩c0 is the component of f along c0, while

amcos(mx)=⟨f,cm⟩cm(x),bmsin(mx)=⟨f,sm⟩sm(x),}(m≥1)

are components of f along cm and sm. The spectral series is the reconstruction of the “waveform” f from “pure harmonics” cos(mx) and sin(mx) of respective amplitudes am and bm. ⋄



Theorem 17.5.11. (Piecewise-C1 spectral series). ⏎ If f is 2π -periodic and piecewise C1, the spectral series of f converges to 12(f(x−)+f(x+)) pointwise, and converges to f in the 2-norm: ∥fn−f∥2→0.



Remark 17.5.12. In words, if f is piecewise C1, the spectral series at x converges to f(x) if f is continuous at x, and to the average of the one-sided limits at each jump discontinuity of f.

For functions that are not piecewise-C1, the spectral series does not generally converge pointwise at all, much less to f. Nonetheless, the 2-norm ∥f−fn∥2 converges to 0 in great generality: If f is measurable and square-integrable, then f∞=f in the 2-norm completion of the space of integrable functions, see for example Dym and McKean, [6]. ⋄



Remark 17.5.13. Page 379The proof of Theorem 17.5.11 is essentially a (lengthy) calculation. We separate off two steps: Lemma 17.5.15 shows the tails of the spectral series converge to 0, while Lemma 17.5.16 calculates the spectral sums as the convolution of f with a formal (not everywhere-positive) unit spike in a form to which Lemma 17.5.15 can be applied. ⋄



Example 17.5.14. ⏎ Let f be the 2π-periodic extension of f(x)=x on (−π,π), defined to be 0 at each integer multiple of π. The cosine amplitudes vanish because f is odd. The sine amplitudes are given by

bm=1π∫−ππxsin(mx)dx=2π∫0πxsin(mx)dx=(−1)m−12m.

Figure 17.3 shows the spectral sums with 4, 8, 24, and 48 terms. ♢


[image: Four graphs display increasing partial sums of a Fourier series approximating the function f of x equals x.]
Long Description for Figure 17.3In the top-left graph, the approximation uses the sum from k equals 1 to 4 of two times the quantity negative one to the power n times sine of n x divided by n. This results in a smooth oscillating curve that approximates a diagonal line but deviates significantly near the endpoints. In the top-right graph, the series sum includes terms up to k equals 8 and the curve oscillates more frequently, hugging the diagonal more closely with reduced deviation. In the bottom-left graph, the partial sum includes terms up to k equals 24, producing a sharper waveform with tight sawtooth oscillations that trace the linear path except at the ends. In the bottom-right graph, the sum extends to k equals 48, yielding a curve that very closely follows the line f of x equals x. Each graph displays the respective series written as two times the sum from k equals 1 to the stated upper limit of negative one to the power n times sine of n x divided by n.

Figure 17.3 Spectral sums of f(x)=x on (−π,π). ⏎




Lemma 17.5.15. (Rapid oscillation lemma). ⏎ Assume f is an integrable function on [a,b]. If β is real, then

limα→∞∫abf(t)sin(αt+β)dt=0.

Proof. If χ is the indicator of [c,d]⊆[a,b], then

|∫abχsin(αt+β)dt|=|∫cdsin(αt+β)dt|=|1αcos(αt+β)|cd|≤2α,

which goes to 0 as α→∞. Fix ε arbitrarily. Since f is integrable, there exists a step function g such that

∫ab|f(t)−g(t)|dt<ε2,

see Remark 9.1.11. Since g is a finite linear combination of indicators, there exists an R such that if α>R, then

∫ab|g(t)sin(αt+β)|dt<ε2.

The ordinary triangle inequality gives

|f(t)sin(αt+β)|≤|(f(t)−g(t))sin(αt+β)|+|g(t)sin(αt+β)|≤|f(t)−g(t)|+|g(t)sin(αt+β)|.

If α>R, the triangle inequality for integrals guarantees

|∫abf(t)sin(αt+β)dt|≤∫ab|f(t)sin(αt+β)|dt≤∫ab|f(t)−g(t)|dt+∫ab|g(t)sin(αt+β)|dt<ε.◻

□



Lemma 17.5.16. ⏎ Page 380If f is 2π -periodic and piecewise C1, and n≥1, then

fn(x)=2π∫0πf(x+t)+f(x−t)2sin(n+12)t2sint2dt.

Proof. For each positive integer m, we have

amcos(mx)=[1π∫−ππf(t)cos(mt)dt]cos(mx),bmsin(mx)=[1π∫−ππf(t)sin(mt)dt]sin(mx),

Page 381and therefore

amcos(mx)+bmsin(mx)=1π∫−ππf(t)[cos(mt)cos(mx)+sin(mt)sin(mx)]dt=1π∫−ππf(t)cos(m(x−t))dt(Proposition 13.1.5 (iv))=1π∫x−πx+πf(x−t)cos(mt)dt=1π∫−ππf(x−t)cos(mt)dt(the integrand is 2π-periodic)=1π[∫0πf(x+t)cos(mt)dt+∫0πf(x−t)cos(mt)dt]=2π∫0πf(x+t)+f(x−t)2cos(mt)dt.

Substituting into the spectral sum,

fn(x)=2π∫0πf(x+t)+f(x−t)2[12+∑m=1ncos(mt)]dt.

To complete the proof, it suffices to show

12+∑m=1ncos(mt)=sin(n+12)t2sint2.

This formula is immediate if n=0. The inductive step follows from the identity 2sint2cos(n+1)t=sin(n+32)t−sin(n+12)t, see Corollary 13.1.6. (Exercise 14.2.11 gives a “complex” proof using the polar formula.) □



Proof of Theorem 17.5.11. If 0<δ<π, then

fn(x)=2π∫0δf(x+t)+f(x−t)2sin(n+12)t2sint2dt+2π∫δπf(x+t)+f(x−t)2sin(n+12)t2sint2dt.

By rapid oscillation (Lemma 17.5.15), the second integral vanishes in the limit as n→∞ since sint2 is bounded away from 0. Thus 0<δ<π implies

f∞(x)=limn→∞2π∫0δf(x+t)+f(x−t)2sin(n+12)t2sint2dt

in the sense that the spectral series converges at x to the limit on the right if and only if this limit exists. Introduce

gx(t):=f(x+t)+f(x−t)2t2sint2,

Page 382which is piecewise C1 by Lemma 17.5.6 and satisfies gx(0+)=12(f(x+)+f(x−)). Substituting gx(t)=(gx(t)−gx(0+))+gx(0+), we have

f∞(x)=limn→∞2π∫0δgx(t)sin(n+12)ttdt=limn→∞2π∫0δ[gx(t)−gx(0+)tsin(n+12)t+gx(0+)⋅sin(n+12)tt]dt.

The one-sided derivative

gx′(0+)=limt→0+gx(t)−gx(0+)t

exists, so the first integral vanishes in the limit by rapid oscillation. Consequently, the spectral series converges to

gx(0+)⋅limα→∞2π∫0δsin(αt)tdt=gx(0+)⋅2π∫0∞sinttdt=gx(0+)

by Proposition 14.2.10.

The claim ∥f−fn∥2→0 is Exercise 17.5.3. □



Spectral Isometry


Lemma 17.5.17. If

fn(x)=a02+∑m=1n[amcos(mx)+bmsin(mx)]

is a spectral sum, then

∥fn∥22=12π∫−ππ|fn(x)|2dx=12[a022+∑m=1n(am2+bm2)].

Proof. The functions {1,cos(mx),sin(mx)}m=1n are mutually orthogonal on [−π,π] with respect to the standard inner product, and

12π∫−ππdx=1,12π∫−ππcos2(mx)dx=12π∫−ππsin2(mx)dx=12

if m≥1. The lemma follows at once from the hypotenuse theorem. □



Theorem 17.5.18. (Spectral isometry). ⏎ If f is a 2π -periodic and piecewise C1 function, then

∥f∥22=12π∫−ππ|f(x)|2dx=12[a022+∑m=1∞(am2+bm2)].

Page 383Proof. Theorem 17.5.11 guarantees ∥f−fn∥2→0. By Proposition 15.2.14,

∥f∥22=∥fn∥22+∥f−fn∥22→∥f∞∥22.◻

□



Example 17.5.19. For the function f(x)=x, Example 17.5.14 gives am=0 for all non-negative m and bm=(−1)m−12/m for all positive m. By Theorem 17.5.18,

π23=12π∫−ππx2dx=12∑m=1∞4m2,orζ(2)=∑m=1∞1m2=π26.

♢





Exercises for Section 17.5


	Exercise 17.5.1. (★) Prove Lemma 17.5.8.


	Exercise 17.5.2. (A). As in Example 17.5.14, find the spectral decomposition of the indicated functions, and determine the conclusion of Theorem 17.5.18.


	(a)f(x)=sgnx.


	(b)f(x)=|x|,


	(c)f(x)=x2.




In each part, the formula holds on (−π,π) and the function is extended by periodicity. If you have a plotting program, plot each function and several of its spectral sums.


	Exercise 17.5.3. (★) Prove that if f is integrable on [−π,π] and fn is the nth spectral sum, then ∥f−fn∥2→0. Suggestion: Approximate f by a step function and use Lemma 17.5.15.


	Exercise 17.5.4. Assume f is of class C1 on R, 2π-periodic, and has circular amplitudes am and bm. Find the circular amplitudes am′ and bm′ of f′.


	Exercise 17.5.5. Each part (a)–(c) refers to the complex inner product space V of functions f=u+iv, u and v piecewise C1, with standard complex inner product

⟨f,g⟩=12π∫02πf(x)g(x)―dx.


	(a)Prove that the collection en(x)=einx is orthonormal.


	(b)If f∈V and n is an arbitrary integer, define the complex spectral amplitude by cn=⟨f,en⟩, and the complex spectral series of f by

s(x)=limN→∞sN(x)=limN→∞∑n=−NNcneinx.

Prove that s(x)=12(f(x−)+f(x+)). Suggestions: See Exercise 14.2.11, and apply Theorem 17.5.11 to the real and imaginary parts of f.


	(c)Page 384Prove that ∥f∥22=∑n=−∞∞|cn|2.





	Exercise 17.5.6. In the spirit of a “capstone” to your travels through this book, this exercise draws together three threads: The rational sequence (bk) introduced recursively in Exercise 12.3.10 by

b0=0,bk=−1k+1∑j=0k−1(k+1j)bj,

which satisfies

tcotht=∑m=0∞b2m22mt2m(2m)!;

the ζ function of Exercise 12.4.10; and complex spectral series of Exercise 17.5.5. The end result is the evaluation, for each positive integer m,

ζ(2m)=∑n=1∞1n2m=(−1)m−1b2m(2π)2m2⋅(2m)!.

The first two of these, ζ(2)=π2/6 and ζ(4)=π4/90, are calculated somewhat laboriously in Exercise 17.5.2. Generally, ζ(2m) is a rational multiple of π2m.

Let t denote a real parameter, and define f(x)=etx on [0,2π]. Calculate the complex spectral amplitudes cn of f, and apply Exercise 17.5.5 (c). You will need to change the order of a double series, and should look to apply the identity theorem for power series in t.
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Solutions: Logic and Sets


Exercises for Section 1.1


	Ex. 1.1.1. We have
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	¬P

	¬P or Q

	P implies Q
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	Ex. 1.1.3. One powerful intuitive cognitive mode humans have is the ability to detect “cheating.” Here is the relevant insight about the cards:


	(a)The legal drinking age in a certain state is 21. Your job at a gathering is to ensure that no one under 21 years of age is drinking alcohol, and to report those that are. A group of four people consists of a 20 year old who is drinking, a 46 year old who is drinking, a 16 year old who is not drinking, and a 25 year old who is not drinking. Which of these people is/are violating the law?


	(b)After reporting this incident, you find four people at the bar: An 18 year old and a 35 year old with their backs to you, and two people of unknown age, one of whom is drinking. From which people do you need further information to see whether or not they are violating the law?




One major goal of this book is to help you team up your powerful social intuition with your analytical ability to think about mathematics. Each mode has complementary strengths. Together they are a superpower duo.


	Ex. 1.1.4. To be deeply philosophical for a moment, finding the answer to a question and verifying a proposed solution are different. The first is looking for a needle in a haystack. The second is verifying you are holding a needle.

Page 386“Solving” is a relatively loose process where we search for prospective needles. The “absolute, ironclad” part is the proof that the prospective needle really is a needle, and perhaps that there are no other needles to be found.

This is not a casual analogy, but a structural feature of mathematics. Discovering and writing proofs are nearly opposite activities, logically speaking. To discover a proof (and before that, to guess what is true, or formulate a conjecture), we must permit ourselves to make partial, open-ended, possibly unjustified guesses and see where they lead. Ultimately, most of the work we do in discovering mathematics does not need to be written up; it's the process we used to sift the hay, and pieces of hay we examined that were not needles.


	(a)The requested hypothesis is P: “The real number x is equal to [such and such].” The requested conclusion is Q “0=x3−4x2−4x+16.” At the start we do not know which numbers are [such and such]. Our first task is to make an educated guess by “solving the equation.”

The calculation proceeds by assuming Q and deducing P: If 0=x3−4x2−4x+16, then 0=(x−4)(x2−4)=(x−4)(x−2)(x+2), so x=4 or x=2 or x=−2. This is the converse of what was asked, but adds crucial information: We now know exactly which numbers are such and such.

A literal answer to the original question should show that (i) each of x=4, 2, and −2 satisfies the polynomial equation, and (ii) no other numbers do. It remains to see why in practice we do not do this.

In algebra, teachers sometimes speak of “allowable” operations, ways we can transform an equation into a new equation without losing or gaining solutions. Logically, these are if and only if deductions. Factoring and expanding are allowable in this sense. Adding expressions to both sides and multiplying by non-zero numbers are similarly allowable. If a calculation consists entirely of logically reversible steps, the solution reached by calculating is logically a solution. The calculation is a “trail of bread crumbs” from P back to Q. Since verification that we have a solution is often tedious, it tends to get omitted.


	(b)Each step in the argument is a true deduction, so we have a valid proof of “If −1=1 (Q), then 1=1 (P).” Treating this argument the way we treat a calculation with logically reversible steps, however, is an error: The statement 1=1 is tautological, but −1=1 is false. Abstractly, “Q implies P” is (vacuously) true, but “P implies Q” is false.

What went wrong? Here, the first step, squaring, is not logically reversible: Two different real numbers may have the same square. Specifically, −1 and 1 do have the same square. When we write proofs, it's best to avoid this two-column style. For one thing, it can introduce errors. As a result, it looks unprofessional even if correct.

Page 387The preferred style for reporting calculations is chains of equalities, or of inequalities from smaller to larger. This book makes a special effort to instill good habits.


	(c)If you are trying to “debug” a calculation, to find the numerical and/or logical errors, it may help to consider specific cases. The whole reason algebra works, after all, is that it allows us to calculate with unknown quantities. Setting variables to specific numbers in a correct calculation must give a correct chain of deductions. If it does not, that is an error of the original.

So, let's try our favorite real numbers, a=b=0. Every step until the last reads 0=0; the last reads 2=1. The last step, canceling a, is not logically correct if a=0. What if we try our second-favorite real numbers, a=b=1? Now the chain of statements starts 1=1, becomes 0=0 for two steps, then becomes 2=1. The canceled common factor after the third step is b−a=0, leading to the false implication “If 0=0, then 2=1.” Arguably this is the heart of the problem: By hypothesis, a=b, so no matter what numerical value we pick, this step is division by 0.

The remaining steps, incidentally, are readily checked to be logically reversible, so we have found the two questionable steps, one wrong if a≠0 and one wrong if a=0. Also, your first three favorite real numbers, in order, are 0, 1, and −1. After that you can pick whatever idiosyncratic choice you like.





	Ex. 1.1.6. The maximum, $10,000 plus the larger of $500 and the value of the Hotel Resort Platinum Getaway, is unknown. The minimum is the value of the two scratch tickets, effectively $0.






Exercises for Section 1.2


	Ex. 1.2.1. Each quantifier (“for every” and “there exists”) specifies conditions on a variable. If this variable does not appear in the predicate (as in (a)), then the quantifier is misused. Separately, quantifiers come before predicates. Any condition referring to variables before they have been quantified (as in (b) and (c)) is potentially anomalous. Finally, placing quantifiers inside an implication conveys that the quantification is part of the hypothesis. That may be the intent, but can likely be reworded to improve clarity.


	(a)The predicate “2+2=4 ” does not depend on x, so the entire statement is insensitive to quantifying x. The statement is true, but merely means “2+2=4.”


	(b)Page 388Rephrasing to place the quantifier first gives the implication, “If, for every (real) x such that 1<x, (we have) 0<x, then 0<1<x2.” This is true but a logical disconnect: The hypothesis 0<x is guaranteed by the universal quantification, as is the conclusion 0<1<x2, but 0<x does not imply 0<1<x2.

The presumed meaning is “For all (real) x, if 1<x then 1<x2.” This is both true, and the conclusion really does “follow” from the hypothesis and properties of inequalities.


	(c)The sentence “If y=x2 for every x>0, then y>0,” refers to x and y before x is quantified, y is not explicitly quantified, and colloquial meaning suggests, in particular, that y=12 and y=22=4, making “y=x2 for every x>0 ” a false hypothesis, so the implication is vacuously true. All these features are anomalous.

Rephrasing to put the quantifier first gives the presumed meaning, “For every (positive real) x (and every real y), if y=x2 then y>0.” This is true, but again for different reasons than the original wording is true.





	Ex. 1.2.3. For every x in [0,1], there exists a y in [0,1] such that x<y. This is false (if x=1, no y exists), so the first payer has a winning strategy.






Exercises for Section 1.3


	Ex. 1.3.1. For each x in X let P(x) be the statement x∈X and let Q(x) be x∈Y. We have

X⊆Yif and only if for every x, P(x) implies Q(x)if and only if for every x, ¬Q(x) implies ¬P(x)if and only if for every x, Yc⊆Xc.

The middle step replaces an implication by its contrapositive.


	Ex. 1.3.3. In each part we tabulate truth values using all combinations of truth values for P and Q. Equivalence of the indicated statement in encoded by equality of the fourth and seventh columns.
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	(b)Similarly,
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	(c)For each x in the universe, let P(x) be the statement x∈X and Q(x) the statement x∈Y. Since complements correspond to negation, unions to “or,” and intersections to “and,” the logical equivalences in (a) and (b) translate directly to the set identities here.





	Ex. 1.3.4. For all x in U, if x∈(X∪Y)∩Z, then x∈(X∪Y) and x∈Z. Consequently, x∈X or x∈Y, and x∈Z.

If x∈X, then x∈(X∩Z)⊆(X∩Z)∪(Y∩Z). Similarly, if x∈Y, then x∈(Y∩Z)⊆(X∩Z)∪(Y∩Z). Since x was arbitrary, we have shown (X∪Y)∩Z⊆(X∩Z)∪(Y∩Z).

Conversely, if x∈(X∩Z)∪(Y∩Z), then x∈X∩Z⊆(X∪Y)∩Z, or x∈Y∩Z⊆(X∪Y)∩Z. Since x was arbitrary, (X∪Y)∩Z⊇(X∩Z)∪(Y∩Z).

The proof of the other identity is entirely similar.


	Ex. 1.3.6. We can argue “inductively” using Example 1.3.26: Every subset of X either does not contain 2 or does. This gives, respectively,

A′:∅{0}{1}{0,1}A:{2}{0,2}{1,2}{0,1,2}.

In words, there are four subsets not containing 2, namely elements of the power set of X′:=X∖{2}. Further, for each such set A′, there is a subset A:=A′∪{2}. Finally, if A′ and B′ are subsets of X′, then A′=B′ if and only if A=B. Consequently, there are four subsets of X that contain 2, making eight subsets of X, or eight elements of P(X).






Page 390Exercises for Section 1.4


	Ex. 1.4.1. In each part, we may visualize X×X as a 3×3 array of ∘s. We are counting how many ways we can fill in three ∘s, one in each column.


	(a)There are three choices for f(0), three for f(1), and three for f(2). These choices are independent, so the total number of mappings is their product, 3⋅3⋅3=27.


	(b)There are three choices for f(0), but only two for f(1) since f(1)≠f(0), and only one choice for f(2). The total number of mappings is their product, 3⋅2⋅1=6. Listing them as suggested gives (0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,0,1), and (2,1,0).





	Ex. 1.4.2. Without loss of generality, assume X={0,1}.


	(a)There are five choices for f(0) and five for f(1). These choices are independent, so the total number of mappings is their product, 5⋅5=25.

If instead the mapping takes distinct values at the two inputs, there are only four choices for f(1), so the total number of mappings is 5⋅4=20.


	(b)Every partition of Y into two subsets comprises either a singleton and a set of four elements, or a set of two elements and a set of three. There are five singleton subsets of Y, one for each element.

To count subsets of two elements, we can put the elements of Y in order, say Y={0,1,2,3,4}, to avoid double-counting. There are four subsets containing 0, three subsets of smallest element 1, two subsets of smallest element 2, and one subset of smallest element 3, ten in all. Consequently, there are 15 partitions of Y into two subsets.





	Ex. 1.4.5. Assume {{x},{x,y}}={{x′},{x′,y′}}. If each is a singleton, then in particular, {x}={x′}, so x=x′, and {x,y}={x′,y′}={x,y′}, so y=y′.

Otherwise {x}≠{x,y}, so y≠x. By definition of set equality, the singleton {x′}, which is an element of {{x},{x,y}}, is equal to {x} or to {x,y}. The second is false since {x,y} is not a singleton. We deduce {x′}={x}, so x=x′, and {x,y}={x′,y′}={x,y′}, so y=y′.


	Ex. 1.4.6. Hint: This amounts to the observation that if A⊆X, there is a unique truth function fA that asks each element x of X, “Are you an element of A?”


	Ex. 1.4.7. Page 391Answers:

m≠nm<nm≤n0<mn0≤mnReflexiveNNYNYSymmetricYNNYYTransitiveNYYYN


	Ex. 1.4.9. A deck of playing cards has four suits, S={♣,♢,♡,♠}.


	(a)[♣]=[♠]={♣,♠} and [♢]=[♡]={♢,♡}.


	(b)No: A card's color does not determine its suit.





	Ex. 1.4.12. First check whether R is reflexive, symmetric, and/or transitive.


	(a)R is an equivalence relation. For transitivity, if x−x′ and x′−x′′ are even, so is their sum (x−x′)+(x′−x′′)=x−x′′. The equivalence classes are the set [0]=2Z of even integers and the set [1]=2Z+1 of odd integers.


	(b)This relation is symmetric but neither reflexive nor transitive.










Solutions: Induction


Exercises for Section 2.1


	Ex. 2.1.4. For each natural number n, let P(n) be the statement 2n<n!.

If 2k<k! for some positive integer k, then by commutativity of multiplication and the definitions of exponentiation and factorials,

2k+1=2k⋅2<k!⋅2=2⋅k!≤(k+1)⋅k!=(k+1)!.

That is, P(k) implies P(k+1) for all k.

The statement P(4) reads 24<4!, or 16<24, which is true. By induction and Remark 2.1.3, P(n) is true if n≥4.






Page 392Exercises for Section 2.2


	Ex. 2.2.1. The number of ways is

(525)=52!5!47!=52⋅51⋅50⋅49⋅485⋅4⋅3⋅2.

Canceling 5⋅2=10 from 50 and 4⋅3=12 from 48 gives

52⋅51⋅5⋅49⋅4=(20⋅52)⋅(51⋅49)=1040⋅(502−1)=1040⋅2499.

Since 40⋅2499=100,000−40=99960 and 1000⋅2499=2499000, we have (525)=2,598,960.


	Ex. 2.2.3. To a laughable extent, no. The number of orderings of a deck of 52 playing cards is 52!. Without a calculator, this is greater than 1043 since 43 of the factors are 10 or larger. (With a calculator, the actual value is a bit less than 8.1×1067.) No macroscopic event on earth has occurred 1043 times. For example, if 100 raindrops fell every second on every square foot of the earth non-stop for 4.6 billion years, the total number of drops would be on the order of 1035, one hundred-millionth of the target. The total number of earthly card shuffles surely does not exceed 1021 (a trillion dealers each shuffling one billion times), so in every practical sense zero percent of possible orderings have been seen.


	Ex. 2.2.4. Answers: We have 9!!=945, 10!!=3840 (if these are correct, your earlier values probably are as well), and (2n)!!=2nn!, so (2n+1)!!=(2n+1)!/(2n)!!=(2n+1)!/(2nn!).


	Ex. 2.2.5. Geometrically, Bn may be viewed as the set of vertices of a cube with unit sides in n-space. Figure A.1 uses light gray lines to indicate the edges.

[image: Three diagrams illustrate B 1 as a line, B 2 as a square, and B 3 as a cube with binary coordinate labels.]
Long Description for Figure A.1The leftmost diagram, labeled B 1, shows a horizontal line segment connecting two points labeled open parenthesis 0 close parenthesis and open parenthesis 1 close parenthesis, representing the binary one-dimensional set. The middle diagram, labeled B 2, forms a square with four vertices labeled open parenthesis 0 comma 0 close parenthesis, open parenthesis 1 comma 0 close parenthesis, open parenthesis 0 comma 1 close parenthesis, and open parenthesis 1 comma 1 close parenthesis, each connected by straight lines to form a complete edge structure. The rightmost diagram, labeled B 3, shows a cube with eight vertices, each labeled with a three-digit binary tuple, such as open parenthesis 0 comma 0 comma 0 close parenthesis and open parenthesis 1 comma 1 comma 1 close parenthesis. All adjacent vertices are connected by edges, forming a three-dimensional cube structure.

Figure A.1 One way to depict the sets B1, B2, and B3. ⏎




	(a)For each natural number n, let P(n) be the statement, “If b and b′ are arbitrary elements of Bn, then |b′−b| is the number of components in which b and b′ differ.” Since B0 has only one element and the value of an empty sum is 0, the statement P(0) is true: (0) differs from (0) in 0 components. The “real” base case is P(1): The distance between two elements of B1=B is 1 if the elements differ and 0 if the elements are the same; that is, |b′−b| is the number of components in which b and b′ differ.

Assume inductively that P(m) is true for some positive integer m. If b=(bk)k=0m and b′=(bk′)k=0m are arbitrary elements of Bm+1, then by definition of distance and the recursive definition of summation,

|b′−b|=∑k=0m|bk′−bk|=[∑k=0m−1|bk′−bk|]+|bm′−bm|.

Page 393The sum in brackets is the distance between (bk)k=0m−1 and (bk′)k=0m−1. By the inductive hypothesis, this is the number of components in which these elements differ. The final summand “counts” whether the final components differ. Consequently, |b′−b| is the number of components in which b and b′ differ. Since P(0) and P(1) are true and P(m) implies P(m+1) for every positive integer m, induction guarantees P(n) is true for every natural number n.

Consequently, |b′−b|=0 if and only if b and b′ agree in all components, if and only if b=b′ (positivity); the distance |b−b′| is the number of components in which b′ and b differ, a concept independent of which tuple is which, so |b−b′|=|b′−b| (symmetry); and |b′′−b|, the number of components that must be “flipped” to change b into b′′, does not exceed |b′′−b′|+|b′−b|, the number of components that must be flipped to change b into b′ and then to change b′ into b′′ (the triangle inequality).


	(b)Page 394If b∈Bn, then for all b′ in Bn and all m such that 0≤m≤n, |b′−b|=m if and only if b and b′ differ in precisely m components of n. There are (nm) ways to pick those m components, so there are precisely (nm) elements of Bn at distance m from b. These sets of points partition Bn. Since Bn has 2n elements, compare Exercise 2.1.5, we have

2n=number of elements of Bn=∑m=0n(nm).

In Figure A.1 we may take b=0 to be the n-tuple whose components are all 0. Table A.1 shows the numbers of points at distance m from b.



Table A.1 Points at specified distance from 0 in an n-cube. ⏎


	
	m = 1

	m = 2

	m = 3






	B1

	(11)=1

	(1)

	
	
	
	



	B2

	(21)=2

	(1,0)(0,1)

	(22)=1

	(1, 1)

	
	



	B3

	(31)=3

	(1,0,0)(0,1,0)(0,0,1)

	(32)=3

	(0,1,1)(1,0,1)(1,1,0)

	(33)=1

	(1, 1, 1)







The m=0 column is omitted; (n0)=1 if n≥0, and the unique point at distance 0 is 0 itself.









Exercises for Section 2.3


	Ex. 2.3.1. Hint: Think of X×X as an n×n array, with a diagonal comprising pairs (j,j). For each question, count how many choices there are.


	Ex. 2.3.2. Assume a, b, and c denote arbitrary integers.


	(a)By definition of *,

(a∗b)∗c=(a+b−1)∗c=(a+b−1)+c−1=a+(b+c−1)−1=a+(b∗c)−1=a∗(b∗c).

Commutativity is immediate from b+a−1=a+b−1.


	(b)It suffices to check a∗1=a and 1∗a=a for all a.

To locate the “candidate” identity element e=1, consider the condition a∗e=a for all a, namely, a+e−1=a for all a, and if possible solve for e.

For inverses, it suffices to prove that for every a, the integer b=2−a satisfies a∗b=1 and b∗a=1. As above, solving a∗b=e=1 for b gives the “candidate” inverse.





	Ex. 2.3.4. Assume A, B, and C are arbitrary subsets of X.


	(a)For all x in X, x∈A∪B if and only if x∈A or x∈B, if and only if x∈B or x∈A, if and only if x∈B∪A. That is, B∪A=A∪B.

Similarly for associativity, x∈A∪(B∪C) if and only if x∈A or x∈B∪C, if and only if x∈A or x∈B or x∈C, if and only if x∈A∪B or x∈C, if and only if x∈(A∪B)∪C.


	(b)Page 395If E is an identity element for ∪, then E∪A=A for all A. Particularly, E⊆A for all A, so the only candidate is ∅. Since ∅∪A=A for all A, ∅ is the identity element for ∪. A set A is invertible if and only if there exists a set B such that A∪B=∅, if and only if A=∅.





	Ex. 2.3.6. Suggestion: Fix a “standard grouping” inductively, such as p2=(x0∗x1)∗x2 and pn=pn−1∗xn, and show inductively that an arbitrary grouping is equal to the standard grouping.






Exercises for Section 2.4


	Ex. 2.4.2. By hypothesis, there exists a natural number k≠0 such that m+k=n. By associativity of addition, (ℓ+m)+k=ℓ+(m+k)=ℓ+n, so ℓ+m<ℓ+n by definition.

Since ℓk is a natural number, distributivity implies (ℓm)+(ℓk)=ℓ(m+k)=ℓn, so ℓm≤ℓn. If ℓ=0, both sides are zero and equality holds. If ℓ≠0, then ℓk≠0, and strict inequality holds.


	Ex. 2.4.3. Hint for transitivity: First prove if ℓ and m are natural numbers, and ℓ+n=m+n for some n, then ℓ=m.


	Ex. 2.4.4. Hint: It suffices to prove that if a1=[(m1,n1)], a1′=[(m1′,n1′)], a2=[(m2,n2)], a2′=[(m2′,n2′)] are integers such that a1=a1′ and a2=a2′, then a1+a2=a1′+a2′.


	Ex. 2.4.7. Let ℓ, m, and n denote arbitrary natural numbers.


	(a)As avatars, (m,0)+(n,0)=(m+n,0) and (m,0)(n,0)=(mn,0).


	(b)Assume (ℓ,m) is an arbitrary integer avatar. Precisely one of the following is true: ℓ=m, or m<ℓ, or ℓ<m.

If ℓ=m, then (ℓ,m)=(ℓ,ℓ)≡(0,0).

If m<ℓ, then ℓ=m+k for some non-zero k, so (ℓ,m)=(m+k,m)≡(k,0).

If ℓ<m, then m=ℓ+k for some non-zero k, so (ℓ,m)=(ℓ,ℓ+k)≡(0,k).





	Ex. 2.4.9. If rj=(pj,qj) and rj′=(pj′,qj′), j=0, 1, are equivalent rational avatars, then

(p0,q0)(p1,q1)=(p0p1,q0q1)definition of multiplication≡(p0p1q0′q1′,q0q1q0′q1′)equivalent representation=(p0′p1′q0q1,q0q1q0′q1′)p0q0′=p0′q0,p1q1′=p1′q1≡(p0′p1′,q0′q1′)equivalent representation=(p0′,q0′)(p1′,q1′),
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(p0,q0)(p1,q1)=(p0p1,q0q1)=(p1p0,q1q0)=(p1,q1)(p0,q0).







Solutions: Real Numbers


Exercises for Section 3.1


	Ex. 3.1.1. We have

(x+y)2=(x+y)(x+y)def. of squaring=(x+y)x+(x+y)ydistributive law=(x⋅x+yx)+(xy+y⋅y)distributive law=(x2+yx)+(xy+y2)def. of squaring=(x2+xy)+(xy+y2)commutativity of ⋅=((x2+xy)+xy)+y2associativity of +=(x2+(xy+xy))+y2associativity of +=(x2+((1+1)xy))+y2distributive law=(x2+((2)xy))+y2distributive law=x2+2xy+y2.


	Ex. 3.1.2. Hint: The three parts are set up so (a) can be used to establish (b), which can be used for (c).


	Ex. 3.1.3. If x=u+v and y=u−v, then

x+y=(u+v)+(u−v)=2u,x−y=(u+v)−(u−v)=2v.

Conversely, if 2u=x+y and 2v−x−y, then

u+v=12[2u+2v]=12[(x+y)+(x−y)]=x,u−v=12[2u−2v]=12[(x+y)−(x−y)]=y.
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	Ex. 3.1.6. For each natural number n, let P(n) be the statement to be shown, pn/qn=[a0,a1,a2,…,an]. Since p0=a0 and q0=1, the base case P(0) reads p0/q0=a0, which is true.

Assume inductively that P(m) is true for some natural number m:

pmqm=[a0,a1,…,am].

The recursion relations for (pn) and (qn) imply

ampm−1+pm−2amqm−1+qm−2=[a0,a1,…,am].

This formula is true for all positive, real am since the finite sequences (pn)n=0m−1 and (qn)n=0m−1 do not depend on am. Particularly,

am+1pm+pm−1am+1qm+qm−1=am+1(ampm−1+pm−2)+pm−1am+1(amqm−1+qm−2)+qm−1=[am+(1/am+1)]pm−1+pm−2[am+(1/am+1)]qm−1+qm−2=[a0,a1,…,am−1,am+(1/am+1)]=[a0,a1,…,am,am+1].

(The algebra may read more naturally from bottom to top.) Since P(0) is true and P(m) implies P(m+1) for all m, P(n) is true for all n by induction.






Exercises for Section 3.2


	Ex. 3.2.3. Hint: In (c), x=−b±b2−4ac2a, the famous quadratic formula.


	Ex. 3.2.4. Suggestion for part (i): If x and y are real, then −|x|≤x≤|x| and −|y|≤y≤|y|. Add these inequalities and apply Proposition 3.2.10.

Suggestion for part (ii): Apply (i) to the identities y=x+(y−x) and x=y+(x−y).


	Ex. 3.2.5. (Conceptual sketch) For all real y, we have |−y|=|y|. Corollary 3.2.12 asserts four inequalities. Two are Proposition 3.2.11 verbatim, the other two follow by replacing y with −y in Proposition 3.2.11.


	Ex. 3.2.10. Suggestion: Mimic the proof of Proposition 3.2.25, replacing “largest” with “smallest” and “max” with “min” throughout. The point is to coax you into reading the proof carefully.


	Ex. 3.2.11. Page 398Hint: Add and subtract xy0, factor the four terms in pairs, and apply the triangle inequality.


	Ex. 3.2.12. Hint: To get an upper bound on a positive reciprocal, establish a lower bound on the denominator. The reverse triangle inequality is set up for this.


	Ex. 3.2.13. Fix n and argue inductively on m. When m=0 or 1, the inequality is an equality. Inductively, if (n+1)kn!≤(n+k)! for some positive integer k, then

(n+1)k+1n!=(n+1)⋅(n+1)kn!≤(n+1)⋅(n+k)!<(n+k+1)⋅(n+k)!=(n+k+1)!

so strict inequality holds if m=k+1.






Exercises for Section 3.3


	Ex. 3.3.1. Hint: To handle induction with two variables, assume m and n are non-negative integers, and let P(n) be the universally quantified statement

xm+n=xm⋅xnfor all m in N.


	Ex. 3.3.4. Hint: Introduce

sn=a+ar+ar2+⋯+arn−1=∑k=0n−1ark.

Handle the cases r=1 and r≠1 separately.


	Ex. 3.3.5. The expression is the geometric sum with first term a=xn−1, ratio r=y/x, and n terms. (If this is unclear, factor out xn−1.) By Proposition 3.3.8, if x=y the sum is nx. Otherwise,

∑k=0n−1xn−k−1yk=xn−11−(y/x)n1−y/x=xn1−(y/x)nx−y=xn−ynx−y.


	Ex. 3.3.6. Since xn is the k=0 term in the binomial theorem,

1h((x+h)n−xn)=1h∑k=1n(nk)xn−khk=∑k=1n(nk)xn−khk−1.
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	Ex. 3.3.7. Conceptually, (1−x)n has “the same terms as (1+x)n except the signs alternate.” Adding doubles the even-index terms and cancels the odd-index terms. In symbols, 12(1+(−1)k)=1 if k is even and 0 if k is odd.

By contrast, subtracting cancels the even-index terms and doubles the odd-index terms. In symbols, 12(1−(−1)k)=0 if k is even and 1 if k is odd.

Setting n/2=m if n=2m is even or if n=2m+1 is odd, we have

12((1+x)n+(1−x)n)=12∑k=0n(1+(−1)k)(nk)xk=∑k=0n/2(n2k)x2k,12((1+x)n−(1−x)n)=12∑k=0n(1−(−1)k)(nk)xk=∑k=0n/2(n2k+1)x2k+1.

For n=2 we have (1+x)2=1+2x+x2 and (1−x)2=1−2x+x2, so

12((1+x)2+(1−x)2)=1+x2,12((1+x)2−(1−x)2)=2x.

For n=3, (1+x)3=1+3x+3x2+x3 and (1−x)3=1−3x+3x2−x3, so

12((1+x)3+(1−x)3)=1+3x2,12((1+x)3−(1−x)3)=3x+x3.

For n=4, (1±x)4=1±4x+6x2±4x3+x4, so

12((1+x)4+(1−x)4)=1+6x2+x4,12((1+x)4−(1−x)4)=4x+4x3.


	Ex. 3.3.10.


	(a)Assume inductively that 3k<k! for some integer k such that k≥2. Then

3k+1=3⋅3k<3⋅k!≤(k+1)k!=(k+1)!.

That is, P(k) implies P(k+1) if k≥2.


	(b)It suffices to exhibit an n0 such that 3n0<n0!.

Since 36=93=729<6!=720 is false but 37=2187<5040=7! is true, we may take n0=7 or any larger integer





	Ex. 3.3.13. Hint: To establish the inductive step, apply the distributive law to (x+y)m+1=(x+y)(x+y)m, and shift the indices in one sum so terms can be combined.
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Exercises for Section 4.1


	Ex. 4.1.1. For every real x, x∈Br×(x0) if and only if 0<|x−x0|<r, if and only if x−x0∈Br×(0), if and only if x∈x0+Br×(0).


	Ex. 4.1.5. Assume contrapositively that J∩J′=∅, and without loss of generality assume a<a′. Because the intersection is empty, we have b<a′. Assume x=12(b+a′) is the midpoint. Since b<x<a′, x∉J∪J′. But since b and a′ are in J∪J′, the union is not an interval.


	Ex. 4.1.6. Suggestion: Prove the intersection is non-empty using the idea of Exercise 4.1.5. Then use the fact J and J′ are intervals to prove the intersection is an interval. Finally, use Exercise 4.1.4 to prove the intersection is an open interval.






Exercises for Section 4.2


	Ex. 4.2.1. If x∈(a,b), then a<x<b, so again b is an upper bound. Instead of showing the second condition directly, it's easier to work with the contrapositive. Assume ε>0, and put x=b−12ε. Certainly we have b−ε<x<b, so if x∈(a,b), namely, if a<x, then we have shown b−ε is not an upper bound of (a,b).

While our choice of x “works” for small ε, it doesn't work if ε>2(b−a). The standard workaround is to make a two-case definition. The conventional choice is this: If ε>0, define x=max(b−12ε,12(a+b)). For this choice, we have b−ε<x and a<12(a+b)≤x<b. Since x∈(a,b), we have shown b−ε is not an upper bound of (a,b). Since ε was arbitrary, b=sup(a,b).


	Ex. 4.2.6. Suggestion: Consider the sets A={an}n=0∞ and B={bn}n=0∞. Prove that a≤b for all a in A and all b in B, and conclude that supA≤infB and [supA,infB] is contained in ⋂n=0∞In.


	Ex. 4.2.7. Suggestion: Use interval induction together with Exercises 4.1.4 and 4.1.7.
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	Ex. 4.3.1. Qualitatively, no real number is more than 1 unit away from some integer. By scaling, if q is a positive integer then no real number is further than 1/q from the set (1/q)Z. Since (1/N)Z⊆QN, the “maximum distance” from QN is at most 1/N.

Using Corollary 4.3.2, we can both make this argument rigorous and improve the bound. If x is an arbitrary real number, then n:=⌊Nx⌋≤Nx<n+1. Consequently, n/N≤x<(n+1)/N, so the distance from x to some point of (1/N)Z, and therefore to some point of QN, is no larger than 1/(2N). (Why?)

There is no smaller bound: (0,1/N) is disjoint from QN, and has length 1/N.


	Ex. 4.3.5. Suggestion: The outline below establishes existence of ⌊x⌋ if x>0, and then for general x, and then establishes uniqueness.


	(a)Assume x>0. Use finitude, well-ordering of N, and a well-chosen set of natural numbers depending on x to prove there exists a natural number n and real number x′ such that x=n+x′ and 0≤x′<1.


	(b)Assume x is real. If x≤0, prove there exists a natural number N such that 0<N+x, then apply part (a).


	(c)Prove that the representation in (b) is unique: If x=n1+x1′=n2+x2′ for integers n1 and n2, and real numbers x1′ and x2′ such that 0≤xk′<1, then n1=n2 and x1′=x2′.





	Ex. 4.3.6. Hints: In (a), argue contrapositively. For part (b), if x<y, then x/2<y/2.


	Ex. 4.3.8. By Proposition 3.3.8, there is a closed formula

sn=1−(1/2)n1−(1/2)=2−(1/2n−1).

Since 2−(1/n)<2−(1/2n−1)=sn<2 for all n, we have sups=2.


	Ex. 4.3.10. For each m,

Hm+1−Hm=∑k=2m+12m+11k
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H2m+1=1+∑j=0m∑k=2j+12j+11k≥1+∑j=0m12≥1+m+12.

Since m is arbitrary, {Hm} is not bounded above.






Exercises for Section 4.4


	Ex. 4.4.1. No: The intersection is {0}, which is not open. To prove the claim about the intersection, note that 0∈On for each n. Inversely, if x≠0, then ε=|x|>0. By reciprocal finitude (Corollary 4.3.7), there is a positive integer n such that 1/n<|x|. Consequently, x∉On, so x is not in the intersection.


	Ex. 4.4.3. Throughout, (Ak)k∈N is a sequence of sets, each having no limit points.


	(a)Assume x0 is a real number. Since x0 is not a limit point of A0, there exists an ε0 such that Bε0×(x0)∩A0=∅. Since x0 is not a limit point of A1, there exists an ε1 such that Bε1×(x0)∩A1=∅. If ε=min(ε0,ε1), then ε>0 and Bε×(x0)∩(A0∪A1)=∅, so x0 is not a limit point of the union.


	(b)Immediate from (a) by induction on n.


	(c)For example, if Ak={k}, the union is the set of natural numbers, which has no limit points. At the other extreme, Ak=2−kZ has no limit points, but the union ⋃kAk is the set Z[12] of dyadic rationals, which is dense by Exercise 4.3.7.





	Ex. 4.4.4. Hint: A direct approach is not difficult, but the perspective of Exercise 4.4.3 may also help.


	Ex. 4.4.7. Hint: Put J={xin[a,b]:[a,x] is finitely covered from {Oi}i∈I} and use interval induction.


	Ex. 4.4.9. If A is the set from Exercise 4.4.4, then A―=A∪{0} is the closure, and O is the complement of A―, hence is open as the complement of an open set. The open intervals O−1:=(−∞,0), O0:=(1,∞), and On:=(1/(n+1),1/n) if n≥1 are non-empty, mutually disjoint, and their union is the complement of A― (compare Corollary 4.3.2), so they partition O and are consequently the components by Exercise 4.4.8.

[image: A number line with labeled open intervals O subscript 0 through O subscript negative 1 positioned at 1, one half, and 0.]
Figure A.2 The components of O in Exercise 4.4.9.
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Exercises for Section 5.1


	Ex. 5.1.1. Assume p(x)=∑k=0nakxk and q(x)=∑k=0nbkxk are polynomials of degree at most n.


	(a)The sum (p+q)(x)=∑k=0n(ak+bk)xk is a polynomial of degree at most n. The degree is n if and only if an+bn≠0.


	(b)If c is real, then cp(x)=∑k=0n(cak)xk, is a polynomial of degree at most n. If degp=n, namely, an≠0, the product is either of degree n if c≠0, or identically 0 if c=0.


	(c)By Corollary 5.1.19, p(xj)=0 if and only if (x−xj) divides p. If p(xj)=0 for all j, then p(x)=∏j=0n(x−xj)q(x) for some polynomial q. By hypothesis, p has degree at most n, while if q is not identically 0, the product on the right has degree at least (n+1). We conclude q, and hence p, is identically 0.





	Ex. 5.1.2. Since 0≤(x−1)2 for all real x,

f+(x)={0x<0,x(x−1)20≤x;f−(x)={x(x−1)2x<0,00≤x.


	Ex. 5.1.4. Hint: For existence, use induction on “If p is a polynomial of degree at most n and if q is a polynomial, there exist polynomials d and r such that p(x)=d(x)q(x)+r(x) and degr<degq.”


	Ex. 5.1.5. We have

p(x)q(x)=x4−x3+3x2−6x+1x3−2x2+x=x4−x3+3x2−6x+1x(x−1)2.
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r(x)q(x)=4x2−7x+1x(x−1)2=c0,1x+[c1,2(x−1)2+c1,1x−1].

Theorem 5.1.27 guarantees the form of the right-hand side: For each root xj of the denominator of order mj, there is a summand cj,k/(x−xj)k for each k such that 1≤k≤mj. The double indices signify the root and the “degree of singularity.” Our task is to evaluate the cj,k.

There are two roots, 0 of order 1 (the first summand), and 1 of order 2 (the remaining summands). Pick a root xj arbitrarily, and multiply the entire equation by the highest power (x−xj)mj that divides q. Starting with the root 1, we multiply by (x−1)2 and evaluate at 1:

4x2−7x+1x=c0,1x(x−1)2+c1,2+c1,1(x−1),or c1,2=4−7+1=−2.

Substituting and rearranging gives

4x2−7x+1x(x−1)2+2(x−1)2=c0,1x+c1,1x−1.

Combining terms on the right, factoring, and canceling gives

4x2−5x+1x(x−1)2=(4x−1)(x−1)x(x−1)2=4x−1x(x−1)=c0,1x+c1,1x−1.

Now repeat the process: Multiply by (x−1) and evaluate at 1 to obtain c1,1; multiply by x and evaluate at 0 to obtain c0,1. The end result is c1,1=3 and c0,1=1. Substituting all these,

x4−x3+3x2−6x+1x3−2x2+x=(x+1)+1x−2(x−1)2+3x−1,x∉{0,1}.


	Ex. 5.1.6. For each natural number N, let P(N) be the statement, “For every real polynomial p, and for every real polynomial q of degree N that factors completely, p(x)/q(x) has a partial fractions decomposition as in Theorem 5.1.27.”

The base case P(0) is true: If degq=0, then q is a constant, so d=p/q is a polynomial. Incidentally, we may as well assume q is monic: If not, divide both p and q by the leading coefficient of q.

Assume inductively that P(N) is true for some N, and let q be a completely factored polynomial of degree (N+1), say

q(x)=∏j=0n(x−xj)mj=(x−x0)m0⋅∏j=1n(x−xj)mj.
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p(x)q(x)−p(x0)/q0(x0)(x−x0)m0=1(x−x0)m0[p(x)q0(x)−p(x0)q0(x0)]=p(x)q0(x0)−p(x0)q0(x)q(x)q0(x0).

The numerator vanishes at x0, so by Corollary 5.1.19, (x−x0) is a factor of the numerator. Writing p(x)q0(x0)−p(x0)q0(x)=(x−x0)p0(x), we have

p(x)q(x)−p(x0)/q0(x0)(x−x0)m0=p0(x)(x−x0)m0−1q0(x).

The denominator of the right-hand side has degree at most N, so the inductive hypothesis guarantees it decomposes as in Theorem 5.1.27. This establishes the inductive step, and completes the proof of the theorem.


	Ex. 5.1.7. Answers (may be verified by algebra):


	(a)1a−b[1x−a−1x−b].


	(b)1/a2x2−1/(2a)x−a+1/(2a)x+a.


	(c)1/(ab)x2+(a+b)/(ab)2x+1/[a2(a−b)]x−a+1/[b2(b−a)]x−b.





	Ex. 5.1.8. Conceptually, each fj vanishes at “the other points,” and ej is normalized to have value 1 at xj.


	(a)By direct calculation, f0(x1)=f0(x2)=0, so e0(x1)=e1(e2)=0, while f(x0)=(x0−x1)(x0−x2)≠0, so e0(x0)=f(x0)/f(x0)=1. Analogous calculations show ei(xj)=1 if i=j and ei(xj)=0 if i≠j.


	(b)The polynomial p(x)=y0e0(x)+y1e1(x)+y2e2(x) is a linear combination (sum of constant multiples) of polynomials of degree at most 2, so has degree at most 2. By (a),

p(x0)=y0e0(x0)+y1e1(x0)+y2e2(x0)=y0⋅1+y1⋅0+y2⋅0=y0,

and similarly p(xj)=yj for j=1, 2. That is, the points (x0,y0), (x1,y1), and (x2,y2) satisfy y=p(x).


	(c)Page 406Setting x0=−1, x1=0, and x2=1,

f0(x)=x(x−1),e0(x)=x(x−1)2,f1(x)=(x+1)(x−1),e1(x)=(x+1)(x−1)−1,f2(x)=(x+1)x,e2(x)=(x+1)x2.

Consequently,

p(x)=y0⋅12(x2−x)+y1⋅(1−x2)+y2⋅12(x2+x)=12(y0−2y1+y2)x2+12(y2−y0)x+y1.

The degree is less than 2 if and only if y0−2y1+y2=0, if and only if the three points are collinear.





	Ex. 5.1.9. Hint for (c): Apply Exercise 5.1.1 (c) to the polynomial p(x)−q(x).


	Ex. 5.1.11. Hint: Fix x0 in I arbitrarily. For each x in I, subdivide the interval with endpoints x0 and x.






Exercises for Section 5.2


	Ex. 5.2.1. The domain of f is R∖{1}. Formal substitution and canceling if x≠1 gives

(f∘f)(x)=1+f(x)1−f(x)=[1+1+x1−x]/[1−1+x1−x]=(1−x)+(1+x)(1−x)−(1+x)=−1x.

This formula is true if x∉{0,1}. Formal substitution in f∘f∘f=(f∘f)∘f gives

(f∘f∘f)(x)=−1f(x)=−1−x1+x.

This formula is true if x∉{−1,0,1}. Finally, formal substitution in the fourth iterate f∘f∘f∘f=(f∘f)∘(f∘f) gives

(f∘f∘f∘f)(x)=−1(f∘f)(x)=−1−1/x=x.

This is not the identity function on R, but only on R∖{−1,0,1}.


	Ex. 5.2.2. Page 407Assume g:Y′→Z is composable with f:X→Y and h:Z′→W is composable with g. For all x in X,

[(h∘g)∘f](x)=(h∘g)(f(x))=h[g(f(x))]=h∘[(g∘f)(x)]=[h∘(g∘f)](x).

Since (h∘g)∘f and h∘(g∘f) map X to W and take the same values at each x, they are the same mapping.


	Ex. 5.2.3. Multiplying out, p(x)=x3−2x2+x. On substituting −x for x, the odd-degree terms change sign and the even-degree terms are preserved: p(−x)=−x3−2x2−x. The even part, obtained by adding these and dividing by 2, is the sum of the even-degree terms. The odd part, obtained by subtracting the second from the first and dividing by 2, is the sum of the odd-degree terms: f even(x)=−2x2, fodd(x)=x3+x.


	Ex. 5.2.11. For each n in N, let P(n) be the statement “f(x+nℓ)=f(x) for all real x.” The base case P(0) is a tautology. Assume inductively that P(k) is true for some k. For all real x, we have

f(x+(k+1)ℓ)=f(x+kℓ)ℓ-periodicity=f(x)inductive hypothesis.

By induction, for every n we have f(x+nℓ)=f(x) for all real x. Now let Q(n) be the statement “f(x−nℓ)=f(x) for all real x.” An entirely similar induction shows Q(n) is true for all n. Together, P(n) and Q(n) imply that for every integer n, f(x+nℓ)=f(x) for all real x.






Exercises for Section 5.3


	Ex. 5.3.1. Throughout we refer to Proposition 3.2.1 freely.


	(a)For all real x, we have 0<x<b if and only if 0<1/b<1/x. Consequently, 0<a<x<b if and only if 0<1/b<1/x<1/a, and we may interpret this as encompassing the first if we interpret 1/0=∞. With this understanding, the reciprocal image of (a,b) is (1/b,1/a)⊆(0,∞).


	(b)For all real x, we have a<x<0 if and only if 1/x<1/a<0. Consequently, a<x<b<0 if and only if 1/b<1/x<1/a<0, and we may interpret this as encompassing the first if we interpret 1/0=−∞. With this understanding, the reciprocal image of (a,b) is (1/b,1/a)⊆(−∞,0).


	(c)Page 408Since X=(a,0)∪(0,b), Proposition 5.3.12 (i) together with the results of (a) and (b) implies the reciprocal image of X is (−∞,1/a)∪(1/b,∞).





	Ex. 5.3.5.


	(a)(Injectivity of g∘f). If x1≠x2 are distinct points of X, then y1=f(x1) and y2=f(x2) are distinct points of Y because f is injective. Consequently, z1=g(y1)=(g∘f)(x1) and z2=g(y2)=(g∘f)(x2) are distinct points of Z since g is injective. Since x1 and x2 were arbitrary, g∘f is injective.

(Surjectivity of g∘f). Assume z is an arbitrary point of Z. Since g is surjective, there exists a y in Y such that z=g(y). Since f is surjective, there exists an x in X such that y=f(x). By definition, z=(g∘f)(x). Since z was arbitrary, g∘f is surjective.

(Inverse of g∘f). We have z=(g∘f)(x) if and only if g−1(z)=f(x), if and only if (f−1∘g−1)(z)=x. That is, (g∘f)−1=f−1∘g−1.


	(b)If the composition g∘f:X→Z is a bijection, f must be injective and g surjective. Contrapositively, if f is not injective, then f identifies some pair x1≠x2. Since g is a mapping, (g∘f) identifies the same pair, so g∘f is not injective. And, if g is not surjective, then (g∘f) is not surjective, since (g∘f)(X)⊆g(Y).

We cannot generally conclude f is surjective or g is injective. The simplest example is X=Z={0} and Y={0,1}, with f(0)=0 and g(y)=0 for each y. The most general statement is, g∘f is bijective if and only if f is injective and the restriction of g to the image of f is bijective.





	Ex. 5.3.7. Answers:


	(a)Π(t)=(x,y)=(2t,t2−1)t2+1.


	(b)Π−1(x,y)=t=x1−y inverts Π.


	(c)Each of Π and Π−1 is a quotient of polynomials with rational coefficients, so each maps rational numbers to rational numbers.


	(d)and (e) are now just computations, but may require care.









Exercises for Section 5.4


	Ex. 5.4.3. To start, let's tabulate values of f as shown in Figure A.3.

[image: A triangular grid of dots represents pairs of non-negative integers arranged by increasing coordinate sums, with each dot labeled above by its enumeration from 0 through 14 and below by its corresponding ordered pair.]
Figure A.3 Counting points of a countable union of countable sets. ⏎



Page 409To prove f is a bijection, the evidence in Figure A.3 leads us to “walk northwest along successive diagonals,” namely, to introduce the natural number N=m+n, which is constant along these diagonals, and to “parameterize” each diagonal by letting n (the vertical coordinate) run from 0 to N. Here is one way to make this precise.

For each natural number N, consider the sets

AN={(N−n,n):0≤n≤N}⊆N×N,BN={k:f(N,0)≤k<f(N+1,0)}⊆N.

The collection {AN}N=0∞ partitions N×N: A pair (m,n) is in AN if and only if m+n=N, so every pair is in some set, and distinct sets are disjoint.

Further, the collection {BN}N=0∞ partitions N. To see this, recall that f(N,0)=12(N2+N) is the sum of the natural numbers from 0 to N. Particularly, f(N,0)+N+1=f(N+1,0), or f(N,0)+N=f(N+1,0)−1. Informally, the pattern of the first few sets,

N=B0∪B1∪B2∪B3∪⋯={0}∪{1,2}∪{3,4,5}∪{6,7,8,9}∪⋯,

continues forever. Specifically, BN contains precisely N+1 elements, and successive Bs abut but do not overlap.

Finally, the restriction f:AN→BN is a bijection for each N: As n runs from 0 to N, the values

f(N−n,n)=12(N2+N+2n)=12(N2+N)+n

step through all of BN. We have partitioned the domain N×N and the codomain N, and shown that f maps each set AN in the partition of N×N bijectively to the corresponding set BN in our partition of N. It follows that f is a bijection.


	Ex. 5.4.4. Page 410Pick a bijection fk:N→Xk for each natural number k. The mapping f:N×N→⋃kXk defined by f(k,ℓ)=fk(ℓ) is surjective. But N×N is countable by Proposition 5.4.9, so the union is countable by Corollary 5.4.8.


	Ex. 5.4.8. Hint: What data define a mapping f:N→{0,1}?







Solutions: Sequences


Exercises for Section 6.1


	Ex. 6.1.1. We first do the scratch work of “solving” for N in terms of ε:

|4k−53k+2−43|=|−233(3k+2)|≤23/9k<ε

if k>23/(9ε). Now we're ready to write the proof:

Assume ε>0. By finitude, there exists an integer N>23/(9ε). If k≥N, then

|ak−a∞|=|4k−53k+2−43|=|−233(3k+2)|≤23/9k≤23/9N<ε.

Since ε was arbitrary, (ak)→a∞.


	Ex. 6.1.3. There exists an index N and a real number c such that if k≥N, then ak=c. (Other wordings are possible.)


	Ex. 6.1.4. Hint: Think in terms of adversarial games.






Exercises for Section 6.2


	Ex. 6.2.1. In each part, factor out the highest power of k from the numerator and from the denominator.


	(a)If k>0,

4k2−5k+75k2+1=k2(4−5/k+7/k2)k2(5+1/k2)=4−5/k+7/k25+1/k2.

By Example 6.1.13 and Proposition 6.2.1, this approaches 4/5 as k→∞.


	(b)Page 411If k>0,

4k5−5k+75k4+1=k5(4−5/k4+7/k5)k4(5+1/k4)=k⋅(4−5/k4+7/k5)5+1/k4.

The fraction approaches 4/5 as k→∞, so this sequence has unbounded terms, hence is divergent.





	Ex. 6.2.2. Hint: The claim is immediate if p is constant or p(x)=x. Use induction on the degree and Proposition 6.2.1 to establish the general case.


	Ex. 6.2.3. Largely, the point is the introduce the idea of a “sequence of functions.”


	(a)Proposition 6.1.16 says, more specifically, that (fk(x))→0 if 0≤x<1 and (fk(1))→1.


	(b)It suffices to prove

sup{|fk(x)−f(x)|:0≤x≤1}=sup{xk:0≤x<1}=1for each k.

Since xk<1 if 0≤x<1, the supremum is no larger than 1. On the other hand, the sequence with terms xm=1−2−m<1 strictly increases with limit 1, and fk(xm)=(1−2−m)k→1, so 1≤sup{xk:0≤x<1}.

We have shown sup{|fk(x)−f(x)|:0≤x≤1}=1 for every k, which implies the sequence of suprema does not converge to 0.





	Ex. 6.2.5. Hint: Each general term is a product of k factors. As in Example 6.2.4, taking limits “factor by factor” does not strictly apply. Nonetheless, examining factors can help if there are “useful trends.”






Exercises for Section 6.3


	Ex. 6.3.1. In words, if each term of a sequence is no smaller than the preceding term, then all subsequent terms are no smaller than a given term (and conversely).

If (ii) holds, then the particular case m=1 says ak≤ak+1 for all k, so (i) holds.

Conversely, assume (i) holds, and if m≥0 let P(m) be the statement “ak≤ak+n for all k.” The statement P(0), ak≤ak for all k, is immediate, and P(1) is our hypothesis (i).

Page 412Assume inductively that P(m) is true for some m, namely, that ak≤ak+m if k≥0. By (i), we have ak≤ak+m≤a(k+m)+1=ak+(m+1) for all k. That is, P(m) implies P(m+1). Since the base cases P(0) and P(1) are true, and since P(m) implies P(m+1) if m≥1, induction guarantees P(n) is true for all n; that is, (ii) is true.


	Ex. 6.3.2.


	(a)If 2k−13>0, namely, if k≥7, then increasing k makes the denominator larger and positive, so ak decreases.

More formally, if k≥N=7 and m>0, then

ak−ak+m=12k−13−12k+2m−13=(2k+2m−13)−(2k−13)2k−13=2m2k+2m−13>0,

since the numerator and denominator are both positive. This means (ak) is eventually decreasing.


	(b)Since 8k−3=4(2k−13)+49, we have

bk=8k−32k−13=4+492k−13.

By (a), this is eventually decreasing, specifically, provided k≥7.





	Ex. 6.3.4. It suffices to “shuffle” two sequences approaching 0 at different rates. Since 2+(−1)k is alternately 3 and 1, for example, ak=(2+(−1)k)/2k is not eventually monotone. To prove this we can note that the ratio of consecutive terms ak+1/ak is 3/2>1 if k is odd and 1/6<1 if k is even. (If the sequence were eventually monotone, these ratios would be eventually no larger than 1.)


	Ex. 6.3.6. Assume ε>0 arbitrarily. Because (ak)→L, there is an N1 such that if k≥N1, then |ak−L|<ε, or equivalently, −ε<ak−L<ε, which implies L−ε<ak. Similarly, there is an N2 such that if k≥N2, then |bk−L|<ε, or L−ε<bk<L+ε, which implies bk<L+ε.

Put N=max(N1,N2). If k≥N, then k≥N1 and k≥N2, so both inequalities above hold: We have L−ε<ak≤ck≤bk<L+ε. This implies |ck−L|<ε. Since ε was arbitrary, (ck)→L.


	Ex. 6.3.9. Let M be an arbitrary real number. Since (ak)→0, there exists an index N such that if k≥N, then 0<ak<1/(1+|M|), and therefore bk=1/ak>1+|M|>M. Since M was arbitrary, (bk)→∞.


	Ex. 6.3.11. Hint: One challenge is working with the (scant) tools developed so far. Properties of the function f(x)=bx, particularly its monotonicity, whether or not it is larger or smaller than x, and how |b−f(x)| compares to |b−x|, will help.
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	Ex. 6.4.1. The subsequence of even-index terms is constant (equal to 1) and the subsequence of odd-index terms is constant (equal to −1). Since −1≠1, this sequence diverges.


	Ex. 6.4.5. We can accomplish (b), and implicitly therefore (a), by considering the reciprocal sequence bk=1/ak and applying Exercise 6.4.4. Alternatively, we can proceed in a self-contained way:


	(a)For each m, we can use the positive minimum ε=min{ak:k≤m} as challenge in the limit game. Since (ak)→0, there exists an n such that k≥n implies ak=|ak−0|<ε. In particular, an<ε=min{ak:k≤m}, so n>m and an<am.


	(b)Proceed inductively using (a): Let ν(0)=0. If we have chose ν(k), use (a) to pick ν(k+1)>ν(k) such that aν(k+1)<aν(k). The resulting subsequence (aν(k))k=0∞ is strictly decreasing by construction.





	Ex. 6.4.6. Hint: Proceed along the same lines as Exercise 6.4.5.


	Ex. 6.4.7. In light of density of Q in R, a standard idiom is to look at intervals centered at α with shrinking radii, or with right endpoint α.


	(a)For each natural number k, density of Q in R guarantees there exists a rational number ak in B2−k(α). Since |ak−α|<2−k for each k, (ak)→α. (We can, with minor modifications left to you, arrange that ak≠α for all k, and/or that |ak+1−α|<|ak−α| for all k.)


	(b)Let A={rinQ:r<α}. Since A is non-empty and bounded above by α, it has a real supremum supA≤α. It suffices to show that for every ε, α−ε is not an upper bound of A. But because Q is dense in R, there is a rational number r in (α−ε,α). Particularly, r<α, so r∈A.





	Ex. 6.4.12. Hints: For (a) part of the question is copying the definitions for real sequences, and part is recognizing that we need additional structure to measure distance between points in the plane. For definiteness, use the function d2 of Exercise 6.4.11.

For (c) you'll need the triangle inequality. By (b), it suffices to work with d∞ instead of d2, for which the triangle inequality is easily verified.







Page 414Solutions: Infinite Series


Exercises for Section 7.1


	Ex. 7.1.1.


	(a)This is a geometric series with first term a=4 and ratio r=−3/5. Since |r|<1, the series converges, with sum a/(1−r)=5/2.


	(b)This is a geometric series with first term a=0.01 and ratio r=7/5. Since |r|>1, the series diverges


	(c)This is a geometric series with first term a=0, so the geometric series formula as stated does not apply. Although the ratio r=1000 is “in the divergence range,” all the terms are 0, so the series converges and the sum is 0.





	Ex. 7.1.2. Following the suggestion, we have

1000x=123.45345345―,x=0.12345345―,999x=123.33;x=12333999⋅100=1233399900=411133300.


	Ex. 7.1.4. Hint: If you are stuck, see Exercise 2.1.3.


	Ex. 7.1.6. Hint: First decompose the summands in partial fractions.


	Ex. 7.1.8. Each series is geometric, so converges if and only if the absolute ratio is smaller than 1. The respective sums are:


	(a)11−x2 if |x|<1;


	(b)1(1/2)−x2 if |x|<1/2;


	(c)1x2 if 0<|x|<1.





	Ex. 7.1.13. Hint for (c): Assume (ak) and (bk) are distinct digit sequences defining the same real number, and assume (i) ak=bk if 1≤k<n; (ii) an<bn. How much smaller than bn can an be? What can you say about all subsequent digits of each sequence?


	Ex. 7.1.14. Answer: The image of f is the closed unit interval, [0,1]. The function f is not injective. If f(A)=f(A′) for distinct sets A and A′, then one set is non-empty and finite, say A, and the other results from removing the largest element and appending all subsequent integers. In symbols, if N=maxA, then A′=(A∖{N})∪{j}j=N+1∞.
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	Ex. 7.2.2. The series converges if p>0 by the alternating series test, and converges absolutely if and only if p>1 by the p-series test.


	Ex. 7.2.6. Answer: ck=∑j=0k(kj)ajbk−j.






Exercises for Section 7.3


	Ex. 7.3.1. If ak=1/k2, the alternating series bounds give

1n2−1(n+1)2=2n+1n2(n+1)2≤|∑k=n∞(−1)kk2|≤1n2.


	Ex. 7.3.3. In the notation of the proof, and under the assumption ak≥0 for all k, we have

s2m≤s2m+2≤ℓ≤s2m+3≤s2m+1

for all m. Consequently, if n=2m is even, then

an−an+1=s2m+2−s2m≤ℓ−sn=∑k=n∞(−1)kak≤s2m+1−s2m=an.

If instead n=2m+1 is odd, then

an−an+1=s2m+1−s2m+3≤s2m+1−ℓ=−∑k=n∞(−1)kak≤s2m+1−s2m+2=an.


	Ex. 7.3.4.


	(a)Since (2k+2)!=(2k+2)(2k+1)(2k)!, the ratio test gives

limk→∞|x2k+2(2k+2)!⋅(2k)!x2k|=limk→∞|x2(2k+2)(2k+1)|=0for all real x.

Since this is less than 1, the series converges absolutely for all real x.


	(b)If |x|≤2, the terms are decreasing in absolute value (with k) if k≥1. The error estimate for an alternating series gives

|C(x)−Cn(x)|=|∑k=n∞(−1)kx2k(2k)!|=|x|2n(2n)!≤4n(2n)!

Page 416This bound is smaller than 0.5×10−6 if and only if (2n)!/4n>2,000,000. For n=5 we have 10!/45=3,628,800/1024>3000. Multiplying by successive ratios,

10!45⏟>3000⋅12⋅114⏟=33⋅14⋅134⏟>45,

which suffices. That is, n=6 is not enough, but n=7 suffices.









Exercises for Section 7.4


	Ex. 7.4.5. If ϕ=12(1+5), then

ϕ2=(12(1+5))2=14(1+25+5)=12(3+5)=1+ϕ.


	(a)Let P(n) be the pair of inequalities Fn≤ϕn and Fn+1≤ϕn+1. The base case P(0) is true: F0=1≤ϕ0 and F1=1≤ϕ. Assume inductively that P(k) is true for some k. Since Fk+1≤ϕk+1 by hypothesis, it suffices to prove Fk+2≤ϕk+2. But since 1+ϕ=ϕ2,

Fk+2=Fk+Fk+1≤ϕk+ϕk+1=ϕk(1+ϕ)=ϕk+2,

so P(k+1) is true. Since P(0) is true and P(k) implies P(k+1) for all k, P(n) is true for all n by mathematical induction. Particularly, Fn≤ϕn for all n.


	(b)The sequence starts 1, 1, 2, 3, 5, 8, 13, so

f(x)=1+x+2x2+3x3+5x4+8x5+13x6+⋯.

Since

|f(x)|=|∑k=0∞Fkxk|≤∑k=0∞Fk|x|k≤∑k=0∞ϕk|x|k

and the rightmost series is geometric with radius 1/ϕ, the series for f(x) converges absolutely on the interval (−ϕ,ϕ).


	(c)By splitting off terms of degree less than 2 and shifting indices,

(1−x−x2)f(x)=(1−x−x2)∑k=0∞Fkxk=∑k=0∞Fkxk−∑k=0∞Fkxk+1−∑k=0∞Fkxk+2=[(1+x)+∑k=2∞Fkxk]−[x+∑k=1∞Fkxk+1]−∑k=0∞Fkxk+2=1+∑k=0∞Fk+2xk+2−∑k=0∞Fk+1xk+2−∑k=0∞Fkxk+2=1+∑k=0∞(Fk+2−Fk+1−Fk)xk+2=1,

Page 417the last because every coefficient in parentheses is 0 by the recursion for Fk. This calculation is meaningful on every interval where the series f(x) converges. Particularly, f(x)=1/(1−x−x2) if |x|<ϕ.





	Ex. 7.4.7. Hint for (c): Suppose E(1)=p/q with p and q integers in lowest terms. Show that E(1) is not an integer, namely, that q>1. Now use (a) and (b) to show there exists an integer between 0 and 1.







Solutions: Continuous Functions


Exercises for Section 8.1


	Ex. 8.1.1. The graph is shown with compressed vertical scale in Figure A.4.


	(a)Since xk<0 for all k we have f(xk)=xk=−1/k; the “image sequence” converges to f(0)=0.


	(b)Here, by contrast, we have xk>0, so f(xk)=1/xk=k diverges to ∞.


	(c)Because there exists a sequence (xk)→0 whose image under f does not approach f(0), f is discontinuous at 0.

[image: A piecewise function is shown symmetric about the vertical axis, with a smooth decreasing curve on the right and a reflected increasing segment on the left. Vertical dashed lines mark decreasing points x 1, x 2, x 3, x 4 moving inward toward the origin on both sides.]
Figure A.4 The function of Exercise 8.1.1. ⏎







	Ex. 8.1.2. The graph is shown in Figure A.5.


	(a)Suppose ℓ≠0, and put ε=|ℓ|>0. The open ball Bε(ℓ) does not contain 0 (by the reverse triangle inequality, for example), so f is constant in this ball, either 1 (if ℓ>0) or −1 (if ℓ<0).

Suppose ℓ>0. If (xk)→ℓ, there exists an N such that if k≥N, then |xk−ℓ|<ε, which implies f(xk)=1. That is, the image sequence is eventually constant, hence converges to 1=f(ℓ). Since (xk) was arbitrary, f is continuous at ℓ. An entirely similar argument handles the case ℓ<0.


	(b)Page 418There is no way to define f(0) to make f continuous at 0. That is, f has no continuous extension to 0. If there were, then for every sequence (xk) converging to 0, the image sequence (f(xk)) would converge to f(0). But the sequence xk=(−1)k−1/k converges to 0, while f(xk)=(−1)k−1, which by Example 6.1.15 does not converge.

[image: A step function with value 1 for positive inputs and negative 1 for negative inputs is plotted, with a jump discontinuity at 0. Hollow circles at the origin indicate the function is undefined there. Labeled points x 1, x 3, x 5 lie on the positive side, and x 2, x 4, x 6 on the negative side, each connected by dashed vertical lines to their corresponding constant function values.]
Figure A.5 The signum function of Exercise 8.1.2. ⏎







	Ex. 8.1.4. Figure 5.6 shows the graph of χQ.


	(a)The set of rationals is dense in R, Theorem 4.3.12, and by Exercise 4.3.6 the set of irrationals is dense. If ℓ is an arbitrary real number, then for each positive integer k there exist a rational number xk such that |xk−ℓ|<1/k and an irrational number yk such that |yk−ℓ|<1/k.

By construction, (xk)→ℓ and (yk)→ℓ. Also by construction, f(xk)=1 for all k, and f(yk)=0 for all k. It follows that f is discontinuous at ℓ.


	(b)Write g=f⋅χQ. For all real x, we have |χQ(x)|≤|1|, and consequently |g(x)|=|f(x)χQ(x)|≤|f(x)|.

Assume f(x∞)=0 for some x∞ and (xk) is an arbitrary sequence converging to x∞. Fix ε arbitrarily and pick an index N such that if k≥N then Page 419|f(xk)|=|f(xk)−f(x∞)|<ε, and consequently |g(xk)|≤|f(xk)|<ε. Since ε was arbitrary, we have shown (g(xk))→g(x∞).

An alternative argument can be given using the squeeze theorem (Exercise 6.3.6) by noting 0≤g(x)≤|f(x)| for all real x.

It remains to show g is discontinuous at every real ℓ such that f(ℓ)≠0. In the notation of part (a), pick a rational sequence (xk) converging to ℓ, and an irrational sequence (yk) converging to ℓ. Since g(xk)=0 for all k while g(yk)=f(yk)→f(ℓ)≠0, g is discontinuous at ℓ.





	Ex. 8.1.5. Hint: If n is a positive integer, then f(x)≥1/n if and only if x∈Qn. By Exercise 4.4.3 (b), the set Qn has no limit points.






Exercises for Section 8.2


	Ex. 8.2.1. We say lim(f,c)=L if: For every ε, there exists a δ such that if 0<|x−c|<δ, then |f(x)−L|<ε. But since f(x)=g(x) if x≠c, and since 0<|x−c| implies x≠c, the preceding condition implies if 0<|x−c|<δ, then |g(x)−L|<ε. Thus lim(g,c)=L, in the sense that the limit exists and is equal to L.


	Ex. 8.2.2. Assume ε>0, and put δ=ε/3. If |x−c|<δ, then

|f(x)−f(c)|=|(3x+5)−(3c+5)|=|3(x−c)|=3|x−c|<3δ=ε.


	Ex. 8.2.3. Hint: As needed, re-read the proof of Proposition 6.2.1 (ii).


	Ex. 8.2.4. Hint: As needed, re-read the proof of Proposition 6.2.1 (iii).


	Ex. 8.2.14. (Sketch) Suppose a<b, and put ℓ=b−a. The mean value property determines f(b+ℓ) (in terms of f(a) and f(b)) since b is the midpoint of [a,b+ℓ]. By induction, f(b+nℓ) is determined if n≥0, and similarly f(a−nℓ) is determined if n≥0. In terms of sets, the values f(a) and f(b) uniquely determine f(x) for all x in a+ℓZ.

Further, f is determined at every midpoint 12(a+b), hence is determined on a+(ℓ/2)Z. Another induction shows f is determined on a+2−nℓZ for every n in N, and therefore on the union. The resulting countable set of real numbers is “closed under taking midpoints,” so in general the mean value property gives no additional information.

(A dyadic rational is a real number of the form m2−k for some integer m and non-negative integer k, see Exercise 4.3.7. The set of dyadic rationals is Page 420denoted Z[12]. The preceding remarks amount to the claim that if f(a) and f(b) are specified, and if ℓ=b−a, then f is determined on a+ℓZ[12].)

In general (assuming the axiom of choice), we may freely specify f(0), and f(xi) for some (uncountable) set {xi}i∈I of real numbers such that (i) every real number is a dyadic multiple of some xi and (ii) no two points xi and xi′ have dyadic ratio.

Because the dyadic rationals are dense in R, however, if f is continuous, then f is affine, given by f(x)=f(0)+x(f(1)−f(0)).






Exercises for Section 8.3


	Ex. 8.3.1. By the binomial theorem or multiplying out,

(x0+h)2=x02+2x0h+h2=x02+h(2x0+h)[≈x02+O(h)]=x02+2x0h+h2[≈x02+2x0h+O(h2)].






Exercises for Section 8.4


	Ex. 8.4.1. Hint: By definition, xm/n is an integer power of x1/n.


	Ex. 8.4.3. Since ρ≥1, we have 1≤ρ1/n for all positive n, or ρ1/n=1+un for some non-negative un. By Proposition 3.3.5, 1+nun≤(1+un)n=ρ for all positive n, from which we deduce 0≤un<ρ/n. By the squeeze theorem or reciprocal finitude, (un)→0 and therefore (ρ1/n)→1.

If instead 0<ρ<1, then 1<1/ρ. The argument of the preceding paragraph shows 1/(ρ1/n)=(1/ρ)1/n→1, so ρ1/n→1 as well.


	Ex. 8.4.6. Each sign change of f(x) guarantees a solution of f(x)=0 by the intermediate value theorem. There is a sign change on [−1,0], a sign change on [0,1], and f(2)=0, so there are at least three zeros of f.

To analyze −6, look for values that “bracket” −6, namely, for sign changes of f(x)−(−6)=f(x)+6. Sign changes occur in [−2,−1] and [0,1], so there are at least two solutions of f(x)=−6.


	Ex. 8.4.7. (Injectivity). Since odd integer powers of x with positive coefficient are increasing, and a sum of increasing functions in increasing, f is increasing, hence injective.

Page 421(Surjectivity). Let y be an arbitrary real number. It suffices to find inputs −M and M whose values bracket y, and in fact to ensure −3M+1<y<3M+1. Let M=|y|+1. We have

f(−M)=−M5−3M+1<−3M+1=−3|y|−2<−|y|≤y≤|y|≤3|y|+4=3M+1<f(M).

Since f(−M)<y<f(M), the intermediate value theorem guarantees there is an x in (−M,M) such that y=f(x). Since y was arbitrary, f is surjective.


	Ex. 8.4.10.


	(a)Assume y0 is real. If xn=y0, then |x|n=|xn|=|y0|, so |x|=|y0|n. There are at most two real numbers with any given absolute value, so at most two x satisfying xn=y0. (By contrast, as we will see in Chapter 14, every non-zero complex number has precisely n distinct complex nth roots.)


	(b)If n=2m+1 is odd, then x<0 if and only if xn<0. (Technically, we need an induction on m together with x2>0 for all real x.)

If y0>0, there exists a unique positive real x such that xn=y0, and there are no other real nth roots since 0n=0 and xn<0 if x<0.

If y0<0, there is a unique real nth root x of −y0>0 by the preceding argument, and (−x)n=y0 is therefore the unique real nth root of y0. Finally, 0 has a unique real nth root, namely 0.

Since every real y0 has a unique real nth root, the nth power mapping is a bijection.





	Ex. 8.4.11. Hint: Apply the intermediate value theorem to g(x)=f(x)−x.






Exercises for Section 8.5


	Ex. 8.5.1. Since p(5) is positive, ε=f(5) is positive. Because the denominator is positive and has degree greater than the degree of p, |f(x)|→0 as |x|→∞ by Proposition 8.5.8 (vi) and Example 8.5.9.

Consequently, there is an R such that |x|>R implies |f(x)|<ε/2<f(5). Without loss of generality we may assume R>5. Apply the extreme value theorem to f on [−R,R]: There exists a point xmax such that f(x)≤f(xmax) for all x in [−R,R]. But if |x|>R, then

f(x)<ε/2<f(5)≤f(x0);

Page 422that is, f(x0) is an absolute maximum for f on R.


	Ex. 8.5.7. No to both. A counterexample to (b), and therefore to (a), is to let ψ be a continuous, periodic function that achieves both positive and negative values, and to put f(x)=(1/x)ψ(1/x) on (0,1]. To prove such a ψ exists, it suffices to define ψ(x)=−1+2|x| on [−1,1], and to invoke Proposition 5.2.17.






Exercises for Section 8.6


	Ex. 8.6.2. Assume f(x)=x+(1/x).


	(a)If x, x′∈(1,∞), then

|f(x′)−f(x)|=|x−x′+1x−1x′|=|x−x′+x′−xxx′|=|x−x′|⋅|1−1xx′|,

which is smaller than |x−x′|. Despite this, f is not a contraction on (1,∞): The factor in the absolute value is not bounded above by any real number less than 1.


	(b)Contrapositively, if the recursive sequence with seed x0=2 is condensing, it has a real limit x∞ by Proposition 6.4.18. Exercise 8.6.1 implies f(x∞)=x∞, or 1/x∞=0. No such real number exists, so (xk) is not condensing.










Solutions: Integration


Exercises for Section 9.1


	Ex. 9.1.1. Using the “one moving target” principle, put h=g−f, so h is integrable and non-negative. By linearity of the integral, it suffices to prove the integral of h is non-negative.

For every splitting Π of [a,b], and every piece Ii associated to Π, we have mi=inf{h(t):t∈Ii}≥0 since h(t)≥0 for all t. Consequently, L(h,Π)=∑imiΔti≥0, so the integral, the supremum of the lower sums, is non-negative.


	Ex. 9.1.3. If 0≤i≤n, the ith piece Ii=[ti,ti+1]=[ib/n,(i+1)b/n] has length Δt=b/n. Since f is increasing, the infimum is the left-hand endpoint Page 423value and the supremum is the right-hand value: mi=f(ti)=ib/n and Mi=f(ti+1)=(i+1)b/n. The lower and upper sums are

L(f,Π)=∑i=0n−1miΔt=∑i=0n−1ibn⋅bn=b2n2∑i=0n−1i=b2n2n(n−1)2=b22n−1n,U(f,Π)=∑i=0n−1MiΔt=∑i=0n−1(i+1)bn⋅bn=b2n2∑i=0n−1(i+1)=L(f,Π)+b2n.

The supremum over all lower sums is no smaller than the supremum over these lower sums, which is b2/2. Similarly, the infimum over all upper sums is no larger than the infimum over these upper sums, which is b2/2. Consequently, the integral is equal to b2/2.


	Ex. 9.1.5. Fix ε arbitrarily. The lower sums are all 0, so it suffices to prove there exists a splitting Π for which U(f,Π)<ε.

If ε≥1, take Π={0,1}. Otherwise, we'll use half our “error budget” to cover all but finitely many 1/k near 0 and the other half to cover any remaining 1/k.

Consider the closed intervals I0=[0,ε/2], and for each positive i the intersection of [0,1] with the closed interval Ii of length ε2−(i+1) centered at 1/i. The total length of these interval is at most 3ε/4, because we have clipped off the right half of I1. Moreover, all but finitely many of the Ii with i greater than 1 are contained in I0 since (1/i)+2−(i+2)]→0. The union ⋃i=0∞Ii is therefore a finite union of disjoint closed intervals, say {Jj}j=0n−1. Let Π be the splitting consisting of the endpoints of these intervals. Since f≤1 on [0,1], U(f,Π) is no larger than the sum of the lengths of the Jj, which is less than ε.

We have shown that for every ε, there exists a splitting for which L(f,Π)=0 and U(f,Π)<ε. By Proposition 9.1.9, f is integrable, and the integral is supL(f,Π)=0.






Exercises for Section 9.2


	Ex. 9.2.1. Throughout, assume b>0 and write f(t)=tk.

(f is integrable on [0,b]). Assume n is a positive integer and Π={ti}i=0n is the equal-length splitting of [0,b] with n pieces. Since f is strictly increasing on [0,b], we have mi=f(ti) and Mi=f(ti+1) for each i. Consequently,

U(f,Π)−L(f,Π)=∑i=0n−1(Mi−mi)Δt=∑i=0n−1(f(ti+1)−f(ti))Δt=(f(b)−f(0))bn=bk+1n.

Page 424If ε is arbitrary, reciprocal finitude guarantees that there exists an n such that U(f,Π)−L(f,Π)=bk+1/n<ε. By Proposition 9.1.9, f is integrable on [0,b].

(f is integrable on [−b,0]). Immediate from the preceding argument and Proposition 9.2.8 (ii) with μ=−1.

Now assume a and b are arbitrary and a<b.

(f is integrable on [a,b]). The cocycle property gives

∫abf=∫a0f+∫0bf,

including existence of the integral on the left given existence of the integrals on the right.

It remains to evaluate the integral. We first evaluate the integral from 0 to b assuming b>0. Since f is non-negative, we have, for every δ in (0,b),

bk+1−δk+1k+1=∫δbtkdt≤∫0btkdt≤δk+1+bk+1−δk+1k+1.

Taking limits as δ→0 gives ∫0btkdt=bk+1/(k+1). The cocycle condition implies

∫abtkdt=∫a0tkdt+∫0btkdt=−∫0atkdt+∫0btkdt=bk+1−ak+1k+1.


	Ex. 9.2.4.


	(a)Since the set of rational numbers is countable, there exists an injective sequence (aj)j=0∞ whose set of terms is Q. For each k, define Ak={j}j=0k−1 and fk=χAk. Since each fk is non-zero only at finitely many points, each is integrable, with integral equal to 0 over an arbitrary interval [a,b].


	(b)If Ik=[ak−ε2−(k+2),ak+ε2−(k+2)] is the “closed ball” of length ε2−(k+1) about ak, then ak∈Ik for each k, and the total length of the Ik is ε by the geometric series formula.


	(c)The sets in (b) tell us that if the integral were defined in a way that permitted “countable splittings,” then the lower sums of f would all be 0 and the upper sums could be made arbitrarily small. It would then be reasonable to define the integral of f over an arbitrary interval to be 0.





	Ex. 9.2.5. Hints: The hypothesis might remind you of uniform convergence. Earlier proofs about continuous functions converging to a continuous limit may provide structural guidance.
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	Ex. 9.3.1. For definiteness, extend f to [a,b] by 0; that is, continue to denote the extended function by f, and put f(a)=f(b)=0. Assume |f|≤M on (a,b), and ε>0 arbitrarily. Pick points a′<b′ in (a,b) so that a′−a<ε/(8M) and b−b′<ε/(8M).

Since f is continuous on [a′,b′], there exists a splitting Π′ whose upper sum minus lower sum is less than ε/2. Let Π=Π′∪{a,b}. On the first interval [a,a′], supf−inf≤2M. Similarly on the last interval [b′,b], supf−inf≤2M. Consequently,

U(f,Π)−L(f,Π)≤2Mε8M+U(f,Π′)−L(f,Π′)+2Mε8M<ε4+ε2+ε4=ε.

Since ε was arbitrary, f is integrable. By Corollary 9.2.2, the endpoint values of f do not affect the value of the integral.


	Ex. 9.3.2. By hypothesis, there exists a t0 in (a,b) such that f(t0)>0. (If f is identically zero in the open interval, continuity implies f=0 at the endpoints.) Corollary 8.2.8 (ii) implies f is locally bounded away from zero: there exists a δ such that if |t−t0|<δ, then f(t)>f(t0)/2. Shrinking δ if necessary, we may assume [t0−δ,t0+δ]⊆[a,b]. Since f is integrable, monotonicity implies

0<(2δ)(f(t0)/2)=∫t0−δt0+δf(t0)/2dt≤∫t0−δt0+δf(t)dt≤∫abf(t)dt.


	Ex. 9.3.3. Hint: Use Proposition 9.2.8 (ii) and Exercise 9.3.2.


	Ex. 9.3.6. We have Δt=b−a, f(t0)=a2, f(t1)=b2, and f(t―0)=14(a+b)2. Consequently, LEFT(f,Π)=a2(b−a), RIGHT(f,Π)=b2(b−a),

TRAP(f,Π)=(a2+b2)(b−a)2,MID(f,Π)=(a+b)2(b−a)4.

The parabolic sum is

13(TRAP(f,Π)+2MID(f,Π))=13[(a2+b2)2+(a+b)22](b−a)=(a2+ab+b2)(b−a)3=b3−a33=∫abt2dt.


	Ex. 9.3.8. Answer for part (c): tk―=1b−abk+1−ak+1k+1=1k+1∑j=0kak−jbj.


	Ex. 9.3.15. Hint: Use Exercise 9.3.14.
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	Ex. 9.4.1. The signum function is non-decreasing on R, hence integrable on every closed, bounded interval [a,b]. (Other proofs are possible.)

If 0≤x, then on [0,x], sgn(t)=1 except at one point. Corollary 9.2.2 guarantees

∫0xsgn(t)dt=∫0x1dt=x−0=x=|x|.

If x<0, then on [x,0], sgn(t)=−1 except at one point. Corollary 9.2.2 guarantees

∫0xsgn(t)dt=∫0x(−1)dt=−∫0xdt=∫x0dt=0−x=−x=|x|.


	Ex. 9.4.6. Hints: For (a), use induction to handle natural numbers p, then show log(x−p)=−plogx by algebra. For (b), write b=xp/q, so that bq=xp, and use (a).


	Ex. 9.4.13. Hint: First expand 1/t in a geometric series about x0.







Solutions: Differentiation


Exercises for Section 10.1


	Ex. 10.1.1. Suggestion: Write f(x)=ax2+bx+c, calculate the derivative in terms of a, b, and c, and only at the end substitute the given numerical values.


	Ex. 10.1.2. Since f1/3(0)=0, the difference quotient is

Δf1/3(0,h)=f1/3(h)−0h=h1/3h=h−2/3→∞.


	Ex. 10.1.6. Periodicity of f implies that for all x,

f′(x+ℓ)=limh→0f(x+ℓ+h)−f(x+ℓ)h=limh→0f(x+h)−f(x)h=f′(x).

The periodic function 1 does not have a periodic primitive.


	Ex. 10.1.8. Page 427In a word, no. Perhaps the simplest counterexample is f(x)=x and g(x)=0. The equation f(x)=g(x) has solution x=0, but f′(x)=g′(x) reads 1=0. A general explanation is given in [9].


	Ex. 10.1.9. Taking x=0 gives f(0)≤0, which implies f(0)=0.


	(a)The absolute value of the difference quotient of f at 0 is

|limh→0f(h)−f(0)h|=|limh→0f(h)h|≤|limh→0h2h|=0.

This simultaneously proves f′(0) exists and is equal to 0.


	(b)The function f(x)=x2⋅χQ(x) satisfies |f(x)|≤x2 for all real x, hence is differentiable at 0 and f′(0)=0 by (a), but is discontinuous at x for every non-zero x by Exercise 8.1.4 (b).





	Ex. 10.1.11. Let (u,v)=(x−x0,y−y0) denote displacement from (x0,y0) as seen in the viewing window. Zooming in with factor c maps (u,v) to (u/c,v/c), transforming the graph from

y0+v=y=f(x)=f(x0+u),

or v=f(x0+u)−f(x0), to v/c=f(x0+u/c)−f(x0), or

v=f(x0+u/c)−f(x0)1/c=f(x0+u/c)−f(x0)u/c⋅u.

This is a line in the limit if and only if

limc→∞f(x0+u/c)−f(x0)u/c=limh→0f(x0+h)−f(x0)h=f′(x0)

exists, if and only if f is differentiable at x0.






Exercises for Section 10.2


	Ex. 10.2.1. In each part, write f(k) to denote the kth derivative of a function f.


	(a)s′(x)=1−(x2/2!), s′′(x)−−x, s(3)(x)=−1, s(k)(x)=0 if k≥4.


	(b)c′(x)=−s(x), so c(k+1)(x)=−s(k)(x).


	(c)The derivative of each term is the preceding term, and the derivative of the first term is 0, so e′(x)=1+x+(x2/2!), e′′(x)=1+x, e(3)(x)=1, and e(k)(x)=0 if k≥4.





	Ex. 10.2.2. Page 428Differentiating successively, f′(x)=nxn−1, f′′(x)=n(n−1)xn−2, f(3)(x)=n(n−1)(n−2)xn−3, and generally

f(k)(x)=n(n−1)(n−2)⋯(n−k+1)xn−k=n!(n−k)!xn−k,if 0≤k≤n.

Particularly, f(n)(x)=n! is constant, so f(k)(x)=0 if k>n. These formulas may be established using induction on k.


	Ex. 10.2.5. Write r=p/q with q positive. The monomial function g(y)=yq is increasing (hence invertible) and differentiable on (0,∞), with derivative g′(y)=qyq−1. The inverse function is the qth root function, g−1(x)=x1/q. By Theorem 10.2.10, g−1 is differentiable at x=yq, and

(g−1)′(x)=1g′(y)=1qyq−1=1qx(1/q)−1.

Since f(x)=xp/q=(g−1(x))p for all positive x, the preceding calculation and the chain rule imply f′(x)=p(x1/q)p−1⋅(1/q)x(1/q)−1=p/qx(p/q)−1=rxr−1.


	Ex. 10.2.8. Throughout, intuition from calculus guides us.


	(a)Taking u=1+t gives F(t)=(1+t)n+1/(n+1) as a primitive of f. Since the derivative of F(t2) is 2tF′(t2)=2t(1+t2)n=2g(t), G(t)=(1/2)F(t2) is a primitive of g. For h there is no such recourse. Instead, the binomial theorem gives

h(t)=∑k=0n(nk)t2k,H(t)=∑k=0n(nk)t2k+12k+1.


	(b)Similarly, F(t)=2(1+t)(n+2)/2/(n+2) is a primitive of f, G(t)=F(t2) is a primitive of g, and H(t)=(2+t2)(2−n)/2/(2−n) is a primitive of h if n≠2.





	Ex. 10.2.9. Respectively, these are linearity of the derivative, the product rule, the chain rule, and the derivative of an inverse function.






Exercises for Section 10.3


	Ex. 10.3.1. The value of c in (0,b) given by the mean value theorem satisfies

ncn−1=f′(c)=f(b)−f(0)b−0=bnb=bn−1,

Page 429or c=b/(n1/n). (Note that “existence and uniqueness” comes from existence and uniqueness of root of positive real numbers, not from anything specific to the mean value theorem, and is demonstrated by the fact of a formula.)


	Ex. 10.3.2. Answer: When calculating derivatives, expanded form is usually easiest to differentiate, but factored form is easiest for determining the sign. There are four maximal branches of inverse, x=±1±y with all four choices of sign.

FunctionDomain (x)Image (y)MonotonicityInversey=f1(x)(−∞,−1][0,∞)decreasingx=−1+yy=f2(x)[−1,0][0,1]increasingx=−1−yy=f3(x)[0,1][0,1]decreasingx=1−yy=f4(x)[1,∞)[0,∞)increasingx=1+y


	Ex. 10.3.4. Answer: Both are false.


	Ex. 10.3.5. By hypothesis, f is defined near x0.


	(a)Subtracting and adding f(x0) in the numerator gives

limh→0f(x0+h)−f(x0−h)2h=limh→0(f(x0+h)−f(x0))+(f(x0)−f(x0−h))2h=f′(x0).


	(b)We can deduce nothing. For example, if f is “even about x0,” the difference quotient is identically 0, but f might be discontinuous everywhere.





	Ex. 10.3.7. Hint: Let h(x)=f(x)/g(x) and calculate h′.


	Ex. 10.3.8. Hint: Apply the mean value theorem to the function h:[a,b]→R defined by

h(x)=f(x)(g(b)−g(a))−g(x)(f(b)−f(a)).


	Ex. 10.3.9. Hints: For (a), setting f(c)=0 and g(c)=0 extends f and g continuously. Pick δ in (0,r). For each x in (c,c+δ), use the generalized mean value theorem of Exercise 10.3.8 on [c,x] to write (f/g)(x)=(f′/g′)(x0) for some x0 in (c,x).

For (b), if x>R, define F(x)=f(1/x2) and G(x)=g(1/x2), then show part (a) can be applied at 0.
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	Ex. 10.4.2. We have

f′(x)=4x(x2−1)=4x3−4x=4x(x−1)(x+1),f′′(x)=12x2−4=4(3x2−1)=4(3x−1)(3x+1).

Since f′>0 for large x and changes sign at each root, f is decreasing on (−∞,−1] and [0,1] and increasing on [−1,0] and [1,∞). There are four maximal intervals of monotonicity.

Since f′′>0 for large x and changes sign at each root, f is concave on [−3,3] and convex on (−∞,−3] and [3,∞).

There are absolute minima at x=−1 and x=1 (also apparent without calculus), a local maximum at x=0, and inflection points above x=−3 and x=3.


	Ex. 10.4.6. Hint: Intuitively, suppose f is defined on [x0,x0+h] for some positive h. By the mean value theorem applied to f on this interval, there exists a c such that f′(c)=(f(x0+h)−f(x0))/h. Now take the one-sided limit: Since x0<c<x0+h, we have c→x0 as h→0+. The left-hand side approaches f′(x0+), while the right-hand side is a one-sided limit for f′(x0) by definition.

If h<0, we argue similarly, except applying the mean value theorem to f on [x0+h,x0] and letting h→0−.


	Ex. 10.4.7. Answer: Suitably patching parabolic arcs suffices. For convenience, we'll first construct a 2-periodic function ψ2; the function ψ(x)=ψ2(2x) is 1-periodic.

The quadratic function ψ2(x)=x(1−x) on [0,1] is smooth, non-constant, symmetric about the midpoint 1/2, and its graph contains the origin, so its odd extension to [−1,1] is differentiable by patching, and the 2-periodic extension of that to R is differentiable by patching.


	Ex. 10.4.12. Hints: For (a), assume x0 is an interior point of I. Pick a positive r such that Br(x0)⊆I, and put a=x0−r and b=x0+r. Use convexity to prove the graph of f on [a,b] lies between the secant line through (a,f(a)) and (x0,f(x0)) and the secant line through (x0,f(x0)) and (b,f(b)). (Make a sketch to organize the necessary inequalities, and use the definition of convexity to establish these inequalities. “Between” refers to secant lines, not just secant segments.) For (b), show the one-point estimate of part (a) can be made local at an interior point of I.


	Ex. 10.4.13. Page 431Notation slightly different from that in the text may be used to highlight parallel structure. As usual, ε and δ connote positive real numbers throughout.


	(a)Continuous on [a,b]:


For every ε and every x0 in [a,b],

there exists a δ(x0) such that

if x∈[a,b] and |x−x0|<δ(x0), then |f(x)−f(x0)|<ε.



Uniformly continuous on [a,b]:


For every ε,

there exists a δ such that

if {x,x0}⊆[a,b] and |x−x0|<δ, then |f(x)−f(x0)|<ε.



Bounded stretch on [a,b]:


For every ε,

there exists a positive M such that

if {x,x0}⊆[a,b] and |x−x0|<ε/M, then |f(x)−f(x0)|<ε.




	(b)Loosely, bounded stretch says we can pick δ=ε/M; not just independently of x0, but proportional to ε. The square root function on [0,1] is uniformly continuous by Proposition 9.3.4 as a continuous function on a closed, bounded interval. The square root does not have locally bounded stretch at 0: For every δ there exists no M such that 0≤x≤δ implies x≤Mx.

If ψ is a smooth, non-constant, periodic function on R, the differentiable function f(x)=x2ψ(1/x2) on R∖{0} has a differentiable extension to 0, hence is uniformly continuous on, say, [−1,1]. Because the derivative is unbounded, however, for every δ and every real M, there exist points x and x0 in [−1,1] such that |x−x0|<δ and |f(x)−f(x0)|>M|x−x0|.


	(c)Suppose f is continuous at x0. For each ε, let

J(x0,ε)=sup{r:x∈Br(x0)∩[a,b] implies |f(x)−f(x0)|<ε}

and put δ(x0)=supJ(x0). This response is largest in the following sense: If |x−x0|<δ, then |x−x0|<r for some r in J(x0), so |f(x)−f(x0)|<ε. Inversely, for every r greater than δ(x0), if [a,b]⊈Br(x0), then then there exists an x in [a,b] such that |x−x0|<r and |f(x)−f(x0)|≥ε.

If 0<ε′<ε, then J(x0,ε′)⊆J(x0,ε) by transitivity of inequality. By Lemma 4.2.10, δ(x0,ε′)≤δ(x0,ε). Loosely, “the largest winning response is non-decreasing in ε.”


	(d)Page 432Uniform continuity is equivalent to “δ(ε):=δ(x0,ε) is independent of x0.” Bounded stretch means “there exists a positive M such that ε/M≤δ(ε).”


	(e)Bounded stretch implies f(x)≈f(x0)+O(x−x0) for every x0 by definition, with “the same M at each x0.” The converse is not true. For example, the squaring function on R, or the square root function on the open interval (0,∞), satisfy f(x)≈f(x0)+O(x−x0) for every x0, but there is no upper bound to the bounding slopes.


	(f)The points are, (i) We can “gauge” continuity by comparing δ(ε) with non-decreasing functions η(ε)), and smaller functions correspond to weaker continuity, qualitatively since for a given ε we must take δ≤η(ε); (ii) If 0<s<r<1 and M, Mr, and Ms are positive, then for sufficiently small positive ε, we have (ε/Ms)1/s<(ε/Mr)1/r<ε/M.


	(g)If f is “1.0001-continuous” on an interval, then f is constant: For each x0 in (a,b), Δf(x0,h)≈O(h0.0001), so f′(x0)=0.










Solutions: The Fundamental Theorems of Calculus


Exercises for Section 11.1


	Ex. 11.1.1. If x≥0, we have F(x)=∫0xdt=x; if instead x<0, we have F(x)=∫0x0dt=0. The graph is the union of the negative x-axis and the line y=x if x≥0.


	Ex. 11.1.3. Answers:


	(a)G′(x)=2xf(x2).


	(b)H′(x)=2xf(x2)−f(x).


	(c)Φ′(x)=f(ϕ(x))ϕ′(x)−f(ψ(x))ψ′(x).





	Ex. 11.1.5. (Existence). The function F(x)=c+∫x0xf [=c+∫x0xf(t)dt] is a solution by Theorem 11.1.1.

(Uniqueness). If G is another solution, the difference H=F−G satisfies H′=F′−G′=f−f=0 in I and H(x0)=0. By the identity theorem, H is constant. Thus, for all x in I, F(x)−G(x)=H(x)=H(0)=0, so F=G.


	Ex. 11.1.6. No, there does not. Theorem 11.1.1 implies

f(x)=−x1−x2,−1<x<1,

Page 433and this function is not bounded, hence has no integrable extension.


	Ex. 11.1.8. Our goal is to construct a “second primitive” of f.


	(a)Immediately from Theorem 11.1.1, we have g′(x)=xf(x). For h′, factor x from the integral and use the product rule and Theorem 11.1.1 to get

h(x)=x∫0xf(t)dt,h′(x)=xf(x)+∫0xf(t)dt.


	(b)Put

F(x)=∫0x(x−t)f(t)dt=h(x)−g(x),G(x)=∫0x[∫0sf(t)dt]ds.

By (a) and Theorem 11.1.1,

F′(x)=h′(x)−g′(x)=xf(x)+∫0xf(t)dt−xf(x)=∫0xf(t)dt=G′(x).

By the identity theorem, F−G is constant. Since F(0)=0=G(0), we have F−G=0, or F=G. Two applications of differentiating an integral give F′′=f.





	Ex. 11.1.9. Hint: Exercise 11.1.8 may help.


	Ex. 11.1.10. Hint: First multiply the differential equation by 2y′ and integrate.


	Ex. 11.1.11. Hint: Consider the function pn(t)=tn if 0<t and 0 otherwise. First show pn is of class Cn−1.


	Ex. 11.1.13. Hint: The derivative F′=f is continuous, and therefore may be written as a difference of non-negative continuous functions by Exercise 8.2.6.






Exercises for Section 11.2


	Ex. 11.2.4. By Exercise 11.2.3, the nth-degree germ of f(−x) is pn(−x). Consequently, nth-degree germs of the even and odd parts of f are the even and odd parts of pn, namely, the sum of the even-degree terms and the sum of the odd-degree terms.


	Ex. 11.2.5. By hypothesis, f(x)≈pn(x)+O(xn+1). Substituting x2 for x gives g(x)=f(x2)≈pn(x2)+O(x2(n+1)). The polynomial q2n has degree at most 2n, and approximates g to order (2n+2) near x0. By Exercise 11.2.3, q2n is the (2n+1) th-degree germ of g at x0.


	Ex. 11.2.7. Page 434Hint: The (n−1) th-degree remainder is equal to the (n−1) th-degree term plus the nth-degree remainder. Apply the mean value theorem to f(n) on the interval between x0 and zn, and use f(n+1)(x0)=lim(f(n+1),x0)≠0.


	Ex. 11.2.9. Hint: If [α,β]⊆[a,b] and x―=12(α+β) is the midpoint, use the second-degree germ with x0=x― to prove

|∫αβ(f(x)−f(x―))dx|≤K2(β−α)324.

Then apply this estimate to each piece of an equal-length splitting.


	Ex. 11.2.10. Hints: Follow the general outline in Exercise 11.2.9: First establish the n=1 estimate on an arbitrary subinterval. For that, let T:[α,β]→R be the trapezoid error for f on [α,x]:

T(x)=∫αxf(t)dt−12(f(α)+f(x))(x−α),

and put

E(x)=T(x)−[x−αβ−α]3T(β).

Conceptually, interpolate T on [α,β] by a cubic M(x−α)3, the trapezoid error if f′′ were constant, and let E be the difference. Apply the mean value theorem to E on [α,β] to prove there exists a z′ in (α,β) such that E′(z′)=0. Then apply the mean value theorem to E′ on [α,z′] to prove there is a z in (α,z′) such that E′′(z)=0. Conclude that T(β)=−112f′′(z)(β−α)3.


	Ex. 11.2.11. Hints: Follow the general outline in Exercise 11.2.9: First establish the n=1 estimate on an arbitrary subinterval. For that, let r=12(β−α) be the radius of [α,β]. Expand

F(x)=∫x―x―+xf(t)dt,|x|≤r,

about 0 as fourth-degree germ with integral remainder. Use this to prove the error of the parabolic sum is

F(r)−F(−r)−16(F′(−r)+4F′(0)+F′(r))(2r)=172∫0r(F(5)(s)+F(5)(−s))(3(r−s)−4r)(r−s)3dt.

Upon careful substitution, all the non-remainder terms in the error expression cancel. To handle the remainders (there are four integrals, two from the F terms and two from the F′ terms), change variables so all are evaluated over [0,r], then bring out common factors in the integrands.

Page 435Then prove that if |f(4)|≤K4, the absolute value of the right-hand side is no larger than (1/90)K4r5=(1/2880)K4(β−α)5. (Note: If |s|≤r, then F(5)(s)=f(4)(x―+s).)


	Ex. 11.2.12. Writing f(t)=(1+t4)1/2, we have f′(t)=2t3(1+t4)−1/2, and (after a bit of algebra)

f′′(t)=2(1+t4)−3/2(3t2+t6).

To find an upper bound K2 of |f′′|, it suffices to find the absolute maximum of f′′ on [0,1]. By Proposition 10.1.10, the extrema occur at t=0 or t=1, which are endpoints of [0,1], or at points where f′′′(t)=0, which turns out to give the same two candidates. Alternatively, it suffices to maximize the square,

|f′′(t)|2=4t4(3+t4)2(1+t4)3=4u(3+u)2(1+u)3|u=t4,

whose derivative is easier to calculate. Either way, the minimum is at t=0 and the maximum at t=1; thus 0=f′′(0)≤f′′(t)≤f′′(1)=22 for all t in [0,1].

Since 22<3, we may take K2=3 in the midpoint method. The error bound of Exercise 11.2.9 says that with n equal-length intervals on [0,x], the midpoint error is at most

K2(x−0)324n2<x38n2.

This is at most 0.5×10−4 if and only if 20,000x3≤8n2, or n=50x3/2. For example, if x=12, then 18 intervals suffice.


	Ex. 11.2.13. Hint: Direct calculation of derivatives is tedious. Instead, write f(t)=(1+t4)1/2, so f(n)(t)=(1+t4)(1/2)−npn(t) for some polynomial pn, find the recursion relation for pn, and use that to calculate the derivatives.


	Ex. 11.2.15. By Exercise 10.2.6, if x>−1 then

f(k)(x)=(−1)k−1[∏j=1k−12j−12](1+x)(1−2k)/2,for every natural number k.

Fix z in (−1,∞) arbitrarily, and put R=12(1+z), so B2R(z)⊆(−1,∞). Substituting k=n+1,

|f(n+1)(z)Rn+1(n+1)!|=(1+z)−(1+2n)/2Rn+1n+1∏j=1n2j−12j≤R(1+z)1/2(n+1),

which is bounded. By Exercise 11.2.14, f is real-analytic in (−1,∞).
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	Ex. 11.3.1. It suffices to split the first and fourth at 0.


	(a)∫−∞0+∫0∞=2∫0∞. Converges by comparison with max(1,1/x2).


	(b)Converges since (1−x2)−1/2=[(1−x)(1+x)]−1/2≤(1−x)−1/2.


	(c)Diverges by comparison with max(1,1/(2x)).


	(d)∫−10+∫01. Diverges by direct computation.





	Ex. 11.3.4. The partial fractions decomposition of the integrand is

11−t2=12[11−t+11+t].

Change of variables gives

∫0xdt1−t2=12∫0x[dt1−t+dt1−t]=12[−∫11−xduu+∫11+xduu]=12[log(1+x)−log(1−x)]=12log1+x1−x.

The integral is infinite at x=±1, so converges if |x|<1.


	Ex. 11.3.5. Answer: The requested values are:


	(a)∫1∞dttm(t+a)=1(−a)m[−log(1+a)−∑k=1m−1(−a)kk].


	(b)∑k=1∞(−1)k−1k=log2.










Solutions: Exponential Functions


Exercises for Section 12.1


	Ex. 12.1.1. It does matter: (ab)c≠a(bc) in general, even if a=b=c. Since (ab)c=abc can be written unambiguously without parentheses, it's more reasonable to define abc=a(bc).


	Ex. 12.1.3. Page 437It's true mathematically—in a suitable model with no limitations on time—but laughably false in reality given what is observed about cosmology. In an alphabet of C characters, there are Cn strings of length n. The exponential growth of these sets motivates the question.

To make a quantitative model, let's assume there are one hundred characters (letters, numbers, punctuation), and one monkey types ten characters per second without rest. In those conditions, about how long do we expect to wait before we see Hamlet's “To be, or not to be;”? How does this estimate increase if we want to see the entire line, “To be, or not to be; that is the question.” See also Munroe, [22].


	Ex. 12.1.4. By the chain rule, (exp∘u)′=(exp′∘u)u′=(exp∘u)u′ and (log∘|u|)′=(log′∘|u|)(sgnu)u′=u′/u.


	Ex. 12.1.5. Answer: We have f even(t)=t2⋅et/2+e−t/2et/2−e−t/2 and fodd(t)=t2.


	Ex. 12.1.7. Hint: The calculations can be done ad hoc but are streamlined with a lemma: By the product and chain rules, if p is a polynomial and g(x)=p(x)e−x, then g′(x)=p′(x)e−x−p(x)e−x=(p′(x)−p(x))e−x.


	Ex. 12.1.12. We first show log10n is essentially the number of digits of n.


	(a)The inequalities are equivalent because log10 is strictly increasing. Since 10n in decimal is a one followed by n zeros and is the smallest such integer, an integer N has n+1 digits if and only if 10n≤N<10n+1.


	(b)One googolplex, 1010100, has 10100+1 digits by (a). The other number is

N=222222=22224=22216=2265536.

The number of digits of N is D=⌈log10N⌉=⌈265536log102⌉. This is still too large to evaluate directly with a calculator. We have, however, D=10log10D, and

log10D≈65536log102+log10(log102)>19728.

That is, D>1019728, and therefore N>101019728. This means N is so much larger than one googolplex that N divided by one googolplex is still essentially N. (When we divide powers, we subtract the exponents.)





	Ex. 12.1.15. Hint for part (d): Apply the conclusion of part (c) to the numbers Ak=ak/[∑k|ak|p]1/p and Bk=bk/[∑k|bk|q]1/q. Sum over k, and remember 1/p+1/q=1.

For (e), if ∫ab|f|p=0, then ∫ab|f|=0 (Why?), and the stated inequality is automatic. It therefore suffices to assume ∥f∥p and ∥g∥q are positive. Proceed as in (d), with A=|f(x)|/∥f∥p and B=|g(x)|/∥g∥q, and integrate over [a,b].
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	Ex. 12.2.1.


	(a)Substituting t=−logx gives limx→0+xlogx=limt→∞−te−t=limt→∞−t/et. Since 1+t2/2<et if t>0, the rightmost limit is 0.


	(b)Since exp is continuous, part (a) implies

limx→0+xx=limx→0+exp(xlogx)=exp(limx→0+xlogx)=exp(0)=1.


	(c)Substituting t=1/x and using (b), limx→∞x1/x=limt→0+1/tt=1/[limt→0+tt]=1.





	Ex. 12.2.5. All three series converge.


	(a)By Corollary 12.2.5,

lognn3/2=lognn1/4⋅1n5/4≤1n5/4

for sufficiently large n. Since the series with larger terms converges by the p-series test, the original series converges (absolutely in fact).


	(b)The terms are eventually decreasing in absolute value and converge to 0, so the series converges by the alternating series test.


	(c)The terms are positive and decreasing. By the integral test the series converges if and only if

∫2∞dxx(logx)2=∫log2∞dtt2

converges, which it does.









Exercises for Section 12.3


	Ex. 12.3.3. For all real x, cosh2x−sinh2x=1.


	(a)The function sinh is bijective, hence invertible. Algebraically, for each real t the equation t=sinhx may be written equivalently as x=sinh−1t. Since coshx=sinh2x+1, substitution gives

cosh(sinh−1t)=sinh2(sinh−1t)+1=t2+1.


	(b)Page 439The function cosh is bijective, hence invertible, on each of (−∞,0] and [0,∞). If t≥1, the equation t=coshx may be written x=cosh−1t for some unique non-negative real x. Since sinhx=cosh2x−1 if x≥0, substitution gives

sinh(cosh−1t)=cosh2(cosh−1t)−1=t2−1.

The equation t=coshx may also be written x=cosh−1t for some unique non-positive real x. Since sinhx=−cosh2x−1 if x≤0, here we have

sinh(cosh−1t)=−cosh2(cosh−1t)−1=−t2−1.

Particularly, the choice of sign is determined by the branch of cosh−1.





	Ex. 12.3.5. By Proposition 12.3.3,

∫0xu2+1du=∫0sinh−1xsinh2t+1coshtdtu=sinht, du=coshtdt=∫0sinh−1xcosh2tdtsinh2t+1=cosh2t=12∫0sinh−1x(1+cosh2t)dtsinh2t+cosh2t=cosh2t=12(t+12sinh2t)|0sinh−1x=12(t+sinhtcosht)|0sinh−1x2sinhtcosht=sinh2t=12[log(x+x2+1)+x1+x2]coshsinh−1x=x2+1.


	Ex. 12.3.7. Dropping a perpendicular from (cosht,sinht) to the horizontal axis describes a right triangle of base cosht and height sinht, hence area 12coshtsinht. The complement of the shaded area in this triangle is described by inequalities 0≤y≤x2−1 and 1≤x≤cosht, so its area is

∫1coshtx2−1dx=∫0tsinh2udux=coshu,dx=sinhudu=∫0t12(cosh(2u)−1)duProposition 12.3.5=12(12sinh(2u)−u)|u=0t=12(coshtsinht−t)Proposition 12.3.5.

The shaded area is the difference, t/2.


	Ex. 12.3.9. Page 440Hint: This can be done “naively,” but a hyperbolic identity and abstract reasoning give a short, elegant proof.






Exercises for Section 12.4


	Ex. 12.4.1. The first restates Proposition 12.2.3. The second restates Proposition 12.4.5 (ii).


	Ex. 12.4.4. Since −t2≤−t if t≥1 and e−t2≤1 for all real t, we have, for every R greater than 1,

∫0Re−t2dt≤1+∫1Re−tdt<1+∫0Re−tdt=2−e−R.

Since the integral is bounded and increasing in R, it converges.


	Ex. 12.4.6. By factorial growth rate,

e7/8[2ne]2n2n<(2n)!<e[2ne]2n2n,e7/4[ne]2nn<(n!)2<e2[ne]2nn.

Neglecting the constant powers of e in front for the moment,

(2n/e)2n2n(n/e)2nn=22n2n.

To get a lower bound, use the lower bound in the numerator and upper bound in the denominator. For an upper bound, use the upper bound in the numerator and lower bound in the denominator. Thus

22n2e9/8n≤(2nn)=(2n)!(n!)2≤22n2e3/4n.

Incidentally, the sum over k of (2nk) is 22n. The result here says the middle (largest) binomial coefficient is about 1/n of the total. When tossing a fair coin 2n times, the chance of getting precisely n heads is ≈1/n.

By contrast, if ε>0, the chance of getting a fraction f of heads such that |f−(1/2)|<ε turns out to approach 1 as n→∞. The chance of exactly half the tosses being heads is vanishingly small, but the chance the proportion of heads differs from one-half is also vanishingly small.


	Ex. 12.4.9. Suggestion: Prove logβ(⋅,y) is convex along the same lines as log-convexity of Γ. Integrate β(x+1,y) by parts, and obtain an expression in Page 441terms of β(x,y). Show f(x):=Γ(x+y)β(x,y)/Γ(y) satisfies conditions (i)–(iii) of Proposition 12.4.5.


	Ex. 12.4.10. Hint: For all positive x,

1ex−1=e−x1−e−x=e−x∑m=0∞e−mx.

First prove the following converge and are equal:

∫0∞∑m=0∞xs−1e−xe−mxdx=∑m=0∞∫0∞xs−1e−xe−mxdx,

then do a suitable change of variables on the right-hand side. To show the two are equal, which is most of the work, assume δ>0 and N≥1. Separately show

∫0∞∑m=0N−1=∑m=0N−1∫0∞,

and that with estimates customized to the structure of each term,

|∫0∞∑m=N∞−∑m=N∞∫0∞|=|[∫0δ+∫δ∞]∑m=N∞−∑m=N∞∫0∞|

can be made arbitrarily small.







Solutions: Circular Functions


Exercises for Section 13.1


	Ex. 13.1.1. Differentiating termwise,

cos′x=∑k=1∞(−1)kx2k−1(2k−1)!=0−x+x33!−x55!+x77!+⋯sin′x=∑k=0∞(−1)kx2k(2k)!=1−x22!+x44!−x66!+x88!−⋯,

or cos′x=−sinx and sin′x=cosx.
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	Ex. 13.2.1. The fundamental circular identity and double-angle formula for cos,

1=cos2x+sin2xcos(2x)=cos2x−sin2x}for all real x

imply, for all real x,

cos2x=12(1+cos(2x)),sin2x=12(1−cos(2x)).

Writing 2x=θ and taking square roots gives the half-angle formulas

cos(12θ)=12(1+cosθ),sin(12θ)=12(1−cosθ),

which are true if 0≤x≤π/2 (the first quadrant), namely, for θ in [0,π].

If θ=π/4, we have cosθ=2/2, so 12(1±cosθ)=14(2±2). Consequently,

cosπ8=14(2+2)=122+2,sinπ8=14(2−2)=122−2.


	Ex. 13.2.3. Hint: Bound sinx below by a positive multiple of x to prove the integral converges, then use the substitution x=2u and the double angle formula for sin2u to obtain an algebraic equation for the integral, and solve.


	Ex. 13.2.7. Hint: Take x=y=1/2 in Proposition 13.2.10.


	Ex. 13.2.8. Hint: Exercises 10.1.9, 10.4.9, and 12.1.14 may be of interest.


	Ex. 13.2.9. Hint: The summands of each function are individually in [−1,1]. A “peak” of a sinusoid is a point where the value is 1. A “trough” is a point where the value is −1. The inequalities −2≤f(x)≤2 and −2≤g(x)≤2 are immediate. Further, the value 2 is achieved if and only if two peaks coincide, while −2 is achieved if and only if two troughs coincide.

Intuitively, because the periods of the summands have irrational ratio, there is no exact repetition of behavior, but the peaks of one summand “line up arbitrarily closely” with the peaks of the other, and similarly for troughs. The result of Exercise 5.3.10 may be helpful in making this intuition rigorous.






Exercises for Section 13.3


	Ex. 13.3.1. Formally, since secx=1/cosx, the chain rule gives

sec′x=−cos′xcos2x=sinxcos2x=1cosx⋅sinxcosx=secxtanx.

Page 443Both sec and sec′=sectan are defined everywhere except the zero set of cos.


	Ex. 13.3.3. Hint: The half-angle formulas in the solution of Exercise 13.2.1 may help.


	Ex. 13.3.4. Each part refers to SI(x)=∫0xsintdtt.


	(a)Using the sine series, we have

sintt=∑k=0∞(−1)kt2k(2k+1)!=1−t23!+t45!−⋯

for all non-zero real t. The radius is ∞, just as for the sine series, so we may view s as a real-analytic (continuous in particular) function on R satisfying s(0)=1. Integrating term by term,

SI(x)=∫0xsintdtt=∑k=0∞(−1)kx2k+1(2k+1)(2k+1)!=x−x33⋅3!+x55⋅5!−⋯.


	(b)By Theorem 11.1.1, points where SI′=0 are the zeros of s, namely the non-zero integer multiples of π. The corresponding values are, for each positive integer n,

SI(nπ)=∫0nπsintdtt=∑k=0n−1∫kπ(k+1)πsintdtt.


	(c)The quotient rule gives

SI′′(x)=s′(x)=xcosx−sinxx2if x≠0,

and a short series calculation shows s′(x)≈O(x) if x≈0, so SI′′(0)=0 if and only if xcosx−sinx=0. At each non-zero solution, cosx≠0. Consequently, s′(x)=0 if and only if x=tanx. By Corollary 13.3.8, there is exactly one solution xk satisfying (k−12)π<xk<(k+12)π. Since the sign of SI′′ changes at xk, xk is an inflection point of SI, see Proposition 10.4.11.


	(d)The function s “oscillates,” but the size of the oscillations decreases with |t|. Precisely,

s(t+2π)=sintt+2π<s(t)for all non-negative t.

Since

|sint|(k+1)π≤|sint|t≤|sint|kπon [kπ,(k+1)π],

Page 444we have

2(k+1)π≤|∫kπ(k+1)πsinttdt|≤2kπfor all k in Z+.

Let ak denote the integral. The signs of the ak alternate, since the sine function is π-anti-periodic, and |ak+1|<|ak| for all k because the denominator strictly increases from one interval to the next. The absolute maximum value of SI is therefore

SI(π)=∫0πsintdtt.


	(e)By the alternating series test, lim(SI(nπ),∞) exists, and since the partial sums bound the partial integrals, the improper integral

limx→∞SI(x)=∫0∞sintdtt

converges. However, the integral is not absolutely convergent, since

∫0∞|sintt|dt=∑k=0∞∫kπ(k+1)π|sintt|dt≥∑k=0∞2(k+1)π

is (a multiple of) the harmonic series.





	Ex. 13.3.6. Substituting x=rcosθ and y=rsinθ into the equation of the hyperbola gives r2cos2θ−r2sin2θ=1, or, by the double angle formula for cos, r2cos(2θ)=1. This equation has real solutions (r,θ) if and only if 0<cos(2θ), in which case the hyperbola is the polar graph r=sec(2θ). To get a domain geometrically, consider the angles of rays from (0,0) that cross the hyperbola. We may take −π/4<θ<π/4 or 3π/4<θ<5π/4, namely I=(−π/4,π/4)∪(3π/4,5π/4).


	Ex. 13.3.8. The hyperbola has polar equation r2cos(2θ)=1 by Exercise 13.3.6. Inversion sends r to its reciprocal, which sends the hyperbola equation to (1/r2)cos(2θ)=1, or cos(2θ)=r2, or r=cos(2θ). Because cos(2θ)=0 gives r=0, we may take the domain to be the closure of the intervals in Exercise 13.3.6, namely I=[−π/4,π/4]∪[3π/4,5π/4].

To convert to a rectangular equation, one general idiom is to multiply both sides by enough powers of r to convert circular functions to rectangular coordinates. This does not always work, but does here because both circular functions are squared. Multiplying both sides by r2 gives r2cos(2θ)=r4, or x2−y2=(x2+y2)2. This is equivalent because the origin is on the polar graph r=cos(2θ), and the only introduced solution when multiplying by r2 is r=0.
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	Ex. 13.4.3. By Corollary 13.2.16, every point (x,y) such that x>0 or y≠0 may be written uniquely in the form (x,y)=(rcosθ,rsinθ) with r positive and θ in (−π,π). If x>0, then −π/2<θ<π/2, so x and y are both positive, and

y/x=rsinθrcosθ=tanθ,x/y=rcosθrsinθ=cotθ.

Since |arctan|<π/2, we have arctan(y/x)=θ if x>0. If y>0 in addition, then since 0<arccot<π we also have arccot(x/y)=θ. Consequently, the first and second formulas agree in the open first quadrant, where both are defined.

If instead y<0, then −π<θ<0 and cotθ=x/y, so arccot(x/y)=π+θ, or arccot(x/y)−π=θ. Consequently, the first and third formulas agree in the open fourth quadrant, where both are defined.







Solutions: Complex Numbers


Exercises for Section 14.1


	Ex. 14.1.1. Multiplying and dividing by α―, we obtain 1α=α―αα―=a−bia2+b2.


	Ex. 14.1.4. If z and w are complex numbers and n is a natural number, then

(z+w)n=∑k=0n(nk)zn−kwk=∑k∈Z(nk)zn−kwk,

with the terms of the rightmost sum understood to be 0 unless 0≤k≤n.

Each proof we gave for the real case (operational and inductive) formally goes through verbatim. The crucial properties are the field axioms, and existence of binomial coefficients. (Some fields “do not contain a copy of the integers.”)


	Ex. 14.1.6. Answers: For all real x and y,


	(a)(x+iy)2=(x2−y2)+(2xy)i.


	(b)(x+iy)3=(x3−3xy2)+(3x2y−y3)i.


	(c)(x+iy)4=(x4−6x2y2+y4)+(4x3y−4xy3)i.





	Ex. 14.1.9. Page 446Let m, m′, n, and n′ denote arbitrary integers.


	(a)If m+ni and m′+n′i are in A, then

(m+ni)(m′+n′i)=(mm′−nn′)+(mn′+m′n)i.

The real and imaginary parts are integers, so the product is in A.


	(b)Every non-zero element of A has magnitude at least 1, so as a complex number has reciprocal of magnitude at most 1. The invertible elements of A are therefore elements of magnitude 1, namely ±1 and ±i.









Exercises for Section 14.2


	Ex. 14.2.1. In polar form, ω8k=ek(2πi/8)=ekπi/4. In rectangular form,

ω80=1,ω81=122(1+i),ω82=i,ω83=122(−1+i),ω84=−1,ω85=−122(1+i),ω86=−i,ω87=122(1−i).


	Ex. 14.2.8. Let x and y denote arbitrary real numbers. We have

x+iy=exp(u+iv)=eu(cosv+isinv)

if and only if (x,y)=(eucosv,eusinv). By Corollary 13.2.16, every point (x,y) other than (0,0) has a set of polar coordinates (r,θ) such that r=x2+y2>0. Since every positive real number r may be written r=eu for a unique real u, and every polar angle θ is represented by a unique v in (−π,π], exp maps H bijectively to C×.

To calculate the principal logarithm of a complex number z=x+iy, we write z=|z|eiθ in principal polar form, from which we read off the principal logarithm Logz=log|z|+iθ. If α is real and positive, then Logα is real, so αβ=exp(βLogα)=eβlogα, the definition in Chapter 12.

For i, −1=i2, and −i=i−1=i3, the principal polar forms are

i=exp(iπ/2),−1=exp(iπ),−i=exp(−iπ/2),Logi=iπ/2,Log(−1)=iπ,Log(−i)=−iπ/2.

Consequently, ii=exp(iLogi)=e−π/2, (−1)i=e−π, and (−i)i=eπ/2. (Note and caution: Elsewhere you may see complex exponential expressions αβ taking Page 447multiple values, in general infinitely many. Only one of those values is the principal value defined here.)

Since −i=(−1)i but (−i)i≠(−1)iii, the formula (z1z2)β=z1βz2β is not an identity.

Since i3=−i, we have (i3)i=(−i)i=eπ/2, but (ii)3=(2−π/2)3=e−3π/2. Particularly, the formula zββ′=(zβ)β′ is not an identity.

For all non-zero complex z and all β, β′, however, we do have

zβ+β′=exp[(β+β′)Logz]=exp(βLogz)⋅exp(β′Logz)=zβ⋅zβ′.

Finally, the principal logarithms give

i1/2=eiπ/4=(2/2)(1+i),(−1)1/2=eiπ/2=i,(−i)1/2=e−iπ/4=(2/2)(1−i).

Note that (−i)1/2=[(−1)⋅i]1/2≠(−1)1/2⋅i1/2, see also [12].


	Ex. 14.2.9. Answer: ∑k=0∞b2k(−1)k4kt2k(2k)!.







Solutions: Linear Spaces


Exercises for Section 15.1


	Ex. 15.1.1. A mapping f:X→Y is, by definition, a subset f of the ordered product X×Y with the property that for every x in X, there exists a unique y in Y such that (x,y)∈f. That is, the set of mappings from X to Y contains a “separate copy” of Y for each x in X. Selecting a specific mapping amounts to choosing, for each x in X, a unique y in Y, resulting in an indexed list (f(x))x∈X, analogous to how we view real sequences. The space of mappings is therefore analogous to an ordered product of Ys indexed by X, symbolically YX.


	Ex. 15.1.3. Hint: To establish that every uniformly continuous function is in the image of R, prove that if f is uniformly continuous and (xk) converges to a, the image sequence is condensing, hence has a limit, and this limit defines a continuous extension of f to a. The same argument shows f extends continuously to b.






Page 448Exercises for Section 15.2


	Ex. 15.2.1. Answer: e0(x)=1, e1(x)=3x, e2(x)=125(3x2−1),

e3(x)=127(5x2−3x),e4(x)=38(35x4−30x2+3).


	Ex. 15.2.2. By definition, 1=(1,1,…,1).


	(a)Since ⟨1,e1⟩=1 and ∥1∥=n, the angle between 1 and e1 is arccos(1/n). For n=2, this is π/4, as expected from the diagonal of a square. For n=3 the angle is arccos(1/3), a bit larger. Remarkably, if n=4 the angle is arccos(1/2)=π/3. As n→∞, the angle approaches π/2.


	(b)In R10,000, the diagonal of a unit cube has length 10,000=100, namely, one meter if the sides are 1cm. In R30,000=R10,000×R10,000×R10,000, there are three mutually perpendicular one-meter diagonals in a unit cube, whose ordered product is a 3-dimensional cube of side length 1m.





	Ex. 15.2.7. Interpreting vectors in Rn as column matrices, the standard inner product ⟨u,v⟩ may be interpreted as the matrix product uTv. Consequently, ⟨Au,Av⟩=⟨u,v⟩ for all u and v if and only if

uTATAv=AuTAv=uTv=uTInvfor all u and v.

Taking u and v to be arbitrary standard basis vectors shows ATA has the same entries as In.


	Ex. 15.2.9. Suggestion: First extend results about ℓ2 to complex square-summable (“singly-infinite”) sequences, then show a doubly infinite square-summable complex sequence is in effect a pair of square-summable complex sequences.


	Ex. 15.2.10. Hints: For (a), apply the parallelogram law to v−u1 and v−u2 and isolate ∥u2−u1∥2. Estimate the other side, noting that 12(u1+u2)∈U and ∥2v−(u1+u2)∥2=4∥v−12(u1+u2)∥2.

For (b), if u is an arbitrary vector in U, then ∥v−(u0+tu)∥2, a quadratic in t, has a minimum at t=0.






Exercises for Section 15.3


	Ex. 15.3.1. If c is real, then 1=|cv|=|c||v| if and only if |c|=1/|v|, if and only if c=±1/|v|. The two unit vectors proportional to v are ±v/|v|.


	Ex. 15.3.3. Page 449Hint: The proof for the real reverse triangle inequality, Proposition 3.2.11 (ii), carries through with natural modifications.


	Ex. 15.3.4. Because the defining inequalities involve functions that are even in both variables, each ball is symmetric under reflection about either axis. It suffices to sketch the ball in the first quadrant and reflect across the axes.


	(a)In the first quadrant, the closed unit ball is defined by the following inequalities:

∥ ∥1: v1+v2≤1;∥ ∥2: v12+v22≤1;∥ ∥∞: max(v1,v2)≤1.

The solution sets are in Figure A.6.


	(b)For all v=(v1,v2) in the plane,

max(|v1|,|v2|)2≤v12+v22non-negative summands≤v12+2|v1v2|+v22=(|v1|+|v2|)2≤(2max(|v1|,|v2|))2.

[image: Three shaded regions are shown on identical coordinate grids. The first plot displays a diamond-shaped unit ball for the 1-norm, bounded by straight lines connecting negative 1 and 1 on the axes. The second plot shows a circular unit ball for the 2-norm, enclosed by a dashed square. The third plot shows a square-shaped unit ball for the infinity-norm, completely enclosing the unit circle and the 1-norm diamond. All plots are centered at the origin with axes labeled from negative 1 through 1.]
Figure A.6 The closed unit ball in the 1-, 2-, and ∞-norms. ⏎



Since the square root function is increasing, taking square roots preserves the inequalities. Each inequality corresponds to an inclusion of sets, but the inclusion may be opposite to initial impression. An upper bound on a larger quantity bounds a smaller quantity. For example, if ∥v∥1≤1, namely, if v is in the closed unit ball for the 1-norm, then ∥v∥2≤∥v∥1≤1, so v is in the closed unit ball for the 2-norm. The innermost dashed square in Figure A.6 is the closed ball of radius 1/2 in the ∞-norm.





	Ex. 15.3.6. This reiterates the triangle inequality: If ∥u∥<1 and ∥v∥<1, then since 0≤t≤1,

∥(1−t)u+tv∥≤∥(1−t)u∥+∥tv∥=|1−t|∥u∥+|t|∥v∥=(1−t)∥u∥+t∥v∥<1.

Page 450Assume n≥2. To prove ∥ ∥p is not a norm on Rn if 0<p<1, it suffices to consider the unit vectors e1=(1,0) and e2=(0,1), for which ∥ej∥p=1, but for whose midpoint v=12(1,1) we have ∥v∥p=2(1/p)−1>1. Geometrically, the closed unit ball {vinRn:∥v∥p≤1} is not convex.


	Ex. 15.3.10. Put M=max(∥ek∥)k=0n−1. By a straightforward induction,

‖∑k=0n−1tkek‖≤∑k=0n−1|tk|∥ek∥≤M∑k=0n−1|tk|for all (tk)k=0n−1.

By the triangle and reverse triangle inequalities, Lemma 15.3.3, we have, for all (tk)k=0n−1,

∥v∥−M∑k=0n−1|tk|≤∥v∥−‖∑k=0n−1tkek‖≤|‖v∥−‖∑k=0n−1tkek‖|≤Nv((tk)k=0n−1)≤∥v∥+‖∑k=0n−1tkek‖=∥v∥+M∑k=0n−1|tk|,

or

|Nv((tk)k=0n−1)−Nv(0)|≤M∑k=0n−1|tk|.

That is, Nv has bounded stretch at 0 relative to the 1-norm on Rn, hence with respect to the 2-norm, which is equivalent.


	Ex. 15.3.12. This rephrases properties of summable sequences from Chapter 7: If v=(vk)k=0∞ is in ℓp, then

∥v∥p=[∑k=0∞|vk|p]1/p<∞.

If ε>0, use convergence of the series inside the brackets to pick N such that

∑k=N∞|vk|p<εp.

The truncation of v after N terms, namely the sequence u defined by uk=vk if 0≤k<N and uk=0 if N≤k, is in R∞ and ∥v−u∥p<ε.


	Ex. 15.3.13. Answer: The functions f(x)=1 and g(x)=x−(1/2) serve for both parts.


	Ex. 15.3.15. The hint, the triangle inequality, and summing over k give

∑k=0n−1|ak+bk|p≤∑k=0n−1|ak||ak+bk|p/q+∑k=0n−1|bk||ak+bk|p/q.
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[∑k=0n−1|ak|p]1/p[∑k=0n−1|ak+bk|p]1/q+[∑k=0n−1|bk|p]1/p[∑k=0n−1|ak+bk|p]1/q=[[∑k=0n−1|ak|p]1/p+[∑k=0n−1|bk|p]1/p]×[∑k=0n−1|ak+bk|p]1/q.

Since 1−(1/q)=1/p, dividing both sides of

∑k=0n−1|ak+bk|p≤[[∑k=0n−1|ak|p]1/p+[∑k=0n−1|bk|p]1/p]×[∑k=0n−1|ak+bk|p]1/q.

by [∑k|ak+bk|p]1/q gives the stated conclusion.


	Ex. 15.3.16. Hints: For positivity, continuity of f guarantees positivity of the integral of |f|p if f is non-zero, compare the proof of Proposition 9.4.4 (iii).

For the triangle inequality, proceed as in the solution to Exercise 15.3.15 using the result of Exercise 12.1.15 (e).


	Ex. 15.3.17. Hint: Use Exercise 15.3.15 and proceed as in the proof of Corollary 15.1.22.







Solutions: Metric Spaces


Exercises for Section 16.1


	Ex. 16.1.2. Since Brx(x)⊆A for each x, the union is contained in A. Conversely, for each x in A we have x∈Brx(x), so A is contained in the union.


	Ex. 16.1.4. By the triangle inequality,

d(x,y)≤d(x,x′)+d(x′,y)≤d(x,x′)+d(x′,y′)+d(y′,y),d(x′,y′)≤d(x,x′)+d(x,y′)≤d(x,x′)+d(x,y)+d(y′,y).

(Each these might be called a quadrangle inequality.) Subtracting the “mixed” term from each gives

d(x,y)−d(x′,y′)≤d(x,x′)+d(y′,y),d(x′,y′)−d(x,y)≤d(x,x′)+d(y′,y).

Page 452As in Proposition 3.2.10 (ii), these imply |d(x,y)−d(x′,y′)| ≤d(x,x′)+d(y′,y).


	Ex. 16.1.6. The inclusion A――⊇A― is immediate.

To prove the other inclusion, we argue contrapositively from the partition of X into interior points of A, exterior points, isolated points, and border points: Every point of X that is not in A― is exterior to A, and hence exterior to A―, hence not in A――.


	Ex. 16.1.8.


	(i).Since every open d-ball is d-open and every open d′-ball is d′-open, equivalence of d and d′ immediately implies every d-open ball is d′-open and vice versa.

Conversely, assume every d′-open ball is d open, and O is a d′-open set. If x0 is an arbitrary point of O, there exists an r′ such that the d′-ball Br′d′(x0) is contained in O. By hypothesis this ball is d-open, so there exists an r such that Brd(x0)⊆Br′d′(x0)⊆O. Since x0 was arbitrary, O is d-open; thus, every d′-open set is d-open. Reversing roles, every d-open set is d′-open.


	(ii).Assume d and d′ are equivalent, and that (xk)→x∞ with respect to d′. Fix ε arbitrarily. Because the d-ball Bεd(x∞) is d′-open, there exists an r such that Brd′(x∞)⊆Bεd(x∞). Since (xk)→x∞ in (X,d′), there exists an N such that if k≥N then d′(xk,x∞)<r; that is, xk∈Brd′(x∞)⊆Bεd(x∞), which implies d(xk,x∞)<ε. Since ε was arbitrary, (xk)→x∞ in (X,d). Reversing the roles of d and d′, if (xk)→x∞ in (X,d), then (xk)→x∞ in (X,d′).





	Ex. 16.1.10. Hint for (a): If f is concave on [0,∞) and a, b are non-negative, the concave function g(t)=f(t)−[f(a+b)/(a+b)]t is convenient for proving f(a+b)≤f(a)+f(b).


	Ex. 16.1.12. By Exercise 15.3.9, for each x in Rn we have

|fk(x)|≤∥f(x)∥2≤∥f(x)∥1=∑k=0m−1|fk(x)|for all k.

Fix ε and x in Rn arbitrarily. If f is continuous at x, then there exists a δ such that if ∥x−x′∥2<δ in Rn, then ∥f(x)−f(x′)∥2<ε in Rm. The first inequality guarantees |fk(x)−fk(x′)|<ε for all k, so each fk is continuous at x. Since x was arbitrary, fk is continuous on Rn for all k.

Conversely, if fk is continuous for all k, then for each x in Rn, there exists a δ such that if ∥x−x′∥2<δ, then |fk(x)−fk(x′)|<ε/m for each k. The second inequality above implies f is continuous at x.


	Ex. 16.1.14. Each component function is a rational function in two variables, and the denominator is non-vanishing, so f is continuous by Exercises 16.1.12 and 16.1.13. Following the suggestion, note that

(2u)2+(2v)2+(u2+v2−1)2=2u2+4v2+(u2+v2)2−2(u2+v2)+1=(u2+v2+1)2,

Page 453so the image of f is contained in the unit sphere. Further, z<1 on the image of f, so the image of f is contained in the unit sphere with (0,0,1) removed.

Since

z=u2+v2−1u2+v2+1=1−2u2+v2+1,1−z=2u2+v2+1,

we have (u,v)=11−z(x,y). Let X be the unit sphere with the point (0,0,1) removed, and define g:X→R2 by g((x,y,z))=11−z(x,y). The preceding calculation shows (g∘f)(u,v)=(u,v) for all (u,v) in R2. Further, for all (x,y,z) in X, we have

u2+v2+1=[x1−z]2+[y1−z]2+[1−z1−z]2=x2+y2+1−2z+z2(1−z)2=21−z,

from which we immediately deduce (f∘g)(x,y,z)=(x,y,z). Since f:R2→X and g:X→R2 are inverse mappings, each is bijective; particularly, f is injective, and its image is X, the unit sphere with (0,0,1) removed.






Exercises for Section 16.2


	Ex. 16.2.7. Suppose A⊆X. A point x of X is exterior to A if and only if there exists a positive r such that Br(x)∩A=∅, if and only if 0<d(x,A).

Consequently, A is dense in X if and only if the exterior of A in X is empty, if and only if d(x,A)=0 for all x in X.


	Ex. 16.2.6. Let x0 be an arbitrary element of X.

If A is bounded, pick x in A arbitrarily and put r=d(x0,x)+2diamA. If x′ is an arbitrary element of A, the triangle inequality for d implies

d(x0,x′)≤d(x0,x)+d(x,x′)≤d(x0,x)+diamA<r.

Since x′ was an arbitrary element of A, A⊆Br(x0).

Conversely, if A⊆Br(x0) for some r, then diamA≤diamBr(x0)≤2r by Exercise 16.2.2 (d).






Exercises for Section 16.3


	Ex. 16.3.1. This is false. For instance V+=R2∖{(0,y):y≥0} and V−=R2∖{(0,y):y≤0} are connected, but their intersection is the disconnected set A of Exercise 16.1.5 (c).


	Ex. 16.3.4. Page 454Hint: Use Exercise 16.3.3 and the hub lemma, Exercise 16.3.2.


	Ex. 16.3.6. If KN=∅ for some N, then because the sets are nested inward, intersection ⋂nKn⊆KN is empty.

Conversely, assume the intersection is empty. We wish to show KN=∅ for some N. Since compact sets are closed, the sets On=X∖Kn are open. Further, On⊆On+1 for each n. By the complement law, {On}n=0∞ is an open-cover of K1∖⋂nKn. If ⋂nKn is empty, the {On} cover K1. By compactness, some finite subcollection covers, and since the On are nested outward, K1⊆ON=X∖KN for some N. Since KN⊆K1⊆X∖KN, we have KN=∅.






Exercises for Section 16.4


	Ex. 16.4.1. The singleton {c} is closed in flat m-space, so if f is continuous, then the preimage f∗({c}) is closed in flat n-space by Propositions 16.1.38 and 5.3.12. By Theorem 16.4.4, the level of f is compact.


	Ex. 16.4.2. Hint: A uniformly continuous, non-negative function whose zero set is C can be written briefly and explicitly.


	Ex. 16.4.4. Using subscripts to denote column indices and superscripts to denote row indices, we may write A=[Aji] and B=[Bji]. The definition of matrix multiplication gives

(ATB)ji=∑k=0n−1AkjBki,⟨A,B⟩=∑j,k=0n−1AkjBkj.

This is the standard inner product on Rn×n: Treat an array as a list of n2 entries, multiply corresponding entries and sum over all entries. (If this is not entirely clear, writing out small cases explicitly may help.)


	Ex. 16.4.5. The determinant function on Rn×n is polynomial, hence continuous in the flat metric by Exercise 16.1.13. The preimage of {1}, namely SL(n,R), is therefore closed. On the other hand, the matrices diag[et,e−t,1,…,1] are in SL(n,R) for all real t, so SL(n,R) is not bounded, hence not compact.


	Ex. 16.4.9. Hint for (c): If oscc(f)<r, then there exists a δ such that Ucf(δ)−Lcf(δ)<r. Prove Bδ(c) is disjoint from Dr, which implies the complement of Dr is open in I.


	Ex. 16.4.10. Hints: For each positive r, Exercise 16.4.9 (c) implies the set Dr={cinI:osccf≥r} is closed in [a,b], hence compact. If the set of discontinuities has measure zero, then by Exercise 16.4.8 (c), Dr can be covered by finitely many closed intervals of total length at most ε/(4M).

Page 455Inversely, if the set of discontinuities does not have measure zero, first prove there exists a positive integer n such that D1/n does not have measure zero.






Exercises for Section 16.5


	Ex. 16.5.1. Because f is ℓ-periodic, f([0,ℓ])=f(R); in fact, f maps every closed interval of length ℓ onto its image. Since [0,ℓ] is compact, its image under f is compact by Theorem 16.5.1.


	Ex. 16.5.7. Let I and D denote integration and differentiation operators.


	(a)By linearity and the triangle inequality for integrals,

∥I(f)−I(g)∥∞=supx∈[a,b]|I(f)(x)−I(g)(x)|≤supx∈[a,b]|∫ax(f−g)|≤supx∈[a,b]∫ax∥f−g∥∞≤(b−a)∥f−g∥∞.


	(b)If f is smooth, consider the sequence (gn) of smooth functions defined by gn(x)=f(x)+(1/n)sin(nx). We have ∥gn−f∥∞=1/n→0, so (gn)→f in (C∞(I),d). By direct calculation, Dgn(x)=gn′(x)=f′(x)+cos(nx) for all n. Consequently, ∥Dgn−Df∥∞=1 for all n. (We can arrange “worse” behavior, for example, by taking hn(x)=f(x)+(1/n)sin(n2x).)





	Ex. 16.5.8. Hint: Use a basis to identify V with Rn for some n. By Exercise 15.3.10, ∥ ∥ is continuous. Restrict to the unit sphere in flat n-space and use Theorem 16.5.1.


	Ex. 16.5.9. Hint for (c): Start by using Exercise 15.2.10 to prove every v in V decomposes uniquely as a sum v=v0+v⊥ such that v0 in U and v⊥ in U⟂.


	Ex. 16.5.10. Hint: Since ∫−11ϕ′=ϕ(1)−ϕ(−1)=0, g is orthogonal to the orthogonal complement of the constants. We cannot directly apply Exercise 16.5.9 (c) because the topological hypotheses are not satisfied, but inner product geometry may suggest an explicit approach.


	Ex. 16.5.11. Assume i1 and i2 are isometries of (X,d). The composition i2i1 is an isometry of (X,d): For all x and x′ in X,

d(i2i1(x),i2i1(x′))=d(i1(x),i1(x′))=d(x,x′).

Every distance-preserving mapping i is injective: If i(x)=i(x′) for some x and x′ in X, then 0=d(i(x),i(x′))=d(x,x′), so x=x′. Since an isometry is a surjection by definition, every isometry is a bijection, hence invertible.

Page 456The inverse mapping i−1 is an isometry: If y and y′ are arbitrary elements of X, then since i is a bijection, there exist unique x and x′ in X such that y=i(x) and y′=i(x′). By definition, x=i−1(y) and x′=i−1(y′), so

d(i−1(y),i−1(y′))=d(x,x′)=d(i(x),i(x′))=d(y,y′).


	Ex. 16.5.12. Hint: If f is an isometry of flat n-space, prove we can compose f with a translation and an orthogonal linear transformation to get an isometry i that fixes the origin and the standard basis vectors, see Exercise 15.2.7. Then use properties of the standard inner product to prove i is the identity mapping.


	Ex. 16.5.14. Hint for (b): Use the quotient mapping to interpret d― on the circle, where the triangle inequality may be easier to see geometrically.


	Ex. 16.5.15. Hints: Thinking geometrically throughout is all but essential. For part (c), Exercises 5.3.10 and 13.2.9 are likely to be of interest. The author hopes the path components assertion in (d) is intuitively plausible once parts (a)–(c) are complete, though finding a proof may be vexing without further guidance. The author first proved the path-lifting property of the mapping f. Precisely, if γ:[0,1]→S1×S1 is a continuous mapping, and if O is a point of R2 such that f(O)=γ(0), then there exists a unique continuous “lift” γ~:[0,1]→R2 such that γ=f∘γ~ and γ~(0)=O. The proof may be accomplished using interval induction and a special covering property of f: For every point (s0,t0) of the plane, there exists an open neighborhood V of f(s0,t0) such that the preimage f∗(V) is partitioned into components that are mapped homeomorphically to V by f.







Solutions: Approximation Theorems


Exercises for Section 17.1


	Ex. 17.1.3. Hints: Exercise 16.1.4 will be useful in various places. For completeness of d―: Show that a condensing sequence (xj)=(xj,k) in X―, namely, a condensing sequence of condensing sequences in X, converges to (the equivalence class of) the “diagonal” sequence (xk,k).


	Ex. 17.1.4. Suggestion: Establish as a lemma that if f:(X,d)→(Y,e) is uniformly continuous and (xk) is condensing in (X,d), then (f(xk)) is condensing in (Y,e).


	Ex. 17.1.5. Page 457Hints: Parts (i) and (ii) follow from results of Chapter 6 and are routine (indeed, fairly tedious). For (iii): If A⊆R is bounded above, pick a rational a0 that is not an upper bound of A and a rational upper bound b0. Define rational sequences by recursive bisection. In detail, set c0=12(a0+b0). Inductively, if ck is an upper bound of A, define ak+1=ak and bk+1=ck (keep the same lower bound and reduce the upper bound); if ck is not an upper bound of A, define ak+1=ck and bk+1=bk (keep the same upper bound and raise the lower bound); and put ck+1=12(ak+1+bk+1).

Prove that (ak) and (bk) are condensing and equivalent, represent an upper bound of A, and no smaller real is an upper bound of A.






Exercises for Section 17.2


	Ex. 17.2.3. Hint: Prove that a continuous bijection from [0,1] to [0,1]2 is a homeomorphism. Then show [0,1] is not homeomorphic to [0,1]2 by showing [0,1] can be disconnected by removing one point, while [0,1]2 cannot be.


	Ex. 17.2.4. Hint: First prove inductively that there exists a continuous surjection from [0,1]2n to [0,1]2n+1.


	Ex. 17.2.5. Partition Rn into a countable list of unit cubes (Ck)k=0∞ with vertices in Zn and such that C0=[0,1]n. For convenience, let Ck− be the corner whose coordinates are all smallest, and Ck+ the corner whose coordinates are all largest. Fix a continuous surjection c0 from [0,1]→[0,1]n starting at C0−=0 and ending at 1=C0+. Because c0 is continuous on a compact metric space, it is uniformly continuous.

Construct a uniformly continuous mapping c:R→Rn as follows: Define c(t)=0 if t<0. If 0≤t≤1, define c(t)=c0(t). Assume inductively that C has been constructed on some interval [0,bn] so its image is the union ⋃k=0n−1Ck and c(bn)=Cn−1+. Pick a unit-speed path of segments parallel to the coordinate axes proceeding “monotonically” from Cn−1+ to Cn−. If Ln is the length of this path, define c on [bn,bn+Ln] by parameter shifting. Then define c(t)=Cn−+c0(t−bn−Ln) if bn+Ln≤t≤bn+Ln+1. In words, use the “next” unit interval to cover Cn, ending at Cn+. This inductive procedure defines a uniformly continuous surjection from R to Rn. Naturally, there are many, many other ways to proceed.

Finally, the function f(x)=1/(1−x)−1/x is a continuous surjection from (0,1) to R. The composition (c∘f):(0,1)→Rn is therefore continuous and surjective.






Page 458Exercises for Section 17.3


	Ex. 17.3.4. Hints: Are there properties of polynomials on R not shared by continuous and/or uniformly continuous functions?






Exercises for Section 17.4


	Ex. 17.4.1. Hint: It is logically permissible to use the chain rule and Theorem 11.1.1 without verifying hypotheses if doing so leads to verifiable conditions that justify the use of the theorems.






Exercises for Section 17.5


	Ex. 17.5.1. The integral ∥c0∥2 is 1, as it true for the standard inner product on C([a,b]) regardless of a and b. For each m, we have

∥cm∥2=12π∫−ππ2cos2(mx)dx=12π∫−ππ(1+cos(2mx))dx=1,∥sm∥2=12π∫−ππ2sin2(mx)dx=12π∫−ππ(1−cos(2mx))dx=1.

It remains to prove all other inner products are 0. By Corollary 13.1.6, for all real x and all natural numbers m and n, we have

cos(mx)cos(nx)=12(cos(m−n)x+cos(m+n)x),sin(mx)sin(nx)=12(cos(m−n)x−cos(m+n)x),sin(mx)cos(nx)=12(sin(m+m)x+sin(m−n)x).

If m≠n all three families integrate to 0 over [−π,π].


	Ex. 17.5.2. Answers: The series obtained are

(a) ∑m=0∞1(2m+1)2=π28,(b) ∑m=0∞1(2m+1)4=π496,(c) ∑m=1∞1m4=π490.


	Ex. 17.5.3. Conceptually, if g is a step function, the triangle inequality gives ∥f−fn∥2≤∥f−g∥2+∥g−fn∥2, and each term on the right can be made as small as we like.
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