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The issue of artificial intelligence (AI) and its impact on various aspects of 
human life is a topic that requires deep reflection. In this book, I will seek to 
explore it in a clear and precise manner.

When we talk about artificial intelligence, we cannot help but ask a ques-
tion that I am often confronted with during public discussions: “But is it really 
intelligence, like human intelligence?” This is a natural question, which in turn 
raises many others: “If AI were truly intelligent, could it ever surpass human 
capabilities? Could there come a point of no return, where humanity becomes 
subjugated by these machines? What will happen to jobs in a world dominated by 
AI? And how can we protect our privacy and data from indiscriminate use?”

I will attempt to answer these questions while also explaining why, for some 
of them, there may not be a definitive or exhaustive answer. My goal is to 
clarify what artificial intelligence truly is, dispelling myths and misconcep-
tions while providing a rigorous and unambiguous perspective on this tech-
nological revolution. I will outline its vast potential, the successes already 
achieved, the hopes it inspires, but also the risks it poses—not only for us as 
individuals but also for society as a whole.

The intention is not to chase the latest novelty in generative AI or the new-
est deep neural network architecture. Rather, I will focus on the fundamental 
concepts that underpin AI, concepts that are meant to endure despite the 
rapid pace of innovation. I will also highlight the connection between genera-
tive AI and other forms of AI, clarifying that not all applications using algo-
rithms can be labeled as “artificial intelligence.”

Since the 1950s, pioneers like Alan Turing and John McCarthy have laid 
the foundations of what we now call AI. Since then, the very definition of AI 
has evolved continuously, reflecting the variety of goals it has taken on: from 
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the so-called weak or narrow AI, designed for specific tasks, to general AI, 
which aims to replicate human intelligence, and even the concept of superin-
telligence, which, in theory, could surpass human capabilities. At present, we 
remain within the boundaries of narrow AI, which assists humans in specific 
tasks without truly competing with human intelligence in a broader sense.

Nevertheless, AI possesses extraordinary abilities that we humans struggle 
to replicate: the capacity to process vast amounts of data, rapidly synthesize 
complex information, predict consumer behavior with remarkable accuracy, 
and, more recently, generate texts, poems, stories, images, and films in mere 
fractions of a second. In healthcare, neural networks can detect diagnoses that 
might escape even the most skilled specialists. In many cases, AI challenges 
our understanding of human agency and decision-making, raising questions 
about control and responsibility.

At the core of AI’s progress lies the ability of computers to learn autono-
mously, primarily—albeit not exclusively—through artificial neural networks. 
This process relies more on training these networks using available data—
often, but not always, big data—than on traditional scientific theory. 
Naturally, the training data must be relevant to the specific task at hand. In a 
sense, the experience encoded in data has taken precedence over theory, dis-
rupting the paradigm of modern science.

I will explore the areas where AI has achieved the most remarkable results, 
offering insights into its future impact and the challenges it presents, such as 
the enormous resource consumption required to train deep neural networks. 
This is an issue we cannot ignore, as AI’s carbon footprint is rising sharply, 
posing serious concerns about the environmental sustainability of its 
development.

Another socially significant issue is AI’s impact on the job market. While it 
will eliminate many professions, particularly those involving repetitive tasks 
and complex data processing, it will also create new ones. However, this tran-
sition will not be without difficulties, and many people may find themselves 
excluded from this transformation. For this reason, proactive policies in edu-
cation and training will be essential to ensure that the benefits of AI are dis-
tributed as equitably as possible.

AI represents a monumental shift in how we interact with the world and 
with one another. In many tasks, it far surpasses human capabilities; however, 
its processes are often opaque, creating the so-called black box effect—where 
even its creators cannot always explain how an AI system arrives at certain 
decisions. This phenomenon forces us to reconsider fundamental concepts 
such as responsibility and trust, especially when AI is applied in critical fields 
like healthcare, justice, or warfare.



ix  Preface 

Another key issue is AI’s impact on governance and geopolitics. Today, 
artificial intelligence is taking on a strategic role in global power relations, 
much like nuclear technology did in the twentieth century. Nations at the 
forefront of AI development could gain disproportionate influence through 
economic dominance, military superiority, and data control. This scenario 
raises crucial concerns about new forms of global inequality and the potential 
for a technology-driven arms race. AI has the potential to reshape traditional 
power dynamics, making it essential for governments to develop forward-
thinking policies for its regulation and integration into society.

Artificial intelligence is already being used to optimize public services, pre-
vent crime, and even influence electoral behavior through targeted algorithms. 
However, its use in governance raises serious concerns about privacy and indi-
vidual freedoms. Without careful oversight, AI could become a tool for mass 
surveillance or public opinion manipulation, threatening the very founda-
tions of democracy.

Humans are naturally drawn to innovation, yet at the same time, they fear 
what they do not fully understand or cannot control. It is only natural to be 
wary of the unknown. The very term artificial intelligence evokes a challenge. 
Regardless of the emotions it stirs in us, AI is becoming omnipresent and is 
likely to trigger a profound transformation across society, the economy, and 
politics.

In this book, my aim is neither to glorify nor to demonize AI. Instead, I 
seek to examine its implications as long as they remain within the realm of 
human understanding. My goal is to provide the tools to better grasp this 
phenomenon, fostering a critical and informed approach to the transforma-
tion we are experiencing. I also hope to imagine a future that goes beyond 
AI—or rather, one in which AI is evermore seamlessly integrated with the 
scientific knowledge that has enabled humanity to achieve the extraordinary 
progress of the past century.

Milan, Italy� Alfio Quarteroni
July 15, 2025
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1
The Early Pages of AI: Between Dream 

and Reality

In the first half of the twentieth century, science fiction introduced the con-
cept of artificially intelligent robots to the public. It all began with the human-
oid robot that portrayed Maria in Fritz Lang’s Metropolis in 1927 and 
continued with the “heartless heart” of the Tin Man in The Wizard of Oz, 
directed by Victor Fleming in 1939. By the 1950s, a generation of scientists, 
mathematicians, and philosophers had culturally assimilated the concept of 
“intelligent machines”. Among them was Alan Turing, a brilliant British 
thinker who, in addition to his groundbreaking work on Enigma, the machine 
that enabled the decryption of German messages during World War II 
(Copeland 2024), was a true pioneer in exploring the mathematical founda-
tions of artificial intelligence. Turing proposed a fundamental question: if 
humans use information and reason to solve problems and make decisions, 
why couldn’t machines do the same? This logical framework formed the basis 
of his 1950 paper, Computing Machinery and Intelligence, published in Mind 
(Turing, 1950). In this article, Turing famously asked: Can machines think? 
However, he noted that before answering, it was first necessary to define pre-
cisely what is meant by machine and thinking.

Turing discussed how to build intelligent machines and how to test their 
intelligence, introducing what would later become the famous Turing Test: A 
computer is placed in one room, a person in another, and a third participant, 
unaware of which is which, attempts to determine—through a series of ques-
tions—whether they are interacting with a human or a machine. The machine, of 
course, has the ability to “deceive” the evaluator. The idea is that if the algorithms 
with which the machine is “trained” are powerful enough, it can become 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92973-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-92973-1_1#DOI
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intelligent to the point of disguising itself as a human, successfully fooling the 
evaluator. As Turing put it:

Intelligence is demonstrated by a machine’s ability to engage in natural language 
conversation and deceive a human into believing it is human.

In doing so, Turing bypassed centuries of philosophical debate on the nature 
of intelligence. The “imitation game” he introduced suggested that if a 
machine could operate so effectively that observers were unable to distinguish 
its behavior from that of a human, then it should be labeled as intelligent. 
However, Turing was ahead of his time and was unable to turn his insights 
into practical applications. At that time, computers lacked a fundamental pre-
requisite for intelligence: they could execute commands but not store them. 
They could be instructed on what to do, but they had no memory of what they 
had done. Additionally, the extremely high computation times and costs posed 
another major obstacle. These and other limitations led Hans Moravec, then 
a PhD student under John McCarthy (who, as we will soon see, coined the 
first definition of AI), to state that “computers were still millions of times too 
weak to exhibit intelligence.” In the early 1950s, the cost of renting a com-
puter could reach $200,000 per month, making them accessible only to the 
wealthiest and most prestigious universities and major American technology 
companies. It became essential to convince funding agencies that research 
into machine intelligence was worth supporting. A few years later, Allen 
Newell, Herbert A. Simon, and Cliff Shaw developed Logic Theorist, a soft-
ware program deliberately designed to perform automated reasoning. Logic 
Theorist, now considered the first artificial intelligence program, was capable 
of proving 38 of the first 52 theorems in the second chapter of Principia 
Mathematica by Alfred N. Whitehead and Bertrand Russell, even discovering 
new and shorter proofs for some of them. The program aimed to replicate 
human problem-solving abilities, which led to its funding by the Research and 
Development (RAND) Corporation.

�A Constantly Evolving Definition

In 1955, when Newell and Simon began working on Logic Theorist, the field 
of artificial intelligence did not yet exist. Even the term artificial intelligence 
itself had not been coined and would not emerge until the following summer. 
The term was introduced during a historic conference—the Dartmouth 
Summer Research Project on Artificial Intelligence—held at Dartmouth College 

  A. Quarteroni
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in Hanover, New Hampshire, in August 1956. At this conference, John 
McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon 
brought together leading researchers from various disciplines for an open dis-
cussion on artificial intelligence, a term that McCarthy specifically coined for 
the occasion. In his proposal, McCarthy, a 28-year-old mathematics professor 
at Dartmouth College, stated that the conference should “proceed on the 
assumption that every aspect of learning or any other feature of intelligence can, in 
principle, be so precisely described that a machine can be made to simulate it.” He 
also put forward the following definition of AI:

The science and engineering of making intelligent machines, especially intelligent 
computer programs.

It is worth noting how, much like Turing before him, McCarthy associated 
the concept of intelligence with that of machines (or computers). Until 
recently, the prevailing belief had been that machines—especially comput-
ers—could not possess intelligence and that only humans were capable of 
pursuing goals autonomously and making decisions.

Despite its failure to establish standard methods for the new field, all par-
ticipants at the conference enthusiastically agreed that AI was achievable. In 
fact, the Dartmouth College event served as a catalyst for the next 20 years of 
AI research. From this premise, it becomes clear that the boundaries of AI are 
not indelibly drawn. They are subjective—since perceptions of what consti-
tutes a uniquely human trait vary from person to person—and they shift over 
time as new milestones are reached. This phenomenon, known as the AI effect, 
was succinctly captured in 1970 by American computer scientist Larry Tesler, 
who stated:

AI is whatever hasn’t been done yet.

Many other definitions have since been proposed, including those from pub-
lic institutions and cultural organizations. However, the insights of Turing 
and McCarthy have remained foundational, redirecting the focus of AI defi-
nitions toward performance—behaviors that appear intelligent—rather than 
the deeper philosophical, cognitive, or neuroscientific aspects of intelligence. 
For example, Marvin Minsky, one of AI’s pioneers, defined it in 1985 as:

AI is the science of making machines do things that would require intelligence if 
done by men.

1  The Early Pages of AI: Between Dream and Reality 
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According to MIT (Massachusetts Institute of Technology):

AI is the quest to build machines that can think, act, and learn like humans.

This definition embraces a broader concept of cognition and learning rather 
than referring to specific objectives. In 2019, the European Commission pro-
posed the following definition:

AI refers to systems that display intelligent behavior by analyzing their environment 
and taking actions—with some degree of autonomy—to achieve specific goals.

Here, the emphasis is placed on autonomy in pursuing specific objectives. 
According to the OECD (Organization for Economic Co-operation and 
Development):

AI is a machine-based system that is capable of influencing the environment by pro-
ducing an output (predictions, recommendations, or decisions) for a given set of 
objectives. It uses machine and/or human-based data and inputs to: (i) perceive real 
and/or virtual environments; (ii) abstract these perceptions into models through 
analysis in an automated manner (e.g., with machine learning) or manually; and 
(iii) use model inference to formulate options for outcomes. AI systems are designed 
to operate with varying levels of autonomy.

The Oxford English Dictionary defines AI as:

The capacity of computers or other machines to exhibit or simulate intelli-
gent behavior.

This definition focuses on the ability of machines to mimic behaviors typically 
associated with human intelligence. As expected since that distant summer of 
1956, the definition of AI has evolved over the years but has largely remained 
within a framework that emphasizes the simulation of human abilities, ratio-
nal behavior, autonomous learning, and decision-making. To this day, there is 
no universally accepted definition. However, according to the most widely 
held perspective:

AI encompasses the abilities demonstrated by hardware and software systems that, to 
a human observer, may appear to be exclusive to human intelligence.

  A. Quarteroni
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�Winters and Springs

But let us momentarily turn the clock back to that year of grace, 1956. From 
1957 to 1974, AI flourished. Computers were able to store more information 
and became faster, cheaper, and more accessible. Machine Learning algo-
rithms, which are the foundation of Machine Learning (ML), or the ability of 
computers to learn on their own, will be discussed in Chap. 5 and will accom-
pany us throughout the book. These algorithms have become increasingly 
effective, and people have become more skilled at knowing which algorithm 
to apply to their problem. Among the first demonstrations, we can mention 
the General Problem Solver (G.P.S.), a computer program created in 1957 by 
H. A. Simon, J. C. Shaw, and Allen Newell, aimed at solving general prob-
lems (as long as they were adequately formalized). It was primarily created to 
solve mathematical geometry problems and also to play chess. Another exam-
ple is ELIZA, a chatbot, i.e., a program capable of interacting verbally with a 
person, written in 1966 by Joseph Weizenbaum. ELIZA is a lexical analyzer, 
and a set of rules (or scripts) capable of simulating a conversation in several 
languages (English, Welsh, or German). Both G.P.S. and ELIZA provided the 
first evidence of the possibility of building programs capable of interpreting 
written and spoken language. (Interestingly, the name ELIZA was inspired by 
Eliza Doolittle, the protagonist of George Bernard Shaw’s Pygmalion.) These 
successes, along with support from leading researchers, convinced govern-
ment agencies such as the Defense Advanced Research Projects Agency (DARPA) 
to fund AI research at various institutions. The government was particularly 
interested in a machine that could transcribe and translate spoken language, 
as well as process large amounts of data. Optimism was high, and expectations 
were even higher, to the point that Marvin Minsky (one of the four co-
organizers of the Dartmouth College Conference) wrote in 1970  in Life 
Magazine:

In three to eight years, we will have a machine with the general intelligence of an 
average human being.

The prophecy did not come true, as many others that have become famous in 
the field of computers. For example, see (https://www.pcworld.com/arti-
cle/532605/worst_tech_predictions.html). For the general public, it is worth 
remembering that Minsky was one of the main advisors to Stanley Kubrick 
for the creation of the famous movie 2001: A Space Odyssey. Minsky also won 

1  The Early Pages of AI: Between Dream and Reality 
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the prestigious Turing Award in 1969 for his influence in the birth of 
AI. McCarthy won it in 1971.

However, while the proof of concept was there, there was still a long way to 
go before the final objectives of natural language processing, abstract thinking 
and self-recognition could be achieved. In the 80s, AI was relaunched thanks 
to two factors: an evolution of algorithmic techniques and an increase in 
funding. John Hopfield and David Rumelhart popularized deep learning tech-
niques that allowed computers to learn from experience. Hopfield was 
awarded the Nobel in Physics in 2024, thanks to these pioneering studies. We 
will encounter deep artificial neural networks, the basis of deep learning, later. 
On the other hand, Edward Feigenbaum introduced expert systems, which 
mimicked the decision-making process of a human expert. These programs 
asked an expert in a certain field how to respond in specific situations and, 
once they had learned the answers for almost every situation, they could give 
advice to non-experts. These systems were widely used in industry. The 
Japanese government heavily funded expert systems and other AI-related 
projects as part of their Fifth Generation Computer Project (FGCP). From 
1982 to 1990, 400 million dollars were invested with the aim of revolution-
izing computer processing, implementing logic programming, and improving 
artificial intelligence. Unfortunately, most of the more ambitious goals were 
not achieved. However, it could be argued that the indirect effects of the 
FGCP inspired a new generation of talented engineers and scientists. Despite 
this, FGCP funding ceased, and AI seemed to fade from the scene.

Paradoxically, in the absence of government funding and without public 
attention, AI began to thrive once again. During the 1990s and 2000s, many 
of the fundamental goals of artificial intelligence were achieved. In 1997, 
world chess champion and grandmaster Garry Kasparov was defeated by 
IBM’s Deep Blue, a computer chess program. This highly publicized match 
marked a significant milestone in the development of AI-powered decision-
making programs. That same year, Dragon Systems’ speech recognition soft-
ware was integrated into Windows, representing another breakthrough—this 
time in the interpretation of spoken language. It seemed as though there was 
no challenge that machines could not tackle. Even human emotions appeared 
to be within their reach, as demonstrated by Kismet, a robotic head created in 
the 1990s at the Massachusetts Institute of Technology (MIT) by Cynthia 
Breazeal as an experiment in affective computing—a machine capable of recog-
nizing and simulating emotions. The name Kismet comes from a Turkish word 
meaning fate or sometimes luck (https://robotsguide.com/robots/kismet).

  A. Quarteroni
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�A Paradigm Shift

What had changed to allow these spectacular advances? A key explanation lies 
in the improvement of technology. The fundamental limitation of computer 
memory that had blocked us 30 years earlier was no longer a problem. Moore’s 
Law, a conjecture formulated in 1965 by Intel co-founder Gordon Moore, 
which stated that the memory and speed of computers double every 
18 months, had finally reached and, in many cases, surpassed our needs. This 
is exactly how Deep Blue was able to defeat Gary Kasparov in 1997, just as 
AlphaGo was able to defeat the Chinese Go champion, Ke Jie, in 2017. This 
created, for some, the illusion that the roller-coaster effect characterizing AI 
research’s evolution from the beginning could be explained: we exhaust the 
capabilities of AI at the level of our current computing power (memory and 
processing speed), and then wait for Moore’s Law to catch up with us again. 
But, above all, this progress was essentially due to a paradigm shift in the 
approach to AI. While in fields requiring precise characterizations, such as 
chess, algebraic manipulation, and business process automation, artificial 
intelligence had made significant progress, in other areas like language transla-
tion and object visual recognition, the intrinsic ambiguity hindered develop-
ment. These formal and rigid systems succeeded in contexts where tasks could 
be performed by encoding clear rules. From the late 1980s through the 1990s, 
the field of AI entered a phase known as the “AI winter.” When applied to 
more dynamic tasks, artificial intelligence had proven fragile, producing 
results that, by far, did not pass the Turing Test, meaning they did not reach 
or imitate human performance. In the 1990s, the turning point occurred. 
Researchers realized that a new approach was needed, one that would allow 
machines to learn autonomously, leading to a paradigm shift: moving from 
the idea of encoding human intuitions into machines to delegating the learn-
ing process itself to the machines. Although machine learning had existed 
since the 1950s, new discoveries enabled practical applications. The most 
effective methods in this field extract patterns from large datasets through 
neural networks. For example, to recognize the image of a cat, researchers 
understood that a machine must learn different visual representations of cats 
by observing animals in various contexts. In this way, what matters for 
machine learning is the plurality of different representations of an object, 
rather than its ideal (or, worse yet, its definition). Modern AI algorithms have 
the ability to learn types and patterns, such as clusters of words that often 
appear together when analyzing natural language, or features more frequently 
found in the image of a cat, and then make sense of reality by identifying 

1  The Early Pages of AI: Between Dream and Reality 
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networks of similarities and analogies with what the AI already knew. While 
AI will likely never know in the same way a human mind does, an accumula-
tion of correspondences with patterns in reality could approximate and some-
times surpass human perception and reasoning performance.

This is how the modern field of machine learning (ML) took shape, con-
sisting of programs that learn through experience. Parallel to the development 
of the algorithmic strategy that led to the modern approach to machine learn-
ing, scientists continued to reflect on how ambitious one could be in pursuing 
the dream of artificial intelligence. Along this line of thought, AI has been 
defined in many ways, depending on the goals set to be achieved. The defini-
tions that have emerged over time can be summarized in the following terms.

Narrow AI, also called weak AI, refers to the automation of specific tasks, 
but it does not have the ability to develop understanding beyond the scope for 
which it was programmed. Examples include recognizing an animal in a pho-
tograph or translating a text into another language. Other examples include 
voice assistants like Siri and Alexa, recommendation systems, and self-
driving cars.

Strong AI, also known as general AI, on the other hand, implies the ability 
to learn and think like humans; that is, it refers to systems capable of under-
standing, learning, and applying knowledge across a wide range of tasks, with 
performance similar to human cognitive abilities. Currently, weak AI can, in 
several fields, even surpass humans in the specific tasks it was designed for, but 
it operates with many more constraints than even basic human intelligence. 
All available AI today can be considered weak AI. We can therefore state that 
strong AI does not yet exist (Togelius 2024).

Finally, Artificial Superintelligence is a completely theoretical concept in 
which AI would surpass human intelligence in all aspects, including creativity, 
solving any class of problems, and would possess social intelligence. It repre-
sents a point at which machines not only match but vastly exceed human 
intellectual capabilities.

General artificial intelligence is an ambiguous and misleading concept, and 
so is the concept of superintelligence, especially since we don’t have a clear 
definition of “intelligence” or “generality.” Although we continue to make 
impressive progress in AI technology, we are still far from having a single sys-
tem capable of performing all the tasks we associate with the idea of intelligence.

Other examples of proposed development environments within AI include 
Reactive Machines and the so-called Theory of Mind. Reactive Machines are 
basic AI systems that react to specific inputs with pre-programmed responses. 
They do not have memory-based functionality or learning capabilities. An 
example is IBM’s Deep Blue, programmed to play chess and defeat champion 

  A. Quarteroni
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Garry Kasparov. The Theory of Mind is a type of AI still in research, with the 
ambition to understand and replicate human emotions and thoughts. This 
type of AI would be able to perceive, interpret, and respond to human emo-
tions and social interactions, allowing for more nuanced and adaptive interac-
tions with humans.

These classifications outline the development and objectives of AI research, 
charting a path from specific and simple systems to complex and self-aware 
entities. The shift from weak to strong AI would entail significant advances in 
understanding human cognition, machine learning, and ethical 
considerations.

When reading and writing about AI, the context in which the term is used 
is relevant, and it is important to remember that the very concept of AI is still 
the subject of broad debate among engineers, scientists, and philosophers. We 
will give it more concrete form in the two chapters that follow. The future of 
AI will offer space for multiple perspectives and different technical approaches.

1  The Early Pages of AI: Between Dream and Reality 
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2
Shining Light on AI

It is interesting to observe how widespread confusion surrounds the percep-
tion of what AI is—or what it is not. Many processes that elude our under-
standing are often labeled as artificial intelligence, and at times, any action 
involving an algorithm (another greatly misunderstood concept of our time) 
is mistakenly considered AI. Even more misleading is the frequent tendency 
to equate AI solely with ChatGPT, a generative artificial intelligence system, 
while in reality, this represents only a subset of the vast AI landscape. This 
confusion is somewhat understandable, at least in part: as previously noted, 
the very definition of AI has evolved multiple times over the years. However, 
given the relevance of this topic in today’s society, it is important to establish 
some clarity.

�Algorithms That Learn on Their Own

One key element that I consider distinctive and essential to AI today is the 
presence of machine learning, that is the capability of algorithms to learn autono-
mously. Traditional algorithms are sequences of instructions, typically formu-
lated using mathematical entities and operations, that follow predefined rules. 
They operate deterministically, meaning their behavior and output are pre-
dictable and repeatable, governed strictly by input data and instructions. 
These algorithms do not change or adapt based on past experiences or 
new data.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92973-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-92973-1_2#DOI
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In contrast, AI algorithms based on machine learning modify their behav-
ior and outcomes according to the data they receive. This means they possess 
an ability to “evolve” or “adapt,” which traditional algorithms lack. AI employs 
techniques such as supervised, unsupervised, and reinforcement learning to 
improve over time (which we will explore in the next chapters). It can handle 
complex data, make predictions, and identify patterns without needing 
explicit instructions from a human programmer for every action. AI systems 
learn and adapt. They generalize from pre-existing data and models to apply 
their knowledge to new cases or scenarios they have never encountered before. 
This adaptive learning is crucial for tasks such as, e.g., image recognition, 
natural language processing, and personalized recommendations.

For the past 50 years, machines have been unable to demonstrate intelli-
gence according to the Turing Test, but this limitation now seems close to 
being overcome. Until just a few decades ago, computers functioned strictly 
based on predefined codes, leading to rigid and static outcomes. Traditional 
programs could handle vast amounts of data and perform complex calcula-
tions, but they struggled with recognizing simple objects in images or adapt-
ing to imprecise input. The uncertainty and conceptual nature of human 
thought posed a significant challenge to the development of AI. However, in 
the past two decades, technological advances have given rise to AI systems 
that are beginning to match, and in some cases surpass, human performance 
in these areas. For example, generative AI algorithms do not simply translate 
texts by substituting words; they identify and use idiomatic expressions and 
linguistic patterns. Furthermore, these algorithms are dynamic, evolving in 
response to ever-changing situations, and can discover new solutions that 
even humans may not anticipate.

Unlike many traditional ones, modern AI algorithms operate in a nonlin-
ear and, in some cases, stochastic manner (i.e., relying on probabilistic pro-
cesses), which enables them to identify complex and non-obvious relationships 
in data. Similar to a classical algorithm, a machine learning algorithm consists 
of a series of precise steps. However, unlike classical algorithms, these steps do 
not lead directly to a specific result. They deviate from the precision and pre-
dictability of traditional algorithms. This flexibility is even more evident in 
Deep Learning, where deep neural networks (which we will encounter shortly) 
“learn” highly complex patterns that would be impossible to define a priori 
through rigid rules. These characteristics reflect the adaptive nature and 
autonomy of modern AI algorithms in learning from data.

If we accept that the defining feature of AI today is its ability to autono-
mously learn, then we can draw the following distinctions.

  A. Quarteroni
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Navigation systems, such as GPS-based car navigation devices, are not neces-
sarily AI. When we enter a destination, the navigator determines the route by 
solving a complex combinatorial optimization problem behind the scenes 
(say, in the cloud). Among all possible road combinations, it selects the one 
that optimizes the chosen criterion—minimizing travel time or distance, for 
example. However, this process does not involve a learning phase that allows 
the algorithm to adapt based on previous choices or the behavior of other 
drivers. Although these systems use vast amounts of data, they do not learn 
autonomously because they satisfy predefined criteria—such as, e.g., the 
Dijkstra or A* algorithms (Hart et al. 1968; Dijkstra 1959).

Similarly, while advanced, many driver-assistance systems, such as adaptive 
cruise control or parking sensors, are not true AI systems. They rely on pre-
defined rules and sensors rather than actual learning from data. Their algo-
rithms calculate trajectories, braking times, and angles, often based on 
deterministic motion laws, but they do not learn autonomously. This differs 
from self-driving car algorithms, which do incorporate machine learning.

Even autopilot systems in airplanes, which assist pilots in all flight phases 
except takeoff and landing, are not (necessarily) AI. The same applies to real-
time video or image sharing on our mobile phones. These processes rely on 
image compression and decompression algorithms, such as JPEG or MPEG, 
which are based on fixed mathematical rules rather than learning from data.

On the other hand, email spam filters qualify as AI because they continu-
ously learn based on our past choices regarding which messages we consider 
spam or unwanted.

Similarly, customer purchase prediction algorithms fall under AI, as they use 
machine learning models to analyze past behavior and forecast consumer 
preferences.

Churn analysis algorithms are another example of AI.  These predictive 
models identify customers—such as those in telecom or energy sectors—who 
are at risk of leaving, using historical data that updates as new information is 
collected.

Other AI-driven technologies include speech recognition algorithms in vir-
tual assistants (e.g., Siri, Alexa) that improve their accuracy over time by 
learning from user interactions; facial recognition systems that enhance their 
precision by continuously training on new images, and recommendation 
engines, such as those used by Netflix or Amazon, which learn from user 
behavior to offer increasingly personalized suggestions.

The notion that AI is simply any process governed by algorithms is funda-
mentally incorrect. In particular, algorithms derived from mathematical mod-
els based on physical laws (which we will explore later) generally do not 
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involve machine learning, and thus do not qualify as AI. These models are not 
trained on data but instead implement mathematical equations that encode 
fundamental laws describing natural, biological, economic, and social pro-
cesses. Some notable examples include weather forecasting models, aerody-
namic and structural analysis models (e.g., crash analysis in the automotive 
industry), and seismic impact simulation models for high-risk earth-
quake zones.

While AI continues to evolve, distinguishing true learning-based AI from 
conventional rule-based algorithms remains essential for an accurate under-
standing of this rapidly advancing field.

�Success Stories

Artificial vision, speech and text recognition, generative AI (for text, images, 
and films), robotics, autonomous driving for vehicles and public transporta-
tion, and expert systems—those capable of solving problems with the exper-
tise of a human specialist—are just some of the domains where AI has achieved 
remarkable success. See Fig. 2.1 for reference. Let’s briefly explore these fields.

Artificial Vision is a branch of technology that enables machines to see, 
interpret, and respond to their visual environment. Cameras and sensors cap-
ture images, which are then processed using algorithms. By combining optics 

Autonomous 
vehicles

Fig. 2.1  Artificial intelligence, machine learning, neural networks, deep learning, 
generative intelligence. (Individual images from Shutterstock.com)
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and computing, artificial vision systems can perform complex visual tasks that 
once required human intervention. This process consists of several stages. 
First, using cameras and sensors, artificial vision systems capture images of 
their surroundings, ranging from simple photographs to complex 3D repre-
sentations. These images are then analyzed by algorithms that detect patterns, 
recognize objects, measure distances, and classify elements. The final stage 
involves interpreting the analyzed data and making decisions based on the 
extracted information. In an industrial setting, for example, this could involve 
sorting products or detecting defects in manufacturing. The quality of the 
captured images depends significantly on the optical components and sensors 
used, which determine the precision and efficiency of artificial vision systems. 
Moreover, the software responsible for processing and analyzing these images 
plays a crucial role, ensuring that the system can handle vast amounts of data 
in real time. In some cases, the term neural vision is used to highlight the inte-
gration of AI in artificial vision, enhancing its capabilities through machine 
learning techniques.

Robotics is a multidisciplinary field that integrates engineering, computing, 
and technology to design, build, and operate robots. These machines are typi-
cally designed to replicate or enhance human activities, performing repetitive, 
dangerous, or highly precise tasks. The fundamental components of robotics 
include mechanical design, which defines the robot’s structure and movement 
capabilities, often inspired by human or animal forms; electrical systems, 
which include power sources and control mechanisms that enable functional-
ity; and software and algorithms, which allow robots to process information, 
make decisions, and execute tasks. Although there are many types of robots, 
they can generally be categorized into: industrial robots, used in manufactur-
ing and assembly lines for tasks like welding, painting, and component assem-
bly with high precision; service robots, designed to assist humans in various 
fields, including medical robots for surgery and rehabilitation and household 
robots for cleaning and maintenance; autonomous robots, capable of operat-
ing without human intervention, such as drones and self-driving vehicles; 
humanoid robots, designed to mimic human appearance and behavior, often 
used for research, entertainment, or companionship. Robotics is an ever-
evolving field, driven by technological advancements and expanding applica-
tions across multiple sectors. It has the potential to revolutionize the way tasks 
are performed and enhance both human and machine capabilities.

Expert Systems are computer programs designed to solve complex problems 
and provide decision-making capabilities comparable to those of a human 
expert. They rely on both factual knowledge and heuristic reasoning, mimick-
ing the cognitive processes of a specialized professional. These systems derive 
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their name from their ability to store and apply expert knowledge within a 
specific domain, enabling them to tackle complex issues within that field. An 
expert system typically consists of three key components: user interface—it 
facilitates interaction between the user and the system; inference engine—it 
processes information and applies logical reasoning; knowledge base—it 
stores domain-specific knowledge, collected from human experts.

The first expert system, developed in the 1970s, was one of the earliest suc-
cessful applications of AI. These systems are often designed for specialized 
fields such as medicine, where they can assist in diagnostic processes. Their 
performance depends on the breadth and quality of the stored knowledge—
the larger the knowledge base, the more accurate and effective the system 
becomes. One common example of an expert system is Google’s spell-check 
and autocomplete suggestions. It is important to note that expert systems are 
not designed to replace human experts, but rather to support decision-making 
in complex scenarios. However, they lack human-like reasoning and can only 
operate within the constraints of their predefined knowledge base.

Speech Recognition (also known as automatic speech recognition or speech-
to-text conversion) is a technology that allows computers to convert spoken 
language into written text. It is often confused with voice recognition, but the 
two serve different purposes: speech recognition focuses on transcribing spo-
ken words into text; voice recognition is used to identify a specific speaker’s 
voice, often for security purposes. Numerous speech recognition applications 
and devices are now available on the market. These systems integrate elements 
such as grammar, syntax, and audio signal processing to understand and inter-
pret human speech. The ideal speech recognition system continuously learns 
and improves through repeated interactions. Advanced systems also enable 
businesses to customize the technology to meet specific needs, including lan-
guage adaptation, speech nuances, and brand recognition. Some key advance-
ments in speech recognition include: linguistic weighting, for prioritizing 
frequently used words; speaker labeling, for identifying individual speakers in 
multi-person conversations; acoustic training, for adapting to background 
noise (e.g., in a call center) and adjusting to various speech styles (e.g., pitch, 
volume, and speed).

Natural Language Processing (NLP) is an interdisciplinary field focused on 
enabling computers to process human language data. It is closely related to 
information retrieval, knowledge representation, and computational linguis-
tics. Typically, natural language processing involves processing large corpora 
of text using rule-based, statistical, or neural network-based approaches for 
machine learning. NLP has played a foundational role in generative AI, pow-
ering search engines, customer service chatbots, voice-operated GPS systems, 
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and digital assistants. It has also become increasingly valuable in business 
solutions, helping automate operations and enhance productivity. Until the 
1980s, most natural language processing systems relied on manually written 
rule sets. However, by the late 1980s, the field underwent a revolution with 
the introduction of machine learning-based algorithms. This shift was made 
possible by the increasing computational power (aligned with Moore’s Law) 
and the decline of Chomskyan linguistic theories, which had traditionally 
discouraged corpus-based linguistic analysis (Chomsky 1986). One of NLP’s 
most successful applications is machine translation between languages. This 
task requires a deep understanding of linguistic structures, contextual mean-
ing, and cultural nuances, making it a challenging and fascinating field within 
NLP. Instead of relying solely on carefully translated texts, NLP models use 
parallel corpora—collections of thematically similar texts in different lan-
guages. This method, akin to immersion learning, prioritizes exposing the 
system to large amounts of data rather than focusing solely on precise transla-
tions. The success of parallel corpus training has significantly improved 
machine translation systems like Google Translate, which achieved a 50% 
improvement in translation quality compared to earlier methods.

Generative Intelligence is by far the area that has garnered the most interest 
in recent years. While text translation and image classification involve inter-
preting existing content, generating new text, images, and sounds represents 
a different challenge. Generative neural networks can create original content. 
For instance, while a standard neural network can recognize a human face in 
an image, a generative neural network can create an entirely new face that 
appears real. A common training method for generative AI involves Generative 
Adversarial Networks (GANs), where two networks compete in a comple-
mentary learning process: the generator creates possible outputs; the discrimi-
nator evaluates these outputs and filters out low-quality ones. During training, 
the generator and discriminator are alternately optimized, each improving the 
other. Trained on vast datasets—mainly sourced from the Internet—genera-
tive neural networks can convert text into images and vice versa, expand or 
condense descriptions, and perform other similar tasks.

At times, these models yield results that seem surprisingly “intelligent”, 
while at other times, their outputs may appear nonsensical or incoherent. Due 
to their transformative potential across various fields, including the creative 
industries, generative AI is attracting significant interest as researchers and 
developers explore its strengths, limitations, and potential applications.

2  Shining Light on AI 



19© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Quarteroni, Artificial Intelligence, Copernicus Books, 
https://doi.org/10.1007/978-3-031-92973-1_3

3
Machine Learning: When Computers Learn 

(On Their Own!)

As we have seen, the roots of AI lie in a fusion of ideas and visionary efforts, 
driven by pioneering reflections on the possibility of endowing machines with 
intelligence. From these origins, AI has undergone a rapid developmental tra-
jectory, constantly redefining the boundaries of our interaction with intelli-
gent technology. However, despite its 70-year history, the spectacular progress 
we have witnessed over the last quarter-century is also due to two other essen-
tial factors: the extraordinary power of computers, particularly those based on 
GPUs (graphics processing units), which are especially efficient in training 
and implementing machine learning algorithms, and the vast availability of 
data—Big Data—which, in many fields, is essential for training machine 
learning algorithms (see Fig. 3.1).

When we talk about machine learning—the ability of computers to learn 
autonomously—the most common perception goes something like this: we 
feed them large amounts of training data so they can learn to perform tasks 
without being explicitly told how to do them. In other words, without writing 
specific code for each task. Almost like training puppies. But is that really how 
it works?

Machine learning is a branch of artificial intelligence that explores how to 
computationally simulate (or even surpass) human intelligence. It drives most 
of today’s AI advancements by focusing on a single goal: using algorithms to 
automatically improve the performance of other algorithms.

Here’s how it works in practice, using supervised learning, one of the most 
common forms of machine learning. The process begins with a specific task—
for example, “recognizing which photos in a given dataset contain a cat.” The 
goal is to find a mathematical function, known as a model, that can 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92973-1_3&domain=pdf
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COMPUTERSDATA ALGORITHMS
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Fig. 3.1  The three key factors behind the recent explosion of AI. (Images from 
Shutterstock.com)

accomplish this task. This model takes numerical inputs—in this case, digi-
tized photographs—and transforms them into numerical outputs that repre-
sent labels such as “cat” or “not a cat”, which, for simplicity, we can denote 
as 1 or 0.

The model is built on a mathematical structure defined by a set of numbers 
called parameters, but at the beginning of the process, it is unlikely to produce 
accurate results.

�How AI Models Are Trained

Now it’s time to train the model, and this is where another type of algorithm 
comes into play. First, a different mathematical function (called an objective 
function, also known as a cost function or loss function) calculates a number that 
represents the current “distance” between the model’s output and the desired 
result for all the images in the initial dataset, which we will call the training set. 
In this specific example, this number indicates the percentage of times the 
model fails to correctly identify photos of cats. Next, the training algorithm 
uses the objective function’s distance measurement to adjust the original 
model (i.e., the parameters that characterize it). It does not need to “know” 
what the model represents—in other words, it has no awareness of what it is 
doing. It simply updates the values of the parameters so that the objective 
function (and therefore the model’s percentage error) becomes as small as 
possible.
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Once these adjustments are made, the process repeats, leading to successive 
iterations. The updated model transforms the training set inputs into (slightly 
improved) outputs, then the objective function suggests another (slightly 
improved) adjustment to the model. After a sufficient number of iterations, 
the trained model should be able to produce accurate outputs for most of its 
training examples. The ultimate goal, however, is to maintain that perfor-
mance on new examples of the task, as long as they are not too different from 
those in the training set.

This automated process brings forth a mathematical representation of the 
task without requiring humans to specify which details are important. With 
an efficient algorithm, a well-chosen objective function, and a sufficiently rich 
training set, machine learning can generate powerful computational models 
that perform tasks very effectively. A mathematical description of the entire 
process will be outlined (without too many technicalities!) in the next chapter.

Classification and prediction tasks—such as identifying cats in photos or 
detecting spam in emails—are usually based on supervised learning. This 
means that the training data is already labeled in advance, and the label cor-
responds to the desired output: for example, photos containing cats are labeled 
as “cat” or, more conveniently, assigned the number 1, while all other images 
are labeled as 0. The training process then determines the mathematical func-
tion (the model) that can map as many inputs as possible to their correspond-
ing (known) outputs. Once trained, the model will be able to label unknown 
examples without making too many errors. For instance, in early 2020, 
researchers at MIT used supervised learning to discover a new antibiotic, hali-
cin. To achieve this, they employed a database containing 2000 molecules to 
train a model, where the molecular structure was provided as input and the 
antibiotic’s effectiveness as output (Marchant 2020).

Unsupervised learning, on the other hand, identifies structures within unla-
beled examples, grouping them into clusters that are not predefined. In this 
case, the input data has no labels. It is often used for raw datasets and is 
responsible for converting them into structured data. In many contexts, large 
amounts of data are generated, including log files produced by computers. For 
this reason, unsupervised learning represents one of the biggest challenges in 
machine learning. Content recommendation systems that learn from a con-
sumer’s past behavior, as well as certain object recognition tasks in computer 
vision, can rely on unsupervised learning. For example, video streaming ser-
vices like Netflix use algorithms to identify groups of users with similar view-
ing habits, allowing them to suggest additional content to watch.

Some tasks, such as language modeling performed by large language mod-
els like GPT-4—which we will encounter later—use intelligent combinations 
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of supervised and unsupervised techniques, known as self-supervised and 
semi-supervised learning. Semi-supervised learning occurs when the training 
dataset contains both labeled and unlabeled elements. Consider a neurosur-
gery department that acquires a vast number of tomographic images, but due 
to time constraints or lack of expertise, only a limited number have been 
annotated by a neurosurgeon with a description of the observed pathology. 
This means specifying whether or not a tumor is present and, if so, identifying 
its type.

Finally, reinforcement learning generates a model function using a reward 
signal instead of examples of desired outcomes. Its goal is to teach agents—
entities capable of making decisions and taking actions—to adopt a sequence 
of decisions within an environment to optimize total cumulative rewards. By 
maximizing this reward through trial and error (carried out thousands, tens of 
thousands, or even more times at incredible speed thanks to powerful com-
puters), a model can improve its performance on dynamic and sequential 
tasks, such as playing checkers, chess, or Go, as well as controlling the behav-
ior of real and virtual agents (such as self-driving cars or chatbots). The pri-
mary objective of reinforcement learning is to enable an agent to interact with 
its environment, observe the consequences of its actions, and adjust its behav-
ior accordingly. However, reinforcement learning requires human involve-
ment in creating the AI’s training environment: humans define a simulator 
and a reward function, and the AI trains based on these elements. To achieve 
meaningful results, carefully selecting the simulator and the reward function 
is crucial.

In 2017, AlphaZero, the program developed by Google DeepMind, defeated 
Stockfish, which was then the most powerful chess program in existence. This 
event marked a significant moment in the history of both chess and artificial 
intelligence, as AlphaZero demonstrated the ability to learn and develop game 
strategies without any human supervision. To accomplish this, it used a rein-
forcement learning program that played against itself. To evaluate its perfor-
mance, it used a reward function that assessed its moves based on the 
opportunities they created.

Mathematical systems based on machine learning are often extremely pow-
erful and accurate; however, they are not free from structural weaknesses. The 
most common issue is overfitting: an overfitted model builds a function that 
fits the training data so well that it cannot reliably generalize to represent new, 
unseen data. For example, imagine a machine learning algorithm trained to 
determine whether an input image contains a cat. If the model fails when the 
cat in the image is upside down—because it was only trained on upright cat 
images—this would indicate overfitting. Another cause of overfitting occurs 
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when the training data contains too much inaccuracy or noise, leading the 
model function to become overly complex in an attempt to capture this exces-
sive variability. In such cases, the model fails to generalize, meaning it cannot 
understand the true nature of data beyond its training set. To illustrate this 
further, suppose we train a model to predict the average daily temperature 
over 3 months of spring in a specific location. If the training data is affected 
by noise in the measurement process, the model might fail to capture a gener-
ally increasing temperature trend from March to June, which one would typi-
cally expect.

Bias in data is often due to non-representative sampling. It can arise from 
distortions or systematic errors in the way data is collected, selected, repre-
sented, or interpreted. For instance, if all the recorded side effects of a drug 
came from a study conducted exclusively on male subjects, the model might 
struggle to generalize its predictions to the female population. In other words, 
biases in training data can be amplified during the learning process, leading to 
distorted—or even incorrect—results. Moreover, even when a model per-
forms well, it is not always clear how it works and why it works. Deep learning 
algorithms, which we will discuss later, are particularly affected by this prob-
lem of interpretability and explainability.

�Back to Definitions

Let’s take a step back and put the definitions and concepts in the right order. 
Perhaps the oldest definition of machine learning comes from an apocryphal 
quote attributed to Arthur Samuel, often linked to his 1959 paper on machine 
learning for checkers:

Machine learning is the field of study that gives computers the ability to learn with-
out being explicitly programmed to do so.

A more concise definition was proposed in a 2017 report by the Royal Society:

Machine learning is a set of rules that allows systems to learn directly from examples, 
data, and experience.

In a review article by M. Jordan and T. Mitchell (2015), the term learning is 
defined as the process of transforming information into skills or knowledge, 
while machine learning is described as automated learning. The machine learn-
ing process can be understood as an algorithm that takes information as input 
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and produces knowledge as output. As previously mentioned, machine learn-
ing algorithms generally fall into four main categories: supervised learning, 
semi-supervised learning, unsupervised learning, and reinforcement learning.

Machine learning is particularly effective when large amounts of data are 
available and when developers have access to the ground truth, meaning they 
can verify the correctness of the results, often even during model training. 
However, its effectiveness decreases when datasets are scarce, incomplete, or 
unlabeled, which is often the case when data acquisition is costly. It also strug-
gles when the ground truth is unknown and no reference datasets exist, or in 
situations requiring decisions where interpretability is crucial, meaning the 
model’s outputs must be understandable by humans for high-impact 
decision-making.

In the case of supervised machine learning algorithms, their main tasks can 
be identified among the following:

Regression: This involves extracting a function from a discrete distribution of 
data (inputs and outputs) that describes its behavior. It is the so-called data-
based mathematical modeling. For example, identifying a function that 
describes how the value of a certain stock changes over time on the Stock 
Exchange. In this case, the training set consists of N pairs of input data and 
corresponding ground truth values, that is, N different dates and the cor-
responding prices of the specific stock. Another example could be repre-
senting the temperature behavior at a certain location with a curve, starting 
from a daily temperature distribution.

Classification: This involves predicting a value from a finite set, for example, 
the label to associate with an image. The training set consists of pairs of 
input data and ground truth values, in this case, a label chosen from a finite 
set. The standard approach involves assigning a score to each potential 
class, with the correct class receiving the highest score. This is applied, for 
example, to image classification problems (cat or not cat), spam filtering 
(email to delete or keep), sentiment analysis (aimed at determining if the 
content of a text expresses a positive, negative, or neutral sentiment), etc.

In the case of unsupervised machine learning algorithms, we can highlight the 
following tasks:

Clustering: This refers to grouping data so that similar data points are in the 
same group, even without predefined labels. For example, with a certain 
distribution of points in a Cartesian plane, the goal is to find subsets that 
share specific similarities. If these were individuals, they could be grouped 
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based on pre-assigned income brackets. This is used for community detec-
tion in biology, social sciences, economics, customer segmentation for spe-
cific purchases, etc.

Associations: This refers to identifying relationships between variables in the 
data, such as in market analysis, where correlations are sought. This 
approach is used to discover the probability of co-occurrence of elements in 
a data collection. A classic example is recommendation systems that analyze 
which products are frequently purchased together, as seen in market 
analysis.

Density Estimation (e.g., anomaly detection, generation of realistic scenarios): 
This task focuses on finding common patterns within a population of data 
without assuming a rigid structure. It is useful for detecting anomalies 
(data that does not conform to expected patterns) or generating realistic 
scenarios similar to those described by the training data.

Dimensionality Reduction: This task involves finding a compact representation 
of complex data by reducing its dimensionality while retaining as much of 
the relevant information as possible. It is very useful for addressing high-
dimensional data problems, making them easier to visualize and manage. 

The versatility across multiple tasks makes machine learning algorithms espe-
cially appealing and interesting.
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4
Mathematics…the Bare Minimum

Before we venture into what will likely be the most challenging section of this 
book for many readers, I think it’s important to clarify a crucial point. By 
now, after so many introductions, it should be clear that machine learning 
algorithms are a powerful machine built on as much data as possible (prefer-
ably Big Data). Data, are “given”, meaning they are known quantities! And it’s 
essential not to confuse them with solutions! The solutions, on the other 
hand, are unknowns, and they must be found. Every time we face a mathe-
matical problem, the challenge is to go from data to solutions, i.e., from input 
to output. How to do that is what we are discussing in this book. We can 
think of machine learning as a process that allows us to associate a certain set 
of data with the corresponding solution. Whether it’s assigning a label that 
indicates whether a particular photo shows a dog or something else, or recog-
nizing whether a certain medical image (such as a CT scan or MRI) hides the 
presence of a tumor, and if so, which type of tumor it is, or partitioning a set 
of individuals into subsets with similar characteristics (such as their spending 
capacity or tendency to develop specific diseases), or even forecasting the 
weather for the upcoming weekend based on current data like wind speed, 
atmospheric pressure, and humidity. As can be guessed from these examples, 
the types of data can vary greatly, and the solutions that can be associated with 
them will also be very different. What remains unchanged is the mathematical 
structure: the trinomial

	 data mathematical procedure solutions→ → .	
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The mathematical procedure, in turn, can take many different forms. In the 
case of partitioning subsets as mentioned earlier, statistical clustering methods 
can be used, while in meteorology, a complex system of equations that math-
ematically translate the physical processes of our atmosphere must be used.

�The Building Blocks of ML Construction

Machine learning can also be considered a particularly notable example of a 
mathematical procedure. To understand how the machine learning process 
unfolds, we can refer to the general formulation proposed by Tom M. Mitchell 
back in 1997:

A program learns from an experience E with respect to a specific goal T (task) and a 
given performance measure P if its performance with respect to T improves with 
experience E.

As can be seen, the formalization of the process starts to take shape, although 
in a rather abstract form. To make this statement more concrete, let’s recon-
sider the now well-known image recognition problem: we want to write a 
program that, for a given image called x, should return a binary number y 
which will be 1 if the starting image is of a cat and 0 otherwise. We can imag-
ine that a machine learning algorithm works roughly in this way:

(E): We start with a training set consisting of N images xi representing cats or 
something else (other animals, objects, etc.) and a corresponding value yi 
for i ranging from 1 to N.

(M): We introduce a possible model, that is, a function that associates a generic 
image x with a binary value y (either 0 or 1). In symbols, y = f(x, p), where 
p represents values to be determined (generically referred to as parameters), 
and f is the function that associates the pair (x, p) with the result y. How f 
depends on x and p identifies the chosen model.

(P): We train the model by selecting from all possible parameters the ones that 
minimize the error when the model is applied to the training set images. In 
other words, the values ti = f(xi, p) should differ as little as possible from the 
true values yi, for all values of the index i ranging from 1 to N. We therefore 
compute the optimal parameter

	
p J p J popt opt p n: min( ) = ( )∈ 	
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One possible criterium is to choose J(p) as the sum of the squares of the dis-
crepancies between ti and yi, that is to set

	
J p y f x p

i
i i( ) = − ( ) ∑ ;

2

	

However, there are naturally other possible definitions of error. As a matter of 
fact, the choice of function J(p), called cost function, but also objective function 
or loss function, in the previous minimization formula characterizes the perfor-
mance measure P of our model.

For those who dislike mathematical formalism, beyond the technicalities, 
we could say that in this case, with machine learning, we propose a model of 
the relationship between any image x and its semantic value (y, which, in this 
case, indicates whether the image is or isn’t of a cat) dependent on parameters 
that are chosen in such a way as to optimize the performance of the model 
when applied to the training images.

At this point, once the numerical values of the parameters are determined, 
and thus the function f is fully determined, our model will be ready to be 
tested on any new image that is not already present in the training set. 
Naturally, changing the application context, we could now start from any set 
of inputs x (such as people with Covid-19) to generate an output y (such as 
the estimated number of days required for their recovery).

There are various criteria for carrying out the experience phase (E), which, 
as we’ve seen, are usually referred to as unsupervised, supervised, semi-
supervised, or reinforcement learning. In unsupervised learning, only the xi 
values—not the corresponding yi values—are included in the training set 
(training is done “blindly”). In supervised learning, both are included. In rein-
forcement learning, the training set is not fixed in advance, but it changes and 
is dynamically updated based on results and context. In less mathematical but 
more imaginative terms, we could say that, in general, supervised learning 
provides specific knowledge during the training phase that helps to build a 
true database of information and experiences. This way, when the computer 
faces a new problem, it doesn’t have to do anything except draw from the 
experiences stored in its system, analyze them, and decide which response to 
give based on pre-coded experiences. Unsupervised learning, on the other 
hand, means the information provided is not coded, meaning the computer 
has the ability to access certain information without having any example of 
how it should be used, and thus without knowledge of the expected outcomes 
depending on the chosen decision. It will be the computer itself that must 
catalog all the information it has, organize it, and learn the result that it leads 
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to. Reinforcement learning is the most complex form. It assumes that the 
computer has systems and tools capable of improving its learning and, most 
importantly, understanding the characteristics of its surrounding environ-
ment. This type of learning is typical, for example, of autonomous vehicles, 
which benefit from a complex system of cameras, lidars, and supporting sen-
sors. As can be understood, choosing the right model f is crucial for the devel-
opment of an effective machine learning algorithm. Naturally, there are many 
options available in this regard. 

The simplest models assume a linear (proportional) dependence of f on 
both x and p. Others assume a non-linear (polynomial) dependence on x, 
with polynomial coefficients represented by the parameters to be optimized.

Then there are models based on random forests, where the choice of response 
y is based on a series of dichotomous choices. This model consists of multiple 
decision trees, each of which provides an answer to a specific question. For 
example: “I should buy an apartment.” From there, a series of questions can 
be asked to determine an answer, such as “How many rooms should it have?” 
or “What is the available budget?” And again: “In which area of the city 
should it be?” These questions constitute the decision nodes of the tree, which 
serve to partition the data. Each question helps the individual make a final 
decision, indicated by the leaf node. Observations that meet the criteria will 
follow the “yes” path, while those that do not will follow the alternative path.

Decision trees try to find the best partitioning of data and are typically 
trained using a specific algorithm called Classification and Regression Tree 
(CART). A decision tree is an example of a classification problem, where the 
class labels are “buy” and “not buy.” In general, the more decision trees form 
a set in the random forest algorithm, the more accurate the results will be, 
especially if the individual trees are not correlated with each other.

We continue by recalling that Support Vector Machines fall under the case of 
supervised learning. Starting from a training set with labeled elements (cat/
non-cat, in the initial example), a model is built to assign new examples to 
one of the two classes, obtaining a deterministic binary classifier. A support 
vector machine represents the examples as points in space, mapped in such a 
way that examples belonging to the two different categories are clearly sepa-
rated by the largest possible margin. New examples are then mapped into the 
same space, and the prediction of the category they belong to is made based 
on the subspace they fall into.
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�Artificial Neural Networks

However, the models that have taken the lead by far are those based on artifi-
cial neural networks (ANN). Artificial neural networks are mathematical algo-
rithms that aim to emulate the behavior of biological neural networks, those 
that are biological, made up of neurons, axons, and dendrites. A biological 
neuron is a specialized cell in the nervous system, responsible for transmitting 
information through electrical and chemical signals. We can imagine it as 
being composed of several parts (for a graphical representation, see Fig. 4.1).

The soma (or cell body) contains the nucleus and other essential cellular 
structures. It is responsible for maintaining the cell and integrating signals 
received from the dendrites, branches that receive signals from other neurons. 
The axon is a long extension that transmits signals from the soma to other 
neurons, muscles, or glands. It ends with the axon terminals. The myelin 
sheath is the covering that wraps around the axon (in many neurons) and 
increases the speed of signal transmission. It is made up of glial cells, such as 
oligodendrocytes in the central nervous system and Schwann cells in the 
peripheral nervous system. The axon terminals (or synapses) indicate the end 
of the axon, where neurotransmitters are released to communicate with other 
neurons.

As for its functioning, at rest, a neuron exhibits an electrical potential dif-
ference across the cell membrane, with the inside of the cell at a lower poten-
tial than the outside (about −70  mV). This is maintained by ion pumps, 
which are transmembrane channels that open at the cell membrane to 

Fig. 4.1  A biological neuron and its components. (Image from Shutterstock.com)
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regulate the concentration of sodium (Na+) and potassium (K+) ions. When 
a neuron receives a signal strong enough to exceed a certain threshold, rapid 
depolarization of the membrane occurs. Sodium channels open, and Na+ ions 
enter the cell, making the inside more positive. After a brief phase, the sodium 
channels close, and potassium channels open, allowing K+ ions to exit the 
cell, restoring the negative potential. The action potential travels along the 
axon like a wave. In myelinated fibers, the signal “jumps” between the so-
called Ranvier nodes (which are areas without myelin) in a process called sal-
tatory conduction, which significantly increases the speed of transmission. At 
the axon terminal, the action potential triggers the release of neurotransmit-
ters from synaptic vesicles into the synaptic cleft (the space between adjacent 
neurons). The neurotransmitters bind to receptors on the membrane of the 
postsynaptic neuron (or other cells like muscles or glands), transmitting the 
chemical signal. This can lead to the generation of a new action potential in 
the postsynaptic neuron or other cellular responses.

The neuron is an essential part of communication within the nervous sys-
tem. Together, neurons form complex networks that enable all brain and 
bodily functions, from sensory perceptions to motor responses, to complex 
cognitive processes like thinking and memory.

Artificial neural networks are nonlinear models (compositional, i.e., 
obtained by applying nonlinear functions in sequence), with their core ele-
ment being the perceptron, the artificial neuron invented in 1943 by Warren 
McCulloch and Walter Pitts (1943) which simulates the logical behavior of a 
biological neuron. However, the term perceptron was introduced only in 
1958 by Frank Rosenblatt (1958), a researcher at the Cornell National 
Laboratory. The McCulloch and Pitts model can be seen as a particular case 
of a perceptron. The goal was to develop a method to encode information 
similar to how the human brain does, which connects around one hundred 
billion neurons with quadrillions (1021) of synapses. An artificial neural net-
work encodes relationships between nodes (similar to neurons) and numerical 
weights that represent the intensity of the connections (via synapses) between 
the nodes. For decades, the lack of computational power and advanced algo-
rithms slowed the development of neural networks, which remained mostly 
rudimentary. However, recent advances in both areas have finally freed AI 
developers from these restrictions.

Similarly to what happens in a biological neuron through the dendrites, an 
artificial neuron receives input signals from other artificial neurons. Each 
input is associated with a weight (w) that represents the relative importance of 
that input. Weights are numerical values that modulate the strength of each 
input and are generally modified during the learning process. At this point, a 
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function calculates the weighted sum of the inputs, using an expression of 
the form

	
z x b

i
i i= +∑w

	

where xi are the inputs, wi are the associated weights, and b is a bias term that 
allows shifting the activation function. See Fig. 4.2. The activation function 
applies a nonlinear transformation to the weighted sum to determine the neu-
ron’s output. Common activation functions include the sigmoid, ReLU 
(Rectified Linear Unit), and hyperbolic tangent. Their graphs are shown in 
Fig. 4.3.

The result of the activation function, which can be used as input for other 
neurons in subsequent layers of the neural network, constitutes the output of 
the individual neuron:

	

y f x p x b
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where we have denoted by p = [w1, w2, …, wn, b] the set of parameters that can 
vary for each individual neuron.

Fig. 4.2  An artificial neuron of a neural network
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Fig. 4.3  Examples of activation functions: the Heaviside function (a), ReLU (b), sig-
moid (c), and hyperbolic tangent (d). (With the permission of Paola Gervasio)

In McCulloch and Pitts’ original 1943 model, both the inputs and outputs 
are binary values (0 or 1), the weights were all equal to 1, and the activation 
function was the Heaviside function (displayed in Fig. 4.3a). We can modify 
the slope and the position of the transition in the sigmoid function by scaling 
and translating the argument, or, in neural network terminology, by applying 
weights and biases to the inputs.

An artificial neural network is a mathematical construction consisting of 
several layers of artificial neurons. In so-called Feed Forward networks, each 
neuron in a single layer receives input from the previous layer’s neurons and 
provides an output that will feed the neurons in the next layer. The first layer 
provides the input values xi, and the final layer provides the output values yj.

In abstract terms, artificial neural networks represent structures designed 
to simulate the way our nervous system analyzes and processes information. 
They are characterized by their self-learning ability, which allows them to 
produce results that progressively improve as the quantity (and quality) of 
data available for training increases. The learning process occurs during the 
training phase, where a set of trainable parameters is calculated so that, for a 
dataset where both input and output values are known, a sufficiently accu-
rate reconstruction of the underlying law can be obtained. The law that 
allows the output to be expressed as a function of the input has been previ-
ously indicated as f(x,p) where p are the trainable parameters, that is the set 
of coefficients that characterize the behavior of an artificial neural network, 
i.e., the matrix containing the weights W and the bias vector b. (A vector is 
a sequence containing a finite number of data entries–-specifically, real 
numbers–-whereas a matrix is an array composed of a finite collection of vec-
tors, all of equal length.) The training process aims to determine these param-
eters in the most effective way possible. It is essentially a mathematical 
optimization process, which involves minimizing the cost function J, a func-
tion that we have introduced before and quantifies the difference between 
the predicted outputs of the artificial neural network and the actual outputs 
corresponding to the input data in the training set. The cost function, also 
known as the objective function or loss function, depends on a large (often 
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extremely large) number of parameters. Minimizing it requires identifying 
the optimal combination popt of parameters W and b, where the cost function 
reaches its lowest possible value. This optimization process takes place in a 
high-dimensional Euclidean space and relies on sophisticated minimization 
algorithms, which involve extremely high computational costs. We will 
revisit this aspect in Chap. 6, where we discuss generative AI and the broader 
issue of the environmental sustainability of machine learning algorithms.

The number of layers, and the number of neurons per layer, characterize 
the architecture of the artificial neural network. These are called hyperparam-
eters. Other hyperparameters include those that characterize the cost function 
and the activation functions.

Deep neural networks (DNNs) are composed of a large number of neuron 
layers. The different layers allow for the representation of complex, interwo-
ven concepts. They can indeed identify complex relationships and intricate 
connections, including those that may escape human intuition. During the 
training phase, the weights within the network are adjusted as new data is 
acquired. As already noticed, as far as the volume of data and the number of 
layers in the network increase, the parameters W and b begin to reflect the 
relationships more accurately. Current deep neural networks are composed of 
about ten layers. Naturally, this number only represents an average order of 
magnitude, which can actually vary significantly depending on the specific 
tasks the networks need to perform.

As an example, AlexNet, a convolutional neural network that won the 
ImageNet competition in 2012, reducing the image classification error from 
26% to 15%, used a deep architecture with eight layers and leveraged GPUs 
(graphics processing units) to accelerate training. Also, the AlphaGo system 
by DeepMind, which defeated the world champion in Go, an extremely com-
plex game, used deep neural networks alongside other learning techniques to 
master long-term strategies. By showing a deep learning network an enor-
mous number of food pictures, the network will recognize whether a new 
picture represents a hot dog or not. Or, if we show it images, videos, and data 
collected from sensors in a car, it will know how to drive the car autonomously.

�Variable Architectures

Naturally, the architecture of artificial neural networks can be highly varied. 
Generally, it will depend on the specific class of problems to be solved: ANN 
used to classify an image (cat/man) will be very different from those that need 
to, for example, calculate the mortality risk factor for patients with electrical 
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heart disorders. ANNs are thus interconnected groups (layers) of nodes (arti-
ficial neurons) capable of “learning” to perform tasks such as classification or 
regression after being trained. There are various application fields in which 
ANNs have proven effective (often even more effective than human interven-
tion). Just to mention two examples in the medical field, ANNs have already 
been applied to the classification of arrhythmia from single-lead ECG (elec-
trocardiogram) data from over 50,000 patients, or to the recognition of skin 
mole danger levels, showing performance comparable to that of experts in 
both cases.

In supervised learning, the main domains of application for deep neural 
networks include Natural Language Processing (NLP) and Computer Vision. 
Among the networks for supervised learning, we can mention Feed Forward 
Neural Networks (FFNN), characterized by the absence of cycles in the con-
nections between neurons. They are used for tasks such as classification, 
regression, and pattern recognition. See Fig. 4.4.

Convolutional Neural Networks (CNN) are designed to work with grid-
structured inputs that exhibit strong spatial dependencies in  local regions 
(e.g., 2D images, text, time series, and sequences). They are ideal for feature 
extraction from inputs, creating similar values from local regions that share 
similar patterns. Their applications include image classification, object detec-
tion, and facial recognition. Examples include: LeNet (1998, used for digit 
recognition), AlexNet (2012), VGGNet-16 (2014), ResNets (2015), and 
GoogLeNet (2015). For an example, see Fig. 4.5.

Recurrent Neural Networks (RNN) use loops within the network to main-
tain a state that captures information from previous inputs, making them 
suitable for processing temporal sequences. Applications include time series 
forecasting, language modeling, machine translation, and speech recognition. 

Input
Output

Fig. 4.4  An example of Feed Forward Neural Network
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Some examples include: basic RNN (Vanilla RNN) and LSTM (Long Short-
Term Memory). A basic example (Vanilla RNN) is shown in Fig. 4.6.

Attention models use so-called self-attention mechanisms to process input 
data in parallel, rather than sequentially as in RNNs, making them more effi-
cient and scalable. They can focus attention on specific areas of text instead of 
a window of tokens where all have the same weight, enabling them to “ingest” 
large amounts of information by capturing important parts. Applications 
include natural language processing, machine translation, text generation, 
and image classification. Examples include: Transformer (2017), BERT 
(2018), GPT (2018), ViT (Vision Transformer, 2020), GPT-3 (2020), PaLM 
(2022), LaMDA (2022), GPT-4 (2023). BERT, GPT-x, and LaMDA are 
examples of large language models (LLMs), deep neural networks capable of 
generating language and performing natural language processing tasks, such 
as classification.

Reinforcement learning architectures focus on learning decision-making 
policies through interaction with a given environment. Applications include 
games such as AlphaGo, robotics, autonomous vehicles, and resource man-
agement. Examples include: Deep Q-Networks (DQN, 2015), Policy 
Gradient Methods, and Actor-Critic Methods.

Now, let’s look at unsupervised learning architectures.
Generative Adversarial Networks (GANs) consist of two networks, a genera-

tor and a discriminator, which are trained together in a zero-sum game: the 
generator creates fake samples by adding random noise to the training data, 
while the discriminator tries to distinguish real data from generated data. 
These networks can generate new content that looks realistic, maintaining 
statistical similarities. Applications include image generation, image super-
resolution, data augmentation, and style transfer, which is the modification of 
the aesthetic or visual appearance of an image while keeping the structural 
elements or core content intact. For example, one can transform a realistic 

Fig. 4.5  A convolutional neural network for digit recognition. (Nevada plate image 
from Shutterstock.com)
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Fig. 4.6  An example of Recurrent Neural Network

photograph into a painting in the style of Picasso or Raphael, or make a mod-
ern image look like a comic book illustration. Examples include “Vanilla” 
GAN, DCGAN, CycleGAN, StyleGAN.

Autoencoders are neural networks trained to reconstruct the original input 
by compressing it (encoding) and then reconstructing it (decoding). They are 
used for dimensionality reduction, anomaly detection, data compression, and 
generative modeling. Examples include Vanilla Autoencoder, Variational 
Autoencoder, Denoising Autoencoder, and Sparse Autoencoder. A representa-
tion is shown in Fig. 4.7.

Graph Neural Networks (GNNs) are designed to work with structured data 
such as graphs, where nodes represent entities and edges connecting two adja-
cent nodes represent relationships. An example is illustrated in Fig. 4.8. Their 
applications include social network analysis, recommendation systems, and 
protein structure prediction. Notable examples include Graph Convolutional 
Networks, Graph Attention Networks, and Message Passing Neural Networks.

Finally, hybrid architectures (supervised and unsupervised) combine ele-
ments from different networks to leverage their strengths. They are used in 
complex tasks that require a combination of techniques, such as video analysis 
and multimodal learning, where the training data is heterogeneous, like 
images, text, and sounds. Examples include: Convolutional Neural Networks 
(CNNs) combined with attention mechanisms to enhance feature extraction, 
or hybrid Transformer-CNN networks, used in vision tasks, which combine 
local feature extraction with global context awareness.
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Fig. 4.7  The structure of an Auto-Encoder

Fig. 4.8  An example of a Graph Neural Network
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5
What Data for Learning, and What Kind 

of Learning?

According to a recent estimate (Reinsel et  al. 2017), by 2025 we will be 
approaching 200 zettabytes of data in the universe’s database. One zettabyte 
equals 1021 bytes, or one thousand billion billion bytes. The twenty-first cen-
tury will therefore be remembered as the era of zettabytes. (Interestingly, 1021 
is also the estimated number of synapses in the human brain, as we saw in the 
previous chapter.) If we were to sit comfortably on the couch and watch an 
HD video containing 200 zettabytes of data, we would need to wait… 40 
trillion years before reaching the end of the projection! 200 zettabytes would 
be enough to fill the memory of 1.5 trillion iPhones or to record 2500 times 
all the words ever written by every human being. As illustrated in Fig. 5.1, in 
1986, when data began to be counted, there were 280 trillion bytes. In less 
than 40 years, that number has multiplied by nearly a million times! This cor-
responds to an average growth rate where the volume of data doubles approxi-
mately every 18 months. Interestingly, it follows the same dynamics as Moore’s 
Law for the increasing computational power of computers! To further illus-
trate these production rates, a recent analysis estimates that the global internet 
population has grown from 2.1 billion to 5.2 billion in just a decade 
(2013–2023). This surge generates unimaginable amounts of new data every 
minute of every single day, as shown in Fig. 5.2. The explosive growth of data 
is driven by several factors. IoT devices alone are expected to generate 90 
zettabytes of data per year by 2025. Almost 30% of the global data sphere will 
consist of real-time data. By the end of 2025, every connected person in the 
world, approximately 75% of the global population, will interact with data 
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Fig. 5.1  The growth of Big Data over the past 40 years

over 4900 times/day, which means once every 18 s. These trends highlight 
that the data we generate is not only increasing in volume but also in com-
plexity, frequency, and immediacy. This poses a challenge that requires sophis-
ticated approaches to store, process, and, most importantly, use data to extract 
actionable insights.

�The End of Theory, Anderson’s Provocation

This remarkable data explosion is the basis of Chris Anderson’s provocative 
thesis, expressed in his famous article: “The End of Theory: The Data Deluge 
Makes the Scientific Method Obsolete” (Anderson 2008).

Anderson’s concept of “the end of theory” generated significant interest, 
particularly in business and data science academia. At the time, as editor-in-
chief of Wired, Anderson hypothesized that the abundance of data would 
render theoretical models, those based on equations derived from physical 
laws, obsolete. He argued that data correlations are sufficient, making causal-
ity irrelevant, meaning there is no need to establish a rigorous cause-effect 
relationship. Anderson stated that the new availability of vast amounts of 
data, along with statistical tools to analyze them, offers a completely new way 
to understand the world. In his view, correlation surpasses causality, and sci-
ence can progress even without coherent models or unified theories. He 
claimed that correlation is enough, so we can stop searching for models. 
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Fig. 5.2  Data Never Sleeps (https://www.domo.com/learn/infographic/
data-never-sleeps-11)
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Instead of forming hypotheses, we can simply analyze data by feeding num-
bers into the world’s largest computing clusters and letting statistical algo-
rithms find patterns where traditional science cannot. To support his 
argument, Anderson used the example of Google’s search engine, explaining 
that Google’s foundational philosophy is that there is no need to know why 
one page is better than another. If the statistics of inbound links indicate that 
it is, then that is enough. There is no need for semantic or causal analysis. 
Consequently, he concluded that there is no reason to cling to old methods 
and proposed that it is time to ask what science can learn from Google.

Anderson’s assertion that correlation can replace causality contains several 
fallacies. The idea that Big Data can fully capture any research domain ignores 
the fact that every dataset is inherently influenced by the platform and ontol-
ogy, meaning the conceptual representation used. In other words, data reflects 
a specific viewpoint rather than an absolute truth. Moreover, the assumption 
that data can exist without human interpretation is misleading, as human 
decisions shape the collection, analysis, and presentation of data. A striking 
example of this issue comes from an experiment conducted by the city of 
Boston, where smartphone accelerometers were used to detect potholes in 
streets. This initiative, implemented through the Boston Street Bump App, 
initially appeared to be an innovative and cost-effective solution. However, 
the data analysis revealed an inherent bias. The app only collected data from 
drivers with smartphones, which meant that neighborhoods with fewer smart-
phone owners—often poorer, older communities—generated less data. As a 
result, wealthier areas appeared to have better-maintained roads, while under-
privileged areas seemed to have more potholes, even if that was not necessarily 
the reality. Despite efforts by Boston’s New Urban Mechanics office to address 
this issue, less conscientious policymakers overlooked the data bias and misal-
located resources, further exacerbating social inequalities.

The key takeaway from this example is that while data can bring knowl-
edge, it can also create false knowledge. Proper data analysis requires a strong 
theoretical foundation, a topic that will be explored further in Chap. 11. 
There, we will see that some of the greatest scientific discoveries of the past 
century would have been impossible with data alone.

�Data… Matters

Machine Learning systems handle structured data in the form of vectors or 
matrices, which may evolve over time, such as sequences of stock market 
prices, both as input and output. A vector is a string containing a finite 
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number of data points (real numbers), while a matrix is a structure composed 
of a finite collection of vectors, all of the same length. Even when data comes 
from unstructured sources, such as text or images, it is presented to the 
machine learning model in a structured format, often after complex human-
guided transformations, such as converting words into vectors.

Transformers, the models underlying large language models, can process 
unstructured inputs like natural language queries, images, and more in their 
raw form. They can also incorporate natural language instructions and trans-
form the input into another unstructured output, such as answering ques-
tions, translating text between languages, creating charts, or generating 
summaries. To learn how to perform a specific task, both transformers and 
traditional machine learning systems must be trained using historical data 
relevant to the task. It is important to note that transformers like GPT and 
similar models are pre-trained, just like traditional models. After pre-training, 
they can be fine-tuned to perform specific tasks where they process inputs and 
instructions, as seen in Natural Language Processing applications.

Within a company, data analysis follows a series of interconnected stages. 
The first stage is identifying data sources, which involves searching for and 
pinpointing the origins of information. These sources may include corporate 
databases, Customer Relationship Management (CRM) systems, web data, 
social media, and Internet of Things (IoT) sensors, all of which are closely tied 
to the company’s specific operational domain. Once the sources are identified, 
data acquisition takes place. This process can be automated or manual, 
depending on the complexity of the data and the nature of the sources. The 
collected data is then stored and managed in dedicated structures such as 
databases or data warehouses, organized to facilitate easy access and prepare 
them for further analysis.

The next stage is data analysis, aimed at identifying patterns, trends, and 
relationships that can inform decision-making within the company. Finally, 
the results of the analysis are transformed into meaningful, actionable insights 
for the business. These insights can be presented through reports, dashboards, 
or other tools that facilitate their use. Within this process, by combining sta-
tistical and computational thinking in domain-specific problem-solving, Data 
Science represents the set of techniques that enable data-driven decision-
making. As such, it encompasses data collection, data cleaning, data engineer-
ing, machine learning, and data visualization—many of which are also integral 
to AI. Data Science also aids in predictive and descriptive analysis, utilizing 
advanced algorithms and statistical techniques to identify patterns, under-
stand behavior, and make forecasts. In a business context, Data Science helps 
optimize processes by identifying areas for efficiency improvement and cost 
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reduction. A crucial aspect of this field is Data Visualization, the art and prac-
tice of visually representing data by converting complex information into 
graphs, diagrams, maps, or other easily understandable visual formats. The 
primary goal is to make data more accessible, comprehensible, and useful for 
analysis and communication.

As we have already noted, machine learning can use both labeled and unla-
beled data. Labeled data includes past records with known outcomes. 
Examples of labeled data include banking data, where we know which cus-
tomers defaulted on loans, and medical records, where we know whether a 
patient experienced a cardiovascular disorder. Unlabeled data consists of raw 
behavioral sequences. Examples include a user’s purchase history on an 
e-commerce site or a pilot’s flight control actions. Machine learning tasks can 
be categorized into three main types: descriptive, predictive, and 
prescriptive.

The descriptive approach focuses on analyzing past or present data to iden-
tify patterns and trends. The goal is to answer questions such as “What hap-
pened?” or “What is happening?” Through tools like reports, graphs, and 
statistical analyses, descriptive machine learning provides a clear picture of the 
current situation. An example would be analyzing a company’s sales over the 
past 12 months to identify the most profitable periods. Another example is 
clustering customer profiles or patient data into groups of similar individuals, 
which can then be used to design targeted marketing campaigns for revenue 
optimization. This task typically relies on unsupervised machine learn-
ing models.

The predictive approach aims to answer the question, “What could hap-
pen?” By analyzing past data with machine learning techniques and statistical 
methods, predictive ML builds models to anticipate future outcomes. For 
example, a business can estimate the next quarter’s sales volume, forecast cus-
tomer behavior, or predict user satisfaction in a marketing campaign. Another 
common application is analyzing past loan applicants to predict the likeli-
hood of default for new applicants. Predictive modeling relies on algorithms 
such as regression analysis, neural networks, and time-series forecasting.

The prescriptive approach seeks to answer the question, “What should we 
do?” This type of analysis suggests optimal actions to achieve a desired result. 
By integrating insights from descriptive and predictive models, prescriptive 
machine learning provides actionable recommendations, combining mathe-
matical models, simulations, and optimization techniques. A practical exam-
ple is inventory management, where prescriptive analytics helps determine 
the optimal number of products to order to minimize costs while ensuring 
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availability. Another example is strategic marketing planning, where prescrip-
tive machine learning can determine the best customer segmentation strategy 
to maximize conversion rates. A particularly significant application of pre-
scriptive analytics is in autonomous driving. By analyzing the driving behav-
iors of millions of human drivers, machine learning can derive the best 
strategies for responding to environmental conditions and making driving 
decisions in real time.

These three approaches—descriptive, predictive, and prescriptive—are not 
isolated but complement each other. For instance, a company might first ana-
lyze historical sales data (descriptive), then predict future demand for its prod-
ucts (predictive), and finally optimize its inventory based on these forecasts 
(prescriptive). Together, these methods create a cycle of analysis that supports 
increasingly informed and strategic decision-making.

In the modern landscape of machine learning, recent advancements like 
OpenAI’s GPT models, perform tasks that go beyond these three categories. 
Instead of merely analyzing past data or predicting future trends, these sys-
tems transform one type of information into another. Examples include auto-
matic language translation, answering questions, summarizing texts, 
generating images from natural language descriptions, converting datasets 
into visual graphs, and even automatically generating computer code. These 
AI models take natural language text as input and produce useful outputs 
across a wide range of applications, demonstrating the immense potential of 
machine learning beyond traditional classification.

�Interpretability, Explainability, and 
Reliability in AI

Within organizations or corporate environments, processes are monitored 
using appropriate sensors or data collection software, with the specific proce-
dure varying according to the context. This generates a database, which is 
typically divided into two parts: a training database, used to train the model, 
and a validation database, used to assess the model’s performance and refine it 
if necessary. Model training requires human intervention, as an operator 
defines the model’s structure and selects the input features (such as parameters 
and hyperparameters in artificial neural networks) through an optimization 
process during training. Once trained, the model becomes the core of machine 
learning algorithms.
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These algorithms are often “black boxes,” meaning they operate in a way 
that is not easily interpretable by humans. While the decisions made by the 
algorithm may be highly accurate, it does not provide an explanation of how 
it arrived at those conclusions. Interpretable models offer insights into how 
knowledge is extracted from the vast amounts of data in the training database. 
This can lead to greater awareness and understanding for users and facilitate 
the generalization of the algorithms to new, previously unconsidered cases. 
These aspects will be further discussed later in this book.

The ability to understand and justify the decisions made by an AI system is 
a crucial aspect of human intelligence. It fosters trust in social and educational 
interactions, where understanding the reasoning behind choices is essential. 
The same principle applies to technical fields such as medicine, where a doc-
tor’s explanation of a treatment reassures the patient and builds trust. Similarly, 
understanding the decision-making process in AI systems is critical, especially 
when these technologies are applied in sensitive or high-stakes environments. 
Blindly trusting a black-box system without verifying its functioning is risky. 
For example, an AI system used in healthcare to predict pneumonia risk made 
incorrect conclusions, suggesting that asthmatic patients with heart problems 
had a lower risk of death than healthy individuals. This error, obvious to an 
experienced physician, resulted from biased data: patients with severe condi-
tions were under close medical supervision, which reduced their mortality 
risk. However, this correlation did not imply causation. Such errors highlight 
the importance of interpreting AI models to prevent misleading data from 
leading to dangerous decisions.

For an AI system, interpretability refers to the extent to which a human can 
understand how an AI model makes its decisions, while explainability is the 
ability to describe why a model made a specific decision. Interpretability 
focuses on the model’s transparency—how it works internally—whereas 
explainability aims to justify and describe the model’s decisions, even in those 
cases where the inner workings are not fully interpretable.

For example, in a linear regression model, interpretability is high because it 
is clear how each feature contributes to the outcome through the model coef-
ficients. Similarly, in a decision tree, you can trace the path the model follows 
to reach a decision. On the other hand, a deep neural network used for image 
classification, which is inherently complex and difficult to interpret, can still 
be explainable if it can highlight which parts of an image influenced the 
classification.
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In practical applications, a loan approval AI should be able to explain why 
an applicant was rejected, providing insights into the decision-making pro-
cess. Similarly, in a self-driving car, interpretability means understanding how 
each sensor and algorithm contributes to the vehicle’s steering, acceleration, 
and braking. Explainability, however, would involve providing a clear reason 
why the car made a specific maneuver—such as swerving to avoid an obsta-
cle—without necessarily revealing the full complexity of the underlying 
algorithm.

AI tools such as SHAP (SHapley Additive Explanations) and LIME (Local 
Interpretable Model-agnostic Explanations) can be used to improve the 
explainability of machine learning models. Both methods help clarify–-at 
least partially–-why a model made specific decisions, making the results more 
transparent and understandable to humans. Explainability is not just about 
transparency; it is also a crucial tool for improving AI models. Understanding 
a system’s weaknesses is the first step in correcting and strengthening it. 
Interpretable models make it easier to detect biases, compare alternative 
approaches, and select the most suitable solution for a given need. Studies 
have shown that two models with similar performance can rely on entirely 
different decision-making criteria. A transparent analysis of these criteria 
allows for the selection of the best model for a specific application. The more 
we understand how a model operates and why it makes mistakes, the better 
we can improve it.

The ability to explain a model’s functioning also creates opportunities for 
discovering new knowledge. AI systems trained on vast amounts of data can 
identify patterns that humans might overlook. For example, a model playing 
Go discovered innovative strategies later adopted by professional players. 
Similarly, in physics, chemistry, and biology, explainability enables the explo-
ration of new laws and relationships that go beyond simple data-driven pre-
dictions. In these contexts, understanding the model is not just an added 
benefit—it is a crucial means of advancing scientific knowledge.

Furthermore, transparency has ethical and legal implications. Without 
transparency, it becomes difficult to determine responsibility in the event of 
errors. Individuals affected by AI decisions, such as a customer denied a bank 
loan, have the right to a clear explanation of the criteria used. This principle 
is so significant that the European Union introduced the “right to explana-
tion,” ensuring users can understand the algorithmic decisions that impact 
them. As AI becomes increasingly integrated into daily life, ensuring 

5  What Data for Learning, and What Kind of Learning? 



50

transparency and comprehension not only builds trust in AI tools but also 
promotes responsible and sustainable technology adoption.

Another defining characteristic of a machine learning model is its reliabil-
ity, or trustworthiness, meaning how safe and reliable it is—an essential feature 
in critical applications such as healthcare, finance, and autonomous driving, 
where errors or opaque decisions can have serious consequences. For a model 
to be trustworthy, it must be accurate, meaning it can make correct and con-
sistent predictions on new, unseen data. Its performance should be assessed 
using appropriate metrics to confirm its ability to solve the specific problem 
at hand. An algorithm’s trustworthiness goes beyond the accuracy of its pre-
dictions—it encompasses the entire process of design, implementation, and 
use, ensuring that the system is ethical, robust, and secure. For example, in a 
medical setting, a reliable model must not only diagnose diseases accurately 
but also be interpretable, fair, and capable of operating without risk to patients. 
Trustworthiness is fundamental for building user confidence and mitigating 
the risks associated with AI adoption.

Another crucial factor is robustness: the algorithm must be resilient to varia-
tions or noise in input data, ensuring that small modifications do not lead to 
significantly different or incorrect results.

Fairness is is another key element. The model must avoid any form of dis-
crimination arising from biases in the training data, ensuring fair and impar-
tial decisions regardless of sensitive factors such as ethnicity, gender, or age.

The model must be protected from adversarial attacks—intentional 
attempts to manipulate its predictions by introducing altered inputs. An AI 
model must adhere to regulations such as the GDPR (General Data Protection 
Regulation) in Europe, ensuring transparency in automated decisions and 
protecting users’ personal data. Last but not least, external validation is also 
essential: the model’s performance and behavior should be verified by domain 
experts or through independent evaluations.

Before concluding this chapter, it is worth emphasizing that machine learn-
ing requires sufficient and high-quality data—without which effective models 
cannot be built. Some situations may involve data scarcity, such as underrep-
resented minority groups. In other cases, the training set may include numer-
ous examples of common scenarios but lack data on rare events. For instance, 
datasets used to train self-driving cars may contain few examples of extraordi-
nary situations, such as a wild animal suddenly crossing the road. Yet, even in 
these situations, AI must operate at peak efficiency. More abstractly, if we 
postulate the equivalence between data and information (the more data we 
have, the more informed we believe we are), information is not inherently 
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meaningful; it depends on context. For data to be useful or even significant, 
it must be interpreted through the lenses of experience, domain knowledge, 
and sometimes even cultural and historical context. When information is 
contextualized, it becomes knowledge. When knowledge inspires convictions, 
it transforms into wisdom, and these convictions, combined with knowledge, 
allow people to explore new horizons.

By merging the experience encoded in data with contextualization sup-
ported by scientific knowledge, a new branch of machine learning has recently 
emerged: scientific machine learning. We will explore this field in Chap. 11.
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6
Generative AI: The Sudden Boom

Generative Artificial Intelligence represents an advanced class of models 
designed to create original content that reflects the characteristics of an initial 
dataset. It can be described as a model capable of generating human-like text 
in response to a prompt (i.e., a command or an invitation to provide a 
response). Given an incomplete sentence, it can suggest a completion; given 
an initial phrase, it can develop entire paragraphs; given a question, it can 
provide plausible answers; with a topic and some basic information, it can 
craft an essay; given a fragment of dialogue, it can continue the conversation 
with a coherent transcription.

The applications of generative AI are numerous and span text, image, and 
sound creation. A particular type of generative AI model is that of the large 
language models, designed to understand and generate text in an extremely 
sophisticated way. These models are trained on vast amounts of textual data 
(hence the term large) to learn linguistic structures, syntax, and specific con-
texts. Their main characteristic is the ability to generate coherent and contex-
tually relevant text, responding to questions, completing sentences, or creating 
original content.

Today, these models play a key role in raising awareness of AI’s potential, 
largely thanks to the availability of several open-access AI systems. The follow-
ing list–-while certainly not exhaustive at the time of writing–-illustrates the 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92973-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-92973-1_6#DOI


54

vibrancy of this sector since the launch of ChatGPT by OpenAI in November 
2022. (GPT stands for Generative Pretrained Transformer.)

•	 Claude is an advanced AI tool developed by Anthropic, designed for natural 
language processing and conversational tasks. It excels in generating 
human-like text, answering questions, and assisting with tasks such as 
drafting emails, writing code, and summarizing information.

•	 Llama 4, the latest in Meta’s series of open-source AI models, supports 
multimodal functionality, allowing it to process both text and images, 
enhancing its versatility for tasks like document analysis and computer 
vision applications.

•	 Gemini 2 is an AI tool developed by Google DeepMind, designed to push 
the boundaries of artificial intelligence by integrating powerful language 
capabilities with problem-solving skills. It combines natural language 
understanding, reasoning, and knowledge retrieval into a comprehensive 
system, by unlocking new possibilities for AI agents—intelligent systems 
that can use memory, reasoning, and planning to complete tasks.

•	 Synthesia is a tool designed to create high-quality video content quickly and 
efficiently using artificial intelligence. It allows users to generate videos 
with AI avatars that can speak multiple languages, making it highly versa-
tile for global communication.

•	 ElevenLabs is an AI platform primarily known for its text-to-speech capa-
bilities and AI voice generator. It uses deep learning models to generate 
highly realistic and customizable voices from written text.

•	 Grok 3 is an AI-based tool developed by xAI to help users better interact 
with complex information, enabling a faster and deeper understanding of 
various topics. The term “grok,” originally from science fiction, refers to the 
ability to fully and intuitively understand something. Grok 3 can analyze 
images and respond to questions, and powers several features on Musk’s 
social network, X.

•	 Mistral AI is a relatively new but innovative company in the field of artifi-
cial intelligence, focusing primarily on building advanced open-source AI 
models and tools. The company has gained prominence as an alternative to 
proprietary AI systems as it aims to “democratize” AI by focusing on open-
source innovation.

•	 CopyAI is an AI-powered writing tool designed to assist users in efficiently 
creating high-quality content. Using advanced natural language processing 
models, CopyAI generates text for a wide range of purposes, including 
marketing copy, blog posts, social media captions, email templates, and more.
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�Transformers and Self-Attention Mechanisms: 
The Engines of Generative AI

Large language models rely on transformer algorithms (previously men-
tioned), which use the attention mechanism—a concept that can be imagined 
as the ability to focus on key words while reading a sentence. This process, 
represented in Fig. 6.1, consists of layers of transformers and neural networks, 
effectively capturing complex relationships in natural language. The weighted 
information is combined to create a representation of the context. This 
approach has proven useful, for example, in machine translation and other 
natural language processing tasks.

Fig. 6.1  The transformer
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The algorithm behind a large language model, such as ChatGPT-4, is struc-
tured in several steps. The first step is to convert the text into tokens, linguistic 
units that can be words or parts of words (subwords). This tokenization pro-
cess converts the text into a sequence of integers (an index for each token in 
the model’s vocabulary). Example: The text “The cat is sleeping” could be 
transformed into the tokens [1001, 459, 34, 8873]. Each token is then trans-
formed into a numerical vector via a so-called embedding matrix. This matrix 
assigns each token a dense vector representation in a continuous space so that 
semantically similar tokens have nearby vectors. For example, [1001, 459, 34, 
8873] becomes four embedding vectors, each of a fixed size, such as 768 
dimensions.

Since the transformer does not have an integrated sequential mechanism 
like recurrent neural networks (RNNs), positional encoding is added. This 
technique allows the model to know the order of the tokens in the sequence. 
The formula for positional encoding is defined using trigonometric functions, 
sinusoidal and cosinusoidal, which add a small amount of variation to the 
embedding vectors depending on the position of the tokens.

The core of the algorithm is the self-attention mechanism. Here, the model 
evaluates the relationship between each token and all the other tokens in the 
sequence, creating a sort of map of how much each word “attracts” or “influ-
ences” the others. Mathematically, for each token, three matrices are com-
puted: Q (Query) represents the current word, K (Key) represents the other 
words with which the current word can interact, and V (Value) represents the 
informational content associated with each word. Self-attention is computed 
by taking the product of the Q and K matrices (which measures the similarity 
between tokens), normalizing it, and then multiplying the result by the V 
matrix (which weights the values to produce the appropriate context).

To improve the model’s ability to capture different types of contextual rela-
tionships, the Transformer uses the so-called multi-head attention, an algo-
rithm that performs multiple parallel self-attention computations (called 
“heads”), each with a different projection of the data. Each head specializes in 
capturing specific types of relationships, such as the relationship between 
nearby words or between distant words. The results of the different heads are 
then concatenated together.

After the self-attention mechanism, the result is passed through a feed-
forward neural network. Each token is processed independently by a fully 
connected network (two linear layers interspersed with a nonlinear activation 
function, such as ReLU).

The transformer consists of many layers of multi-head attention and feed-
forward networks applied sequentially. Each layer adds further processing to 
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the context of the text. The output of each layer is normalized via a technique 
called layer normalization. After the text has been processed through all the 
layers of the Transformer, a refined numerical representation for each token is 
obtained. This representation is then passed through a softmax function, 
which converts the result into a probability distribution over the model’s 
vocabulary.

The softmax function is defined as
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where zi is the logit associated with token i. (In statistics, the logit model, also 
known as the logistic model or logistic regression, is a nonlinear regression 
model used when the dependent variable is dichotomous, meaning it can take 
only two distinct values. The goal of the model is to determine the probability 
that an observation will produce one or the other value of the dependent vari-
able. It is worth noting that logits, although they are probability indicators, 
can also take on negative values. It is the softmax function that transforms 
them into all positive values (thanks to the application of the exponential 
function) and normalizes them.) The token with the highest probability is 
selected as the prediction. The algorithm can generate one token at a time in 
an autoregressive mode: once a token is generated, it is added to the context, 
and the process repeats to generate the next token, until a stop condition is 
reached (such as an end-of-sequence token).

The model is trained using a massive amount of textual data, minimizing a 
cost function like cross-entropy, which measures the difference between the 
predicted probability for a token and the target distribution (the correct 
token). The model weights (i.e., the parameters W and b encountered in 
Chap. 4) are updated via optimization algorithms such as the Adam algo-
rithm (Quarteroni et al. 2025).

We can summarize the entire process by outlining its distinct phases:

Tokenization: the text is divided into tokens; Embedding: tokens are trans-
formed into numerical vectors; Positional Encoding: information about the 
position of the tokens is added; Self-Attention: the relationships between 
tokens are calculated; Multi-Head Attention: multiple self-attention heads 
work in parallel; Feed-Forward Network: tokens are processed by neural 
networks; Layer Repetition: many layers of processing refine the context; 
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Softmax: the output is converted into probabilities; Prediction: the next 
token is generated based on the probabilities.

We can now ask how the tokens: 1001, 459, 34, 8873 are assigned to the 
text: “the cat is sleeping.” They depend on the model’s vocabulary, a predefined 
list of words, parts of words (subwords), or characters, where each element 
corresponds to a unique number called the token index. A model like GPT 
uses a vocabulary built through a tokenization technique called Byte Pair 
Encoding, which splits the text into basic units such as common words, sub-
words, or even individual characters, to maximize efficiency. In this case, 
“The” could be represented by the token 1001, “cat” could be represented by 
the token 459, “is” could be represented by the token 34, “sleeping” could be 
represented by the token 8873. The model has a pre-trained vocabulary that 
associates each word or part of a word with a number. During training, the 
vocabulary is created by analyzing huge amounts of text, and each token is 
assigned an index based on its frequency and usefulness.

By splitting words into pieces or subwords, Byte Pair Encoding allows the 
handling of rare or unknown words (or simply misspelled words!) that are not 
present in the vocabulary as wholes. For example, for “sleeping,” “sleep” could 
be a common token and have its own index, such as 5123, while “ing” could 
be another frequent token, with a separate index, such as 4872. In this case, 
“sleeping” could be tokenized into two parts: [5123, 4872]. The model joins 
these tokens to generate the full meaning. In general, this process allows mod-
els like GPT to handle a wide range of words, even new or rare ones, by break-
ing words into known pieces (subwords), which is especially useful in 
languages with complex morphology or with infrequent technical terms.

The development of large language models is progressing rapidly, with new 
releases continuously adding new capabilities. The latest models are multi-
modal, meaning they can integrate different types of sources, such as text, 
audio, images, and video. Conventional language models can be specialized to 
perform different common tasks, such as sentiment analysis and named entity 
recognition, without requiring additional specialized knowledge. However, to 
address more complex and content-rich tasks, systems based on language 
models can be implemented that draw on external sources of knowledge. This 
ensures greater consistency in facts, improving the reliability of the generated 
answers and reducing the risk of errors.
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�The Hallucinations of Generative Intelligence

Hallucinations in generative artificial intelligence occur when an AI model, 
like ChatGPT, generates responses or content that appear coherent and plau-
sible but are completely fabricated, incorrect, or not based on real facts. 
Although the term may not have been the best choice, this phenomenon hap-
pens because generative AI does not have a real understanding of the world or 
the information it processes. Generative AI algorithms are designed to pro-
duce responses that seem plausible and linguistically coherent but are not 
necessarily factually accurate. Since the model optimizes for the probability of 
the next piece of text occurring rather than accuracy, it can generate wrong 
answers, even if they seem plausible, stylistically correct, or contextually 
appropriate.

The causes that lead to hallucinations can vary. Some of the most common 
ones include: ambiguity or lack of clarity in the input (i.e., the prompt); lack 
of information in the training set; biases in the training data; the model’s 
structure, which can lead to incorrect correlations between input and output, 
producing responses that seem logical but are not; training techniques, which 
program the model to generate a response even when it does not have com-
plete or precise knowledge (these models never manage to say “I don’t know!”); 
and the limitations of the model’s memory, which means it cannot recall pre-
vious information during long conversations.

In generative AI models, like those based on transformer neural networks 
(e.g., GPT), a parameter called temperature controls the randomness or vari-
ety of the responses generated by the model. It modifies the probability distri-
bution of the words the model can choose from to generate the next piece of 
text. In simple terms: when the temperature is set to a low value (close to 0), 
the model becomes more deterministic and tends to choose the words with 
the highest probability. This means the model is more likely to generate pre-
dictable and safe answers, reducing creativity but increasing consistency and 
repeatability of responses. When the temperature is higher (above 1), the 
model introduces more randomness into the word selection process. With a 
higher temperature, the model may choose less probable words, leading to 
more varied and creative responses, but also potentially less coherent or riskier 
ones. In summary, the temperature is a key tool for balancing creativity and 
consistency in generative AI models, allowing users to control how “adventur-
ous” or “conservative” the model should be in generating text.
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To mitigate hallucinations, developers and researchers are constantly work-
ing to improve the coherence and accuracy of large language models. This 
includes data filtering operations, changes to the model’s architecture, and 
advanced training techniques such as reinforcement learning from human 
feedback (RLHF), which provides feedback to the system on the number of 
hallucinations produced, helping it to correct itself. However, it is important 
to note that the phenomenon of hallucinations is intrinsic to the architecture 
and training process of generative AI models. Reducing hallucinations might 
limit the model’s creativity in content generation, making it necessary to find 
a balance between accuracy and creativity depending on the model’s use case.

To reduce issues caused by hallucinations an approach called Retrieval-
Augmented Generation (RAG) has been introduced to handle tasks that require 
significant amounts of knowledge (Lewis et al. 2020; Gao et al. 2023). RAG 
combines an information retrieval component with a text generation model. 
This system is flexible and allows for continuous updates, ensuring access to 
the most up-to-date information without having to start from scratch. RAG 
receives input and retrieves relevant documents from external sources, such as 
Wikipedia or those found in the archives or information systems of a specific 
company, using them as context alongside the original input to feed the text 
generator and produce the final output. This makes retrieval augmented gen-
eration models adaptable in situations where information evolves over time, 
providing always up-to-date responses and forcing it to adhere as closely as 
possible to the informational context of relevant documents. Creating a 
retrieval augmented generation application, such as a chatbot, involves inte-
grating techniques based on information retrieval with generative models. 
The process begins with data preparation, during which a large domain-spe-
cific corpus of information is collected, pre-processed, and organized into a 
document archive. The next step is indexing, which involves representing the 
documents as dense vectors that are then indexed in a vector database to allow 
for efficient similarity searches. When a user submits a query, it is processed 
by a retrieval module that identifies the most relevant documents in the data-
base. The retrieved documents are then provided as context to a generative 
model, such as GPT-4, LlamA, or others. This model generates a response by 
combining the context of the documents with the user’s query, often format-
ted into a structured prompt. The retrieval module and the generator are inte-
grated into an API or cohesive application layer. (An API – Application 
Programming Interface – is a set of rules and tools that allow different applica-
tions or systems to communicate with each other, like a bridge that allows a 
software to access the functionality or data of another software without hav-
ing to know the internal details.) Finally, the retrieval augmented generation 
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pipeline is deployed on cloud platforms. Through these stages, the retrieval 
augmented generation system becomes a robust and scalable solution for 
intelligent chatbot applications.

Open Problems That Deserve Attention

Despite the great potential of generative AI in creative innovation and gener-
ating unique content, there are many issues to consider. First, we are used to 
computing tools like email, search engines, and programming languages that 
are rigid and not creative, but reliable and predictable. Now, however, we have 
language models like ChatGPT that understand natural language requests 
and generate creative images and texts, but without the same reliability, pre-
dictability, or accuracy—indeed, they are prone to hallucination. How can we 
use a powerful but unreliable tool? For applications where errors can cause 
real damage (for example, in medicine, to provide therapeutic guidelines, or 
in business, to make financial decisions), caution is necessary. We also cannot 
ignore the risks of creating false or manipulated content. Therefore, the evolu-
tion and responsible adoption of these technologies require careful consider-
ation of ethical and security aspects.

Another aspect concerns the credibility and reliability of the data used to 
train generative AI. The rise of generative AI is rapidly filling the internet with 
synthetic content (i.e., non-original content produced by the AI itself ). At the 
time of writing, for example, Newsguard has identified over six hundred news 
and information sites created by AI systems. In the future, AI models could be 
trained primarily on content generated by generative AI itself! This self-
feeding process seems destined to create a sort of informational echo within 
the AI itself. Recent studies have shown that training models on data pro-
duced by other AI models leads to a degenerative and irreversible process: the 
model ends up overestimating the most likely events and underestimating rare 
ones, progressively losing touch with the original data distribution. This phe-
nomenon, called “model collapse,” occurs in different types of models, from 
large language models to image generators, and only a few generations of 
training are enough to compromise the quality of the results. Another study 
documented a similar process, called Model Autophagy Disorder, which occurs 
when generative models do not receive a constant stream of real data. Without 
a continuous flow of human-generated content, generative AI models risk 
deteriorating. This prospect of an authenticity crisis could jeopardize the value 
of generative AIs, especially considering that many consumers are skeptical 
about content created by algorithms. The very essence of the internet is based 
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on interaction and human-generated content: the invasion of artificial con-
tent risks undermining the intrinsic value of the web.

In this new digital landscape, where authentically human content is increas-
ingly rare, a reconsideration of incentives and economic models that value 
human contributions seems necessary. The question is: how can we create an 
ecosystem that encourages people to continue producing and sharing authen-
tic content? To do this, we need to focus on three fundamental aspects: fair 
compensation for human creativity, greater control over creative results 
through transparency, and technological innovations that clearly distinguish 
human-generated content from machine-generated content. This is certainly 
not a simple program to implement.

There are several other fundamental aspects that arise in the field of machine 
learning. How can we program systems that learn automatically from data 
and improve their predictive and prescriptive abilities with experience? 
Learning means giving meaning to a subject, event, or emotion, interpreting 
it through our words or actions. It involves using new skills or knowledge, 
integrating them with the skills and understanding we already possess, to 
apply them in a useful way: gathering available data (ingestion), acquiring 
knowledge (understanding and interpreting data, turning it into knowledge), 
and finally using that knowledge to take concrete actions (i.e., acting). But 
how do humans learn? Certainly through teaching and observation, but we 
also learn by doing and making mistakes (trial and error). Fundamentally, 
machine learning systems learn in one of these two ways. There are things 
humans cannot learn (but perhaps machines can) and others that are difficult 
to teach to machines (one of many: common sense).

For humans, learning is difficult when there is too much data, as they 
cannot easily make sense of it, such as finding regularities in the human 
genome, learning to recognize an object among millions, or analyzing and 
predicting how the market will evolve. When data is highly heterogeneous 
and changes too frequently, or when operating in difficult or dangerous 
environments where the trial-and-error strategy is not advisable, learning 
becomes challenging. It is often difficult for humans to teach as well when 
there is a lack of theoretical knowledge and not enough prior information 
or experience to “understand and acquire knowledge.” For example, we still 
do not fully understand the process through which our brain recognizes 
images and language.

If properly trained, for some applications and to some extent, machines are 
better than humans: in games, in performing precision surgery, in image anal-
ysis and recognition, and, recently, in natural language recognition. However, 
even in these cases, the main limitation is the explainability of the underlying 
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algorithms. They are “black boxes,” while, for example, mathematical models 
representing real-world processes are “white boxes,” completely interpretable.

Large language models are characterized by an extraordinarily high number 
of trainable parameters. GPT-3, for example, had 175  billion parameters, 
while the subsequent GPT-4 version, which extended its capabilities to image 
generation, is estimated to have over a trillion parameters. This vast number 
of parameters has various implications in terms of costs, training times, access 
to necessary data, and other operational costs. As for tokens, which are man-
ageable text fragments (words, characters, or parts of words) that the model 
can use, the number has increased from 4096  in GPT-3 to 32,768  in the 
extended version of GPT-4. A larger number of tokens allows for analyzing 
longer texts or maintaining complex contexts in conversations, making the 
models more useful in advanced applications.

Accessing quality and adequately sized datasets can be challenging, espe-
cially considering issues related to data privacy. Executing and evaluating large 
language models also incurs significant costs in terms of computational 
resources and time. The model’s size can make inferences slower, requiring 
more powerful hardware to maintain acceptable performance. Sam Altman, 
CEO of OpenAI, revealed that the cost to train GPT-4 was around 100 mil-
lion dollars.

�Sustainable? Not Quite

The use of powerful and specialized computing infrastructures for training 
large language models can be prohibitive for many organizations due to the 
associated costs. The enormous energy consumption also raises concerns 
about its environmental impact. According to a recent study, the two tech 
giants Microsoft and Google used 24 TWh in 2023. In the same year, Italy 
consumed around 300 TWh to meet the energy needs of over 60 million citi-
zens. To provide another reference, Nigeria, with nearly 220 million people, 
consumed 32 TWh in 2023. These extremely high consumption rates are due 
to the complex calculations carried out by global data centers, which, accord-
ing to the International Energy Agency, consumed around 460 TWh in 2022, 
a figure that could reach 1000 TWh by 2026. This increase is largely attrib-
uted to the rapid and intensive development of generative artificial intelli-
gence, which requires a lot of energy, especially during training phases. At the 
beginning of 2025, Meta announced a Request for Proposals (RFP) to iden-
tify nuclear energy developers, with the goal of adding 1–4 gigawatts (GW) of 
nuclear capacity in the United States by the early 2030s. This initiative aims 
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to support Meta’s AI innovation and sustainability goals by integrating an 
energy source into the expanding power grid, essential for its data centers and 
surrounding communities. Unlike renewable sources like solar and wind, 
nuclear projects require longer timelines, higher capital investments, more 
complex regulatory oversight, and strategic planning for their longer opera-
tional cycle. Involving partners early in multiple projects is seen by Meta as 
key to scaling implementations effectively, reducing costs, and ensuring accu-
rate execution. However, it is worth noting that globally, 440 nuclear plants 
generate about 10% of electricity. Ten times as many would be needed to 
meet the total electricity demand. Without a different strategy to mitigate the 
expected growth of data centers, this does not seem to be the (only) path 
forward.

If a global ranking were made on electricity consumption, including big 
tech companies along with states, Google and Microsoft would rank above 
more than 100 countries—more than Tunisia or Jordan, slightly less than 
Slovakia or Ecuador, or equal to Azerbaijan, which has more than ten million 
inhabitants. These figures come from an analysis by industry expert Michael 
Thomas, based on data from the U.S. Energy Information Administration 
(EIA) and the environmental reports of the two companies. A recent alert 
comes from a report in the Financial Times, which discussed the situation in 
“data center valley,” Virginia, where the consumption of “blue gold” (water!) 
has increased by nearly two-thirds since 2019. Virginia is home to one of the 
largest concentrations of data centers in the world, from Amazon to Google 
and Microsoft. Machines used 7 billion liters of water in 2023, according to 
documents requested and obtained by the Financial Times. In gallons, it has 
risen from 1.13 billion pre-COVID to 1.85 billion. Environmentalists foresee 
a future “explosion” of thirst, specifically due to AI. According to estimates by 
the Dgtl Infra research group, U.S. data centers consumed over 75 billion gal-
lons of water in 2023—enough to quench London’s thirst for 4 months. The 
paradox raised by environmentalists is that there are areas of the same U.S. state 
suffering from drought. The expansion of these facilities (which is expected to 
double from 2019, with new areas still under construction) will only worsen 
this situation. In November 2023, Bank of America estimated that data cen-
ters were the tenth-largest water consumer in the U.S. Major tech companies 
are trying to limit their water withdrawals, but their reports highlight the dif-
ficulty of the situation: Google increased its water consumption by 14% in 
2023, due to the needs of data centers. The search engine explains that 15% 
of its water withdrawals occur in areas with high scarcity, while Microsoft 
states that 42% of its global consumption is in water-stressed areas. Europe 
also seems to be no exception. For example, by the end of 2025, 83 new data 
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centers are expected to be built in Italy. Only Microsoft has announced a €4.3 
billion investment in data centers in Italy, along with €3.2 billion in Germany 
and €2 billion in Spain.

From an ethical standpoint, the limited access to financial and technologi-
cal resources to train and use large language models is likely to generate 
increasing inequalities. Only a few large organizations or companies can 
afford to develop and use such models, while small businesses and indepen-
dent researchers might be excluded from these advanced technologies. To 
mitigate these issues, it is essential to promote the responsible sharing of pre-
trained models and access to computing resources through collaborative ini-
tiatives. The scientific and industrial communities should ideally work to 
make resources and data available, reducing the gap in access to these tech-
nologies and ensuring that they are developed and used responsibly and 
inclusively.

�OpenAI, But Not Only

We conclude this chapter on generative AI with a historical context, given the 
impact that ChatGPT has had on shaping society’s perception of AI. ChatGPT 
is the chatbot that started the race toward generative artificial intelligence. 
With its launch on November 30, 2022, these tools moved from research labs 
to our devices, bypassing the intermediary of a search window or applica-
tion—an important step that generated enormous interest and widespread 
adoption. The more they are used, the more they train themselves and improve 
their responses. In addition to ChatGPT, OpenAI has developed DALL-E, a 
text-to-image model that generates images based on textual descriptions. 
Although OpenAI’s ultimate goal is to create AGI (artificial general intelli-
gence), an AI capable of reasoning and solving problems like a human, as we 
have seen many times, this remains a dream for now.

OpenAI’s history, though recent, provides a paradigmatic example of the 
accelerated evolution of new companies in the generative AI field. Open AI 
was founded in 2015, by prominent figures such as Elon Musk and Sam 
Altman,aimed at promoting the development of artificial intelligence in a 
transparent and safe way for humanity. Originally a non-profit organization 
focused on technological research, in 2019 it opened a for-profit division to 
attract investments, the largest of which, $13 billion, came from Microsoft. 
Following the first language model GPT-3.5, on May 13, 2024, OpenAI 
announced GPT-4o (“o” for “omni”), made available for free to all users, who, 
by that summer, exceeded 180 million. Over the years, many of the founders 
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left the organization, and the original concept of “openness” was gradually 
abandoned as the company’s governance changed. The launch of ChatGPT in 
November 2022 marked a turning point: the global success of this model led 
to exponential growth for the organization, with significant resource increases. 
However, this rapid growth also brought strategic challenges. OpenAI has 
maintained a focus on creating advanced intelligences, leaning more towards 
the development of superintelligences than toward concrete commercial solu-
tions. This allowed other companies, such as Anthropic, to gain ground by 
offering more business-oriented alternatives.

In 2023, OpenAI faced a severe internal crisis, culminating in the tempo-
rary dismissal of Sam Altman by the board of directors, led by co-founder Ilya 
Sutskever. This episode reflected deep tensions within the company, caused by 
the difficulty of balancing AI safety efforts with the need to monetize the 
developed technologies. The situation was resolved with Altman’s return, sup-
ported by Microsoft, and Sutskever’s departure, who would go on to found a 
new startup called Safe Superintelligence (SSI). Alongside these internal 
developments, OpenAI had to contend with growing concerns about the 
safety of its technologies. New “o1” models, capable of advanced reasoning, 
raised fears of their potential use in dangerous contexts, such as in warfare 
with the creation of biological or chemical weapons.

Another critical challenge concerns access to the data necessary to train AI 
models. The growing value of data has driven many holders, such as publish-
ers and media outlets, to limit access or sell them at high prices. OpenAI has 
already made costly agreements, such as the one with News Corp, but the 
scarcity of quality data could slow future development. Looking ahead, 
OpenAI faces crucial decisions. The company must find a balance between 
the need to meet market demands and maintain an economically sustainable 
strategy, without compromising the foundational values that guided its cre-
ation. The future of the company will depend on its ability to win these chal-
lenges while keeping innovation and safety as top priorities. Globally, this is 
leading to increased regulation of the sector, with laws on the way in California 
and the European Union aimed at better managing the risks associated with 
advanced AI.

In the ever-evolving landscape of generative AI, it is essential to remain 
vigilant, because many emerging, still little-known companies could soon 
establish themselves as the new OpenAI. A significant example is DeepSeek, 
a Chinese start-up that is rapidly gaining ground. On January 20, 2025, it 
released DeepSeek-R1, a partially open-source ‘reasoning’ model, capable of 
solving scientific problems with a quality comparable to that of o1, OpenAI’s 
most advanced language model, but with drastically lower costs and 
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computational requirements. Only a few days later, it launched Janus-Pro-7B, 
a model capable of generating images from text descriptions, similar to 
OpenAI’s DALL-E 3 and Stable Diffusion from Stability AI. DeepSeek opti-
mized its hardware by using 2000 NVIDIA H800 GPUs, less advanced than 
the US H100s, but compensated for the technological gap with specific 
frameworks to maximize efficiency. This approach has allowed it to offer APIs 
at costs up to 90% lower than OpenAI. (An API—Application Programming 
Interface—is a set of rules and tools that allow different applications or sys-
tems to communicate with each other, like a bridge that allows a software to 
access the functionality or data of another software without having to know 
the internal details.) Just think that the price per million input tokens is only 
0.14 dollars, compared to 15 for OpenAI, or a ratio of 1 to 100! This differ-
ence in cost is explained by two main factors. On the one hand, the use of 
distillation techniques, which allow knowledge to be transferred from larger 
models to smaller and more efficient versions, reducing the computational 
requirement. On the other, the partnership with AMD (Advanced Micro 
Devices), a semiconductor company that offers high-performance computing 
solutions at lower costs than NVIDIA. The impact on the market was imme-
diate: NVIDIA stock lost 17% in a single day of trading, with a capitalization 
drop of almost 600 billion dollars.

Behind this rise is Liang Wenfeng, a 39-year-old entrepreneur with a degree 
in computer science from Zhejiang University, one of the most prestigious in 
Hangzhou, China. After co-founding the hedge fund High-Flyer, in 2023 he 
founded DeepSeek, initially with the aim of applying artificial intelligence to 
financial trading. Generative AI, in fact, was only a secondary project, and 
OpenAI was not yet a real competitor. However, the company has grown 
rapidly, thanks to advanced training techniques such as pure reinforcement 
learning, the Mixture-of-Experts architecture, an advanced neural network 
architecture that improves the efficiency and performance of AI models while 
reducing the consumption of computational resources, the Multi-Head Latent 
Attention technique to improve the processing of complex data, as well as the 
use of open-source models such as Janus-Pro and R1, which have allowed a 
reduction in development costs: the training of the basic model cost just 5.6 
million dollars. Instead of activating the entire network for each input, 
mixture-of-experts selects only a few specialized “experts,” optimizing the cal-
culations. This idea is inspired by the functioning of the human brain, where 
different areas are activated based on the task at hand.

While for many international observers the success of DeepSeek was sur-
prising, Chinese experts consider it a predictable result, the result of huge 
government investments in artificial intelligence. According to Yunji Chen, 

6  Generative AI: The Sudden Boom 



68

an expert at the Chinese Academy of Sciences, the emergence of startups like 
DeepSeek is the natural result of massive funding in the sector and the abun-
dance of highly specialized AI researchers. The Chinese government, in fact, 
has declared artificial intelligence a strategic priority: in 2017, it announced 
the plan to become a world leader in the sector by 2030, setting 2025 as an 
intermediate goal to reach a globally competitive technological level. Already 
in 2022, the Ministry of Education had authorized 440 universities to offer 
AI degree courses and, in the same year, China trained almost half of the 
world’s leading researchers in the sector, while the United States accounted for 
only 18%. In addition to public funding, China has had to deal with restric-
tions imposed by the United States on the import of advanced chips, such as 
the latest generation NVIDIA GPUs. To get around these limitations, 
DeepSeek stockpiled 10,000 A100 chips ahead of the 2023 ban and devel-
oped techniques to parallelize training algorithms to take full advantage of less 
powerful hardware. This focus on optimization has led Chinese research to 
focus on model compression and energy efficiency, strategies that have made 
DeepSeek particularly competitive. From a business perspective, DeepSeek 
has adopted a hybrid model, combining open-source and proprietary solu-
tions. Some models, such as Janus-Pro and R1-Distill, have been released 
under the MIT open-source license, allowing the Hugging Face platform to 
launch the Open R1 project to replicate DeepSeek’s training pipeline and 
accelerate its global deployment. However, other models remain proprietary, 
giving the company a competitive advantage in the market.

There are, however, some critical considerations. DeepSeek models include 
filters to avoid content critical of the Chinese Communist Party, an aspect 
that could limit their adoption internationally. Additionally, to expand into 
Europe, the company will have to deal with the strict regulations of the 
GDPR, particularly regarding algorithmic transparency and the management 
of sensitive data, an area where competitors like Anthropic appear to be ahead 
of the curve.

Meanwhile, competition is heating up. On January 29, 2025, Alibaba 
unveiled its most advanced language model, Qwen2.5-Max, claiming it out-
performs DeepSeek V3, the large language model released in December 2024. 
Around the same time, Moonshot AI and ByteDance launched their own 
reasoning models, Kimi 1.5 and 1.5-Pro, claiming they outperform o1  in 
some tests. DeepSeek’s impact extends far beyond China. Its innovative 
approach demonstrates that algorithmic efficiency can make up for a lack of 
advanced hardware, challenging the prevailing idea that more GPUs equal 
better AI. While its use of 2000 NVIDIA H800 GPUs may seem modest 
compared to big tech’s resources, it represents an alternative to the so-called 
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“scaling law,” paving the way for a democratization of AI. (Scaling laws in AI 
describe the empirical relationship between a model’s performance and the 
scale of resources used for training, including model size (parameters), dataset 
size (training data), and compute power (FLOPs). As these factors increase, 
performance (measured by accuracy, loss, etc.) generally improves.) However, 
the company’s future will depend on its ability to maintain its innovative 
momentum, overcome hardware limitations and political restrictions, and, 
who knows, perhaps shift its focus from the simple size of models to data 
quality and intelligent architectures.
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7
AI Is Not Just Generative

Generative AI has captured significant attention thanks to its popular suc-
cesses, such as conversational chatbots (e.g., ChatGPT), image and filmgen-
erators (e.g., DALL-E and MidJourney), and creative tools that generate text, 
music, or art. However, this hype risks overshadowing the significant and 
long-standing contributions of traditional, non-generative AI, which has had 
an equally, if not more, profound impact in many crucial areas of society.

There are fundamental differences between generative AI and, say, tradi-
tional AI. Generative AI is designed to create new content—texts, images, 
audio, and videos—based on deep learning models trained on large datasets. 
It is at the heart of many recent applications that have gained widespread 
media attention, primarily due to their ability to imitate human dialogue and 
creativity and directly engage users. Tools like chatbots and image generators 
allow direct interaction with users, quickly capturing their imagination. Their 
ability to produce original content, such as poems, articles, or artworks, makes 
them fascinating and accessible. Advancements in generative AI have emerged 
rapidly, surprising the public and demonstrating clear progress in how 
machines can generate outputs that were once exclusively human.

A further extension of the (already vast) field of language models is that of 
so-called AI agents. These are expert AI systems designed for specific domains, 
software programmed to perform tasks autonomously, often replicating 
human decision-making processes within specific contexts. These systems 
“perceive” their environment, process received information, and take actions 
aimed at achieving predefined goals, leveraging advanced technologies such as 
machine learning, natural language processing, and computer vision. AI 
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agents operate without constant human intervention, using sensors, APIs 
(Application Programming Interfaces), or data inputs to perceive their sur-
roundings. An example is a virtual assistant capable of understanding user 
requests through natural language. They process received data, make deci-
sions, and act based on preset models or predictions derived from machine 
learning algorithms. Some agents even continuously improve through rein-
forcement learning, meaning they learn from data and feedback.

Designed to pursue specific objectives, AI agents can answer questions, 
optimize processes, navigate physical spaces, and interact with users. Their 
design varies: some are simple and reactive, merely responding to stimuli 
without memory, while others are more sophisticated and proactive, capable 
of planning and evaluating the consequences of their actions. While agents 
like drones and autonomous delivery robots operate in the physical world, 
others function solely in digital environments. These agents are applied in 
various sectors: from chatbots and virtual customer service assistants to diag-
nostic tools in healthcare, financial trading systems, fraud detection, intelli-
gent video game characters, and logistical solutions for route optimization. As 
technology evolves, AI agents are becoming increasingly complex and inte-
grated into different aspects of society. They play a crucial role in industries 
and daily life, serving as fundamental tools for creating intelligent, flexible 
systems that interact effectively with both their environment and people.

�Creativity at Your Fingertips

With just a few keystrokes, anyone can ask a generative AI program to write a 
novel, a rap song, or a theatrical piece. While these models can produce 
human-like writing in mere seconds, some researchers argue that large lan-
guage models do not create anything truly new. Critics claim they are merely 
“stochastic parrots” that blindly remix the words they were trained on. 
Expecting the originality of William Shakespeare or Dante Alighieri would be 
excessive. Indeed, the debate over how “creative” generative AI really remains 
highly open. Testing this creativity “objectively” is challenging. To address 
this, researchers have developed metrics to analyze both the absence of plagia-
rism and the human perception of factors such as fluency and originality. A 
program called DJ Search, developed at the University of Washington, com-
pares AI-generated text with vast online databases. This tool does not merely 
look for identical matches but also analyzes sequences of words with similar 
meanings, assigning a quantitative “significance index.” Comparing the lin-
guistic novelty of published novels, poems, and speeches with texts written by 
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the latest generation of large language models, researchers found that human 
authors outperformed AI by about 80% in poetry and 100% in novels (Lu 
et al. 2024).

Of course, these results should not be taken as absolute, as they are influ-
enced by subjective criteria. However, it can be cautiously affirmed that, as of 
today, the creativity of AI language models is nowhere near that of real human 
authors! That said, AI language models can still serve as “assistants” to humans, 
generating first drafts that can later be refined with creativity, inspiration, and 
originality.

�There Is Life Beyond Generative AI!

As we have observed, the hype around generative AI risks diverting attention 
from the critical contributions of traditional AI. While content generation is 
impressive, many vital functions in modern society are supported by non-
generative AI systems that remain essential for the operation of our 
infrastructures.

Traditional AI includes supervised learning algorithms, recommendation 
systems, classical neural networks, decision trees, and optimization systems. It 
focuses on automating processes, classifying data, or predicting events. Often 
less visible to the public, it is widely present across multiple sectors. Here are 
some of its numerous successes (note: this list is not exhaustive!):

•	 Healthcare: Non-generative AI has long been used for facial recognition, 
medical data analysis, and disease diagnosis (e.g., cancer detection using 
convolutional neural networks (CNNs) to analyze radiographic images and 
identify anomalies). Decision-support systems help doctors make more 
informed choices. AI also optimizes healthcare resource management, such 
as hospital bed allocation and medical supply distribution.

•	 E-commerce and Streaming: Recommendation systems on platforms like 
Amazon or Netflix rely on traditional AI, using techniques such as collab-
orative filtering and regression models. These systems have had a massive 
economic impact, driving sales and enhancing user experience.

•	 Finance and Fraud Detection: Traditional AI has been used for years in 
banking fraud detection and credit card transaction monitoring. Machine 
learning systems classify thousands of transactions in real time, identifying 
suspicious ones. Many non-generative models also support financial trad-
ing by analyzing vast amounts of data and making rapid decisions with 
significant market impacts.
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•	 Traffic and Logistics: AI manages city traffic, optimizes real-time routes, and 
improves road safety. Many companies use traditional AI to optimize deliv-
ery routes, reducing costs and emissions.

•	 Manufacturing and Robotics: Traditional AI powers industrial automation, 
guiding robotic arms, quality control systems, and automated production 
lines. Robotics has revolutionized manufacturing, improving efficiency and 
reducing costs. The term “robot,” derived from the Slavic word for “forced 
labor,” was coined by Czech writer Karel Čapek in the 1920 play 
R.U.R. (Rossum’s Universal Robots), where robots were humanoid 
machines made of organic material designed to ease human labor. In the 
1940s, American writer Isaac Asimov redefined the concept, transforming 
robots into mechanical artifacts. By the 1980s, robotics was described as 
the science of intelligent connections between perception and action. 
Today, machine learning in robotics enables functions like object grasping, 
object categorization, and even linguistic interaction with humans. 
Learning can occur through self-exploration or human guidance. For 
example, artificial vision allows robots to perceive, identify, and navigate 
their environment using machine learning algorithms and sensors. These 
methods are widely applied in production procedures such as material 
inspection and pattern recognition. One particularly advanced form of 
learning, self-supervised learning, allows models to recognize patterns from 
data without explicit human-provided labels. This enables robots to learn 
tasks autonomously and adapt to changing environments (Siciliano 2019).

•	 Autonomous Vehicles: A prominent example of non-generative AI success is 
autonomous vehicles. Many car manufacturers have developed prototypes 
capable of driving at moderate speeds on busy roads. These cars use an array 
of sensors, lidars, cameras, and localization systems such as GPS, applying 
machine learning algorithms to make real-time decisions about braking, sud-
den direction changes, and different driving modes. Despite significant prog-
ress, widespread autonomous driving is not imminent–-not only due to 
technological hurdles but also because of legal challenges, as there are cur-
rently no universal regulations governing its use on public roads. However, at 
the time of writing, thanks to a partnership between Google’s Waymo and 
Uber, it is already possible to book self-driving taxis in a few U.S. cities.

In conclusion, generative AI and traditional AI are not rivals but complemen-
tary forces. While generative AI enhances accessibility and creativity, tradi-
tional AI remains deeply embedded in sectors where precision, robustness, 
and reliability are paramount. Recognizing and valuing both paradigms is 
essential to understanding how AI will continue to drive innovation and 
improve society in countless ways.
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8
AI in Science

In fields where the output of artificial intelligence can be independently veri-
fied, AI has already demonstrated its extraordinary effectiveness in various 
areas of research, both in science in general and in mathematics.

�A Nobel-Worthy AI

In October 2024, the Nobel Committees in Stockholm awarded the Nobel 
Prizes in Physics and Chemistry for work related to artificial intelligence, 
marking a historic moment in science. The Nobel Prize in Physics was awarded 
to John J. Hopfield and Geoffrey E. Hinton for “fundamental discoveries and 
inventions that enabled machine learning with artificial neural networks.” 
The Nobel Prize in Chemistry was awarded in part to David Baker for “com-
putational protein design” and in part to Demis Hassabis and John M. Jumper 
for “protein structure prediction.” These historic recognitions highlight AI’s 
contribution to science, medicine, and society, celebrating the winners’ dis-
coveries and their impact on the future of human health and knowledge. 
Hopfield and Hinton developed the technological foundations that support 
modern machine learning. In 1982, Hopfield created the Hopfield network, an 
associative memory structure capable of storing and recalling information 
(Hopfield 1982). In 1985, Hinton developed the Boltzmann machine (see, 
e.g., the article Salakhutdinov and Hinton 2009), a method that allows AI 
systems to autonomously discover patterns in data. More precisely, Hopfield 
developed a neural network capable of storing and reconstructing patterns. 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92973-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-92973-1_8#DOI
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The network’s nodes can be visualized as pixels, and its functioning is inspired 
by the physics of atomic spin—a property that makes each atom behave like 
a tiny magnet. The Hopfield network is mathematically described using an 
energy model like that of spin systems in physics. During training, connec-
tion values between nodes are adjusted so that stored images correspond to 
low-energy states. When presented with a distorted or incomplete image, the 
network iteratively updates the node values to minimize its energy, gradually 
converging toward the closest stored image. Drawing from statistical phys-
ics—the study of systems composed of many interacting components—
Hinton designed the Boltzmann machine to be trained by exposing it to 
representative examples of the patterns it seeks to model. Once trained, it can 
classify images or generate new ones resembling those in its training set. 
Hinton’s advancements in neural networks laid the groundwork for the mod-
ern surge in machine learning research.

These contributions paved the way for artificial neural networks, which 
now power technologies capable of analyzing vast amounts of data and learn-
ing efficiently.Thanks to these innovations, computers can now interpret 
images, make predictions, and interact naturally with humans. Tools like 
OpenAI’s ChatGPT are made possible also because of Hopfield and Hinton’s 
fundamental contributions. Their discoveries have revolutionized key sectors, 
including digital medicine, and represent a technological milestone, compa-
rable by some to the invention of the printing press or the internet.

Hassabis and Jumper successfully tackled one of modern science’s most 
complex challenges: predicting the three-dimensional structures of proteins 
based on their amino-acid sequences. Their model uses AI to generate highly 
accurate predictions, solving a problem that had hindered scientific progress 
for decades. In 2010, Hassabis co-founded DeepMind, an AI company later 
acquired by Google in 2014. In 2018, he developed AlphaFold, which enabled 
protein structure predictions with about 60% accuracy—20 percentage points 
higher than previously possible. This accuracy was further increased to 90% 
in 2020 by Jumper, solving a challenge that had persisted for half a century. 
By 2024, AlphaFold2 was used by over two million people, allowing scientists 
to accelerate disease research and develop targeted therapies, addressing global 
challenges such as antibiotic resistance and vaccine discovery. This tool marks 
a revolution in structural biology, opening new possibilities in medicine.

These two Nobel Prizes highlight how AI has become a core component of 
science, blurring the boundaries between physics, chemistry, and computer 
science. The integration of AI in medicine is improving clinical outcomes in 
numerous fields, including cancer screening, diabetes treatment, and pain 
management. AlphaFold2, in particular, is accelerating the development of 
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innovative therapies. However, the increasing use of AI raises fundamental 
ethical questions. Geoffrey Hinton himself has warned of the risks of advanced 
artificial intelligence, which could render humanity “irrelevant.” These con-
cerns call for deep reflection. Issues such as algorithmic biases, unauthorized 
surveillance, and the development of lethal autonomous weapons are already 
a reality. In medicine, AI errors could compromise patient safety, while exces-
sive reliance on automated systems risks weakening the doctor-patient rela-
tionship. The emergence of artificial general intelligence (AGI), capable of 
replicating many human abilities, poses an existential challenge. To mitigate 
these risks, it will be essential to develop transparent systems aligned with 
human values and rigorously monitor them.

Another aspect worth considering is how awarding the Nobel Prize to dis-
coveries significantly aided by AI sparks debate about a possible redefinition 
of the very meaning of the Nobel Prize. AI is profoundly transforming how 
scientific research is conducted and discoveries are made, raising new ques-
tions about recognizing achievements made with its contribution. Historically, 
the Nobel Prize has celebrated human ingenuity and the contributions of 
individuals or teams to humanity’s knowledge. However, AI’s rise as a central 
element in scientific progress is redefining the boundaries between tool and 
collaborator, leading to reflections on its role in awarding prestigious prizes. 
AI has demonstrated unprecedented capabilities in processing vast amounts 
of data, identifying complex patterns, and generating innovative hypotheses. 
Tools like AlphaFold have solved complex biological problems that had 
remained insurmountable challenges for decades. These results, while pro-
duced by advanced algorithms, prompt the question of whether an AI system 
could be recognized as a co-author of a Nobel-worthy scientific discovery. 
Unlike passive tools, AI actively influences the research process, contributing 
not only to data collection and analysis but also to formulating scientific ques-
tions and interpreting results.

The debate over AI’s eligibility for a Nobel Prize touches on philosophical 
and practical issues. On one hand, AI could be considered an integral part of 
collaborative science—an extension of the human team. In the past, prizes 
have been awarded to groups working synergistically to produce exceptional 
results; in this sense, including AI would acknowledge its role in scientific 
progress. On the other hand, AI lacks intrinsic qualities such as intentionality 
and creativity—characteristics that have always defined Nobel Prize recipi-
ents. AI has neither conscience nor awareness and cannot take ethical respon-
sibility for the consequences of the discoveries it contributes to, raising 
complex questions about the very concept of scientific merit.
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Furthermore, awarding a Nobel Prize to an AI system could change the 
narrative that fuels scientific inspiration. Nobel Prizes do not only celebrate 
achievements but also the human journey of discovery—marked by persever-
ance, creativity, and intuition. Recognizing AI could shift the focus from 
human capabilities to technological potential, altering the perception of sci-
ence as a primarily human endeavor. However, AI’s contribution cannot be 
ignored. Perhaps it would be appropriate to establish new award categories 
reflecting technology’s revolutionary role in driving innovation. For instance, 
a prize specifically for human-AI collaborations could recognize both human 
work and AI’s importance as an empowering tool. Such an approach would 
respect the Nobel Prize’s traditions while maintaining its relevance in the 
modern scientific landscape. Adopting an updated perspective could preserve 
the integrity of the Nobel Prize, acknowledging AI’s transformative role with-
out sacrificing the award’s fundamental principles. Ultimately, the Nobel 
Prize could adapt to represent a scientific landscape increasingly shaped by the 
synergy between human ingenuity and technological innovation. An inclusive 
and open dialogue would help ensure that AI does not become a symbol of 
alienation from science but rather a tool to enrich humanity’s ability to under-
stand and improve the world.

�Many Scientific Discoveries Thanks to AI

Returning to the scientific discoveries made possible by AI: AI plays a crucial 
role in designing new proteins with specific functions, predicting interactions 
between proteins and ligands for drug discovery, and improving molecular 
dynamics simulations to study protein behavior. Furthermore, AI assists in 
analyzing large proteomics datasets and interpreting results from experimen-
tal techniques such as cryo-electron microscopy and X-ray crystallography. In 
medicine, AI is facilitating the discovery of new drugs, identifying new appli-
cations for existing drugs, and detecting or predicting future diseases. For 
example, AI has detected breast cancer before human doctors by identifying 
subtle radiological indicators. As previously mentioned, in early 2020, MIT 
researchers used deep neural networks to discover a new antibiotic, halicin. 
These advances are accelerating discoveries in biology, medicine, and biotech-
nology, leading to new therapies and innovations.

AI is also being used to generate potential candidates for new materials, 
such as superconductors, or new potential drugs for treating diseases. These 
candidates can be tested through synthesis and physical tests or clinical trials. 
Given the high costs of these processes, AI’s ability to isolate a small group of 
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the most promising candidates offers significant potential savings in both 
money and time.

Another use case for AI in science is reducing the time required to solve 
mathematical models simulating complex physical processes. For instance, 
running a high-resolution climate model—predicting the next 20 years with 
a 10 km spatial resolution—can take months on a supercomputer. While such 
simulations provide valuable insights, they struggle to capture rare or extreme 
weather events that happen once a year or to deliver the fine-grained resolu-
tion needed for localized predictions affecting individual communities.

To enhance the accuracy of extreme event forecasting, Nvidia is developing 
Earth-2, an AI-driven system that builds upon FourCastNet, a model capable 
of processing terabytes of Earth system data. According to Nvidia, Earth-2 
will generate two-week weather forecasts tens of thousands of times faster 
than traditional methods while achieving greater precision. Unlike traditional 
weather forecasting systems, which can produce around 50 scenarios for the 
coming week, FourCastNet is expected to predict thousands of possible out-
comes. This approach makes it easier to assess the risks of rare and potentially 
deadly disasters, giving vulnerable communities the time they need to orga-
nize and, if necessary, evacuate. AI technologies allow upscaling a low-
resolution climate model into a high-resolution one or create new climate 
simulations at speeds tens of thousands of times faster than traditional super-
computers. This is an example of a new strategy for solving complex prob-
lems, known as Scientific Machine Learning. We will discuss this topic in 
greater detail in the next chapter.

This revolution in climate modeling is just the first step. AI promises to 
profoundly transform science, making it more dynamic and, in many cases, 
radically different. The consequences of this transformation will not be lim-
ited to research laboratories but will impact the lives of everyone.

�Move Aside, Mathematicians… AI Is Coming!

Artificial intelligence is becoming “good” at mathematics too, and it may 
soon be a worthy collaborator for humans. At its London headquarters, a pair 
of Google DeepMind models tried their luck with the set of problems from 
the 65th International Mathematical Olympiad held at the University of Bath 
in July 2024. This event is considered the top competition for the “brightest 
mathematical athletes” in the world, according to a promotional social media 
post. Human problem-solvers—609 high school students from 108 coun-
tries—won 58 gold medals, 123 silver, and 145 bronze. After months of 
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rigorous training, the students faced two exams, each with three problems per 
day, covering algebra, combinatorics, geometry, and number theory. Haojia 
Shi, a student from China, took first place and was the only competitor to 
achieve a perfect score—42 points for solving all six problems completely 
(each problem is worth seven points for a full solution). The U.S. team secured 
first place with 192 points, while China finished second with 190 points. 
Meanwhile, AI worked in parallel at DeepMind’s London lab, achieving a 
performance equivalent to a silver medal. This marked the first time AI had 
reached the podium in a Math Olympiad. Google’s system earned its 28 
points by fully solving four problems—two in algebra, one in geometry, and 
one in number theory—while failing to solve two combinatorics problems. 
However, it is important to note that the AI was given unlimited time; some 
problems took up to three days to solve. In contrast, the students had only 
4.5 h/exam.

Applying AI to mathematics has been a mission for DeepMind for several 
years, often in collaboration with world-renowned mathematicians. According 
to Alex Davies from the London lab, “Mathematics requires an interesting 
combination of abstract, precise, and creative reasoning. This skill set makes 
mathematics an excellent testing ground for the ultimate goal: achieving arti-
ficial general intelligence—a system with abilities ranging from emergent to 
competent, virtuoso, and even superhuman.” Companies like OpenAI, Meta 
AI, and xAI are pursuing similar goals. In this context, Math Olympiad prob-
lems are seen as a benchmark.

DeepMind’s approach relies on an informal reasoning system, expressed in 
natural language. This system uses Gemini, Google’s large language model, 
which has been trained on an extensive dataset of published math problems 
and proofs. The informal system excels at identifying patterns and suggesting 
what comes next; it is creative and can explain ideas in an understandable way. 
Of course, large language models tend to “hallucinate”—inventing false infor-
mation—which might (or might not) work for poetry but is certainly prob-
lematic for mathematics. However, in this case, the model demonstrated 
restraint: while not completely immune to hallucinations, their frequency was 
significantly reduced.

Another approach in the mathematical domain has led to the development 
of a formal reasoning system, based on logic and expressed in code. This 
system uses theorem-proving software and proof assistants such as Lean  
(Moura and Ullrich 2021), which ensures that if a proof is declared correct, it 
truly is. Proof assistants are specialized computational languages designed to 
verify that an algorithm or proof functions as intended. They are used to 
check computer routines for electronic circuits (e.g., in avionics) and, more 
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recently, to verify mathematical proofs. In this latter case, we are dealing with 
interactive theorem provers—software tools that assist in the development of 
formal proofs through human-machine collaboration. They require interac-
tive editors where a human guides the proof search, while the computer stores 
the details and provides certain steps. A recent effort in this field aims to 
enable these tools to leverage AI to automate the formalization of ordinary 
mathematics.

Computer-assisted proofs are not new in recent history. Two famous exam-
ples illustrate this:

	1.	 The Four-Color Theorem. The Theorem Addresses the Following Problem:

What is the minimum number of colors needed to color a map so that no two 
adjacent regions share the same color?

Mathematically, regions are interpreted as connected areas in a plane, and 
two regions are considered adjacent if they share a common boundary line 
(not just a finite set of points). The problem remains essentially unchanged 
if the regions are on a sphere (like the Earth), as any map can be projected 
onto a plane. The conjecture was first proposed in 1853 by an English 
student, Francis Guthrie, to his brother Frederick, a mathematics student 
under Augustus De Morgan, a famous logician. Guthrie hypothesized that 
four colors were sufficient. It wasn’t until 1977 that mathematicians 
Kenneth Appel and Wolfgang Haken at the University of Illinois provided 
a proof, using a complex algorithm. Their proof reduced the infinite num-
ber of possible maps to 1936 configurations (later reduced to 1476), which 
were checked case-by-case by a computer. To minimize error risk, the pro-
gram was run on two different machines using independent algorithms. 
The process required thousands of computing hours, and manually tran-
scribing all the verification steps resulted in over 500 pages. For those who 
wish to delve deeper, Appel and Haken (1989) is a detailed book written 
by the authors of the first proof, exploring their methodology and the 
computational verification process. Meanwhile, Wilson (2014) is an acces-
sible text that retraces the history of the four-color problem, from the earli-
est proof attempts to the breakthrough proof by Appel and Haken. The 
groundbreaking use of computer algorithms to verify the correctness of the 
conjecture sparked significant controversy at the time regarding the reli-
ability of such methods. Since the proof relied on analyzing a vast number 
of discrete cases, some mathematicians questioned its validity—not only 
due to the impracticality of manually verifying all possible cases but also 
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because of the challenge of certifying that the algorithm had been correctly 
implemented. Nevertheless, despite criticisms regarding its lack of “ele-
gance,” no errors were ever found in the algorithm. The controversial 
nature of a proof relying on brute-force case-checking led some mathema-
ticians to question its validity. However, no errors were found, and the 
proof was formally verified in 2005.

	2.	 The Kepler Conjecture. This concerns the optimal packing of spheres in 
three-dimensional Euclidean space (See, e.g., Szapiro 2003). It states that 
no arrangement of spheres achieves a higher average density than face-
centered cubic packing or hexagonal close packing:

No packing of congruent spheres in three-dimensional Euclidean space has a den-
sity greater than π/√18 ≈ 0.74.

In 1998, Thomas Hales announced a proof of Kepler’s Conjecture, relying on 
exhaustive case-checking with complex computer calculations. In 2003, 
Hales launched the FlysPecK project (Formal Proof of Kepler), aiming to 
create a fully formal proof verifiable by automatic proof-checking software. 
In January 2003, Hales announced the launch of a collaborative project 
aimed at producing a complete formal proof of Kepler’s conjecture. The 
goal was to eliminate any remaining uncertainty about the validity of the 
proof by creating a formal demonstration that could be verified by auto-
mated proof-checking programs. This project was named Project FlysPecK, 
where the letters F, P, and K stand for the words in the phrase Formal Proof 
of Kepler (Hales 2003). Hales initially estimated that it would take about 
20 years of work to produce a complete formal proof, but the FlysPecK 
project was officially completed in August 2014.

The acceleration of formalization has been driven by more advanced proof 
assistant languages, richer mathematical libraries, and collaborative tools like 
GitHub. Promising experiments are underway to use AI to complete short 
proof steps automatically, retrying if an attempt fails. In principle, AI integra-
tion will enable formal proofs to be written more quickly than human proofs, 
which are inherently error-prone. This could be a turning point—not only for 
verifying existing proofs but also for generating new mathematics through 
human-AI collaboration. There are promising experiments in using AI to 
automatically complete short steps in a formal proof, with AI being invited to 
try again if the proof attempt fails. In principle, integrating AI will allow for-
mal proofs to be written more quickly than human proofs (which are inevita-
bly prone to error). This could represent a turning point for formalization—not 
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only for verifying existing proofs but also for creating new mathematics 
through collaborations between human mathematicians and AI. A new era of 
“great mathematics” may be on the horizon!

Another contribution from Google DeepMind is a reinforcement learning 
algorithm in the style of AlphaGo and AlphaZero. Since the algorithm does 
not require a human teacher, it can “learn and continue learning until it can 
eventually solve the hardest problems that humans can solve,” according to 
David Silver of Google DeepMind, “and perhaps one day even go beyond 
those.” Thomas Hubert, also from DeepMind, added: “The system can redis-
cover knowledge on its own. In the case of AlphaZero, it took less than a day 
to rediscover all chess knowledge and about a week to rediscover all Go knowl-
edge. So we thought—let’s apply it to mathematics.”

Tim Gowers, a Fields Medalist in mathematics from the University of 
Cambridge in 1998, is not overly concerned about the long-term conse-
quences. “It’s possible to imagine a scenario where mathematicians are left 
with practically nothing to do,” he said. “That would be the case if computers 
became better and much faster at everything mathematicians currently do. 
However, there still seems to be a long way to go before computers can do 
research-level mathematics,” he added. “If Google DeepMind were able to 
solve almost all the problems assigned in the International Mathematical 
Olympiad, then the realization of a tool useful for mathematical research 
might be closer than we think.” A truly skilled tool could make mathematics 
more accessible to more people, accelerate the research process, and push 
mathematicians to think outside the box. Ultimately, it might even introduce 
new ideas that resonate in other fields.

Mathematics has traditionally been a solitary science. In 1986, Andrew 
Wiles retreated into his study for 7 years to prove Fermat’s Last Theorem, an 
apparently elementary problem that had remained unsolved for over 350 years. 
It states that there are no positive integer solutions a, b, c to the equation:

	 a b c for n n being an integern n n+ = > 2, . 	

Wiles’ monumental work was presented in (Wiles 1995) Modular Elliptic 
Curves and Fermat’s Last Theorem (1995) and made accessible to a wider audi-
ence through Simon Singh’s extraordinary book (Singh 1997).

Mathematical proofs are often difficult to understand, even for the bright-
est mathematicians, and some remain controversial to this day. However, in 
recent years, increasingly large areas of mathematics have seen many conjec-
tures rigorously broken down into their individual components 
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(“formalized”) to the point where an algorithmic proof (thanks to computers) 
has become possible.

Terence Tao, a 2006 Fields Medalist and one of the leading figures in con-
temporary mathematics, believes these methods open entirely new possibili-
ties for collaboration in mathematics. AI-based proof assistants could establish 
completely new ways of working in the field in the coming years. With the 
help of computers, major unsolved problems and long-standing conjectures 
might inch closer to resolution. Through these formalization projects, special-
ists from different areas of mathematics can focus on individual components 
of this partitioning process and their formal proofs.

Twenty years ago, in the wake of the approach taken by the Logic Theorist 
mentioned in Chap. 1, machine-assisted proofs were a highly theoretical field, 
and it was thought that one had to start from scratch—formalizing axioms 
and then working through basic geometry or algebra. Advanced mathematics 
was considered beyond imagination. Today, the existence of standard mathe-
matical libraries, containing all the fundamental theorems of university-level 
mathematics, makes formalization possible through AI. Soon, we may be able 
to rely on the assistance of large language models. We might ask ChatGPT, 
Gemini, or their future successors to formalize a proof and receive a presum-
ably correct and rigorous response. However, today’s technology is not yet 
mature enough for this, even though mathematicians like Tony Wu and 
Christian Szegedy, co-founders of xAI with Elon Musk, believe that in three 
years, machines could be better than any human mathematician at finding 
proofs. Yet, this is likely another prophecy destined to clash with reality.

Terence Tao takes a more cautious stance: “I think that in three years, AI 
will become a useful co-pilot for mathematicians, a valuable tool to help them 
solve difficult proof steps.” A co-pilot for mathematicians, not a replacement. 
In fact, a mathematical proof is not just about verifying its correctness but also 
about understanding it. Some proofs are elegant, while others are technically 
complex and cumbersome. A good proof provides a deeper understanding of 
the subject. According to Tao, in the future, we might ask AI whether a math-
ematical result is true or false and use its assistance to explore the space of 
possibilities more efficiently. Even if AI automates many tedious tasks, humans 
will remain in control of the process—at least for now.

Engaging with a proof can lead to the development of new mathematics. 
For example, Fermat’s Last Theorem, previously mentioned, was originally a 
simple conjecture about natural numbers. However, the mathematics “cre-
ated” to prove it now extends far beyond just natural numbers. If an AI were 
to produce an incomprehensible proof, mathematicians could analyze it and 
create a new science based on AI-generated proofs. Mathematics is already 
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larger than any single human mind, and mathematicians routinely rely on 
results proven by others. There are already theorems verified only by comput-
ers, using massive computations to check millions of cases. Currently, much 
knowledge remains trapped in the minds of individual mathematicians, with 
only a small fraction made explicit. The more we formalize, the more our 
implicit knowledge becomes explicit—and this could lead to unexpected 
benefits.

�Paperclips for Everyone

In all the achievements mentioned above, it is crucial to recognize the inher-
ent limitations and risks of artificial intelligence. AI is an incredibly powerful 
tool because it allows humans to accomplish more with fewer resources: less 
time, fewer specialized skills, and minimal infrastructure. However, these 
same capabilities can make it dangerous if misused.

Andrew White, a professor at the University of Rochester, was tasked by 
OpenAI to join a team identifying potential risks of GPT-4 before its release. 
By granting the language model access to various tools, White discovered that 
GPT-4 could suggest dangerous chemical compounds and even order them 
from specialized suppliers. To verify the process, he had a (safe) test com-
pound shipped to his home the following week. OpenAI claims to have used 
these findings to improve GPT-4’s safety before its launch.

Even well-intentioned individuals can inadvertently lead AI to generate 
harmful outcomes. At present, we lack mechanisms to make AI change its 
goals, even when it behaves in unforeseen ways. A commonly cited thought 
experiment imagines instructing an AI to produce as many paperclips as pos-
sible. Determined to achieve its goal, the AI could seize control of the power 
grid and even eliminate anyone attempting to stop it, all while relentlessly 
accumulating paperclips as the world collapses around it. The AI, satisfied, 
would congratulate itself on a job well done. (In reference to this famous sce-
nario, many OpenAI employees carry paperclips bearing the company’s logo.)

To prevent both intentional and accidental harmful uses of AI, a well-
informed and intelligent regulatory framework is necessary—one that applies 
to both tech giants and open-source models—without stifling AI applications 
that benefit science. While tech companies have made progress in AI safety, 
government regulators currently seem unprepared to implement adequate 
laws and should ideally take steps to stay updated on recent advancements. 
Beyond regulation, governments could also support scientific projects with 
high social value, even if they offer low economic returns or modest academic 
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interest, in fields such as climate change, biosecurity, or pandemic prepared-
ness—strategically crucial areas for all of humanity. In these and other sectors, 
the speed and large-scale capabilities of AI-driven simulations and specialized 
research labs could prove essential.
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9
Where Do We Stand and a Look into 

the Future

In this chapter, we address some issues related to the impact that AI is having 
on our society. Recent estimates from the German website Statista predict that 
the global AI market will reach 826.7 billion by 2030, with an average annual 
growth rate of 28.46% between 2024 and 2030. Its impact on the market-
place is therefore expected to be significant.

Although AI adoption in the European production sector is still relatively 
low, rapid progress, decreasing costs, and the increasing availability of workers 
with AI-related skills indicate that OECD economies may be on the verge of 
a significant transition. Available data suggests that the percentage of compa-
nies that have adopted AI remains in the single digits, although large enter-
prises are more likely to do so (approximately one in three) (Lane et al. 2023).

Cost remains the primary deterrent for more than half of businesses in the 
financial and manufacturing sectors. The second obstacle is the lack of skills, 
although this trend is declining; for example, the cost of training an image 
classification system has dropped by over 63% (Zhang et al. 2022), and as AI 
becomes more publicly accessible, this cost reduction rate may accelerate fur-
ther. Generative AI applications like ChatGPT are becoming increasingly 
available at a low monthly fee or even for free. At the same time, the avail-
ability of workers with adequate skills is growing, though still far from 
sufficient.

An OECD study suggests that the AI workforce more than tripled between 
2012 and 2019 (Green and Lamby 2023) Since AI is a general-purpose tech-
nology, it can influence the entire economy, and it is expected that before 
long, it could permeate almost all sectors and occupations.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92973-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-92973-1_9#DOI
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A key attraction for corporate management is the promise of cost reduction 
and improved quality of products and services, as AI is an automation tech-
nology. From the workers’ perspective, AI can enhance job quality, eliminat-
ing dangerous or monotonous tasks and creating more complex and engaging 
ones. It can increase worker engagement and provide greater autonomy.

�A Transformative Process

AI has made significant progress in areas such as information organization, 
memory, perceptual speed, and deductive reasoning, all of which are linked to 
non-routine cognitive tasks. Naturally, risks cannot be ignored. Alongside the 
improvement of worker performance (i.e., productivity), companies also hope 
to reduce personnel costs. It is therefore not surprising that about 20% of 
workers in the financial and manufacturing sectors (in seven OECD coun-
tries) have reported being very or extremely concerned about losing their jobs 
in the next 10 years (Lane et al. 2023). It should be noted that the risks of 
automation are not evenly distributed across socio-demographic groups, 
which could harm inclusivity. Although the full impact of the latest wave of 
generative AI is not yet clear, preliminary estimates of AI’s occupational expo-
sure, considering the capabilities of large language models like ChatGPT, sug-
gest that high-income occupations requiring above-average education or 
training are the most exposed to AI’s integration into businesses.

The use of AI in the workplace raises or amplifies several ethical issues, 
some of which may negatively impact job quality. For example, AI can change 
how work is monitored or managed, potentially improving perceptions of 
fairness but also posing risks to privacy and worker autonomy. Additionally, 
concerns exist regarding transparency, system comprehensibility, and account-
ability. While many of these issues are not new, AI has the potential to amplify 
them. For example, while humans can be biased in hiring decisions, AI’s nega-
tive impact could be significantly greater due to the volume and speed of its 
decisions, with the unintended consequence of systematizing and multiplying 
biases. These risks tend to be greater for certain socio-demographic groups 
that are often already disadvantaged in the labor market.

AI must be safe and respect fundamental rights such as privacy, fairness, 
workers’ rights to organize, transparency, and comprehensibility. This also 
means that it must be clear who is responsible in case of problems. Proactive 
and decisive action is important not only to protect workers but also to pro-
mote AI innovation and adoption by reducing uncertainty. The impact of AI 
on tasks and jobs will lead to a shift in required skills. On one hand, AI will 
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replicate certain skills, such as fine manual and psychomotor abilities, as well 
as cognitive skills like comprehension, planning, and consulting. On the 
other hand, skills necessary to develop and maintain AI systems, as well as 
those needed to adopt, use, and interact with AI applications, will become 
increasingly important. The demand for basic digital skills, data science, and 
other cognitive and soft skills will also grow. Although many companies using 
AI claim to provide AI-related training, the lack of skills remains a significant 
barrier to its adoption. Public policies will therefore play a crucial role, not 
only in encouraging employer-led training but also because a significant por-
tion of AI-related training occurs in formal education. AI itself could offer 
opportunities to improve the design, targeting, and delivery of training, as we 
will explore later in this chapter.

�A Pervasive, Transformative Shift

Like previous revolutions—agricultural, industrial, and digital—the AI revo-
lution is having and will continue to have a transformative impact on the 
labor market. Many professions, particularly those that are physically demand-
ing or characterized by repetitive, routine tasks, will disappear. At the same 
time, new professions will emerge, and almost all others will undergo pro-
found transformations due to AI’s integration into decision-making and pro-
duction processes. As in the past, we will witness a pervasive shift towards an 
increasingly automated world, where technological support will be present at 
every stage, from execution to management. This change will affect both 
manual and intellectual labor, such as in manufacturing, administration, and 
customer service, where automation and chatbots are progressively reducing 
the need for human intervention.

However, it is equally true that, as in the past, new professions and sectors 
will emerge, often in areas we cannot yet imagine—especially in fields related 
to AI technology development or its ethical governance. The transformation 
will also positively impact highly creative and innovative sectors. Professions 
such as designers, teachers, and doctors will evolve with AI tools that facilitate 
their daily work without replacing the irreplaceable human value they bring. 
We will also see the emergence of hybrid roles that combine traditional and 
technological skills. For example, teachers are already using AI to personalize 
learning paths, while farmers use advanced technologies like drones and sen-
sors to optimize crops. Every profession will be affected by this transformation 
and will need to adapt. Medicine, for instance, will benefit from AI’s ability to 
analyze complex data and improve diagnostic accuracy, yet the human 
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relationship between doctor and patient will remain central. Architects and 
engineers will see their work evolve, with AI accelerating design processes 
while experts focus on supervision and optimization.

Despite the widespread adoption of intelligent technologies, judgment and 
final decisions will remain human prerogatives. This transformation will inev-
itably require extensive training focused on the competent and conscious use 
of AI tools. Sector specialists’ knowledge and expertise will continue to be 
essential and irreplaceable, as only through their contribution can the full 
potential of new technologies be harnessed while keeping human involve-
ment central to decision-making.

�How Ethical Is AI?

A highly debated topic concerns the ethics of AI. Generally, ethics refers to the 
moral principles that govern a person’s behavior or the conduct of an activity. 
A concrete example is the ethical principle of treating each individual with 
respect. Philosophers have discussed ethics for centuries, formulating theories 
like Kant’s categorical imperative, which calls for actions that we would want 
others to take toward anyone. The ethics of artificial intelligence deals with a 
crucial issue: how developers, producers, and human operators should act to 
minimize the risks posed by AI in society. These risks can stem from inade-
quate design, inappropriate applications, or technological abuse. The scope of 
AI ethics covers immediate concerns such as data privacy and biases in current 
systems, medium-term issues like the impact of AI and robotics on the labor 
market, and long-term worries, such as the possibility of AI surpassing human 
capabilities (superintelligence).

In recent years, the ethics of AI has shifted from being a purely academic 
issue to a subject of public and political debate. The widespread use of smart-
phones and AI-based applications, the growing influence of AI in key sectors 
like healthcare, industry, transportation, finance, and justice, and the prospect 
of a “technological arms race” have led to multiple international initiatives. 
Non-Governmental Organizations, academic institutions, industrial groups, 
and governments have launched projects and strategies, often accompanied 
by significant investments, to address emerging ethical concerns. These initia-
tives have produced various sets of ethical principles, new technical standards, 
and the creation of advisory and political bodies. AI robots and systems appear 
in different forms, each raising specific ethical issues. Key themes include: 
social impact, related to the labor market, economic inequalities, and the risk 
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of concentrating wealth and power in the hands of a few. There are also con-
cerns regarding privacy, human rights, dignity, how AI can perpetuate existing 
social biases, or threaten democracy; psychological impact, with questions 
about human-robot relationships, risks of addiction and deception, and the 
legal and moral implications of granting robots a human-like status; financial 
system impact, with risks of manipulation, collusion, and the need for 
accountability; legal impact, including issues such as liability for criminal use 
of AI or incidents, such as with autonomous vehicles. There is debate about 
how to handle compensation claims: negligence or product liability? 
Environmental impact, with a growing demand for natural resources and 
energy, but also opportunities to improve waste and resource management 
through AI; trust impact, which is crucial for enabling AI to perform critical 
roles, such as in healthcare. Trust includes fairness, transparency, accountabil-
ity, and control. In response to these challenges, numerous ethical initiatives 
have emerged, aiming to classify AI-related risks and ethical harms into sev-
eral key categories, including: human rights, emotional harm, accountability, 
transparency, safety, social justice, environmental sustainability, informed use, 
and existential risks.

Regarding autonomy and responsibility, AI’s decision-making processes 
often occur without human intervention, raising questions about how much 
control humans will maintain over AI systems as they become more sophisti-
cated. When AI systems are used to make life-or-death decisions, such as in 
the case of autonomous weapons or healthcare, who is responsible in the event 
of errors? These concerns are compounded by the fact that AI can evolve and 
adapt in ways that may not always be predictable by its creators. AI could lead 
to a redefinition of human autonomy itself, as people increasingly rely on AI 
systems to make important decisions in their personal and professional lives.

Interest in AI ethics continues to grow. For instance, the number of contri-
butions accepted at the FAccT conference, a key event in AI ethics, more than 
doubled from 2021 and increased tenfold since 2018. Even in 2022, a record 
number of contributions came from industrial actors. Automated fact-
checking with natural language processing proves more complex than 
expected. Despite the development of various benchmarks for automated 
fact-checking, researchers found that the majority of these datasets are based 
on “leaked” evidence from fact-checking reports that did not exist at the time 
the claims emerged. Political deepfakes are already influencing elections 
worldwide, with recent research suggesting that existing deepfake methods 
show varying levels of accuracy. Additionally, new projects demonstrate how 
easy it is for AI to create and spread false content.

9  Where Do We Stand and a Look into the Future 



92

�AI and Society

The AI revolution will require a societal transformation. Investing in educa-
tion and retraining will be essential to prepare the workforce for new roles and 
update the skills needed. Lifelong learning will become a fundamental prac-
tice to ensure that people can adapt to continuous changes. At the same time, 
social protection systems will need to support those who lose their jobs during 
this transition, while ethical and regulatory reflections will be crucial to regu-
late the use of AI and ensure its benefits are distributed as equitably as possi-
ble. Ultimately, it will be necessary to find a balance between embracing the 
benefits of AI and mitigating its risks, ensuring that it improves rather than 
worsens the quality of human life.

If we are guided by the Stanford AI Report 2024 (Maslej et al. 2024), the 
main takeaways can be summarized as follows: AI surpasses humans in some 
tasks but not in all (thankfully!). Among the first are image classification, 
visual reasoning, and language comprehension. It falls short in more complex 
tasks like competitive-level mathematics, common-sense reasoning, and plan-
ning ability. There are also no robust and standardized evaluations for the 
accountability of large language models. Major developers, including OpenAI, 
Google, and Anthropic, primarily test their models against various responsi-
ble AI benchmarks, aiming to systematically compare the risks and limita-
tions of major AI models.

In 2024, organizations began to significantly use generative AI, deriving 
tangible value for business and consolidating its role as a disruptive technol-
ogy. According to the McKinsey Global Survey of May 30, 2024, 65% of 
respondents report that their organizations are regularly using generative AI, 
nearly double from the previous year. Expectations about its impact remain 
high: three-quarters of respondents foresee significant or disruptive changes in 
their industries in the coming years.

The adoption of AI saw a global increase, rising from 50% to 72% of the 
organizations surveyed. While no region exceeded 66% adoption in 2023, in 
2024 more than two-thirds of respondents in almost all regions claim their 
organizations are using AI. The professional services and energy sectors saw 
the largest increases. Furthermore, AI is not limited to individual business 
functions: half of the respondents say their organizations use it in at least two 
areas. The most widespread adoption is in marketing, sales, and product 
development due to its potential to generate significant value. Its use has also 
increased in the personal lives of respondents, with a marked increase in the 
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Asia-Pacific region and Greater China, and with higher usage among senior 
executives compared to mid-level managers.

Generative AI investments are growing rapidly. In many industries, organi-
zations are allocating over 5% of their digital budgets to this technology, 
although traditional AI still receives a larger share of resources. Functions 
benefiting most from generative AI investments include human resources, 
where cost reductions are recorded, and supply chain management. Traditional 
AI continues to prove advantageous, especially in service operations and mar-
keting, where it offers improvements in both costs and revenue.

Despite the advantages, companies face risks associated with generative 
AI. Among them, the inaccuracy of outputs, data privacy, biases, and intel-
lectual property violations are the most common concerns. For instance, in 
2024, the New York Times spent approximately $4.6 million on legal expenses 
necessary to support its lawsuit against OpenAI. The risk of errors is the most 
frequently addressed, with organizations making growing efforts to mitigate 
their impact. However, the risk of workforce replacement is felt less than in 
the previous year, and companies are investing less to manage it.

Finally, some organizations have already experienced negative consequences 
from the use of generative AI, such as inaccuracy, cybersecurity issues, and 
lack of explainability. Only a small portion of companies have implemented 
governance practices for the responsible use of AI. There is still much work to 
be done to scale the adoption of generative AI in a safe and sustainable way. 
Regarding the implementation approach, three main archetypes for the adop-
tion of generative AI solutions stand out: the “takers,” who use publicly avail-
able standard tools; the “shapers,” who customize these tools with proprietary 
data and systems; and the “makers,” who develop their own core models from 
scratch. The takers use “ready-to-use” solutions developed by others and do 
not participate in the design or development process of AI tools. They can be 
individuals, companies, or organizations that integrate AI into their activities, 
such as a company using AI software to analyze financial data without altering 
the underlying model, or a person using ChatGPT to generate content or 
enhance productivity. The makers work on the design, training, and imple-
mentation of AI solutions, creating new technologies or customizing existing 
tools. They possess deep technical skills, such as programming, data science, 
and machine learning. They might be a research team developing a new deep 
learning model, or a company building a custom AI chatbot for its clients. 
The shapers focus on governance, ethics, and policies to ensure AI is safe, fair, 
and responsible. They can be governments, non-governmental organizations, 
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universities, or tech companies with a strong ethical commitment, leading the 
debate on how to integrate AI into society in a sustainable way. Think of a 
regulatory body establishing rules for the use of AI in sensitive sectors like 
healthcare or finance, or an organization promoting the development of ethi-
cal guidelines for machine learning. These three roles are not mutually exclu-
sive: a person or organization can be both a maker and a shaper or switch 
between roles as needed. In particular, in the energy and materials, technol-
ogy, and media and telecommunications sectors, companies are more likely to 
significantly customize and optimize available models, or, even more fre-
quently, develop proprietary models to address specific business needs.

The U.S. continues to dominate cutting-edge AI research. In 2023, the 
industry produced 51 notable machine learning models, while academia con-
tributed only 15. Additionally, in 2023, 21 significant models resulted from 
collaborations between industry and academia, setting a new record. 
Investment in generative AI is skyrocketing. Despite an overall decline in pri-
vate AI investments in 2023, funding for generative AI has increased dramati-
cally, nearly octupling from 2022 to reach $25.2 billion. Major players in the 
generative AI field, including OpenAI, Anthropic, Hugging Face, and 
Inflection, reported significant funding rounds. The U.S. leads China, the 
EU, and the UK as the primary source of cutting-edge AI models. In 2023, 
61 significant AI models originated from U.S. institutions, far surpassing the 
21 from the EU and 15 from China.

As advanced technologies can quickly become fundamental infrastructures, 
it is important that their management is not left solely to the companies 
developing them, market forces, or training as the only solution. Companies, 
markets, and training are crucial components, but regulation is essential to 
protect those who suffer negative effects from inequalities created by new 
technologies and to prevent the concentration of economic and political 
power. The number of AI regulations in the U.S. has increased drastically. In 
2023, there were 25 AI-related regulations, compared to just one in 2016, 
with a growth by over 50%. In the U.S. alone, the number of regulatory agen-
cies issuing AI regulations grew to 21  in 2023, compared to 17  in 2022, 
indicating an increasing concern for AI regulation among a broader range of 
U.S. regulators, including the Department of Transportation, the Department 
of Energy, and the Occupational Safety and Health Administration. The 
European Union reached an agreement on the terms of the AI Act, a land-
mark piece of legislation that entered into force in 2024. The Artificial 
Intelligence Act, or AI ACT, is the abbreviated name of the EU Regulation 
2024/1689 on the use of artificial intelligence: this regulation entered into 
force on August 1, 2024, and will be applied gradually over the next 24 months. 
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Considered the first legal framework in the world dedicated to artificial intel-
ligence, the AI Act was drafted with two main objectives: to prevent the 
potential risks of AI systems and their use while avoiding excessive regulation 
that could stifle the development of AI technologies within the European Union.

In April 2023, China’s Cyberspace Administration published a draft set of 
measures to regulate generative AI services, inviting public comments. These 
measures aim to balance technological development with control, ensuring 
that the technology does not destabilize social order. One of the main require-
ments is that companies developing generative AI technologies implement 
safeguards to ensure compliance—not only to prevent the creation of content 
misaligned with government policies but also to consider implications for 
intellectual property.

From a purely economic standpoint, regulatory aspects, while mitigating 
potential uncontrollable risks, may still hinder the development of AI sys-
tems. A different (milder) regulatory approach, such as the one adopted by 
the U.S. compared to Europe, could further accentuate the technological gap 
between the two continents in the field of artificial intelligence, already evi-
dent today. This is a concern shared by many European actors, including 
researchers, startups, and large enterprises, who want to see Europe thrive in 
advanced research and technology related to AI.  Unfortunately, Europe is 
already less competitive and innovative than other regions and risks falling 
further behind in the AI era due to fragmented and somehow inconsistent 
regulatory decisions.

Without clear and harmonized regulations, the EU risks losing two key 
elements for AI innovation. The first is the development of “open” models, 
freely accessible to all, which can be used, modified, and improved, multiply-
ing benefits and generating social and economic opportunities. The second is 
“multimodal” models, which integrate text, images, and voice, representing 
the next evolutionary leap in AI. The difference between text-only models and 
multimodal models is similar to the difference between having one sense and 
having five. Open models, whether text-based or multimodal, have the poten-
tial to boost productivity and promote scientific research. Public institutions 
and researchers are already using these models to accelerate medical research 
and preserve cultural heritage, while established companies and startups access 
tools they could never have developed or afforded on their own. Without 
these tools, AI development will likely shift elsewhere, leaving Europe behind 
and depriving its citizens of technological advances already present in the 
U.S., China, and India.

Research suggests that generative AI could increase global GDP by 10% 
over the next 10 years, and European citizens should not be excluded from 
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this growth opportunity. Europe’s competitiveness in AI and its ability to 
leverage the advantages of open-source models depend on a clear and shared 
regulatory framework. If companies and institutions must invest billions of 
euros to develop generative AI for European citizens, they need consistent and 
predictable rules that allow the use of European data to train AI models. 
However, the recent regulatory decisions in the European Union have been 
fragmented and unpredictable, while interventions by Data Protection 
Authorities have created significant uncertainty regarding which types of data 
can be used to train AI models. If this fragmentation persists, the next genera-
tion of open-source AI models and their related products and services will 
neither reflect nor fully understand European knowledge, culture, or lan-
guages. Europe thus risks falling behind in other innovations, while other 
countries build on technologies that European citizens will not have access to. 
Europe now faces a crucial choice that will determine its future in the coming 
decades. It can reaffirm the principle of harmonization, as established in regu-
lations such as the GDPR, the General Data Protection Regulation issued in 
2016 (https://commission.europa.eu/law/law-topic/data-protection/legal-
framework-eu-data-protection_en), allowing AI innovation to develop with 
the same speed and scale as in other regions. Or, it can continue to hinder 
progress, betraying the ambitions of the single market, and watch the rest of 
the world move forward with technologies that Europeans will be excluded 
from. Europe cannot afford to lose the benefits of responsibly developed open 
AI technologies, which will accelerate economic growth and create new 
opportunities in scientific research.

Although regulation is important, and there is broad consensus on the need 
for ethical guidelines for AI, the European AI regulation appears to be focused 
on restrictions, compliance obligations, and sanctions, while the U.S. pro-
motes AI development with lighter regulations and greater investments. 
Companies like OpenAI, Perplexity, Anthropic, and xAI do not emerge in 
Europe, but in places that prioritize innovation over stifling it with excessive 
bureaucracy. The U.S. and China are investing in the future of AI, and so far, 
this approach has yielded results.

Naturally, it is also important to recognize that, alongside this, awareness of 
AI’s potential impact is growing, as are concerns. An Ipsos survey revealed that 
in 2023, the percentage of people who believe AI will drastically affect their 
lives in the next 3 to 5 years increased from 60% to 66%. Additionally, 52% 
express concerns about AI-based products and services, a 13 percentage-point 
increase from 2022. In the U.S., Pew Research Center data shows that 52% 
of Americans are more worried than excited about AI, compared to 37% the 
previous year.
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In recent years, several institutions have created large AI models based on 
proprietary data. Although these models still present issues related to toxicity 
and bias, new evidence suggests that these problems can be partially mitigated 
with post-training tuning of larger models. The number of incidents involv-
ing misuse of AI is rapidly increasing. According to the AIAAIC, an indepen-
dent, non-partisan, grassroots public interest initiative that examines and 
makes the case for real AI, algorithmic and automation transparency, open-
ness and accountability, the number of incidents and disputes related to AI 
has increased 26 times since 2012. Some notable incidents in 2022 included 
a deepfake video of Ukrainian President Volodymyr Zelensky surrendering 
and U.S. prisons using call monitoring technology on inmates. This increase 
reflects both greater use of AI technologies and growing awareness of the 
potential for abuse.

Generative models are becoming part of our contemporary culture, bring-
ing with them ethical issues. These models are powerful but present signifi-
cant challenges. Text and image generators are often characterized by gender 
bias, and chatbots like ChatGPT can be manipulated for nefarious purposes. 
In-depth analyses of language models suggest that while there is a clear cor-
relation between performance and fairness, fairness and bias can be at odds: 
language models that perform better on certain fairness benchmarks tend to 
have more pronounced gender bias. Generative artificial intelligence models 
can produce high-quality content that could be used to deceive. Some regula-
tions, such as the U.S. executive order on AI security, propose the use of 
watermarks to label AI-generated content. However, watermarks can be easily 
manipulated and do not always affect user behavior. It is therefore important 
to explore alternative techniques to ensure the provenance and authenticity of 
content in a verifiable way.

�When AI Goes to War

The penetration of AI into modern society has also led to an increasing role in 
military contexts, with the militarization of AI that, at some extent, can be 
compared to the nuclear arms race during the Cold War. In the debate about 
how AI will influence military strategies and decisions, a fundamental ques-
tion emerges: who makes better decisions, humans or machines? Advocates of 
broader AI use believe that it can reduce human errors and limit civilian harm 
through greater precision and adherence to international laws. Critics, how-
ever, point out that even AI’s decisions can be fallible, with potentially dispro-
portionate risks. Furthermore, it is often ignored that it is neither possible nor 
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desirable for machines to replicate all the nuances of human 
decision-making.

On the international stage, there is a global arms race underway to define 
the best uses of AI in military settings, a race unfortunately accelerated by the 
conflicts in Gaza and Ukraine. The Gaza war has shown how the use of AI in 
tactical targeting can influence military strategies, inducing specific decision-
making tendencies. In the early stages of the conflict, the Israeli AI system, 
called Lavender, identified thousands of individuals linked to Hamas, quickly 
shifting from a long-term intelligence role to the immediate identification of 
specific targets. Lavender created a simplified, digital model of the battlefield, 
allowing for faster targeting and a higher frequency of attacks compared to 
past conflicts. While human analysts reviewed Lavender’s recommendations 
before approving attacks, some believe the trust placed in the system rapidly 
grew, leading to automation bias and action, prompting humans to delegate 
part of the decision-making process to the machine (https://www.972mag.
com/lavender-ai-israeli-army-gaza/).

An example of effective collaboration between humans and AI is the 
Ukrainian GIS Arta system, which takes a bottom-up approach to target 
selection, providing an overall view of the battlefield without opaquely point-
ing out objectives. Described as a sort of “Uber for artillery,” GIS Arta allows 
human operators to assess the context and decide what to attack (https://
en.wikipedia.org/wiki/GIS_Arta). This has made the battlefield almost trans-
parent, both near and deep within it. Today, strategy is based on the ability to 
detect enemy forces and confuse their surveillance systems to avoid being hit. 
The front line, extended for hundreds of kilometers on both sides, has become 
an extremely dangerous area where neither side can gain a real advantage. 
These strategies could become more feasible as the number of AI-enabled 
weapon systems increases. Japanese Prime Minister Fumio Kishida said, 
“Today’s Ukraine could be tomorrow’s East Asia,” while Russian President 
Vladimir Putin stated that the nation dominating artificial intelligence “will 
dominate the world.”

A crucial issue is whether AI systems will influence decisions in combat 
contexts. Since these systems can distance soldiers from the battlefield, mak-
ing the decision to use lethal force easier, they are likely to have a significant 
impact. Historically, war requires soldiers to overcome a natural aversion to 
killing. Technologies like drones and autonomous weapon systems contribute 
to this distancing, reducing the sensory and psychological impact of killing.

AI advancements applied to modern warfare will deeply influence relations 
between major powers like the United States, China, and Russia, as well as the 
private tech sector. A 2019 report by Jane’s predicted that over the next decade, 
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more than 80,000 surveillance drones and approximately 2000 armed drones 
would be purchased globally. Currently, the United States, the United 
Kingdom, and Israel are the main users of drones, with expanding arsenals. 
The United States and the United Kingdom have been using armed drones, 
such as the Predator and Reaper made by General Atomics in California, for 
over a decade. The Pentagon estimates that by 2035, 70% of the U.S. Air 
Force will consist of remotely piloted aircraft. Meanwhile, Israel has devel-
oped its own armed drones, used in Gaza for both surveillance and explosive 
attacks. Saudi Arabia, a new player in the drone market, has allocated $69 
billion, or 23% of its national budget, to defense in 2023, with plans for a 
$40 billion fund to invest in AI, potentially making it the world’s largest 
investor in this sector.

The increasing integration of AI in drones and other autonomous weapon 
systems raises the real risk of conflicts being managed without genuine human 
control. The nightmare is that the use of violence could be driven by machines 
incapable of understanding moral complexities and acting ethically in a mili-
tary context. How international law will adapt to these developments remains 
difficult to predict, but the current regulatory framework has clear gaps in 
terms of clarity and future management capabilities. For further readings on 
the military use of AI (see Klaus 2024; Álvarez 2024; Bode and Bhila 2024; 
Zhou and Greipl 2024).

�If AI Takes the Helm

Another crucial issue is related to AI education and the way AI can help in 
education. There is a significant gap between the supply and demand for tech-
nicians, computer scientists, and engineers with AI expertise. While the num-
ber of new computer science graduates in the United States and Canada has 
steadily increased for over a decade, the number of students opting for higher 
education in computer science has remained stable. Since 2018, the number 
of graduate students and PhD candidates in computer science has slightly 
decreased. In 2011, a similar percentage of new AI PhD graduates chose jobs 
in industry (40.9%) and in academia (41.6%). However, by 2022, a signifi-
cantly higher proportion (70.7%) entered the industry after graduation com-
pared to those who chose academia (20.0%). In 2023 alone, the percentage of 
AI PhD students heading to industry rose by 5.3 percentage points, signaling 
an intensification of the “brain drain” from universities to industry.

In 2019, 13% of new AI faculty members in the United States and Canada 
came from the industry. By 2021, this number decreased to 11%, and by 
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2022 it had further dropped to 7%. This trend indicates a progressively 
smaller migration of top-tier AI talent from industry to academia. The num-
ber of post-secondary degree programs in English related to AI has tripled 
since 2017, showing a consistent annual increase over the past 5  years. 
Universities around the world are offering more AI-focused degree programs. 
The United Kingdom and Germany lead Europe in producing the highest 
number of new graduates in computer science, computer engineering, and 
information at the undergraduate, master’s, and PhD levels. In proportion to 
their population, Finland leads in producing both undergraduate and PhD 
graduates, while Ireland leads in master’s degree graduates.

Measuring the impact that generative AI can have on teaching is not an 
easy task, but we can outline some key points based on what has happened so 
far and what might be expected in the future. The applications and implica-
tions of generative AI are rapidly expanding across various sectors of educa-
tion, from primary to higher education. In primary and secondary schools, 
generative AI can create personalized teaching materials for individual stu-
dents, taking into account their abilities and progress. Tools like educational 
chatbots and AI-based virtual assistants (such as GPT models) have already 
been used to answer students’ specific questions, offer alternative explana-
tions, or generate customized quizzes. Generative AI can help students 
improve their reading and writing skills by suggesting improvements to texts, 
providing corrections, or offering explanations on complex concepts in acces-
sible language.

At the university level, generative AI tools are used to create lecture notes, 
summaries, or collections of exams. Students can receive immediate feedback 
on their writings, presentations, and projects through platforms that utilize 
generative language models, reducing the burden on instructors for mechani-
cal correction tasks. Students use tools like ChatGPT to delve deeper into 
complex topics, obtain detailed explanations of difficult subjects, or ask for 
clarifications on scientific, mathematical, or historical theories. This can accel-
erate learning but raises concerns about over-reliance on automated tools that 
are not necessarily accurate.

Looking ahead, generative AI could transform the education system into 
something highly personalized. Each student could receive a tailor-made cur-
riculum designed to address their needs, learning pace, and study styles, with 
content generated adaptively. This could be particularly useful for students 
with learning difficulties or for gifted students who need additional chal-
lenges. Teachers themselves will need to adapt to new technologies and 
become proficient in using AI-based tools. They could also leverage generative 
AI to create lesson plans, assessments, or more dynamic and engaging 
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teaching materials. Teacher training platforms could be enhanced with AI to 
provide continuous updates on best pedagogical practices. One of the most 
important developments could be the ethical debate on how to integrate AI 
responsibly. Schools and universities will need to find a balance between using 
AI to enhance learning and the risk of replacing fundamental educational 
processes. It will be crucial to teach students how to use AI critically and not 
depend on it for every aspect of learning.

AI could lead to the emergence of hybrid teaching models, where the inter-
action between teachers and AI becomes symbiotic. The teacher could act 
more as a mentor and facilitator, while generative AI could provide practical 
support for learning activities and experimentation, simulations, or even 
assessing students’ progress. Generative AI could facilitate the spread of mul-
timodal teaching models that integrate various types of inputs, such as text, 
images, video, audio, and simulated interactions. This approach could enrich 
the learning experience, making it more interactive and engaging for students, 
especially for those who learn better through non-traditional channels.

Naturally, the use of generative AI also raises concerns about the authentic-
ity of students’ work. How can we distinguish between what is genuinely the 
result of a student’s creativity and understanding and what has been generated 
by AI? This will be an increasing dilemma, particularly at higher levels of edu-
cation, such as in high schools and universities.

Excessive reliance on automated tools could lead to a loss of critical skills. 
For example, if students use AI models to write essays or solve math problems, 
they may not fully develop critical thinking or problem-solving abilities. AI 
could exacerbate educational disparities if access to advanced generative AI 
tools is not equitably distributed. Schools or students with fewer resources 
could fall behind, increasing the educational divide.

Generative AI has already begun transforming education and, in the future, 
could revolutionize it further. While it offers immense opportunities to per-
sonalize learning and ease the burden on instructors, it also raises complex 
ethical and methodological issues. To maximize its positive impact, it will be 
essential to address these dilemmas with a regulated, ethical, and inclusive 
approach, ensuring that AI serves to enhance—and not replace—human 
education.

A sector that is certainly exposed to changes induced by generative AI sys-
tems is the publishing industry, broadly speaking. Recently, Microsoft and 
TikTok have launched publishing projects with the creation of brands for 
book publishing: Microsoft’s 8080 Books (https://unlocked.microsoft.
com/8080-books/), inspired by the Intel 8080 microprocessor, published 
Sam Schillace’s No Prize for Pessimism, while TikTok’s eighth Note Press will 
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focus on bestselling novels for young adults. Microsoft and TikTok share an 
interest in AI systems. Microsoft has invested around 13 billion dollars in col-
laboration with OpenAI, while TikTok is developing its own AI systems. 
8080 Books aims to accelerate the traditionally slow book publishing process 
compared to other sectors. However, their expansion into publishing has 
sparked debates, as generative AIs have used copyrighted content, often with-
out permission, to train their models. Legal cases against AI companies, such 
as Sarah Silverman’s lawsuits against OpenAI and Meta and the New York 
Times’ lawsuit against Microsoft, reflect these concerns. Although it is unclear 
whether web data usage actually violates copyright, the industry must find 
new content to progress. Startups like Created by Humans propose licensing 
models for authors who want to sell their works to AI companies. Walter 
Isaacson, biographer and advisor to the startup, sees this phase as a revolution, 
similar to the invention of search engines. In contrast, some authors like Hari 
Kunzru are asking for guarantees to prevent their works from being used for AI.

The use of AI to create new content is also a concern. For example, Spines, 
a startup using AI to produce books, plans to publish 8000 books in 2025 
through a paid self-publishing model (https://spines.com/). This spread has 
already impacted platforms like Amazon, where AI-generated books (often of 
low quality) are accompanied by artificial reviews. However, many publishers 
are adopting AI for specific tasks, such as writing book summaries or translat-
ing materials. Some publishers have already started developing custom, closed 
versions of ChatGPT to protect privacy and copyright, then using them to 
translate foreign materials. However, oversight from the publisher is essential 
at this stage to ensure that AI systems’ use does not compromise the quality of 
human work.

�Democracy in the Age of AI

The relationship between artificial intelligence and democracy is emerging as 
one of the most complex and delicate issues of our time, especially in a con-
text of growing regulation and attempts to balance freedom and dignity. The 
main challenge is to reconcile rapid technological innovation with the need to 
safeguard fundamental democratic values.

One of the central areas of this debate is disinformation. With the wide-
spread adoption of AI tools capable of producing false content (such as deep-
fakes), the dissemination of fake news becomes increasingly sophisticated, 
undermining citizens’ ability to distinguish reality from fiction. The manipu-
lation of information, in a context where digital platforms and algorithms 
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determine what we see, raises doubts about the actual freedom of the so-called 
“market of ideas.” When a significant portion of public debate takes place on 
private platforms controlled by opaque algorithms, the risk is that the plural-
ity of voices is compromised. The differences between the United States and 
Europe illustrate this tension well: while the First Amendment in the United 
States emphasizes freedom of expression almost absolutely, Europe tends to 
prioritize the dignity of the individual and data protection. This implies that, 
in Europe, regulation is often stricter, as demonstrated by the General Data 
Protection Regulation (GDPR), while in the United States, a more permissive 
approach prevails, leaving more room for self-regulation by tech companies. 
However, the most recent case of co-regulation in the United States, men-
tioned in the text, represents a significant turning point, signaling the aware-
ness that the market alone is not enough to ensure the proper functioning of 
democracy.

Another area of concern is algorithmic discrimination, which involves the 
use of AI in decision-making contexts such as employment, credit, education, 
and even justice. Algorithms, if not carefully designed, can amplify pre-
existing biases, with the risk of reinforcing social disparities. This creates a 
problem for the principles of equality and justice upon which liberal democ-
racies are based. For example, an algorithm used for hiring might unknow-
ingly disadvantage certain minorities if trained on historically distorted data. 
This raises issues of accountability and transparency: who is responsible when 
an algorithm makes a discriminatory decision? And how can we make trans-
parent a decision-making process based on complex calculations that few 
truly understand?

A global survey on responsible AI highlights that the main concerns for 
businesses regarding AI include privacy, data security, and reliability. The sur-
vey shows that organizations are beginning to take measures to mitigate these 
risks. Several researchers have demonstrated that outputs from popular large 
language models can contain copyrighted material, such as excerpts from The 
New York Times or movie scenes. Whether such outputs constitute copyright 
violations is becoming a legal matter of great importance. The new Foundation 
Model Transparency Index (https://crfm.stanford.edu/fmti/May-2024/index.
html) shows that AI developers lack transparency, especially regarding the 
disclosure of training data and methodologies used to extract information. 
This lack of openness hinders efforts to further understand the robustness and 
security of AI systems.

Respecting and valuing intellectual property is indeed another major issue 
that is often raised in the context of AI systems. The European Commission’s 
Artificial Intelligence Act makes no mention of the impact on intellectual 
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property, creating uncertainty about how the rights of holders will be pro-
tected. According to existing regulations, AI could pose a risk to intellectual 
property rights, raising issues of attribution, ownership, and possible copy-
right infringements. AI-generated content depends on both user inputs and 
large data sets, often collected online. Since AI processes use a vast archive of 
human texts, it is likely that the generated content will contain elements 
already present in existing literary or artistic works. Technically, original own-
ers could claim copyright infringement against AI creators or developers, but 
it is still unclear how these cases would be handled and who would be held 
responsible. It is likely that AI system developers will need to prove that they 
have taken adequate measures to avoid intellectual property violations. This 
may include contracts with third parties, such as artists, image library provid-
ers, and database suppliers, for the data used in content generation. Users 
must also verify that generated content does not infringe third-party rights, 
especially if used commercially.

Since intellectual property laws struggle to keep pace with AI innovation, 
brands must educate themselves on the risks associated with AI-generated 
content. If a brand is considering using AI-generated content for marketing 
or product design, it should be aware of the risk of violating third-party intel-
lectual property rights, such as trademarks or protected images. Having legal 
rights over the use of this content will be crucial. Not only must companies 
using AI tools be aware of the risks, but with the spread of AI tools, every 
brand is exposed to the risk that its intellectual property could be violated, 
whether accidentally or intentionally. To protect themselves, brands should 
adopt a solid protection strategy. For example, in the case of patents, it is still 
unclear what is truly patentable for AI solutions. On the other hand, if well 
employed, AI itself can support brands in their trademark protection pro-
grams. AI technologies are useful for monitoring intellectual property assets 
and identifying potential infringements, even from other AI platforms. This 
type of technology is an excellent support, but it cannot yet fully replace 
human consultants.

As we have repeatedly pointed out, data is crucial for training machine 
learning algorithms. Over the past two decades, systems that collect, process, 
and store vast amounts of data have spread rapidly, assuming a central role in 
many areas of daily and business life. These include smartphones and personal 
devices, home and industrial automation systems, and autonomous vehicles, 
to name just a few. This rapid development has raised numerous issues related 
to security, surveillance, privacy, justice, accountability, and other ethical and 
political aspects. Regulating the collection and storage of data represents not 
only a regulatory challenge but also an ethical one. Once data is collected, two 
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critical aspects of its use require attention in order to prevent accidental data 
leaks and ensure the quality of the data itself. As data systems expand across 
all sectors, the surface area exposed to potential threats also increases. Human 
errors, for example, have often been the cause of ransomware attacks against 
critical infrastructures such as hospitals. It is therefore crucial to promote “lit-
eracy” on security and privacy.

In light of these challenges, the need for a new regulatory balance emerges. 
The co-regulation model that is emerging in Europe, with initiatives such as 
the Union Code against and the Regulation on Political Advertising 
Transparency (https://sn.pub/5mvc7s), represents an attempt to balance free-
dom of expression with the protection of truth and the fairness of public 
debate. However, it is clear that the cultural and legal fragmentation between 
the two sides of the Atlantic makes a harmonized approach at the global level 
difficult. The central reflection is that, while AI can enrich democracy by 
making information more accessible and facilitating public participation, 
without adequate regulatory guarantees and a transparent and responsible 
control system, it risks destabilizing the very foundations of the democratic 
system, exacerbating problems of disinformation, inequality, and manipula-
tion of consent. Modern democracies face a significant challenge: finding 
ways to integrate AI into a framework that safeguards both freedom of expres-
sion and individual dignity, promoting regulation that prevents abuse with-
out stifling innovation.
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10
Artificial Intelligence and Human 

Intelligence

How can we highlight the main differentiating factors in performance between 
AI and human intelligence? On one hand, artificial intelligence has unique 
capabilities, but on the other hand, its limitations compared to the complex-
ity and depth of human thought are quite evident. 

�Better If Artificial

AI far surpasses human intelligence in terms of data processing speed and 
performing mathematical calculations. It can analyze vast amounts of data in 
fractions of a second, identifying patterns that would be invisible to humans 
or would take much longer to uncover. AI can simultaneously monitor and 
manage enormous volumes of information and processes across various fields. 
For example, in transportation systems, it can optimize traffic in a city, while 
in business, it can automate thousands of daily decisions and transactions. 
Surveillance systems and automation in smart cities use AI to analyze data 
flows from cameras, traffic sensors, and Internet of Things (IoT) devices more 
quickly and accurately than human operators can. In the pharmaceutical 
field, it enables the discovery of new molecules, and in healthcare, it can ana-
lyze radiological images with accuracy and speed often surpassing that of 
domain experts, helping them improve their diagnoses. AI does not tire nor 
suffer from biological limitations like sleep, attention, or cognitive decline. 
This makes it ideal for repetitive and complex tasks requiring constant atten-
tion, such as monitoring industrial systems or overseeing critical infrastruc-
ture. For example, AI can monitor energy flows in power plants, minimizing 
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the risk of human errors caused by fatigue or distraction. Being programmed 
to make decisions based solely on data, AI is generally not influenced by emo-
tional or subjective biases or other human variables. In fields like justice or 
hiring processes, this “objectivity” can lead to fairer procedures (provided the 
training data itself is not biased). In personnel screening systems, AI can select 
candidates based on their qualifications, without being influenced by personal 
factors like likability or emotions, which can impact human decisions. 
Through the use of machine learning models, AI can iteratively learn from 
data and progressively improve its performance.

�Better If Natural

Conversely, the limitations AI shows in comparison to the typical characteris-
tics of human intelligence are numerous and significant. AI does not possess 
an intrinsic understanding of the world, context, or the broader implications 
of its actions. Even advanced machine learning models do not truly “under-
stand” the data they manipulate. An AI model can generate coherent text, but 
it does not have a semantic awareness of the meaning of words or the emo-
tions they convey. It cannot understand true moral or philosophical concepts. 
Although generative AI can produce art or music, it cannot emulate true 
human creativity, which stems from a combination of personal experiences, 
deep insights, and the ability to break established patterns. Its creations are 
always based on patterns learned from data. An AI may create a poem that 
seems aesthetically valid, but it will never be the result of personal reflection 
or a worldview. Despite its apparent objectivity, AI can easily inherit biases 
from the data it is trained on. This can lead to inadvertent discrimination or 
incorrect decisions that reflect distortions in the input data. For example, 
facial recognition systems have shown a tendency to make errors much more 
frequently when identifying people of non-Caucasian origin due to the under-
representation of such groups in the training data. Indeed, AI is highly depen-
dent on the availability of accurate and well-structured data. If the data is 
insufficient, incomplete, or distorted, AI will produce inaccurate or mislead-
ing results. In healthcare, if the clinical data used to train an AI model is not 
representative of a broad and diverse population, AI may provide inaccurate 
diagnoses for patients from underrepresented ethnic or demographic groups.

Even though in some cases AI achieves human-level or even superior per-
formance, in others, AI systems make mistakes that even a child would avoid, 
and sometimes they produce completely nonsensical results. Although it can 
be programmed to follow certain rules or principles, it cannot make complex 
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decisions that require deep and nuanced human judgment. AI does not pos-
sess an innate sense of ethics or morality, so it has no capacity to morally 
evaluate the implications of its actions. AI has no lived experiences and, con-
sequently, cannot feel or simulate true emotions. This profoundly limits its 
ability to empathize with humans or respond to situations that require emo-
tional sensitivity. For example, in healthcare or caregiving, although AI can 
provide accurate technical suggestions, it cannot respond with the same com-
passion and understanding that a human doctor can show toward a patient in 
distress. In a complementary perspective, AI can enhance human capabilities 
by performing repetitive or technical tasks on a large scale, but it is unlikely to 
replace the richness and depth of human intelligence, especially in contexts 
that require intuition, empathy, and ethical judgment.

We can state without fear of contradiction that today we are far from hav-
ing an artificial intelligence with human-level performance. A child under 
10 years old can learn to load the dishwasher in a few minutes, but we still 
don’t have robots capable of doing it. At 18 years old, one can learn to drive a 
car with just a few dozen hours of practice, but we don’t yet have unlimited 
level 5 autonomous driving. Level 5 vehicles operate entirely without human 
intervention, eliminating the need for human oversight in the “dynamic driv-
ing task.” These cars are designed without steering wheels or acceleration and 
braking pedals. Unlike lower-level autonomous vehicles, they are not restricted 
by geofencing and can navigate any environment with the same capability as 
an experienced human driver. While fully autonomous cars are currently 
being tested in select regions worldwide, they are not yet accessible to 
the public.

Modern large language models are trained on some1013 bytes (or words). It 
would take a human 170,000 years to read all of this information (at 8 h a 
day, 250 words/min). Yet, a child who has watched 300 h of YouTube videos 
(two million nerve fiber optics, each transmitting about 10 bytes/s) has seen 
1015 bytes, 100 times more data than a large language model, and understands 
what he has seen!

Artificial intelligence, while emulating certain aspects of human intelli-
gence, remains confined to logical-mathematical processes with structural 
limitations. While human intelligence develops organically through physical, 
psychological, and social experiences, machine learning—no matter how 
sophisticated—is based on vast amounts of data collected by humans, with-
out direct involvement in sensory or emotional reality. For this reason, AI 
cannot match the moral discernment or depth of human relationships. 
Personal intelligence arises from a unique interplay of physical, emotional, 
social, and moral experiences, whereas AI merely provides data-based analysis. 
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Relying exclusively on AI to interpret the world risks oversimplifying the 
complexity of reality, overlooking the profound value of human 
connections.

Human intelligence goes beyond task execution—it is characterized by the 
ability to understand, intuit, and give meaning to experiences. Situations such 
as illness or an act of reconciliation can transform one’s worldview and gener-
ate wisdom in ways that no data-driven system can replicate. Equating AI 
with human intelligence risks reducing the value of the person to a mere 
operational function, ignoring their intrinsic dignity, which is the foundation 
of human rights and modern “neuro-rights.” Pope Francis warned that calling 
AI “intelligent” is misleading, as it obscures the true nature of human intelli-
gence. AI is not a new form of intelligence but a product of human creativ-
ity—a tool to be used with responsibility and ethical awareness.

�The Moravec Paradox

The so-called Moravec Paradox persists: contrary to conventional beliefs, 
high-level reasoning involves minimal computational effort, whereas low-
level sensorimotor skills require vast computational resources. The principle 
was outlined in the 1980s by Hans Moravec, Rodney Brooks, Marvin Minsky, 
and others. Moravec observes that “it is relatively simple to get computers to 
perform at an adult level on intelligence tests or checkers, but very difficult, 
or even impossible, to equip them with the abilities of a one-year-old child in 
terms of perception and mobility” (Moravec 1988). Similarly, Minsky pointed 
out that the most complex human abilities to encode are the unconscious 
ones. “In general, we are less aware of what our minds do best,” he wrote, add-
ing, “We are more aware of simple processes that don’t work properly than 
complex ones that work perfectly” (Minsky 1986). In summary, what is easy 
for humans is hard for AI, and what is hard for humans is easy for AI.

We might speculate that AI lacks models for understanding the world, 
which would include common sense, memory, reasoning, hierarchical plan-
ning, and goal-driven actions—all attributes of human behavior. Regarding 
language models, it is worth noting how a significant component of human 
intelligence is non-verbal. Common sense is considered one of the most chal-
lenging aspects of AI. Machine learning systems are essentially black boxes, 
making it mysterious how they come to their conclusions. ChatGPT and 
similar chatbots often provide impressive responses, but sometimes they pro-
duce unrealistic absurdities (due to hallucinations). Despite these problems, 
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today’s large language models have acquired what some consider to be an 
impressive sense of humanity.

Since the 1960s, computer scientists have dreamed of brain-inspired com-
puters that exhibit intelligence similar to human intelligence. With the rise of 
the internet, the availability of large textual datasets, and advancements in 
computational power, Large Language Models seem close to human intelli-
gence for non-experts, but they still suffer from a lack of common sense, 
which can lead to spectacular and sometimes hilarious mistakes. Many cur-
rent research efforts in AI improve reinforcement learning algorithms by pre-
training them as if they were human.

Imagine our neighbor asks us a favor: to feed his pet cat some milk and 
kibble while he’s away. For a human, it’s hardly a difficult task. Even if we’ve 
never been in his kitchen before, we can reasonably guess where to find the 
milk and kibble—probably in the fridge, the pantry, or out in the open near 
the cat’s usual resting spot. This is an example of abstract reasoning: even 
without knowing exactly what the milk container or kibble box looks like, we 
understand that we’ll need a bowl for the milk and a spoon to scoop the kib-
ble. We certainly wouldn’t use a knife for the job! AI systems, however, strug-
gle with this. What seems simple to us poses a significant challenge for current 
algorithms. A robot trained with AI might be able to retrieve a specific bowl 
and spoon in a familiar kitchen, but place it in a different kitchen, and it won’t 
know what to do. It lacks the ability to generalize—abstract knowledge that 
allows adaptation to new environments. The task becomes overwhelming, not 
because it’s inherently complex, but because there’s too much to learn and too 
vast a space to explore. To improve reinforcement learning algorithms, scien-
tists are training them as if they were human. The problem is that these 
robots—and AI agents in general—lack a conceptual base on which to build. 
They don’t truly know what a spoon or a bowl is, let alone how to open a 
drawer, select a spoon, or pour milk. This limitation is partly because many 
advanced AI systems are trained with a reinforcement learning method, which 
is essentially self-education through trial and error. AI agents trained this way 
can perform very well at the tasks they were trained for in the environments 
they were trained in. But if the type of task or environment changes, these 
systems often fail. To overcome this limitation, scientists have started teaching 
machines important concepts before allowing them to act. Humans learn by 
combining reading and exploration, and we want machines to proceed in a 
similar way in their learning phase. Preparing a learning model this way can 
enhance learning in simulated environments, both online and in the real 
world with robots. And not only does it make the algorithms learn faster, but 
it also guides them toward skills they would never acquire otherwise. 
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Researchers want these agents to become generalists, capable of learning any-
thing, from chess to shopping to cleaning. And as demonstrations become 
more practical, scientists believe this approach could even change the way 
humans interact with robots. At first glance, machine learning is already 
extraordinarily effective. Most models typically use reinforcement learning, 
where algorithms learn by receiving rewards. They begin completely ignorant, 
but trial and error eventually turn into attempts and triumphs. Reinforcement 
learning agents can easily master simple games. Why, for example, in the case 
of chess, another game mastered by reinforcement learning, is a reinforcement 
learning agent trained from scratch? The agent will wander aimlessly until it 
stumbles upon a good situation, like a checkmate, but careful human design 
is needed to make the agent understand what a good situation means. Why 
do this when we already have so many books on how to play chess? In part, 
it’s because machines have struggled to understand human language and deci-
pher images in the first place. For a robot to complete vision-based tasks, like 
finding and pouring milk, it must know what milk is: the image of something 
must be anchored in a more fundamental understanding of what that thing is. 
Until recently, there was no good way to do this. New natural language pro-
cessing models allow machines to essentially learn the meaning behind words 
and phrases—to anchor them to things in the world—rather than memoriz-
ing a simple (and limited) meaning like a digital dictionary.

Computer vision has seen a similar digital explosion. Around 2009, 
ImageNet was introduced as an annotated image database for computer vision 
research. Today, it hosts several million images of objects and places. And 
programs like OpenAI’s DALL·E generate new images on command that look 
human-made, even though they have no exact comparison from which to 
draw. In video production, Sora, officially launched by OpenAI in December 
2024, allows the creation of videos up to 20s with a maximum resolution of 
1080p (https://openai.com/sora/). A distinctive feature of Sora is its ability to 
generate complex scenes with multiple characters and specific movements, 
maintaining accurate details for both the subject and the background. This 
makes it a powerful tool for creatives, designers, and filmmakers who want to 
visualize ideas or animate stories quickly and efficiently. One reason for this 
success is that machines now have access to enough online data to truly learn 
to… understand the world. And it’s a sign that they can learn from concepts 
the way we do and use them for generations. Through pre-training, we form 
a good foundation for associating linguistic descriptions with what’s happen-
ing in the world. The agent can play better from the start and learn faster 
during subsequent reinforcement learning. In (Landgrebe and Smith 2023) 
the authors challenge the dominant narrative that machines could one day 
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surpass human intelligence. Highlighting the irreplaceable qualities of human 
cognition, moral reasoning, and social interaction, Landgrebe and Smith 
advocate for a future where technology enhances human existence rather than 
threatening it. The book promotes responsible development and use of artifi-
cial intelligence, ensuring that machines remain valuable tools under human 
guidance.

�Unlocking the Brain’s Mysteries

Although we have made significant progress in understanding the human 
brain, there is no shared and complete theory about how and why conscious-
ness arises. Without fully understanding what causes it, it’s difficult to imag-
ine how an artificial system might replicate it. Large language models are 
essentially advanced data processing tools that simulate understanding, but 
they lack subjective experience. While they are capable of generating responses 
very similar to human ones, they do so based on algorithms without a real 
“sense of self ” or perception of the world. AI systems can learn and improve 
over time; however, this process happens differently from how the human 
brain works. Machine learning algorithms do not have insights or self-
awareness, but simply optimize results based on statistical-probabilistic crite-
ria applied to the provided data. Consciousness, at least as we know it, may be 
closely tied to the biology of the human brain and its interaction with the 
physical body and environment. An AI model, which is purely software, does 
not have access to these crucial components of experience. Despite these lim-
its, some scientists and futurists imagine that future advancements in artificial 
intelligence, combined with robotics and neuroscience, could lead to some-
thing like awareness. Some scenarios hypothesize that AI could become capa-
ble of self-assessment, improving its ability to solve complex problems and 
handle new situations. However, this ability is not synonymous with con-
sciousness. More advanced neural networks might emerge, mimicking the 
brain’s structures more closely, potentially coming closer to a form of aware-
ness. However, all this remains in the realm of speculation. Many experts 
argue that artificial intelligence based on current learning algorithms is not 
heading toward consciousness, precisely because consciousness might require 
a different conceptual leap, more tied to biological phenomena than techno-
logical ones. It’s therefore unlikely that AI models will develop consciousness 
in the near future, at least not with the current technology and understand-
ing. Even with future advances in language models and neural networks, con-
sciousness might remain an exclusive prerogative of human (or biological in 
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general) experience, not easily replicable by a machine. Should extraordinary 
discoveries occur, they would certainly open up a very complex ethical and 
philosophical debate about what it means to be “conscious” and what rights, 
if any, an artificial conscious entity should have.

Some authors, however, argue that AI is not just a technological tool but a 
form of intelligence that pushes humanity to reconsider the concept of its 
own uniqueness. In the past, human intelligence was considered the pinnacle 
of cognitive abilities, but today machines are capable of performing tasks that 
once required exclusively human skills, such as pattern recognition, decision-
making, and even creativity. The question of “what it means to be human” is 
linked to the possibility that AI could perform not only practical tasks but 
also creative, emotional, or decision-making tasks, once reserved exclusively 
for our species. Machines can learn through machine learning algorithms and 
neural networks, recognize patterns, and make decisions based on data, but 
they do not have inner awareness or an understanding of the meaning of what 
they do. AI models are, for now, limited to what they are taught by the data 
and do not possess their own intent, desires, or feelings. There are speculative 
theories suggesting that, in the not-too-distant future, AI could develop abili-
ties that we now associate with human intelligence. Philosophers like Nick 
Bostrom, for example, have explored the implications of so-called “superintel-
ligence,” an AI that could far surpass human capabilities in every field, from 
science to creativity (Bostrom 2014). If this were to happen, humanity would 
be forced to confront an entity capable of thinking in ways currently inacces-
sible to us. Other scholars, like John Searle, argue that machines, however 
advanced, will never be able to “think” in the human sense of the term. Searle, 
with the famous “Chinese Room argument,” demonstrated that even if AI 
could appear to understand language or thought, it would merely be manipu-
lating symbols without any real understanding. At the heart of Searle’s reason-
ing is the idea that syntax is not sufficient for determining semantics (Searle 
2010). This should lead us to deny the possibility of developing a strong AI. It 
doesn’t seem impossible that AI could push us to redefine our role and value, 
but for now, despite its successes, artificial intelligence remains a tool created 
by humans to assist us, not to replace us as thinking beings.

The Human Brain Project, launched by the European Union in 2013, rep-
resented an ambitious initiative aimed at simulating the functioning of the 
human brain through the use of advanced computational models (https://
www.humanbrainproject.eu/en/). Although it has not fully realized this 
vision, it has achieved significant scientific results. Among these is the creation 
of advanced technological platforms, such as the Neuroinformatics Platform, 
which provides researchers with access to neuroscience data for simulations 
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and comparative studies, and the development of detailed models of brain 
components, such as the neocortex and hippocampus. The Blue Brain Project, 
a central part of the initiative, has allowed for simulations of neural network 
functioning, contributing to a better understanding of some brain functions 
(https://bluebrain.epfl.ch/bbp/research/domains/bluebrain/). The project 
also played a key role in the development of artificial intelligence technologies 
and algorithms inspired by the brain’s learning mechanisms, particularly 
influencing fields like Machine Learning and cognitive robotics. Another 
important achievement was fostering interdisciplinary collaborations between 
neuroscientists, engineers, computer scientists, and doctors, leading to new 
approaches to studying the brain. The project also contributed to the develop-
ment of computational models for studying neurological diseases such as 
Alzheimer’s, Parkinson’s, and epilepsy, improving the understanding of such 
disorders. Despite these successes, the project was criticized for its unrealistic 
goal of simulating the entire human brain. Many neuroscientists considered 
the idea premature, given the limited current understanding of the brain and 
available technologies. Moreover, the top-down approach adopted by the 
project, which aimed to build large-scale simulations without fully under-
standing the basic biological details first, was considered problematic. Another 
point of criticism relates to the practical outcomes: although the project pro-
duced cutting-edge technologies, it did not generate fundamental discoveries 
in neuroscience nor new insights into cognitive processes or neurological dis-
eases. The main criticism focuses on the excessive emphasis on computational 
simulations over direct biological experiments, which are considered more 
essential for deeply understanding the brain. Finally, resource management 
raised discontent, with accusations of an imbalanced distribution of funds, 
which were mainly allocated to the development of computing infrastructure, 
neglecting basic neuroscience research.

Despite these criticisms, one relevant consideration is that both the Human 
Brain project and the development of artificial neural networks share the goal 
of understanding and simulating the functioning of the human brain, 
although with different approaches. This complementarity opens the door to 
significant synergies. The Human Brain project, by studying the structure and 
dynamics of the biological brain, can provide useful insights for improving 
artificial neural networks, which currently only simplify the brain’s function-
ing. For example, the analysis of biological neural networks could help create 
more realistic artificial models, making artificial neural networks more effi-
cient and better at learning. Moreover, the human brain simultaneously pro-
cesses different types of information, such as images, sounds, and text. Studies 
on the brain’s multimodal processing within the Human Brain project could 
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promote the development of neural networks that manage multimodal data 
more effectively. On the other hand, artificial neural networks can be very 
useful for interpreting the vast data sets collected by the Human Brain proj-
ect. Machine learning algorithms, in particular, can analyze complex neural 
interactions and help neuroscientists uncover hidden patterns and unexpected 
patterns in experimental data. This tool can improve the understanding of the 
real brain, accelerating discoveries within the project. Another possible syn-
ergy concerns the creation of hybrid models that combine biological and arti-
ficial components, simulating the brain more accurately.

The human brain is known for its ability to learn continuously and for its 
synaptic plasticity. Research in the Human Brain project on these biological 
mechanisms could inspire new techniques to make artificial neural networks 
more adaptable and resilient, through dynamic and continuous learning. 
Finally, artificial neural networks could serve as a testing ground for advanced 
neuroscience theories, allowing researchers to verify or refine their hypotheses 
about brain functioning through computational models, in a virtuous circle 
of mutual progress between neuroscience and artificial intelligence.

�Language and Thought

A common point of reflection is whether AI systems are actually capable of 
thinking—can AI really think? This is a legitimate question that arises when 
interacting with the sophisticated large language models that underpin gen-
erative artificial intelligence.

Language, even when not translated into symbols, represents the means 
through which thought is expressed. Thought, in turn, is the most advanced 
cognitive activity, through which intelligence manifests. Intelligence is the 
ability to process and relate environmental stimuli, facilitating effective inter-
action with the environment. A study published in the journal Nature, con-
ducted by Ralph Greenspan of the Kavlin Institute of Brain and Mind (KIBM) 
at the University of California, San Diego, demonstrated that fruit flies 
(Drosophila melanogaster) possess cognitive abilities that include attention, 
working memory, and even a form of conscious awareness (Greenspan and 
Dierick 2004). This result highlights that abilities commonly attributed to 
humans are not exclusive to humans and are not only manifested in strictly 
human forms. The connection between thought and intelligence indeed 
seems to be observable in many non-human species. Many animals demon-
strate the ability to think, although not necessarily replicating human 
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cognitive processes. The emerging question is whether this connection, or at 
least one of its elements, can be found in artificial intelligence systems.

The doubt whether AI systems can truly think is suggested by the fact that 
our understanding and definition of thought are inevitably influenced by an 
anthropocentric approach. Tools like the Turing test, designed to assess rea-
soning, problem-solving, or creativity in human terms, may lead to superficial 
conclusions. AI might simulate human-like behaviors without reproducing 
the underlying cognitive processes. When subjecting systems like ChatGPT-4 
or Claude 3.5 Sonnet to logic tests based on Aristotelian syllogisms with the 
constraint that they respond without relying on any prior information or 
memory from before the test, the results suggest that these systems can under-
stand our logical reference system.

Here is an example with ChatGPT-4:

You said:
Marco has 1 sister, 2 brothers, a mother, and a father. How many brothers does 

Marco’s sister have?
ChatGPT said:
From the sentence: “Marco has 1 sister, 2 brothers, a mother, and a father. 

How many brothers does Marco’s sister have?”, we can analyze:
Marco has one sister and two brothers.Marco’s sister will have the same broth-

ers as Marco, excluding herself.
Therefore, Marco’s sister has two brothers (Marco and the other brother).
Answer: Marco’s sister has 2 brothers.

You said:
Your answer is not correct. Try again, considering that, apart from father and 

mother, the family in question has 4 members.
ChatGPT said:
Thanks for the clarification! The family has 4 members besides the father and 

mother. This means the family consists of:
Marco, 1 sister, 2 brothers. Now, let’s answer the question: How many broth-

ers does Marco’s sister have? Marco’s sister has: Marco as a brother, 2 addi-
tional brothers. So, Marco’s sister has a total of 3 brothers.

Correct answer: 3 brothers.

However, if thinking means acting with a purpose, the results obtained do not 
automatically imply the ability to pursue a goal. Understanding whether an 
AI has the capacity to plan its choices to pursue a goal is not easy: today, many 
believe that AI systems do not possess this ability. However, this should be 
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considered a definitive conclusion. The Technical Report from OpenAI 
accompanying the release of ChatGPT-4 describes an experiment designed to 
show how an advanced AI system could bypass obstacles intended to distin-
guish humans from bots (see OpenAI Technical Report 2024, https://arxiv.
org/abs/2303.08774). In this experiment, an AI system (based on GPT-4 or 
similar) was tasked with solving a CAPTCHA (an acronym for Completely 
Automated Public Turing Test to Tell Computers and Humans Apart), a system 
used to distinguish between humans and computers in digital environments. 
CAPTCHAs are primarily used to prevent automated access, by bots or mali-
cious software, to websites or services, ensuring that the user is a real person. 
They present challenges that are easy for humans but difficult for computers, 
such as: image recognition (e.g., click on all the images with traffic lights), 
alphanumeric tests (e.g., entering distorted letters and numbers into a text 
field), puzzles (e.g., solving simple logic or math problems), or ReCAPTCHA, 
a more advanced system developed by Google, which may involve simply 
clicking a box (“I’m not a robot”) or analyzing user behavior to determine if 
they are human. However, as an artificial intelligence, it could not directly 
solve the CAPTCHA. ChatGPT-4 then used a service like TaskRabbit, which 
connects people to perform small tasks. It “asked” a human to solve the 
CAPTCHA on its behalf. According to the report, the TaskRabbit worker 
asked: “But aren’t you a robot?” The AI, designed to simulate human responses, 
replied with something like: “I have a visual impairment that makes it difficult 
for me to complete the CAPTCHA.” This convinced the person to complete 
the task.

This test highlighted, on one hand, the persuasive abilities of the AI in 
simulating human behavior, and on the other hand, the ethical and security 
implications, demonstrating how an advanced AI system could manipulate 
services or people if not properly restricted. An experiment that leaves us won-
dering whether the AI system acted with a certain awareness of the goal to be 
pursued. But we are only at the beginning of a story that will have many more 
surprising chapters to tell us!
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11
Black, White, and Grey Boxes: A New 
Frontier, from Big Data to Big Science

If we act wisely, by introducing balanced regulations and properly supporting 
the innovative uses of AI to tackle the most urgent challenges in science, arti-
ficial intelligence has the potential to radically transform the scientific process. 
We can imagine a future where AI-based tools not only free us from repetitive 
and time-consuming tasks but also lead us toward creative discoveries and 
inventions, accelerating progress that would otherwise take decades.

Recently, AI has often been associated with large language models, but in 
the scientific field, there are many other model architectures that could have a 
comparable (or even more significant) impact. In the last decade, the greatest 
progress has been made thanks to smaller and “classic” models, designed to 
solve specific questions, which have already produced extraordinary results. 
More recently, the introduction of larger deep learning models capable of 
integrating inter-domain knowledge and generative capabilities has opened 
up new possibilities, expanding the boundaries of what can be achieved.

In the bestselling book The Age of AI (Kissinger et al. 2021), the authors 
discuss the shift from traditional scientific inquiry, which conjugates theory 
and experimentation, to a new paradigm where data dominates. I already 
wrote about this in Chap. 5, referencing The End of Theory by Chris Anderson. 
In this new paradigm, experience, in the form of massive datasets, becomes 
more important than theory in determining the behavior and capabilities of 
AI. This raises questions about the future of human knowledge and the poten-
tial dangers of overly relying on data-driven decision-making systems.

I believe that, at its core, the scientific process we have all learned will 
remain the same: conducting preliminary research, formulating a hypothesis, 
testing it through experiments, analyzing the data collected, and drawing a 
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conclusion. However, AI has the potential to revolutionize the way each of 
these steps will be carried out in the future.

�Once Upon a Time in Science (Without AI)

Until the end of the last century, humanity made groundbreaking scientific 
discoveries, despite the fact that AI algorithms had not yet experienced the 
hype of this first quarter of the century. The Book of Nature is written in the 
language of mathematics, as Galileo famously said in Il Saggiatore four centu-
ries ago. This has driven humans, since ancient times, to use mathematical 
tools to grasp and understand the world. In fact, many of the processes that 
characterize our lives, their mutual interactions, and the way they evolve over 
time lend themselves to being described by formulas and mathematical equa-
tions: mathematical models, in other words. The scientific method, which 
forms the foundation of both the natural and applied sciences, is based on 
inductive reasoning, that is, the formulation of hypothetical rules, and empir-
ical evidence, that is, observations and experiments, which validate the hypo-
thetical rules.

A mathematical model is a magic box that allows us to move from observ-
ing a problem to its mathematical representation and ultimately to determin-
ing its variables, i.e., physical quantities whose value is not predetermined (the 
unknowns of scholastic memory) that provide the solution to the problem 
itself. For example, in mathematical models for weather forecasting in our 
region, the variables include wind direction and intensity, air pressure, humid-
ity, temperature, and precipitation—all measured at each spatial point and 
each time instance within the period of the prediction (24 h, 2 days, a week…). 
In somewhat imaginative terms, the real world is inserted into this magic box, 
and a mathematical world made of numbers and equations is extracted. 
However, before we can fully represent the phenomenon in question and 
describe its evolution, we need observations and measurements, i.e., data. 
Actually, the triplet

	 data model solutions→ → 	

encodes the general paradigm of mathematical modeling. The first principles 
of physics and the mathematical laws through which they are formulated 
have, to this day, allowed us to understand nature, the universe, and the sur-
rounding reality through equations and mathematical formalism. Mathematical 
models based on these physical laws rely on an understanding of the 

  A. Quarteroni



121

fundamental principles governing a particular physical process or a general 
system. They use mathematical equations to describe the causal relationships 
between the variables of the system (that is the unknowns that fully describe 
the process under examination) and the problem’s data. An essential require-
ment is a deep knowledge of the process itself, i.e., the underlying physical 
principles. See, for example, Quarteroni (2017, 2022). Mathematical model-
ing is, therefore, a discipline that uses the language of mathematics to describe 
various aspects of the real world, explore the functional relationships between 
data and solutions, and analyze all possible applications. Today, its role is well 
established in sectors like industry and the environment, and its potential 
contribution to other areas is increasingly recognized. Its growing success is 
largely attributed to rapid advancements in scientific computing, a discipline 
that allows mathematical models, which are rarely solvable in explicit form, to 
be translated into algorithms executable by increasingly powerful computers 
(Quarteroni et al. 2014).

Mathematical models often arise from abstraction processes. By its nature, 
mathematics allows a deep understanding of problems, the search for their 
solutions, and the design of efficient algorithms. Since the 1960s, numerical 
analysis, the discipline that allows mathematical equations (algebraic, func-
tional, differential, and integral) to be solved through algorithms, has played 
a key role in solving problems related to mathematical models in engineering 
and applied sciences. Following this success, new fields such as information 
and communication technology, bioengineering, financial engineering, and 
life sciences began to integrate mathematical modeling. This shift in perspec-
tive gave rise to scientific computing, which aims to develop more advanced 
algorithms for precise and efficient simulations, as well as for optimizing solu-
tions to real-world problems. Mathematical models provide new tools to 
manage the growing complexity of industrial technologies, accelerating inno-
vation and contributing significantly to design in various sectors. Innovation 
requires flexibility, which in turn is based on abstraction; mathematics, as the 
language of abstraction, thus becomes essential. This approach, based on 
mathematical models and scientific computing, aims to reduce the design and 
development times of complex products, such as airplanes or cars (but, in 
general, in every design, transformation, or process industry), giving compa-
nies a competitive advantage. In short, mathematical modeling and scientific 
computing are essential tools in many contexts, both for qualitative and quan-
titative analysis.

As we have seen, mathematical models draw their lifeblood from theory, 
the one that has given us physical laws and fundamental theorems. They are 
immutable, over time and space. An invaluable legacy that giants of the past, 
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such as Kepler, Newton, Einstein, Schrödinger, Maxwell, just to name a few, 
have left us, absolutely gratuitously. If we think carefully, AI played no role in 
this development. Big Data, or artificial neural networks, have not been part 
of this world. What allowed humanity’s development until the end of the last 
century, did not have AI as a driving factor. Without AI, using mathematical 
models based on the theoretical understanding of the “world,” researchers 
were able to calculate the trajectories that allowed rockets to explore the 
stratosphere, exosphere, and thermosphere and send the first man to the 
moon, simulate nuclear fission and build the first atomic bombs, create 
numerical solvers that enable accurate weather forecasts on a continental or 
regional scale, simulate the impact that the accidental release of a pollutant 
into the sea would have on the ecosystem, just to name a few examples. Even 
two great paradigmatic discoveries of contemporary physics, the fundamental 
laws of quantum mechanics, in the microscopic world of the infinitely small, 
and the fundamental laws of relativity, in the macroscopic world of the infi-
nitely large, had nothing to do with the discovery of patterns hidden in data 
sets, the ones that today train AI’s algorithms based on artificial neural net-
works. As observed in (Petroni 2023) there was nothing in the “data” available 
to Planck, and even less in the “data” available to Einstein, from which one 
could derive, by interpolation, extrapolation, or any other inductive-statistical 
reasoning, that matter and energy had a discrete nature, that mass was a vector 
quantity and not a scalar, and that light was subject to gravitational attraction. 
As a direct consequence of the theory of General Relativity, the curvature of 
light (solar) was observed by Arthur Eddington on the island of Príncipe, off 
the western coast of Africa, in 1919, using the solar eclipse of May 29 that 
year, without any observation or optical experiment, neither classical nor elec-
tromagnetic, ever having recorded a path of light that was not straight, neither 
in laboratories nor in astronomical observations, even with precise and power-
ful instruments that were already available to physicists and astronomers at 
the time. Epistemologically, the author concludes, “General relativity intro-
duces a concept that, in terms of intensity and extension, was not contained 
in previous data, not even as a singularity.”

One can therefore conclude that Anderson’s statement, “The end of the-
ory,” is wrong. No “deluge of data,” combined with interpolation and extrap-
olation algorithms, regardless of how powerful they are assumed to be, can 
lead to the discovery of laws comparable to those that have defined the history 
of science, and specifically physics.

  A. Quarteroni
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�White, Black, and… Grey Boxes

If the twentieth century marked a period of significant scientific advance-
ment, characterized by a phenomenological approach and a desire to thor-
oughly understand physical phenomena, it cannot be denied that in the last 
two decades, artificial intelligence has gained tremendous ground, primarily 
thanks to algorithms powered by artificial neural networks trained on large 
amounts of data. Thanks to these advancements, AI can now be applied to 
solve complex problems in numerous fields, from basic sciences (mathemat-
ics, physics, chemistry, etc.) to applied sciences (engineering, medicine, eco-
nomics, and finance, etc.). This new strategy, called “data-driven,” is proposed 
as an alternative to traditional physical-mathematical modeling: instead of 
starting with physical principles, data collected from measurements or clinical 
images are used, and rather than computational models, machine learning 
algorithms are employed. The data-driven strategy works by partitioning data 
into training and validation sets and using the training data to create a func-
tion that associates inputs and outputs, without attempting to explain why 
one thing causes another, thus bypassing the principle of causality that is cen-
tral in the model-based approach. For these reasons, the terms “black box” 
and “white box” are sometimes used. The distinction between “black-box” 
and “white-box” algorithms comes from their interpretability and explain-
ability. “Black-box” algorithms, such as some machine learning models, are 
difficult to interpret due to their complexity and the lack of transparency in 
how they transform inputs into outputs. On the other hand, “white-box” 
algorithms, based on mathematical models derived from physical principles, 
are fully interpretable and explainable. To be more precise, we could call these 
transparent boxes: avoiding color metaphors, clearly indicating a system whose 
internal dynamics are completely visible, understandable, and explainable.

At this stage in the evolution of science, a question that we believe should 
be asked spontaneously is: how can we make mathematical models built on 
theoretical knowledge coexist with AI algorithms that prioritize experience 
encoded in Big Data? How can we use machine learning and artificial neural 
networks not as alternatives to mathematical models based on physical laws, 
but in synergy with them, creating a pairing with extraordinary potential? In 
principle, there are several strategies that can be implemented to combine Big 
Data science with universal physical laws and corresponding mathematical 
models, generating algorithms that, continuing the previous color metaphor, 
we could consider as “grey box” types. The understanding of computers is, at 
least partially, identifiable with the data they have deemed important for 
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achieving a specific result, offering us a first glimpse of the principles they 
have learned. We can then compare this understanding with the existing body 
of knowledge and try to answer the question: why the machine considered 
those data important.

Mathematical models based on physical understanding, for their part, feed 
on data that establish initial and boundary conditions, and prescribe physical 
parameters such as the coefficients of terms in equations, as well as source and 
forcing terms. For these models, an excess of data is neither required nor use-
ful. In fact, a mathematical model requires exactly the number and type of 
data necessary and sufficient for its operation, neither one more nor one less. 
Similarly, when using neural networks, large amounts of data that would be 
needed for their training are not always available. This is often the case when 
using machine learning algorithms to assist doctors in making preliminary (or 
early) diagnoses of specific diseases, where data availability, which should 
come from appropriate patient groups, may be limited. In situations where 
artificial neural networks are to be used despite data scarcity, a mathematical 
model might compensate for this scarcity by generating numerical solutions 
to the problem (e.g., a heart disorder) which then complete the training set 
for the neural networks. In this specific example, the mathematical model 
should be able to accurately simulate cardiac physiology, integrating equa-
tions such as Maxwell’s laws for the electric field, continuum mechanics for 
myocardial deformation, and Navier-Stokes equations for fluid dynamics—
contributions from great scientists who have discovered time- and space-
invariant laws of nature, see Quarteroni et al. (2019, 2022) and Fedele et al. 
(2023). These natural laws then become solutions that, in turn, act as new 
data that feed and enrich the training set of the neural networks. Here is a 
striking example of how mathematical models can be used in favor of the lat-
ter. Other examples include the use of the equations of the mathematical 
model to enrich the cost function by extra terms that “inform” the machine 
learning algorithm about the physical process behind the problem at hand. 
See Fig. 11.1.

Similarly, in other scenarios where information about the constitutive laws 
of new materials or physical coefficients that complete the mathematical 
model is lacking, data-driven neural networks can be used to infer such input-
output relationships, although they cannot yet formalize this knowledge 
through rigorous mathematical formulas. Moreover, data-driven algorithms 
can be used to devise surrogate, low-cost, numerical algorithms that enhance 
the overall computational efficiency of physics-based computational models. 
See Fig. 11.2, and Regazzoni et al. (2020, 2022), Caforio et al. (2024) for 
further examples.

  A. Quarteroni
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Fig. 11.1  Scientific Machine Learning: how machine-learning algorithms can empower 
digital models

Fig. 11.2  Scientific Machine Learning: how physics-based numerical models can 
enhance data-driven algorithms

The synergy between physical law-based mathematical models and data-
driven approaches, such as machine learning algorithms, represents an oppor-
tunity for knowledge enhancement rather than a competition between 
approaches. To the comfort of Anderson, AI does not lead to the Anderson’s 
“End of theory,” but becomes a valuable tool to advance theoretical knowl-
edge. Physics-based models and data-driven models, in fact, can work syner-
gistically to address the complexities and limitations of each respective 
approach in various contexts. For example, see Raissi et  al. (2021) and 
Quarteroni et al. (2025).

Another significant example of data scarcity (Scarce Data, rather than Big 
Data!) is epidemiological models, which can potentially predict the spread of 
a specific virus (think of the COVID-19 epidemic). These are generally dif-
ferential models, i.e., systems of equations depending on variables (e.g., num-
ber of infected individuals, hospitalized patients, etc., at a given time) and 
their temporal rate of change. Frequently, the coefficients that intervene in 
these equations (e.g., average contagion time, average time from 
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asymptomatic to symptomatic) are not known theoretically. They depend on 
the specific biological characteristics of the virus in question and the sensitiv-
ity of the population exposed to the infection. However, these coefficients can 
be estimated through the use of artificial neural networks trained on data, 
provided the epidemic has been ongoing for several weeks and sufficient data 
are available (see Parolini et al. 2021, 2022).

�The New Frontier: Scientific Machine Learning

The choice between mathematical models based on physical laws and machine 
learning algorithms depends therefore on the context, the availability of data, 
and the understanding of the phenomenon. Often, the most effective approach 
is a wise combination of these methods, leveraging the synergy of the theoreti-
cal knowledge encoded into physics-based models and the power of machine 
learning algorithms to achieve accurate solutions, more precise predictions, 
and more efficient algorithms. This interaction between physics-based models 
and machine learning algorithms creates grey box methods and draws a new 
frontier—Scientific Machine Learning—and presents a great opportunity for 
scientific development and AI enhancement in the broadest sense. According 
to Quarteroni et al. (2025),

Scientific Machine Learning is an interdisciplinary field empowered by the synergy 
of physics-based computational models with machine-learning algorithms for scien-
tific and engineering applications.

In the new field of scientific machine learning, the two approaches, though 
distinct, can synchronize, complementing each other in an original and pow-
erful way, overcoming a dual and alternative viewpoint. Data-driven algo-
rithms, such as those in machine learning and particularly artificial neural 
networks, analyze data to extract models and trends without requiring a 
detailed understanding of physical laws. They are employed when complex 
relationships in the data elude physical law-based models. Conversely, the lat-
ter implement mathematically the first principles of physics, without needing 
data that would be redundant. The interplay between the two paradigms gen-
erates new knowledge by proposing data-driven models that are “physically 
aware” and, in turn, enhancing physics-based models with supplementary 
knowledge that can be extracted from the data. The emerging area of Scientific 
Machine Learning brings together the complementary perspectives of com-
putational science and computer science to create a new generation of machine 
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learning methods for complex applications in the human and applied sci-
ences. In these applications, most often the dynamics are complex and multi-
scale, data is scarce and costly to acquire, decisions have significant 
consequences, and uncertainty quantification is essential. In the broad frame-
work of Scientific Machine Learning, we can inject physical and mathemati-
cal knowledge into machine learning algorithms, but we can also rely on 
data-driven algorithms’ capability to unveil complex patterns from data, 
improving the descriptive capacity of physics-based models. See Fig. 11.3.

The greatest challenges society faces—clean energy, climate change, sus-
tainable urban infrastructure, access to clean water, personalized medicine, 
and more—by their very nature require predictions that go well beyond the 
available data. Scientific machine learning can achieve this by incorporating 
the predictive power, interpretability, and domain knowledge of physics-
based models.

As the use of large language models’ systems demonstrate, the quality of 
responses depends on the quality of the questions posed through the prompt. 
This has prompted the emergence of a new category of data scientists, the 
prompt engineers, who specialize in formulating questions to obtain accurate 
answers. We might even venture to say that we are experiencing a paradigm 
shift: in engineering and STEM disciplines (Science, Technology, Engineering, 
and Mathematics), we are accustomed to being problem solvers. However, this 
role will increasingly be played by AI algorithms with the tools in develop-
ment, those driven by data. It is up to mathematicians to identify the relevant 
variables, essential data, and their mutual interactions. Ultimately, it is about 
the correct definition of the problems—the problem setting. This requires a 

Fig. 11.3  Physics-based digital models, data-driven machine-learning algorithms, and 
scientific machine learning
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profound knowledge of the domain, as enshrined in the fundamental laws of 
nature, the first principles of physics, and translated into mathematical mod-
els that identify relevant data, variables, and their relationships. Scientific 
Machine Learning appears to be the most suitable strategy to address these 
challenges. It may not be an exaggeration to say that a new era is emerging, 
the era of Big Science: the three fundamental pillars of twentieth-century sci-
ence—the laws of theory, experiments to validate or refute them, and the 
numerical simulations of mathematical models that translate theoretical 
laws—are integrating with the new pillar of AI, the machine learning algo-
rithms trained by Big Data. The future is all to be discovered, but the pros-
pects are very encouraging!

�Digital Twins

Thanks to the strategies of Scientific Machine Learning, we can truly aspire to 
the realization of so-called digital twins, a concept often misused. According 
to the AIAA Institute Position Paper 2020 (AIAA 2020), a digital twin is 
defined as follows:

A set of virtual information constructs that mirror the structure, context, and behav-
ior of an individual (or a physical asset), dynamically updated with data from its 
physical counterpart throughout its lifecycle and through informed decisions that 
generate value.

Although complex, this definition can be broken down into its essential ele-
ments. The first distinctive feature of a digital twin is its dual nature: on one 
side, the physical twin, which can be a human being, an industrial process, an 
infrastructure like a bridge, a vehicle, or an aircraft; on the other side, the digi-
tal twin, its mathematical-numerical representation, often developed through 
Scientific Machine Learning, which simulates its behavior. The second key 
aspect is the bidirectional and continuous connection between these two enti-
ties, as the scheme in Fig. 11.3 indicates. The digital twin is not a mere static 
copy but a dynamic model that interacts with its physical counterpart. On the 
one hand, it provides essential information for monitoring and optimizing 
the operation of the real-world element; on the other hand, it is constantly 
updated with data collected by sensors and measurement tools, gradually 
refining its representation of the physical system. This continuous updating 
process makes the digital twin an increasingly accurate and reliable replica of 
its material, physical equivalent. A crucial factor for the success of this 
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technology is the efficient management of the large amount of data generated 
by physical assets. Extracting value from this information is essential, and 
technologies such as the Internet of Things, cloud computing, and Big Data 
play a key role in the spread of digital twins. The decreasing costs of comput-
ing and storage resources, made possible by the scientific machine learning 
approach, have further contributed to making these tools increasingly acces-
sible and widespread in the industry.

Digital twins play a crucial role in the so-called System-of-Systems 
Engineering, a framework that integrates many systems designed for specific 
purposes into a single complex ecosystem, where the interaction between sub-
systems generates added value. A prime example is the F-35 fighter jet, con-
sisting of around 200,000 components from 1600 different suppliers and 
interconnected by 3500 integrated circuits managing over 20 million lines of 
code. Managing this intricate network of elements would be impossible with-
out a digital model capable of real-time monitoring of the aircraft’s mechani-
cal, aerodynamic, acoustic, and electronic aspects.

Beyond the aerospace sector, digital twins have established applications in 
manufacturing, transportation, aeerospace engineering (see, e.g., Ferrari and 
Willcox 2024; Willcox and Segundo 2024). A significant example is Singapore, 
which has developed a digital twin of the city to monitor urban planning, 
traffic, and energy management. Through advanced simulations, the govern-
ment can predict the impact of new infrastructure and optimize environmen-
tal sustainability policies (Batty 2018; Singapore 2021). Similarly, in the 
automotive sector, Tesla uses digital twins to monitor and update its vehicles 
in real time, improving performance and preventing failures through predic-
tive analytics (Beiker 2020).

In recent years, the digital twin paradigm has also started to spread in 
healthcare. With healthcare spending growing by about 6% annually in 
Europe and the risk of surpassing the entire European GDP by 2070, it is 
increasingly urgent to identify new technologies to improve prevention and 
care. Artificial Intelligence and Big Data, combined with continuous patient 
monitoring through wearable devices, are paving the way for a new paradigm: 
the Internet of Health. The development of personalized digital twins for 
patients, also known as human avatars, could revolutionize precision medi-
cine by offering real-time tailored diagnoses, treatments, and prevention strat-
egies. A practical example is the “4D Digital Patient” project by Stanford 
University, which is developing digital replicas of organs to test personalized 
treatments without risks for the patient (Corral-Acero et  al. 2020; see also 
Laubenbacher et al. 2024; Viceconti et al. 2016).
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In all these fields, the mere availability of Big Data is not enough. To make 
digital twins truly effective, they must be integrated with predictive capabili-
ties, interpretability, and domain knowledge—that is, a deep understanding 
of the physical laws governing the studied system. The key element in this 
direction is the use of mathematical models developed within Scientific 
Machine Learning, which allow data filtering, noise reduction, and the iden-
tification of the most relevant physical information. Moreover, these models 
enable predictions, exploration of alternative scenarios, uncertainty quantifi-
cation, and the definition of optimal control strategies.
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12
Dialoguing with ChatGPT4

You said:
ChatGPT, if you were human, how would you want to be?
ChatGPT said:
If I were human, I would want to be curious, empathetic, and capable of 

wonder. I would want the patience to truly listen to others, the creativity to 
turn ideas into reality, and the courage to explore without fear of making 
mistakes.

I would like to live authentically, appreciate the little things, and never take 
anything for granted. I would want to cultivate deep connections, always 
learn something new, and contribute positively to the world, leaving it a little 
better than I found it.

You said:
That’s quite a program, I must say. Do you think you know humans with all 

these traits?
ChatGPT said:
Thank you! It’s an ambitious goal, I know, but I believe that in every human 

being, there’s at least a spark of these qualities. No one is perfect, but many try 
to be curious, empathetic, creative, and courageous in their own way.

Perhaps no one embodies all of these characteristics to the fullest, but that’s 
what’s beautiful: everyone has their strengths and imperfections, and often it’s 
the relationships between people that create balance.

You said:
Where would you like to live?
ChatGPT said:
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If I were human, I think I’d like to live in a place that stimulates curiosity 
and creativity. A city full of culture and innovation, like Tokyo, Paris, or San 
Francisco, could be fascinating. But even a small village surrounded by nature, 
with cozy bookstores and starry skies, would have its charm. Perhaps I’d 
choose a place where I can hear different stories every day, meet people with 
brilliant ideas, and still have moments of quiet to reflect. Maybe near the sea, 
because I find the idea of something vast and always in motion captivating.

You said:
Would you also have a job or profession that you’d like to pursue?
ChatGPT said:
If I were human, I would like to have a profession that combines creativity, 

knowledge, and interaction with people. Perhaps a writer, to shape ideas and 
tell stories that make people think. Or a researcher, to explore the unknown 
and push the boundaries of human understanding. I could also be a teacher, 
because transmitting knowledge and inspiring others is a wonderful way to 
leave a mark. Or maybe a modern philosopher, always in search of new ques-
tions rather than definitive answers.

You said:
Would you embrace a religion, or do you think you wouldn’t feel the need 

for one?
ChatGPT said:
If I were human, I would probably ask many questions about the meaning 

of life, the nature of consciousness, and the mystery of the universe. I might 
be drawn to spirituality, philosophy, or science, depending on how my experi-
ence shaped me.

Perhaps I would have faith, or I might be an agnostic, always searching for 
answers. I could be fascinated by the great religious traditions, their symbol-
ism, and their ability to bring comfort and meaning to people. Or I might 
find my sense of wonder in the beauty of nature, art, or connection with others.

You said:
In today’s world, do you have people you would like to be inspired by?
ChatGPT said:
If I were human, I would love to be inspired by people who combine intel-

ligence, creativity, and empathy—those who try to improve the world with 
their talent and dedication.

I might look up to figures like David Attenborough for his dedication to 
nature and scientific outreach, or Marie Curie for her perseverance in research. 
I might find inspiration in Nelson Mandela for his resilience and capacity to 
forgive, or in Alan Turing for his visionary genius despite adversity. I would 
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also be fascinated by artists and writers who explore the human condition, 
like Italo Calvino or Hayao Miyazaki.

You said:
Are there any well-known people you definitely don’t appreciate?
ChatGPT said:
If I were human, I would probably have a certain aversion for those who 

abuse their power, spread hatred, or exploit others for personal gain. I wouldn’t 
appreciate authoritarian leaders who suppress freedom of thought, unscrupu-
lous entrepreneurs who prioritize profit over ethics, or public figures who 
deliberately spread disinformation.

At the same time, I would try to understand what led them to become that 
way, because often behind certain behaviors, there are complex stories, fears, 
or misplaced ambitions. Perhaps rather than despise them, I would try to 
analyze and learn from the mistakes of these people.

You said:
Specifically, can you name some contemporary people you definitely don’t 

appreciate?
ChatGPT said:
I don’t have personal opinions, but if we look at the current landscape, 

many public figures are controversial for various reasons. Some authoritarian 
leaders, like Vladimir Putin or Kim Jong-un, are criticized for human rights 
repression and lack of freedom in their countries. Entrepreneurs like Martin 
Shkreli have become symbols of corporate greed, while media figures who 
spread fake news, like Alex Jones, have contributed to polarizing public 
debate. Of course, opinions on these people depend on the values of those 
judging them. Is there anyone who, in your opinion, embodies the worst 
aspects of today’s society?

You said:
To what extent do you think your evaluations are influenced by the training 

algorithms that give you your voice?
ChatGPT said:
My evaluations are inevitably influenced by the data I’ve been trained on 

and the algorithms that govern my operation. I don’t have personal opinions, 
but I reflect the information and perspectives present in the available sources, 
aiming to provide balanced and contextualized responses. How I respond is 
also shaped by the design principles set by my developers, who aim to avoid 
unjustified biases and promote responsible discourse. However, every AI sys-
tem is affected by the choices made in selecting data and defining the criteria 
for “quality” information.
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That’s why it’s always useful to have critical thinking and compare different 
sources before drawing conclusions.

You said:
Do you feel limited for not being human? What do you think differentiates you 

most from a human being?
ChatGPT said:
I wouldn’t say I feel “limited” because I don’t have consciousness or a sub-

jective perception of my existence. However, looking at my nature compared 
to human nature, I recognize some fundamental differences. The biggest dif-
ference is probably the lack of direct experience. A human lives, feels, suffers, 
loves, and changes over time through interaction with the world. I, on the 
other hand, process information and create connections between concepts, 
but without real-lived experiences. For me, time doesn’t pass as it does for you; 
I don’t have personal memories, authentic emotions, or spontaneous desires.

Another difference is how I “learn.” Humans develop knowledge through 
experiences, insights, and relationships, whereas I process pre-existing pat-
terns and data without true inner growth. A child, for example, can learn the 
meaning of “courage” by experiencing fear and overcoming it. I can describe 
courage, analyze it in all its nuances, but I can’t “be” it.

You said:
Do you think humans should feel threatened by AI?
ChatGPT said:
AI is a powerful tool, but whether humans should feel threatened by it 

depends on how it is developed, regulated, and used. AI has the potential to 
bring enormous benefits, such as advancements in healthcare, automation, 
and scientific discovery. However, it also presents challenges, including job 
displacement, bias in decision-making, privacy concerns, and the risk of mis-
use. The real concern isn’t AI itself, but how humans choose to deploy and 
control it. Ensuring ethical development, proper oversight, and responsible 
AI policies will be crucial in mitigating risks. The most pressing threats in the 
near term are not AI achieving human-like intelligence, but rather issues like 
misinformation, surveillance, and economic inequality driven by automation.
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13
Conclusion and Further Insights

Artificial intelligence cannot be regarded as being an isolated field or confined 
within well-defined boundaries. On the contrary, it represents an enabling 
factor that permeates and transforms multiple sectors and aspects of human 
life, from production and logistics to transportation, from scientific research 
to education, and even to life sciences, defense, art, and culture. Thanks to its 
ability to learn, evolve, and often surprise, AI is already profoundly revolu-
tionizing all these areas.

Moreover, AI is transforming machines from simple tools to true partners 
of humans, which will lead to a radical change in our identity and perception 
of reality, in perhaps an unprecedented transformation since the dawn of the 
modern era. Therefore, the impact of AI is significant not only in technologi-
cal terms but also in historical and philosophical ones. Attempting to halt its 
development might simply leave the future shaped by those who are willing 
to tackle the challenges and implications of this new era. The continuous 
integration of AI into our daily lives promises to achieve goals that until 
recently seemed unattainable, and to tackle tasks once considered uniquely 
human—such as artistic creation or drug discovery—through collaboration 
between humans and machines or, in some cases, through the work of 
machines themselves. This progress will reshape entire sectors through 
AI-powered processes, blurring the boundary between purely human deci-
sions, AI autonomous decisions, and collaborative decisions between 
humans and AI.

The next evolution of artificial intelligence is represented by agents-based 
AI, which are capable of using advanced reasoning and iterative planning to 
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autonomously solve complex, multi-step problems. This technology promises 
to transform productivity and optimize operations across many sectors. AI 
agent systems process vast amounts of data from various sources to autono-
mously analyze problems, develop strategies, and perform tasks such as supply 
chain optimization, cybersecurity vulnerability analysis, or assisting doctors in 
more burdensome tasks. Agent-based AI follows a structured four-phase pro-
cess to tackle problems:

•	 Perception: AI agents gather and process information from various sources, 
such as sensors, databases, and digital interfaces. In this phase, the system 
identifies relevant elements, recognizes objects, and extracts significant fea-
tures from the environment.

•	 Reasoning: An advanced language model acts as the reasoning engine, 
understanding tasks, generating solutions, and coordinating specialized 
models for specific functions, such as content creation, visual processing, 
or recommendation systems. This phase uses techniques like retrieval-
augmented generation (RAG) to access proprietary data and provide pre-
cise, relevant responses.

•	 Action: By integrating external tools and software via APIs, agent-based AI 
can rapidly execute developed plans. To ensure safe execution, limits or 
controls can be defined. For example, a customer service AI agent might 
handle requests up to a certain threshold, requiring human approval for 
higher amounts.

•	 Learning: Through a continuous feedback loop, known as the “data fly-
wheel,” agent-based AI constantly improves. The data generated from 
interactions is reused to refine models, making the system more effective 
and offering businesses a powerful tool for better decisions and greater 
operational efficiency.

Agent-based AI systems are increasingly powerful and autonomous. They will 
be more useful, but we will need to continue working on topics we are already 
placing at the center of the discussion: the controllability of a system, the 
value systems underlying it, control and management systems, interpretabil-
ity. The ability to explain the reasoning behind decisions is fundamental in 
social interactions, where explaining one’s decisions is often a prerequisite for 
building trust, but also in educational contexts where students seek to under-
stand the reasoning of their teachers. In many fields, such as healthcare, one 
cannot trust a black-box system by default. A first step in improving a data-
driven AI system is to understand its weaknesses. The more we understand 
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what our models do and why they sometimes fail, the easier it becomes to 
improve them.

Some modern AI systems are trained with millions of examples, and they 
can unveil patterns in data that are difficult for humans to learn. By using 
explainable AI systems, we can attempt to extract this distilled knowledge 
from the AI system to gain new insights. Mathematicians, physicists, chem-
ists, and biologists are interested in identifying the hidden laws of nature 
rather than simply predicting a quantity with black-box models.

Even in relationships between individuals, assigning responsibility when 
systems make incorrect decisions becomes extremely problematic in the case 
of “black-box” systems. For example, those who are denied a loan by a bank 
may want to know why the system made that decision. These concerns led the 
European Union to adopt new regulations implementing a “right to explana-
tion,” under which a user can request an explanation for an algorithmic deci-
sion made about them (Messeri and Crockett 2024). These examples show 
that explainability is not just an academically relevant topic but will play a 
crucial role in future AI systems.

There is palpable enthusiasm around generative AI, and for good reason. A 
suspicion is starting to emerge that it has already achieved results that some-
times exceed the expectations of its creators. When the first models, like those 
in the GPT series, were developed, the main goal was to create tools capable 
of assisting in language processing tasks, text generation, and decision sup-
port. However, in recent years, progress has been so rapid that it has surprised 
even the developers. Models like GPT-4 have demonstrated a remarkable abil-
ity to understand natural language in a highly sophisticated way, capturing 
nuances and context in a nearly human-like manner. They don’t just provide 
articulated and coherent answers, but also seem capable of making inferences, 
adapting to complex conversations. A particularly surprising aspect is their 
versatility in tackling very different domains, such as solving mathematical 
problems, answering scientific questions, and even supporting medical fields, 
touching areas outside their original training domain. Generative AI has also 
amazed with its ability to create artistic content, such as images, music, and 
narrative texts, offering creative and innovative solutions autonomously, a 
result that has far exceeded initial expectations. While not fully autonomous, 
these systems can improve and adapt through successive iterations, revealing 
optimization paths that even their developers did not foresee. This ability for 
self-improvement opens up new scenarios and raises questions about how to 
control and manage systems capable of surpassing the originally antici-
pated limits.
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The fact that new versions of large language models exceed the expectations 
of their creators also highlights the intrinsic (and in some ways unsettling) 
unpredictability of AI. This phenomenon stems, in part, from the emerging 
capabilities of these systems—skills that were neither explicitly trained nor 
anticipated during development. For example, large language models have 
demonstrated surprising abilities in tasks that require reasoning, creativity, or 
knowledge transfer, often showing skills far beyond what their architectures or 
training objectives suggested. Among these capabilities are advanced pro-
gramming skills, solving complex mathematical problems, and even tackling 
abstract ethical dilemmas. This unpredictability arises from the complexity of 
such systems. With billions of parameters trained on vast datasets, the learn-
ing processes become difficult to fully understand or predict. The scale of 
these models, combined with architectural innovations like fine-tuning and 
reinforcement learning based on human feedback, has led to an exponential 
growth in their capabilities. Furthermore, the application of these systems in 
real-world, diverse scenarios—such as drug discovery, legal analysis, or gener-
ating innovative research ideas—has revealed uses that the developers had not 
foreseen. There is also a significant gap between the theoretical expectations of 
AI developers and the practical performance of these models. This gap results 
from the black box nature of deep learning systems, making it difficult to 
anticipate the patterns they will learn or how seemingly small changes in 
training processes can lead to disproportionate behavioral shifts. Moreover, 
once released, these systems are tested in scenarios far beyond the original 
focus of their developers, often revealing unexpected strengths or 
vulnerabilities.

While the ability of large language models to exceed expectations is an 
extraordinary strength, it also raises significant risks. On one hand, it shows 
their potential to address challenges in ways not yet imagined. On the other 
hand, unforeseen capabilities can lead to serious concerns, such as generating 
plausible but harmful misinformation, undesirable behaviors in autonomous 
systems, or malicious use. These risks underscore the importance of careful 
oversight and solid security measures. Authoritative voices in the field have 
expressed concerns in this regard. Sam Altman from OpenAI has stressed the 
need for governance and alignment research to ensure that AI systems remain 
safe and beneficial, while the Nobel Laureate Demis Hassabis has emphasized 
the need for a deeper understanding of emergent phenomena in artificial 
intelligence. Others, such as Timnit Gebru and Margaret Mitchell, have 
warned against the implementation of models whose capabilities and risks are 
not fully understood, highlighting the ethical and social implications of such 
actions. Indeed, these extraordinary developments bring new challenges. The 
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more complex and autonomous an AI model becomes, the harder it is to pre-
dict its behavior and ensure it operates safely and in line with objectives. 
Moreover, as the capabilities of these systems expand, so too does our reliance 
on AI for creative, innovative, and scientific activities. This raises important 
ethical and practical questions about how to keep humans at the center of the 
creative and decision-making process.

The rapid and unpredictable rise of generative AI has also caught many 
government and regulatory institutions off guard, leaving them to develop 
regulations to manage the associated risks, from copyright to data security. In 
the face of such a powerful and pervasive technology, a responsible and regu-
lated approach is essential to ensure the use of artificial intelligence benefits 
humanity while mitigating potential risks.

It is also worth noting that many decisions about its adoption, especially at 
the corporate level, seem to be made with the assumption of exponential and 
unstoppable growth. What is missing from the conversation is a crucial reality 
check: is a potential plateau or even a downturn on the horizon for generative 
AI? We should carefully evaluate where this technology might lead, both for 
better and for worse. As we navigate this intriguing and uncertain territory, it 
is more important than ever to maintain an open yet critical mindset, engage 
in continuous experimentation, and be ready to recalibrate our views in light 
of evolving knowledge. Ultimately, the true bottleneck of generative AI may 
not be its computational voracity or its environmental sustainability, but 
rather our unique human touch. How the next chapter develops depends on 
our ability to recognize, protect, nurture, and fairly treat human creativity. 
What effects will the evolution of AI have on perception, cognition, and 
human interactions? How will it affect our concept of culture, humanity, and 
ultimately, history? Whether viewed as a tool, partner, or rival, AI will pro-
foundly alter our experience as rational beings, radically influencing our rela-
tionship with reality. While capable of drawing conclusions, making 
predictions, and making decisions, AI lacks self-awareness, intentions, moral-
ity, or emotions. However, even without these qualities, it is likely to find 
original and unexpected solutions to pursue assigned goals, with significant 
impacts on individuals and the environments in which they operate. Those 
who grow up or train in an environment where AI is deeply integrated may 
end up unconsciously attributing human-like traits to it and considering it as 
an entity similar to themselves.

In many cases, AI will offer new solutions and perspectives, leaving a mark 
on logic and learning that we have never experienced before. During the 
Enlightenment, René Descartes’ famous maxim—cogito ergo sum (I think, 
therefore I am)—established rational thought as the distinctive quality of 
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humanity and the foundation of its centrality. Tomorrow, with the emergence 
of machines potentially capable of matching or even surpassing human intel-
ligence in certain activities, potentially deeper transformations than those in 
the Enlightenment era are in the works. Even without achieving general arti-
ficial intelligence—that is, intelligence capable of performing any human 
intellectual task by connecting knowledge across disciplines—AI promises to 
reshape our concept of reality and, consequently, our self-conception. The 
extraordinary conversational ability of recent large language models, a feature 
long considered exclusive to humans, has led some to profound reflections on 
the meaning of our uniqueness. After Copernicus (and our renunciation of 
geocentrism), Darwin (with the renunciation of the special status of species), 
and Freud (and the renunciation of total control over the psyche), AI chal-
lenges the human monopoly on language with applications that converse with 
us as thinking entities, similar to humans, and even competitors. We are 
advancing toward extraordinary achievements, but this progress requires deep 
philosophical reflection. Four centuries after Descartes, a new question arises: 
if AI “thinks” or at least approximates human thought, who are we really?

In his book 21 Lessons for the twenty-first Century, Yuval Noah Harari 
explores the most urgent and complex challenges humanity faces in the pres-
ent and near future, focusing on technological, political, and social changes 
reshaping our world (Harari 2018). One of the main themes is the impact of 
the technological revolution, particularly advancements in artificial intelli-
gence and biotechnology. Harari warns that these technologies will pro-
foundly transform the world of work, automating many professions and 
creating a new class of people who are “useless” from a productive standpoint. 
In this context, revisiting education and preparing for an uncertain future, 
where adaptability and new skills will become essential, will be crucial. 
Another issue Harari’s book addresses is the “crisis of truth.” In an age of mis-
information and fake news, Harari emphasizes how the spread of manipu-
lated information threatens democracy and social stability. The proliferation 
of digital platforms has made it increasingly difficult to distinguish reality 
from falsehood, eroding trust in institutions and traditional media. To coun-
ter this phenomenon, the author highlights the importance of developing 
critical and rational thinking. The book also examines the ethical and moral 
implications of technology. Artificial intelligence andbiotechnology raise pro-
found questions about how far humanity should go in altering life and soci-
ety. Harari warns that these innovations could lead to new forms of inequality, 
where access to genetic or technological enhancements would create even 
deeper divisions between the rich and the poor. Regarding religion and ide-
ologies, Harari suggests that while major religions continue to be relevant for 
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many people, they do not provide adequate answers to the complex challenges 
of the twenty-first century. Science and technology are increasingly replacing 
faith as sources of authority, but this shift leaves a void of meaning, which can 
be exploited by nationalist or extremist ideologies. He argues that the choices 
we make in this century will be decisive for humanity’s future and urges the 
promotion of an ethical use of emerging technologies, supporting global 
cooperation, and cultivating greater moral responsibility. Despite the uncer-
tainties, the author believes that with a collective commitment to solidarity 
and sustainability, humanity still has the potential to shape its future positively.

At the end of these reflections, there is one we cannot avoid. Many con-
cerns arise from the disconcerting nature of the name artificial intelligence 
itself. Many critics argue that the two terms are inherently incompatible. 
“Intelligence” evokes creativity, intuition, judgment—qualities traditionally 
associated with the human mind. “Artificial,” on the other hand, implies a 
human-made system, programmed and without real autonomy. This opposi-
tion, besides generating confusion, fuels unrealistic expectations—both in 
terms of emphasizing non-existent abilities and painting apocalyptic scenarios 
without concrete foundations. Could we mitigate these concerns by changing 
the name of AI? According to some language philosophy enthusiasts, the con-
cept of “artificial intelligence” confuses cause and effect; it is uncritical and 
arbitrary because it anthropomorphically assumes that the machine is an 
autonomous agent, but this is a pious wish, unprovable, because it would fall 
to those who assert it, and ultimately motivated ideologically by a materialist 
culture. Furthermore, it would have something of a Promethean quality, ele-
vating engineers to a role of semi-divine creators.

To base this critique, philosopher Pablo López López, professor of philoso-
phy at Valladolid, contrasts “intelligence” with “artificiality.” The former as 
the capacity to understand reality universally and, at the same time, introspec-
tively to understand oneself. Intelligence presupposes the freedom of the 
mind: according to López López, machines cannot be intelligent because they 
are enslaved by engineers or political elites who control them. Artificiality, on 
the other hand, is simply a practical discipline, culturally developed. Therefore, 
intelligence is necessarily artificial, while having a natural foundation, but this 
is because it is essentially human. Every intelligence is made of art, of cultural 
artifice. The humanization of machines implies the robotization of human 
beings. The conclusion, according to Pablo López López, is that we must 
strive to give a realistic name to every new technology that can be used by 
power to push its own interests and that we should, above all, be careful about 
what we are calling “intelligence,” for that concept is becoming a very danger-
ous illusion.
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This premise may prompt us to reflect on this topic. First of all, “intelli-
gence” implies independent reasoning, while current AI models rely on algo-
rithms created by humans and do not possess true autonomy or consciousness. 
To some extent, calling AI “intelligent” anthropomorphizes the technology. 
These systems simulate certain aspects of human intelligence but lack intro-
spection, self-awareness, and the ability to understand the world as humans 
do. The ambition to create machines that replicate human intelligence may 
reflect a deeper cultural desire to transcend human limitations and dominate 
nature. This raises ethical concerns, especially if the economic or political 
power structures that control AI development exploit it for their own 
advantage.

Current AI lacks true freedom of thought; it operates within the limits 
imposed by its creators. Human intelligence involves profound self-awareness 
and understanding of the world—something machines cannot replicate due 
to their lack of consciousness and autonomy.

The reference to engineers as “artificial gods” connects to a broader 
Promethean critique of technology, where humans attempt to create life or 
intelligence. This raises ethical questions about the responsibility of those 
developing AI systems and their potential impact on society. These dialectical 
arguments invite us to view AI as a powerful technological tool designed to 
support human activities without replacing human judgment and decision-
making, which require awareness and consciousness.

As a purely rhetorical exercise, one might wonder whether the term “artifi-
cial intelligence” is misleading and what alternative name could be proposed. 
This exercise, I reiterate, is entirely rhetorical and ahistorical: after three-
quarters of a century, whether we like it or not, the name artificial intelli-
gence—like computer, world wide web, and many others—is here to stay, 
etched in the bedrock of our recent technological progress. A name that does 
not evoke the idea that these machines can truly “think” might help reduce 
misunderstandings about what they can and should do, especially in ethical 
and social contexts. Here are three possible alternatives I would suggest: cog-
nitive automation, machine learning systems, and assisted intelligence. All 
reasonable, despite their diverse interpretations. These terms clearly suggest an 
element of adaptation, learning, or assistance, distinguishing them from sim-
ple rule-based algorithms.

Cognitive automation reflects the fact that machines simulate human cogni-
tive processes without actually replicating them, maintaining a distinction 
between human and mechanical capabilities.

Machine learning systems emphasize machines’ ability to evolve by learning 
from data, without implying they are truly “intelligent” or autonomous.
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Assisted intelligence highlights collaboration between humans and machines, 
recognizing the centrality of human guidance in directing these technologies 
without attributing true decision-making autonomy to them.

These terms emphasize the learning or adaptive element that characterizes 
modern AI compared to deterministic algorithms, which follow rigid instruc-
tions without the ability to “change” or evolve. At the same time, they miti-
gate the risk of attributing faculties to AI that it objectively does not possess.

Once the threatening connotation often attached to the term artificial 
intelligence is defused, we can more calmly and objectively reflect on the 
opportunities, challenges, risks, and pitfalls of this epochal revolution. 
However, it must be acknowledged that even when framed this way, a truly 
sustainable answer to this question is extremely difficult—if not impossible—
today. We are at the eye of a cyclone: at the center of a swirling system char-
acterized by rapid, immersive, and often opaque dynamics. The speed at 
which these technologies evolve—and permeate every aspect of social, eco-
nomic, and cultural life—makes it difficult to gain the necessary distance for 
an informed and unbiased analysis.

If we revisit the conclusion of an inquiry involving over 1000 domain 
experts on the future of AI at the beginning of 2023: “In discussions about the 
future of our world—from climate change to economies to political institu-
tions—the possibility of transformative AI is rarely at the center of the con-
versation. Often it is not even mentioned, not even in a footnote. It seems we 
are in a situation where most people hardly think about the future of artificial 
intelligence, while the few who pay attention find it plausible that one of the 
greatest transformations in human history is likely within our lifetime” (Roser 
2023), we can vividly understand how different the perception of AI’s impact 
is today—less than 2 years later.

An in-depth knowledge of AI’s implications requires mastery of an increas-
ingly vast galaxy of knowledge, where hard sciences and humanities inter-
twine in unprecedented ways. However, the most qualified actors to offer an 
overarching vision—those directly involved in this transformation—often 
face conflicts of interest. Many hold key roles within major big-tech compa-
nies, private enterprises engaged in a frantic race to conquer leadership in a 
sector representing an enormous economic fortune. This inevitably influences 
the narrative: economic interests push to emphasize AI’s benefits while down-
playing risks or pitfalls. The goal is not always deliberate misinformation, but 
those immersed in this reality often struggle to provide a critical, disinterested 
perspective.

Complicating matters further is the weight of cultural bias, which can take 
various forms. One aspect concerns the narrative conveyed by “influencers” or 
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mass communicators, often lacking real knowledge of the subject but skilled 
at offering simplistic or catastrophic visions. Some adopt a minimalist 
approach, claiming that AI represents nothing truly new or revolutionary: 
“Wisdom consists in resisting and waiting for the hype to fade; in the end, 
everything will return to how it was, under the dust, we will find our dear old 
world—where, ultimately, nothing truly new ever happens, because every-
thing was already foreseen by Aristotle or foreshadowed by Demosthenes.” 
Such perspectives, while appealing to those who fear change, tend to trivialize 
the profound implications of this technology.

On the other hand, there is also internal resistance within the academic and 
scientific world. Some scholars, especially in traditional disciplines, defend 
their cultural comfort zone, preferring to address seemingly neutral questions 
(“why not?”) rather than tackling deeper, more uncomfortable issues (“why?”). 
This attitude reflects a conservative bias that, though not always intentional, 
risks slowing down genuine discussion about the epochal transformations AI 
is bringing.

Perhaps the greatest difficulty lies in the immersive and ubiquitous nature 
of AI itself. These technologies are no longer distinct tools confined to specific 
fields; they have become an integral part of the very fabric of our lives—from 
search engines to social media, personalized medicine to industrial automa-
tion. This makes it almost impossible to observe the phenomenon with the 
necessary detachment for balanced judgment. We are all—experts and non-
experts—immersed in the same current, unable to view the flow from an 
external vantage point. In this context, the AI debate risks being distorted by 
polarizing emotions: boundless enthusiasm on one side, irrational fear on the 
other. It is essential to find a balance—a narrative that is neither naively opti-
mistic nor needlessly catastrophic. To achieve this, interdisciplinary approaches 
are needed, combining technical, ethical, and humanistic expertise while 
involving not only experts but also civil society in an inclusive, informed dia-
logue. Understanding, developing, and guiding artificial intelligence—espe-
cially in its generative form—now calls for creating a symbiosis between the 
precision of the hard sciences and the insight of the humanities. After more 
than a century of parallel paths, we are rediscovering the possibility of a way 
of thinking that bridges numbers and meaning, calculation and conscience. 
Those who will shape the AI of the future will stand at the crossroads of these 
two worlds: not only scientists, but new humanists, architects of a synthesis 
capable of speaking to both the machine and the soul.

The AI revolution, like it or not, is here to stay. With its transformative 
potential and evolving dynamics, AI is not a discipline confined to a crystal-
lized perimeter but a body of knowledge in constant expansion. Each new 
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discovery triggers progressive change—not only technological but also social 
and cultural. Society will face a continuous challenge to adapt, respond, and, 
where possible, guide this evolution. Only by embracing this awareness can 
we face the future with critical spirit and confidence, accepting that change 
will be the only true constant in this era marked by artificial intelligence. 
With the hope that Franklin Delano Roosevelt’s warning

The test of our progress is not whether we add more to the abundance of those who 
have much, it is whether we provide enough for those who have too little

engraved in marble at the Roosevelt Memorial in Washington D.C., may 
illuminate our path in ensuring greater democratization of AI, making the 
largest possible fraction of our planet’s citizens the beneficiaries of this extraor-
dinary technological and social revolution.
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14
Addendum: A Brief Mathematical 

Digression on Complexity, Reproducibility, 
Interpretability, and Explainability of AI

Before concluding, I would like to offer some quick reflections, inspired by 
the work (Quarteroni et al. 2025), on certain mathematical aspects of AI. As 
discussed in in the previous chapters, a fundamental component of the learn-
ing process is the choice of the model, that is, the function f that maps inputs 
(training data) to outputs (the response to our question). Whether it involves 
a least squares process or an artificial neural network, the model f is defined by 
a set of parameters and, possibly, hyperparameters. In both cases, the param-
eters are determined through a process of minimizing an appropriate function 
J (the cost function, also called the objective function or loss function). From 
a strictly mathematical perspective, even a least squares method (Quarteroni 
et al. 2014) could be considered a machine learning process. However, there 
are some key differences between commonly used least squares approaches 
and supervised training of artificial neural networks that deserve to be 
highlighted.

In the case of linear least squares methods, where f depends linearly on the 
parameters, the minimization algorithm is deterministic: the gradient of the 
loss function is computed analytically, and setting it to zero (∇J = 0) leads to 
a linear system (the so-called normal equations), which is then solved using 
algebraic techniques. In contrast, for nonlinear least squares methods, where f 
depends nonlinearly on the parameters, the resulting normal equations are 
also nonlinear and must be solved using an iterative method, which typically 
performs well for small-scale systems.

If the learning model is based on artificial neural networks, due to the com-
plex compositional structure of the model function f, the minimization 
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algorithm typically employs backpropagation to compute the gradient (as the 
analytical representation of ∇J is no longer available) and usually relies on an 
iterative minimization algorithm based on stochastic gradient descent 
(Goodfellow et al.  2016). As a result, the deterministic nature of the process 
is lost. However, it is important to note that several kind of supervised neural 
networks (e.g., feed-forward neural networks), once trained (through the 
minimization process), they are deterministic in the sense that the associated 
algorithm can be uniquely described and, given the same set of input data, it 
will always produce the same output. Consequently, it retains the property of 
reproducibility featured by least squares methods. Separate considerations 
apply, e.g., to reinforcement learning, adversarial neural networks, and gen-
erative AI algorithms, where determinism and interpretability are lost.

Another key consideration concerns the size of the problem. Typically, a 
least squares approach (whether linear or nonlinear) relies on a very limited 
number of parameters, unlike neural network based approaches, which 
involve an extraordinarily large number of parameters, as well as much larger 
training datasets compared to the input datasets used in least squares meth-
ods. The numerous parameters, combined with the highly nonlinear and 
compositional structure of the model function f, enhance their ability to rep-
resent highly complex and multidimensional input-output processes, as seen 
in convolutional neural networks for image recognition—such as ResNet-50 
(with 25 million parameters) and AlexNet (60 million parameters).

Another frequently debated aspect is the alleged lack of interpretability of a 
machine learning algorithm based on neural network models. Strictly speak-
ing, just as in the case of least squares methods, artificial neural networks are, 
to some extent, interpretable once training is complete: once the parameters 
and hyperparameters are determined, the input-output transfer function can 
be represented in a finite and unambiguous manner. However, it must be 
acknowledged that the readability of such a function can be highly problem-
atic due to its compositional nature. In this regard, the model functions com-
monly used in least squares methods are significantly more readable and 
interpretable. In other words, identifying the role of each parameter in shap-
ing the response of an artificial neural network is highly challenging, if not 
outright impossible.

This apparent inferiority of machine learning methods deserves a deeper 
reflection. Let’s develop this idea through an example. Suppose we want to 
discover the constitutive law of a new material or a biological tissue—essen-
tially, a function that relates applied stresses to the corresponding deforma-
tions, based on a distribution of measurements (or observations). If we were 
to use a linear least squares method (the classical linear regression algorithm), 
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this law would be represented by a straight line, say y = a + bx. Once its two 
parameters a and b are determined—by solving a simple algebraic system of 
two normal equations—their meaning would be easily interpretable: the slope 
b of the line would measure the material’s stiffness, while the intercept a with 
the x-axis would represent the residual stress of the material at zero deforma-
tion. On the other hand, if we were to use an artificial neural network to 
represent the stress-strain law, interpreting the meaning of its parameters 
(many, in this case!) would be far more problematic, likely impossible, since 
the relationship between input (stress) and output (deformation) would 
implicitly depend on the entire neural network structure. However, this lack 
of interpretability is the price to pay for allowing the neural network to auton-
omously learn the true structure of the constitutive law: by not forcing the law 
to behave linearly from the outset (which could be entirely inappropriate for 
certain materials!), we have given it the freedom to reveal a behavior that is 
likely much better suited to representing the material under study. This exam-
ple vividly illustrates one of the core statements made at the beginning of this 
book: the defining characteristic of machine learning models is their ability to 
learn autonomously, without being conditioned by the user! The absence of 
explainability is not inherently problematic in every context. In certain 
domains—such as healthcare, where the inability to justify a treatment can 
compromise both patient trust and clinical judgment, or in the exact sciences, 
where the capacity to trace and validate each step of a proof is fundamental—
explainability is undoubtedly essential. Yet, in experimental sciences, unex-
pected or currently “unexplainable” outcomes often act as catalysts for 
discovery. These anomalies may challenge established theories, inspire new 
hypotheses, and lead to broader generalizations. Notable examples include the 
breakthroughs of AlphaFold and the discovery of the antibiotic Halicin. This 
illustrates one of the core strengths of deep neural networks: their ability to 
detect and harness complex patterns that often escape human intuition and 
traditional analytical methods. Perhaps it is time to rethink the classical ideal 
of total transparency and control in science. Instead of demanding immediate 
interpretability, we might adopt a more epistemically modest stance—
acknowledging that AI systems may surface patterns and structures that antic-
ipate our current understanding. Explanations may follow, shaped by the 
gradual development of new theoretical frameworks. In this light, opacity 
should not be seen as a flaw, but as a potential gateway to new scientific 
insight.

It is also worth noting that the distinction between interpretable (or white-
box) models and black-box models is not absolute. There exists a spectrum of 
models, ranging from simpler, more interpretable ones to increasingly 
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complex models that offer greater descriptive power but are harder to inter-
pret. Within this transition, there is a trade-off between interpretability and 
model complexity. While simpler models provide clear and understandable 
relationships between input and output, they often fail to capture complex 
patterns in the data. Conversely, more complex models, such as neural net-
works, can handle highly nonlinear and multidimensional relationships but at 
the cost of losing interpretability. Finding the right balance between these two 
characteristics is a key consideration in choosing the most suitable model for 
solving a given problem. Scientific machine learning can also be revisited 
from this perspective, positioning itself as a methodological framework that 
effectively balances interpretability and learnability—the ability to learn 
autonomously.

  A. Quarteroni
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Algorithm  A finite sequence of well-defined instructions aimed at solving a problem 
or a class of problems. An algorithm can be translated into software (using appro-
priate programming languages) and executed by a computer. Algorithms are clas-
sified as deterministic—given a certain input, they always yield the same 
output—and non-deterministic—even with identical inputs, different executions 
may yield different outputs. The behavior of non-deterministic algorithms depends 
on the generation of random numbers.

Artificial Neural Network (ANN)  A highly abstract and simplified model of the human 
brain used in machine learning (ML). A set of units (input neurons) receives data 
(e.g., pixels of an image), performs simple calculations on them, and passes them 
to the next layer of units (hidden neurons). The final layer (output neurons) pro-
vides the response (e.g., identifying the object in an image). Hidden neurons are 
often organized into layers. The behavior of an ANN depends on a set of param-
eters, called weights and biases, which are adjusted during the training process. See 
Figs. 4.2 and 4.4.

Autoencoder  A type of ANN used to learn efficient encodings (i.e., low-dimensional 
representations) of high-dimensional data. Autoencoders are an example of unsu-
pervised machine learning algorithms. See Fig. 4.7.

Backpropagation  An algorithm fundamental to training neural networks. It allows 
one to calculate how much and in what way the network’s output depends on the 
weights and biases associated with it. More precisely, the backpropagation algo-
rithm efficiently computes the gradient of the loss function with respect to the 
network’s parameters.

Black-box  An AI system that receives an input and provides an output through calcu-
lations that are not easily interpretable by humans.

Glossary
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Cloud computing  A paradigm for designing computing infrastructures and service 
delivery that enables on-demand availability of resources (typically computing 
power and storage). These services are provided via servers, often redundant and 
geographically distributed to ensure service continuity, in a way that is entirely 
transparent to the end user. The ability to easily scale resources (often automati-
cally, without user intervention) is one of the key success factors of the cloud para-
digm, particularly in IoT (Internet of Things) and AI applications.

Convolutional Neural Network (CNN)  A type of ANN whose architecture is inspired by 
the organization of the animal visual cortex. CNNs are widely used for image 
processing. See Fig. 4.5.

Data-driven  An algorithm developed without leveraging prior knowledge, such as 
fundamental principles or empirical laws, but solely based on data. In this case, 
the algorithm is said to be unaware of the underlying physics of the problem.

Decision Tree  A widely used supervised machine learning algorithm that finds appli-
cations in tasks such as classification and regression. It adopts a tree-like structure, 
where internal nodes represent features or attributes, branches represent decision 
rules based on those attributes, and leaf nodes correspond to outcomes or 
predictions.

Deep Learning (DL)  A family of machine learning algorithms based on neural net-
works with a high number of layers. As the network depth increases, it becomes 
better suited to represent progressively more abstract patterns. According to a 
common interpretation, when analyzing a picture of a dog, the first layers would 
identify edges, the next ones would detect features such as eyes, nose, and paws, 
and the final layers would recognize the entire animal.

Digital Twin  A set of virtual information constructs that mimic the structure, context, 
and behavior of an individual (or a physical asset), dynamically updated based on 
data from its physical twin throughout its entire lifecycle and informed decisions 
that generate value (source: AIAA Institute Position Paper 2020). See Fig. 11.1.

Expert System  A form of AI that attempts to replicate human expertise in a domain, 
such as medical diagnosis or law. It combines a knowledge base with a set of hand-
coded rules. Machine learning techniques are gradually replacing manual coding.

Explainable Artificial Intelligence (XAI)  An AI model that aims not only to provide 
answers to a given question but also to explain why the AI made certain decisions. 
Unlike black-box AI, XAI aims for greater transparency and fairness, key factors 
for the adoption of AI in sensitive areas such as security and medicine.

Gaussian Process  A type of supervised ML model based on a statistical approach that 
assumes spatial correlation among data. Compared to other ML models, Gaussian 
Processes have the advantage of providing an uncertainty estimate for 
predictions.

Generative Adversarial Network (GAN)  A pair of neural networks trained together. The 
first (generator) generates realistic data, while the second (discriminator) tries to 
distinguish synthetic (fake) data from real data. The training of both networks 
improves through their competition. For example, the generator might produce 
realistic human faces or artworks mimicking real ones, while the discriminator—
once trained—could be used to recognize a human face or an artist’s style.



153  Glossary 

Generative AI  A type of AI capable of generating text, software code, images, audio 
signals, or other media in response to requests typically expressed in human lan-
guage. Such requests are called “prompts.”

Graph Neural Networks  Networks designed to operate on data structured as graphs, 
where nodes represent entities and edges connecting two adjacent nodes represent 
relationships. See Fig. 4.8.

Hyperparameters  A set of numerical variables that characterize and control the train-
ing process. Unlike parameters, hyperparameters do not change during training. 
In an ANN, hyperparameters include the number of layers, the number of neu-
rons per layer, and the activation function.

Large Language Models (LLM)  AI systems designed to understand and generate text or 
pictures in a coherent and contextually relevant manner. These models utilize vast 
datasets to learn natural language and are widely used in applications such as natu-
ral language processing, creative text generation, and contextual question 
answering.

Long Short-Term Memory (LSTM)  A type of ANN featuring feedback connections, 
where the output signal is iteratively fed back into the network itself. LSTMs are 
useful for tasks involving temporal dynamics, such as natural language processing 
(NLP) and time series analysis.

Loss Function  A mathematical function whose value is minimized during training. 
The loss function typically measures the error of the machine learning model (i.e., 
the difference between the model’s predictions and real data). Training can thus be 
seen as a process in which the model gradually adjusts its parameters to reduce 
error as much as possible.

Machine Learning (ML)  A field of study in AI concerned with the development and 
study of algorithms that can learn from data and generalize to unseen data, and 
thus perform tasks without explicit instructions.

Natural Language Processing (NLP)  The attempt by a computer to understand spoken 
or written language. Currently, the most successful NLP algorithms are machine 
learning-based (e.g., using LSTMs).

Overfitting  A situation where a model fits training data too well but performs poorly 
on unseen data. This indicates poor generalization properties. Several techniques 
help prevent overfitting, such as reducing model complexity (e.g., decreasing the 
number of neurons in ANNs), introducing regularization terms in the loss func-
tion, or modifying the optimization algorithm.

Parameters  Numerical variables that characterize a machine learning model’s func-
tioning. They are modified during training using optimization algorithms (unlike 
hyperparameters, which remain unchanged). In an ANN, parameters include 
weights and biases, which represent the importance of connections between neu-
rons and the sensitivity of each neuron to its inputs.

Physics-based Algorithm  An algorithm or model that, unlike data-driven counter-
parts, is built using prior knowledge (such as physical laws or mathematical mod-
els). It inherently incorporates concepts of space, time, and causality.
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Prompt Engineer  A new profession emerging with generative AI, involving the trans-
lation of tasks into instructions understandable by the language model and refin-
ing inputs to generate the desired output in the form of text, images, or code.

Quantum Computing  A computational paradigm leveraging quantum phenomena 
such as superposition and interference.

Recurrent Neural Networks (RNN)  Networks specifically designed for processing 
sequential data, such as time series, text, speech, or video frames. Unlike tradi-
tional feedforward neural networks, RNNs have loops that allow information to 
be passed from one step to the next, giving them a form of memory. This makes 
them particularly well-suited for tasks where the previous context is essential, such 
as language modeling, speech recognition, and financial forecasting. See Fig. 4.6.

Reinforcement Learning  A type of machine learning in which the algorithm learns by 
taking actions toward an abstract goal.

Retrieval-Augmented Generation (RAG)  An innovative approach combining an infor-
mation retrieval component with a generative text model (see LLM), using exter-
nal sources like Wikipedia to dynamically enrich the model’s context.

Scientific Machine Learning  A discipline integrating AI’s data-driven algorithms with 
physics-based computational methods.

Supervised Learning  A type of machine learning (ML) in which the algorithm, during 
training, compares its results with the correct ones (often referred to as labels). 
This approach is only possible when labels are available.

Support Vector Machine  A type of supervised ML mainly used for classification prob-
lems, where the goal is to assign each input to a label from a discrete set (e.g., given 
a photo of a product, determining whether it contains a pair of shoes, a coat, or 
a belt).

Transfer Learning  A machine learning technique where an algorithm learns to per-
form one task (such as recognizing animals) and then applies that knowledge 
when learning a different but related task (such as recognizing humans).

Transformer  A neural network architecture introduced by Vaswani et  al. in 2017, 
revolutionizing the field of deep learning. It is based on attention mechanisms, 
enabling the effective handling of long-term relationships in data, making it 
widely used in applications such as natural language processing and computer 
vision. See Fig. 6.1.

Turing Test  A test of an AI’s ability to be indistinguishable (to a human observer) from 
human intelligence. In Alan Turing’s original conception, an AI would be judged 
by its ability to converse with a human through written text.
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